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“The best that most of us can hope to achieve in physics is simply to
misunderstand at a deeper level.”

— Wolfgang Pauli
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Abstract

This thesis aims to explore new effects caused by initial correlations in quantum
systems, with extensive use of continuous variables methods. Two main projects
are highlighted. The first project aims to understand how initial correlations in an
environment affect the dynamics of a system interacting with it. We analyze this
problem from the point of view of Collisional Models of qubits and bosonic Gaus-
sian states, in which we show how initial correlations between the environmental
parts push the system’s evolution. As a consequence, the standard Homogenization
procedure can be disrupted. In the second project, we use Bayesian Networks to
obtain the statistics of general thermodynamic quantities for two initially correlated
systems and explore the role of the initial density matrix ambiguity of mixture in
these statistics. As an important application, we compute the effects of correlations
in the statistics of the heat exchanged. Results for the statistics of the heat are
obtained for qubits and, as a novelty, for bosonic Gaussian states.

Keywords; Open quantum systems; Quantum Information; Collisional models;
Bayesian Networks; Quantum Thermodynamics.
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Resumo

Esta tese tem como objetivo explorar novos efeitos causados por correlações iniciais
em sistemas quânticos, com grande uso de métodos de variáveis contínuas. Dois pro-
jetos principais são destacados. O primeiro projeto visa entender como a presença
de correlações iniciais em um ambiente afeta a dinâmica de um sistema que interage
com ele. Analisamos este problema do ponto de vista dos Modelos Colisionais de
qubits e estados Gaussianos bosônicos, nos quais mostramos como as correlações
iniciais entre as partes do ambiente direcionam a evolução do sistema. Como con-
sequência, o procedimento conhecido de homogeneização pode ser corrompido. No
segundo projeto, fazemos uso de Redes Bayesianas para obter as estatísticas de
grandezas termodinâmicas gerais para dois sistemas inicialmente correlacionados e
exploramos o papel da ambigüidade de mistura da matriz densidade inicial nestas
estatísticas. Adicionalmente, fizemos uma aplicação importante, a de calcular efeitos
das correlações nas estatísticas do calor trocado entre dois sistemas. Os resultados
para as estatísticas do calor são obtidos para qubits e, como novidade, para estados
Gaussianos bosônicos.

Palavras-chave: Sistemas quânticos abertos; Informação Quântica; Modelos coli-
sionais; Redes Bayesianas; Termodinâmica Quântica.
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Chapter 1

Introduction

By the end of the 20th century, the merging of two important fields of knowl-

edge, namely, Information Theory and Quantum Theory, set the formulation of

the Quantum Information Theory [1–4]. This formulation was the result of the ef-

fort of enlightening questionings concerning the foundations of Quantum Theory as

well to the use of these clarifications for the flowering of ideas to new technologies.

This movement is often called the Second Quantum Revolution [5, 6], and the tech-

nologies developed include Quantum Computing [1, 7], Quantum Cryptography [1],

Quantum Simulation, Quantum Sensing and Quantum Metrology [8] which caused

enormous attention to technology companies and hence even more research interest.

At the heart of such revolution is the concept of quantum correlations whose

primordial research can be traced to 1935 with the work of Einstein, Podolsky, and

Rosen (EPR) [9], Erwin Schrödinger [10] and debates with Niels Bohr [11]. The

controversy was mainly about if the predictions of correlations pointed by EPR in

Quantum Theory could cause it to be an incomplete theory, in the sense to be

a theory with the necessity of additional hidden variables locally generated in a

common past and without further non-local “spooky” interactions to explain such

correlations. Probably the first step to solve this controversy was taken by John Bell

in 1964 [12] by proving that, only if a certain average of observable respect a set of

inequalities (now called Bell inequalities), then the correlations described by EPR

could be caused by local hidden variables. It happens that Quantum Theory predicts

such violation and this gave rise to the concept of a new kind of fully quantum (in the
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sense of without classical analog) correlations, now called entanglement, which could

not be explained by local hidden variables. These events marked the beginning of

what more recently caused the Second Quantum Revolution. Due to the importance

of these discoveries nowadays, the most recent Nobel Prize in Physics was awarded

to Alain Aspect, John F. Clauser, and Anton Zeilinger due to their pioneering work

on violating experimentally Bell’s inequalities [13]. Therefore, quantum correlations

are recently between the most prominent subjects in pure and applied physics, and

exploring new effects concerning them can blossom into new ideas and applications.

Inside this broader context, this thesis has the objective of searching for new

effects caused by quantum correlations in cases where systems start their interactions

already correlated. We use mainly the tools of quantum continuous variables [14–

16] to investigate the effects of initial correlations between quantum systems in their

dynamical evolution and thermodynamic quantities. Our work can be stated in two

main projects, the first one is concerned with a system evolution interacting with

an initially correlated environment, being more concerned with the dynamics of

the system. The second project has the main goal of obtaining the statistics of

thermodynamic quantities of two initially correlated systems, especially their heat

distribution, using the framework of Bayesian Networks. The two projects can be

described as follows.

1.1 Collisional model with initially correlated an-

cillae

This first project aims to explore an almost uncharted question of relaxation towards

equilibrium: how do initial correlations between the environmental parts affect the

system equilibration? The analysis towards the answer in general can easily become

intractable as the size of the environment becomes large, also general and standard

bath models can present additional features that can obscure the effects caused by

the initial correlations. For these reasons, we chose to focus on the so-called colli-

sional models [17–21], in which we assume total control over environment features

since here we suppose that the bath is composed of large number of smaller sub-
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units (the ancillae) that interact individually with the system one at a time, each of

these interactions is called a collision. This way, we are able to obtain manageable

answers to the problem by extending methods already explored.

The effect of initial correlations between parts of the environment on the system

evolution is, as already said, the main inquiry of this project, and it can be under-

stood as the following analogy suggests. Suppose a group of workers (ancillae) want

to convince a boss (system) that he/she must buy them new tools, but each of them

enters and argues with the boss alone at his office (interact individually and one at

a time). If the workers talked to each other before going to the boss’ office and have

some plan or information shared (correlations), then the result of the boss’ mind

(final state of the system) will be different than if they had not talked to each other.

Our results reveal an unfamiliar phenomenon of pushing caused by the initial

correlations between the environmental parts. We obtain these results numerically

for the case where the system and ancillae are qubits and analytically, which is a

more complete description, for the case where the system and ancillae are bosonic

modes. These last more detailed results were possible due to the use of continuous

variables methods. As a comparison to well-known results, we make a contrast with

the results of [19], where for a certain kind of interaction and initially identical

ancillae, the whole system, and ancillae become a set of identical parts, this is the

so-called homogenization. We show that homogenization can become impossible if

the ancillae are initially correlated.

1.2 Statistics of thermodynamic quantities using

Bayesian Networks

With the Second Quantum Revolution, increasing attention has been brought to the

growing field of Quantum Thermodynamics [22–25] from reasons that range from

extending the Thermodynamic laws to the quantum domain, understanding funda-

mental relations between thermodynamics and information [26–28] to studies of the

enhancement of the efficiency of quantum thermal machines using quantum features

[29–32]. However, the description of the statistics of thermodynamic quantities,
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such as heat and work is often made with the use of the Two-Point Measurement

(TPM) procedure [33–35] which spoils the coherence of the initial state and conse-

quently the effect of quantum correlations due to the supposition of measurements.

Alternatives without this undesired feature involve work operator definitions [36,

37], which cannot hold fluctuation relations [34, 35, 38–40], and quasi-probabilities

[41, 42] which cannot be described by a quantum measurement. The objective of

this second project is to fulfill this gap of constructing statistics of thermodynamic

quantities that fully accounts for initial quantum correlations and coherence, fo-

cusing primarily on the specific case of obtaining the probability distribution for

the heat exchange between two initially correlated systems interacting as a closed

system.

By making use of the concept of Bayesian Networks (BNs) [43–47] in the context

of quantum theory, Ref. [48] successfully described fluctuation relations fully consid-

ering the effect of initial correlations and coherence. Additionally, this framework

can be described by quantum measurements protocols [49]. Therefore, we chose

the BN framework to obtain our statistics for thermodynamic quantities. The BN

concept has wide applications in statistics, engineering, and mainly in artificial in-

telligence. It consists in a method that infers the probabilities of the evolution of the

system from conditional distributions of the previous state of the system, supposing

a causal relation from this past.

We follow the construction initiated in Ref. [48], focusing on deepening our

understanding of the statistics of thermodynamic quantities. We obtain general

formulae for the characteristic function (and consequently, the statistical moments)

for the probability distribution of the change (or variation) of an observable during

the evolution of the system, such changes of observable can represent thermodynamic

quantities, such as heat and work. Our results reveal a dependence of the probability

distribution on the initial density matrix choice of an ensemble to represent it. The

consequence of the different choices of ensembles turns out to be one of our main

attentions due to the different interpretations it can result.

As our main goal and application, we apply this framework to understand deeply

the statistics of heat exchanged between two systems and the consequences of initial
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correlations in this exchange. As a well-known effect caused by initial correlations,

we recover the heat flow inversion [50–53], which was obtained experimentally for

the interaction of two qubits [54]. And we propose conditions for such inversion

to happen in the case of two bosonic modes interacting. Due to the unexplored

character of the subject, we study the variance of the heat probability distribution

and how it behaves with the presence of correlations. This is done numerically for

the case of two qubits, and analytically for the case of two bosonic modes. Interesting

features are raised due to the different choices of ensembles to be made in continuous

variables for bosonic modes, such as the use of quasi-probabilities.

1.3 Structure of the thesis

This thesis will be organized as follows. It is divided into two parts, Part I (chapters

2 to 4) resumes the background used to obtain our results, there is no original result

among the chapters of this part. In Part II (chapters 5 to 7) we have our main

projects and the results contained in these chapters are original. Chapters 5 and 6

refer to the first project of the thesis while chapter 7 refers to the second project.

Chapter 2 contains a brief resume of the Open Quantum Systems paradigm with

the essential parts needed to construct our work and we introduce and define the

concept of collisional models as well as the notion of homogenization. In Chapter

3 we present a resume of the parts concerning Quantum Information that we shall

use. We also define in this chapter precisely what we denominate as correlations

and quantum correlations, introducing the concept of Quantum Discord, for further

use, being a broader concept of quantum correlations than the aforementioned en-

tanglement. The last section of this chapter will make a brief presentation of BNs

and how it is applied to describe the evolution of quantum systems.

In Chapter 4 we present the framework of continuous variables. This is an

extensive chapter since it permits us to obtain analytical results especially when

dealing with Gaussian states, so a considerable part of the text will be restrained

to a careful construction and explanation of such methods. This makes a large part

of our results to be possibly applicable in the realm of bosonic states and Quantum
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Optics [55, 56].

In Chapter 5 we present the structure and results for the simulations of our qubit

minimal collisional model with initially correlated ancillae. Chapter 6 is devoted to

the structure and analytical results of our collisional model with initially correlated

ancillae, where the state and ancillae are bosonic modes. The last section of this

chapter will expose our construction of correlated environments made of bosonic

Gaussian states with the use of graph states.

Chapter 7 will develop briefly the concept of BN, then apply it to find the

statistics for the changes observable for bipartite initially correlated systems in very

general terms. Here we expose general results about the statistics of such changes as

well as applications to the case of two qubits initially correlated. Finally, we again

use the general results to obtain conclusions for the heat probability distribution

between two bosonic modes, focusing on the relations between the first moments of

such distribution and the quantum correlations between the modes.

Finally, Chapter 8 is devoted to the final remarks and possible future works

concerning the thesis results.
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Chapter 2

Open Quantum Systems and

Collisional Models

In the first two sections of this chapter we shall give a short introduction to the

paradigm of Open Quantum Systems [57–59] which deals successfully with quantum

phenomena, maintaining untouched all Quantum Mechanics postulates, but adding

the concept of open evolution in a similar way to the Stochastic Physics [60–62]. This

framework had its foundations constructed by von Neumann, Kraus, Lindblad, and

many others, generally obtaining the system’s evolution by considering finite time

steps, given by Kraus operations, or solving Lindblad Master Equations (analogously

as the classical Master Equations case) to obtain continuum time evolution. We shall

focus here on the first approach which is the methods used in the present work.

In this paradigm, commonly a bath is decomposed in a continuum of quantum

harmonic modes, these modes interact with the system via a coupling that is ap-

propriate to the physical phenomenon in description. Finding the dynamics of the

system under this interaction with these baths is normally a daunting problem and

most solutions involve Markovian (past independent) approximations. As a less or-

thodox approach, Collisional Models (CMs) [20, 21, 63] (also dubbed as “Collision

Models” and “repeated interaction schemes”) suppose that the bath is composed

of a large number of smaller subunits (the ancillae) that interact individually with

the system one at a time. In the present quantum formulation, these models were

first proposed by Jayaseetha Rau in 1963 [17], which was inspired by Boltzmann’s
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Stosszahlansatz molecular chaos hypothesis [62, 64].

Since then, CMs have become very attractive for a vast range of applications,

ranging from weak measurements to a very satisfactory description of the micromaser

[65–70]. At the beginning of the 21st century, the interest in quantum computation

brought attention to the implementation of collisional models with interactions in-

volving two qubits, which resulted in the concept of homogenization [18, 19], a

well-explored concept in this thesis, as well as studies of using CMs to describe the

decoherence of qubits [71]. In the past decade, CMs have a major role in studies of

non-Markovian dynamics and Quantum Thermodynamics [63, 72–88]. In the last

section of this chapter, we shall introduce the framework of CMs, a few examples of

models and physical implementations in order to prepare for the description of the

first project of this thesis.

2.1 The density matrix

Open quantum systems, as the name suggests, deal with systems that interact with

an environment capable to exchange energy and information. Although the closed

quantum systems formalism could encompass systems that exchange energy (with a

time-dependent Hamiltonian), it would never be capable of describing systems that

dissipate information. The reason is that all the closed quantum system formalism

only deals with the hypothesis that we know in which quantum state the system

is and its evolution will be deterministic according to Schrödinger’s Equation. We

must have a formalism that takes into account the lack of information about which

quantum state the system is and obtain an equation where the evolution is not

necessarily deterministic.

In classical stochastic processes or statistical mechanics, when we don’t know

the state of the system, we can associate each classical state (for instance a point

(x, p) on the phase space) with a probability P (x, p) that the system is in this state.

In the quantum case, the same can be done for a set of quantum states {|ψk⟩} in

a Hilbert space H, assigning a probability Pk for each |ψk⟩. The difference exists

when we compute the average of an observable A. To accomplish this we must take
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into consideration the quantum and classical uncertainties (“classical uncertainties”

here refers to the use of probabilities of preparing each quantum state) and we have

to make a classical average over quantum averages

⟨A⟩ =
∑

k

Pk ⟨ψk|A |ψk⟩ . (2.1)

In order to compress quantum and classical information into a single object

describing the state, von Neumann introduced [89] the density matrix

ρ =
∑

k

Pk |ψk⟩ ⟨ψk| , (2.2)

and with this definition, we may write averages like Eq. (2.1) as

⟨A⟩ =
∑

k

Pk ⟨ψk|A |ψk⟩ = Tr(Aρ). (2.3)

There are some requirements that a generic operator must satisfy to be capable

of representing a physical system. First, we must notice that, due to the nor-

malization of the kets |ψk⟩ and probabilities ∑k Pk = 1, we must have a density

matrix normalization Tr(ρ) = 1. And second, for any generic ket |ϕ⟩, we must have

⟨ϕ| ρ |ϕ⟩ = ∑
k Pk| ⟨ϕ|ψ⟩ |2 ≥ 0, which states that ρ must be a positive semi-definite

matrix (in symbols ρ ≥ 0). So, for an operator to be able to describe a physical

density matrix, it must satisfy

Positive semi-definite: ρ ≥ 0, and (2.4)

Normalization: Tr(ρ) = 1. (2.5)

Also, it is important to remember that ρ must be a hermitian operator, and this is

covered by the positive semi-definite condition (all positive semi-definite operators

are hermitian).

We shall often refer to the density matrix ρ as “the state” of a given system

since it serves as a “distribution” of quantum states. The non-diagonal terms of

the density matrix are often called coherence terms. These terms are dependent on
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the basis we choose to represent the density matrix and represent the superposition

terms in the respective basis.

When one has certainty about the state of the system, then we say that the

state is pure. This happens if for some j, Pj = 1 and Pk = 0, ∀k ̸= j in Eq.

(2.2), which implies that ρ = |ψ⟩ ⟨ψ|, for some state |ψ⟩ (we omit the j here just

for convenience). In this case, the density matrix is equivalent to the ket |ψ⟩, and

there is no lack of information about the system. But it is vital to remember that,

in general terms, Eq. (2.2) cannot be factorized as a pure state, i.e., we really have

a lack of information about which quantum state the system was prepared, and for

this case we say that the state is mixed.

To show if a density matrix can be parametrized as a pure state or not is, in

general not an easy task. To this end, one may define the purity of the state ρ as

P(ρ) = Tr
(
ρ2
)
. (2.6)

It can be shown (see appendix A) that the purity of a state ρ is 1 if and only if ρ

is a pure state and also that 1/d ≤ P(ρ) ≤ 1 for any ρ, where d is the dimension

of the Hilbert space of the state and 0 ≤ P(ρ) ≤ 1 for infinite dimensional Hilbert

spaces. Consequently, purity is the decisive witness which points out if a state is

pure or not.

2.2 Dynamics

2.2.1 Closed systems - Unitary operators

As we are used to, the dynamics for a closed pure system |ψ(t)⟩ with a Hamiltonian

H in Quantum Mechanics is given by the Schrödinger Equation (setting ℏ → 1

throughout)

i
∂ |ψ(t)⟩
∂t

= H |ψ(t)⟩ , (2.7)
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which has the following solution

|ψ(t)⟩ = U(t− t0) |ψ(t0)⟩ , (2.8)

where, for time-independent Hamiltonians, we have the unitary operator

U(t− t0) = e−iH(t−t0), (2.9)

and |ψ(t0)⟩ is the initial system state.

We may notice that the evolution of any system initially in |ψk(t0)⟩ also evolves

as |ψk(t)⟩ = U(t−t0) |ψk(t0)⟩. So for a density matrix like in Eq. (2.2), the evolution

is

ρ(t) = U(t− t0)ρ(t0)U †(t− t0), (2.10)

for an initial density matrix ρ(t0) = ∑
k Pk |ψk(t0)⟩ ⟨ψk(t0)| in a closed system.

Eq. (2.10) sets the evolution for any time step t− t0 of a density matrix and is

the solution of the equation that plays the same role as Schrödinger’s Equation, but

for density matrices, the so-called von Neumann Equation

dρ(t)
dt

= −i[H, ρ(t)]. (2.11)

2.2.2 Open systems - Kraus matrices

One of the standard approaches to deal with open quantum systems is to consider the

system state ρS(t0) (acting on a Hilbert space HS) and environment state ρE(t0)

(acting on a Hilbert space HE) together as an initially uncorrelated joint system

ρSE(t0) = ρS(t0)⊗ρE(t0) and make a unitary evolution of this joint system ρSE(t) =

U(t − t0)ρSE(t0)U †(t − t0). The system resulted from tracing out the environment

(see Appendix A for the definition of the partial trace) will be our evolved system

ρS(t) = TrE[ρSE(t)] and the map from ρS(t0) to ρS(t), in general, will not be unitary.

