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On the Phenomenology of Theories with a Composite Higgs

by Pedro Bittar

The Standard Model (SM) is a complete and well-tested framework for describing
elementary particles interactions. However, when discussing the stability of the
Electroweak (EW) scale, it lacks theoretical grounding. More concretely, having
a light Higgs boson is not naturally attainable if there is new microscopic physics
above the EW scale. This issue is the hierarchy problem (HP)

The Higgs boson is the agent of Electroweak Symmetry Breaking (EWSB), the
origin of particles masses. Here, if the symmetry structure of the SM is maintained,
the elementary nature of the Higgs inevitably introduces the HP. Even though the
SM parametrizes the Higgs mechanism, it offers no dynamical explanation for EWSB
and, consequently, causes the HP. Giving a composite nature to the Higgs can solve
such a problem, while also providing EWSB with new dynamical content.

Such a proposal is at the core of composite Higgs models (CHM). They pro-
vide a general framework for extending the SM at the TeV scale, the aimed energy
scales of the LHC, and to attack the HP. However, when it comes to the experimen-
tal signatures of compositeness itself, such models may lack in their effective local
descriptions.

Our objective is to look for general signs of compositeness in collider experiments.
The task ahead is to find a systematic way of including compositeness effects while
providing the means to study its phenomenology. Throughout our work, we have
restored the full momentum dependence of compositeness via the form factor for-
malism and studied its phenomenological consequences through simulations. Here,
we discovered changes in the shapes of kinematic distributions, that are typical of
compositeness. If the Higgs is composite, such signatures should start to become
apparent in the next stages of the LHC experiment.

Keywords : Composite Higgs Models, Form Factor, Momentum Dependence,
Hierarchy Problem, Standard Model
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por Pedro Bittar

O Modelo Padrão (MP) é uma descrição completa e bem testada das interações
de partículas elementares. Contudo, quando se discute a estabilidade da escala
eletrofraca (EW), a sua estrutura parece incompleta. Concretamente, ter um boson
de Higgs leve não é atingível de maneira natural se existe física microscópica além
da escala EW. Essa questão é o problema da hierarchia (PH).

O boson de Higgs é o agente da quebra espontânea da simetria eletrofraca
(EWSB), responsável pela origem das massas das paticulas elementares. Aqui, se a
estrutura de simetrias do MP for mantida, o caráter elementar do Higgs vai, inevi-
tavelmente, reintroduzir o PH. Embora o MP parametrize o mecanismo de Higgs,
ele não oferece uma explicação dinâmica para EWSB, e consequentemente, causa o
PH. Dar uma natureza composta para o Higgs pode resolver o PH e também dar
um novo conteúdo dinâmico para EWSB.

Essa proposta está no centro dos modelos do Higgs composto. Eles dão um
contexto geral para extender o MP na escala dos TeV e atacam diretamente o
PH. Contudo, no que tange ao sinais experimentais da composição do Higgs, esses
modelos podem falhar na sua descrição efetiva e local.

Nosso objetivo é olhar para os sinais mais gerais do Higgs composto nos experi-
mentos de colisor. A tarefa é encontrar uma maneira sistematica de incluir os efeitos
de uma partícula composta na teoria e derivar meios para estudar a sua fenomenolo-
gia. No nosso trabalho, tivemos que restaurar completamente a dependência no
momento de um Higgs composto, e estudamos os sinais desse caso por simulações.
Aqui, encontramos modificações nas distribuições cinemáticas, que são típicas do
cenário assumido. Se o Higgs é de fato composto, os seus efeitos devem começar a
ser visíveis nas próximas fases do LHC.

Palavras-Chave : Higgs Composto, Fator de Forma, Dependência com o mo-
mento, Problema da Hierarquia, Modelo Padrão.
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1

Chapter 1

Introduction

A large share of the particle physics community is currently dedicated to

studying the Higgs boson interactions at the Large Hadron Collider (LHC). The

last decades of theoretical endeavours suggested that there should be deviations

from the current framework onset, the Standard Model (SM). Furthermore, it is

suggested that Electroweak Symmetry Breaking (EWSB), the origin of all the SM

particle masses, is incomplete. The expectation is that these new effects should be

accessible at the current LHC TeV scale. Altogether, the Higgs [1] seems to be the

central piece of this puzzle.

However, it has been a remarkable task to include beyond the standard model

(BSM) effects into the current framework. The main difficulty is the so-called Hier-

archy Problem (HP), which reflects the trouble in conciliating the elementary Higgs

125 GeV mass with the scale of new physics. Problematically, quantum corrections

to the Higgs mass term suggest that it should be much heavier.

In all of this, the Higgs is assumed to have the same status of the remaining

SM particles - it is elementary. The Higgs of the SM has no internal structure or

available symmetry to protect its mass from these large quantum corrections. Thus,

we are bound to the HP by the very nature of this SM scalar particle. It was against

these difficulties that composite Higgs Models (CHM) were proposed.

CHMs were built to provide a solution to the HP. Moreover, they are local

effective field theories (EFT’s) that modify the SM coupling constants. Importantly,

these couplings shifts do not bear any distinctive features of composite structures

since they cannot be distinguished from elementary ones.
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As a result, CHMs effective descriptions are not enough to describe the full

content of a composite Higgs. Surely, we expect that compositeness should have its

own phenomenological signals. The question, above all, is about how to explore the

full extent of compositeness when we are limited to LHC scale experiments.

Thus, the purpose of this work is to investigate the general signatures of the

Higgs compositeness in upcoming collider experiments.

***

Hierarchy in nature’s scales has been a central concept throughout the devel-

opment of physics. A remarkable feature of the particle physics framework is that

hierarchy is built-in the construction of our models as we explore experimentally

from small energies to higher ones. Historically, much has happened in this program

to extend the high energy frontier, since when a new energy benchmark is reached,

we often force ourselves to redefine the labels of the elementary constituents of our

models. One can say that looking for the next energy benchmark is the program

for the current generation of physicists. Undoubtedly, the theoretical puzzles we are

facing have paramount importance to such a goal.

To some degree, we know the relationship between the full range of observed

phenomena up until the electroweak scale, which defines the realm of the SM. The

way it is, the SM is the theory of the Electroweak scale. Exploring it was the

driving force of past and current collider experiments. At this point, the thought-

to-be program of 2010’s physics was to discover the Higgs and whichever new physics

that could come along.

Coming as a shock, the absolute experimental adequacy of the SM forces an

unnatural behaviour when incorporating scales beyond the ones characterized by

the Higgs mass. Moreover, the HP was treated as the expectation of a new energy

benchmark associated with the Higgs. At this new scale, hints of a completion for the
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SM should become evident, with the appearance of new particles and interactions1.

The shock is that only the Higgs came up, and nothing else so far. Not only we

discovered the Higgs, but it behaves just as it should in the SM.

By trying to extend the theory to include new massive phenomena, we discover

that the SM suffers this unexplainable amount of fine-tuning. Keeping the next new

physics threshold separated from the electroweak scale creates this hierarchy, which

requires a fine parameter calibration. Such puzzle suggests the Higgs sector has

more structure than what was foreseen by the SM. This tension is at the core of

the Higgs theoretical developments today, and the appearance of the next energy

benchmark still seems to be unwarranted.

Even with proposed solutions, hierarchy and elementarity are two concepts

that are hard to conciliate. Many different solutions to the HP that keep the ele-

mentary status of the Higgs face phenomenological challenges today. By giving up

particle elementarity, we are putting the Higgs at the edge of our knowledge, and

predicting the appearance of new phenomenology at the TeV scale. We are assum-

ing that the Higgs emerges from a yet undiscovered sector, Beyond the Standard

Model (BSM) [47, 46].

So far the HP has served as an essential guide for BSM. However, this work is

primarily concerned with the Higgs status as a composite. The attitude here is to

postpone the conflict of the TeV scale, shifting from the HP to the consequences of

a composite Higgs boson. How different is a composite Higgs from an elementary

one?

1.1 Elementary and Composite Particle Physics

The situation though the 1920s was that the electron and proton were con-

sidered the fundamental constituents of matter. Eventually, the composite nature

of nucleons was bound to emerge as experimental technology further sophisticated.
1Like supersymmetry, extra dimensions, and even composite higgses
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Interestingly, such dynamics underlined much of the advances in particle physics

[17].

It was in the 1950s that the extended composite nature of nucleons started to

become apparent through charge distribution measurements.

Through these experiments, the crucial characteristics of compositeness were

manifest as the momentum transfer allowed a probe to the internal structure of

particles. Here, the momentum dependence posed modifications to the distribution

functions of elementary particles, and this was the main signal of a composite object

- shapes of cross-sections distributions do distinguish elementarity from composite-

ness.

As an example we can look for the the expected differential cross section of

the elementary electron scattering, predicted by the Mott formula.2

(
dσ

dΩ

)
Mott

=
α2

4E2 sin4 θ/2
cos2 θ

2
(1.1)

The Mott cross-section is for structureless scattering. Here the target proton

recoil and size are neglected together with the magnetic spin-spin interactions. To

take into account the finite size of the proton, reflected through a certain charge

distribution, the Mott cross section gets modified by a Form Factor.

dσ

dΩ
=

(
dσ

dΩ

)
Mott
|F (q2)|2 (1.2)

where the vector q is defined as the momentum transfer of the process, and the form

factor F (q2) is the Fourier transform of the charge distribution.

A form factor reflects the finite size of the scattering center and induces a

phase difference between the electron plane waves. If the incoming wavelength is

very large compared to the proton’s size, it is reduced to F (q2) = 1. In such case,
2Here α is the fine-structure constant, E is the electron beam energy and θ is the relative angle

between incoming and outgoing electrons scattering over a fixed proton.
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the elementary behaviour is recovered. This limit serves as a normalization, and at

zero transferred momentum, the effects of compositeness disappear.

Another essential point is that the transferred momentum has a kinematic

dependence associated with it. This dependence is the main feature of the extended

character of the proton - deviations from point-like behaviour induce modifications

in the differential kinematic distributions. This behaviour can be seen in the cross-

sections measurements of electron scattering from protons, as in figure 1.1.

Figure 1.1: Electron scattering from the proton
at incident energy of 188 MeV [49]. The shape of
the distribution tail deviats from the elementary

prediction due to proton compositeness.

In short, the important fea-

tures of compositeness are observed

when there is enough momentum

flow to access the extended struc-

ture. When accessed, a composite

object induce modifications to the

point-like kinematic distributions.

Before the charge distribution

measurements, the first evidence for

a composite structure of nucleons

came with the magnetic moment

measurements performed by Otto

Stern [55, 56]. The Dirac equa-

tion predicts that the magnetic mo-

ment is g = 2 for free elemen-

tary fermions. The striking discov-

ery was that the proton and neu-

tron magnetic moments depart sig-

nificantly from the predicted value for structureless elementary fermions. Such shifts

in particle couplings indicate composite behaviour, as shown in table 1.1.

The electron’s g-factor also departs slightly from the exact g = 2 value, but it

is still expected to be elementary. The reason is not related to coupling shifts but
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due to the absence of internal constituents. Even though there is a cloud of virtual

particles surrounding the electron, these are not physical states and do not suggest

a meaningful sign of compositeness at low energies.

Particle Symbol g-factor
Dirac g 2
Electron ge 2.00231930436256(35)
Muon gµ 2.0023318418(13)
Neutron gn 3.82608545(90)
Proton gp 5.5856946893(16)

Table 1.1: Magnetic moments of different particles. Electrons and
muons are closer to the Dirac value. For the neutron and proton, the

departure from g = 2 are due to their internal structure.

Actually, electrons could be composite in very high scales. The effective run-

ning of α suggests the presence of a Landau pole. At high energies, a gauge U(1)

becomes a nonperturbative theory and is not asymptotically free. It is said that the

theory has such a Landau pole when the coupling becomes infinite at finite energy.

Such behaviour is often attributed as a sign of theoretical incompleteness and could

be attributed to the emergence of a complete theory at the Landau pole scale.

However the strong coupling limit of the SM is at astonishingly high energies,

∼ 10286GeV . Even though the actual electrons constituents might arise in a complete

theory, it is not sensible in any way to look for electrons compositeness signs since

they are very far away. For all senses, electrons remain elementary particles.

Such discussion introduces a crucial aspect of compositeness - it is a scale-

dependent concept.

A much more accessible example of nonperturbative behaviour occurs in Quan-

tum Chromodynamics (QCD). There, the perturbativity breakdown occurs in the

low energy infrared (IR) region instead of the ultraviolet (UV). QCD at such scale

is responsible for the emergence of hadrons.

The first attempts to build a hadronic Lagrangian was particles such as pi-

ons, nucleons, sigmas and rhos. In it, pions are naturally light compared to the

much more massive nucleons and others. Such property is the result of them being
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the pseudo-Nambu-Goldstone bosons of chiral symmetry breaking. This symmetry

structure is deeply rooted in the spontaneous symmetry breaking (SSB) of chiral

symmetry and will be mimicked when we proceed to make the Higgs a composite

scalar later on.

By looking closer into interactions, we can start to access the composite sector

via the momentum transfer of interactions. This aspect became most apparent

in the pion electromagnetic form factor discussion, in which yet another hadronic

resonance appears - the ρ-meson vector.

Form factors encapsulate the contributions of heavier intermediate particles

to physical processes. They do it without having to explicitly assign fields for these

states, thus making them a non-local approach.

The electromagnetic form factor Gπ(q2) of charged pions can be defined as the

matrix element of the electromagnetic current between two pion states. Lorentz and

Gauge invariance force this element to be of the form:

〈
π+(p2)|Jµem|π+(p1)

〉
= Gπ(q2)(p1 + p2)µ (1.3)

Figure 1.2: The pion form factor under
the one vector-meson dominance hyphoth-

esis.

with qµ = (p1− p2)µ is the transfered mo-

mentum to the photon. Physically, the

interaction is dominated by a mixing of

the photon and the ρ resonance. Such in-

teraction is diagonalized at zero tranfered

momentum, making Gπ(0) = 1 to ensure

gauge invariance. The mixing must occur

at large enough momentum transfer q2 to

be kinematically effective as Gπ(0) = 1 is

forced by the masslessness of the photon.
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The use of mixing interactions to describe the form factor became known as

the vector-meson dominance hypothesis in the context of Hidden local symmetries

[53, 54]. Phenomenologically, they provided a good description of the pion form

factor since the ρ’s were the lightest hadrons that participate in such a process.

Diagrammatically, we can see in figure 1.2 how the ρ dominates the pion process.

The form factor expression in such approximation is given by a monopole term,

which reflects the intermediate ρ state between the pions and the photon.

Gπ(q2) ' 1

1− q2/m2
ρ

, mρ ≈ 775 MeV (1.4)

Eventually, the advance in experimental techniques permitted the discovery of

the Hadron zoo, with hundreds of new particles in the GeV range. This scale defines

the order parameter in which the fundamental degrees of freedom confines to form

composite hadrons. At the time, making sense of such a theory was incredibly hard,

since the interaction became strong enough to surpass the perturbativity limit.

Assigning a field for each new state was a pointless strategy. It was unprece-

dented the necessity of formulating a nonperturbative approach to QFT, which was

before the emergence of the fundamental QCD theory. Many alternatives to the

Quantum Field Theory scheme were proposed for dealing with these strongly inter-

acting theories and, eventually, all of them became incorporated into QFT’s toolkit.

Some examples are the Bootstrap models and techniques such as spectral decom-

position, large-N limit and sum rules. Surprisingly, these tools will be useful in

upcoming discussions of the Higgs compositeness here.

Despite the necessity to develop nonperturbative tools, the discovery of quarks,

gluons and the asymptotically free structure of QCD postponed this challenge. After

1973, the necessity to understand QCD properties at high energies drove the particle

physics field, and the alternatives were mainly abandoned. Perturbative calculations

were then reliable in the high energy limit, and elementarity emerged again. In figure

1.3, we show the evolution of αs that indicate the asymptotically free behaviour of
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Figure 1.3: Measurements of the strong coulpling of QCD as a
function of the transferred momentum Q. Taken from [50].

QCD.

In QCD, the combination of six elementary SU(3) charged fermions and their

interaction pattern with new gauge bosons was responsible for forming hadrons

at low energies as bound states. This happens because of confinement - a truly

nonperturbative effect.

In light of QCD, the compositeness of hadrons became a clear subject. Hadrons

are bound states of quarks and gluons that can be accessed in collider experiments.

Traditionally, the most important process used to probe the structures inside the

hadrons was Deep Inelastic Scattering (DIS) [62, 63, 64].

DIS provided experimental evidence for the existence of an internal structure

of hadrons. It pointed to the existence of three valence quarks forming the baryons

and two forming mesons. Ultimately, it set the elementary status of quarks.

After the typical hadronic energies, at E >> ΛQCD, the internal constituents

started to become clearly visible to detectors. At colliders, these effects were seen
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Figure 1.4: Experimental probe to a composite object. From a
seemingly elementary interaction (left), to a form factor type of inter-
action (middle) until the experimental resolution is enought to probe

internal constituents (right).

as jets, which are the result of the production of quarks and gluons. Subsequently,

they hadronize producing very distinctive trails on calorimeter detectors. These jets

are paramount features of modern high energy proton-proton colliders such as the

Tevatron and LHC.

***

We can draw a general picture of compositeness (Figure 1.4). At low energies,

the internal structure of composite objects seems to be point-like and elementary.

Then, after some energy threshold, deviations in the expected elementary couplings

can be observed, and kinematic effects appear through form factors of interactions.

Eventually, experiments get energetic enough to produce the composite states and

all the composite Hadron-like objects emerge. Finally, the UV theory is manifested

when energies are much above the confinement scale of the theory.

Compositeness is a scale-dependent concept, and it reveals new physics bench-

marks. These new benchmarks generally come with new interactions and new par-

ticles as unique experimental features. Given that, why would the Higgs be a com-

posite particle?

The answer comes with the role of the Higgs boson in EWSB. A composite
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qL ucR dcR lL ecR
SU(3)c 3 3 3 1 1
SU(2)L 2 1 1 2 1
U(1)Y 1/6 −2/3 1/3 −1/2 1

Table 1.2: Quantum numbers of the SM elementary fermions. There
are three quark fields Q, U c, Dc and two lepton ones L and Ec.

Higgs would signal the existence of yet another benchmark roughly at the TeV

range. Ultimately, we expect that the presence of a new energy benchmark would

complete the SM Higgs mechanism, promoting it to a dynamical EWSB.

As it is, the SM is the elementary theory of strong, weak and electromagnetic

interactions. It provides the unification of Electroweak (EW) phenomena through

the Weinberg-Glashow-Salam theory of local SU(2)L × U(1)Y interactions [4, 2, 3].

The gauge structure of the Electroweak sector is very well established. It is built

over a local group SU(2)L × U(1)Y , so all mass terms are forbidden by the chiral

SU(2)L symmetry and gauge invariance. Therefore, without the Higgs mechanism

for SSB, all particles should be massless.

Before SSB, there are four massless gauge bosons. Three of them correspond to

the generators of SU(2)L and one with U(1)Y . So, these are W µ
1 , W

µ
2 ,W

µ
3 and Bµ.

Additionally, the SM includes 12 elementary fermions, divided between three

generations of quarks and leptons. These are organized in a singlet/doublet struc-

ture, in which the right-handed fields are singlets, and left-handed fields are doublets

of SU(2)L. Each one of these has a Hypercharge and SU(3)c charge as specified in

table 1.2. Furthermore, these doublets are composed between two fermions of the

same generation (i.e. up/down, electron/neutrino(νe), etc).

Altogether, the Electroweak part of the SM is

L =− 1

4
W µν
a W a

µν −
1

4
BµνBµν + ifL,i /DfL,i + ifR,i /DfR,i

+ |DµH|2 + V (|H|2) + yijfL,iHfR,j + h.c.︸ ︷︷ ︸
Higgs Sector

(1.5)
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Unification of Electroweak phenomena requires the embedding of an U(1)EM into

the SM group. This is achieved by the SSB of SU(2)L × U(1)Y → U(1)EM , which

triggers the Higgs mechanism.

The Higgs field is defined as a scalar that interacts with the Electroweak gauge

bosons and charged fermions. Its quantum numbers must be fixed by physical

requirements of EWSB.

Meaningfully, the SSB process indicates that the vacuum state is not symmetric

under the full EW group. In this phase, the Higgs assumes a vacuum expectation

value (vev), 〈H〉 = v. EWSB triggers the Higgs mechanism because the interactions

of the Higgs generate mass terms when H it assumes its vev. The fact that U(1)EM

is left unbroken indicates the masslessness of the photon.

So, out of these four gauge bosons, three of them get masses due to the Higgs

[14, 15]. Also, because their mass terms are components of the Higgs field itself,

we need at least three degrees of freedom into the H multiplet. The smallest scalar

that contain such three components is H ∼ (1,2,+1
2
)3.

H =
1√
2

h1 + ih2

h3 + ih4

 (1.6)

Keeping only renormalizable terms in the Higgs potential, the Higgs sector la-

grangian is4:

LH = |DµH|2 + µ2H†H − λ
(
H†H

)2
+

− lLyeHeR − qLydHdR − qLyuH̃uR (1.7)

where yi are the Yukawa matrices in flavour space. The covariant derivative is:

DµH = (∂µ − igW i
µt
i − ig′YHBµ)H (1.8)

3The notation here means (SU(3)c, SU(2)L, U(1)Y ) charges. Additionally, the Higgs hyper-
charge is taken as an input of the theory and fixes all other SM hypercharges.

4In which H̃ ≡ iσ2H
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In order to guarantee the positivity of the potential, λ > 0. Also, there are two

phases, defined by the sign of µ2. If µ2 < 0 the potential has a trivial minimum at

〈H〉 = 0, thus with no EWSB. If the potential has µ2 > 0, we can trigger EWSB

since there will be a nontrivial minima. Now, minimizing such potential lead to the

definition of the Higgs vev as | 〈H〉 |2 = µ2

λ
.

One can see how the mass terms arrise from the Higgs sector Lagrangian. First

the gauge boson massses come from the cotribution of the "veved" Higgs in its

kinetic term.

|Dµ 〈H〉|2 =
1

4

[
g2(W 1

µ − iW 2
µ)(W µ

1 + iW µ
2 )v2

+(−gW 3
µ + g′Bµ)2v2)

]
(1.9)

We define the mass basis for the gauge bosons as W±
µ = W 1

µ ∓ iW 2
µ and Zµ =

1√
g+g′

(gW 3
µ − g′Bµ). Substituting the basis back in (1.9) leads to

|Dµ 〈H〉|2 = m2
WW

+
µ W

−,µ +
m2
Z

2
ZµZ

µ (1.10)

m2
W =

g2v2

2
(1.11)

m2
Z =

(g2 + g′2)v2

2
(1.12)

Defined by Aµ = 1√
g+g′

(gW 3
µ + g′Bµ), the photon is left massless in the broken

phase of the SM.

The fermionic mass terms are generated by the Yukawa lagrangian.

LY uk(〈H〉) = − v√
2
eLyeeR −

v√
2
dLyddR −

v√
2
uLyuuR (1.13)

Going to the mass basis in flavour space defines the mass-Yukawa relation, a

consequence of the SM Higgs mechanism.

mf =
yf√

2
v (1.14)
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Measured quantity Experimental value
Anomalous ge − 2 0.0011 · · · ± 2.8× 10−13

GF (Muon Lifetime) 1.1663787(6)× 10−5 GeV−2

Z pole mass (LEP) 91.1876(21) GeV
Z decay width (LEP) 2.4952(23) GeV
Z polarizarion assymetry 0.1515(19)

Table 1.3: Experimental values SM observables.

Fixing the vev, the SM requires that g, g′ and all the Yukawa couplings must be

known to reproduce the particle spectrum. In total, there are two parameters for

the gauge sector, 2 for the Higgs, and 13 for the whole Yukawa sector5.

Even with a lot of independent parameters, the SM predictions are very concrete.

When confronted with the experiment, the SM has proven to have a remarkably

robust structure. Since the 1970’s, its internal structure is intact, without any

modification dictated by experimental data.

The success of the SM gauge sector is reflected in the astounding precision of the

electron magnetic moment and muon lifetime measurements. Furthermore, at the

Large Electron-Positron (LEP) collider, Electroweak Precision Tests (EWPT) were

conducted to study loop-level properties of the massive electroweak gauge bosons

[6, 13]. The results indicate the experimental sturdiness of the gauge interactions

that all agree with the SM predictions, and are indicated in table 1.3.

Subsequently to the LEP experiments, the LHC presented the possibility of find-

ing the Higgs. The objective was the discovery, the study of its couplings as well as

its production/decay channels.

The main production channels of the Higgs are gluon fusion, Higgs-strahlung,

vector fusion and top fusion. Furthermore, the decays of the Higgs are mostly to

the bottom-quark, the most massive kinematically available fermion. Even though

it is the dominant mode, there are also several opportunities to study other kinds

of decay channels, as it can be seen in figure 1.5 below.
5These are three Yukawa couplings for each lepton, up- and down quarks, plus three CKM

angles and a CKM phase.
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Figure 1.5: Main production and decay channels of the Higgs. The
diagrams of the most important production channels are to the left,

and the branching ratios of Higgs decays to the right.

In 2012, the Higgs was discovered, confirming the SM predictions [7, 8]. The

Higgs discovery is indicated in figure 1.6. It was a combined analysis of multiple

channels dominated by the decay of the Higgs to two photons. Even though this

decay mode has a small branching fraction, BR(H → γγ) = 1.73%, it is preferred

since the detector signal is cleaner. This illustrates that the production cross-section

and branching ratio analysis are not the only factors when determining the Higgs

visibility.