The procedure of evolving unitarily the joint system and tracing out the environment

will be frequently used in this thesis and can be made to describe any open quantum

system, as the following discussion shows.
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Writing the above procedure explicitly, we obtain

ρS(t) = TrE{UρS(t0) ⊗ ρE(t0)U †}, (2.12)

where we are omitting the (t − t0) in U just for practicality. Now if we make a

spectral decomposition of the initial environment density matrix

ρE(t0) =
∑
m

qm |m⟩E ⟨m|E ,

(where the sub-index E in |m⟩E just makes it explicit that |m⟩ belongs to the basis

of HE that diagonalizes ρE) and apply it in Eq. (2.12), we obtain

ρS(t) = TrE

{∑
m

qmU |m⟩E ρS(t0) ⟨m|E U
†
}

=
∑
m,k

qm ⟨k|E U |m⟩E ρS(t0) ⟨m|E U
† |k⟩E ,

(2.13)

where in the last equality we computed the partial trace in the same basis as |m⟩E.

Finally, if we define (putting (t− t0) back to U)

Mk,m(t− t0) = √
qm ⟨k|E U(t− t0) |m⟩E , (2.14)

and rename the collective index (k,m) to α, we obtain

ρS(t) =
∑

α

Mα(t− t0)ρ(t0)M †
α(t− t0). (2.15)

This equation has the form of the Kraus representation [90]

E(ρ) =
∑

α

MαρM
†
α. (2.16)

of a quantum channel E , where Mα are called Kraus matrices and must satisfy

∑
α

M †
αMα = 1. (2.17)

Quantum channels are the linear operations that transform density matrices

13
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onto density matrices, maintaining all their properties (Eq. (2.4) and Eq. (2.5))

and hence are appropriate operations for the general description of open quantum

systems dynamics (such as unitary operators are for closed systems). They are called

linear completely positive trace preserving (CPTP) maps1. It can be shown (see, for

instance, [1, 57, 91]) that every linear CPTP map can be described in the form of a

Kraus representation (Eq. (2.16)) and vice-versa for a set of Kraus matrices, thus it

sets a necessary and sufficient condition to describe an open system dynamics. We

shall follow this scheme in our work, considering interactions that last finite time

between part of the environment (the ancillae) and making the partial trace in order

to obtain the desired dynamics of our collisional model.

2.3 Collisional Models

2.3.1 General case (correlated ancillae)

Suppose we have a system S that starts interacting, at a time t = 0, with an environ-

ment E, which is separated in n sub systems Aj (1 ≥ j ≥ n) named ancillae. We say

that we have a Collisional Model (CM) whenever the system interacts individually,

one at a time, and only once with each ancilla and we call each of these interactions

a collision (see Fig. 2.1). There are studies on CMs in which the ancillae interact

with themselves after the instant t = 0 (see, for instance, [88]), but in our case, we

assume that this is not the case.2

Given those demands, the depiction of the system’s interaction with the j-th

ancilla, during a time τ (we suppose all ancilla-system interactions last the same

time), is given by a unitary operator

Uj = e−iτHj , (2.18)
1Actually, the term completely positive means a stronger assumption: that given a density

matrix ρ, then the matrix (I ⊗ E)(ρ) must also be positive, where I is the identity operator acting
on an extra system R of arbitrary dimensionality.

2We do consider that the ancillae may interact with themselves before starting the dynamics
with the system, in order for them to be initially correlated. In fact, the study of the effects of
such initial correlations in the system is one of the main themes of this thesis.
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Figure 2.1: Schematic of collisions, where the system S is interacting individually
with the k-th ancilla during a time τ going to interact with the next ancilla also
during a time τ .

in which

Hj = HS +HAj
+ Vj, (2.19)

where HS is the system’s internal Hamiltonian, HAj
is the internal Hamiltonian of

the j-th ancilla and Vj describes the interaction between the system and the j-th

ancilla. Then the joint state of the system plus all ancillae after the n-th collision

is given by

ρn
SE = UnUn−1 · · ·U2U1ρ

0
S ⊗ ρ0

EU
†
1U

†
2 · · ·U †

n−1U
†
n, (2.20)

where we supposed that the initial joint state ρ0
SE is the tensor product between the

initial system ρ0
S and the environment ρ0

E (remembering, inside this environment are

all possibly correlated ancillae) since their interaction only starts at t = 0. Further-

more, we trace out all the environment in order to obtain the system’s stroboscopic3

3“Stroboscopic” means that our interest is only in the evolution steps multiples of τ , no attention
is given for the intermediate time evolution.
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evolution after the n-th collision

ρn
S = TrE {ρn

SE}

= TrE

{
UnUn−1 · · ·U2U1ρ

0
S ⊗ ρ0

EU
†
1U

†
2 · · ·U †

n−1U
†
n

}
. (2.21)

Suppose we wish to analyze the evolution of the system after the second collision

(n = 2), Eq. (2.21) will result in

ρ2
S = TrE

{
U2U1ρ

0
S ⊗ ρ0

EU
†
1U

†
2

}
= TrA2

{
U2 TrA1

{
U1ρ

0
S ⊗ ρ0

EU
†
1

}
U †

2

}
= TrA2

{
U2ρSA2U

†
2

}
̸= TrA2

{
U2ρ

1
S ⊗ ρA2U

†
2 ,
}

(2.22)

where we defined ρSA2 = TrA1

{
U1ρS ⊗ ρEU

†
1

}
as a density matrix that acts on

HS ⊗ HA2 , where HS(A2) is the Hilbert space of S(A2). The last line of Eq.(2.22)

above happens because ρSA2 cannot, in general, be a tensor product ρ1
S ⊗ρA2 (where

ρ1
S is the density matrix of the evolved system after the first collision) due to the

initial correlation between the ancillae. This way the ρ2
S in Eq. (2.22) cannot

result in a map between ρ1
S and ρ2

S, and the evolution of the system from the first

collision into the second will not be a CPTP map. The reason for this is that the

initial correlations cause the system evolution to be non-Markovian,4 since after the

first collision the second ancilla already obtains information about the system. The

information about the initial system affects the system itself at the second collision,

clearly, this narrative also happens for all further collisions.

As the case above suggests, non-Markovianity precludes intermediate maps to

be CPTP, i.e., if we have a CPTP map Et2−t0 that evolves a state from t0 to t2, we

cannot break it in two CPTP maps Et2−t1 and Et1−t0 such that Et2−t0 = Et2−t1Et1−t0

for some intermediate time t1. This aspect of Non-Markovianity is studied in CMs
4In this thesis, it will be sufficient to define a non-Markovian evolution of a system as an evo-

lution which depends on the whole past history of the system. Otherwise, if the evolution only
depends on the latest state, it is said to be Markovian. More refined definitions and characteriza-
tions of quantum non-Markovianity can be found in Refs. [92–94].
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(see, for instance, Refs. [72–78, 81–88]) and is a caveat for obtaining the evolution

of the system, since it makes impossible to gradually describe the system’s evolution

by a cumulative sequence of simpler steps. Chapters 5 and 6, which are intended

for the results of the first project of the thesis, focus on obtaining non-Markovian

dynamics caused by the initial correlations between the ancillae. In the rest of this

chapter, we shall present the standard Markovian CMs framework, as well as special

cases, such as homogenization, that will contrast with the results of the following

chapters.

2.3.2 Markovian case

For standard CMs we suppose, in addition to the assumptions above, that initially,

all ancillae are uncorrelated so that the environment is

ρ0
E = ρA1 ⊗ ρA2 ⊗ · · · ⊗ ρAn , (2.23)

where each ρAj
acts on its respective ancilla Hilbert space Hj. Using this at Eq.

(2.21) we obtain a major simplification in our stroboscopic evolution

ρn
S = TrAn

{
Un · · · TrA2

{
U2 TrA1

{
U1ρ

0
S ⊗ ρA1U

†
1

}
⊗ ρA2U

†
2

}
· · · ⊗ ρAnU

†
n

}
, (2.24)

where we just used that the partial trace over Am does not affect operators that

don’t act on HAm . Now, if we define a map E (n), called collision map or stroboscopic

map, acting on a state ρS as

E (n)(ρS) = TrAn

{
UnρS ⊗ ρAnU

†
n

}
, (2.25)

then Eq. (2.24) can be rewritten as

ρn
S = E (n)(E (n−1)(· · · E (1)(ρ0

S))), (2.26)

which represents the successive application of CPTP maps, since the map in Eq.

(2.25) is CPTP as a consequence of having a unitary evolution and a partial trace
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(see Eq. (2.12)). This successive application of CPTP maps forming a CPTP

map indicates that all the stroboscopic dynamics are Markovian. This is a direct

consequence of the absence of initial correlations between the ancillae.

As done in most studies in CMs and will be often done in this work, we con-

sider that all the ancillae are identical, thus ρAj
= ρA for every j. The internal

Hamiltonian of the system and ancillae will be set to 0 (unless specified),5 and the

interaction between the ancillae and the system are equal, i.e., Vj = V 6 for all j in

Eq. (2.19) and consequently all unitary operators are the same (Uj = U for all j).

In this case, all applications will be identical, E (n) = E , ∀n, and hence

ρn
S = En(ρ0

S), (2.27)

which means that it will be sufficient to find the map E and apply it n times in the

initial state in order to obtain the full evolution. Similarly, we can obtain the state

of the n-th ancilla after its collision with the system, it will be the result of tracing

out the system from the evolution of ρn
S ⊗ ρA, explicitly

ρn
A = TrS

{
Uρn

S ⊗ ρAU
†
}

= TrS

{
U(En(ρ0

S) ⊗ ρA)U †
}
. (2.28)

2.3.3 Qubit example, thermalizing machines

Proceeding with the restrictions above, we assume that the system and ancillae are

qubits (all-qubit model) and that all the ancillae are initially in a thermal state (see

Appendix A, in particular, Eq. A.22)

ρth = (1 − pth)P0 + pthP1, (2.29)

when 0 ≤ pth ≤ 1/2, P0 = |0⟩ ⟨0|, P1 = |1⟩ ⟨1|, are the projectors of the eigenstates

of σz (|0⟩ and |1⟩) with eigenvalues −1 and 1 respectively. If we set the Hamiltonian

of each ancilla qubit to H0 = Eσz (with E > 0), then |0⟩ is the ground state qubit
5Actually, this condition of setting HS and HAj

to 0 is equivalent of demanding that HS = HAj
,

[HS , Vj ] = 0, and going to the interaction picture (see Appendix A).
6Of course, the operators Vn are identical but each act only on the system and their respective

ancillae An.
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and |1⟩ is the excited state and hence pth is the probability that the qubit is in

the ground state. If we now ask which are the unitaries U that could construct a

collision map E such that

U(ρth ⊗ ρth)U † = ρth ⊗ ρth and (2.30)

ρn
S = En(ρ0

S) n→∞−−−→ ρth, ∀ρ0
S. (2.31)

The most general answer is that the unitaries must have the form of Eq. (2.18)

(remembering that in this case, they are all identical, independent of j) with the

Hamiltonian

H(g, gz) = g(σ+ ⊗ σ− + σ− ⊗ σ+) + gzσz ⊗ σz, (2.32)

where g and gz are real numbers and

σ− = σ†
+ = 1

2(σx − iσy) = |0⟩ ⟨1| . (2.33)

This result was obtained in Ref. [18], which also brands any setup responsible for

the quantum operation respecting Eqs. (2.30) and (2.31) is called a thermalizing

machine and the process of the system relaxing towards ρth is called thermalization.

These terms are easily justified since Eq. (2.30) affirms that if the system is in the

same state as the thermal ancillae, then the evolution stagnates, while Eq. (2.31)

means that the quantum operation is such that system’s state will converge to the

thermal ancillae independent of the system’s initial state, i.e., this CM setup will

make the system thermalize.

As an example of thermalization made with simple computations, we suppose

that all the ancillae start with the state ρA = |0⟩ ⟨0| (this is the ground state, which

is the thermal state at the limit T → 0, so we are supposing a very cold environment)

and the initial system state is an arbitrary qubit which can be always parametrized

as

ρ0
S =

⟨0| ρ0
S |0⟩ ⟨0| ρ0

S |1⟩

⟨1| ρ0
S |0⟩ ⟨1| ρ0

S |1⟩

 =

1 − p C

C∗ p

 , (2.34)
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where 0 ≤ p ≤ 1 and (1 − 2p)2 + 4|C|2 ≤ 1 which are conditions that come from

positivity and unit trace. Here p is the population of the excited state |1⟩ and C is

the coherence. Now if we explicitly compute the unitary with the Hamiltonian given

by Eq. (2.32), we obtain

U(g, gz) = e−iH(g,gz)τ

= e−i2gzτ (|00⟩ ⟨00| + |11⟩ ⟨11|) + cos(gτ)(|10⟩ ⟨10| + |01⟩ ⟨01|) − i sin(gτ)(σ+σ− + σ−σ+),

(2.35)

where we just used that |00⟩ , |11⟩ and 1√
2(|10⟩±|01⟩) are the eigenvectors of H(g, gz)

with eigenvalues gz, gz and ±g−gz, respectively and use it to expand the exponential

operator in the eigenvector basis (also we omitted the tensor product sign |a⟩⊗|b⟩ =

|ab⟩ for convenience). We can now use the unitary above to obtain the collision map,

according to Eq. (2.25)

E(ρ0
S) = TrA

{
U(g, gz)ρ0

S ⊗ |0⟩ ⟨0|U †(g, gz)
}

=

(1 − p) + sin2(gτ)p e2igzτ cos(gτ)C

e−2igzτ cos(gτ)C∗ cos2(gτ)p

 . (2.36)

By iterating this map7 n times in order to obtain the system’s evolution after the

n-th collision (according to Eq. (2.27)), we obtain

ρn
S =

1 − pn Cn

C∗
n pn

 , (2.37)

where Cn = e2igznτ cosn(gτ)C and pn = cos2n(gτ)p. As we can see, Cn and pn go to

0 as n gets large (of course, if gτ isn’t an integer multiplied by π). This highlights

two effects of dissipation due to the bath: the decoherence (the vanishing of the

off-diagonal terms), as usually happens when a quantum system is interacting with

a thermal bath (in this case, even with the bath at a very low temperature), and the

decay of the population of the excited state |1⟩, pushing the system to the steady
7For the case of gz = 0 this map is the same as the well-known amplitude damping [1, 91].
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state |0⟩ ⟨0|. This steady state is nothing but the thermalization of the system

towards the initial 0 temperature ancillae state.

2.3.4 steady states

We already tacitly used the concept of steady state as the state in which the system

converges after a long time interacting with the environment. For making this

definition more concrete, we say that a state ρ∗ is a steady state of a map E , if and

only if

E(ρ∗) = ρ∗. (2.38)

ρ∗ is also called a fixed point of the map.

Notice that the steady state need not be unique. A map that has a unique steady

state is called ergotic, and if

En(ρ) → ρ∗, (2.39)

for large n and any density matrix ρ, then this map is said to be mixing. Con-

sequently, any mixing map is ergotic, and thus if one proves the mixing of a map

which leads the initial state to ρ∗, it will be the unique steady state (this will be our

procedure in bosonic CMs in Chapter 5).

The process of thermalization in Eqs. (2.30) and (2.31) is a mixing map which has

ρth as fixed point. A slightly more general concept is that of thermal operations, in

which the ancillae and system need not have identical Hilbert spaces but the system

thermalizes at the same temperature as the ancillae. This is an important concept

in the context of Resource Theories and it can be proved that any energy-conserving

unitary generating a CM map like in Eq. (2.25) (with ancillae in thermal states) is

a thermal operation [95]. This kind of unitary will describe the main interactions

studied in this thesis, including the Partial SWAP.
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2.3.5 SWAP and Partial SWAP

An important specific case of a thermalizing machine is generated from the interac-

tion given by gz = g/2 in Eq. (2.32). Here the Hamiltonian will have the form

H(g, g/2) = g

2 σ⃗· σ⃗, (2.40)

where σ⃗· σ⃗ = σ1
x⊗σ2

x+σ1
y ⊗σ2

y +σ1
z ⊗σ2

z , we used that σ1
+σ

2
−+σ1

−σ
2
+ = 1

2(σ1
xσ

2
x+σ1

yσ
2
y)

and here σ
1(2)
i means the i Pauli matrix acting in the first(second) qubit. This

Hamiltonian is, except for a constant term, equivalent to the SWAP Operation

S = 1
2 (I + σ⃗· σ⃗) , (2.41)

where I is the identity operator. The SWAP operation is a very important quantum

channel having applications from Open Quantum Systems to Quantum Computa-

tion. Its main property is that, given two states |ψ⟩ and |ϕ⟩, then

S(|ψ⟩ ⊗ |ϕ⟩) = |ϕ⟩ ⊗ |ψ⟩ . (2.42)

Actually, Eq. (2.42) is a more general definition of the SWAP, being valid for any

Hilbert space. Conversely, Eq. (2.41) is equivalent to Eq. (2.42) only for the case

of two qubits.

A direct consequence of Eq. (2.42) is

SS = S2 = I, (2.43)

which can be used to directly show that the SWAP generates the Partial SWAP

Operation

UP (gτ) = e−igτS = cos(gτ)I + i sin(gτ)S. (2.44)

It can be shown (see Ref. [19]) that the Partial SWAP of Eq. (2.44) is, except for an
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irrelevant phase term, the only unitary U that satisfies the following two properties

Tr1{Uρ⊗ ρU †} = ρ and (2.45)

Tr2{Uρ⊗ ρU †} = ρ, (2.46)

for qubits (the subscripts 1 and 2 indicate that the partial trace is realized in the

subspace of the first and second two-level Hilbert space, respectively). In Chapter

6, in the continuous variables context, we shall present the Beam Splitter as the

Partial SWAP, with the same properties, for the bosonic modes case.

2.3.6 Homogenization

We shall focus on the procedure proposed in [19], where the so-called homogenization

was defined for qubits systems. This procedure consists of a CM where all ancillae

have the same structure as the system (like qubits, in the case of [19]), are initially

identical and uncorrelated and the unitary responsible for the interactions between

system and ancillae acts in such a way that, after the system collides with all the

ancillae, the system and ancillae will be all approximately identical.

The homogenization procedure is very similar to the procedure of thermalization,

but in this case, as we shall see, we are free to involve any kind of ancillae state in

the process, not only thermal states. The process is outlined as follows. Suppose we

have a CM with identical ancillae initially in a generic state ρ0
A and a system initially

at state ρ0
S and they interact in each collision via the same unitary U (the condition

here are just like in the thermalizing machine, but notice that the ancillae state ρA

don’t need to be at a thermal state). Hence the system after the n-th collision will

evolve according to the stroboscopic map in Eq. (2.27) and the n-th ancilla after

its collision with the system will be given by (2.28). We say that homogenization

happens when for all δ > 0 there is a finite number of collisions Nδ such that

D(ρN
S , ρA) ≤ δ, ∀N ≥ Nδ, (2.47)

D(ρn
A, ρA) ≤ δ, ∀n, 1 ≤ n ≤ N, (2.48)
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Figure 2.2: Schematic of homogenization. From left to right, the system S interacts
with the ancillae at time 0 < t < τ , τ < t < 2τ , 2τ < t < 3τ and (n− 1)τ < t < nτ ,
respectively. The color changes on the system represent the different states it passes
through until it gets very similar to the ancillae and the whole system becomes
homogeneous.

where D(•, •) means any distance between operators, and in this work we shall use

the trace distance.8

These two conditions mean that not only the system must get as close as we want

to the initial ancillae state ρA, independent of the initial system state ρ0
S, but also

the ancillae must never get too distant from its initial state after their collision with

the system. The result is that the final states must all be similar, and the ancillae

turn the system to look like one of them, transforming the system and environment

into a homogeneous set of very similar parts (see Fig. 2.2).