A fair share of the Higgs couplings was observed in the LHC. In all measurements,

the couplings are in agreement with the SM predictions, and there are no favoured

results for BSM searches, as pictured in figure 1.7.

In short, the experimental picture of the SM is very favourable. We are already

probing scales much beyond the Electroweak, at 13 TeV and the SM predictions are

still compatible. However, there is much concern regarding the theoretical framework

we traced.

The most critical issue is regarding the inclusion of BSM effects. Certainly, the

SM is not the final picture of nature - there are still many observed phenomena that

require modification. We have an undoubtful amount of evidence for dark matter;
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Figure 1.6: Higgs discovery plots. The sharp peak indicates the
presence of the Higgs boson at mh = 125 GeV. To the left, is the
number of events of H → γγ as a function of the invariant mass
distribution mγγ . S and B are the numbers of signal and background
events, respectively. To the right, is the H → 4l number of events
per m4l. In both the discovery significance of 5σ was reached by an

analysis of multiple production channels.

Figure 1.7: Measurements of
the Higgs couplings at the LHC.
Data from run 2. So far, the
Higgs couplings to the top/bot-
tom quarks, tau/muon leptons
and W/Z gauge bosons were
measured. The dashed line is
the SM expectation. Green and
Yellow contours are the 1σ and
2σ C.L. intervals. The measure-
ments are in agreement with
predictions as indicated by the

red line fit.
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we have not identified the scale responsible for the neutrino masses; another energy

benchmark could be responsible to resolving the flavour puzzle of fermion masses;

the running of gauge couplings suggest complete unification at high energies; there

is matter-antimatter asymmetry; and, ultimately, gravity forces a completely new

picture at the Planck scale. All of these are not included in the SM framework [47].

Here lies the experimental tension between theory and experiment - The Higgs,

as a scalar particle, lives at the cutoff for new physics. As an elementary particle,

it has not enough symmetry to protect its mass from divergent contributions due

to its interactions. Since the Higgs should live at the cutoff, whenever we introduce

new physics at higher scales, the Higgs mass value is driven towards this scale.

In such a conflict, we define the hierarchy problem. The elementary SM presents

a remarkable resilience to BSM inclusions, yet, we need to incorporate BSM phe-

nomena.

A simple calculation illustrates this effect. The most important loop effects to

the Higgs mass comes from virtual top quark corrections, massive gauge boson, and

self-interaction loops. All of these yield quadratically divergent contributions.

δm2
H = (1.15)

= − y2
t

8π2
Λ2
UV −

9g2

64π2
Λ2
UV −

3λ

8π2
Λ2
UV ≡ cSMΛ2

UV (1.16)

The hierarchy problem appears when we have to fix the physical Higgs mass to

its 125 GeV value. To fix it, we subtract the divergences from a counterterm that

parametrizes the ultraviolet (UV) unknown physics.

physical mass︷︸︸︷
mH

2 = mBSM
2 − |∆m2

H | (1.17)

= (cBSM − cSM)Λ2
UV (1.18)
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As we try to send the cutoff of the SM to Λ2
UV >> m2

H = (125GeV)2, we face the

problem of fine-tuning the combination (cBSM − cSM) to be very small. This makes

the inclusion of heavy phenomena very unnatural.

The Hierarchy problem is not about cancelling divergences, it is about the sep-

aration of the Electroweak and BSM scales. As heavier as the new physics scale

is, the stronger we have to fine-tune. For this reason, we expected new physics

at the TeV s. If it comes from higher energies, the model becomes uncontrollably

unnatural. Yet, no new TeV physics showed up so far.

Due to this puzzling outcome, the theoretical pathway is gradually being changed.

The sole confirmation of the SM, without new phenomena, confronts particle physi-

cists expectation and forces us to rethink our expectations of BSM physics. The SM

picture with an elementary Higgs is the most striking puzzle we face today.

1.2 The Compositeness of the Higgs Boson

In nature, SSB is a reasonably common phenomenon ranging from ferromag-

netism, superconductivity and the melting of ice to the Hadronic structure given by

QCD. In all of these, there are broken and unbroken phases that define the physical

systems, each with its unique properties. These spontaneously broken systems can

be described by their order parameters and effective theories (i.e. Landau-Ginsburg

Theory; chiral perturbation theory). However, it often happens that the SSB pro-

cess itself has a microscopic dynamical origin. For example, superconductivity can

be described by the effective Landau-Ginsburg theory, but its microscopic origin is

only provided by the condensation of cooper pairs as in BCS theory.

In the case of the SM, the HP seems to suggest more structure to EWSB than

what is contained in the Higgs Mechanism. An elementary Higgs signals a struc-

tureless agent of EWSB, which indicate the absence of dynamics to EWSB. As it

is, the Higgs mechanism can describe the properties of EWSB in the broken phase

but gives no reason on how the EW scale comes to be stable.
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Figure 1.8: The flavour
puzzle. Here, the Higgs is
responsible for generating all
mass terms (perhaps, apart
from the ν’s). Hierarchy is
present in fermion mass pa-
rameters, ranging across six
orders of magnitude. To-
gether with the HP, the
fermion hierarchy are puzzles
of the Higgs sector formula-

tion.

The Higgs mechanism just parametrizes EWSB. It

provides no insight into a possible microscopic origin

of such phenomena. Simply, the elementary Higgs is

assumed to be in its broken phase (µ2 > 0), but there

are no dynamics that drove it to such a picture. We are

forced to assume the EW vev as an input of the theory,

defining the only scale of the SM. This assumption is

not a problem within the SM itself, but with a new en-

ergy benchmark, we are bound to introduce hierarchy.

If EWSB is not dynamical, v cannot be generated from

the next scale, and fine-tuning problems start to arise.

Similarly, another hierarchy of scales regards the

origin of fermion masses. As we have seen, the

gauge sector has an intrinsic and well-defined structure

with great experimental confirmation. However, the

fermionic sector comes with plenty of independent pa-

rameters. Their values range across six orders of mag-

nitude, which fixes the fermion masses at their physical

values, as indicated in figure 1.8.

This might suggest that there is a scale, yet uniden-

tified, that sets up the hierarchy within the fermion

families. Both the HP and the hierarchy of fermion

masses are related to the Higgs sector of the SM.

A composite solution to the HP that also addresses

the origin of fermion masses origin was first presented

by Georgi and Kaplan [20, 21, 22]. Their core ideas

were further improved in the context of 5-dimensional

theories by Pomarol, Agashe, Contino and many others

[23, 24, 26, 28]. The 5d models match the 4d effective
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description we will be using throughout this work. This framework is generically

called Composite Higgs Models (CHMs).

In such class of models, the Higgs is assumed to be part of a composite sector

that confines its fundamental constituents at the TeV scale. Inspired by the pions

in QCD, the Higgs of CHMs is made naturally light by being a pseudo-Nambu-

Goldstone (pNGB), exploring a consequence of the Goldstone Theorem. Ultimately,

this feature explains why the Higgs is not at the SM cutoff, and why it can be fixed

at the EW scale. Therefore, this solution to the HP requires both compositeness

and the use of symmetry to achieve naturalness.

CHMs provide a way out of the HP by dismantling the Higgs at high energies, in

analogy with the case of hadrons mentioned earlier. These models provide a robust

framework to compute interaction shifts from the SM, and they allow estimates of

how light its mass can naturally be. Ultimately, they are effective local descriptions

of an unknown UV completion. Deep into the UV, the actual constituents of the

Higgs should be revealed just as the constituents of hadrons did.

Besides these features, CHMs lack the main ingredient of compositeness - mo-

mentum dependence.

The goal here is to study in such models the signature of compositeness and to

explore their phenomenology.

As we shall review, the predicted kinematic distribution functions of CHMs are

not altered in the effective description of the theory, and the general picture of

form factors is not fully incorporated to parametrize compositeness effects to their

full extent. The general problem is, how does one look for general signals of the

compositeness of the Higgs boson at collider experiments?

To this end, this work is devoted to finding a systematic way of including the

Higgs compositeness effects and finding the means to study its phenomenology.

***
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This dissertation is organized as follows. Chapter 2 is dedicated to reviewing the

CHM framework in search of compositeness effects. These momentum dependent

effects will be parametrized by form factors in a similar manner as in hadronic in-

teractions. However, as defined in the literature, the formulation is incomplete since

the Higgs is non-dynamical. This restricts the full dependence on the momentum of

Higgs interactions and hides away the phenomenological signals.

The objective will be to restore the complete momentum dependence of the Higgs

interactions in form factor models.

The construction of the form factor theory will be addressed in chapter 3. There,

we will introduce a set of nonperturbative methods for dealing with strong interac-

tions. We shall build the form factors from general requirements like the spectral

function, and use tools to write down explicit expressions for them.

We achieve a concrete implementation of momentum dependence in chapter 4,

through a minimal realization of the composite Higgs. Subsequently, we study the

collider signatures of compositeness through form factor models in chapter 5.

In chapter 6, we conclude with a discussion on the picture of the Higgs com-

positeness. The focus is to present distinct possibilities that might overcome the

usual paradigms of model-building compositeness effects. Finally, we present some

prospects for future research and the final comments.
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Chapter 2

A Composite Higgs Boson

After the developments of the Standard model, there were several attempts to

realize the Higgs as a composite state providing a dynamical origin to EWSB. Much

of the difficulties arise in the aversion of the SM to BSM physics, which generally

require the alternatives to be very SM-like.

There are some presumptions to the composite Higgs hypothesis. Necessarily,

the Higgs should be accompanied by a whole new sector that modifies the SM

predictions, while also being experimentally consistent with the collider searches so

far. CHMs offers such consistency and will serve as a concrete framework to build

the phenomenology later on.

As a first goal, we aim to find the ingredients of models with composite Higgses

and learn to compute the modifications with respect to the SM. Then, we seek to

identify what are the primary effects of compositeness on physical observables, going

beyond the local description of these models.

This chapter is devoted to reviewing the models in which the Higgs is a compos-

ite bound state. We shall look for a complete description, in search of the distinctive

features of composite phenomenology.

As we have seen, compositeness is a scale-dependent concept. So by making

the Higgs composite, we are assuming the existence of another type of interaction,

yet unobserved, that is responsible for bound it at the TeV range. The fundamen-

tal theory must be such that the constituents are not clearly produced in collider

experiments. They must be much above the TeV ’s into the UV. Because of this,



24 Chapter 2. A Composite Higgs Boson

the general expectancy is that the new sector interacts strongly to confine its fun-

damental constituents, much like what happens in QCD.

Because of the Higgs narrowness, we do not see its emergence as a loosely

bounded composite. To ensure compatibility with experimental results, the under-

lying sector must be strongly coupled.

Therefore, to realize the composite Higgs, it is necessary to know some general

properties of strongly interacting theories. This is a hard task since the formation of

bound states depends on nonperturbative physics, and there are limited tools to treat

such problems. Model building becomes a tough task for such strong interactions.

In chapter 3, we shall explore some available nonperturbative tools to explore these

sectors with more depth.

Fortunately, discovering the fundamental theory that underlies the composite

states is not the crucial step from the low energy point of view. It is appropriate to

use the language of effective field theories to treat the IR theory. In such effective

parametrization, we assume some underlying symmetry structure to be respected,

through which we build a Lagrangian model.

The primal example of a nonperturbative theory is QCD. Because of its im-

portance, almost all tools we have for analyzing the strongly coupled theories are

QCD biased, and much of the phenomenology of CHM bears some resemblance to

Hadronic models.

The QCD experience suggested that in a confining theory, we expect bound

states as resonances. If the confinement scale of the new composite sector is f , we

define the spectrum by the masses m∗ = g∗f in which g∗ are the coupling constants

of the theory. In general, these particles are close to the confinement scale and

tightly split from each other.

Namely, all the attempts to make the Higgs composite rely on this structure -

we have a spectrum of resonances in which the Higgs emerges amongst them. Such

is portrayed in figure 2.1.

Now, the input scale is the dynamically generated f , an order parameter for
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Figure 2.1: Hadron spectrum parallel with the composite sector
spectrum. The analogy between CHM and QCD is extensive. We
have pNGBs in both theories - the pions in QCD and the Higgs in
CHMs. Also, we assume a spectrum of resonances for the new sector

that resembles the hadronic structure.

the confinement process. The EW scale must be generated from this f to address

the hierarchy issue. In this way, we are ensuring a new dynamical content to EWSB

that should complete the Higgs role in the SM.

As stressed, the main challenge in constructing a feasible composite Higgs is

due to the empirical adequacy of the SM. Because of this, the form of the Higgs

must be very similar to what the SM predicts. Here lies the main challenge to exotic

BSM physics; the internal structure of the SM seems to be very BSM-phobic in this

matter.

As the experimental data continues to agree with the SM, the attitude of the

community is - how well a model survives the SM limit gives how successful it will

be. This underlies the success of a class of models which make the Higgs a pNGB

composite. In these models, we reobtain the SM by sending the new physics scale

f to infinity, at the expense of reintroducing tuning in theory.

This has been the central theme of theoretical research in the past years. As
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data get more aligned with the SM, model-building of BSM effects is more tweaked

to reproduce SM predictions.

Conversely, the first attempt to give a dynamical origin to EWSB, was a com-

plete departure of the SM mechanism. This was Technicolor [45]. Like in QCD,

Technicolor is assumed to be a confining theory and has a confinement energy scale.

The Higgs emerges as a loosely bound state, similarly to cooper pairs in supercon-

ductor theories. Here, the insight from superconductivity to the Higgs mechanism

becomes even more explicit, where it is assumed that a pair of techniquarks combine

to give rise to the Higgs. Unfortunately, Technicolor seems not to have lived up to

its full potential.

The discovery of a narrow light Higgs mostly discard Technicolor models. The

main difficulty is that the Higgs is like the σ meson in QCD; it lives close to f . Being

close to the compositeness scale, it becomes naturally heavy and much broader than

the SM predictions.

A solution for these phenomenological conundrums is to make the Higgs anal-

ogous to pions in QCD. The pions are naturally light compared to the QCD scale

since they are pseudo-Nambu-Goldstone bosons of the broken chiral symmetry. In-

spired by this, protecting the Higgs mass by the Goldstone mechanism turned out

to be the primary motivation of CHMs.

The Composite pNGB Higgs provides a particular and concrete implementa-

tion of the Compositeness idea for the Higgs. The focus of this chapter is to perform

an inquiring review of pNGB Composite Higgs Models, craving for the phenomeno-

logical signatures of Higgs compositeness.

So, in which ways the pNGB Composite Higgs are successful models and where

are the compositeness signs in the phenomenology?

We will explore the construction of the global symmetry breaking pattern.

Such construction underlies the role of the new strongly interacting sector in which
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the Higgs emerges at the TeV scale. The EWSB dynamical origin will be reviewed

via the Vacuum Misalignment mechanism, which is one of the main conceptual

pillars of composite Higgs models.

Then, the parametrization of the theory can be done by realizing symmetries

non-linearly. This approach provides a systematic language for describing the low

energy degrees of freedom of a theory that has NGB’s. Finally, we will be able

to extract the Composite Higgs interactions and compute its modifications for the

Higgs couplings to fermions and gauge bosons.

To get a light Higgs and to solve the Hierarchy problem we will sketch the

calculation of the Coleman-Weinberg potential. This computation will require a

formalism that shall put us in the track for the main subject of this work - the Form

Factor parametrization.

2.1 The pseudo-Nambu-Goldstone Higgs Particle

To work out the meaning of CHMs, let us distillate of the composite pseudo-

Nambu-Goldstone Higgs particle. First, the "Nambu-Goldstone" contribution refers

to the Goldstone Theorem.

Goldstone Theorem
In the broken phase, "whenever the original Lagrangian has a continuous

symmetry group, the new solutions have a reduced symmetry and contain

massless bosons." a

aTaken from Goldstone’s paper [5].

These massless states are called the Nambu-Goldstone Bosons, and they are

very general in any quantum theory. A continuous global symmetry implies the

existence of a Noether current J(x) which is conserved1 ∂µJ(x) = 0. Then, if the

symmetric vacuum with the conserved charge Q |0〉Sym = 0 is unstable, and the true

vacuum is charged Q |0〉 6= 0, we are by definition pledged to symmetry breaking.
1We are assuming this conservation remains exact at the quantum level.
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Physically, what is happening is that the global symmetry forces the potential

to be either unique, with no symmetry breaking, or degenerate, then with symmetry

breaking. The running modes on the degenerate vacuum are the Goldstone bosons

like shown in figure 2.2.

Figure 2.2: SSB of a potential V. There are two phases in a system
that can have SSB - the unbroken one is defined by the trivial vacuum
state, with no expectation value. The broken phase has a degenerated

vacuum with associated massless Goldstone bosons.

When the starting symmetry is exact, the goldstone bosons are massless. How-

ever, if the continuous global symmetry is softly broken, the Nambu-Goldstones

become pseudo-Nambu-Goldstones acquiring a small mass value. This process is

pictured in figure 2.3.

The smallness of the Goldstone masses is referring to the mass gap created

between the typical scale of the theory and the much lighter, SSB protected scale.

We already see why this mechanism is of interest here, it creates hierarchy in a

natural way2.

In light of the Goldstone theorem, a scalar boson can be lighter than the

associated physical scale of the theory. Remember that the Hierarchy problem is

just about that: How can the Higgs be at the electroweak scale when we expect it

to be far above that?
2As natural as the source of explicit breaking can be.
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Figure 2.3: SSB in the broken phase, with or without explicit break-
ing. If there is no explicit breaking, the Goldstone bosons are massless
as predicted. However, when introducing explicit breakings, they can
acquire masses. If the breaking is soft, then we expect these states to

be lighter than the rest of the theory spectrum.

One could jump to the punchline directly - The Higgs shall be a pseudo-

Nambu-Goldstone boson.

The Goldstone theorem refers to the spontaneous symmetry breakdown of

global continuous symmetries and in principle does not apply to the Higgs mecha-

nism, which explores the structure of the local Electroweak gauge group SU(2)L ×

U(1)Y . The apparent loophole of the Goldstone’s theorem for EWSB is explained

by the longe range correlations imposed by the gauge bosons of the theory. These

long-range correlations wash out the goldstone degrees of freedom, which becomes

the longitudinal component of the gauge bosons.

Importantly, we must distinguish between the two symmetry breaking events

occurring. One is the familiar Electroweak symmetry breaking that happens when

the Higgs assumes its vacuum expectation value. Concerning this breaking, the

Higgs particle is the radial mode and not a Goldstone. Because of the local structure,

the "would-be" goldstone from the other Higgs doublet components are eaten up by

the W’s and Z particles, which become massive as a result. No Goldstone’s here,

just massive vectors.

The other symmetry breaking is due to a new global symmetry that is not
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manifest in the Standard Model formulation. Here lies the CHMs proposal. We will

call the symmetry group G which breaks to a subgroup H, and the Higgs end as a

Nambu-Goldstone of this breaking, precisely as the Goldstone theorem predicts.

Even though the two breaking patterns seem to be independent of each other,

we require a more intrinsic connection between them. Ultimately, we want that the

presence of the strongly coupled sector should trigger a dynamical EWSB.

To achieve the dynamical EWSB, the generation of the Higgs potential shall

be induced by explicit breakings of G. These breakings are introduced by the in-

teractions between the elementary particles and members of the composite sector.

This arrangement is accomplished through what is called the vacuum misalignment

mechanism and is at the core of CHMs.

The composite pseudo-Nambu-Goldstone Higgs particle gives a starting point

on what will be needed to construct viable composite Higgses, and complete the

picture of compositeness.

2.1.1 A New Composite Sector

We shall turn to describe the theory at the confinement scale effectively. At

this level, there are several new composite heavy states and the remaining elementary

fields of the SM. The objective is to describe the composite and elementary sectors,

together with the interactions between the two of them.

L = LCS + LES + Lint (2.1)

As we have seen, to have a Goldstone Higgs we need to extend the SM group to

incorporate a larger global symmetry. Then this global symmetry should be broken,

and the Higgs field should transform with the coset generators since it lives in G/H.

G → H (2.2)
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Figure 2.4: Scheme of a pNGB CHM. The global G is used to build
the theory. Individually, the elementary and composite sectors have
an exact G symmetry. The SM is embedded into H the unbroken
subgroup of the global SSB. Interactions between the two sectors are
introduced, explicitly braking G, and making the Higgs a pNGB.

The theory can be divided into a pure composite sector, a pure Electroweak

without the Higgs and the interactions between the two. This scheme is portrayed

in figure 2.4.

The composite sector arises from the condensation of the UV degrees of free-

dom in the more fundamental theory. Similarly to QCD, we assume that this process

gives rise to composite states much like the Hadrons, which we generically name as

resonances. Additionally, the Higgs should be part of this spectrum, since it arises

as a composite. Concerning this sector alone, the G symmetry is exact, and the

Higgs is a true Goldstone boson.

Then, there is the pure Elementary sector. Here is located all remaining SM

fields apart from the composite Higgs. In this sector all fermions and gauge bosons

are massless, and even though chiral symmetry was exact in the SM, now it is utterly

manifest with no mass terms.

Finally, EWSB is achieved through interactions between the Composite and

Elementary sectors. A mass gap is generated, and the Higgs is maintained at elec-

troweak scales naturally.

Practically, this structure is realized by embedding the standard model in
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the broken subgroup H and then generating EWSB via interactions between the

elementary and composite sectors. Such is the general procedure proposed by Georgi

and Kaplan [20, 21, 22].

The mass gap indicates that it would be adequate to use an effective theory

to parametrize the low energy modifications to the SM. From an effective point of

view, the situation here is very similar to the chiral symmetry breaking. There is

a global group G that is broken to H due to the condensation of the fundamental

degrees of freedom.

Due to the resemblance between the QCD and Composite Higgs effective de-

scriptions, the techniques used in the construction of hadronic interactions are amply

used in composite Higgs model building. One of the lessons we take here is the use

of form factors to parametrize compositeness effects. Eventually, we will require

the use of and other tools like the spectral decomposition, sum rules and large-N

expansions.

These ideas from QCD corroborate to a scenario in which the resulting Hadrons

are relatively stable and weakly interacting among themselves. The justification is

due to ’t Hooft, based on a perturbative expansion for the number of colours N of a

SU(N)c type theory. This expansion points to coherency between the microscopic

asymptotically free theory, and the nonperturbative low energy regime of strongly

interacting theories. Overall, it fits the hadron picture arising from QCD well.

When constructing the resonances of Composite Higgs theories, it is essential

to know if their widths and interactions are controlled by the large-N limit or not.

All these questions must be taken into account when realizing the phenomenol-

ogy we are interested. For now, we are interested in how to embed the SM consis-

tently and the correct implementation of the misalignment mechanism. The non-

perturbative intricacies of strongly interacting systems will be a topic for chapter

3.
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2.1.2 Embeeding the Standard Model

The EWSB is triggered by the presence of a strong sector that has itself a

global SSB for generating a light Higgs. To guarantee this framework, we need

to embed the SM group and provide particle representations according to the G

symmetry.

As stated before, the new global symmetry breaking is like

G → H ⊃ SU(2)L × U(1)Y ≡ GEW (2.3)

Thus the vacuum states are only invariant under a subgroup H ⊂ G, and the

Goldstones transform as elements of the coset G/H.

Defining {TA} as a basis of linearly independent generators for G with A =

{1, 2, ..., dim[G]}, we can split the generators into two categories. There are the

generators of the subgroup H which we design as unbroken generators T a and the

ones of the coset G/H which we call the broken T̂ â.

{TA} = {T a, T̂ â} (2.4)

Together {T a, T̂ â} span the entire group G. The reason we call them broken

and unbroken generators is due to the spontaneous breaking pattern. The arbitrary

reference vacuum ~F is defined as the direction in which the action of the unbroken

and broken generators are:

T a ~F = 0 (2.5)

T̂ â ~F 6= 0 (2.6)

The coset must have at least four linearly independent elements to form a

Higgs doublet. This relation defines the minimal number of coset elements needed

to fully embed the Higgs, that is dim [G/H] ≥ 4. We also expect that dim[H] ≥

dim[GEW ] = 4 since H must contain the Electroweak group.
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Table 2.1: Symmetry breaking patterns of different CHMs. The
global group is G → H. C refers to having custodial symmetry, and
NG is the number of coset elements. The last column contains the
goldstone representations under SO(4) ' SU(2)L × SU(2)R. The

table was taken from [29].

These relations suggests that dim[G] = dim[H] + dim [G/H] ≥ 8. The SU(3)

group could be a fitting candidate for the minimal Composite Higgs model since its

Lie Algebra has exactly 8 elements. However, there is a phenomenological problem

in doing so - the resulting theory will violate custodial symmetry.

Before EWSB, the SM Higgs potential has a global SU(2) × SU(2). After

EWSB, this is broken to SU(2)c, making the remnant symmetry what is called

custodial symmetry. If the Yukawa interactions coupled the same way in between

families3, the complete SM lagrangian would be custodial symmetric. Thus, the

elementary sector alone has this SU(2)c.

To ensure that the CHM has custodial symmetry, we need to ensure that the

unbroken subgroupH contains a SU(2) custodial. This forcesH to have a dimension
3For example, if yu = yd and hypercharge coupling were zero
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greater than 6 to reproduce the SU(2)×SU(2) structure. Then four generators are

associated with the Electroweak group, and the other two remains due to custodial

symmetry.

With the minimal coset to form a Higgs doublet, the smallest realization of

a CH that respects custodial symmetry is G = SO(5) broken to H = SO(4). This

relation defines the Minimal Composite Higgs Model (MCHM) [23].