It can be shown, for the all-qubit case, that homogenization is achieved if the

unitary U that rules the interaction in the collisions is the Partial SWAP given in

Eq. (2.44). This can be seen by the direct application of the Markovian form of

CMs using this particular unitary. Starting with Eq. (2.25), we obtain

ρ1
S = c2ρ0

S + s2ρA + ics(ρAρ
0
S − ρ0

SρA), (2.50)

when c and s are cos(gτ) and sin(gτ), respectively. Following the interaction of the

same channel n times, as Eq. (2.27) suggests, we obtain the system’s state after the
8Suppose we have two density matrices ρ and σ, then the trace distance between them will

be
D(ρ, σ) = 1

2 Tr |ρ− σ|, (2.49)

where |A| =
√
A†A is the positive square root of A†A.
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n-th collision

ρn
S = c2ρn−1

S + s2ρA + ics(ρAρ
n−1
S − ρn−1

S ρA)

= s2
n−1∑
j=0

c2jρA + ρn
rest

= (1 − c2n)ρA + ρn
S,rest (2.51)

where ρn
S,rest is a ρ0

S dependent part that will go to 0 as n → ∞ (see Appendix A).

Similarly, we can use Eq. (2.28) and the equation above to obtain the state of the

n-th ancilla after its collision

ρn
A = s2ρn−1

S + c2ρA + ics(ρn−1
S ρA − ρAρ

n−1
S )

= s2(1 − c2(n−1))ρA + ρn
A,rest, (2.52)

where ρn
A,rest is also a ρ0

S dependent part that goes to 0 as n → ∞ (see Appendix

A), meaning that ρn
S → ρA and ρn

A → ρA for large n. Therefore, both system and

ancillae converge to ρA for sufficiently large n.

There is one more restriction needed so that homogenization can be correctly

achieved. Notice that in the first line of Eq. (2.52) the term (ρn−1
S ρA −ρAρ

n−1
S ) is the

one responsible for ρn
A,rest and it gets smaller at each collision since ρn−1

S gets closer

to ρA (this is a consequence of the proof from Appendix A, Section A.5), hence

we conclude that ρn
A gets closer to ρA at each collision. From this observation, we

conclude that

D(ρn
A, ρA) ≤ D(ρn−1

A , ρA), (2.53)

which means that the first collision pushes the ancilla further away while the next

collision pushes lesser and lesser (which makes sense since the system gets closer and

closer to ρA). Thus the condition from Eq. (2.48) actually bounds D(ρ1
A, ρA) for

each δ, putting a bound in the Partial SWAP parameter gτ . This restriction turns

out to be (see Appendix A for the proof)

sin(gτ) ≤
√
δ/2. (2.54)
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Finally, this sets the sufficient conditions for homogenization, which can be used

for quantum cloning protocols and quantum-safe cryptography with a classical com-

munication [19]. We can also prove, as will be done in Chapter 6, that homogeniza-

tion can also happen when the system and ancillae are bosonic states. This proof

will be done analytically obtaining the stroboscopic evolution for all time steps.

Importantly, in both cases, homogenization demands that the steady state of the

system for this kind of CM must be the initial state of the ancillae itself. The main

original result of the first project of this thesis is to show that the presence of initial

correlations between the ancillae in CMs tends to push the steady states far from

their original steady states and, in the special case of homogenization, push the

steady state away from the ancillae state [96].

2.3.7 Physical implementations of CMs

In this subsection we present a few examples about how CMs can describe important

open quantum systems dynamics, going beyond a set of theoretical insightful models.

A very intuitive dynamic that can be associated with CMs is the one concerning

a dilute gas of particles, following Boltzman’s Stosszahlansatz molecular chaos hy-

pothesis [64]. However, these models need to consider the time interval τ during the

interaction between the system and each ancilla to be a random variable in order

to obtain a reliable description of gases [62]. This set of CMs, which are frequently

called stochastic CMs, do have not the same structure and dynamics as the models

described in this chapter, which are sometimes called periodic CMs. Recently, an

insightful manner to mimic any stochastic CM using periodic CMs was proposed

[97].

Perhaps the most natural physical setup that can fit a CM description is the

micromaser [69, 70]. In general terms, a maser is a device similar to a laser, pro-

ducing coherent photons around the microwave spectrum by stimulated emission,

as opposed to a laser, which produces coherent photons around the visible light

spectrum. The micromaser is a specific case where a filtered stream of Rydberg

atoms (heavy atoms with valence electrons behaving approximately as electrons of

a hydrogen atom, see Ref. [98]) are sent through a cavity so that each atom flies
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Figure 2.3: Micromaser setup: An atomic beam oven emits Rydberg atoms which
pass through a velocity selector tuning the flux of atoms so that each atom passes
one at a time through the cavity containing electromagnetic fields. (This figure was
taken from Ref. [21].)

alone inside the cavity and interacts individually with the electromagnetic fields

inside the cavity (see Fig. 2.3). This way, the CM described above for the Marko-

vian case is almost perfectly suitable since we can treat each atom as an individual

ancilla (uncorrelated with the other atoms) that interacts one at a time with the

electromagnetic field of the cavity, which plays the role of the system.

The micromaser setup is also the most adequate apparatus for the application

of the Janyes-Cummings (JC) model,9 since both consider the presence of only one

atom at a time interacting with the cavity field, being different from most lasers

and masers where the cavity field actually interacts collectively with many atoms.

Therefore, the CM describing the micromaser has the JC interaction Hamiltonian

V = g(aσ+ + a†σ−), (2.55)

where g is the interaction strength, a (a†) are the annihilation (creation) opera-

tors of the field mode10 and σ− (σ+) are the qubits operators given by Eq. (2.33).

The setup can then be modeled by the Markovian CM with identical ancillae

and interactions, as described in Susbsec. 2.3.2, with the interaction Hamiltonian

of Eq. (2.19) given by Eq. (2.55) in the interaction picture (see Appendix A). Such

CM is an approximation of the real micromaser setup but can reproduce the main

important features of the real phenomena [98, 99]. A more complete description of
9The JC model is a largely applicable model of light-matter interaction [55, 57, 91], where the

matter is described by a qubit (in this case, the atom) and the light is an electromagnetic mode.
10Importantly, the atom qubit interacts only with one mode of the electromagnetic spectrum in

the cavity. This is justified by the rotating wave approximation (RWA) [55, 91].
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the micromaser can be found in Refs. [98, 100].

Beyond the micromaser example, which is a direct application of CMs in a physi-

cal setup, CMs are extremely useful to create effective models of realistic open quan-

tum systems situations. Important examples include the full simulation of Marko-

vian dynamics from single qubits [73, 101] and the reproduction of any Markovian

dynamics with the multipartite collision model (a generalization of the CM described

in this chapter with multipartite system) [102].

Finally, another major example is the fact that a CM description can also emerge

very naturally from one of the most common microscopic system-bath models,

namely the interaction with the one-dimensional waveguide. In this model, the

system is described by a generic system with frequency ω0 and annihilation (cre-

ation) operator A(A†), and the environment is represented by a continuum of bosonic

modes, with annihilation (creation) operators bω(b†
ω) and frequencies that range from

−∞ to ∞. The Hamiltonian of the full joint system is given by

H = HS +HE + V, (2.56)

where

HS = ω0A
†A, HE =

∫ ∞

−∞
dω(ω0 + ω)b†

ωbω and V =
√
γ

2π

∫ ∞

−∞
dω(A†bω + Ab†

ω),

(2.57)

where γ is a constant coupling strength. This is the so-called white noise coupling

[55]. The above Hamiltonian is justified by the RWA (which explains the presence of

non-physical negative frequencies) together with the weak coupling approximation,

which is very often used in quantum optics [55, 57, 103].

By making a Fourier transform we can define time modes, for any real t,

bt = 1√
2π

∫ ∞

−∞
dωbωe

−iωt. (2.58)

These time modes can represent quantum harmonic modes since they satisfy [bt, b
†
t′ ] =

δ(t− t′) and [bt, bt′ ],= [b†
t , b

†
t′ ] = 0. In order to make a discrete time step evolution,

we can discretize the real line in intervals with equal lengths so that tn − tn−1 = ∆t
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for finite ∆t and any integer n. This way, we may redefine the time modes for

discrete steps

bn = 1√
∆t

∫ tn

tn−1
dtbt, (2.59)

which also satisfies the commutation relations for any n. Going to the interaction

picture (see Appendix A), the Hamiltonian of Eqs. (2.56) and (2.57) reduces to

Vn =
√
γ

∆t(A
†bn + Ab†

n), (2.60)

which is time-dependent, since the interaction will affect only each mode n when

t ∈ [tn, tn−1]. Consequently, this model is exactly a CM where the ancillae are

described by the time discrete modes represented by the operators bn(b†
n). This CM

picture of open systems under white noise is explained and applied in the context of

waveguide-QED in Refs. [103, 104]. In this thesis, such CM in which all the ancillae

are bosonic modes will be explored in detail, since its formalism makes it possible to

obtain analytical solutions to the effects of initial correlations between the ancillae

in the system’s dynamics.
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Chapter 3

Quantum Information and

Bayesian Networks

Quantum Information (QI) is a largely growing field in the past decades, especially

with the advent of promising new quantum technologies [105]. The rich history of

the creation and development of this field is well narrated in Ref. [1] and excellent

introductory and detailed texts approaching general themes about QI are found in

Refs. [1, 2, 15]. In this Chapter, we mainly focus on the aspects of quantum infor-

mation used to quantify correlations between quantum states and how to identify

which correlations have intrinsic quantum aspects. These subjects are going to be

essential for the analysis and interpretation of the main projects of this thesis.

As a second subject of this Chapter, we present the concept of Bayesian Net-

works. The exposition will be brief and primarily focused on the application needed

for our second project (Chapter 7).

3.1 Generalized measurements

Quantum measurements are among the most controversial subjects of quantum me-

chanics, hence the discussion of its postulates can render extensive texts. Here we

only expose the postulates which are useful to the present thesis. More complete

discussions explaining and motivating the postulates are given in Refs. [1, 2, 15, 57,

106] and examples for the exposition of interpretations are given in Refs. [106, 107].

30



Chapter 3. Quantum Information and Bayesian Networks

The postulates are the following:

• Any measurement can be described in terms of a set of Kraus matrices {Mk}k,

satisfying Eq. (2.17), given the measurement setup. Each of these choices

defines a Positive Operator Value Measure (POVM).1 The result of each mea-

surement is labeled by a index k of the the corresponding Kraus matrix Mk;

• The probability of obtaining the outcome k is

pk = Tr
(
MkρM

†
k

)
; (3.1)

• After the measurement is done, if the result of k is recorded, the effect of the

measurement in the state ρ, called backaction, will be to evolve

ρ → MkρM
†
k

pk

. (3.2)

The items above are sufficient to describe any generalized quantum measurement.

An important class of quantum measurements is the projective measurements, where

the Kraus matrices Mk are simply the projectors |k⟩ ⟨k| in some basis {|k⟩}k. This

results in the familiar “wave function collapse” rule pk = | ⟨ψ|k⟩ |2 and |ψ⟩ → |k⟩ for

measuring a pure state |ψ⟩.

3.2 Entropy

3.2.1 The Shannon Entropy

Entropy is a central concept not only in QI but also in Classical Information Theory

[108]. Since Shannon’s revolutionary paper in 1948 [109], the quantity now known

as Shannon entropy can be undoubtedly interpreted as a measure of the average

information carried by a random variable after we learn its value. At the same

time, as is often done in physics, we interpret it as the lack of information we have

about a random variable before we learn its value.
1The POVM is a set of operators {Ek}k such that Ek = M†

kMk.
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If we have a random variable X with a probability distribution p(X), then the

Shannon entropy associated with this distribution is2

H(p(X)) = −
∑

x

p(x) log p(x), (3.3)

where we consider the limit limy→0 y log y = 0, for the case where p(x) = 0. As

already mentioned, this quantity measures the average information carried by a

random variable, given its probability distribution. A heuristic justification for this

statement can be given as follows.

Let X be a random variable with the corresponding probability distribution

p(X) and suppose that we want to construct a “surprise” function (say S) which

measures the amount of unexpected learning that would be obtained if it is revealed

to us the value of this random variable. For instance, if we learn that x is the value

of the random variable and p(x) is close to 1, it means that the learning was not

unexpected resulting in S(x) small. Conversely, if p(x) ≪ 1, then S(x) should be

a large number. Hence, intuitively we expect S(x) to be inversely proportional to

p(x), but it is also desirable that it respects the additive property, i.e. having the

surprise of learning x and of learning y (in symbols S(x, y)) should give S(x)+S(y).

The only function of p(X) that satisfies both properties (except by a multiplicative

constant) is

S(x) = log
(

1
p(x)

)
. (3.4)

Intuitively, this unexpected learning can be identified as information since unex-

pected results tend to be more relevant and give us more information. Hence, the

average of this value can be interpreted as the average of information obtained if we

learn a random variable

⟨S⟩ =
∑

x

p(x)S(x) = −
∑

x

p(x) log(p(x)), (3.5)

which is exactly the Shannon entropy.

This intuitive, although not formal, argument was taken from Ref. [27]. More
2Here the log is taken as the natural logarithm. This differs from many QI and information

theory books which define the log with base 2.
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formal arguments for the Shannon entropy interpretation can be found in Refs. [1,

2, 108] and in Shannon’s original paper [109].

3.2.2 The von Neumann Entropy

We also need a quantity that encompasses the information content of a quantum

state. For defining this quantity, we assume it depends on the density matrix ρ of a

quantum state since it has the informational content of the probability distribution

of each possible pure quantum state (see Sec. 2.1). But naively one could guess

that, given a density matrix

ρ =
∑

i

pi |ψi⟩ ⟨ψi| , (3.6)

the appropriate entropy that represents the quantum state should be just the Shan-

non entropy of the probability distribution of the states {|ψi⟩}i

H(pi) = −
∑

i

pi log(pi). (3.7)

It turns out that this is not a good choice since the probability distribution {pi}i is

dependent on the ensemble {|ψi⟩}i and in general, the states {|ψi⟩}i are not neces-

sarily orthogonal, hence indistinguishable. The interpretation of Shannon entropy

as being the average measure of information only makes sense if we can distinguish

the outcomes of the random variables.

A more accurate attempt would be to make the spectral decomposition

ρ =
∑

i

λi |λi⟩ ⟨λi| , (3.8)

where {λi}i and {|λi⟩}i are the eigenvalues and eigenvectors of ρ, respectively, and

compute the Shannon entropy of the eigenvalues3

H(λi) = −
∑

i

λi log(λi). (3.9)

3The eigenvalues of ρ are also a valid probability distribution (see Appendix A).
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This equation can be rewritten as

−
∑

i

λi log(λi) = − Tr(ρ log ρ), (3.10)

its proof is simple and can be found in Appendix B. The quantity above is invariant

under a change of basis since the eigenvalues are basis independent. Importantly, the

eigenstates {|λi⟩}i are orthogonal and thus are distinguishable, hence it represents

a more suitable entropy for quantum states. This quantity is the von Neumann

entropy

S(ρ) = − Tr(ρ log ρ), (3.11)

and is the correct candidate to represent the information contained in a quantum

state [1, 2, 15].

From Eq. (3.10) it is immediate to see that the von Neumann entropy is always

a positive quantity. Another important aspect is that the von Neumann entropy

vanishes for pure states and assumes its maximal value at the maximally mixed

state ρ = I/d, for finite-dimensional Hilbert states with dimension d. Thus

0 ≤ S(ρ) ≤ log d. (3.12)

Indeed, the von Neumann entropy has a similar interpretation as the purity (see Eq.

(2.6)). If we have a pure state, then we have no ignorance about the system since

we know in which state the system was prepared, and if we have a maximally mixed

state, then we have the most ignorant case since we have an equal probability that

the system was prepared in any state.

The von Neumann entropy has an enormous set of properties [1, 2, 15]. But in

this thesis, it will be sufficient to use the fact that it is a quantity invariant under

a unitary transformation4 and to work with its conceptual role of representing the

amount of ignorance we have about a quantum system. We shall use this concept

in the construction of quantities representing correlations. From now on, we refer
4Suppose that U is a unitary transformation and that ρ′ = UρU†. Then S(ρ′) =

Tr
(
UρU† log

(
UρU†)) = Tr

(
UρU†U log(ρ)U†) = Tr (ρ log ρ) = S(ρ), wherein the second equal-

ity we used that a unitary U infiltrates in any well-defined function of operators.
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to the von Neumann entropy of a quantum state simply as the entropy.

3.3 Mutual Information and Correlations

3.3.1 Relative Entropy

As an entropic-like distance, we shall define the Relative Entropy5 or Kullback-Leibler

divergence

S(ρ||σ) = Tr(ρ log ρ) − Tr(ρ log σ), (3.13)

where ρ and σ are density matrices. This quantity is always non-negative

S(ρ||σ) ≥ 0, (3.14)

and vanishes for the case where ρ = σ. The proof of such inequality is non-trivial

and can be found in Refs. [1, 15].

From the non-negativity of relative entropy, we can have an intuitive idea of

entropic distance. Although it is important to underline that this is not an actual

distance, since it is not symmetric, i.e., in general, S(ρ||σ) ̸= S(σ||ρ), and does not

satisfy the triangle inequality.

3.3.2 Mutual Information

We are interpreting entropy as the measure of ignorance over a quantum system.

A useful quantity would be the information of a quantum system described by a

quantum state ρ. It is intuitively defined as the entropic distance between the state

ρ and the state in which the ignorance is maximum. In other words, it is the relative

entropy between the state ρ and the maximally mixed state π = I/d (assuming a
5This Relative Entropy is often called Quantum Relative Entropy since it is the quantum coun-

terpart of the classical Relative Entropy defined as H(p(x)||q(x)) =
∑

x p(x) log
(

p(x)
q(x)

)
, given two

probability distributions p(x) and q(x).
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d-dimensional Hilbert space)

I(ρ) = S(ρ||π)

= log(d) − S(ρ). (3.15)

From Eq. (3.12) we obtain that

0 ≤ I(ρ) ≤ log(d), (3.16)

with its minimum at ρ = π and maximum where ρ is a pure state.

With this concept in hand, it is straightforward to have an intuitive idea of the

quantity called mutual information. Given a system divided in two parties A and

B, in which the global state is ρAB, the mutual information between the two parties

is defined as

IρAB
(A : B) = S(ρAB||ρA ⊗ ρB), (3.17)

where ρA = TrB(ρAB) and ρB = TrA(ρAB).

The mutual information embraces all the content of the correlations between the

parties A and B. In general, ρA ⊗ ρB ̸= ρAB since the partial trace which generates

the local state ρA vanishes with all the B dependence, i.e., their correlations. Thus

the product ρA ⊗ ρB represents completely uncorrelated states and consequently its

distance to the global state ρAB measures their correlations.

A more explicit representation of the aforementioned ideas can be seen in the

following formulas. From the definition of relative entropy (Eq. (3.13)), we have

S(ρAB||ρA ⊗ ρB) = −S(ρAB) − Tr(ρAB ln ρA) − Tr(ρAB ln ρB). (3.18)

Now, notice that

− Tr(ρAB log ρA) = − TrA(TrB(ρAB) log ρA)

= − TrA(ρA log ρA)

= S(ρA), (3.19)
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with a similar result for − Tr(ρAB log ρB) and applying it in Eq. (3.18), we obtain

IρAB
(A : B) = S(ρA) + S(ρB) − S(ρAB), (3.20)

which is a simpler way to compute mutual information in various applications.

Finally, using the definition of information (Eq. (3.15)) in Eq. (3.20) and the

fact that log(dAdB) = log dA + log dB, we conclude that

IρAB
(A : B) = I(ρAB) − I(ρA) − I(ρB), (3.21)

where dA(dB) is the dimension of the Hilbert space of A(B). The equation above

simply states that “the mutual information between A and B is the information

contained in ρAB minus the information contained locally in ρA and ρB”, that is,

the mutual information represent the correlations between the parties.

3.3.3 Entanglement

We gave justifications for the fact that the mutual information represents the total

correlations between two parties. However, to conclude which of these correlations

have quantum origins without classical counterparts is a hard task and still a very

fruitful research field nowadays [110]. Here, we briefly introduce the concept of en-

tanglement, which is the most known type of quantum correlation, due to its appli-

cations as an important resource in quantum technologies and conceptual problems

[111].

Suppose a system is divided into two parties A and B. A pure state |ψ⟩ rep-

resenting this system is called a product state if it can be parametrized as a tensor

product

|ψ⟩ = |ψA⟩ ⊗ |ψB⟩ , (3.22)

where |ψA⟩ (|ψB⟩) belong to the Hilbert space of A(B). Any pure state which is not

a product state is called an entangled state.

Notice that in the case of pure states, it is not hard to have a decisive witness of

entanglement. If a state |ψ⟩ is a product state just like in Eq. (3.22), then clearly
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the partial trace of its density matrix over A or B will result in a pure state, i.e.

TrA(|ψ⟩ ⟨ψ|) = |ψB⟩ ⟨ψB| . (3.23)

Otherwise, if a state |ψ⟩ is an entangled state, then the partial trace of its density

matrix over A or B will result in a mixed state. Consequently, the entropy of the

reduced state will be non-zero. So, if

S
(
TrA(B)(|ψ⟩ ⟨ψ|)

)
> 0, (3.24)

the state will be entangled. Otherwise, it will be a product state.

With the use of the Schmidt decomposition [1, 2, 91], it can be shown that for any

pure state S (TrA(|ψ⟩ ⟨ψ|)) = S (TrB(|ψ⟩ ⟨ψ|)) and this quantity can also represent

a quantifier of entanglement.

Unfortunately, in the case of mixed states, the problem of quantifying entangle-

ment is much more challenging. For a system divided in parties A and B, a state ρ

is said to be separable when

ρ =
∑

i

piρ
i
A ⊗ ρi

B, (3.25)

where {pi}i is a probability distribution, ρi
A are density matrices in A and ρi

B are

density matrices in B. A mixed state is said to be entangled when it is not a

separable state.

The meaning of Eq. (3.25) is that a separable state is a classical mixture of

quantum states ρi
A and ρi

B which are only locally quantum. It can be shown that

such states can always be prepared by the so-called Local Operations and Classical

Communications (LOCCs) [111]. To distinguish if a mixed state is separable or not

is, in general, a very arduous task.

3.3.4 Quantum discord

Due to the difficulty mentioned above in characterizing entanglement for mixed

states, we focus on another quantifier of quantum correlations, the so-called quantum

discord.
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The concept of quantum discord was first proposed in Refs. [112–114]. It is a

discrepancy between the mutual information among two parties and the maximum

amount of information we can get from one party by measuring the other party.

Intuitively, one may think that the maximum information we can get by one party

looking at the other party is equal to their total correlations, but we shall see that

this statement is true only for classical systems. For quantum systems, we get a

mismatch due to quantum backactions.

This can be seen in the following discussion. Given a system divided into two

parties A and B, suppose that their states can be represented by classical probability

distributions p(X)A and p(Y )B, respectively. We can define the conditional entropy

H(A|B) = −
∑

y

p(y)B
∑

x

p(x|y)A log
(
p(x|y)A

)
, (3.26)

which is the average of the Shannon entropy of the conditional probability of A given

we obtain an outcome from B, this conditional probability distribution is given by

Bayes’ Theorem [108]

p(x|y)A = p(x, y)AB

p(y)B
, (3.27)

where p(x, y)AB is the joint probability of measuring X and Y and obtaining x and

y as results.

The conditional entropy in Eq. (3.26) is interpreted as the lack of information

we have about A given we know the outcomes of B. It can be shown (see Appendix

B) that the mutual information between A and B is given by6

I(A : B) = H(A) −H(A|B), (3.28)

where H(A) is the Shannon entropy of A given its probability distribution p(X)A.

The equation above simply states that the mutual information between A and B is

the ignorance of A less the ignorance of A given that we know the outcomes of B.

We can try to define a similar conditional entropy for the quantum case. In this
6This mutual information, defined for classical systems, has exactly the form of Eq. (3.20),

but switching von Neumann entropies for Shannon entropies and density matrices for probability
distributions.
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case, obtaining the outcome of the subsystem B cannot be done without taking into

consideration the effects of the measurement on it. Hence we suppose that if choose

a generalized measurement described by the Kraus matrices {MB
k }k in B, the joint

system ρAB will suffer a backaction

ρAB|k = (IA ⊗MB
k )ρAB(IA ⊗MB

k )†

pk

, (3.29)

if the outcome is k, with probability

pB
k = Tr

(
(IA ⊗MB

k )ρAB(IA ⊗MB
k )†

)
. (3.30)

With the reduced state ρA|k = TrB

(
ρAB|k

)
we can define the quantum-classical

conditional entropy

SM(A|B) =
∑

k

pB
k S(ρA|k), (3.31)

which follows exactly the same idea of the conditional entropy of Eq. (3.26), but

with the influence of the backaction in the quantum state and the dependence on

the choice of measurement {MB
k }k. Its interpretation is also similar, it represents

the ignorance of the system A given we know the outcomes of the generalized mea-

surements {MB
k }k.

It is useful to define the quantity

JM(A|B) = S(ρA) − SM(A|B), (3.32)

which means the information obtained by A with the outcomes of the quantum

measurement {MB
k }k of B, very similar to the mutual information in Eq. (3.28).

For the classical case, the quantity equivalent to Eq. (3.32) must be the mutual

information, but for the quantum case, this is not always true. For this reason, one

defines the quantum discord

DM(A|B) = I(A : B) − JM(A|B), (3.33)

meaning the mismatch between the total correlations and the information obtained
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by A after the outcomes of {MB
k }k in B.

A more compelling quantity is the measurement independent discord

D(A|B) = min
{MB

k
}k

DM(A|B) , (3.34)

which is the minimum discord obtained over all possible measurements. It is the

case where we obtain the maximum information about A with measurements in B,

i.e., maximizing JM(A|B). A non-zero value of this quantity means that there is no

measurement that can give us full information about the correlations, as is possible

in classical systems. From now on we shall refer to the measurement independent

discord simply as the quantum discord (and to the quantum discord of Eq. (3.33)

as the measurement dependent discord).

This correlation quantifier, without classical counterparts, has several applica-

tions in quantum information, quantum thermodynamics, open quantum systems,

and many-body physics [110]. In this thesis, it will be useful to indicate genuine

quantum correlations between Gaussian systems in Chapter ??.

3.4 Bayesian Networks

Bayesian Networks (BNs) was first introduced in its modern terms by Judea Pearl

in 1985 [47]. In Judea’s words, his study was “motivated by attempts to devise a

computational model for humans’ inferential reasoning”, from which he obtained a

graph-type model for inferring probabilities from conditional distributions disposed

in a causal order. This concept is used in a large range of applications, mainly in

Artificial Intelligence, which was its initial proposal application.

This concise presentation will focus only on the necessary concepts for the second

project of the thesis, which took a large inspiration from [48] in introducing the BN

concept to quantum systems. For a complete introduction to the subject of BNs,

see Refs. [43–46].
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Figure 3.1: Three random variables A, B and C disposed in a causal order.

3.4.1 Definition and examples

Suppose we have three random variables A,B, and C disposed in a causal order

where A causes B and B causes C (see Fig. 3.1). The approach to relating these

quantities is to assign to each arrow a conditional probability according to the causal

order. For instance, for the case of Fig. 3.1, the joint probability distribution

P (A,B,C) is

P (A,B,C) = P (C|B,A)P (B,A)

= P (C|B,A)P (B|A)P (A)

= P (C|B)P (B|A)P (A), (3.35)

where the last equation holds since the random variable C depends only on B.7

For more complex relations of causality, instead of an ordered string (as in Fig.

3.1) the causal orders can be described by directed graphs where the directed edges

mean causal relations and each vertex represents a random variable. Fig. 3.2 gives

an example of a directed graph describing more complex relations of causality. For

this case, the joint probability P (A,B,C,D,E, F ) is

P (A,B,C,D,E, F ) =P (F |A,B,C,D,E)P (A,B,C,D,E)

=P (F |C)P (A,B,C)P (F |D)P (D)P (F |E)P (E), (3.36)

where in the last equality we used that the random variable F only depends on C,D,

and E and these three variables are independent of each other. The joint probability
7Of course, the random variable C has a causal relation with A. But, once the random variable

B is known (B = b), the random variable C will be fully specified by P (C|B = b), thus A and C
become independent. This property is known as a d-separation between A and C [44, 45].
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P (A,B,C) can be computed separately

P (A,B,C) = P (C|A,B)P (A,B)

= P (C|A)P (C|B)P (B|A)P (A)

= P (C|A)P (C|B)P (B|A)P (A). (3.37)

Combining the two equations above, we obtain

P (A,B,C,D,E, F ) = P (C|A)P (F |C)P (C|B)P (B|A)P (A)P (F |D)P (D)P (F |E)P (E).

(3.38)

If in a directed graph there is a link from A to B, we say that A is a parent of B.

In the directed graph of Fig. 3.2 F has parents C,D and E; C has parents A and

B, and B has only the parent A. Notice that in Eq. (3.38), the joint probability

distribution is just the chain product of the conditional probabilities between the

random variables and their parents times the probability distributions of the random

variables without parents. This is a general property of Baysean Networks, the BNs

are sets of random variables with their causal relations described in acyclic directed

graphs8. For similar reasons as the examples above, we have the following theorem

[44, 45].

Theorem (Chain rule for Bayesian Networks): For the set {A1, · · · , An}

of all random variables in a BN, the joint probability distribution will be

P (A1, · · · , An) =
n∏

i=1
P (Ai|pa(Ai)), (3.39)

where pa(Ai) is the set of all parents of Ai.

For these reasons, BNs yield a compact representation for joint probability dis-

tributions of sets of random variables with causal relations.
8Acyclic directed graphs are directed graphs which have no cycles in their inner structure, or

directed loops. This avoids causal loops causing feedback cycles (see Fig. 3.3), which makes the
modeling too difficult.[44]
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Figure 3.2: Example of a directed graph representing relations of causality between
random variables.

Figure 3.3: A directed graph within an internal cycle, provoking a causal loop
between the random variables A, B, C, and D.
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3.4.2 Dynamical BNs for quantum systems (QBNs)

In this Subsection we make an application of BNs for estimating the probability of

reduced quantum systems to be in a particular conditional trajectory as the system

evolves, these are called Quantum Bayesian Networks (QBNs). This structure will

be the basis of the second main project of this thesis and has great influence from

[48, 115, 116].

The setup is the following. Consider a state divided into two parties A and B

and with the initial joint state

ρAB(0) =
∑

s

Ps |ψs(0)⟩ ⟨ψs(0)| , (3.40)

where {Ps, |ψs(0)⟩}s is an ensemble of quantum states which are not necessarily

orthogonal. If we have a global unitary evolution U(t) of the joint system, then each

state of the ensemble {|ψs(0)⟩}s will evolve deterministically as

|ψs(t)⟩ = U(t) |ψs(0)⟩ . (3.41)

Looking now at the reduced local systems, suppose we have observable OA in A

and OB in B with eigenvectors {|ai⟩}i and {|bj⟩}j, respectively. We know that if the

global state is |ψs(t)⟩, then the conditional probability of the reduced states being

in the eigenkets |ak⟩ in A and |bk⟩ in B is9

P (ak, bk|ψs(t)) = | ⟨ak, bk|ψs(t)⟩ |2. (3.42)

With this conditional probability in hand, we can create a BN (see Fig 3.4)

for estimating the probability of the joint system to be successively observed in

the states |a0, b0⟩ , |a1, b1⟩ , · · · , |an, bn⟩ for time instants (0, t1, · · · , tn), respectively.

From the Theorem given in Eq. (3.39), the probability of realizing such states is

P(ψs(0), a0, b0, a1, b1, · · · , an, bn) = PsP (a0, b0|ψs(0))P (a1, b1|ψs(t1)) · · ·P (an, bn|ψs(tn)),

(3.43)
9We will denote |ak, bk⟩ as the tensor product of vectors in A and B, |ak, bk⟩ = |ak⟩A ⊗ |bk⟩B .
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Figure 3.4: BN for the dynamical evolution of a quantum system. The upper line
describes the global state evolution (which we often call hidden layer) and the dashed
arrows indicate the causal dependence of the reduced states on the global states at
each instant tk.

where we omitted the conditional probabilities from ψs(tk) to ψs(tk+1) since these

transitions are deterministic and thus the conditional probabilities are 1 and, re-

membering, Ps is the ensemble probability distribution of the initial state of Eq.

(3.40). Consequently, the only global probability on which this joint distribution

depends is on the initial ensemble {ψs(0)}s.

Finally, for obtaining a conditional trajectory (a0, b0, a1, b1, · · · , an, bn) of the

reduced states, we must only marginalize over all s from the initial density matrix

ensemble

P(a0, b0, a1, b1, · · · , an, bn) =
∑

s

PsP (a0, b0|ψs(0))P (a1, b1|ψs(t1)) · · ·P (an, bn|ψs(tn)).

(3.44)

These results will be essential for obtaining the average shifts observable in the

second project of the thesis, shown in Chapter 7.
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Continuous Variables Framework

4.1 Bosonic modes

In this chapter, we shall describe the framework of quantum continuous variables.

This exposition is based mostly on Serafini’s pedagogical compendium [14], also

well-marked references can be founded in [15, 16]. The subject consists of the set of

tools needed to describe the degrees of freedom that satisfy canonical commutation

relations (CCR)

[q̂j, p̂j] = i, (4.1)

where q̂j and p̂j are, respectively, the position and momentum operators1 of the

degree of freedom j. The degrees of freedom that satisfy Eq. (4.1) are called bosonic

modes (in contrast to fermionic modes that satisfy anti-commutation relations).

This structure is widely used in quantum optics [55, 56], quantum information

and quantum computation [1, 2, 15, 117], for instance in continuous variables clusters

[118], many-body and condensed matter physics [119, 120]. In our case, we shall use

it in our first project to describe a CM in which the system and ancillae are bosonic

modes as a realization of the bosonic case described in the subsection 2.3.7 and in

the second project as an application of the heat distribution obtained with QBNs.

We will focus on using Gaussian states and Gaussian operations. This enables
1In this chapter, as well as in the chapters involving continuum variables, we identify all oper-

ators acting on some Hilbert space with a hat. The reason for such terminology will make itself
clear in the following sections.
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us to describe the effects of the environment in the system with the same idea of

tracing out the environment as in Eq. (2.12) but with a much smaller number of

variables. This will simplify dramatically the complexity of our computations.

4.1.1 Canonical vectors

We now define some objects concerning bosonic modes that will simplify our treat-

ment and notation. We start with the vector of operators

r̂ = (q̂1, p̂1, q̂2, p̂2, · · · , q̂n, p̂n)⊤, (4.2)

where n is the total number of modes of the system in question. As we can see, r̂ is

nothing but the vector of all canonical operators (or quadratures) of a system.

Moreover, we have the creation and annihilation operators â†
j and âj, related to

the quadrature variables by

âj = q̂j + ip̂j√
2

, (4.3)

the main importance of these last operators becomes clear in the second quantization

context, as will be detailed later in this Chapter, in Section 4.2. For arranging these

operators we define the vector

â = (â1, â
†
1, â2, â

†
2, · · · , ân, â

†
n)⊤. (4.4)

The elements of â can be related to the elements of r̂ by means of Eq. (4.3),

resulting in

â = Ū r̂, (4.5)

where2

Ū =
n⊕

j=1
ū, with ū = 1√

2

1 i

1 −i

 . (4.6)

2The symbol ⊕ means the direct sum operation, see Appendix C, Section C.2, for the definition.
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4.1.2 CCRs and the symplectic form

Given a system of n bosonic modes ordered according to Eq. (4.2), we define a

2n× 2n matrix Ω as

Ω =
n⊕

j=1
Ω1

= In ⊗ Ω1,

where Ω1 =

 0 1

−1 0

 , (4.7)

called symplectic form. It has the following properties that shall be useful to us

Ω = −Ω⊤ (anti-symmetric), (4.8)

Ω = −Ω−1 ⇔ Ω2 = −I2n, (4.9)

ΩΩ⊤ = Ω⊤Ω = −Ω2 = I2n, (4.10)

where Ik is the k × k identity matrix.

The importance of the symplectic form makes itself clear when we write the CCR

(Eq. (4.1)) in terms of r̂, resulting in

[r̂, r̂⊤] = iΩ, (4.11)

where we used the notation given in Appendix C, specially Eqs. (C.3) and (C.6).

This will be the cornerstone to define the symplectic group during this chapter.

4.2 Second quantization and the Fock space

The second quantization formalism is based on the idea of counting how many

particles or “field excitations” each bosonic mode has. It is based on the structure

existent from the creation and annihilation operators (Eq. (4.3)). If a mode j has

its local Hamiltonian Ĥj = ωj

(
â†

j âj + 1
2

)
, then the eigenvectors of such Hamiltonian

are discretized as |m⟩j, where m is a natural number. This way, the spectrum will
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be

Hj |m⟩j = ωj

(
m+ 1

2

)
|m⟩j , (4.12)

having a lower bound when m = 0 such that âj |0⟩j = 0. The eigenvectors |m⟩j

relate to themselves and with the operators as

âj |m⟩j =
√
m |m− 1⟩j , (4.13)

â†
j |m⟩j =

√
m+ 1 |m+ 1⟩j . (4.14)

The results above are just the standard Simple Quantum Harmonic Oscillator solu-

tion that can be found in any Quantum Mechanics textbook. But now this structure

is used to interpret the excitations as the number of particles in a mode. For instance

|3⟩j represents a state with 3 particles in the mode j, |8⟩k a state with 8 particles in

the mode k and so on. The space to accommodate this scheme is called Fock space,

which is the tensor product of the Hilbert spaces corresponding to each number of

particles.3 For a mode j, the corresponding Fock space is

Fj = Hj
0 ⊗ Hj

1 ⊗ Hj
2 ⊗ Hj

3 ⊗ · · · =
∞⊗

m=0
Hj

m, (4.15)

where Hj
m is the Hilbert space with m particles of the mode j. A tensor product

of all the eigenvectors of the free mode Hamiltonian (like in Eq. (4.12)) is called a

Fock basis, and is a basis of the Fock space. Finally, if we are working with a system

of n modes, the full Hilbert space will be

H =
n⊗

j=1
Fj. (4.16)

In this work, we shall always be acting in a Hilbert space like in Eq. (4.16) whenever

we have a system of n bosonic modes.
3It is important to remember that the tensor product of Hilbert spaces is also a Hilbert space,

thus Fock spaces are Hilbert spaces.
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4.3 Displacement operator and coherent states

Of major importance in continuous variable quantum mechanics is the unitary dis-

placement operator (or Weyl operator) defined as

D̂r = eir⊤Ωr̂, (4.17)

where r is an arbitrary 2n vector with real components, and notice that D̂†
r =

D̂−r. The name “displacement” turns out to be intuitive if we look at the following

property

D̂†
rr̂D̂r = r̂ − r, (4.18)

i.e., the action of this unitary on the vector of canonical operators is just its dis-

placement (this equation is proved in Appendix C, Section C.4).

Another relation frequently used is the composition property

D̂r1+r2 = D̂r1D̂r2e
ir⊤

1 Ωr2/2, (4.19)

where r1 and r2 are generic 2n vectors with real components. The composition prop-

erty can be proved by direct application of the Baker-Campbell-Hausdorff (BCH)

or Zassenhaus formula,4 and it can be an alternative way of defining the non-

commutative properties of the canonical quantum operators.