We identify the Higgs and Gauge bosons electroweak representations by de-

composing H into SU(2)L×U(1)Y . Since SO(4) is isomorphic to SU(2)L×SU(2)R

the matching is direct - The SU(2)L from SO(4) is associated with the weak isospin,

and a U(1)Y ⊂ SU(2)R is addressed to Hypercharge. With that, the Higgs has a

SO(4) representation that ensures its 2±1/2 under GEW and Gauge bosons at their

usual adjoint representations.

In contrast, there is much more freedom when identifying the GEW representa-

tion for fermions. The simplest one defines the MCHM5, in which the flavour families

of fermions are embeeded into 5’s of SO(5). This is done in such a way that the

left-handed fermions transform as 4’s of the unbroken SO(4) and the right-handed

ones as 1′s.

q4L =



bl

−ibl
tl

itl

0


t1R =



0

0

0

0

tr


b1R =



0

0

0

0

br


(2.7)

There were proposed many other realizations that are different from the MCHM5,

with non-minimal cosets and fermionic representations. Some of them are listed in

table 2.1.

Even though there are alternative CHM realizations, they all rely on the same

theoretical structure. In all pNGB Higgs models, the misalignment of the order

parameter f occurs and generates EWSB.



36 Chapter 2. A Composite Higgs Boson

2.1.3 Vacuum Misalignment

When embedding the EW group into H, the SU(2)L×U(1)Y must be formed

as linear combinations of the unbroken generators.

TEW =
∑
a

caT
a (2.8)

The SSB is given when there is a misalignment between the Higgs vacuum

expectation value (vev) and the unbroken electroweak part of the generators. This

relation is at the core of Composite Higgs models, EWSB is achieved through the

condensation of the strong sector at TeV scales via the Vacuum Misalignment mech-

anism. The actual source of the vev misalignment is due to the explicit breaking of

G, that generates a potential and will be a theme for later on this chapter.

We start by defining the set of fields θâ(x) as the Goldstone modes. These

fields span the degenerate vacua when G is not explicitly broken, thus transforming

only with T̂ â generators. The Higgs field can be written as

~φ = eθâ(x)T̂ â ~F (2.9)

If we assume that the Higgs field gets a vev that is aligned with the reference

vacuum, then
〈
~φ
〉

= ~F leads to only the breaking of the already broken generators

T̂ â. This direction of alignment implies that the expectation value of the Goldstone

mode is zero θ ≡ 〈θâ〉 = 0. In this case, there is no EWSB.

Now if we assume that the expectation value of the Goldstone mode is non-

zero θ ≡ 〈θâ〉 6= 0, the Higgs vev gets misaligned with respect to the vacuum ~F . In

this case, the true vacuum direction
〈
~φ
〉
gets a component into the unbroken EW

generators, and EWSB is achieved. Figure 2.5 illustrates the whole process.

The amount of misalignment is given by the goldstone mode expectation value

θ and defines the misalignment angle. Then the electroweak vev is obtained from

the strong sector order parameter f ≡ |~F | through v = f sin θ. Such a relationship
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Figure 2.5: Misalignment mechanism. Reference vacuum ~F is de-
fined such as it has no H component. If

〈
~φ
〉
is aligned with ~F , then

there is no EWSB. Otherwise, if
〈
~φ
〉

gets a non-zero goldstone ex-
pectation values, the small misalignment induces EWSB generating

the EW vev v. Figure adapted from [33].

means that the electroweak scale is generated below f if the misalignment angle is

small enough.

At this level, we suppose that the misalignment angle can be naturally small,

but this claim must be checked. When we proceed to calculate the Higgs potential

generated from explicit G breakings, we shall address this question. For now, we

can quantify the tuning in adjusting θ by the parameter

ξ ≡ v2

f 2
(2.10)

this shall be an important quantifier of the SM deviations later on.

In this kind of model, we expect to recover the SM by sending the composite

sector to very high scales. In such scenario, the effects of the new strong sector are

diminished as f →∞, or ξ → 0. The BSM physics is effectively decoupled in such

a limit. This is the main feature of CHM; tuning is reintroduced as the deviations

from SM couplings are reduced experimentally.

To compute the contributions to Higgs couplings, we must know how to
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parametrize the low energy degrees of freedom effectively. It will be necessary to

comprehend the non-linear realization of the Higgs field and the CCWZ construc-

tion.

2.2 Non-linearly Realized Symmetries

Given the general context of CHMs, we want to find a systematic way to con-

struct and predict the model’s features. This is mainly done in the context of the

Callan-Coleman-Wess-Zumino (CCWZ) construction [59, 58]. We are mainly con-

cerned with a non-linear parameterization of the Higgs, that is directed for theories

with built-in global SSB patterns. These are key to determining the modifications

to the SM couplings when a new strong sector is present.

The low energy degrees of freedom of CHM are just the known elementary

particles and a composite Higgs. To write down the NGB’s Lagrangian, we start

from a scalar field Σ that transforms linearly with respect to the full G group.

Σ→ gΣ with g ∈ G (2.11)

Now we define a new representation that divides the NGB’s that are parametrize

the coset G/H, together with the remaining non-goldstone fields.

Σ(x) ≡ U [π(x)]Σ0(x) (2.12)

Built to be invariant under h ∈ H transformations, Σ0(x) contains the vac-

uum ~F and massive excitations around it. The other object, U [π(x)] is called the

Goldstone matrix and is constructed solely from goldstone fields. We can see how

it transforms by acting a G transformation on the Σ field.

gΣ(x) = gU [π(x)]Σ0(x) = U [π′(x)]h[π, g]Σ0 = U [π′(x)]Σ0 (2.13)
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Hence, the NGB transformation induce the goldstone matrix to transform as

U [π]→ gU [π]h†[g, π] (2.14)

Relation (2.14) obeys the group multiplication law, with h being local since it

contains the NGB fields. Because of this structure, U [π] is a non-linear realization

of G.

More concretelly, we could write a generic group element g as

g = exp
(
iαAT

A
)

= exp
(
ifâ[α]T â

)
exp (ifa[α]T a) (2.15)

In which fa and fâ are functions of the α parameters. Up to O(ξ) they satisfy:

fâ = αâ +O(α2), (2.16)

fa = αa +O(α2). (2.17)

Since T a generators leave Σ0 invariant, the scalar field can be written in the

non-linear realization as4:

φ(x) = exp
(
iθAT

A
)

Σ0 = exp

(
i
√

2

f
πâT

â

)
exp

(
i
√

2

f
ξaT

a

)
Σ0 (2.18)

= exp

(
i
√

2

f
πâT

â

)
Σ0 (2.19)

We can see that the Goldstone matrix is

U [π] = exp

(
i
√

2

f
πâT

â

)
(2.20)

Neglecting possible heavy excitations, Σ0 is just the reference vacuum Σ0 = ~F .

4The factor of
√

2
f was included to canonically normalize the kinetic terms in the upcoming

effective lagrangian construction.
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Relying on representation independence we choose to use the non-linear ap-

proach for the Higgs since it is more suitable to describe the global symmetry break-

ing. The Higgs field is then obtained from the goldstone πâ’s that span the coset

G/H.

Σ(x) = exp

(
i
√

2

f
πâT

â

)
~F (2.21)

For the Gauge boson representations, we have to correctly match the gauged

generators with the strong sector unbroken generators. The actual process is straight-

forward; the Gauge boson fields transform as the usual adjoint representation of the

EW group and are formed as a linear combination of H elements.

As we have discussed, gauging a subgroup of an exact global symmetry breaks

the given symmetry explicitly. This will induce a potential for the Higgs making it

massive, but still light compared to the rest of the composite sector.

The non-linear realization for the fermionic fields is similar to the Higgs. We

define the multiplets with respect to representations of G and dress the fermion fields

with the Goldstone matrix to get a non-linear transformation law.

Q
[r]
l ≡ U [π]ql T [r]

r ≡ U [π]tr, (2.22)

where the [r] index refers to the fermionic representation. Both ql and tr are linearly

realized and are the simple immersions of the standard model SU(2)L multiplets

into H multiplets. It often happens that the SM fermions fit loosely to these new

G representations - so to say, they form incomplete multiplets. These sources of

explicit breaking will be essential when combining with the gauged contributions to

the potential to the Higgs.

Such prescription comes in handy when building the effective lagrangian of

these low energy degrees of freedom. After we fix a specific CHM group, the Higgs
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and gauge boson interactions will come from their kinetic terms.

Lgauge =
1

2
(DµΣ)†DµΣ− 1

4
AiµνA

i µν (2.23)

Dµ ≡ ∂µ − iAiµT i, T i ∈ GEW (2.24)

Additionally, the fermion mass terms and interactions will come from the pos-

sible G invariant contraction.

Lfermion = m∗Q
[r]
l T

[r]
r + h.c. (2.25)

With these simple, effective terms, we shall proceed to choose a specific realiza-

tion of CHMs, the MCHM5, and reobtain the SM with its misaligned contributions

to the couplings of the Higgs.

2.3 Composite Higgs couplings in the MCHM5

The SM has precise predictions on the Higgs couplings. The fermions Yukawa

couplings are proportional to their masses, and the gauge-Higgs couplings go with

the massive bosons masses squared. In a composite Higgs model, these couplings

are generally modified due to the misalignment of the electroweak scale.

We wish to calculate the MCHM5 Higgs interactions modifications at the level

of the effective local theory. In such, the internal dynamics are completely integrated

out, without any momentum dependent non-local effects. This defines the model at

zero transferred momentum.

The program is to expand the effective Lagrangian expressions in the non-

linear realization and compute the Feynman rules of the model.

Remember that in the MCHM5, G is the SO(5) group, and the fermions are

embeeded in 5’s representations. Then, the SO(5) is spontaneously broken to H =
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SO(4) and the Higgs is realized though the non-linear Σ field.

Σ(x) = ei
1
f

Πi(x)T̂ iΣ0 (2.26)

Σ0 = ~F

The generators of SO(5) are divided between broken T â and unbroken T a, as

TA = {T a, T â}. We can define T aL and T aR generators corresponding to SO(4) '

SU(2)L × SU(2)R ' SO(4), just for computation convenience.

[T aL,R] = − i
2

[
1

2
εabc(δbi δ

c
j − δcjδbi )± (δai δ

4
j − δaj δ4

i )

]
(2.27)

[T â] = − i√
2

(δâi δ
5
j − δâj δ5

i ) (2.28)

These generators have the following structure,

TA =


H G/H

G/H


so the vacuum that satisfies the properties of (2.14) can be defined as:

~F = (0, 0, 0, 0, f)T (2.29)

With i, j = 1, . . . 5. Using these definitions for the generators, Σ(x) assume

the form:

Σ(x) = f

Sin(Π
f

)
Π̂

Cos
(

Π
f

)
 (2.30)
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Here Π is the norm of the NGB vector ~π(x), that can be expressed in terms of

the Higgs doublet components.

~π =


π1

π2

π3

π4

 =
1√
2


−i(hu − h†u)

hu + h†u

i(hd − h†d)

hd + h†d

 (2.31)

As in the SM, we define the unitary gauge as a specific direction in which

the Higgs mode oscillates. Here we choose π4 as the Higgs mode, and the other

components get absorbed by the massive gauge bosons.

Furthermore, we divide the fermion 5-plets into a fourplet for the left handed

fermions and a singlet for the right handed fields.

q4L = (0, 0, tl, itl, 0)T (2.32)

t1R = (0, 0, 0, 0, tr)
T (2.33)

where the bottom fields were ommited since they do not take an important role in

the following discussions.

2.3.1 Gauge Boson Interactions

To compute the gauge boson interactions we start with

Lgauge =
1

2
(DµΣ)†DµΣ− 1

4
AiµνA

i µν (2.34)

Using (2.30) and the explicit generators we arrive at

Lgauge =
1

2
(DµΣ)†DµΣ− g2

4
f 2W+

µ W
−, µ sin2

(
h

f

)
+

g2

8c2
W

f 2ZµZ
µ sin2

(
h

f

)
(2.35)

− 1

4
W i
µνW

i µν − 1

4
Bi
µνB

i µν
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When the Higgs assume its vev, h gets shifted by h→ v + h so

f 2 sin

(
v + h

f

)
' f 2

[
sin2

(
v

f

)
+ 2 cos

(
v

f

)
sin

(
v

f

)
h

f
(2.36)

+

(
cos2

(
v

f

)
− sin2

(
v

f

))
h2

f 2
+O(h3)

]
≈ v2 + 2v

√
1− v2

f 2
h+ (1− 2v2

f 2
)h2 + f 2O(h3, v4/f 4) (2.37)

In (2.36) we are expanding for h/f and ignoring the 4-higgs term that will

appear as effective 6-point operators. (2.37) assumes that the misalignment angle

is small so it is reasonable to truncate terms higher than ξ2 = v4/f 4. Substituting

back to 2.36 lead to

Lgauge =
1

2
(DµΣ)†DµΣ− 1

4
W i
µνW

i µν − 1

4
Bi
µνB

i µν (2.38)

+ 2m2
wW

+
µ W

−, µ +
2im2

w

v

√
1− ξWµW

µ h+
m2
z

v
ZµZ

µ

+
2im2

z

v

√
1− ξZµZµ h+

2im2
w

v2
(1− 2ξ)WµW

µ h2 +
2im2

z

v2
(1− 2ξ)ZµZ

µ h2

Where mW = cwmZ , cw is the Weinberg angle and ξ = v2/f 2. Then, the hV V

deviations with respect to the SM gSMhV V =
2im2

V

v
can be defined as

κV =
gCHhV V
gSMhV V

=
√

1− ξ (2.39)

Also, there will be modifications to the two Higgs vertices.

κV =
gCHhhV V
gSMhhV V

=
√

1− ξ (2.40)

To summarize, in the MCHM5 the SM couplings always get suppressed with

the κV factors. Additionally, custodial symmetry is respected at tree level by con-

struction. As we argued before, these models with a pNGB Higgs have an SM limit.

Here we can explicitly check that by making ξ → 0 all couplings return to the SM.
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2.3.2 Fermion Interactions

The fermions interactions with the Higgs do not only depend on the choice

of symmetry breaking pattern but also on the specific immersion of the fermions

into G representations. In the UV, SO(5) is unbroken, and particles are grouped as

multiplets in the G-representation.

Accordingly, there is some degree of ambiguity in choosing SO(5) representa-

tions, but they must contain the GEW quantum numbers of the left-handed doublets

of SU(2)L and right-handed singlets with the correct hypercharges. What we need

are a GEW 21/6 for ql, a 12/3 for tr and a 1−1/3 for br .

However this representation do not exist for the previously chosen 5 of SO(5).

A five decomposes as 5→ 4⊕ 1 = (2,2)⊕ 1. Under GEW this is 21/2 ⊕ 2−1/2 ⊕ 1,

which does not contain th necessary quantum numbers for the fermions.

As a result, it is necessary to postulate the existence of another auxiliary U(1)X

group which the only role is to provide the correct hypercharges to the fermions.

Since U(1)X and SO(5) generators do commute, this auxiliary group does not alters

or participates in the SSB of G nor alter the details in the CCWZ construction.5

SO(5)× U(1)X → SO(4)× U(1)X (2.41)

All fermions will have charges under this U(1)X . Accordingly, this choice is

made such that all SM hypercharges are fixed to their usual attributes. Furthermore,

the gauge bosons and the Higgs are neutral in X.

Y ≡ T 3
R +X (2.42)

We will adress only Top-Higgs interactions since they will be the ones with

leading phenomenologial effects. Using the effective description with dressed Quark
5Traditionally, the extra U(1)X is often omitted since it does not play major roles in the effective

description.
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fields we can compute the yukawa interactions.

Lfermion = m∗Q
[5]
l T

[5]
r + h.c. (2.43)

Q
[5]
l = U [π]ql T [5]

r = U [π]tr (2.44)

Because of the presence of the Goldstone matrix, these terms will induce Higgs

interactions. We can compute them explicitly

Q
[5]
l =

(
ei
√

2T̂ âπâ(x)/f
)


0

0

−itL
tL

0


= tL



π1(π4 − iπ3)
(

cos |π|
f
− 1
)

π2(π4 − iπ3)
(

cos |π|
f
− 1
)

−1
|π|2

[
iπ2

1 − iπ2
2 +

(
π3 cos |π|

f
− iπ4

)
(π3 + iπ4)

]
1
|π|2

[
π2

1 + π2
2 −

(
iπ4 cos |π|

f
− π3

)
(π3 + iπ4)

]
1
|π|2 sin |π|

f
(π3 + iπ4)



T [5]
r =

(
ei
√

2T̂ âπâ(x)/f
)


0

0

0

0

tR


= tR



π1
sin
|π|
f

|π|

π2
sin
|π|
f

|π|

π3
sin
|π|
f

|π|

π4
sin
|π|
f

|π|

cos |π|
f


In the unitary gauge, we define π4(x) = h(x) and this expression simplifies to

Q
[5]
l = ql



0

0

0

cos(h/f)

sin(h/f)


T [5]
r = tr



0

0

0

sin(h/f)

cos(h/f)


(2.45)
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Finally we can obtain the fermion mass terms and yukawa interactions via the

effective lagrangian for dressed fields.

Lfermion = m∗Q
[5]
l T

[5]
r + h.c. (2.46)

= 2m∗tLtR cos

(
h

f

)
sin

(
h

f

)
+ h.c. (2.47)

= m∗tLtR sin

(
2h

f

)
+ h.c. (2.48)

Again, when the Higgs assume its vev, h gets shifted by h → v + h and

sin
(

2h
f

)
→ sin

(
2(v+h)
f

)
. We can define the top-mass by expanding the higgses

interactions and kepping lowest order of ξ.

Lfermion =
m∗
f
v
√

1− ξtLtR +m∗
2

f
(1− 2ξ)htLtR + h.c. (2.49)

⇒ mt ≡
m∗
f
v
√

1− ξ (2.50)

Lfermion = mttLtR +

√
2mt

v

[
1− 2ξ√

1− ξ

]
htLtR + h.c. (2.51)

Concearning the SM interactions we get a suppression of the fermion couplings

that goes like a function of the misalignment angle ξ.

k5t ≡
gCHhtt
gSMhtt

=
1− 2ξ√

1− ξ
≈ 1− 3

2
ξ (2.52)

These suppressions to the SM scale to the square in the cross-section and

distribution functions. Because of the non-dynamical shift in the interactions, the

momentum flow in the precesses is not altered compared to SM. Because of this, we

do not expect differences in the shape of cross-sections and kinematic distributions

here. The modification is just an overall normalization suppression in all observables.
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2.4 Interactions between Elementary and Compos-

ite Sectors

We computed the modifications to SM couplings in the CHM framework via

the effective field theory of the low energy degrees of freedom. These degrees of

freedom are the same particles as in the standard model and get a misalignment

suppression in their interactions.

Even though these modifications are a direct consequence of the presence of the

strong sector, it does not suggest any experimental feature of compositeness itself.

Here, no "smoking gun" of compositeness is available, and there are no kinematic

departures from elementarity. To provide a structure that alters the momentum

flow, we must keep the influence of the strong sector interactions to a higher degree

than presented before.

As we have defined, the theory associated with a composite Higgs should have

an elementary sector, a composite one, and interactions between the two of them.

We can integrate out LCS and Lint, but this time keeping momentum dependence

through the non-local prescription of form factors.

The idea is to understand how these interactions allow the CHM to becomes

natural. As we will see, the most consistent way to realize a CHM that addresses the

HP will be to introduce mixings between the elementary and composite particles.

2.4.1 Composite and Elementary Mixing

An important feature of the interactions between the composite and elemen-

tary sectors is the introduction of mixings. These mixings are phenomenologically

attractive because they fit the internal structure of the theory and provide an ex-

plicit way of dealing with the hierarchy problem. In the following, we shall describe

how these interactions come to be.

The gauge bosons were previously introduced as external sources of a part

of the global symmetry group. Assuming the existence of resonances that have
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the same quantum numbers of elementary gauge bosons, the external source terms

couples them linearly. These interactions predict mixings between the two vector

particles.

Such resonances are generally named as vector partners and are important

signals of CHMs. The mixing interaction is a straightforward way of modelling Lint
and is similar to the hadronic interactions with electromagnetic currents back in

QCD. Such prescription was framed in vector-meson dominance with the ρ meson

mixing directly with the photon.

More concretelly, we can write this gauge interactions with their vector-partners.

Lvector
int = JaµW a

µ + JµYBµ (2.53)

The fermions also get a mixing-type of interaction, though it is more difficult

to visualize why it is the case. Now, the principal motivation of mixing interactions

comes from the necessity to avoid Yukawa couplings in the fermion sector [28].

The central point is that, within the usual bilinear interactions, we cannot

expect the generation of a Yukawa coupling for the top-quark that is realistic to

its experimental value and at the same time does not suffers from the hierarchy

problem. The argument for this remark comes from the scaling dimensions of the

operators that generate the fermion masses.

There are mainly two forms of coupling elementary fermions to the composite

sector. Either through a linear interaction or a bilinear one.

Bilinears (technicolor)

Lfermions
int

,,

22

Linear (partial compositeness)
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If we use bilinear interactions, the lagrangian is given by:

Lbilinearint =
λt

(ΛUV )d−1
qLOcStR + h.c. (2.54)

where Ocs is a Lorentz scalar operator with mass dimension d, λt is the coupling

of the interaction term and ΛUV the ultraviolet cutoff. This scalar operator has

the same quantum numbers as the Higgs and is analogous to the Higgs Yukawa

interaction in the SM.

By scaling such operators from ΛUV to the ressonance mass scale m∗ the

effective coupling λt evaluated at IR scales should be

Lbilinearint [ΛUV ] =
λt

(ΛUV )d−1
qLOcstR → Lbilinearint [m∗] =

λt[m∗]

md−1
∗

qLOcstR (2.55)

⇒ λt[m∗] =

(
m∗

ΛUV

)d−1

λt (2.56)

This relation suggests that if the operator is not close to being marginal, with

d = 1, then it is hard to generate large Yukawa couplings for the top-quark. This

is simply the Wilsonian statement that we are working with effective field theory.

It is a difficult task to postulate a set of interactions at the UV, run them down to

the m∗ scale and get a parametrically large coefficient if d 6= 1, since the operator is

suppressed by large scales.

If we choose d = 1, the generation of the Yukawa couplings is just as in the

SM, recovering the HP. The actual dynamical generation is portrayed in the left

panel of figure 2.6.

Alternatively, one could try to use a linear coupling that assumes the form:

Llinearint =
λtL

(ΛUV )dL−5/2
q

[5]
L O

L
F +

λtR
(ΛUV )dR−5/2

t
[5]
R ORF (2.57)

Now, the operator OF which couples with fermions is not scalar anymore, but

fermionic. Here the required dimension for the interaction to be marginal is d = 5/2.
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Figure 2.6: Generation of composite Higgs couplings. We divided
between the case of a bilinear (left) and a (linear) structure of fermion
couplings with UV composite operators. By using a scalar OS we
reitroduce the HP back into the model. Thus, the preferred way to

contruct a CHM is to use PC.

Thus the scaling of the coupling parameters is

λtL [m∗] =

(
m∗

ΛUV

)d−5/2

λt, (2.58)

and obtaining a O(1) contribution for the Yukawa coupling dynamically is feasible

for an approximately marginal operator. In such a case, the HP is not reintroduced

in the theory.

The d = 5/2 fermionic operators are assumed to create particle states that

have the same quantum numbers as the elementary fermions. We can assign to this

operator a field that correspond to a resonant single particle-state denoted as the

fermion partner.

〈
0|OLF |Q̃

〉
6= 0 (2.59)〈

0|OLF |T̃
〉
6= 0 (2.60)

Because of the goldstone matrix in q
[5]
L in (2.57), the Yukawa couplings can

be dynamically generated through OLF . In this case, when the Higgs assumes its

vev, there will be mixings between the elementary top-quark and its heavy partner.

Because of these mixings, such implementation of linear couplings is called Partial

Compositeness (PC).
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The generation of the Yukawa coupling is depicted in the right panel of figure

2.6. The explicit implementation of PC scenario, with physical resonances, will be

achieved in chapter 4.

2.4.2 The Composite Hierarchy Solution

With the assumed interactions via external gauge sources and partial compos-

iteness, the Lagrangian at the compositeness scale is

L = LCS + LES + JaµW a
µ + JµYBµ +

∑
λrψrOr + h.c. (2.61)

The details of the Composite Sector (CS) are, in general, not known and

unimportant for the following discussion. We are aiming to obtain an effective

description in which the CS degrees of freedom are not explicitly written, but their

dynamical effects still present. To reach our objective, we need a description that

includes momentum dependence.

Now, we write an effective Lagrangian that respect G symmetry, but with the

resonances integrated-out. We proceed to parametrize their contributions through

the momentum dependent coeffiecients Π(p2) and M(p2) - these will be generically

denoted as our form factors [23, 34].

LGeff =
1

2
Pµν

(
Π0(p) Tr(AµAν) + Π1(p)ΣTAµAνΣ

)
+ (2.62)

+QL/p
(
ΠL

0 (p) + ΠL
1 (p)ΣΣT

)
QL+

+ TR/p
(
ΠR

0 (p) + ΠR
1 (p)ΣTΣ

)
TR+

+QL

(
M0(p) +M1(p)ΣΣT

)
TR

where PµνT = gµν − pµpν/p2, is the transverse polarization projector.

In (2.62) we retained terms up to order Σ2 and built the lagrangian to respect

G. Here, we treated Σ as a background field with no dynamics as is done in the

literature [23, 31]. As we will see, treating the Higgs as a background field is a harsh
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simplification and diminishes the composite phenomenology significantly. However,

the way it is here, such construction is sufficient for the HP since we will compute

the Higgs potential by fixing external legs at zero external momentum.

In the Coleman-Weinberg calculation, we perform the ressumation of all ’-loop

irreducible contributions of the Higgs external legs. By this approach, we can extract

what the Higgs mass is and see how light it can be compared to f . Thoughout this

section we will outline the calculation of [30]. Writing (2.62) in the unitary gauge

leads to:

LGeff =
1

2
Pµν

[(
Π0(p) +

S2
h

4
Π1(p)

)
BµBν (2.63)

+

(
Π0(p) +

S2
h

4
Π1(p)

)
AaµA

a
ν − 2

(
S2
h

4
Π1(p)

)
A3
µBν

]
qL/p

(
ΠL

0 (p) + ΠL
1 (p)

S2
h

2

)
qL + tR/p

(
ΠR

0 (p) + ΠR
1 (p)C2

h

)
tR+

+ tR

(
M1(p)

ShCh√
2

)
qL (2.64)

From these expressions, we can extract the Feynman rules for such a theory.

= PT µν
i

Π0(p2)
(2.65)

= PT µν
[
iΠ1(p2)

4

]
sin2(h/f) (2.66)

=
i

/p(ΠL
0 (p) + ΠL

1 (p)S2
h/2)

(2.67)

= M1(p)
ShCh√

2
(2.68)

The potential is obtained by summing all the 1PI contributions of closed gauge

boson and fermion loops with the all external Σ lines at zero momentum, as indicated

by figures 2.7-2.8. This justifies the background filed assumption below.
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Figure 2.7: Coleman Weinberg calculation for the MCHM5 with
form factors. Here are displayed the gauge boson loop contributions.
The 1-loop ressumation is done with the external Higgses in zero
momentum. This feature means that treating Σ as a background

field is acceptable here.

Figure 2.8: Coleman Weinberg calculation for the MCHM5 with
form factors. Here are displayed the fermion 1-loop contributions.

The actual computation is not our primal concearn here, and we refer to [30, 73,

74] for further details. After ressuming, the gauge boson and fermion contributions
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are

V gauge
eff (h) =

9

2

∫
d4q

(2π)4
log

(
1 +

Π1(q2)

4Π0(q2)
sin2(h/f)

)
(2.69)

V fermion
eff (h) = −2Nc

∫
d4q

(2π)4
2

{
log

(
1 +

ΠL
1 (q2)

4ΠL
0 (q2)

cos(h/f)

)
+ log

(
1− ΠR

1 (q2)

4ΠR
0 (q2)

cos(h/f)

)
+ log

(
1− (M1 sin(h/f))2

q2 (ΠL
0 + ΠL

1 sin(h/f)/2) (ΠR
0 + ΠR

1 cos(h/f))

)}
(2.70)

The finiteness of the potential is guaranteed by the convergence properties of

form factors. Imposing constraints on their momentum behaviour6, the potential

can be approximated by expanding the logariths at first order. Schematically it

assumes the following form:

V (h) = α cos

(
h

f

)
+ β sin2

(
h

f

)
(2.71)

where α and β are functions of the form factors7.

The generation of EWSB then is given by the minimization of such potential.

We can see that, to trigger EWSB one must have α ≤ 2β. The minimum of the

potential is at

ξ =
v2

f 2
= 1−

(
α

2β

)2

(2.72)

Once we define a model that has specific form factors, the fine-tuning question

shifts from adjusting the parameters to actually calculating the expected Higgs mass.

There will generally be a tuning of order ξ, which is an expected feature of CHMs.

The calculation of the Coleman-Weinberg potential highlights how CHMs addresses

the HP, recovering a natural theory. However, we are interested in the modifications

of the Higgs dynamics due to compositeness, and for that, we must go further.
6Such as sum rules that we will explore in chapter 3
7Again, check [30] for explicit expressions.
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***

We dedicated this chapter to an inquiring review of pNGB CHMs. This has

led to the main features that CHM lacks in describing composite phenomenology -

a full inclusion of momentum dependence in dynamical Higgs interactions.

Now we must obtain a formal and more complete picture of form factors. What

remains is to understand the analytic structure of these functions and how they can

be explicitly written. Then, we go to define the complete form factor theory of a

CHM. In it, we shall restore the fully dynamical Σ, which was so far treated as a

background field.

Working with an explicit realization of compositeness through the CHM shall

enlighten us about the full consequences of a composite Higgs later on.
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Chapter 3

Strong Dynamics via Nonpertubative

methods

The search for compositeness signals has led us to consider the full extent of

momentum dependence in interactions. Now, the first step is to decipher the BSM

effects by going into a limit of high momentum transfer in collider experiments.

These momentum dependent effects of the new composite sector shall be ex-

pressed through the analytical properties of form factors. So, in order to construct

their expressions, we must look at the general properties of point functions in any

interacting theory, regardless of their interaction strength.

Even though we have limited access to the nonperturbative regime of QFT’s,

there are some tools to classify their general behaviour. A good lead is by looking into

the spectrum of the theory, where we shall find a way of predicting sensible effects

into the two-point propagators. Such is done through the spectral decomposition

and will define the general shape of the form factors later on.

It is assumed that a strong sector predicts composite bound states. We want

to know how this behaviour emerges after confinement, moulding these resonances.

The 1/N expansion is a general classification that provides a grounding for this

class of Higgs phenomenology. Unintentionally, using it makes model-building very

QCD-like.
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After this part on generalities, it is necessary to use tools and approximations

to constraint the behaviour of form factors. These tools will aim to get useful

expressions for our formulation. Imposing constraints to form factors might be a

very productive way forward in exploring this regime. Some fundamental properties

of field theories like unitarity, analyticity and the restoration of G symmetry at high

energies are greatly valuable in our context.

All of these tools had their role for dealing with QCD in the nonperturbative

regime. Because of it, they are necessarily driven towards the specific problem of a

hadronic theory and have their limitations for Higgs applications. Alternatively, one

could ask if this QCD-like behaviour is present in all strongly interacting QFT’s, and

what is the full range of possibilities for the sector that is responsible for confining

the Higgs.

Most importantly, the tone here is to explore a concrete implementation of

momentum dependence when there is a composite sector lying ahead at the TeV

range. Of course, there are many possibilities for the strong sector that confines the

Higgs; the one we present is just one of them.

3.1 Spectral Properties

Built in the conceptual framework of QFT is the artificial division of the

free and interacting parts of the dynamics. In such division, we include the two-

point interactions into the free part and the higher point ones into the perturbation

lagrangian. Such division is done purely from a calculatory standpoint and has not

any particular physical significance.

However, when dealing with quantum corrections, the parameters of the the-

ory get shifted and acquire a running dependence with energy. This phenomenon

redefines the artificial divisions made at the beginning - the theory regulates itself,

and this change of parameters often can be explicitly calculated in the perturbative

regime.
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The starting free particles form part of the spectrum, but their point inter-

actions change due to the quantum nature of the theory. Loops of intermediate

multi-particle states modify the bare parameters. In particular, the weakly coupled

regime implicitly assume that radiative corrections only modify the behaviour of the

theory minorly, making perturbative assumptions predictive.

However, the interaction effects can be more dramatic than that. It might

occur the formation of bound-states in strongly interacting systems, a phenomenon

that is nonperturbative by its nature. In confining theories such as QCD, the forma-

tion of bound-states is a central aspect of the theory itself, even though this process

is not yet completely understood. Since this is a hard problem, we will just assume

the existence of resonances as single-particle contributions. Later we shall ask for a

more profound prescription.

At this point we can define the spectrum as the vacumm with and the single or

multiparticle eingenstates of the operator P 2, each with its mass eingenvalue. Their

structure is shown in figure 3.1.The single particle states are the free elementary

plus the possible bound-states generated dynamically. The multiparticle states are

defined by the continuum formed by the fock-states with more than one particle in

it.

General Spectrum of a QFT

|0〉 : vacuum state E = 0

|1, k〉 : 1 particle states k2 = m2.

|2, k〉 : bound states k′2 = m′2.

|λ, k〉 : multi particle particle states with λ as a continuous index.

A more sensible way to define the physical spectrum of a theory is related

directly to the properties of the S-matrix [84]. This contours the artificial divisions

made in the perturbative regime. The S-matrix is an analytical function of the

external momentum of asymptotic states. Non-analyticities like poles and branch
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Figure 3.1: Eingenstates of the Pµ = (H,P ) operator. Figure
based on [12]. The eingenstates of the momentum operator defines the
particles masses. Their structure can be devided in single-elementary

,single-bound-state or a multiparticle one.

cuts always indicates physical processes taking place, and provide a well-defined

description of particles states.

We can define a function that has the spectral properties desired for our theory.

f(p) ≡
∑
α

|〈0|φ(0)|α〉|2 δ4(p− Pα) (3.1)

where α is the index of the Hilbert space complete basis, with the states being

eingenvectors of the P µ operator. This function has support only for the single

particle mass hyperboloid p2 = m2 and the multi-particle continuum. Also, f(p) is

a Lorentz scalar function so it only depends on p2 and vanishes for p0 < 0. Since

|λ〉 are physical states they must be on-shell, so we have also p0 ≥ 0 and p2 > 0. All

of these allow us to define the spectral function ρ(p2), which is positive and with

support only on the physical spectrum.

1

(2π)3
θ(p0)ρ(p2) =

∑
α

|〈0|φ(0)|α〉|2 δ4(p− Pα) (3.2)



3.1. Spectral Properties 61

Figure 3.2: General spectral density structure of an interacting
quantum field theory.

The matrix element for the single-particle states is defined up to a normaliza-

tion factor Z as the plane wave element

〈0|φ(0)|k〉in =
Z1/2

(2π)3/2
√

2E(k)
eik.x. (3.3)

Up to a normalization factor, we can determine the spectral function for the

stable 1-particle states.

1

(2π)3
θ(p0)ρ1part(p

2) =

∫
d3k |〈0|φ(0)|k〉|2 δ4(p− k)

=
Z

(2π)32E(P )
δ(p0 − E(p))θ(p0) (3.4)

ρ1part(p
2) = Zδ(p0 − E(p))δ(p0 + E(p)) = Zδ(p2 −m2) (3.5)

The spectral function tells us all about the intermediate physical states of the

theory. For interacting theories, it will generally have singularities at renormalized

masses of one-particle states and bound states, and a branch cut for multi-particle

states. The analyticity of the spectral function and the S-matrix are correspondent

in this manner.
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Each pole corresponds to a single particle state, with the location of the pole

being the physical mass of the particle. The branch cuts signal the presence of a

continuum of states, such as the one indicated by the threshold of multi-particle

production. The general spectral function is pictured in figure 3.2

Relation (3.5) is valid for stable particles that can always be asymptotic states.

In the case of unstable resonances, where the particle can decay into lighter ones,

the dispersion relation p2 = m2 becomes imaginary. In such a case, the spectral

function is not a delta function anymore and has a continuous p2 dependence that

is controlled by the decay widths. Physically, their poles are getting deeper into the

analytic plane, acquiring a larger imaginary contribution [18, 19] .

To see that, we can calculate the complex contributions to the pole of the

propagator, that defines p2 = m2. Defining −iM2(p2) as the self-energy, which is

the sum of the one particle-irreducible (1PI) insertions into the propagator, we can

obtain the exact two-point function.1

(3.6)

=
i

p2 −m2
0

+
i

p2 −m2
0

(−iM2(p2))
i

p2 −m2
0

+ . . . (3.7)

=
i

p2 −m2
0 −M2(p2)

(3.8)

where we defined m0 as the bare mass to differenciate with the physical mass m.

When the particle is stable, unitarity guarantees that M2(p2) is real. In this

case, the physical mass is defined by the pole in the propagator at p2 = m2, that is

m2 = m2
0 +M2(m2). The pole lies in the real p2 axis and gives a real delta function

contribution in the spectral function.

Now, in the case of unstable particles M2(p2) aquires an imaginary part, and

the physical mass must be defined as m2 = m2
0 + Re [M2(m2)]. The pole is not

1Figure taken from [73].
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anymore in the real axis, because of the remaining imaginary part of M2(p2).

=
iZ

p2 −m2 − iZIm [M2(p2)]
(3.9)

The propagator modifications due to the presence of self-interactions suggest a

link between the spectral properties and the general form of the two-point-function.

We shall turn to derive what this relation is through the spectral representation.

3.1.1 The Spectral Decomposition

Now we desire a connection of the spectrum of the theory and the general form

of the two-point function [61]. When computing the exact propagator, we realized

that the analytic form of the two-point function could encapsulate effects from the

interactions through the self-energies. An explicit connection with the more general

spectral function is needed.

Starting with the two point correlator between two scalar fields, it can be

decomposed as following.

〈φ(x)φ(y)〉 =
∑
λ

∫
d3p

(2π)3

1

2E~p(λ)
〈Ω|φ(x)|λp〉 〈λp|φ(y)|Ω〉 (3.10)

=
∑
λ

∫
dΠλe

−ipλ(x−y)| 〈Ω|φ(0)|λ0〉 |2 (3.11)

=

∫
d4p

(2π)4
e−ip(x−y)

{∑
λ

∫
dΠλδ

4(p− pλ)| 〈Ω|φ(0)|λ0〉 |2
}

(3.12)

The quantity in brackets is the spectral function defined in (3.2). Now, we can

write the correlator in terms of the propagator ∆+(x− y;m2).

∆+(x− y;m2) =

∫
d3p

(2π)3

1

2
√
~p2 −m2

e−ip(x−y) (3.13)

=

∫
d4p

(2π)4
e−ip(x−y)θ(p0)δ(p2 −m2) (3.14)
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〈φ(x)φ(y)〉 =

∫ ∞
0

dm2ρ(m2)∆+(x, y;m2) (3.15)

The Feynman propagator can be used to obtain the time ordered version of

the two-point function.

i∆F (x− y;m2) = θ(x0 − y0)∆+(x− y,m2)− θ(y0 − x0)∆+(y − x;m2) (3.16)

Then,

〈T φ(x)φ(y)〉 = i

∫
d4p

(2π)4
eip(x−y)Π(p2) (3.17)

With,

Spectral Decomposition

Π(p2) =

∫ ∞
0

dm2 ρ(m2)

p2 −m2
(3.18)

The two-point function is an analytical function of external momentum, mean-

ing its poles and branch cuts define the entire function. From the other point, the

spectral function gives the physical content of the theory, with all the possible states.

The usefulness of the spectral decomposition is to link the analytical properties and

the physical content of the theory. This relationship will be the leading guide in

constructing the form factors. The analytical properties are pictured in figure 3.3.

By using the general form of the spectral funtion for the single particle state

(3.5) we can factor out the lowest exitation that corresponds to the free particle

Lagrangian, assuming it is stable. By substituting (3.5) into (3.18) we get

Π(p2) =
iZ

p2 −m2
+

∫ ∞
m∗

dµ2 ρ(µ2)

p2 − µ2
. (3.19)

One can see that a confining theory require the wavefunction normalization

to be zero, Z = 0. This requirement happens because the confined elementary con-

stituents are not asymptotic states, nor they are produced as resonant excitations.

Also, if the strongly interacting system produces a spectrum of single particle
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Figure 3.3: Analytic structure of a general two point function.
There are poles for single-particle states (Assumed to be stable), poles
of bound-states with small widths, and a branch-cut for multiparticle
states. Note that the non-analycities of the spectral function corre-

spond to physical processes of interest.

bound-states, they should be accessible through the spectral function. We can divide

ρ(p2) into a single particle bound-state (BS) contribution and a multiparticle one

(MS).

Π(p2) =

∫ ∞
m∗

dµ2ρBS(µ2)

p2 − µ2
+

∫ ∞
4m2

dµ2ρMS(µ2)

p2 − µ2
(3.20)

Isolating one of these resonances, we can translate the bound-state expression

for the spectral decomposition into the exact propagator form.

∫ m∗+∆m∗

m∗−∆m∗

ρBS(µ2)

p2 − µ2
dµ2 ∼ iZ

p2 −m2
∗ − iZIm [M2(p2)]

(3.21)

where, the interval (m∗−∆m∗,m∗+ ∆m∗) indicates the vicinity of the bound-state

contribution.

This relation suggests that if Im[M2(m2)] is small, the spectral form can be

further simplified. This effect happens because the distribution becomes concen-

trated at the pole mass m2. The natural question here is, do we expect these stable

resonances in such a strongly interacting system?

To address this question, we can use a systematic approach to characterize the
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hadron-like states of a theory such as QCD. Such characterization is done through

a perturbative expansion proposed by ’t Hooft [57, 60].

3.2 The 1/N Expansion

The 1/N expansion is a perturbative scheme for a SU(N) gauge theory in

terms of the number of colours N. In a strongly interacting system, perturbation

theory in terms of the coupling constant is not well controlled and does not provide

much insight into the full theory. Here, the strategy is to recover a perturbative

scheme in terms of the external parameter N , defining the theory in the large-N

limit.

’t Hooft showed that as N → ∞ the theory simplifies so that mesons and

glue states are free, stable, and non-interacting. Also, the meson widths are of order

1/
√
N , and meson-meson elastic scattering amplitudes get suppressed to order 1/N .

Of course, in QCD the gauge group with N = 3 does not seems to provide

a perfect approximation, but the expansion is qualitatively useful. It organizes

the hadronic spectrum and provides arguments for the seemingly free and stable

behaviour or resonances. Even though this technique still uses some perturbative

analysis in terms of the coupling constant, there are certain classes of diagrams that

share the same features at all orders in the perturbative expansion. The assumption

is that after the ressumation, this set of diagrams is representative of the final

theory.2

These diagrams are called planar and are better defined through the ’t Hooft

double-line notation for representing SU(N) colour diagrams, as depicted in figure

3.4.

In this QCD-like theory, there are N colours of quarks and N2 − 1 ≈ N2

gluons. As an example, the vacuum polarization contributions to the gluons two-

point function are pictured in figure 3.5.
2The final class of diagrams is also assumed to generate the confinement phenomenon.
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Figure 3.4: ’t Hooft double line notation. A quark or anti-quark
are represented by one line, as they carry just one color label. The

gluons have two lines associated with them

Figure 3.5: Vacuum polarization of the glouns two-point function.

Inside the gluon loop there is a colour index line k that is free to take the values

k = 1, . . . , N . Correspondingly, this diagram is associated with a multiplicative

factor N and dominates over the quark loops as N →∞. However, the perturbation

is ill-defined if we wish to choose the factor N as expansion parameter since the

contributions diverge. To contour this issue, we rescale the coupling constant to be

g/
√
N , with fixed g and N →∞. The loop factor then goes to a well-behaved limit.

(
g√
N

)2

·N → g2 (3.22)
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With this definition, the disposal of quark loop diagrams is explicit. After the

coupling constant rescaling they go like

(
g√
N

)2

· 1 ∼ g2

N
→ 0 (3.23)

and each internal quark loop has this suppression factor of 1/N .

The Higher loops can be trated with the same methodology. Consider the two

loop contribution of figure 3.6.

Figure 3.6: Higher loops for the vacuum polarization of the gluons.

Such diagrmas go like:

(
g√
N

)4

·N2 → g4. (3.24)

Similarly the three loop goes like

(
g√
N

)6

·N3 → g6. (3.25)

All of these cases belong to the class of planar diagrams, that do not self

intersect at some internal point. For non-planar diagrams, the combinatorial analysis

favours their disposal. For example, consider yet another loop in figure 3.7.

Since there is only one internal running index, this diagram scale as

(
g√
N

)6

·N → g6

N2
, (3.26)
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Figure 3.7: Example of a non-planar diagram in the gluon two-point
function. Note that there is only one running index.

therefore, it is discarted as N approaches infinity. As a general result, all non-planar

graphs are suppressed by a factor of 1/N2 and can be desconsidered in the large-N

limit [57, 60, 75].

Even though the evaluation of all the planar diagrams is a hard task, the

conclusions are fairly simple. They provide some insight into the qualitative features

of a strongly interacting theory in the large-N limit.

• The meson-like particles are free, stable and non-interacting.

• Meson-like particle decays are proportional to 1/
√
N , so they are narrow

states.

• Meson-meson scattering amplitudes get suppressed to 1/N .

• Mesons are pure quark-like (qq) states, with no quark-antiquark sea.

• The exotic meson-meson bound states are forbidden.

• Infinite tower of glueball states, with widths 1/N2.

These consequences are important qualitative guidelines for modelling the com-

posite sector of the Higgs. We can use this QCD-driven approach to firm a concrete

realization of the strong sector. However, there could be other behaviours that

depart from this general picture.

Contrary to the Large-N, in QCD, we have the σ and the ρ, which are broad

and strongly interacting at the hadron level. Also, there are all sorts of meson-meson

systems and exotic bounds states like glueballs and pentaquarks. Additionally, send-

ing N →∞ do not describe the qualitative behaviour of baryons as it was supposed
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to do. All of these corroborate to go beyond such limit. However, we postpone such

discussion to chapter 6.

3.3 Tools for Form Factor Model-Building

Assuming the spectral properties and analytical structure of the previous sec-

tions and the Large-N limit, extracting practical expressions from the spectral de-

composition is a more attainable task now.

The form factors will inherit the analytic properties of the point-functions.

Their construction is based on integrating-out the massive resonances while keeping

its dynamical effects. Even though these massive states will not be explicitly written,

their influence will still be on the generation of the dynamical couplings of the

theory. Ultimately, they will be accessible through the momentum transfer of Higgs

processes.

For the task of writing the expressions, we will present some tools that were

amply used in the QCD context and will be of use here. The objective is to reduce

the integral form of the spectral function into an explicit function of the external

momenta.

3.3.1 Narrow Resonances Limit

Previously, we argued that the spectral decomposition for bound states is

related to the exact propagator as

∫ m∗+∆m∗

m∗−∆m∗

ρBS(µ2)

p2 − µ2
dµ2 =

iZ

p2 −m2
∗ − iZIm [M2(p2)]

(3.27)

One of the consequences of the large-N limit is that the resonance widths are

narrow in the composite theory. In this case, the Im [M2(m2)] is small compared to
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the particle pole mass. Therefore we can approximate the width as:

Γ = −Z
m
Im
[
M2(m2)

]
(3.28)

Then, the spectral decomposition can be factored to all single particle states

when resonances are narrow.

Π(p2) =i

∫
d4xeip(x−y) 〈T φ(x)φ(y)〉

=
iZ

p2 −m2
+

NS∑
i=1

iF 2
i

p2 −m2
i + imiΓi

+

∫ ∞
∼4m2

dµ2 ρ(µ2)

p2 − µ2
, (3.29)

where the constants Fi = | 〈λ0|φ0|Ω〉 |2 are taken as a phenomenological input to the

theory, and NS is the number of narrow scalar resonances in such theory.

The generalization to fermions and gauge bosons comes with the replacement

of the scalar propagator to the correspondent propagator for each spin particle.

ΠF (p2) =i

∫
d4xeip(x−y)

〈
T ψ(x)ψ(y)

〉
=

iZ

/p−m
+

NF∑
i=1

iFi(/p−m)

p2 −m2
i + imiΓi

+

∫ ∞
∼4m2

dµ2 ρ(µ2)

/p− µ
(3.30)

Πµν
V (p2) =i

∫
d4xeip(x−y) 〈T Aµ(x)Aν(y)〉

=
iZ(ηµν − pµpν

p2 )

p2 −m2
+

NV∑
i=1

iF 2
i (ηµν − pµpν

p2 )

p2 −m2
i + imiΓi

+ (3.31)

+

∫ ∞
∼4m2

dµ2ρ(µ2)
(ηµν − pµpν

p2 )

p2 − µ2
(3.32)

The treatment of the continuum part is more involved since it depends on

specific details of the intermediate virtual state corrections. This treatment is no

trivial task to be done non-perturbatively. In general, the threshold for multi-particle

production is at energies above the single-particle pole region (e.g.∼ 4m2), and the
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first-order effects should come from the single-particles states alone.

With this in mind, we further assume that the continuum can be neglected in

terms of only the poles of the spectral function.

The situation is an infinite tower of resonances, each signalling a pole on the

spectral function. In this set of infinite particles, we can focus on the lowest mass

states as they are closer to the threshold for experimental visibility. In the same

manner, as we had discarded the higher energy effects of the continuum, we can

try to simplify the analytic structure of the theory here. Further simplification is

achieved by just considering a small number of lower-end bound-state excitations.

In QCD, the pion form factor is well reproduced using this strategy. The ρ

resonance is the lowest state that shares the photon quantum numbers. Practically,

the actual measurement of the form factor effect is well matched by an expression

with a simple pole at the mass of 770 MeV of the ρ.

The two-point function assumes a simple expression with only these lower-end

part of the resonant spectrum.

Π(p2) ≈ iZ

p2 −m2
+

iF 2

p2 −M2 + iMΓ
.

3.3.2 Weinberg Sum Rules

In the previous section, we constrained the expressions from the lower end

of the spectrum. This was done in order to reach a simple form for the two-point

function. Also, it is possible to include constraints from the expected UV properties

of the theory. These are generally implemented through sum rules [52, 51].

The Weinberg sum rules are a set of relations that applies when dealing with

spectral functions of a spontaneous breaking to a subgroup H. The sum rules

guarantee the G-symmetry restoration at high energies, that is a general property

of any theory with a composite Higgs.