Displacement operators are also used to define coherent states, which may be

seen as a cornerstone to phase space methods in continuum variables. First, define

α as a vector of length n with complex components

αj = (qj + ipj)/
√

2, (4.21)

with qj and pj being real numbers. And define the 2n real vector r related to qj and
4This formula can be formulated as follows, let Â and B̂ be operators, then

eÂ+B̂ = eÂeB̂e− 1
2! [Â,B̂]e

1
3! (2[B̂,[Â,B̂]]+[Â,[Â,B̂]]) · · · . (4.20)
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pj as

r = (q1, p1, q2, p2, · · · , qn, pn)⊤. (4.22)

Then we can rewrite Eq. (4.17) as

D̂α = D̂−r = e
∑n

j=1(αj â†
j−α∗

j âj). (4.23)

It can be shown, using the BCH formula, that

D̂†
αâjD̂α = âj + αj. (4.24)

We are now in the position to define the coherent state |α⟩ as

|α⟩ = D̂α |0⟩ , (4.25)

where |0⟩ = ⊗n
j=1 |0⟩j is the vacuum of the whole Hilbert space of Eq. (4.16).

Consequently, |α⟩ is the eigenvector of the âj operators (see the proof of the following

equation in Appendix C, Section C.5)

âj |α⟩ = αj |α⟩ . (4.26)

It is often useful to describe a coherent state |α⟩5 in the Fock basis. This is given

by the following equation (see Appendix C, Section C.6, for the proof)

|α⟩ =
∞∑

m=0
e−|α|2/2 α

m

√
m!

|m⟩ . (4.27)

Other important properties for further use are

D̂αD̂β = e
1
2 (αβ∗−α∗β)D̂α+β, (4.28)

this is equivalent to the composition property of Eq. (4.19), and the overlap between
5In this case, as in all the following results and demonstrations, we will assume all coherent

states as being of only one mode (say, mode k), i.e., |αk⟩ = D̂αk
|0⟩, where D̂αk

= eαkâ†
k

−α∗
kâk

but we shall omit the k for simplicity of notation. The generalization to a number n of modes is
straightforward since |α⟩ =

⊗n
j=1 |αj⟩ and D̂α =

∏n
j=1 D̂αj

.
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two coherent states |α⟩ and |β⟩

⟨β|α⟩ = ⟨0| D̂−βD̂α |0⟩

= ⟨0| D̂α−β |0⟩ e
1
2 (αβ∗−α∗β)

= ⟨0|α− β⟩ e
1
2 (αβ∗−α∗β)

= e− 1
2 |α−β|2e

1
2 (αβ∗−α∗β), (4.29)

where in the second equality we used Eq. (4.28) and in the last equality we applied

⟨0| in Eq. (4.27) to obtain the overlap between |0⟩ and a coherent state. This overlap

results in

⟨0|α⟩ =
∞∑

m=0
e−|α|2/2 α

m

√
m!

⟨0|m⟩

=
∞∑

m=0
e−|α|2/2 α

m

√
m!
δ0,m

= e−|α|2/2.

Moreover, the set of all the coherent states {|α⟩ , α ∈ C} form an “overcomplete”

basis for the Hilbert space of the corresponding mode. This means that, although it

is not an orthogonal set, as we can see in Eq. (4.29), the set can span all the Hilbert

space. Indeed, a completeness relation can be shown (see Appendix C, Section C.7)

involving the coherent basis

1
π

∫
C
d2α |α⟩ ⟨α| = Î, (4.30)

where Î is the identity operator of the Hilbert space and
∫
C d

2α means an integration

over the entire complex plane. This provides an alternative way of computing the
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trace of an operator by using continuous variables

Tr
{
Â
}

=
∞∑

m=0
⟨m| Â |m⟩

= 1
π

∫
C
d2α

∞∑
m=0

⟨m|α⟩ ⟨α| Â |m⟩

= 1
π

∫
C
d2α ⟨α| Â

∞∑
m=0

|m⟩ ⟨m|α⟩

= 1
π

∫
C
d2α ⟨α| Â |α⟩ . (4.31)

To end our presentation about coherent states and displacement operators, we

shall present the Fourier-Weyl relation. This is the statement that any bounded

operator Â acting on the Hilbert space of a mode can be constructed by an integral

of displacement operators weighted by Tr
{
D̂αÂ

}
(see the proof in Appendix C,

Section C.8). More precisely

Â = 1
π

∫
C
d2αTr

{
D̂αÂ

}
D̂−α. (4.32)

This relation follows an idea similar to a Fourier expansion. When we have a function

of a real variable x expanded as f(x) = 1
2π

∫
dpF(p)e−ixp, the weight here is the

Fourier transform F(p) and the function e−ixp has the same role as the displacement

operator in Eq. (4.32). This parallel will be useful to gain some intuition on the

concept of characteristic function of a density matrix, which will be discussed below

in Sec. 4.4.

A direct consequence of the Fourier-Weyl relation is the orthogonality relation6

for displacement operators. If we put the displacement operator itself as Â in Eq.

(4.32), we obtain

D̂β = 1
π

∫
C
d2αTr

{
D̂αD̂β

}
D̂−α,

6This orthogonality is defined in terms of the Hilbert-Schmidt inner product between two oper-
ators. Given two operators Â and B̂ in a Hilbert space, their Hilbert-Schmidt inner product will
be Tr

{
Â†B̂

}
.
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which means that we can treat the trace term as a Dirac delta function

Tr
{
D̂−αD̂β

}
= πδ2(β − α), (4.33)

which is the desired orthogonality relation. Moreover, the orthogonality relation can

be rewritten for n modes in the real plane as

Tr
{
D̂rD̂−s

}
= (2π)nδ2n(r − s). (4.34)

4.4 Characteristic function

The characteristic function of a density matrix ρ̂ is the weight function of the

Fourier-Weil relation (Eq. (4.32)) if we expand the density matrix itself. More

precisely, if

ρ̂ = 1
π

∫
C
d2αχ(α)D̂−α, (4.35)

then, from the Fourier-Weyl relation (Eq. (4.32))

χ(α) = Tr
{
D̂αρ̂

}
(4.36)

is the characteristic function. The existence of this function for every ρ̂ is guaranteed

by the validity of the Fourier-Weyl relation.

From making the straightforward generalization to n modes and the change of

variables from α to r (given by Eq. (4.21)), Eq. (4.35) results in

ρ̂ = 1
(2π)n

∫
R2n

drχ(r)D̂r, (4.37)

where dr = dq1dp1dq2dp2 · · · dqndpn similar to a phase space integral, and

χ(r) = Tr
{
D̂−rρ̂

}
. (4.38)

Again, this follows the same reasoning as the characteristic function φ(y) of a

probability density function p(x), which are related by p(x) = 1
2π

∫
dyφ(y)e−ixy.
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Here the characteristic function is the Fourier transform of the probability density

and has the role of a weight function in the integral, similarly χ(r) has the role of

the weight and D̂r has the role of e−ixy in Eq. (4.37).

Since a physical density matrix ρ̂ must satisfy a set of properties, there is also a

set of properties that χ(r) must satisfy in order to describe a physical state. First of

all, from the definition we can conclude that the characteristic function must be a

continuous function. Now, from the normalization condition of Eq. (2.5), we must

have

χ(0) = Tr
{
D̂0ρ̂

}
= Tr{ρ̂}

= 1, (4.39)

where 0 here means the 2n vector of entries 0 and we used that D̂0 = I, where I is

the 2n identity matrix. Furthermore, the positive semi-definite condition (ρ̂ ≥ 0) is

equivalent to following condition over the characteristic function χ(r):

Υ ≥ 0, (4.40)

where Υ is a 2n×2n complex matrix, completely defined given a characteristic func-

tion χ(r), such that Υjk = χ(rj − rk)eir⊤
k Ωrj/2. The justification for this condition

can be found in Ref. [14].

Also, from the fact that ρ̂ is hermitian, we must have χ(r)∗ = χ(−r) and it can

be shown that this is also a consequence of Υ ≥ 0 (as it should be since ρ̂ ≥ 0

implies ρ̂ hermitian).

4.5 Quasi-probability distributions

If we construct a phase space of a system with the eigenvalues of canonical operators,

it is possible to define weight functions in this phase space which are used to com-

pute the average of observables. These weight functions are called quasi-probability

distributions since they don’t satisfy necessary probability distribution properties
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but can have similar interpretations.

4.5.1 Wigner fucntion

We can define the Wigner function (or W-function) as the Fourier transform of the

characteristic function

W (α) = 1
π2

∫
C
dβ2χ(α)e(αβ∗−α∗β). (4.41)

Going to a phase space constructed with the eigenvalues of the quadrature operators,

via Eq. (4.21), we obtain (see Appendix C, Section C.9)

W (q, p) = 2
π

∫
R
dq′ei2pq′ ⟨q − q′| ρ̂ |q + q′⟩ . (4.42)

Now, if we integrate W (q, p) over all p, we have

1
2

∫ ∞

−∞
dpW (q, p) = ⟨q| ρ̂ |q⟩ , (4.43)

so the integral of the Wigner function over the quadrature eigenvalues of p is twice

the probability distribution of the projective measuring of the conjugate quadrature

q. Analogous results are easily obtained for any pair of quadrature operators.

4.5.2 The s-ordered quasi-probability distribution

For s ∈ [−1, 1], we can define the s-ordered characteristic function as

χs(α) = Tr
(
D̂αρ̂

)
e

s
2 |α|2 , (4.44)

reducing to the characteristic function χs(α) when s = 0, that is χ0(α) = χ(α).

Further, we can define the s-ordered quasi-probability distribution Ws(α) as the

Fourier transform of the s-ordered characteristic function

Ws(α) = 1
π2

∫
C
d2β e(αβ∗−α∗β)χs(β), (4.45)
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which reduces to the Wigner function for the case of s = 0.

This is a normalized function, since

∫
C
d2αWs(α) =

∫
C
d2β δ2(β)χs(β)

= χ(0)

= 1. (4.46)

We shall expose in the following that other important quasi-probabilities result

from the s-ordered quasi-probabilities for s = 1 and s = −1.

4.5.3 Glauber-Sudarshan P-function

For the case of s = 1, the s-ordered quasi-probability satisfies an exceptional prop-

erty. It will be the function responsible for the diagonal decomposition of the density

matrix described by the modes of α, i.e., if we define P (α) = W1(α), then

ρ̂ =
∫
C
d2αP (α) |α⟩ ⟨α| . (4.47)

The equation above is proved in Appendix C, Section C.10, and P (α) is called the

Glauber-Sudarshan P-representation (or P-function).

4.5.4 Husimi Q-function

One can define the Husimi Q-function as

Q(α) = W−1(α). (4.48)

The function Q(α) receives the interpretation of being the probability of a het-

erodyne measurement to yield the outcome α. A heterodyne measurement is a

generalized measurement with Kraus matrices Mα = 1√
π

|α⟩ ⟨α|, where |α⟩ is a co-

herent state. These measurements are of major importance in Quantum Optics [55,
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121, 122]. One can prove (see Appendix C, Section C.11, for the proof) that

Q(α) = 1
π

⟨α| ρ̂ |α⟩ , (4.49)

and hence the Husimi Q-function is a valid probability distribution.

Finally, it is worth mentioning that the quasi-probability distributions are ex-

tremely useful to computations of averages of creation and annihilation operators in

normal, anti-normal, and symmetric ordering [14, 55, 123]. In this thesis, we shall

not use such properties directly.

4.6 Gaussian states

4.6.1 Definitions

We start by defining the second-order Hamiltionian as a Hamiltonian that is con-

structed as a degree two polynomial of canonical operators, we chose to study the

case where

Ĥ = 1
2 r̂⊤H r̂ + r̂⊤µ, (4.50)

where H is a 2n × 2n real matrix and a positive definite matrix (H > 0)7 called

the Hamiltonian matrix8 (notice that this is not the Hamiltonian operator) and µ

is a real vector with dimension 2n. A more suitable way of representing general

second-order Hamiltonians is given as follows. If we assign

r̃ = −H−1µ, (4.51)
7H must be symmetric (since Ĥ must be hermitian). But, additionally, the positive definite

restriction is there to ensure the thermodynamic stability of the thermal state (i.e., their eigenvalues
must be positive and bounded from below).

8The term Hamiltonian matrix is often given to the matrix ΩH by many authors. We follow a
different nomenclature in order to agree with Ref. [14].
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then, except for a constant term, we can write

Ĥ = 1
2D̂−r̃r̂⊤H r̂D̂r̃

= 1
2(r̂ − r̃)⊤H(r̂ − r̃). (4.52)

Equipped with these definitions, we define Gaussian states as thermal states with

a second-order Hamiltonian Ĥ in which its Hamiltonian matrix is positive definite

H > 0

ρ̂G = e−βĤ

Z
, (4.53)

where Z = Tr
{
e−βĤ

}
is the partition function and β > 0 is the inverse of the

temperature (here we also always set the Boltzmann constant to 1). This definition

includes pure states, which can be taken as the limit of the above equation with

β → ∞

ρ̂pure = lim
β→∞

e−βĤ

Z
. (4.54)

Another important concept in the context of Gaussian states is the statistical

moments, i.e., the averages of different orders of canonical operators. The first

moments are the average of the canonical operators

⟨r̂⟩ = Tr{ρ̂Gr̂}. (4.55)

As for the second moment, it is convenient to combine them in terms of the covari-

ance matrix

σ = 1
2 Tr

[
ρ̂G{(r̂ − r̄), (r̂ − r̄)⊤}

]
= 1

2
〈
{(r̂ − r̄), (r̂ − r̄)⊤}

〉
, (4.56)

where the anti-commutator inside the trace is defined just like in Appendix C,

Section C.1 and we defined r̄ = ⟨r̂⟩ (see Eq. (4.55)). If we execute the anti-

commutator, use the distributive property of averages, and use Eq. (4.11) in the
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equation above, we obtain

σ = ⟨r̂r̂⊤⟩ − ⟨r̂⟩⟨r̂⟩⊤ − i

2Ω, (4.57)

which can be a much more suitable way of computing the covariance matrix.

4.6.2 Bona-fide conditions for covariance matrices

Given that covariance matrices represent the second moments of canonical operators,

they must have restrictions on their components due to uncertainty relations. The

restriction is given by the following inequality (see Appendix C, Section C.12, for

the proof of this condition)

σ + iΩ
2 ≥ 0. (4.58)

This is the restriction that a covariance matrix must obey to represent a valid

quantum state and is called Roberson-Schrödinger relation, or also referred to as

bona-fide condition.

4.6.3 Dynamics of canonical operators and statistical mo-

ments

We start our development for the dynamics of Gaussian states by analyzing the

evolution of the vector of canonical operators r̂ in the Heisenberg picture for closed

systems under the action of a second-order Hamiltonian from Eqs. (4.50) and (4.52).

Additionally, we analyze the evolution of the statistical moments for closed systems

under the same Hamiltonian.

For the vector of canonical operators, the Heisenberg Equation implies

dr̂j

dt
= (ΩH r̂)j + (Ωµ)j . (4.59)
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The equation above is equivalent to stating that, remembering that H > 0,

dr̂
dt

= Ω(H r̂ + µ)

= ΩH(r̂ +H−1µ). (4.60)

So, if we define r̂′ such that

r̂ = r̂′ −H−1µ, (4.61)

then
dr̂′

dt
= ΩH r̂′, (4.62)

which has the solution

r̂′(t) = eΩH(t−t0)r̂′(t0).

Now using that r̂′(t0) = r̂(t0)+H−1µ and r̂′(t) = r̂(t)+H−1µ in the equation above,

we obtain

r̂(t) = eΩH(t−t0)r̂(t0) +
(
eΩH(t−t0) − I

)
H−1µ, (4.63)

where I is the 2n× 2n identity operator. This is the general solution for the Heisen-

berg vector of canonical operators that we intended to find. The solution above can

be rewritten in terms of r̃ from Eq. (4.51) as

r̂(t) = D̂r̃
(
eΩH(t−t0)D̂−r̃r̂(t0)D̂r̃

)
D̂−r̃. (4.64)

Notice that the general solution above reduces to the simple form

r̂(t) = eΩH(t−t0)r̂(t0), (4.65)

if µ = 0. The general solution of Eq. (4.64) can be understood as translating r̂(t0) so

that the Hamiltonian has purely quadratic terms in this new frame (see Eq. (4.52));

making the quadratic Hamiltonian evolution and then translating back the vector

to its initial frame.

Focusing now on the dynamics of statistical moments, we start by studying the

first moment’s evolution. The time derivative for the vector of the first moments
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given in Eq. (4.55) can be obtained by applying the density matrix ρ̂ in both sides

of Eq. (4.60) and taking the trace, arriving at

d⟨r̂⟩
dt

= Ω(H⟨r̂⟩ + µ). (4.66)

The equation above has the exact same structure as Eq. (4.60), thus its solution is

analogous

⟨r̂(t)⟩ =
〈
D̂r̃

(
eΩH(t−t0)D̂−r̃r̂(t0)D̂r̃

)
D̂−r̃

〉
. (4.67)

Again, if the Hamiltonian has no linear term (µ = 0), we have

⟨r̂(t)⟩ = eΩH(t−t0)⟨r̂(t0)⟩. (4.68)

For the second moment, we study the evolution of the covariance matrix. From

taking the derivative of Eq. (4.57) with respect to time, we obtain

dσ

dt
= d

dt
⟨r̂r̂⊤⟩ − d⟨r̂⟩

dt
⟨r̂⟩⊤ − ⟨r̂⟩d⟨r̂⟩⊤

dt
, (4.69)

for computing the term with d
dt

⟨r̂r̂⊤⟩ we observe that, in the Heisenberg picture,

d

dt
(r̂r̂⊤) = dr̂

dt
r̂⊤ + r̂

dr̂⊤

dt

= ΩH r̂r̂⊤ + Ωµr̂⊤ + r̂r̂⊤(ΩH)⊤ + r̂(Ωµ)⊤,

where in the second equality we used Eq. (4.60) and the transpose of it. We can now

apply the density matrix in the equation above and take the trace of it, obtaining

d

dt
⟨r̂r̂⊤⟩ = ΩH⟨r̂r̂⊤⟩ + Ωµ⟨r̂⊤⟩ + r̂r̂⊤(ΩH)⊤ + r̂(Ωµ)⊤. (4.70)

Lastly, using Eq. (4.70), the transpose of it, Eq. (4.60) and the transpose of it in

Eq. (4.69), we obtain
dσ

dt
= ΩHσ + σ(ΩH)⊤, (4.71)

which is our differential equation for a general second-order Hamiltonian evolution
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of the covariance matrix. Its solution is simple and is given by

σ(t) = eΩH(t−t0)σ(t0)
(
eΩH(t−t0)

)⊤
. (4.72)

There are three things that must be observed in the solution above. First, the

evolution of σ(t) does not depend on the first moment ⟨r̂(t)⟩, both of them evolve

in a decoupled way. Second, the solution of σ(t) does not depend at all on the

linear terms of the Hamiltonian, it only depends on the Hamiltonian matrix H of

the quadratic part. Third, the matrix eΩH(t−t0) clearly plays a major role in both

σ(t) and ⟨r̂(t)⟩ solutions; for this reason, and further simplifications in the following

of the thesis, we shall refer to it as SH = eΩHt (from now on we set t0 = 0 just for

convenience).

4.6.4 Symplectic operators

As already anticipated above, the matrix SH has a major role in the evolution of

statistical moments. We shall point out the condition that these operators must

satisfy in order to describe valid a physical evolution for vectors of operators. These

conditions are analogous to the condition of unitarity for evolution operators acting

on Hilbert space states.

Since in our applications, we shall deal only with quadratic Hamiltonians without

linear terms, and the extension to Hamiltonians with linear terms can be simply

accounted with applications of displacement operators in Eqs. (4.52), (4.64) and

(4.67), we shall from now on only consider quadratic Hamiltonians. Hence the

evolution will be fully described by the Hamiltonian matrix H.