First, we assign two contributions to the two point-functions. Πa is the as-

signed to the unbroken correlator and Πâ to the broken one. The sum rule’s objective
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is to enforce that at the UV, the momentum behaviour of the form factors is the

same.

lim
|p|→∞

(Πµν
a (p)− Πµν

â (p)) = 0 (3.33)

The Weinberg sum rules are obtained by requiring the asymptotic limit (3.33)

to respect a spectral function decrease faster than 1
p2 and 1

p4 as p→∞.

lim
|p|→∞

p2 (Πµν
a (p)− Πµν

â (p)) = 0 (3.34)

lim
|p|→∞

p4 (Πµν
a (p)− Πµν

â (p)) = 0 (3.35)

We can decompose the Π’s with the spectral representation. The convergence

of the two-point function is assumed to hold order by order. So, expanding 1/(p2 −

µ2) ≈ 1/p2 + µ2/p4 and imposing (3.34) − (3.35) will lead to Weinberg sum rules

for spectral functions. Projecting the transverse part of the correlator, the sum rule

(3.34) becomes ∫ ∞
0

dµ2ρa(µ2) =

∫ ∞
0

dµ2ρâ(µ2) + f 2
π (3.36)

where the appearance of the Goldstone matrix element fπ is due to the broken

current sensitivity to its goldstone exchange.

The second sum rule (3.35) for the spectral function is

∫ ∞
0

dµ2ρa(µ2)µ2 =

∫ ∞
0

dµ2ρâ(µ2)µ2 (3.37)

More explicitly, using the large-N limit with one vector meson dominance we

get

F 2
ρ − F 2

a − f 2
π = 0 (3.38)

where Fρ, Fa are the matrix elements for creating the corresponding resonant states

associated with unbroken and broken currents.
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Also, the second sum rule becomes

F 2
ρm

2
ρ − F 2

am
2
a = 0 (3.39)

Turning to fermionic contributions, it is instructive to recover the terminology

of the MCHM5. There, we had form factors for a fourplet and singlet contributions.

The sum rules analysis is the same as for the vectorial currents, and we can impose

the sum rules to find:

lim
|p|→∞

p2
(
ΠL

1 (p)− ΠL
4 (p)

)
= 0 (3.40)

lim
|p|→∞

p2
(
ΠR

1 (p)− ΠR
4 (p)

)
= 0 (3.41)

Substituting the explicit forms we get to

|yL1|2 − |yL4|2 = 0 (3.42)

|yR1|2 − |yR4|2 = 0 (3.43)

where these constants are the mixing couplings of left and right-handed fermion

multiplets.

The practical use of sum rules is to reduce internal parameter dependence.

This reduction is crucial when studying the phase space of the theory for phe-

nomenological signals. Nevertheless, the sum rules are a concrete prescription on

the UV behaviour of the theory.

Another feature of the imposition of the sum rules is that the Coleman-

Weinberg potential of the theory will result to be finite [96, 28]. This feature is

expected in any CHM that claims to solve the hierarchy problem. Thus, imposing

the sum rules is desired in model-building.
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3.3.3 Form Factors

Up until now, we have referred to the form factors and the correlation functions

as the same. The distinction is a bit more subtle. The point functions include the

entire dynamics of an interacting theory, including the propagation of the lowest

excitation that we identify as the elementary degrees of freedom.

The form factors are a generic designation to the effects of integrating out the

heavy states. These are not expected to appear explicitly at low energies. However,

their contributions modify the dynamics of point functions and inherit the analytical

behaviour of the theory.

Form factors are momentum dependent contributions that alter the elementary

behaviour of interactions. They signal the presence of internal structure and can be

used in the construction of effective lagrangians such as the MCHM5 lagrangian we

presented earlier in chapter 2.

LGeff =
1

2
Pµν

(
Π0(p) Tr(AµAν) + Π1(p)ΣTAµAνΣ

)
+ (3.44)

+QL/p
(
ΠL

0 (p) + ΠL
1 (p)ΣΣT

)
QL+

+ TR/p
(
ΠR

0 (p) + ΠR
1 (p)ΣTΣ

)
TR+

+QL

(
M0(p) +M1(p)ΣΣT

)
TR

For each conserved current, we identify a form factor that represents a reso-

nance exchange according to the spectral decomposition. These form factors corre-

spond to self-energy contributions to the elementary fields two-point functions.

For example, an fourplet fermionic quadratic lagrangian has the general form:

L = QL4/pQL4 + ΠL
4 (p2)QL4/pQL4 (3.45)

ΠL
4 (p2) ≡ fL4

p2 −m2
4 + iΓm4

(3.46)
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In the same manner, all the other associated two-point form factors can be

identified with the single pole exchange forms of the self-energies.

Πa(p) =
F 2
ρ

p2 −m2
ρ + iΓρmρ

(3.47)

Πâ(p) =
f 2
π

p2
+

F 2
a

p2 −m2
a + iΓama

(3.48)

ΠL
4 (p) = |yL|2

f 2
4

p2 −m2
4 + iΓ4m4

, L↔ R (3.49)

ΠL
1 (p) = |yL|2

f 2
1

p2 −m2
1 + iΓ1m1

, L↔ R (3.50)

M4(p) = yLy
∗
Rm4

f 2
4

p2 −m2
4 + iΓ4m4

(3.51)

M1(p) = yLy
∗
Rm1

f 2
1

p2 −m2
1 + iΓ1m1

(3.52)

The goal when studying the MCHM5 will be to match the effective lagrangian

(3.44) to the expressions (3.47)-(3.52). In Chapter 4, we will address this issue

accordingly by explicitly computing the form factors.

3.4 Effective Field Theory Matching

An effective field theory is defined as a local lagrangian that respects the

symmetries of a system. The operators can be of any dimension in this lagrangian,

but we assume the EFT is well defined and the irrelevant operators suppressed by

the cutoff of the theory.

The EFT can be useful in translating the form factor effects into a known

framework. Since form factors are a non-local description (i.e. the operators are not

linear in the lagrangian), to match with the EFT, we have to expand them out and

find linear structures in the momentum.
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As an example, consider the following lagrangian3.

L = −1

2
φ(p2 −M2)φ− 1

2
π(p2 −m2)π +

λ

4
φπ2 (3.53)

where M >> m.

Now, we desire to integrate out the heavy field φ using its equation of motion

− (p2 −M2)φ+
λ

2
π2 = 0 (3.54)

Then the remaining theory is non-local and bears a strong resemblance to our

form factors.

Lform = −1

2
π(p2 −M2)π +

λ2

8
π2 1

p2 −M2︸ ︷︷ ︸
=Π(p2)

π2 (3.55)

Notice that if p2 << M2, we are allowed to recover a local description

LEFT = −1

2
π(p2 −M2)π +

λ2

8

(
π4

M2
− π2 p

2

M4
π2 + . . .

)
(3.56)

In general, we can write for p2 << Λ2:

Π(p2) = Π(0) +
p2

Λ
Π′(0) +

p4

Λ4
Π′′(0) + . . . (3.57)

The expansion (3.57) allow one to pass from the non-local formulation of the

spectral decomposition to the EFT local description. Historically, this type of ex-

pansion was crucial to understanding the electroweak precision measurements [44].

Here, we will use such a tool to review the obtention of oblique parameters in CHMs.
3Example based on [74]
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3.5 Higher Point Functions

Throughout this chapter, all of the constructions we have worked with are for

two-point functions. The spectral decomposition, narrow resonances and sum rules

are applied to functions of only one momentum pµ. Additionally, because of the

Lorentz properties of field theories, these functions must be functions exclusively of

the Lorentz invariant quantity p2.

Π(pµ) = Π(p2). (3.58)

However, most of the phenomenological opportunities we will encounter will

come from higher point functions. The enriched phenomenology occurs because

there are more kinematical possibilities when studying off-shell processes, as we will

carefully attain.

The excuse for not wholly discussing the general properties of 3 and 4 point

functions is simply because not much is known about them. The complications are

several, kinematic dependence on external momenta is much more intricated, and

the spectral correspondence is not clearly defined anymore.

In the case of the form factor appearing in the Yukawa interaction, we have

a 3-point correlator. Here, the momentum dependence will be on both momenta

pµ, qν .

M(p, q) = i

∫
d4xd4y eip.xeiq.y

〈
T Σ(0)ψa(x)ψb(y)

〉
(3.59)

Building the function from only Lorentz invariant quantities lead to the de-

pendence on only three combinations of the four-vectors.

M(pµ, qν) = M(p2, q2, p · q) (3.60)

The strategy to contour this difficulty is to rely only on explicit realizations of

three-point functions. These will be constructed solely from the interactions hypoth-

esis between the composite and elementary sectors, and are specific implementations



3.5. Higher Point Functions 79

of individual UV pictures.

Luckily, the nature of the Higgs will grant us a clue. Because of the Higgs

mechanism, the three-point functions will be directly related to the two-point ones

since the Higgs vev generate all mass terms. This consequence of the Higgs mech-

anism will impose boundary conditions on the form factors and constrain the fully

dynamical Higgs behaviour in the three-point interactions.

In summary, this chapter was devoted to the analytical behaviour of inter-

actions. The two-point functions analytic properties were directly related to the

spectrum of the theory through the spectral decomposition. Such representation

has provided a powerful tool for discovering the general expression a form factor can

assume.

Because of this construction, the momentum dependence of the interactions

will be reflected in the structure of the form factors. An evident influence of the

dynamical contributions of the strong sector will appear when we use this approach,

and through the next chapters, we will carry the study of the Higgs compositeness

fully.





81

Chapter 4

Composite Higgs Form Factors

We have gathered enough information to explore the composite Higgs boson

through form factors. Now, the issue is to transform the Higgs propagation and

interaction issues into the analytical properties study of two- and three-point func-

tions.

As we have seen, the two-point function is described through the spectral rep-

resentation. It provides a correspondence of physical spectral properties with the

analyticity of external momenta. This relation fixes a generic picture of the compos-

ite Higgs propagation modifications. However, dealing with Higgs interactions, in

general, is not so straightforward since the general structure of three-point functions

is unknown.

Initially, this characterization will be done by providing simple ansatz expres-

sions for the form factors. They will help to illustrate some particular features on

how to handle form factors. Additionally, this discussion will help the build-up to

the restoration of the full momentum dependence in the pNGB Composite Higgs

Models.

MCHM5’s form factors prescription becomes a clear matter after figuring out

the partial compositeness and vector partners recipe for the generation of dynamical

couplings. The hypothesis on Lint is essential guidelines to build the complete three-

point form factors.

Then, this formalism can be matched with the correspondent EFT with d ≥ 4

operators. We shall see that form factors are capable of capturing effects beyond
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Figure 4.1: Form
factor contributions to
two-point functions.

Figure 4.2: Form
Factor contributions to
three-point functions.

the local EFT. Importantly, this discussion reveals that the momentum dependent

effects can be are competitive with the modifications to the zero momentum theory1.

The discussion of the form factors become most relevant when taking into

account the Higgs three-point interactions. Ultimately, the vertices of Higgs inter-

actions are produced by the exchange of composite states, which are integrated out

but maintained as non-local form factors expressions. The point functions we are

interested in are depicted in figure 4.1-4.2.

4.1 Simple Form Factor Ansatzes

As an instructive exercise, let us imagine some simple UV pictures that would

result in concrete expressions for the form factors. The goal is to find practical

functions for the dynamical Higgs interactions. By beginning with simple form

factors, we can illustrate some of the correspondent physical processes underlying

the more extensive MCHM5 construction.
1The misalignment suppressions.
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Thematically, this discussion illustrates an essential point of our work. With

all its assumptions, the so-called CHMs are just realizations of a composite Higgs.

We could imagine that the Higgs compositeness could manifest in a landscape of UV

scenarios, a theme for discussion in chapter 6. For now, we shall focus on discussing

some examples of two- and three-point functions form factor structure.

4.1.1 Two-Point Form Factors

Two-point form factors capture corrections to the propagation of particles in

interacting theories. The two external legs share the same momentum pµ. Because

of such dependence, two-point form factors can only be functions of p2, the only

Lorentz invariant combination.

Guessing some heavy resonance content, as long as its interactions with ele-

mentary sector particles, will lead to explicit form factor expressions.

Heavy Scalar Mode Mixing with the Higgs

A massive scalar mode is a particle with the same quantum numbers of the

Higgs boson, but much more massive. We also assume that the Higgs and the heavy

scalar interact due to a non-zero mixing between the two.

The general approach to such mixing would be the mass matrix diagonaliza-

tion. However, one must be careful here.

To define the theory in terms of the mass eigenstates, it is necessary to resolve

the mixing at some fixed momentum point. Usually, we define this point to be

at the on-shell limit. So, when processes have on-shell external momentum, the

interactions are diagonal. However, allowing off-shell form factor legs will generally

introduce again mixed interactions. This has far-reaching consequences for the form

factor formulation.

The consequence is that the Higgs is still subjected to interaction effects when

it is off-shell.
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More concretely, imagine that we integrated out this heavy scalar but kept

their momentum dependence through the form factor Γ(p2). Choosing the linear

realization for simplicity and passing to momentum space, the induced form for the

two-point lagrangian of the light scalar is:

L =
1

2
(p2 −m2)φ2 + Γ(p2)φ2 +O(φ4). (4.1)

Accordingly, the propagator assumes the form:

G(p2) =
i

p2 −m2 + Γ(p2)
, (4.2)

which is similar to the exact propagator (3.9) if we identify the self-interactions

contributions with the form factor of a heavy scalar exchange.

There are boundary conditions to the physical mass and the wavefunction

renormalization constant. The pole of the propagator defines the physical mass of

the lighter states.

m2
P = Γ(m2

P )−m2. (4.3)

By expanding Γ(p2) around m2
P , we get

G(p2) =

(
p2 −m2 − Γ(m2

P ) +
∂Γ(m2

P )

∂p2
p2 +O(p4)

)−1

(4.4)

' i

Zp2 −m2
P

=
iZ

p2 −mP
2 (4.5)

where mP
2 is the redefined physical mass. The value of the wavefunction renormal-

ization constant Z is fixed by the renormalization condition:

∂Γ(p2)

∂p2
|p2=m2

P
= Z − 1 (4.6)

Relations (4.3)-(4.6) define the normalization of the form factor. When p2 =

m2
P , the light scalar boson is on-shell, and all the momentum dependent effects due
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to compositeness are absent. This defines the zero momentum limit2.

Because of the normalization, we will obtain information from the composite

sector only through off-shell effects. Thus, off-shellness of the Higgs is a critical

probe to compositeness effects since one is allowed to access the high momentum

structure of the theory.

The form factor corresponds to a heavy scalar (σ) exchange, that appears as

a monopole term. In the large-N limit the narrow width approximation is expected

to be valid and we can write:

Γ(p2) =
iF 2

σ

p2 −m2
σ + iΓσmσ

(4.7)

The off-shell effects of form factor are captured through the mass running

of the Higgs. However, this is not the most sensitive physical observable in phe-

nomenological terms. We shall leave the phenomenological possibilities for chapter

5, focusing now on building up the form factor formalism.

Fermionic and Bosonic Mixings with Heavy Partners

Similarly to the heavy scalar mode influence in the Higgs propagation, the

Fermion and Gauge Boson lines can also gain form factors due to the presence of

heavy partners. However, since there the kinetic and mass terms in the lagrangian

shared the same symmetries, we were limited to use one form factor. The situation

is a bit different for fermions and gauge bosons now.

In this case, chiral symmetry and gauge invariance forbid the explicit appear-

ance of explicit mass terms in the lagrangian. The point is, we have a different

symmetry content between kinetic and mass terms since the Higgs mechanism gen-

erates the mass ones. So, in general, expect the assignment different form factor

expressions for each operator.
2Since we are referring to the two-point function, the concept of momentum exchange is ill-

defined. Here zero momentum exchange shall be referred to the on/off-shell properties of the
process. This nomenclature is used for unifying the description of compositeness effects for the
3-point interaction later on.
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Beggining with the fermions

LF = ΠL(p2)qL/pql + ΠR(p2)tR/ptR + ΓF (p2)qLtR + h.c. (4.8)

where ΠL(p2), ΠR(p2) and ΓF (p2) are the form factors generated through integrating

out the left and right-handed heavy fermion partners.

We can redefine the fermion fields in order to canonically normalize the kinetic

terms.

qL →
eiφL√
| ΠL(p) |

qL qR →
eiφR√
| ΠR(p) |

tR (4.9)

here, the phase factors are included to make the argument of the square roots real.

Now the lagrangian can be redefined in terms of only one form factor M(p).

LF = qL/pql + tR/ptR +

[
ei(φL+φR)ΓF (p)√
| ΠL(p) |

√
| ΠR(p) |

]
︸ ︷︷ ︸

≡M(p)

qLtR + h.c. (4.10)

LF = qL/pql + tR/ptR +M(p)qLtR + h.c. (4.11)

From now, the structure is similar to the heavy scalar exchange. The propa-

gator is

GF (p) =
i

/p−M(p)
(4.12)

We can define the normalization of the form factor from the pole mass relation,

and the residue defines the wavefunction normalization.

M(mP ) = mP (4.13)

Accordingly, the same procedure applies to the Gauge Bosons.

LV =

(
ηµν −

pµpν

p2

)[
Πa(p

2)AaµA
a
ν + Πâ(p

2)AâµA
â
ν

]
+ ΓIV (p2)AIµA

I,µ (4.14)
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where a, â and I are the indices of the broken, unbroken and all G generators

respectively. Πa, Πâ and ΓIV are the form factors.

Redefining the fields as

Aaµ →
1

Πa(p)
Aaµ Aâµ →

1

Πâ(p)
Aâµ (4.15)

will induce the lagrangian:

LV =

(
ηµν −

pµpν

p2

)[
AaµA

a
ν + AâµA

â
ν

]
+

ΓaV (p2)

Πa(p2)︸ ︷︷ ︸
≡Ma

V (p2)/2

AaµA
a,µ +

ΓâV (p2)

Πâ(p2)︸ ︷︷ ︸
≡M â

V (p2)/2

AâµA
â,µ (4.16)

LV = −1

4
F a
µνF

a,µν +
M I

V
2
(p2)

2
AIµA

I,µ (4.17)

Again, the pole condition for gauge bosons masses determine the normalization

of the form factor M I
V (p2).

M I
V

2
(m2

V,I) = m2
V,I . (4.18)

To sum up, the form factors after normalizing the kinetic terms are

MF (p) =
ei(φL+φR)ΓF (p)√
| ΠL(p) |

√
| ΠR(p) |

(4.19)

MA
V (p2) = 2

ΓAV (p2)

ΠA(p2)
(4.20)

Importantly, the two-point form factors are the main indications of propagation

modifications due to compositeness. Their influence appears when there are far off-

shell intermediate contributions in physical processes. Because of this feature, the

main observable for these effects is the direct running of the mass parameters, which

are difficult experimental signatures [11].
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4.1.2 Three-Point Form Factors

Because of the simple external dependence of two-point form factors on only p2,

its applications are limited in phenomenological terms. Three-point interactions offer

a much more distinctive modification, generating non-local dynamical interactions of

the Higgs. The extra momentum dependence due to the presence of another external

leg will be important to extend the form factor phenomenological possibilities later

on.

Heavy Scalar Monopole

When introducing interactions between the composite and elementary fermions

in Chapter 2, we discussed two types of operators, OS and OF . The first corresponds

to a scalar operator that couples bilinearly with two chiral fermions and the second

the PC prescription used in CHMs to generate Higgs-fermion couplings.

Back then, the lagrangian was

Lbilinearint = λsqLOcStR + h.c., (4.21)

in which the scalar OS operator had the same quantum numbers of the Higgs.

〈0|OS(x)|h〉 6= 0 (4.22)

The explicit realization of this operator is the inclusion of a field that acts

as a Heavy scalar mode. This scalar mixes with the Higgs intermediating the bi-

linear coupling to elementary fermions. Now, we can generate the Higgs Yukawa

interaction with a form factor that has the monopole heavy scalar structure.



4.1. Simple Form Factor Ansatzes 89

Y (pµ, qν) = (4.23)

=
λsF

2
σ

(p− q)2 −m2
σ + iΓσmσ

. (4.24)

where we assumed the constant λs to control the Heavy scalar/Higgs mixture

Such form factor bears a considerable resemblance with the pion form factor,

where the Heavy scalar plays the role of the ρ resonance. Another source of the

same structure is technicolor, in which the heavy state arrases as a bound-state of

techniquarks
〈
ψψ
〉
.

In general, Lorentz invariance imposes the three point vertex to be a function

of the variables p2, q2 and p · q.

Y (pµ, qν) = Y (p2, q2, p · q) (4.25)

In the non-local effective lagrangian, such form factor appears as the momen-

tum dependent coefficient of the Higgs Yukawa terms.

L = Y (p2, q2, p · q)qLHtr + h.c. (4.26)

The role of the Yukawa vertices in the SM is to generate the masses of all

charged particles. This situation occurs when the Higgs assumes its vev and becomes

non-dynamical, demanding (p − q)µ = 0. Therefore, the three-point function is

effectively reduced to a two-point one, with only one momentum dependence p2.

Y (p2, q2, p · q) |p=q= Y (p2) =

√
2M(p2)

v
(4.27)
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This is the Mass-Yukawa relation that is obtained as a consequence of EWSB.

At zero trensfered momentum, the form factor (4.27) is reduced to a constant factor

that defines the Yukawa constant.

Y (p2, q2, p · q) |p−q=0=
λsF

2
σ

−m2
σ + iΓσmσ

≡ yf =

√
2mt

v
(4.28)

Relation (4.27) imposes the physical constraint that allows us to define the

top mass.

In principle, when the Higgs is fully dynamical, one could study this interaction

for the on-shell and off-shell cases. However, when the on-shell Higgs condition is

satisfied, the momentum is restricted to (p − q)2 = m2
h. As a consequence, the

form factor is again reduced to a constant contribution. On-shell Higgs processes

only contribute up to a running shift of the top-quark mass. We conclude that all

dynamical effects of the heavy scalar are restricted to the off-shell case.

Off-shellness is the ultimate probe to form factor phenomenology. It is capable

of producing effects beyond the running of parameters. The central point of the

formulation will be an actual modification in the kinematic distributions that reflect

the momentum dependence of interactions.

The heavy scalar phenomenology is interesting when the Higgs is off-shell, since

the form factor couples with Higgs momentum. However, the actual pNGB models

use a different structure for introducing these couplings - they assume partially

composite interactions. These will explore the off-shellness of the top external lines

instead of the Higgs.

Heavy Fermion Monopole

Instead of mediating the Higgs interactions with the two elementary scalars

via a Heavy scalar, we can assume the nondiagonal PC couplings.
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These were generated by the linear d = 5/2 fermionic operator OF according

to the PC prescription of chapter 2.

Llinearint = λLf qLOcF,L + h.c., (4.29)

Assuming that the partial composite couplings generate the monopole struc-

ture of the form factor, we can include their effects by assuming the two resonances

pole structure.

F (p2, q2) ∼ gM2
1

p2 −M2
1 + iΓ1M1

+
gM2

4

q2 −M2
4 + iΓ4M4

(4.30)

The analytic structure of such expression is pictured in figure 4.3. As we shall

see, the MHCM5 uses exactly this prescription. In the next section we will proceed

treat them properly, deriving the structure from the CCWZ formalism.

Heavy Vectors Dipole

Similarly to the previous cases, the generation of the Higgs to gauge bosons

couplings is done through the mixings with heavy vector states. However, gauge

invariance forbids the appearance of nondiagonal terms to generate a monopole.

The gauge construction favours a direct mixing of the elementary vectors with

the heavy ones, and the form factor is produced with a dipole term:

F (p2, q2) =
gM2

p2 −M2 + iΓM

gM2

q2 −M2 + iΓM
(4.31)
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Figure 4.3: Analytic structure of a fermionic monopole (left) or a
vector dipole (right). Here we plot the absolute value of the form fac-
tors (4.30)-(4.31), by their two momenta p, q. Each of these momenta

corresponds to a fermion/vector external line.

Also, such structure is reproduced in the MCHM5 model. Then, we shall

proceed to the characterization of this more robust case.

4.2 The MCHM5 Form Factors

In chapter 2, we built the MCHM5 as an linear effective description. There,

the Higgs interactions were modified with respect to the SM by a misalignment

suppression. Such shifts are are the first consequence of the presence of a strong
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sector ahead.

κV =
gCHhV V
gSMhV V

=
√

1− ξ (4.32)

k5t ≡
gCHhtt
gSMhtt

=
1− 2ξ√

1− ξ
≈ 1− 3

2
ξ. (4.33)

Most importantly, we argued there is no change to the shape of kinematic

distributions, only altering these through an overall rescaling. We argued that this

change in shape is a characteristic indicative of internal structure, that is associated

with compositeness.

Now, having discussed the dynamical generation of gauge and Yukawa cou-

plings we can assign the effective CHMs as the zero momentum limit of the form

factor theory. Then, at zero momentum, we impose boundary conditions on the

form factors. Accordingly, through the exploration of off-shellness, we can access

the strong sector contributions at the collider level.

When building the couplings of the Higgs, we found that a consistent way is

through a monopole of fermionic partners and a dipole of vector resonances.

The form factors for the MCHM5 will be constructed respecting this Higgs

interaction generating mechanisms, which ensures the naturalness features of CHMs.

With such interactions, we can provide specific forms for the three-point function

that relies on the mixing of composite and elementary states. The aim is to restore

the form factor formulation the MCHM5’s three-point functions for a fully dynamical

Higgs. Then we proceed to compute the form factors accordingly.

4.2.1 Fermion Form Factor

Linear couplings between the elementary and composite sector are favoured

to bilinears if we use Partial Compositeness. Now, the way forward is to insert the

resonance fields explicitly, adopting the PC prescription in it.
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Remember that the elementary third generation of Quarks were embeeded as

an incomplete 5-plet of SO(5), with the left-handed fermions as 4 and the right-

handed as a singlet.

QL =



bl

−ibl
tl

itl

0


TR =



0

0

0

0

tr


. (4.34)

The Higgs is realized non-linearly through the Goldstone matrix. Remeber

that after exlicit computation it was:

Σ(x) = f

Sin(Π
f

)
Π̂

Cos
(

Π
f

)
 , (4.35)

and the gauge bosons were identified by their generators that are a linear combina-

tion of unbroken T a’s.

In table X, we define the notation, mainly to keep track of the multiple fields

we are going to use in this parametrization.

Assigned Field Particle Classification
Σ(x) NGB’s/Higgs
QL(x) 5-plet of elementary left-handed fermions
TR(x) 5-plet of elementary right-handed fermions
ψi1(x) Singlet of fermionic resonances
ψi4(x) Fourplet of fermionic resonances



4.2. The MCHM5 Form Factors 95

With these degrees of freedom, we can write the lagrangian’s kinetic term with

the explicit resonances fields.

LCS =iQL /DQL + iTR /DTR +
Ns∑
i=1

ψi1
(
i /D −m1,i

)
ψi1

+

Nf∑
i=1

ψi4
(
i /D −m4,i

)
ψi4 + (DµΣT )DµΣ + VCW (|Σ|2) (4.36)

We construct the interaction lagrangian by dressing the incoplemte elementary

fields with the Goldstone matrix according to CCWZ, thus granting a SO(5) invari-

ant theory. Now, we are able to identify the correct structure for the generation of

the Higgs Yukawa couplings.

Lint =f
[
yL1(QLU [π])1ψ

i
1 + yL4(QLU [π])4ψ

i
4

]
+ h.c.+ (4.37)

+ f
[
yR1(TRU [π])1ψ

i
1 + yR4(TRU [π])4ψ

i
4

]
+ h.c.

The mixing fermion terms will generate the vertices in Fig4.4.

Figure 4.4: Fermion vertices deduced from LMix.
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And each diagram represent a part of (4.37):

fyR1(TRU [π])1ψ1 = fyR1 cos

(
h

f

)
tRψ1 = fyR1tRψ1 +O(h2) (4.38)

fyL4(QLU [π])4ψ4 = fyL4 cos

(
h

f

)
qLψ4 = fyL4qLψ4 +O(h2) (4.39)

fyL1(QLU [π])1ψ1 = fyL1 sin

(
h

f

)
qLψ1 = yL1qLhψ1 +O(h3) (4.40)

fyR4(TRU [π])4ψ4 = fyR4 sin

(
h

f

)
tRψ4 = yR4tRhψ4 +O(h3) (4.41)

Finally, the Yukawa are derived from joining the vertices of (4.38)-(4.41).

,

Which assume the form:

M(p, q) ∼M4(p) +M1(q) (4.42)

Back to the non-linear formalism, the form factors will appear as coefficients

of the effective lagrangian. They will introduce a momentum dependence in the

interactions of the low energy theory and should be generated according to the

couplings prescripted by partial compositeness.

We write once again the the SO(5) preserving effective lagrangian with the

coeffiecients ΠL
0 , ΠL

1 , ΠR
0 , ΠR

1 for kinetic terms andM0, M1 for Mass/Yukawa terms.

Keeping terms up to order Σ2 we have:

LGeff =QL/p
(
ΠL

0 (p) + ΠL
1 (p, q)ΣΣT

)
QL+ (4.43)

+ TR/p
(
ΠR

0 (p) + ΠR
1 (p, q)ΣΣT

)
TR+

+QL

(
M0(p) +M1(p, q)ΣΣT

)
TR
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We have to match these coefficients with the form factors defined by the un-

broken/broken currents it couples to. This is mainly done by reducing three- to

two-point form factors, when the Higgs assume its vev. First, we divide the 5-plets

into 4-plets and the singlet, QL = (QL4, QL1), TR = (TR4, TR1) and Σ0 = (Σ4,Σ1).

Opening up (4.43), there will be various combinations of the fields.

LGeff =ΠL
0 (p)

[
QL4/pQL4 +QL1/pQL1 +QL4/pQL1 + h.c.

]
+QL → TR+ (4.44)

ΠL
1 (p)

[
QL4/pΣ

4Σ4QL4 +QL1/pΣ
1Σ1QL1 +QL4/pΣ

4Σ1QL1 + h.c.
]

+

M0

[
QL4QR4 +QL1QR1 +QL4QR1 +QL1QR4

]
+

M1

[
QL4Σ4Σ4QR4 +QL1Σ1Σ1QR1 +QL4Σ4Σ1QR1 +QL1Σ1Σ4QR4

]
+ h.c.

When the Higgs assumes its vev, we are able to reduce the three point functions

contributions in (4.44) to two point ones. By making G → H, we can match the

coefficients with the physical currents that define the form factors. Most of the

terms in (4.44) are spurious, and in the vacuum Σ→ Σ0 = (0, 0, 0, 0, 1) the effective

lagrangian simplified to:

LHeff =QL4/p
(
1 + ΠL

4 (p)
)
QL4 +QL1/p

(
1 + ΠL

1 (p)
)
QL1

+ TR4/p
(
1 + ΠR

4 (p)
)
TR4 + TR1/p

(
1 + ΠR

1 (p)
)
TR1

+QL4 (M4(p))TR4 +QL1 (M1(p))TR1 (4.45)

With the coefficients of (4.45) related to the self-energies ΠL
4 , ΠR

4 , ΠL
1 , ΠR

1 ,

M4, M1 by:

ΠL
0 (p) = 1 + ΠL

4 (p), L↔ R (4.46)

ΠL
1 (p) = ΠL

1 (p)− ΠL
4 (p), L↔ R (4.47)

M0(p) = M4(p) (4.48)

M(p, q) = M4(p)−M1(q) (4.49)
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With the usual large-N approximations, we can write the two point funtion con-

tributions as single heavy particle exchange through the form factors ΠL
4 (p), ΠL

1 (p),

M4(p) and M1(p). Each one is associated to a heavy resonance being exchanged in

the two-point line.

ΠL
4 (p) = |yL4|2

f 2

p2 −m2
4 + iΓ4m4

, L↔ R (4.50)

ΠL
1 (p) = |yL1|2

f 2

p2 −m2
1 + iΓ1m1

, L↔ R (4.51)

M4(p) = yL4y
∗
Rm4

f 2

p2 −m2
4 + iΓ4m4

(4.52)

M1(p) = yL1y
∗
Rm1

f 2

p2 −m2
1 + iΓ1m1

(4.53)

Using the explicit expressions (4.50)-(4.50) we have

ΠL
0 (p) = 1 + ΠL

4 (p) = 1 +
f 2|yL|2

p2 −m2
4

(4.54)

ΠR
0 (p) = 1 + ΠL

1 (p) = 1 +
f 2|yL|2

p2 −m2
1

(4.55)

ΠL
1 (p, q) = ΠL

1 (p)− ΠL
4 (q) = f 2|yL|2

(
1

p2 −m2
1

− 1

q2 −m2
4

)
, L↔ R (4.56)

M0(p) = M4(q) = f 2yLyR
m4

p2 −m2
4

(4.57)

M(p, q) = M4(p)−M1(q) = f 2yLyR

(
m4

p2 −m2
4

− m1

q2 −m2
1

)
, (4.58)

where the widths of the resonances are ommited.

In the previous deduction, the objective of to obtain what the form factors

(4.54)-(4.58) are explicitly. We have paid extra attention to restoring the dependence

on both momenta associated with the external legs. Having matched the correct

expressions of the G-invariant lagrangian, we can proceed to calculate the dynamical

modifications to the Higgs couplings to fermions.
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Couplings to the Higgs

Now, consider the fully dynamical Higgs lagrangian LGeff, F , and expand the

interactions terms up to d = 4 contributions. Writing (4.43) in the unitary gauge

and expanding the general form of Σ(x), we have:

LGeff, F = qL/p

(
ΠL

0 (p) + ΠL
1 (p)

S2
h

2

)
qL + tR/q

(
ΠR

0 (q) + ΠR
1 (q)C2

h

)
tR+ (4.59)

+ tR

(
M1(p, q)

ShCh√
2

)
qL,

where we have defined Sh = sin
(
h+v
f

)
, Ch = cos

(
h+v
f

)
.

Now, expanding Sh over powers of h/f and normalizing the kinetic terms we

get:

LGeff, F = qL/pql + tR/qtR+ (4.60)

+ qL

 1√
2

M(p, q)
√
ξ(1− ξ)√

ΠL
0 (p) + ΠL

1 (p)
〈
Sh

2
〉√

ΠR
0 (q) + ΠR

1 (q)
〈
Ch

2
〉
 tR

+ qL

 1√
2

M(p, q)
√
ξ(1− ξ)√

ΠL
0 (p) + ΠL

1 (p)
〈
Sh

2
〉√

ΠR
0 (q) + ΠR

1 (q)
〈
Ch

2
〉


=κ5t︷ ︸︸ ︷(
1− 2ξ√

1− ξ

)
1√
ξ

h

f
tR

+O
(
h2/f 2

)
.

Defining the form factors as Mt(p
2) and Yt(p2, q2), we have

LGeff, F = qL/pql + tR/qtR +Mt(p
2)qLtR + Yt(p

2, q2)qLhtR. (4.61)

With the top quark mass is obtained by the pole mass conditionMt(m
2
t ) = mt.

mt =
1√
2

M
√
ξ(1− ξ)√

ΠL
0 + ΠL

1
1
2

〈
Sh

2
〉√

ΠR
0 + ΠR

1

〈
Ch

2
〉
∣∣∣∣∣∣
p2=m2

t

(4.62)
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In the zero transfered momentum limit, the lagrangian of the MCHM5 is re-

covered.

LGeff, F = qL/pql + tR/qtR + +mtqLtR +

(
1− 2ξ√

1− ξ

)
mt

v
qLh tR. (4.63)

This way we guarantee that the top mass-Yukawa relation is respected with a

κt correction due to misaligned EWSB.

yt = κt
mt

v
=

(
1− 2ξ√

1− ξ

)
mt

v
(4.64)

Satisfying the mass-Yukawa relation is a consequence of the Higgs solution

to EWSB. The CH structure is responsible for a small O(ξ) deviation from the

prediction of the standard model, which was already expected from construction.

However, the major modification due to compositeness is reflected in the dependence

of the two momenta p and q of the yt form factor.

Recovering the full momentum dependence of the form factor associated with

the yukawa interactions, we have the expression:

Yt(p, q) =
1√
2

M(p, q) (1− 2ξ)√
ΠL

0 (p) + ΠL
1 (p)1

2

〈
Sh

2
〉√

ΠR
0 (q) + ΠR

1 (q)
〈
Ch

2
〉 (4.65)

=

(1−2ξ)√
2
ylyre

i(φl−φr)
[

m4

p2−m2
4
− m1

q2−m2
1

]
√

1 +
f2y2

l

p2−m2
4

+
v2y2

l

2

(
1

p2−m2
1
− 1

p2−m2
4

)√
1 + f2y2

r

q2−m2
1

+ y2
r

(
f2−v2

q2−m2
1
− f2−v2

q2−m2
4

) .
We can plot the contours of the absolute value of Yt(p, q) on p− q plane, as is

indicated in figure 4.5.

The complicated analytical expression of the form factor induces a rich struc-

ture in the p−q plane. Most importantly, accessing different regions of this plane will

grant new possibilities for the phenomenological study of compositeness in CHMs.

Without the constraints, the form factor can have a very diverse momentum

dependence. To ground such a study, we will have to take a careful look into the
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Figure 4.5: Absolute value of Yukawa form factor as a function of p
and q. The form factor of the MCHM5 has a complex structure. To
study its phenomenology, we shall apply constraints to the expessions

derived.
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parameter space of the model. This task will be addressed in chapter 5, where we

shall apply the constraints on the form factor expressions.

Matching with the EFT

Expanding (4.65) up to first order terms in ξ and keeping only single higgs

interactions leads us to

LGeff, F = qL/p

(
ΠL

0 (p) + ΠL
1 (p)

1

2

[
ξ +

2ξ

v
h

])
qL + tR/q

(
ΠR

0 (q) + ΠR
1 (q)

[
(1− ξ)− 2ξ

v
h

])
tR

+ tR

(
M1(p, q)

1√
2

[(
1− 2

3
ξ

)
v + (1− 2ξ)h

])
qL (4.66)

Now, in order to recover an local EFT we should expand the form factors as

functions of the momenta.

ΠL
0 (p) = ΠL

0 (0) +
∂ΠL

0 (p)

∂(p2/f 2)

∣∣∣∣
p=0

p2

f 2
+O(p4/f 4) (4.67)

≡ ΠL
0,0 + ΠL

0,0

p2

f 2
(4.68)

ΠR
0 (q) = ΠR

0,0 + ΠR
0,0

q2

f 2
(4.69)

ΠL
1 (p) = ΠL

1,0 + ΠL
1,0

p2

f 2
(4.70)

ΠR
1 (q) = ΠR

1,0 + ΠR
1,0

q2

f 2
(4.71)

M(p, q) = f

(
M0 +M1,p

p2

f 2
+M1,q

q2

f 2

)
(4.72)
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Rewriting the effective lagrangian

LEFT, F =

[
(1− 2ξ)√

2
M0

]
v tRqL

}
→ d = 3 operator (4.73)

+

[
ΠL

0,0 +

(
ξ

2
ΠL

1,0

)]
qL/pqL +

[
ΠR

0,0 + (1− ξ) ΠR
1,0

]
tR/qtR +

[
(1− 2

3
ξ)

√
2

M0

]
tRhqL︸ ︷︷ ︸

d=4 operators

(4.74)

+
[
ξΠL

1,0

] 1

v
qL/phqL −

[
2ξΠR

1,0

] 1

v
tR/qhtR +

[
ξ√
2
M1,p

]
1

v
p2tRqL +

[
ξ√
2
M1,q

]
1

v
q2tRqL︸ ︷︷ ︸

d=5 operators

(4.75)

+
[
ξΠL

0,1

] 1

v2
p2qL/pqL −

[
ξΠR

0,1

] 1

v2
q2tR/qtR +

[
ξ√
2
M1,p

]
1

v2
p2tRhqL +

[
ξ√
2
M1,q

]
1

v2
q2tRhqL︸ ︷︷ ︸

d=6 operators

(4.76)

Now we redefine the fields to get canonically normalized kinetic terms.

Ld≤6
EFT =qL/pqL + tR/ptR +mttRqL + κξ5 yttRhqL

+
c5,L
k ξ

v
qL/phqL

c5,R
k ξ

v
tR/qhtR +

c5,L
y ξ

v
p2tRqL +

c5,R
y ξ

v
q2tRqL

+
c6,L
k ξ

v2
p2qL/pqL +

c6,R
k ξ

v2
q2tR/qtR +

c6,L
y ξ

v2
p2tRhqL +

c6,R
y ξ

v2
q2tRhqL (4.77)

where the coefficients (4.77) are matched to the form factor constants.

c5,L
k = c6,L

k =
ΠL

1,0

ΠL
0,0

(4.78)

c5,R
k = c6,R

k =
−2ΠR

1,0

ΠR
0,0 + ΠR

1,0

(4.79)

c5,p
y = c6,p

y =
M1,P

√
2
√

ΠL
0,0

√
ΠR

0,0 + ΠR
1,0

(4.80)

c5,q
y = c6,q

y =
M1,q

√
2
√

ΠL
0,0

√
ΠR

0,0 + ΠR
1,0

(4.81)
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Using the explicit expressions for the form factors, and defining g1 = m1/f ,

g4 = m4/f , gΓ1 = Γ1/f and gΓ4 = Γ4/f

cLk =
y2
l (g2

1 − ig1gΓ1 − g4(g4 − igΓ4))

g1(g1 − igΓ1) (g2
4 − ig4gΓ4 − y2

l )
(4.82)

cRk =
2y2

r (−g2
1 + ig1gΓ1 + g4(g4 − igΓ4))

y2
r (g2

1 − ig1gΓ1 − 2g4(g4 − igΓ4)) + g1g4(g1 − igΓ1)(g4 − igΓ4)
(4.83)

cpy = − ylyr

g4(g4 − igΓ4)2

√
2− 2y2

l

g2
4−ig4gΓ4

√
1 + y2

r

(
1

g2
4−ig4gΓ4

− 2
g2
1−ig1gΓ1

) (4.84)

cqy =
ylyr

g1(g1 − igΓ1)2

√
2− 2y2

l

g2
4−ig4gΓ4

√
1 + y2

r

(
1

g2
4−ig4gΓ4

− 2
g2
1−ig1gΓ1

) (4.85)

Expressions (4.82)-(4.85) define the coefficients of the local effective field theory

in the limit of p2 << Λ2 ∼ 4πf . However, if we wish to match these with the d = 6

effective operators to a tabled basis sich as the SILH [27, 32] we run into a problem.

First of all the d = 3 and d = 5 operators we wrote match with the d = 6 ones if we

assume the Higgs can generate a vev in d = 6 terms. But those remaining are not

listed as effective operators and is not clear how do these p2 terms behave as a local

EFT.

What could be done is to match these operators to a d = 8 basis. This remark

comes with the realization that we can pick a certain d = 8 operator and generate

the terms in (4.77). For example, by performing a partial integration and a going

to momentum space, we can

c8

Λ2
|DµH|2qL/pqL ⇒

c6,L
k

f 2
p2qL/pqL (4.86)

Even though we did not fully explore this approach, this might suggest that

the non-linear theory encapsulate non-negligible higher-dimensional operators, that

would not be taken into account in order six.

The important point here is that by expanding the form factors we were led

to order p2/f 2 contributions. Thus, at high moments these dynamical effects are
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comparable to the order ξ effects of the zero momentum CHM. We shall see this

effect in the phenomenological study of the next chapter.

In summary, the inclusion of momentum dependence in the MCHM5 is effec-

tively done using form factors. Such additional dynamical effects are reduced to the

usual composite Higgs models suppressions by going into on-shell processes. Impor-

tantly, the mass normalization was established at the on-shell limit, and dynamical

effects are only expected at the off-shell cases, where the momentum transfer is high

enough.
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4.2.2 Gauge Bosons Form Factor

Differently from the fermionic case, the inclusion of vector resonances are not

done through monopole terms. The picture for gauge boson is that the elementary

particles mix directly with their heavy vector partners, which are then connected to

the Higgs though bilinear couplings.

A fundamental property required to have a dynamical contribution in gauge

boson sector is the presence of two vector multiplets. The first one is associated

with the unbroken currents and the other associated with the broken ones.

Assigned Field Particle Classification
Σ(x) NGB’s/Higgs
Aiµ(x) Elementary Gauge Bosons
ρiµ(x) Unbroken vector resonances
aiµ(x) Broken vector resonances

The resonances can be introduced explicitly through the CCWZ formalism.

As prescripted, these heavy partners interactions with the composite Higgs appears

as external gauge sources. To all intents, they appear as extra covariant derivative

terms in the explicit sources lagrangian.

LKin =− 1

4
AµνA

µν +

[
−1

4
viµνv

iµν +
mvi

2
vµi viµ

]
+ v ↔ a

+ (DµΣT )DµΣ + VCW (|Σ|2) (4.87)

with DµΣ(x) = (∂µ + igv∗T
avaµ + iga∗T

âaâµ)Σ(x). The field vaµ is assigned to the

unbroken resonant currents and aâµ to the broken ones.

The result is that we have a bilinear vertice of two resonances and the Higgs.

We will use this to build the Higgs interaction with elementary gauge bosons.

For the purpose of generating the elementary gauge couplings, the introduction

of direct mixing of elementary and resonant vectors is crutial. Here, the mixing

lagrangian is:

LMix = Aaµv
aµ + Aâµa

âµ (4.88)
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With the mixing, the gauge-Higgs interactions are built through a dipole struc-

ture. The elementary bosons mix with two vectors that combine to form a Higgs.

Thus, the form factor associated with such interaction should be of the form

Π1(p2, q2) =
f 2m2

ρm
2
a

(p2 −m2
ρ)(q

2 −m2
a)

(4.89)

Also, there are contributions to the two-point interactions that come from

resonance exchange. These are mainly given according to the spectral distribution.

Another contribution comes from a Higgs exchange, which couples to broken current.

These will appear as a low momentum pole, signalling Goldstone modes.

Kepping a dynamical Higgs, the form factor effecive lagrangian up to order

O(Σ2) is

LGeff =
1

2
Pµν

(
Π0(p) Tr(AµAν) + Π1(p, q)ΣTAµAνΣ

)
(4.90)

In the vacuum this becomes

LHeff =
1

2
Pµν

(
Π0(p)AaµA

a
ν +

(
Π0(p) +

Π1(p)

2

)
AâµA

â
ν

)
. (4.91)

So the SO(5) lagrangian coefficients are related to the form factors ΠL
4 , ΠR

4 , ΠL
1 , ΠR

1 ,

M4, M1 by

Π0(p) =
p2

g2
+ Πa(p) (4.92)

Π1(p) = 2Πâ(p)− 2Πa(p) (4.93)
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With the self energies

Πa(p) =
F 2
ρ

p2 −m2
ρ

(4.94)

Πâ =
F 2
a

p2 −m2
a

(4.95)

The Weinberg sum rules impose a condition to the constants Fρ and FaF
2
ρ − F 2

a = f2

2

F 2
ρm

2
ρ − F 2

am
2
a = 0

(4.96)

Resolving the system of equations

F 2
ρ =

f 2

2

m2
a

m2
a −m2

ρ

(4.97)

F 2
a =

f 2

2

m2
ρ

m2
a −m2

ρ

(4.98)

Putting everything together, the form factors are:

Π0(p) = p2

(
1

g2
+ Πa(p)

)
=
p2

g2
+
p2

2

f 2

p2 −m2
ρ

m2
a

m2
a −m2

ρ

(4.99)

Π1(p, q) =
f 2m2

ρm
2
a

(p2 −m2
ρ)(q

2 −m2
a)

(4.100)

where the multiplicative p2 factor is due to the kinetic terms definition we adopted.

We can now write the full effective lagrangian with a dynamical Higgs. In the

unitary gauge, it is:

LGEff,V =
1

2
Pµν

[
Π0(p) Tr(AµAν) + Π1(p, q)ΣTAµAνΣ

]
(4.101)

=
1

2
Pµν

[
Π0(p)(AaµA

a
ν + AâµA

â
ν) + Π1(p, q)AAµA

B
ν ΣTTATBΣ

]
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To obtain the gauge boson masses and their couplings to the Higgs, we have

to normalize the kinetic terms. First, we switch off the non-SM fields.

LGEff,V =
1

2
Pµν

[(
Π0(p) +

S2
h

4
Π1(p, q)

)
BµBν (4.102)

+

(
Π0(p) +

S2
h

4
Π1(p, q)

)
AaµA

a
ν − 2

(
S2
h

4
Π1(p, q)

)
A3
µBν

]

Now, expanding sin2((h + v)/f) ≈ sin2(v/f) + 2h/f sin(v/f) cos(v/f) and

assuming that the misalignment angle ξ is small:

LHEff,V =
1

2
Pµν

(Π0 +
〈S2

h〉
4

Π1

)
2W+

µ W
−
ν︷ ︸︸ ︷

A1
µA

1
ν + A2

µA
2
ν +A3

µA
3
ν +BµBν


−2

(
〈S2

h〉
4

Π1

)
A3
µBν

]
+ 2κV

h

f

Π1(p, q)

4


2W+

µ W
−
ν︷ ︸︸ ︷

A1
µA

1
ν + A2

µA
2
ν +A3

µA
3
ν +BµBν


(4.103)

Finally, the lagrangian assumes the form:

LHV =
Pµν

2

[(
Π0 +

〈S2
h〉

4
Π1

)
BµBν +

(
Π0 +

〈S2
h〉

4
Π1

)
W 3
µW

3
ν

]
+

+ Pµν
[(

Π0 +
〈S2

h〉
4

Π1

)
W+
µ W

−
ν −

Π1 〈S2
h〉

4
W 3
µBν

]
(4.104)

+
Π1(p, q)

4

[
2hW+

µ W
−
ν + hA3

µA
3
ν + hBµBν

]
Electroweak Precision Tests

Form factors are analytic functions of the external momentum, thus admitting

a Taylor expansion.
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Π0(p2) =

=0︷ ︸︸ ︷
Π0(0) +Π′0(0)p2 +O(p4) (4.105)

=p2

{
1

g2
+

f 2m2
a

2m2
ρ

(
m2
a −m2

ρ

)}+ . . . (4.106)

Π1(p2) =

=f2︷ ︸︸ ︷
Π0(0) +Π′0(0)p2 +O(p4) (4.107)

=f 2 − p2

{
f 2

m2
a

+
f 2

m2
ρ

}
+ . . . (4.108)

Now, normalizing the mass terms, the effective lagrangian becomes:

LGEff,V =
1

4
AiµνA

i µν +
1

4
BµνB

µν +

≡Π̃30
µν︷ ︸︸ ︷

Π̃30Pµν
p2

2
W 3
µBν+

+

〈S2
h〉
4

Π1(0)

Π′0(0) +
〈S2

h〉
4

Π′1(0)

{
2W+

µ W
−
ν +W 3

µW
3
ν +BµBν − 2W 3

µBν

}

Provided that the S-parameter breaking term Π̃30 is small, we can rotate by the

usual Weinberg angle, and we write the lagrangian in terms of the mass eigenstates.