In this context (where r̃ = 0) we obtain, by Eq. (4.65),

r̂(t) = Ŝ†
Ĥ

r̂(0)ŜĤ = SH r̂(0), (4.73)

where ŜĤ = e−iĤt is the time evolution unitary operator. This implies, for any
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vector of canonical operators r̂, that

Ŝ†
Ĥ

r̂ŜĤ = SH r̂, (4.74)

this equation makes explicit part of the enormous simplification that the continuous

variables framework can offer to us. The left-hand side sets the evolution to the

canonical operators given by the unitary operators acting at each one of the vector

elements, remembering that these unitaries act on an infinite-dimensional Hilbert

space. This evolution is equally obtained, on the right-hand side, by the action of

a much simpler 2n × 2n matrix (with real components) on the canonical vector,

simplifying manifestly our computations.

Notice that the evolution operator ŜĤ is unitary and thus represents a physical

transformation between states. Therefore, it must maintain the CCR for the vectors

of canonical operators r̂, i.e., if we call r̂′ = Ŝ†
Ĥ

r̂ŜĤ , then we must also have [r̂′, r̂′⊤] =

iΩ. This must imply, from Eq. (4.74) that

[r̂′, r̂′⊤] = [SH r̂, (SH r̂)⊤]

= SH [r̂, r̂]S⊤
H

= iSHΩS⊤
H

= iΩ. (4.75)

The equation above implies that

SHΩS⊤
H = Ω,

is the necessary and sufficient condition for a real 2n × 2n matrix to be considered

a transformation capable of substituting the unitary evolution as in Eq. (4.74).

Stating properly, any 2n× 2n real matrix S that satisfies

SΩS⊤ = Ω, (4.76)

is called a symplectic transformation and forms a symplectic group with the others
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transformations satisfying this property,9 in symbols S ∈ Sp2n,R. This is the group

in which all the elements can possibly describe a physical unitary transformation

acting in 2n vectors of operators.

4.6.5 Covariance matrix parametrization

It can be shown that for Gaussian states we have a one-to-one parametrization of

the density matrix in terms of the first moments and the covariance matrix of the

state. More precisely, if we know the covariance matrix σ (Eq. (4.56)) and the first

moments r̄ = ⟨r̂⟩ (Eq. (4.55)) of a Gaussian state than we can obtain its density

matrix by the relation

ρ̂G = e− 1
2 (r̂−r̄)⊤M(r̂−r̄)

Z
,

where M = 2arccoth(2iΩσ)iΩ, (4.77)

and Z = Tr
(
e− 1

2 (r̂−r̄)⊤M(r̂−r̄)
)

is just a normalization constant.

The proof for the parametrization of Eq. (4.77) can be found in Appendix

C, Section C.16, and is made with the use of the Normal Mode Decomposition or

Williamson’s theorem. This theorem can be stated as follows. SupposeM is a 2n×2n

positive definite real matrix, then there is a symplectic transformation S ∈ Sp2n,R,

such that

M = SDS⊤, (4.78)

where

D = diag(d1, d1, · · · , dn, dn), (4.79)

with dj > 0, ∀j ∈ [1, · · · , n] called symplectic eigenvalues.10 In Appendix C, Section

C.14, we present a method of obtaining the symplectic eigenvalues given a positive

definite matrix M .

Conversely, if we have the density matrix of a Gaussian operator ρ̂G, we can
9We call an application of a transformation A on a transformation O as application by congru-

ence when we have AOA⊤. For instance, in Eq. (4.76) at the left hand side S acts by congruence
in Ω.

10The proof of this theorem can be found in Refs. [14, 124–128].
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obtain its first moments and covariance matrix by Eqs. (4.55) and (4.56), thus

completing the one to one correspondence.

This correspondence is another critical advantage of dealing with Gaussian states.

A density matrix description of a bosonic Gaussian state requires infinite elements,

while the description of a 2n vector of averages and a 2n × 2n covariance matrix

requires a finite number of parameters. This parametrization of quantum states in

first and second moments is analogous to the intuitive parametrization of Gaussian

probability distributions in terms of their first and second moments.

4.6.6 Characteristic function of Gaussian states

Another important aspect of Gaussian states is that their characteristic function

has a particularly simple form. Using Eq. (4.77) in the definition of Eq. (4.38), one

can show11 that the characteristic function of a Gaussian state with first moments

vector r̄ = ⟨r̂⟩ and covariance matrix σ is

χG(r) = e− 1
2 r⊤Ω⊤σΩreir⊤Ω⊤r̄. (4.80)

Since a state is Gaussian if and only if its characteristic function has the form

described above, this equation will be very useful to distinguish the Gaussianity of

a state.

4.7 Gaussian operations

Given the very useful properties of Gaussian states pointed out above, it is of our

interest to find quantum operations (in the sense of quantum channels, defined in

Section 2.2) that preserve this Gaussian status of the states. These operations are

called Gaussian operations or Gaussian channels.

In this thesis, we shall follow the protocol described in Section 2.2 for obtain-

ing an open system evolution. This means that we will construct an initially un-

correlated joint system by making a tensor product between the system and the
11This is done in detail in Chapter 4 of Ref. [14].
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environment state, then we shall make the unitary evolution of the joint state and

finally trace out the environment in order to obtain the open system description.

In the following, we will prove that all of such operations: the tensor product, the

unitary evolution (generated by second-order Hamiltonians), and the partial trace,

are Gaussian operations. This enables us to use only first moments and covariance

matrices to completely describe our system during the evolution of our system and

environment starting at Gaussian states.

4.7.1 Tensor product

Suppose two Gaussian states ρ̂A with m modes and ρ̂B with n modes, first moments

r̄A = ⟨r̂A⟩ and r̄B = ⟨r̂B⟩ and covariance matrices σA and σB respectively. Using

the Gaussian characteristic function (Eq. (4.80)) and Eq. (4.37), we obtain

ρ̂A ⊗ ρ̂B = 1
(2π)2(m+n)

∫
R(2m)

drAe
− 1

4 r⊤
AΩ⊤σAΩrAeir⊤

AΩ⊤r̄AD̂rA
⊗
∫
R(2n)

drBe
− 1

4 r⊤
BΩ⊤σBΩrBeir⊤

BΩ⊤r̄BD̂rB

= 1
(2π)2(m+n)

∫
R(2m+2n)

drAdrBe
− 1

4 r⊤
AΩ⊤σAΩrA− 1

4 r⊤
BΩ⊤σBΩrB+ir⊤

AΩ⊤r̄A+ir⊤
BΩ⊤r̄BD̂rA

⊗ D̂rB

= 1
(2π)2(m+n)

∫
R(2m+2n)

dre− 1
4 r⊤Ω⊤σΩr+ir⊤Ω⊤r̄D̂r, (4.81)

where r =

rA

rB

 and σ = σA ⊕ σB. In the third equality, we regrouped the terms

in the exponential and used that r⊤
AΩ⊤σAΩrA + r⊤

BΩ⊤σBΩrB = r⊤Ω⊤σΩr and that

r⊤
AΩ⊤r̄A + r⊤

BΩ⊤r̄B = r⊤Ω⊤r̄, which is a direct consequence of the definition of

direct sum.12 Finally, also in the third equality of the equation above, we used that

D̂r = D̂rA
⊗ D̂rB

which is a direct consequence from the definition of the Weyl

operator (Eq. (4.17)).

Eq. (4.81) shows explicitly that the tensor product of two Gaussian states ρ̂A

and ρ̂B is a Gaussian state since it has a characteristic function on the same form

as Eq. (4.80). Moreover, it shows that we can construct a tensor product of two

Gaussian states ρ̂A and ρ̂B by making the following operations in their first moments
12We are implicitly assuming that Ω has the dimensions according to the vectors in which it is

acting, i.e., switching the n in Eq. (4.7) in each case for convenience.
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and covariance matrices

⟨r̂⟩ =

⟨r̂A⟩

⟨r̂B⟩

 and

σ = σA ⊕ σB.

(4.82)

(4.83)

4.7.2 Unitary operations

To show that unitary operators, generated by second-order Hamiltonians, are Gaus-

sian operations it is sufficient to show that if an initial state is of the form of Eq.

(4.53), then its unitary evolution ρ̂′
G = Û ρ̂GÛ

† (where Û is a unitary operator) will

also be of the form of Eq. (4.53). Therefore, suppose that our initial state is given

by Eq. (4.53), then if we have a unitary evolution given by Û = e−iĤ′ , where Ĥ ′ is

a generic second-order Hamiltonian, the evolution of the state will have the form

ρ̂′
G = Û

e−βĤ

Z
Û †

= e−βÛĤÛ†

Z
,

now if we call Ĥ ′′ = ÛĤÛ †, then we need only to show that Ĥ ′′ is a second-order

Hamiltonian in order to complete our proof. In fact

Ĥ ′′ = ÛĤÛ †

= e−iĤ′
ĤeiĤ′

= Ĥ − i[Ĥ ′, Ĥ] − 1
2! [Ĥ

′, [Ĥ ′, Ĥ]] + i

3! [Ĥ
′, [Ĥ ′, [Ĥ ′, Ĥ]]] + · · · , (4.84)

this is obtained with the use of another BCH formula.13 This proof is completed

by the fact that any commutator between second-order operators is a second-order

operator (see Appendix C, Section C.17, for a proof of this statement), hence H ′′ is

a second-order Hamiltonian.
13Given two operators Â and B̂, then

eÂB̂e−Â = B̂ + [Â, B̂] + 1
2! [Â, [Â, B]] + 1

3! [Â, [Â, [Â, B̂]]] + 1
4! [Â, [Â, [Â, [Â, B̂]]]] + · · · , (4.85)
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The unitary evolution for Gaussian states will be described by the symplectic

transformations SH as in Eq. (4.74). And it is sufficient to know the evolution of the

first moments and covariance matrix from the following equations already obtained

in Subsection 4.6.3

⟨r(t)⟩ = SH⟨r(0)⟩ and

σ(t) = SHσ(0)S⊤
H ,

(4.86)

(4.87)

since the Gaussianity of the states is preserved.

4.7.3 Partial trace

Suppose we have a global system AB composed of two subsystems A and B of m

and n bosonic modes, respectively, and we prescribe the canonical operators of AB

as r̂ =

r̂A

r̂B

, where r̂A and r̂B are the canonical operators of the subspace A and

B, respectively. Then if the global state ρ̂AB is Gaussian, it can be fully described

by its first moments r̄ = ⟨r̂⟩ and covariance matrix σ, which can be parametrized as

r̄ =

r̄A

r̄B

 and

σ =

 σA ξAB

ξ⊤
AB σB

 ,

(4.88)

(4.89)

where r̄A and r̄B are vectors of 2m and 2n real numbers, respectively and σA, σB

and ξAB are matrices of 2m× 2m, 2n× 2n and 2m× 2n real numbers, respectively.

Moreover, the reduced state ρ̂A = TrB (ρ̂AB) will also be a Gaussian state with

its first moments given by r̄A and covariance matrix σA, completely describing the

subsystem A. Analogously, the reduced state ρ̂B = TrA (ρ̂AB) will also be a Gaussian

state with first moments r̄B and covariance matrix σB.

The above affirmation can be proved as follows. Suppose we know the statistical

moments of AB (r̄ and σ). Then, from the characteristic function of a Gaussian
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state (Eq. (4.80)), we have

ρ̂AB = 1
(2π)m+n

∫
R2(m+n)

dre− 1
4 r⊤Ω⊤σΩr+ir⊤Ωr̄D̂r.

If we parametrize r = (rA rB)⊤ where rA and rB are 2m and 2n real vectors,

respectively, then

ρ̂AB = 1
(2π)m+n

∫
R2m

drA

∫
R2n

drBe
− 1

4 (rA rB)Ω⊤σΩ(rA rB)⊤+i(rA rB)Ω(r̄A r̄B)⊤
D̂rA

⊗ D̂rB
,

where we used Eq. (4.88) and that D̂r = D̂rA⊕rB
= D̂rA

⊗ D̂rB
, from the definition

of the Weyl operator (Eq. (4.17)). Computing the reduced state ρ̂A = TrB (ρ̂AB)

and remembering that the partial trace TrB acts only on the operators that belong

to the Hilbert space of B (thus all the exponential term and D̂rA
of the equation

above remain unaffected by the trace) we obtain

TrB (ρ̂AB) =
1

(2π)m+n

∫
R2m

drA

∫
R2n

drBe
− 1

4 (rA rB)Ω⊤σΩ(rA rB)⊤+i(rA rB)Ω(r̄A r̄B)⊤
D̂rA

⊗ TrB

(
D̂rB

)
.

(4.90)

From the orthogonality relation of Eq. (4.34), if we choose s = 0 and use that

D̂0 = 1, we obtain

Tr
(
D̂r
)

= (2π)nδ2n(r).

Applying the above equation in Eq. (4.90) results in

TrB (ρ̂AB) = 1
(2π)m

∫
R2m

drAe
− 1

4 (rA rB)Ω⊤σΩ(rA rB)⊤+i(rA rB)Ω(r̄A r̄B)⊤
∣∣∣
rB=0

D̂rA
.

(4.91)

Computing explicitly the exponential components

(rA rB)Ω⊤σΩ(rA rB)⊤ =
(

r⊤
A r⊤

B

)Ω⊤
m×m 0

0 Ωn×n


 σA σAB

σ⊤
AB σB


Ωm×m 0

0 Ωn×n


rA

rB


= r⊤

AΩ⊤σAΩrA + r⊤
BΩ⊤σABΩrA + r⊤

AΩ⊤σABΩrB + r⊤
BΩ⊤σBΩrB,
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where again we stated that Ω has dimensions according to the vector in which it

acts. Similarly, we have

r⊤Ω⊤r̄ = r⊤
AΩ⊤r̄A + r⊤

BΩ⊤r̄B.

Consequently, the equations above imply

e− 1
4 (rA rB)Ω⊤σΩ(rA rB)⊤+i(rA rB)Ω(r̄A r̄B)⊤

∣∣∣
rB=0

= e− 1
4 r⊤

AΩ⊤σAΩrA+ir⊤
AΩr̄A ,

and using this equation in Eq. (4.91), we finally obtain

TrB (ρ̂AB) = 1
(2π)m

∫
R2m

drAe
− 1

4 r⊤
AΩ⊤σAΩrA+ir⊤

AΩr̄AD̂rA
. (4.92)

This proves that the reduced state ρ̂A is a Gaussian state completely described by

the first moments r̄A and covariance matrix σA, since its characteristic function has

the form of a Gaussian one (Eq. (4.80)) with the desired parameters. The proof is

analogous for the reduced system ρ̂B.

4.7.4 Gaussian CPTP-maps

We have completed the proof that all operations we shall use in our open system

evolution are Gaussian operators. Now we present the form of Gaussian CPTP-maps

that this description creates.

Suppose we have a Gaussian system of n bosonic modes initially at a state with

first moments vector r̄S and covariance matrix σS. Similarly, initially, we have a

Gaussian environment of m bosonic modes with first moments r̄E and covariance

matrix σE. If the initial system-environment joint state is uncorrelated they are

described by a tensor product. Hence, from Eqs. (4.82) and (4.83), we have

r̄SE =

r̄S

r̄E

 and σSE = σS ⊕ σE, (4.93)

where r̄SE is the first-moment vector of the initial joint state and σSE is the covari-
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ance matrix of the initial joint state.

Let the unitary evolution of the joint system be given by the symplectic matrix

S =

A B

C D

 , (4.94)

where A is a 2n× 2n real matrix, B is a 2n× 2m real matrix, C is a 2m× 2n real

matrix and D is a 2m×2m real matrix. Then, from Eqs. (4.86) and (4.87), we have

r̄′
SE =

Ar̄S +Br̄E

C r̄S +Dr̄E

 , (4.95)

for the evolved first moments r̄′
SE. And

σ′
SE =

AσSA
⊤ +BσEB

⊤ AσSC
⊤ +BσED

⊤

CσSA
⊤ +DσEB

⊤ CσSC
⊤ +DσED

⊤

 , (4.96)

for the evolved covariance matrix σ′
SE.

Finally, by taking the partial trace of the environment (see Subsection 4.7.3), we

obtain

r̄′
S = Ar̄S +Br̄E, (4.97)

for the evolved first moments. And

σ′
S = AσSA

⊤ +BσEB
⊤, (4.98)

for the evolved covariance matrix.

If we define the 2n× 2n real matrices X = A and Y = σEB
⊤ and the 2n vector

d = Br̄B, we conclude that the following evolution

r̄S 7→ X r̄S + d and

σS 7→ XσSX
⊤ + Y, with

Y + iΩ ≥ iXΩX⊤,

(4.99)

(4.100)

(4.101)
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can represent any Gaussian CPTP-maps of a system n bosonic modes. The condi-

tion of Eq. (4.101) assures that the covariance matrices still satisfy the bona-fide

condition. The necessity of this condition can be shown by demanding the Eq. (4.58)

condition to the evolved covariance matrix of Eq. (4.100) and using the constraints

on X and Y due to the fact that the matrix S (of Eq. (4.94)) is symplectic.

Conversely to the result above, one can show (see, for instance, Chapter 5 of Ref.

[14]) that any matrices X and Y satisfying Eq. (4.101) can represent a Gaussian

map which acts on the system via the transformations of Eqs. (4.99) and (4.100).

Furthermore, one can always consider the environment as a 2n-modes state initially

at the vacuum (σE = I/2) to construct such a Gaussian channel (for this case, the

quantum channel will have d = 0).

This construction for the evolution in bosonic modes will be the approach used

in Chapter 6 to obtain the analytical results for the collisional model with initially

correlated ancillae.

4.7.5 Applying a channel in only one partition

A useful result for further use is the following. Suppose that we have a Gaussian

system with two parties A, with n modes, vector of first moments r̄A and covariance

matrix σA, and B, with m modes, vector of first moments r̄B and covariance matrix

σB. Now, suppose we have a quantum channel acting only in A given by Eqs.

(4.99), (4.100) and (4.101) with the respective vector d and matrices X and Y

(simultaneously, the identity operation acts in B). Then the global resulting map

will be
r̄A

r̄B

 7→

X r̄A + d

r̄B

 and (4.102)

σA ξ

ξ⊤ σB

 7→

XσAX
⊤ + Y Xξ

ξ⊤X⊤ σB

 . (4.103)

The proof of this result can be found in Chapter 5 of Ref. [14].
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4.7.6 One-mode Gaussian channels

As an important example of Gaussian channels, we present the classes of all possible

Gaussian quantum channels acting in one-mode states. Any Gaussian quantum

channel for one-mode bosonic systems can be described by a vector d̄ ∈ R2 and

2 × 2 real matrices T (called transmission matrix) and N (called noise matrix)

playing the role of X and Y , respectively, in Eqs. (4.99) and (4.100). Accordingly,

the condition of Eq. (4.101) will result in the conditions

N = N⊤ ≥ 0 and det N ≥ (det T − 1)2. (4.104)

In Ref. [129], it was shown that the general structure of such transformations can

be reduced to a simple set of classes of matrices T and N together with displacement

operations to generate d. The classes are the following

• Class A1: T = 0 and N = (n̄+ 1/2)I2, for n̄ ≥ 0. This means that the state is

turned completely into a thermal state, thus the channel is called completely

depolarizing channel;

• Class A2: T = diag(1, 0) and N = (n̄+1/2)I2. This channel is phase-sensitive,

i.e., the state’s amplification of the second moments depends on the quadra-

ture;

• Class B1: T = I2 and N = diag(0, 1)/2, for n̄ ≥ 0. This channel is also

phase-sensitive;

• Class B2: T = I2 and N = n̄
2 I2, for n̄ ≥ 0. This channel just adds classical

noise to the system, thus called additive-noise channel, it encompasses the case

of the identity transformation for n̄ = 0;

• Class C: T =
√
τ I2 where τ > 0 and τ ̸= 1. For the case of 0 ≤ τ ≤ 1,

N = (1 − τ)(n̄ + 1/2), for n̄ ≥ 0, this case is called the lossy channel (this

contemplates the Beam-Splitter case to be seen in Chapter 6). For the case

of τ > 1, N = (τ − 1)(n̄ + 1/2), for n̄ ≥ 0, this case is called the amplifier
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channel (this contemplates the Two-Mode Squeezing case.14)

• Class D: T =
√

|τ |σz for τ < 0 and N = (1 + |τ |)(n̄ + 1/2)I2. This channel

is also phase-sensitive and it can be seen as the environmental outcome of a

two-mode squeezing operation.