LGEff,V =
1

4
AiµνA

i µν +
1

4
BµνB

µν + Π̃30

µν
W 3
µBν+ (4.109)

+
1

2

 1

f 2g2

Π1(0)

Π′0(0) +
〈S2

h〉
4

Π′1(0)

×
×
{

2

(
v2g2

4

)
W+
µ W

−µ +

(
v2(g2 + g′2)

4

)
ZµZ

µ

}

LGEff,V =
1

4
AiµνA

i µν +
1

4
BµνB

µν + Π̃30

µν
W 3
µBν+ (4.110)

+m2
WW

+
µ W

−µ +m2
ZZµZ

µ
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where we have defined

Π̃30

µν
≡ Pµν p

2

2

 −g2

4

(
v2

m2
ρ

+ v2

m2
a

)
1 + 1

2
m2
a

m2
ρ

g2f2

m2
a−m2

ρ
− g2

4

(
v2

m2
ρ

+ v2

m2
a

)
 (4.111)

m2
W ≡

v2f 2

4

1

1 + 1
2
m2
a

m2
ρ

g2f2

m2
a−m2

ρ
− g2

4

(
v2

m2
ρ

+ v2

m2
a

) (4.112)

m2
Z =

m2
W

c2
W

(4.113)

From the lagrangian, we can see that there will be a contribution to the Peskin-

Takeuchi S parameter [12]. These precision parameters are defined as:

αT =
ΠWW (0)− Π33(0)

m2
W

= 0 (4.114)

αS = −4swcwΠ′30(0) (4.115)

αU = 4s2
w (Π′WW (0)− Π′33(0)) = 0 (4.116)

The t-parameter being zero at tree level is a direct consequence of the imposition

of custodial symmetry in the MCHM5. The S-parameter is given by

αS = − gg′

g2 + g′2

(
v2

m2
ρ

+
v2

m2
a

)
(4.117)

So at the end, we have that αS ∼ O(v2/f 2). The study of precision tests in

CHM was extensively done in the literature [30, 29, 23]. It turns out that in a non-

renormalizable theory such as this one, the precision parameters get logarithmic

contributions that are divergent. So, the study of these kinds of bounds is very

constraining in CHMs. In chapter 5, we will briefly discuss some of these bounds.
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4.3 Overview of the Form Factor Formalism

Compositeness signals are accessed through the analytical properties of the

correlation functions. This is the crucial point in the form factor formalism, which

introduces functions of the momentum in the Higgs interactions. These expressions

reflect the underlying dynamics of the strong sector.

We provided some simple models in which the form factor could be developed.

Even though these ansatzes stand as models of their own, they served as a warm-

up of the more concrete realization of the form factor formalism in CHMs. As an

example, the MCHM5 was sufficient to illustrate how dynamical deviations from the

usual zero momentum limit appear as a consequence of resonant behaviour.

Traditionally in CHM literature, the form factor parametrization is restricted

to the analysis of a non-dynamical Higgs. Such approximation limits the full mo-

mentum dependence to just p2. As discussed, in this case, the phenomenological

possibilities get limited to the physical mass running of the Fermions and Gauge

bosons.

More notably, the most critical effects appear when including the full struc-

ture of three-point functions. In such interactions, the recovery of the fully dynam-

ical Higgs and the possibility of off-shellness provides an excellent opportunity to

study new phenomenological effects. Additionally, the EFT analysis showed that

the dynamical effects could be competing to the misalignment suppression at zero

momentum.

Furthermore, since the modification is dynamical, the shape of distribution

functions should be altered beyond an overall normalization. This signals the phe-

nomenological effects due to compositeness that we have been looking for. Now,

after restoring the full momentum dependence of the form factor formulation, we

can explore the enriched phenomenology it grants.
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Chapter 5

Collider Phenomenology of Form

Factors

Throughout this work, we developed the notion that the Higgs has an internal

structure. A notion that leads us to the study of form factors and the necessity

of exploring the momentum dependence in the Higgs interactions experimentally.

From the experimental point of view, it remains - What are the signs that the Higgs

is a composite particle?

The program now is to reduce the conceptual picture of elementarity versus

compositeness to the empirical study of the Higgs interactions. Fortunately, the

experimental effort today is aligned with this goal as the LHC next stages are devoted

to Higgs analysis. We are starting to access the Higgs interactions, and with it,

capable of checking if there are departures from the SM.

In the case of a composite Higgs, the immediate effects are the shifts in the

couplings that appear as misaligned suppressions. There, it occurred a modification

due to vacuum misalignment, a consequence of the strong sector. We denoted these

as the zero momentum limit of form factors. In them, the dynamically generated

effects are not accessed when the momentum transfer is low.

However, not too far above energetically-wise, we should start to see form

factors effects. As implied before, the most critical ingredient to access the form

factors is by going of-shell. Thus, the importance of having off-shell processes cannot
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be stressed enough, since these will allow us to explore the different regions in the

form factor momentum plane.

If such scenario became real, the next step would be to undergo a process

similar to the partonic studies that unraveled the structure of Hadrons. Eventually,

the core constituents responsible for confining the Higgs would become evident,

providing hints at a complete form of the SM.

However, much before this picture takes place, it is essential to have a clear

way to study compositeness signs. For that, the first step is the implementation of

form factors and predicting how visible these effects would be. It goes down to find

the most sensible experimental observables and channels to the LHC in its upcoming

stages, High Luminosity (HL) and High Energy (HE).

First, the Higgs is already reasonably well characterized by currents experi-

ments. Earlier in 2012, the Higgs mass and basic properties were determined at the

discovery [7, 8]. Now, the mass is known below the per cent level, mh = 125.09±0.3

GeV. Subsequently, at the second run with
√
s = 13 TeV, the LHC mostly confirmed

the SM predictions, even though with not great precision [9]. In the HL phase, we

expect to improve these measurements, tackling naturalness to its core.

Currently, many Higgs productions channels were explored to some degree [10,

90, 92, 93, 96, 97]. The cross sections for the various processes are:

• Gluon Fusion σ(gg → h) ∼ 44 pb.

• Vector Boson Fusion σ(pp→ qqh) ∼ 4 pb.

• Higgs-strahlung with W’s σ(pp→ Wh) ∼ 1.5 pb.

• Higgs-strahlung with Z’s σ(pp→ Zh) ∼ 0.88 pb.

• Associated production with top quarks σ(pp→ tth) ∼ 0.5 pb.

• Double Higgs production σ(pp→ hh) ∼ 0.02 pb.

The most recent results, from LHC’s run 2 are displayed in figure 5.1.



Chapter 5. Collider Phenomenology of Form Factors 115

Figure 5.1: Summary of the cross section measurements of SM pro-
cesses at the LHC. We have highlighted the cross-sections involving

Higgs processes in the red box.

Additionally, the Higgs decays are summarized in table 5.1. To extract the

most promising signals, we shall look for the optimal combination of production

mechanism and decay mode.

Decay Channel Branching Ratio [%]
h→ bb 57.5± 1.9
h→ WW 21.6± 0.9
h→ gg 8.56± 0.86
h→ ττ 6.30± 0.36
h→ cc 2.90± 0.35
h→ ZZ 2.67± 0.11
h→ γγ 0.228± 0.011
h→ Zγ 0.155± 0.014
h→ µµ 0.022± 0.001

Table 5.1: Higgs Branching Ratios. Data from [90].

Each one of these channels has their particularities, and determining the most

efficient one to probe the Higgs is not just about cross-section visibility. The reach
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Figure 5.2: Simulations of proton-proton cross-sections for future√
s.

of each channel is determined by a signal-background analysis, which is crucial to

see the full discovery potential of the given process.

Further into this chapter, we will select the most promising channels for form

factor studies. As anticipated, the most distinctive ones will have top quarks or

gauge bosons far off-shell. Also, having the Higgs off-shell is interesting mainly in

models in which the form factor couples with thee Higgs momenta, as in the simple

ansatz of the heavy scalar mixing case.

Experimentally, every observable is constructed from the four-vectors that

define the final state of the collision. From these, one can build all the distribution

functions. Ultimately, these distributions will reflect all the kinematical properties

of the collision.

Often, the off-shell tails of distribution functions are the best indicative of

modifications to the internal structure.
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Figure 5.3: Simulation of the invariant
mass distribution of gg → V V process. Fig-
ure extracted from [91]. Such process involves
the analysis of an off-shell Higgs as an inter-
mediate state. The distribution tail after the
2Mt mark is the most sensitive region for off-

shell effects.

As an example of an off-shell anal-

ysis, consider the process gg → V V .

This has an off-shell Higgs contribution

gg → h∗ → V V leading to an invariant

mass distribution as in figure 5.3. One

can see the peak at the resonance - the

Higgs becoming on-shell at 125 GeV.

Distinguishly, after the mark of

2MZ the distribution tail receives the

off-shell contributions from the off-shell

Higgs and other diagrams. This tail is

the section that is most sensitive to form

factor effects [38, 39] and is the target of

our work. Finding modifications of the

distribution functions such as this one is

the most important sign of a composite

Higgs.

5.1 Zero Momentum Phenomenology of CHMs

The zero momentum is the first-order approximation of form factor effects and

should provide constraints to the parameter space. There, we must explore a set of

parameters that are not yet ruled out by current data from previous studies.

In the CHMs, the coupling constants were modified by functions of ξ = v2/f 2

because of vacuum misalignment. Keeping O(ξ) effects while disposing of O(p2/m2
∗)

from form factor dynamics implies a further decoupling of dynamical effects from

resonances. The dynamical vertices effects are reduced to the misalignment suppres-

sion when the scale of the resonances m∗ is far from f , mainly when the couplings

g∗ ∼ 4π.
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When there is a complete decoupling, we expect non-dynamical effects and the

recovery of usual CHM phenomenology.

***

CH phenomenology was mainly studied with indirect and direct signals. The

indirect is composed of results from Electroweak precision tests and SM-couplings

modifications in Atlas and CMS at the LHC. Alternatively, Direct searches are

related to the direct production of resonances, with the calculation of production

and decay rates.

Indirect searches are aimed to constrain the scale of the new sector f through

modifications of the Higgs couplings. In figure 5.4 we can see the bounds due to the

S and T parameters from precision tests, and figure 5.5 shows the LHC couplings

modifiers. Loosely, we should adopt ξ ≤ 0.1, which gives a new physics scale of

f = 800 GeV [28].

The direct searches involve the completion of the theory with some part of the

resonance spectrum. In these searches, the scalar, fermion and vector partners are

explicitly produced in physical processes. The decay rates are calculated, and the

signals in colliders get identified, moving the bounds of the masses of the resonances

as data continues to improve.

In figure 5.6, we can see the current and projected bounds on the collider

searches for vector partners due to the strongly interacting sector. A value to keep

as a reference is m∗ ∼ 800 GeV, below that is hard to keep up with experimental

bounds.



5.1. Zero Momentum Phenomenology of CHMs 119

Figure 5.4: Confidence level contours of 68%, 95% and 99% on the
oblique EW Ŝ and T̂ parameters. The red line indicates the MCHM5

predictions. Figure taken from [29].

Figure 5.5: Confidence level contours on the SM interaction mod-
ifiers [κV , κF ], [36]. The red curves indicate the predictions for the
MCHM4 and MCHM5 models, compared to the SM expectation and

experimental fit.
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Figure 5.6: Direct searches bounds on (mρ, gρ). Figure taken from
[28]. The exclusion regions for collider data are highlighted in blue.
Depending on the value of the coupling, the LHC can set up a bound
of up to mρ = 8TeV, which will be increased to mρ = 10TeV in the
HL phase (left panel). The right figure indicate the predictions for

future experiments.

5.2 Form Factor Phenomenology

From the numerical point of view, the inclusion of form factors vertices is not

a standard procedure in usual Monte Carlo (MC) approaches to collider physics. As

of the methods used, we shall describe the implementation and simulation of the

signal at the parton level.

In our study, the analysis was limited to parton level, without the detector

simulation and inclusion hadronization effects. These last will be a subject for

future research. However, the main contributions we seek are already visible at the

parton level. The critical point is that through this initial study, we achieve concrete

signals of what a composite Higgs looks like experimentally.
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5.2.1 Numerical Implementation

In numerical applications of particle physics, Monte Carlo methods are broadly

used to simulate the collision process. MC is very analogous to a direct simulation

of the physical process. In it, the quantities of interest (i.e. cross sections and decay

rates) are integrals of weight functions over variables of physical significance.

The method of integration consists of generating a representative sample and

averaging over the integrand. The representative set is a real random sample is gen-

erated and averaged over the given weights. Physically, the amplitudes are integrated

from phase space and continuum variables, like incident partons and fragmentation

products.

MadGraph [102] is a software that aims to the computation of physical observ-

ables using MC methods. It generates a process and uses tools for manipulation and

analysis of the hard events simulations. For tree-level calculations, the input is an

user-defined "Lagrangian" packed into a file. This file includes all the interactions

of the model.

Such Lagrangians are usually expressed through the Mathematica based, Feyn-

Rules [99] and get translated into the standard Universal FeynRules Output (UFO)

format [98]. The UFO file uses a Phyton base syntax, called ALOHA [103], in order

to write the vertices and Lorentz structures of the theory. These get further trans-

lated to Madgraph by another format, the HELAS output, that is Fortran based

and more adequate to the internal structure of event generation procedure.

The inner workings are intricate but, in short, the UFO output is the user-

defined lagrangian that goes to Madgraph which computes the physical amplitudes.

The general structure of a UFO file is:

The generation of UFO files with form factors is not explicitly done within the

FeynRules framework. So, in order to achieve our goal, it was necessary to modify

the internal structure of the UFO model.

The necessary alteration is to include a general dependence on the momentum

to the vertices of the model. The easiest way to do this is by defining the form
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factor in the UFO model using an ALOHA syntax. ALOHA then translates the

vertices functions to a FORTRAN output, that is directly used to perform the

matrix elements calculations.

For example, the inclusion of the top Yukawa form factor is done as follows.

First, the vertices were altered in the file vertices.py of the default sm UFO file.

vertices.py

V_141 = Vertex (name = ’V_141 ’ ,

p a r t i c l e s = [ P. t__tilde__ , P. t , P .H ] ,

c o l o r = [ ’ I d en t i t y (1 , 2 ) ’ ] ,

l o r e n t z = [ L . FF1 , L . FF2 ] ,

coup l ing s = { ( 0 , 0 ) :C.GC_94, ( 0 , 0 ) :C.GC_94})

Then, this vertex call for the defined Lorentz structures FF1 and FF2, located

in the lorentz.py file.

lorentz.py

FF1 = Lorentz (name = ’FF1 ’ ,

sp in s = [ 2 , 2 , 1 ] ,

s t r u c tu r e = ’FORML∗ProjM (2 , 1 ) ’ ,

f o rmfac to r s = [ ForFac .FORML ] )

FF2 = Lorentz (name = ’FF2 ’ ,

sp in s = [ 2 , 2 , 1 ] ,

s t r u c tu r e = ’FORMR∗ProjP (2 , 1 ) ␣ ’ ,

f o rmfac to r s = [ ForFac .FORMR ] )

Finally the form factor expressions for FORML and FORMR are defined in

the formfactors.py file and the additional parameters of the theory in parameters.py.

formfactors.py
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from ob j e c t_ l i b ra ry import a l l_form_factors , FormFactor

from func t i on_l ib ra ry import complexconjugate , re , im

FORMR = FormFactor (name = ’FORMR’ ,

type = ’ complex ’ ,

va lue = ’ long ␣ exp r e s s i on ’ )

FORML = FormFactor (name = ’FORML’ ,

type = ’ complex ’ ,

va lue = ’ conjugated ␣ long ␣ expr e s s i on ’ )

The output in Helas format corresponds to the following Yukawa FFS vertex

LFFS = f
′
(
GC(1)

1− γ5

2
+GC(2)

1 + γ5

2

)
fS (5.1)

= FORML ∗ trtlh+ FORMR ∗ tltrh (5.2)

Once the form factor model is defined, the generation of events can be carried

through in the usual manner.

After discussing the implementation, we return to the task of exploring the

Higgs production channels that amplify the effects of form factors. We shall highlight

the tth, Zh and gluon fusion because of their essential properties concerning the

momentum flow and experimental reach.

***
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5.2.2 The tth Channel

Starting with a proton-proton collision, the tth features the production of a

Higgs and two top quarks. Diagramatically, the process is represented by:

Figure 5.7: Representative diagrams of the tth channel.

Notably, the tth channel possesses much background with the two tops decay-

ing hadronically or semi-leptonically. The options for the Higgs decays also add to

the complexity of the problem since it preferably will decay to two b-quarks, leading

to more jets.

Even though tth is a tricky channel for Higgs production, it is the best probe

to the Yukawa form factor. In it, we are accessing the interaction of the Higgs with

the top quarks directly. tth has a significant contribution of an intermediate off-shell

Top-quark, that is the requirement for form factor effects. Furthermore, prospects

become better as
√
s increases since tth will become more significant as figure (5.2)

suggests.
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When a top quark "strahlungs" to produce a Higgs and another top, it must be

highly off-shell, with its momentum much above the physical mass region. Because of

this property, we can access the form factor, and its effects appear in the observables.

Remember that the form factor was obtained in chapter 4, and is given by:

yt(p, q) =
1√
2

M(p, q) (1− 2ξ)√
ΠL

0 (p) + ΠL
1 (p)1

2

〈
Sh

2
〉√

ΠR
0 (q) + ΠR

1 (q)
〈
Ch

2
〉 (5.3)

=

(1−2ξ)√
2
ylyre

i(φl−φr)
[

m4

p2−m2
4
− m1

q2−m2
1

]
√

1 +
f2y2

l

p2−m2
4

+
v2y2

l

2

(
1

p2−m2
1
− 1

p2−m2
4

)√
1 + f2y2

r

q2−m2
1

+ y2
r

(
f2−v2

q2−m2
1
− f2−v2

q2−m2
4

)
Here the widths are not explicitly written, but are implied in the pole. Also, we

have redefined the complex y couplings such as they are real. In this way, there are

8 parameters in the form factor expression: f , m1, m4, Γ1, Γ4, yl, yr and ei(φl−φr). In

order to constrain the parameter space, we shall impose some physical requirements

to the expression.

Theory Constraints

There are two major constraints for the tth vertex.

First, the parameters must be such that we can obtain a light Higgs and that

its mass can be fixed to 125 GeV. In chapter 2 we enunciated the condition for the

obtainment of a light Higgs from the Coleman-Weinberg potentail. From [25], the

Higgs mass is estimated to be

m2
h =

N

π2

m2
t (m2

1m
2
4) log

(
m2

1

m2
4

)
f 2 (m2

1 −m2
4)

+
v2

4

(
1− v2

f 2

)
(∆y2)2

(m2
1 +m2

4) log
(
m2

1

m2
4

)
2 (m2

1 −m2
4)

− 1


∆y2 ≡ |yl|2 − 2 |yr|2 (5.4)

From (5.4), we can see that if ∆y2 is small, the Higgs mass is practically fixed

by the relation between m1 and m4. This process is illustrated in figure 5.8.
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For now, we will limit to small ∆y2. Keeping ∆y2 < 1 allow us to satisfy the

Higgs mass without having to specify the values of yl and yr, so at the end we write

m1 as a function of only m4.

Now for the other constraint, we have to respect the top mass-Yukawa relation

in the MCHM5. By going to zero momentum in the form factor, the following

relation must be satisfied.

yt = k5

√
2mt

v
=

1− 2ξ√
1− ξ

√
2mt

v
(5.5)

Using (5.5), we can see what values of yl and yr will satisfy the top mass at

172.4 GeV.

From figure (5.9), we see that it is possible to choose multiple values of yl, yr

that lead to the correct top mass. Also, some values of the chosen mass ratios g’s

do not satisfy the top constraint.

What should happen in this yl-yr plane is that the lower the y’s are, the less

the heavy resonances mixture with the elementary fermions. This effect lead to

subtler effects on the form factor enhancement. This becomes clear in figure 5.10,

in which we plot the form factor as a function of p and q for different insets of y’s.

Choosing a set of y’s and requiring the top mass to be real at zero momentum

allows us to fix all parameters. The models can then be imported to MADGRAPH,

and we can extract the cross-section as a function of f .

Results

Now that the parameter space is constrained correctly, we can run the simu-

lations and extract the most immediate observable - the cross-section modification.

We choose the mass relationship between the two fermionic resonances to be

constant and vary the compositeness scale f . Running the collision at
√
s = 14TeV

with 106 events generated for each f value, we have the cross-section for the minimal

and maximal mixing constants in figure 5.11.
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Figure 5.8: m1-m4 plane scanned by increasing f . Each curve
correspond to a set of m1, m4 that satisfies the Higgs mass at 125
GeV in (5.4). The darker colours are for the lower f ’s and it goes

from f = 777 GeV to f = 5000 GeV.
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Figure 5.9: yl-yr plane. Each point in the dashed contour corre-
spond the set of yl, yr that satisfies the top mass-yukawa relation

with mtop172.4 GeV.
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Figure 5.10: Form factor contours in the p-q plane. We show the
form factor behaviour as we parametrically walk through the yr − yl
plane. We can see that the form factor is well behaved near the
origin, where we imposed the mass-Yukawa normalization condition.
For low momentum the form factor is the top yukawa value with the

κ5t contribution.
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Figure 5.11: Cross section of tth as a function of f for the MCHM5
with form factors. Signal simulation done in Madgraph at parton-
level. The plot is normalized to the SM prediction. CHMs without
momentum dependence have an overall suppression of vertices that
goes with κ5 = (1− 2ξ)/

√
1− ξ. Such suppression is depicted in the

dashed red curve. By turning on the form factor effects, we get an
enhancement due to the analytic structure of their expressions. Fixing
all parameters by theory constraints leave us with a minimum or
maximum mixing with the resonance, that is controlled by yl. These
are the yellow and green curves. Finally, p → 0 is the simulation
with form factors but by setting the transferred momentum to zero.
Here check that the normalization of the form factors and the zero

momentum CHM prediction are the same.
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Figure 5.12: Distribution functions for the tth process with
MCHM5 form factors. Signal simulation done in Madgraph and kine-
matic analysis in Madanalysis. The black curve corresponds to the
SM and the other ones are tabeled in table 5.2. Above to the left we
have the

√
s of the process. The one on the top right and the two of

the bottom are pT distributions. At the bottom and to the right, we
can see that the transverse momentum of the Higgs have significant

deviations in shape from the SM, as is the case for
√
s.

Using MadAnalysis [100], we can obtain the distribution functions. In fig-

ures 5.12-5.13, we display the distributions for
√
s, transverse momentum, pseudo-

rapidity η and the Higgs-top and Higgs-top-top invariant masses.

From the cross-section results, one can see that the effect of dynamical inter-

actions does not entirely decouple. There is an enhancement effect due to the pole

structure of form factors, which is significant compared to O(ξ) corrections. The

misalignment suppression competes with such effect leading to an overall enhanced

cross-section for fs below the 2− 3 TeV range. When the scale f is large compared

to the momentum flow, the results come back to non-dynamical composite Higgs

suppression.
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Figure 5.13: Distribution
functions for the tth process
with MCHM5 form factors. Sig-
nal simulation done in Mad-
graph and kinematic analysis
in Madanalysis. The plot is
normalized to the SM predic-
tion. The black curve corre-
sponds to the SM and the other
ones are shown in table 5.2.
The most sensitive probe to mo-
mentum dependence are invar-
ian mass distributions. Here we
can see the sharp peaks that are
characteristic of the resonances.
Even though these resonances
are not explicitly put in the the-
ory, through the non-linear form
factors we can still see their ef-

fects at colliders.
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Curve f [TeV] m1 [TeV] m4 [Tev]
Blue 0.8 0.9 1.2
Red 1.2 1.4 1.8
Yellow 1.6 1.9 2.5
Pink 2 2.4 3.1

Table 5.2: Reference for the kinematic distribution figures 5.12-5.13.
All widhts are 10% of the masses.

Thus, decoupling the dynamical interactions seems to be a hard task if the

Higgs is assumed to be light.

Even though we are limited to partonic effects, without a complete study of

the backgrounds, the kinematic modifications due to form factors are evident in

our figures. It is through this formalism that we achieved the modifications of

distribution functions expected in a composite scenario.

A very similar phenomenology should appear in the Zh channel, in which a Z

boson goes off-shell like the intermediate top-quark here. Now, we shall proceed to

see how form factors alter other channels of Higgs production.

***
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5.2.3 The ggh Channel

Even though it is a loop process, gluon fusion is the most efficient way of

producing a Higgs. Because of this high production rate, ggh is the most explored

channel of Higgs production so far in the LHC [9].

Such channel presents several opportunities to form factor models. First, the

analysis of the Higgs off-shellness might provide the means to access a form factor

that couples with the Higgs momentum. Furthermore, if we choose a form factor

such as the Yukawa in the MCHM5, we alter the structure of the loop integral itself.

This will lead to a zero momentum shift in the total production ratio of the whole

channel.

However, because of the loop integral, complications arise when trying the com-

plicated expressions of the MCHM5. Furthermore, without assuming the existence

of a scalar mixing, the off-shell Higgs case does not provide significant alterations

when including form factors. This remark is because the form factors derived in

MCHM5 only see the top quark momentum and not the Higgs momentum.

For these reasons, we shall depart from the construction of form factors in the

MCHM5 and follow the lines of the simpler ansatz expressions. These illustrate a

central point of this work - a composite Higgs should no be limited to the prescrip-

tion of Composite Higgs Models. Those are simply specific implementations of the

compositeness idea itself.
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Higgs Off-Shell

Through gluon fusion we can explore the Higgs off-shelness [39]. Consider the

contribution gg → ZZ, in which the s-channel Higgs diagram is present together

with the fermion box.

The desired signal comes from the Higgs diagram, but the box diagram comes

together as an irreducible background. The two diagrams constructively interfere

and provide exciting features for the study of form factors [38, 91].

A study of form factor effects in gg → ZZ was conducted by the authors

of [38]. There, they used an ansatz for parametrization of the Higgs momentum

dependence as a multipole - a structure analogue to the nucleon electromagnetic

form factors.

Γ(k2/Λ2) =
1

(1 + k2/Λ2)n
(5.6)

This structure presents differences to the MCHM example. First, the form

factor sees the Higgs momentum, whereas in CHM it couples to the top quark

momentum. There it was a direct consequence of PC, while here we are assuming

another type of UV completion. Regardless of the completion, the form factor (5.6)

should be taken only as an educated guess of an unknown realization of the Higgs

compositeness.

Additionally, the form factor is in the kinematic region in which there are no

poles. This euclidean behaviour is realized in hadronic studies and only provide

suppression effects to the distribution functions. The order of the pole is governed

by n, and the higher multipoles will produce slightly more visible effects as n grows.

For the multipole form factor, the authors explored the opportunity of inter-

ference between the two diagrams. It turns out that the interference is constructive,
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Figure 5.14: Analysis of a form factor model that couples with the
Higgs momentum done by [38]. Four-lepton invariant mass distribu-
tion for the gg → 4l process at the LHC 14 TeV (left) and 27 TeV
(right). The SM prediction is the black curve. With the presence of a
form-factor in the Higgs-top coupling, the distribution tail is modified

for a strong sector scale of Λ = 1.5TeV (red).

making the Higgs and box diagrams enhance the signal. This effect made it possible

to predict feasible signals in distribution functions for the 14 TeV HL-LHC, and 27

TeV HE-LHC upgrades.

Using on-shell constraints, they limited the cutoff to Λ > 1.5 TeV. Since the

signal strength of on-shell ZZ(∗) final state is of order O(10%), they secured that

|Γ(m2
h/Λ

2)2 − 1| < 0.1 at 95% C.L. to satisfy on-shell constraints1.

As shown in figure 5.14, a form factor that modifies the interaction with the

Higgs momentum is accessible through off-shell measurements. In such the form

factor is accessed via the Higgs, and the constructive interference with the box

diagram provides an effective method for enhancing the signal. As it is, these effects

in distribution functions should be accessible in the next rounds of the LHC.
1The complete vertice here is Vtth =

√
2mt

v Γ(k2/Λ2), normalized to match the SM prediction as
Λ→∞.
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Modification of the Loop Integral

Shifting from a form factor that couples with the Higgs momentum to one that

couples to the top-quark momentum, we are reproducing a structure more similar

to the MCHM5. Here, when the top quark momenta are modified, the gluon fusion

process integral is also modified even for the on-shell Higgs.

Figure 5.15: Gluon loop for Higgs production with the form factor.
One can see why the form factor must couple to the top-quarks mo-
menta - If it couples to the Higgs, the integration on loop momenta

is the same, leading to just a normalization factor.

First, we define a simple ansatz for the form factor here.

Γ(p2, q2) = F (p2) + F (q2) (5.7)

F (p2) =

(
−iyt√

2

)
gξ
−M2

p2 −M2
(5.8)

where yt is the top-Yukawa coupling and gξ is a misalignment coefficient.

Figure 5.15 describes the loop. The amplitude for this process is

M = 2(−igs)2

(
−iyt√

2

)
i3Tr[tatb]εµενI

µν (5.9)

where Iµν is

Iµν =

∫
d4l

(2π)4

F (l + k1)

D1D2D3

Tr
[
(/l /k1

+m)γµ(/l +m)γν(/l − /k2 +m)
]

(5.10)
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One can define clearly the path to complete this calculation. First, it is nec-

essary to reduce the trace. Then, to put the integral into a known format, use

Feynman parametrization and dimensional regularization. The last step is to use

the Passarino-Veltman (PV) reduction reduce the types of tensor integrals we get

to scalar ones.

Fortunately, we can use the FORMCalc program [101] to perform the (PV)

reduction. We show in figure 5.16 the results after the calculation of the averaged

amplitude to the square.

Figure 5.16: Numerical evalu-
ation of the gluon fusion integral
in the form factor case. Due to
the euclidean momentum struc-
ture of the loop, there is no en-
hancement since we are far away
from the pole region. The upper
plot shows how the cross section
would scale with the mass of the
heavy top partner, and the bot-
tom one shows the integral aver-
aged and squared as a function
of mtop/mh. Compared to the
SM calculation of [78], the inte-
gral seems to go correctly to the

SM limit as M grows.

From the analytical point of view, the momentum circulating in the loop in-

tegral is at the euclidean kinematic regime. When performing dimensional regu-

larization, the necessity of wick rotating indicates such behaviour. Physically, this
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kinematic region of the form factor means that in the loop, we are not accessing the

physical poles of the resonances. So, after integrating, there is a suppression effect.

Even though this form factor is not realistic, it illustrates what would happen

in the MCHM5 case. The kinematic region which the form factor access in the loop

is not close to the physical threshold and produces further suppression.

Because of the difficulty in performing these calculations numerically, we could

not study the MCHM5 complex form factor structure. The most interesting case,

studying the off-shell Higgs with modifications to the loop integral is a difficult task.

We shall postpone this study to future research.

5.2.4 Other Channels

The most promising channel that we left out of our analysis is ZH. In it, a Z

boson "strahlungs" to produce another Z and a Higgs. This is the same structure

as in tth, and we expect to obtain similar results in such study.2

Additionally, the other channels offer some difficulties. Even though vector

boson fusion has a large cross-section compared to other channels, its reach is deter-

mined by detector capabilities. In weak boson fusion, the central collision is highly

central and depends on more intricate jet detection techniques [93]. However, the

off-shell Higgs in this channel presents exciting possibilities.

2At the current moment, we are studying the form factors effects on the ZH channel, but their
inclusion in the dissertation was not possible.
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5.3 Compositeness from the Collider Perspective

For CHMs, the inclusion of form factors as dynamical effects in interactions

considerably enrich the phenomenology. The parametrization with momentum de-

pendence not only is necessary but is indispensable for compositeness scales at the

few TeV ranges.

The in-depth analysis of collider simulation and hadronization should be achieved

in our future research. However, the vital core of the phenomenological predictions

is already present here - form factors modify the distribution functions according to

a well defined physical prescription. Analyticity of external momentum was a guide

in establishing the anatomy of form factors, and the prescription we presented is a

concrete realization of the Higgs compositeness.

Since this realization is a particular, QCD-biased implementation, one can ask

for a more general picture of the Higgs compositeness. This exploration shall be

the last topic in our discussion of the composite Higgs and should also serve as a

compass for future research.
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Chapter 6

Discussions and Conclusion

Previously, we discovered that the necessity of momentum dependence in com-

posite Higgses extended the CHM scope of signals. As defined, the zero momentum

parameterization of a CHM hides away attributes like the momentum dependence of

three-point interactions. Although concrete, the effective models without momen-

tum dependence are, perhaps, too simplistic. Their local structure does not fully

capture the dynamical content of the strong sector.

In light of what we discovered, we can conclude that the restoration of dynam-

ical effects in the non-local form factor approach catches the main features of the

Higgs compositeness. Consequently, the composite Higgs picture can be upgraded

according to the theoretical and phenomenological expectations of such a scenario.

Our approach had the main limitation of being very QCD-based. An interest-

ing exercise is to speculate about how a strong sector for the Higgs could be different

from QCD. This will lead us to the prospects in future research of such formalism

presented throughout the dissertation. The idea is to build-up the phenomenology

of the different ways of compositeness, while exploring in more general terms the

analytic structure of form factors.
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6.1 The Composite Higgs Picture

To construct a picture of a composite Higgs, we needed mainly three elements.

First, the formalism for dealing with the symmetry structure of a the pNGB Higgs

and all the CHM effective parametrization. Then, it was necessary to introduce

further hypothesis on the interactions of the elementary and composite sectors via

partial compositeness and gauged external sources. Finally, the dynamical interac-

tions were constructed to match the specifications of the spectral decomposition and

analytic structure of the theory.

As a rule, each part introduced a general feature of compositeness but also

approximations and assumptions. To point to the general picture, we must trace

back some steps, and find the generalities and the expenses of the model-building

choices we made.

When constructing a composite Higgs, there should be a scale that dynamically

generates a composite sector. To build an effective theory, we need to respect, at

least approximately, some global symmetry structure.

If the Higgs is composite, an essential feature is that it needs to be light

compared to the compositeness scale. This necessity comes from experimental ob-

servation - there are not any new states lying around the Higgs scale. Here, making

the Higgs a pNGB is a straightforward way of achieving such lightness.

While the existence of a global symmetry is general and the pNGB Higgs is

desired, the specific group realization is particular to each model. Choosing such

symmetry breaking pattern as SO(5) → SO(4), or specific fermionic representa-

tions is a model-building requirement. Overall, these specific choices lead to similar

phenomenology - a misalignment suppression that is a function of ξ = v2/f 2.

This fixes the picture of the effective theory that shares the SM degrees of

freedom. Symmetry structure is an essential guide, the pNGB is a desired tool, and

the specific group assignments are just specific realizations of the idea.
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Then, the inclusion of dynamical effects comes from assuming the compos-

ite/elementary interactions. This part is responsible for obtaining an adequate dy-

namical EWSB, with a naturally light Higgs. Thus, the importance of such interac-

tions lies in the resolution of the hierarchy problem.

In general, the connection of elementary and composite sectors is made with

operators that are generated by some UV completed theory. As we argued in chap-

ter 2, the scaling dimensions of this operator must be such that there is not a

reintroduction of the HP later on.

The study of these operators has led us to partial compositeness, a commonly

used framework in CH phenomenology. With PC, elementary and composite states

mix and provide means to build our form factors later on. However, this entire

theoretical construction should not be viewed as something more generic than a

hypothesis - There could be other constructions that relate the two sectors and

dynamically generate EWSB. Admittedly, they are far less common in literature1,

and novel ideas are truly needed.

Finally, in trying to include dynamical effects in the Higgs phenomenology, we

stumbled into the spectral decomposition. Such prescription is the most general ex-

pression for a two-point interaction in any theory, regardless of interaction strength.

However, to extract functional forms from the spectral decomposition, we had to

impose plenty of approximations.

First of all, the use of sum rules can be justified as the necessity of G-symmetry

restoration in the UV. This use can be viewed as a general feature of a composite

Higgs since we are taking for granted the existence and reliability of such symmetries.

Furthermore, the narrowness of resonances was crucial to factor their con-

tribution from the complicated continuum of the spectral function. We justified

this assumption through the QCD-biased 1/N expansion, yet much space for alter-

natives remains. Even in QCD, the large-N behaviour is not capable of explaining

some details like the wide σ’s and ρ’s, and their strongly interacting behaviour at the
1Technicolor being the most notable alternative, despite its failures in making a viable BSM

candidate.
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hadron level. Conversely, the large-N should be viewed at best as an organizational

principle.

Additionally, throwing away the towers of resonances and the continuum seems

to be just a simplification, without a deep justification. There, the focus was on

obtaining an explicit formulation and achieving concrete results. Nevertheless, it

provided much insight into the phenomenological capabilities of our approach.

Most strikingly, as we try to go past the ’t Hooft limit, we face the enormous

puzzle of the scope of strongly interacting theories. Beyond the formation of bound

states, we have limited knowledge of the capabilities of the nonperturbative physics.

In such a regime, the narrow and free behaviour of composite particles can be

questioned, and even resonant phenomena are not granted.

Related to the problem of nonperturbative methods, it remains the inclusion of

a language for three-point functions. Something like a spectral decomposition, which

relates physical properties to analyticity in external momentum is not available for

three-point functions. In the case of these interactions, we expect a more complex

structure to arise, reflecting the kinematical possibilities and all intricate vertex

contributions from multiparticle states.

While there is not a general decomposition of three-point functions, we build

the form factors from the assumption of elementary and composite sectors inter-

actions. Then, because the Higgs becomes non-dynamical and generates two-point

contributions as masses for all elementary particles, we could adequately normalize

the form factors and impose phenomenological constraints.

We can see a scheme for the picture in table 6.1. In short, a composite Higgs is

described by a G-effective theory, that dynamically generates EWSB through explicit

breakings and respects physical constraints on its interactions. Beyond that, we are

subject to the further hypothesis that forms different models of composite Higgses.
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General Hyphothesis Simplification
/Model Building

Exact/approximate
global G pNGB Higgs Specific realizations

i.e. G = SO(5), ψ = 5′s,...
Dynamical EWSB,

light Higgs PC and mixtures Resonance content

Unitarity, analiticity,
spectral decomposition,

sum rules.

Formation of resonances,
confinement,
large-N limit.

Only first resonance,
discarting the continuum.

Table 6.1: The composite Higgs picture. Scheme of all general fea-
tures, hyphotesis and simplifications/model-building choices we made

throughout the text.

6.2 Perspectives

Throughout the CH literature, there have been many alternative realizations,

each one with different mechanisms for the generation of a light Higgs [29]. These

were intensely explored before, and are not the main focus of our work. Alternatively,

we should focus on the form factor possibilities, beyond the approximations discussed

in the last section.

The exploration of momentum dependence in more exotic scenarios could pro-

vide examples of different ways a Higgs can behave as a composite particle. In

general, such scenarios are created by strongly interacting sectors that depart from

QCD-based behaviour.

Here, we shall list some possibilities for these sectors. The tone of this dis-

cussion is exploratory, intending to present prospects for future applications of form

factor phenomenology. Even though the consequences are not carried out thor-

oughly, these possibilities will help to build a complete picture of the composite

Higgs possibilities.

Invisible Resonances

It is a possibility that the heavy resonances are simply not seen by colliders.

There are some ways in which this feature could be true.
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Suppose a scenario in which the strong sector has a hidden part that is neutral

to the SM groups. Then, the spectrum of the theory could include particles that

are invisible to our ordinary matter detectors. Evidently, in such case, the mass

scale of the hidden partners of SM particles could be much lower since the effects of

resonances go to invisible collider contributions.

A concrete realization of such a scenario is the Twin Higgs model [40]. Re-

markably, the Twin Higgs also addresses the hierarchy problem through the idea of

neutral naturalness [41]. In it, the invisible top-quark partners are responsible for

cancelling the quadratic divergences of the SM, a cancellation that is a consequence

of the symmetry structure of the theory.

Figure 6.1: Shape of a broad composite res-
onance at the LHC. Assuming the s-channel
production of a 3 TeV ρ ressonance, [43] stud-
ied the effects of increasing widths in kine-
matic distributions. Note that for increasing
widths, the characteristic sharp peak distri-
butions are broaden to becoming enhanced

rates.

Another possibility for making

heavy partners invisible to experiment is

by avoiding the resonant behaviour. If

the resonances start getting very broad

compared to their masses, their clear

experimental signatures through sharp

peaks start getting obscured. A broad

resonance would only be seen as an en-

hanced rate, which is an experimentally

challenging probe.

In the MCHM5, the resonances

narrowness is justified since they decay

only to SM states, and the strong sector

by itself is assumed to be stable in the

large-N limit. For example, the coupling

of the TeV ρ with the SM is suppressed

by ρ-SM mixing, which guarantees its
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stability. However, in allowing for other embeddings, the narrow character of reso-

nances could come up as a generic feature. This possibility is discussed in [43].

As resonance widths become larger compared to their masses, deviations of the

Breit-Wigner shape become more apparent. To treat broad resonances beyond the

leading narrow width approximation, one could replace the propagator as

1

(s−M2
ρ )2 +M2

ρΓ2
ρ

→ 1

(s−M2
ρ )2 + s2Γ2

ρ/M
2
ρ

(6.1)

In the direct s-channel production of the ρ, replacing the propagator produced

the invariant mass distributions in figure 6.1. As expected, the sharp peak signal in

distributions become more elusive to detection.

A possibility then is to assume broad resonances in the form factor expressions.

In a realization of the CH that allows large widths, making the substitution (6.1)

into the expressions of the derived form factors should produce more subtle signals

in the presented channels here. The pivotal question is to what extent they are still

detectable. Such possibility shall be considered for future developments.

Continuum Contributions and Unparticles

At some point, as the resonances keep getting broader, their contribution can-

not be integrated out from the spectral function and become part of the continuum

distribution. In the analytic plane, their poles are getting shifted out from the phys-

ical region of real masses. Such a situation implies that, at some point, resonances

cannot be described as particles anymore since their masses are not well defined.

As an example, despite its role in chiral perturbation theory and nucleon-nucleon

interactions, much controversy arises as of the existence of the σ meson in QCD.

The pole position of the σ is measured to be at
√

449+22
−16 − i(275± 12)MeV giving a

width of ∼ 60% the value of the mass [65]. Hence, when looking at experiments, the

sigma cannot be detected as an isolated Breit-Wigner distribution, but only through

phase shifts measurements, as indicated in figure 6.2.
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Figure 6.2: Phase shift of ππ → ππ process.
The sigma is so wide that the familiar Breit-
Wigner is not appropriate to describe its be-
haviour. There is no phase shift at 500 MeV,
the mass of the sigma. This is in contrast with
the sharp phase increase of the f0(980) reso-

nance.

As a consequence of the unfitting

status of the σ, it is assigned as a non-

ordinary quark-antiquark meson. Its

description indicates the need to go

beyond the 1/N expansion, into more

exotic scenarios. The large-N is insuf-

ficient even within QCD, where it fails

to provide some important aspects of

the hadronic theory.

Assuming such an elusive strong

sector hinders the detection possibili-

ties. However, a concrete implemen-

tation of such ideas for a compos-

ite Higgs could attack the hierarchy

problem. Because broad resonances

are harder to see, the experimental

bounds get loosened, and these states can be generically lighter. The consequence

is less fine-tuning and a more natural model-building.

Previously, the description of the continuum spectral function was attributed to

multiparticle contributions. While multiparticle states surely contribute to a con-

tinuous momentum dependence, the whole continuum part of the spectral function

can have more internal dynamics. An exotic scenario, described by Howard Georgi,

provides an example of a theory in which there are no particles states.

The idea of unparticle correlates strongly with scale invariance. Georgi idea

relates to "stuff" that is scale-invariant while not necessarily having zero mass.

These are generally members of the continuum spectrum of the theory.
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Then, the unparticle sector is coupled to the SM at low energies via interaction

terms like2:

Lint = c1eγµeO
µ
U + c2eγµγ5eO

µ
U (6.2)

where Oµ
O is the unparticle operator.

Even though we do not intent to present the details, the unparticle spectral

function is easily obtained by scale invariance requirements. It is constrained to

scale with dimension 2dU , the dimension of Oµ
U .

|〈0|OU(0)|p〉|2 ρ(p2) = AdUθ(p
0)θ(p2)(p2)dU−2 (6.3)

Which lead to an integrable example of a continuous spectral function.3

ΠU(p2) =

∫ ∞
0

dm2 ρ(m2)

p2 −m2
(6.4)

= i
AdU

2

gµν + pµpν/p2

sin(dUπ)
(−p2 − iε)dU−2 (6.5)

The important point about (6.5) is that it provides an explicit continuum ef-

fect that could be used in the form factor formalism. Ultimately, the main use

of these exotic possibilities is to see how much sensibility to UV physics we can

have in phenomenology when its effects are highly elusive. However, as theoretical

subjects, scale-invariant sectors do propose an interesting framework for the Higgs

compositeness.

Remarkably, conformal invariance is found in many applications of CHMs. An

important result regards the 4d EFT we studied here is equivalent to a holographic

5d description in the so-called Randall-Sundrum models [66, 67, 68, 69]. In most

developments of holographic models, the strongly interacting sector of the Higgs is

assumed to have conformal symmetry.
2Georgi proposes this tensor structure as just an example of unparticles applications.
3In which AdU = 16π5/2

(2π)dU

Γ(dU+1/2)
Γ(dU−1)Γ(2dU ) . For more details check [80].
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It seems that the possibilities we presented before can fit in the context of a con-

formal strongly interacting sector. This scenario presents a theory which is asymp-

totically free in the UV, but a non-trivial fixed point dominates the infrared, and

model-building is explored through the use of dualities like the AdS/CFT corre-

spondence [70]. Generically, broad resonances and continuum contributions can be

attainable near conformal windows, where the theory parameters run very slowly

from the IR to the UV.

These exotic possibilities suggest that the Higgs could be composite in different

ways beyond the usual large-N prescription. However, since we do not dispose of

a lot of nonperturbative tools, exploring strongly interacting theories has proven to

be an enormous challenge. Ultimately, having a grasp of the landscape of possible

completions is an impossible task.

However, there might be a better strategy than guessing specific behaviours of

these composite sectors. Here, an interesting idea follows along the lines of the

Bootstrap philosophy.

Most of the developments achieved in the momentum dependent implementation

rely on imposing constraints on the form factors. We used the specifications of the

spectral decomposition to limit the possibilities of two-point functions and to provide

certain realizations for three-point form factors.

Imposing boundary conditions on form factors seems to be an effective way of

taming the complicated three-point functions kinematic dependence. Something

reminiscent of the Heisenberg’s Bootstrap program could be of use here - Using

unitarity, analyticity, causality and the spectral decomposition to constraint form

factor behaviour.

While trying to make sense of nonperturbative physics, the Bootstrap models

became popular models in the ’60s and ’70s. At that time, the idea was to solve

or constraint the amplitudes using only basic principles of field theory, without any

perturbative means. While the Bootstrapping became a tool of QFT framework,

the program was mostly abandoned after the experimental discovery of quarks and
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gluons.

In modern developments, Heisenberg’s idea would return through the Conformal

Bootstrap [81, 82]. The same premise is applied here, to study strongly coupled

theories nonperturbatively using symmetries and other consistency conditions. In

the case of conformal field theories, the conformal Bootstrap was able to achieve

some interesting results.

In two-dimensions, Poincaré invariance and the conformal transformations were

sufficient to solve various 2d models. With only the general axiomatic assumptions

of the Bootstrap program, the two- and three-point functions were significantly

constrained.

More recently, in 2008, the conformal Bootstrap was developed for 4d theories

[83]. Historically, one of the primary motivations for using bootstrap techniques

in 4d was to shed light into the Hierarchy Problem. The goal was to alleviate

the dangerous quadratic behaviour of the Higgs mass term by increasing its scale

dimension. As we have seen, a similar strategy was used in the Composite Higgs

and Technicolor models.

The Bootstrap philosophy gives an enormous playground for model-building.

Using the form factor approach, the requirement of physical conditions like unitarity

and analyticity seems to be a compelling approach to limit their behaviour. The

conformal Bootstrap presents a remarkable example of how theoretical investigations

can constraint strongly interacting scenarios for BSM physics.
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6.3 Conclusion

In conclusion, through the use of form factors, we could extract collider signals of

the Higgs compositeness. To achieve our goal, we had to restore the full momentum

dependence of the three-point interactions of the Higgs in the form factor formalism.

Particularly, we used the MCHM5 as an object of study. Through an inquiring

review of CHM, we could identify the lacking element of the Higgs compositeness.

Within the form factor formalism, the point-like interactions of the CHM got pro-

moted to dynamical interactions, with a momentum dependence associated with

them. Such momentum dependence was explored according to the general nonper-

turbative prescriptions available, like the spectral decomposition.

Within the MCHM5, the numerical implementation showed that form factor ef-

fects add to the phenomenology of the zero momentum parametrization. On CHMs,

the only coupling modifications are due to misalignment suppression. Here, we

found that the pole structure of form factors enhances this contribution at the

O(p2/m2
∗ ∼ ξ) order. Due to this effect, the dynamical enhancement in the cross-

section is at the same order of the misalignment suppression, as indicated in figure

5.11. Momentum dependence not only enriches the phenomenology but is indispens-

able to usual CH models.

Importantly, the form factor study was capable of modifying the shape of the

distribution functions - an expected feature of compositeness. These modifications

presented us with exciting phenomenological signals, with important prospects for

more detailed studies.

The developments made in our project presented many opportunities for future

research.

Theoretically, the possibilities for the Higgs compositeness are many. Previously

in this chapter, we have dedicated a discussion of such possibilities, ranging from

neutral composite sectors to broad resonances and unparticles. The conformal sector

exploration is a vast and rich subject, which leads to interesting phenomenology and
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a robust framework for model-building. Bootstrapping constraints on form factor

expressions is an exciting idea that we wish to implement in our discussions.

The HP stands as the ultimate difficulty of the SM framework. However, the

tone we adopted is to shift from hierarchy to the Higgs compositeness. This method-

ology can, perhaps, help elucidate the problem with novel strategies to attack it.

Alternatives for the Higgs compositeness might lead to novel ways of viewing the

HP, with new methods and tools.

Phenomenologically, we have identified off-shellness as the necessary condition

for the appearance of momentum dependent effects. The experimental analysis of

such processes is intricated but full of possibilities. By having off-shell momenta,

we are probing the collider processes in their most UV sensitive form. If there BSM

physics, off-shellnesss magnifies the potential of their discovery significantly.

The next step is to study these signatures even further, into the detailed sim-

ulation of the listed channels. To concretely find the reach of the LHC, we need

to be able to perform a complete analysis of background and hadronization effects,

together with the detector capabilities. The critical questions are - Is the LHC reach

at HL and HE enough to find any Higgs compositeness? Furthermore, what are the

bounds we can extract from these data? What about future colliders?

These questions are guiding principles to the next stages of our project. With or

without BSM physics, the next phases of the LHC are already a concrete reality. At

this important phase of particle physics, the community will shift its attention to

these developments. Our major concern stands as being able to effectively extract

the LHC signals, and this shall be our guide to future research.
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