This classification will be helpful to the construction of a method for computing

the quantum discord in two-mode bosonic states exposed in Subsection 4.8.3.

4.8 Entropic quantities for Gaussian states

Obtaining the entropy and related quantities, such as Mutual Information and Quan-

tum Discord, of Gaussian states will be necessary to quantify correlations between

bosonic modes in our second project of the thesis, especially in Chapter 7. Here we

present how to compute these quantities. For obtaining the entropy of a Gaussian

state, it will be useful to present the following diagonalization.

4.8.1 Diagonalization of Gaussian states to thermal states

of free modes

Given a Gaussian state (Eq. (4.53)) with n bosonic modes and a general second-

order Hamiltonian in the form of Eq. (4.52), we can write the density matrix of the

state as

ρ̂G = e−(r̂−r̄)⊤M(r̂−r̄)

Z
, (4.105)

where Z = Tr
(
e−(r̂−r̄)⊤M(r̂−r̄)

)
and M is a positive definite 2n × 2n matrix. We

have, from Williamson’s theorem (Eq. (4.78)), that

(r̂ − r̄)⊤M(r̂ − r̄) = (r̂ − r̄)⊤SDS⊤(r̂ − r̄), (4.106)

where S ∈ Sp2n,R and D = diag(d1, d1, · · · , dn, dn) is the diagonal matrix of sym-

plectic eigenvalues. From the fact that the transpose of a symplectic transformation
14See Refs. [55, 121, 122] for the definition of the two-mode squeezing operation.

76



Chapter 4. Continuous Variables Framework

is also symplectic,15 we have that S̃ = S⊤ is symplectic and hence

(r̂ − r̄)⊤M(r̂ − r̄) = (r̂ − r̄)⊤S̃⊤DS̃(r̂ − r̄)

= Ŝ†(r̂ − r̄)⊤ŜDŜ†(r̂ − r̄)Ŝ

= Ŝ†D̂†
r̄r̂

⊤D r̂D̂r̄Ŝ, (4.107)

where D̂r̄ is a displacement operator (and we used Eq. (4.18)) and Ŝ is a unitary

such that Ŝ†r̂Ŝ = S̃r̂.16 Finally, using the relation above in Eq. (4.105), we obtain

ρ̂G = Ŝ†D̂†
r̄ρ̂freeD̂r̄Ŝ, (4.108)

where

ρ̂free = e−r̂⊤D r̂

Z
(4.109)

is a thermal state of n non-interacting modes with energies given by the symplectic

eigenvalues of M . The density matrix of thermal n free bosonic modes is obtained

in Appendix C (Eq. (C.33)). Explicitly, we have

ρ̂free =
n⊗

j=1
ρ̂freej

, with

ρ̂freej
= 1
νj + 1/2

∞∑
nj=0

(
νj − 1/2
νj + 1/2

)nj

|nj⟩ ⟨nj| ,

(4.110)

(4.111)

where νj are the symplectic eigenvalues for the covariance matrix of the state

ρ̂G.17

4.8.2 Entropy of a Gaussian state

From Eq. (4.108) we observe that any Gaussian state can be described as a unitary

transformation of a thermal state of free modes. Since the von Neumann Entropy is
15This can be proved by taking the transpose of Eq. (4.76) and using that Ω⊤ = −Ω.
16This relation is possible since for any S ∈ Sp2n,R, there is a real and symmetric 2n×2n matrix

H such that H = Ω⊤ logS and Ŝ†r̂Ŝ = Sr̂, where Ŝ = e−i 1
2 r̂⊤Hr̂ (see Appendix C, Section C.15,

for the proof).
17A consequence of the parametrization of Eq. (4.77) is that the elements of the covariance

matrix of the state ρ̂free are the symplectic eigenvalues of the covariance matrix of ρ̂G.
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invariant under unitary transformations, we conclude (in this Chapter, we denote the

von Neumann entropy by S(•) in order to differentiate it from symplectic matrices)

S(ρ̂G) = S(ρ̂free). (4.112)

Using Eq. (4.110) we obtain18

S(ρ̂G) =
n∑

j=1
S(ρ̂freej

). (4.113)

Finally, using Eq. (4.111), we have (see Appendix C, Section C.18, for a proof)

S(ρ̂G) =
n∑

j=1
g(νj), (4.114)

where νj are the symplectic eigenvalues of the covariance matrix of ρ̂G and

g(x) = (x+ 1/2) log(x+ 1/2) − (x− 1/2) log(x− 1/2). (4.115)

4.8.3 Quantum discord between two Gaussian bosonic modes

With the formulae of Eqs. (4.114) and (4.115), it is possible to compute the entropy

of any Gaussian state given its covariance matrix. Consequently, we can use this

formula also to compute any entropy-dependent quantity. Among these quantities

is the Mutual Information, which is a quantifier of total correlations and can be

computed with the use of Eq. (3.20). However, to compute a quantifier of quantum

correlations for Gaussian states is a hard task [110, 130]. Therefore, in this sec-

tion, we only focus on the computation of Quantum Discord between two Gaussian

bosonic modes, which will be used in Chapter 7, for the second project of this thesis.

There is no closed formula to compute the Quantum Discord between two Gaus-

sian bosonic modes. Notwithstanding, in Ref. [131] it was obtained a closed formula

for computing this quantity for a very rich and useful set of states. Here we present
18Here we used that S(

⊗
n ρ̂n) =

∑
n S(ρ̂n). This is a consequence of the fact that S(ρ̂A ⊗ ρ̂B) =

S(ρ̂A) + S(ρ̂B). Indeed S(ρ̂A ⊗ ρ̂B) = − Tr ((ρ̂A ⊗ ρ̂B) log(ρ̂A ⊗ ρ̂B)) = − Tr ((ρ̂A ⊗ ρ̂B) log(ρ̂A)) −
Tr ((ρ̂A ⊗ ρ̂B) log(ρ̂B)) = − TrA (ρ̂A log(ρ̂A)) − TrB (ρ̂B log(ρ̂B)) = S(ρ̂A) + S(ρ̂B).
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the main results of this paper. The main proofs of this Section are contained in

the Supplemental Material of Ref. [131], which is a highly self-contained and ped-

agogical text, so we make reference to this text when needed and to our proofs in

Appendix C when we deem necessary.

First, we make a useful definition. It can be shown (see Appendix C, Section

C.19) that any covariance matrix for a Gaussian state of two modes can be trans-

formed into the following form by means of single-mode symplectic transformations

σS =



a 0 c+ 0

0 a 0 c−

c+ 0 b 0

0 c− 0 b


, (4.116)

for a and b positive real numbers and c+ and c− are real numbers constrained

so that the covariance matrix is bona-fide. This form is named Simon normal

form. The normal form facilitates our treatment since each covariance matrix in a

normal form represents a class of states which have the same amount of quantum

correlations between the two parties (because each of these states can be transformed

into another by successive local symplectic transformations, which represents local

unitary transformations).

In order to make a clearer explanation for the method of Ref. [131] for obtaining

the quantum discord between two bosonic modes, we start by showing how to com-

pute the quantum discord for the Two-mode squeezed thermal state (TMST). This

state is represented by the following covariance matrix

σtmst =



a 0 c 0

0 a 0 −c

c 0 b 0

0 −c 0 b


, (4.117)

for positive a, b and c and null first moment (see Appendix C, Section C.22, for a

more detailed definition). Notice that the TMST’s covariance matrix is simply the
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Simon normal form with opposite correlation terms c+ and c−.

The method can be described in two steps. First step: state decomposition.

We construct our target Gaussian state ρ̂AB (in this case, the TMST), made of two

parties A and B (each being single modes), as an application of a local quantum

channel E in A of an initial Gaussian state ρ̂aB, i.e.,

ρ̂AB = (EA ⊗ IB)(ρ̂aB), (4.118)

where I represents the identity channel.

We chose the quantum channel E to be a phase-insensitive Gaussian channel,

these are the classes A1, B2 and C described in Subsection 4.7.6. Given an input

covariance matrix σin of the state, it will transform as

σin → (T ⊕ I2)σin(T⊤ ⊕ I2) + (N ⊕ 0), (4.119)

where T =
√
τ I2, with τ ≥ 0 and N = ηI2, with η ≥ |1 − τ |.

We also chose ρ̂aB to be the Einstein-Podolsky-Rosen (EPR) state, which has a

null first moment and has the following covariance matrix

σaB =

 βI2
√
β2 − 1C

√
β2 − 1C βI2

 , (4.120)

where C = sign(c+)σz and β > 0 (β here is not playing the role of the inverse of

temperature). These choices ensure that the state decomposition of Eq. (4.118)

correctly results in a TMST state parametrized as (see Supplemental Material of

Ref. [131] for the proof)

σAB =

 (τβ + η)I2

√
τ(β2 − 1)C√

τ(β2 − 1)C βI2

 , (4.121)

where τ ≥ 0 and η ≥ |1 − τ | are parameters of the phase-insensitive Gaussian

channel.

Second: remote preparation. We make a local generalized measurement
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Figure 4.1: State decomposition: Depicted in black lines, the state ρ̂AB can be
decomposed as an initial state ρ̂aB in which the first mode (in part A) passes trough
a quantum channel E . Remote preparation: Depicted in red symbols, the effect of
the generalized measurement MB in ρ̂aB creates the ensemble P = {pk, ρ̂a|k}k of
states in A which, passing through the quantum channel, becomes the ensemble
A = {pk, ρ̂a′|k}k. The ensemble A is also generated by the backaction, in A, of the
generalized measurement MB in ρ̂AB. (This figure was taken from Ref. [131] with
modifications.)

MB = {Mk}k in B. The application of such measurement in ρ̂aB causes an en-

semble P = {pk, ρ̂a|k}k as its backaction in A. The resulting ensemble of applying

the local generalized measurement MB in ρ̂AB is A = {pk, ρ̂a′|k}k, with

ρ̂a′|k = E(ρ̂a|k), (4.122)

as a consequence of Eq. (4.118) (see Fig. 4.1).

If we chose MB = hetB to be a heterodyne measurement (see the last paragraph

of page 57), the backaction of the state ρ̂aB in A will result in an ensemble of coherent

states P = {Q(α), ρ̂a|α = |α⟩ ⟨α|}α, where |α⟩ are coherent states and Q(α) is the

Husimi Q-function (see Supplemental Material of Ref. [131] for the proof of this

statement). These coherent states are the inputs of the phase-insensitive Gaussian

channel E . Consequently, from Eq. (4.118) and from the definition of the quantum-

classical conditional entropy (Eq. (3.31)), we obtain

ShetB
(A|B) =

∫
C
d2α Q(α)S(E(|α⟩ ⟨α|))

= S(E(|0⟩ ⟨0|)). (4.123)
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The second equality of the equation above comes from the normalization of the

Husimi Q-function and from the fact that S(E(|α⟩ ⟨α|)) = S(E(|0⟩ ⟨0|)) for any

coherent state |α⟩ (this statement is proved in Appendix C, Sec. C.20).

For computing the quantum discord, we must find the generalized measurement

which minimizes the quantum-classical conditional entropy (Eq. (3.31)). In order

to find this minimum, we use the seminal result of Refs. [132, 133], which states

that the vacuum (or any translation of it, i.e., coherent states) minimizes the output

entropy of a phase-insensitive Gaussian channel E among all possible states, i.e.,

S [E(|0⟩ ⟨0|)] = inf
ρ̂

S [E(ρ̂)] . (4.124)

From this result, we conclude that the heterodyne measurement is a strong candidate

to minimize the quantum-classical conditional entropy. Indeed, Eqs. (4.123) and

(4.124) imply

ShetB
(A|B) = inf

ρ̂
S[E(ρ̂)]. (4.125)

To complete the proof that ShetB
(A|B) is the smaller quantum-classical condi-

tional entropy, notice that, for any set {Mk}k of generalized measurements

SM(A|B) =
∑

k

pkS(ρ̂a′|k)

≥ inf
A

S(ρ̂a′|k)

= inf
P

S[E(ρ̂a|k)]

≥ inf
ρ̂

S(E(ρ̂)), (4.126)

where the first equality above comes from the definition of Eq. (3.31), the first

inequality says that the average is greater or equal to the infimum of A, the second

equality comes from Eq. (4.122) and the last inequality comes from the fact that P

is contained in the set of all possible one-mode density matrices.

From the equation above and Eq. (4.125), we conclude that

SM(A|B) ≥ ShetB
(A|B), (4.127)
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Figure 4.2: State decomposition: Depicted in black lines, the state ρ̂AB can be de-
composed as an initial state ρ̂aB in which the first mode (in part A) passes trough an
inverse squeezing operator Ŝ−1(r), a quantum channel E and a sequeezing operator
Ŝ(ξ). Remote preparation: Depicted in red symbols, the effect of the generalized
measurement MB in ρ̂aB creates the ensemble P = {pk, ρ̂a|k}k of states in A which,
passing through the quantum channel and squeezing operators, becomes the ensem-
ble A = {pk, ρ̂a′|k}k. The ensemble A is also generated by the backaction, in A, of
the generalized measurement MB in ρ̂AB. (This figure was taken from Ref. [131]
with modifications.)

for every generalized measurement {Mk}k, implying that ShetB
(A|B) is the minimum

of the possible quantum-classical conditional entropy. Therefore, we have a closed

formula for the quantum discord. From Eqs. (3.20) (3.32), (3.33) and (3.34), we

have

D(A|B) = S(ρ̂AB) + min
{MB

k
}k

SM(A|B) − S(ρ̂B)

= S(ρ̂AB) + S(E(|0⟩ ⟨0|)) − S(ρ̂B), (4.128)

where in the second equality we used Eqs. (4.123) and (4.127). Computing explicitly

the entropies (see Appendix C, Section C.21), we have finally obtain

D(A|B) = g(β) − g(ν−) − g(ν+) + g
(
τ + η

2

)
, (4.129)

where ν− and ν+ are the symplectic eigenvalues of the TMST covariance matrix σAB

(Eq. (4.121)) and g(•) is defined according to Eq. (4.115).

At this point, we can generalize the method described for computing the quantum

discord of a TMST state in order to extend it to a larger set of correlated two-mode

states. The two steps in the previous case will be modified as follows.

First step: state decomposition. In this case, we intend to construct a tar-
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get Gaussian state ρ̂AB in the Simon normal form (Eq. (4.116)). We first extend

our phase-insensitive Gaussian channel E to include phase-sensitive channels with

negative transmissivities, i.e., we can also have τ ≤ 0, this is the case D described

in Subsection 4.7.6. Then, supposing again the initial state ρ̂aB as being the EPR

state, with covariance matrix given by Eq. (4.120), we generate our state ρ̂AB by

the following operation

ρ̂AB = ((SξES−1
r )A ⊗ IB)(ρ̂aB), (4.130)

where Sx(ρ̂) = Ŝ(x)ρ̂Ŝ†(x) is the unitary one-mode squeezing operation and Ŝ(x) is

the squeezing operator with r ∈ [β−1, β] and ξ = r

√
ηr−1+|τ |β√

ηr+|τ |β
.19 The necessity of the

additional squeezing operations in the decomposition made above and the choices

of r and ξ will be explained in the next step. As consequence of Eq. (4.130), the

state ρ̂AB will have a covariance matrix σAB given in the Simon normal form (Eq.

(4.116)), with the following parametrization

a = θ(r)θ(r−1), θ(r) =
√
ηr + |τ |β, (4.131)

b = β, (4.132)

c+ = ±
√

|τ |(β2 − 1)θ(r−1)/θ(r), (4.133)

c− = ∓sign[τ ]
√

|τ |(β2 − 1)θ(r)/θ(r−1), (4.134)

where τ ∈ R, η ≥ |1 − τ |, r ∈ [β−1, β] and the ambiguity in the sign of Eqs. (4.133)

and (4.134) comes from the ambiguity of C = sign(σ+)σz.20

Second step: remote preparation. In this case, we chose to make the lo-

cal generalized measurement MB in B such that {Mα(u) = |α, u⟩ ⟨α, u|}α, where

|α, u⟩ = Ŝ(u) |α⟩ being |α⟩ a coherent state and Ŝ(u) the squeezing operator for

u > 0. The backaction of this measurement in B will result in an ensemble

P = {pα, ρ̂a|α}α in A such that the covariance matrix of the states ρ̂a|α will be
19The action of the squeezing operation in Gaussian states is described by the symplectic matrix

S(x) =
(
x1/2 0

0 x−1/2

)
, for x > 0.

20The proof of the parametrization above can be found in details in the Supplemental Material
of Ref. [131].
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σa|α = diag(r−1, r), where r = (1 + uβ)(u + β)−1 (the proof of this affirmation can

be found in the Supplemental Material of Ref. [131]). Moreover, we wish to turn

these states into coherent states, so we apply the inverse squeezing unitary channel

S−1
r . This enables us to use again the result of Refs. [132, 133] (Eq. (4.124)),21 from

which we conclude that

inf
ρ̂

S(E(ρ̂)) = S(E(S−1
r (ρ̂a|α)))

= S(E(|0⟩ ⟨0|)), (4.135)

for every ρ̂a|α ∈ P , since all S−1
r (ρ̂a|α) are coherent states.

Proceeding in analogy with the argument of the TMST state, we conclude that

the quantum discord of the state ((ES−1
r )A ⊗ IB)(ρ̂aB) is also given by Eq. (4.129).

Finally, to turn the state into the Simon normal form, we apply the squeezing

operation Sξ in A, with ξ =
√

ηr−1+|τ |β√
ηr+|τ |β

, and we obtain the parametrization of Eqs.

(4.131), (4.132), (4.133) and (4.134). The operation Sξ is unitary and local in A,

hence it does not interfere with any entropic quantity.

This method (see Fig. 4.2) gives the exact quantum discord between two modes

for a large set of states in the Simon normal form. Such a set generated by the

parametrization of Eqs. (4.131), (4.132), (4.133) and (4.134) cannot range all pos-

sible bona-fide states in the Simon normal form but encompasses a considerable

amount of them. This can be seen in the plots of Fig. 4.3, where we randomly

picked 2 × 105 values of τ and r having fixed different values of a and b.22 The plots

expose visually the range that can be accessible by the parametrization inside the

region of possibles c+ and c− delimited by the bona-fide conditions. It also indicates

the inability of such parametrization to achieve states with c+ and c− near 0. For

larger values of a and b, it can be seen that the parametrization is more capable to
21Which is also valid for our extended phase-insensitive Gaussian channel E (for all η ∈ R).
22With a and b fixed, we choose randomly r ∈ [b−1, b]. As a consequence of Eqs. (4.131), (4.132),

(4.133) and (4.134), we will have η =
√

4a2r2+(r2−1)τ2b2−(1+r2)|τ |b
2r defined in terms of a, b and r

and τ will be restricted to τ ∈ [τmin, τmax], where τmin = b+(br+2)r−
√

(r2−1)2b2+4a2r(r+b)(rb+1)
2(r+b)(rb+1) and

τmax = b+(br−2)r−
√

(r2−1)2b2−4a2r(r−b)(rb−1)
2(r−b)(rb−1) for b ≥ a, which is also randomly chosen within this

range.
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Figure 4.3: Plot of c+ and c− points, for different fixed a and b of states in the Simon
normal form generated 2 × 105 times by random choices of r and τ , according to
the parametrization of Eqs. (4.131), (4.132), (4.133) and (4.134). The pink curves
delimit the bona-fide region of states.

fill the region inside the bona-fide allowed states and can generate more points near

c+ = 0 and c− = 0. Although the regions exactly at c+ = 0 and c− = 0 are never

accessible, this will not compromise our use of this method in Chapter 7.

86



Part II

Main projects
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Chapter 5

Initially Correlated Ancillae -

Minimal Qubit Model CM

As already anticipated in the Introduction and Sec. 2.3.1, our first project of this

thesis focuses on dealing with Collisional Models (CMs) with initially correlated

ancillae. This is the first Chapter concerning to the first project, and we will explore

and obtain results for the evolution of a system interacting with correlated ancillae

for the case where all the parties are made of qubits. The results of this Chapter will

support the main results of Chapter 6 where we obtain a more complete description

of the evolution of the system and ancillae in the case where all the parties are made

of bosonic modes.

Initially correlated ancillae in a CM cause the system’s evolution (given by Eq.

(2.21)) to be described by a non-Markovian map, as already stressed in Subsection

2.3.1. We cannot treat it as a set of successive steps of separated maps, since in

the very first interaction of the system with the first ancilla, all the other ancillae

may start to be correlated with the system. Clearly, the problem will be much more

intractable than the uncorrelated case, and maybe it would be impossible for one

to find analytically the system’s steady state, just like it was done for some cases

in Chapter 2, for qubits. For this reason, we computed Eq. (2.21) numerically

for a (not very large, but sufficient) finite number of collisions in order to observe

the effects of the initial ancillae correlations using the Partial SWAP (Eq. (2.44))

as the unitary dynamics of each collision. These results are contrasted with the
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case where the local ancillae states are the same but are not correlated between

themselves, and definitely show that the presence of correlations pushes the system

to a different steady state.

As it was presented in Sec. 2.3.6, a direct consequence of the fact that all ancillae

are locally identical and from the Partial SWAP unitary in each collision is that we

have the following steady state of the system

ρ∗
S = lim

n→∞
ρn

S = ρA, (5.1)

where ρA is the local state of each ancilla. This phenomenon is called Homog-

enization [18, 19], described in Section 2.3.6, and in this Chapter we prove, for

qubits, that the presence of initial correlations between the ancillae can prevent it

to happen. Thus we conclude that the pushing caused by the correlations can break

Homogenization. The interesting point of it is that, as far as a local observer knows,

the system is only interacting via a partial SWAP with locally identical parts, but

the system is being driven to a different state than the local state of the ancillae.

Therefore, the main goal of this Chapter and of Chapter 6 is to prove the presence

of such pushing.

In order to be able to simulate a setup physically feasible to implement such CM

with initially correlated ancillae, we make use of Hamiltonian graph states [118, 134–

138]. By putting the ancillae to interact with each other via such Hamiltonian, before

the interaction with the system starts, we prepare an environment of correlated

ancillae. This structure will be described as follows.

5.1 Preparing the correlated ancillae environment

5.1.1 Hamiltonian graph states

We want to have a structure that is capable of encompassing as many ancillae as we

want since Homogenization tends to happen for a large number of collisions. Also,

we assume that our set of ancillae is translationally invariant. This means that, if
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ρE = ρA1A2···An is the environment global state made of all the NA ancillae, then

ρAkAk+1···Ak+l−1 = TrE/{k,··· ,k+l−1} ρE = ρA1A2···Al
, with 1 ≤ k ≤ NA, (5.2)

where the subscript E/{k, · · · , k + l − 1} means that all the ancillae but the ones

at the set {k, · · · , k + l − 1} are traced out.1 The equation above means that the

reduced state of any set of l neighbors’ ancillae is the same, no matter their position.

Clearly, this condition implies that the local state of each ancilla must be the same

(which corresponds to l = 1 in Eq. (5.2)).

The condition above can be accomplished if we start with a state of uncorrelated

ancillae |Φ⟩ = ⊗NA
k=1 |ϕ⟩, where the state |ϕ⟩ is arbitrary, and then evolve it according

to the Hamiltonian

HG = k
∑
i,j

GijHij, (5.3)

where k is an interaction strength, Gij are the matrix elements of the adjacency

matrix of a graph (to be explained in a moment), and Hij represents a certain

Hamiltonian interaction between ancillae i and j. For concreteness, we choose

Hij = σi
x ⊗ σj

x, (5.4)

where σx stands for the x Pauli matrix.

The adjacency matrix elements of a graph specify the strength between the

connection of each vertex of the graph. For instance, if Gij is the element ij of

an adjacency matrix G, its number is a measure of the strength of the connection

between the vertex i and j of the graph. In our setup, we suppose that each vertex

of the graph represents an ancilla, and their edges, as well as the adjacency matrix

elements, represent the interaction strength between them.

In general, we don’t need to have Gij = Gji which means that the connection

between two vertices of a graph does not need to be symmetric. For instance, if the

graph represents the traffic flow between two locations, the traffic can be stronger

in one way than in the other. But, in our case, we only use symmetric graphs
1If k + l surpass NA, the sequence continues considering the first k + l −NA ancillae.
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Figure 5.1: Cyclic graph with 9 ancillae (at the vertices), each interacting only with
the first and second neighbors (interactions represented by the edges).

(Gij = Gji), this is due to the fact that, since Hij = Hji, then the sum of Eq. (5.3)

will only affect the symmetric part of G. We also assume that our graph is cyclic,

i.e., the connection strength between the vertices only depend on their distances, to

ensure the translationally invariant character of the ancillae (Eq. (5.2)). This last

restriction induces the adjacency matrix to be a circulant matrix [139], which means

that the Gij elements must depend only on the distance between i and j and we set

the diagonal elements to 0. For instance, for NA = 5 we have

G =



0 c1 c2 c3 c2 c1

c1 0 c1 c2 c3 c2

c2 c1 0 c1 c2 c3

c3 c2 c1 0 c1 c2

c2 c3 c2 c1 0 c1

c1 c2 c3 c2 c1 0


, (5.5)

where c1, c2 and c3 are arbitrary real coefficients. As an example, if we want only first

and second neighbors interactions in our graph (see Fig. 5.1), we put cj = 0, ∀j > 2.
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5.1.2 Properties of the initial ancillae and their correlations

In the previous section, we outlined how to prepare the ancillae before the dynamics

of the CM start. Now, we show explicit examples of preparations and the correlations

that this process causes between the ancillae.

As already indicated, the whole environment will be described by

ρE = |ψE⟩ ⟨ψE| , (5.6)

where

|ψE⟩ = e−iHGt |ϕ⟩ , (5.7)

and HG is given by Eq. (5.3), generated by a specific cyclic graph that we choose

in each case.

Next, we obtain the values for the density matrices of the reduced state of each

individual ancilla, by tracing out the rest of the environment

ρA = ρAj
= Tr{A2,A3,··· ,ANA

} (ρE) , ∀j. (5.8)

Additionally, we also compute the values for the joint density matrices for each pair

of ancillae 1 and j

ρA1,Aj
= TrE/{1,j} (ρE) . (5.9)

Finally, we compute the mutual information between the first ancilla and its neigh-

bors,2 from Eq. (3.20) and the density matrices from the equations above, in order

to measure their total correlations.

These computations are done numerically. We set the interaction time of Eq.

(5.7) as t = 1, together with the interaction given by Eq. (5.4). This interaction

turns the reduced qubits states ρA to be diagonal in the σz basis, i.e., a qubit thermal

state. And thus it is sufficient for us only to study the population p = ⟨1| ρA |1⟩ of

the excited state, in order to describe the state ρA (see Appendix A, Section A.4).
2The mutual information doesn’t depend on which pair of ancillae we choose to compute it, but

only on the distance between them, as a consequence of our translational invariant condition.
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In other words, the ancilla local state will always be in the form

ρA =

1 − p 0

0 p

 , (5.10)

with 0 ≤ p ≤ 1/2. Finally, we choose |ϕ⟩ = |0⟩ and obtained the following results.

• We studied the population of the individual ancilla ρA (Eq. (5.8)) for cyclic

graphs where each ancilla interacts only with their first nearest-neighbors

(NN1) with equal intensities (c1 = 1), only with their first and second nearest-

neighbors (NN2) with equal intensities (c1 = c2 = 1) and only with their first,

second and third nearest-neighbors (NN3) with equal intensities (c1 = c2 =

c3 = 1). We investigated how the population of ρA depends on the total num-

ber of ancillae NA. The answer is that, for a number of NA ≳ 6, the population

tends to stabilize independent of NA. This happens because the interactions

occur between a small number of nearest-neighbors, and, as NA gets larger,

the total number of neighbors each ancilla will interact with saturates. For

instance, for NN2, each ancilla will interact with a maximum of 4 neighbors,

so when NA = 5 each ancilla of NN2 already interacts with its maximum of

neighbors. These observations are exemplified in the plots of Fig. 5.2.

• We studied the population dependence on the values of the interaction strength

k in Eq. (5.3), obtaining a peak of the populations at k = π/8 when p = 0.5

(i.e. maximally mixed state and infinite temperature limit) and a minimum

at k = π/4 when p = 0 (i.e. ground state and zero temperature limit) and

then the population oscillates with a period of π/4 in k for NN1, NN2, and

NN3. A plot of the populations versus k for different values of NA is given in

Fig. 5.3. The exact same pattern is seen for the plots with different NA’s;

• In Fig. 5.4, we compute the mutual information as a function of the distance

between neighbors for NN1, NN2, and NN3. This shows that, in general, the

ancillae get correlated with distant neighbors, even in the NN1 case. Intu-

itively, the mutual information between closest neighbors tends to be greater

than with the more distant neighbors. An exception happens in the NN3 case
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Figure 5.2: Population of the excited state of ρA versus total number of ancillae NA,
for different values of k.
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Figure 5.3: Population of ρA versus values of k, for NA = 11.
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Figure 5.4: Mutual information between neighbors versus distance between neigh-
bors, for NA = 7 and different values of k.

with NA = 7, where the mutual information tends to be very similar for any

neighbor distance, this is a consequence of the fact that in this case, each an-

cilla interacts equally with every other six ancillae. Additionally, we can see

that we have no mutual information between the neighbors in NN1 and NN2

for the case of k = 0.4, while in this case we have higher mutual information

in NN3 than for any other values of k;

• We analyzed the mutual information between nearest neighbors as a function

of k for different values of NA in Fig. 5.5. This exposes a periodic behavior of

the mutual information as a function of k (with a period of π/4), and peaks of

maxima for the mutual information in regions close to k = 0.1 and k = 0.7 for

NN1, and around k = 0.15 and k = 0.65 for NN2 and NN3. For NA ≤ 7, we

observe a higher maximum peak of the mutual information at k ≈ 0.4 in NN3,

while this region corresponds to a minimum for NN1 and NN2, which justifies

the behavior of the mutual information in Fig. 5.4 for k = 0.4. Interestingly,
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Figure 5.5: Mutual information between first neighbors versus k, for different values
of NA. For larger values of NA, the plots lose resolution since they are computation-
ally more demanding.

this maximum peak of the mutual information for NN3 seems to vanish for

NA > 7 and, as in NN1 and NN2, this region around k ≈ 0.4 have a minimum

for NN3. These observations about the correlations’ dependence on k will be

useful to our choice of parameters in order to investigate the dynamics of the

CM and the effects of the correlations in the evolution of the system, in the

next Section.

5.2 Breaking Homogenization by initial correla-

tions

Finally, we present the results for the CM evolution with a Partial SWAP unitary

(Eq. (2.44)) describing the interaction between each locally identical ancilla and the

system, just like the Homogenization process described in Sec. 2.3.6. But now, we
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suppose the presence of initial correlations between the ancillae, which oblige us to

compute directly Eq. (2.21) to obtain the system’s evolution after each collision.

In this case, we don’t have the option of decomposing the evolution as a successive

operation of simpler channels. Consequently, these computations using Eq. (2.21)

needed to be done numerically.

We set the correlated ancillae forming the initial environment ρ0
E as being the

Hamiltonian graph states presented in the former Section, choosing the same set of

cyclic graphs NN1, NN2, and NN3, we now chose N = 17 in order to have enough

collisions so that the system reaches its steady state. We also constructed another

environment by removing the correlations between the ancillae in these Hamilto-

nian graph states, but keeping the same local ancilla-reduced state ρA (such that

ρE = ρ⊗NA
A ). This way, we prepare two environments, one causing a Non-Markovian

evolution with correlated ancillae and the other with a Markovian evolution (exactly

as the standard homogenization of Sec. 2.3.6), both having the ancillae in the same

local state ρA.

As in standard CMs outlined in Sec. 2.3, we start at t = 0 and the stroboscopic

evolution is given in steps of τ (for these computations we choose τ = 1), which

is the duration of each collision. We initialized the system’s qubit at the ground

state ρ0
S = |0⟩ ⟨0| and we can again describe the system’s state by its population

of the excited state. We analyzed the dynamics for the Hamiltonian graph states

with different values of k (in the Hamiltonian of Eq. (5.3)). From the analysis of

Figs. (5.4) and (5.5) we searched for the graph states that would maximize the

initial correlations between the ancillae and, consequently, maximize the deviation

of the system steady state with respect to the case of independent ancillae, therefore

breaking Homogenization. We also analyzed how different values of g for the strength

of the Partial SWAP in Eq. (2.44) affected the desired pushing. We present the

following results:

• As can be seen in Figs. 5.6, 5.7 and 5.8, the parameter k has a central role

in the pushing effect of the correlations over the system’s evolution, since it

significantly affects the correlations between the ancillae, as was observed inf

Fig. 5.5. From this same Figure, we also deduced that the region around
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k ≈ 0.4 may have a minimum for the mutual information of NN1, NN2, and

NN3 for the case of NN3 we suppose that k ≈ 0.4 corresponds to a minimum

in the mutual information for NA ≥ 8 due to Fig. 5.5), and hence there

would be fewer correlations to cause the pushing. This fact can be seen in

the plots of NN2 and NN3 (Figs. 5.7 and 5.8), where there is no breaking of

homogenization for k = 0.4. Adversely, for NN1 (Fig. 5.6) we see that the

pushing is still present in k = 0.4, which can be caused by the non-vanishing

mutual information between the ancillae since the behavior of the mutual

information can be different than in Fig. 5.5 for larger NA. Also from Fig.

5.5, we suppose large correlation effects in the regions around k = 0.15 and

k = 0.65 for NN1, k = 0.15 and k = 0.7 for NN2, and k = 0.1 and k = 0.7

for NN3. This is confirmed by the plots of Figs. 5.6, 5.7 and 5.8 since, for the

initially correlated ancillae case with these values of k, clearly the system’s

steady state deviates from the homogenization in the uncorrelated case;

• Finally, we also study different values of g (the strength of the Partial SWAP

interaction, given in Eq. (2.44)) in the plots of Figs. 5.6, 5.7 and 5.8. They

show the pattern that, for lower values of g, exemplified by g = 0.5, the ho-

mogenization takes more steps to happen, but the effect of the correlations

is stronger than for larger g’s. This seems to suggest that a greater thermal-

ization (or homogenization) time allows the correlations to act more in the

system’s evolution, for greater values of g, e.g. g = 1.5, the system homog-

enizes too rapidly, so the correlation effects are unseen. Lastly, the Partial

SWAP depends trigonometrically on g (see Eq. (2.44)), therefore, the effects

of g in the system’s evolution will oscillate, as g grows, repeating the results

in cycles of π.

The analysis above clearly confirms the pushing effect on the system’s evolution

and the breaking of Homogenization caused by the presence of initial correlations

between the ancillae, for the case where the system and ancillae are qubits. These

results are also published in [96].
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Figure 5.6: Plots of population of ρS versus number of steps for ancillae prepared
with the NN1 cyclic graph with NA = 17, for different values of k. Each line
corresponds to a different value of g strength of the partial SWAP interaction, from
top to bottom g = 0.5, g = 1.0, and g = 1.5. The red dashed lines indicate the
value of the population of the respective ρA, which is the value in which the system’s
population converges if homogenization happens.
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Figure 5.7: Plots of population of ρS versus number of steps for ancillae prepared
with the NN2 cyclic graph with NA = 17, for different values of k. Each line
corresponds to a different value of g strength of the partial SWAP interaction, from
top to bottom g = 0.5, g = 1.0, and g = 1.5. The red dashed lines indicate the value
of the respective ρA population, which is the value in which the system’s population
converges if homogenization happens.
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Figure 5.8: Plots of population of ρS versus number of steps for ancillae prepared
with the NN3 cyclic graph with NA = 17, for different values of k. Each line
corresponds to a different value of g strength of the partial SWAP interaction, from
top to bottom g = 0.5, g = 1.0, and g = 1.5. The red dashed lines indicate the value
of the respective ρA population, which is the value in which the system’s population
converges if homogenization happens.
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Chapter 6

Initially Correlated Ancillae -

Gaussian States CM

In this Chapter, we present the main results of the second project of this thesis. We

obtain simple analytical formulae for the evolution of the system for any number

of initially correlated ancillae in the CM, as described in Sec. 2.3, with a Partial

SWAP unitary in bosonic modes states. Here we observe a direct influence of the

initial correlations between the ancillae in the system’s evolution, which cause a

linear (and independent of the initial system state) term on the system’s steady

state. This presents a clear image of the pushing caused by the correlations and the

breaking of Homogenization. These results are also described in [96].

The results were possible since we consider the system and ancillae bosonic

modes starting in Gaussian states. This simplifies remarkably the computations,

as explained in Sec. 4.6. Now we only study the covariance matrices which will

completely describe our system and environment.1 Also, the continuous variables

formalism made possible a much more simple description of the dynamics, because

now the evolution is given by the 2(NA + 1) × 2(NA + 1) (where NA is the total

number of ancillae) symplectic matrices, instead of unitaries that act directly in the

infinite-dimensional Hilbert space. These characteristics of our object of study al-
1For instance, in Chapter 5 we were able to compute numerically a maximum of only 17 collisions

in our CM since this would involve the preparation of 17 ancillae in the environment. In order to
fully describe the environment density matrix the computations involved 217 ×217 matrices. While
for Gaussian states, an environment made of 100 ancillae can be fully described by a 200 × 200
covariance matrix.
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low us to manipulate simple matrices analytically, for a low number of ancillae and

collisions, and then induce the results for arbitrary numbers. The procedure will be

detailed in the following.

6.1 Preliminaries

6.1.1 The bosonic CM evolution

As we already pointed out above, the system and environment are composed of

bosonic modes. We have one mode for our system andNA modes for the environment

(each mode represents one ancilla). All of them start the evolution in Gaussian

states, thus their initial states ρ0
S and ρ0

E will be fully described by their covariance

matrices σ0
S and σ0

E and their firsts moments ⟨r̂0
S⟩ and ⟨r̂0

E⟩. Now we assume, without

loss of generality, that ⟨r̂0
S⟩ = 0 and ⟨r̂0

E⟩ = 0 (where 0 here means a respective vector

of 0 in all entries), which will ensure that the first moments will remain 0 during

the evolution, remaining for us only the analysis of the covariance matrices.2

We will follow the procedure explained in Subsec. 2.3.1 to represent the dynamics

of the CM. Since we are dealing with Gaussian states and quadratic-Hamiltonian

unitaries (the Beam Splitter, to be presented in the next Subsection), all the follow-

ing steps will maintain the Gaussian character of the states, as proved in Section

4.7. Further results from Section 4.7 will also be used.

We start by supposing that the system and environment start uncorrelated at

time t = 0, so their joint state will be given by ρ0
SE = ρ0

S ⊗ ρ0
E. The tensor product

is a Gaussian operation and the resulting covariance matrix will be

σ0
SE = σ0

S ⊕ σ0
E, (6.1)

from Eq. (4.83).

Then we make a unitary evolution, which is described by a symplectic matrix
2This last restriction can contemplate the general analysis since, as we shall study the evolution

under the Partial SWAP unitary, the evolution of the first moments is given by Eq. (4.68). So,
if the system starts with some arbitrary first moment r̄, then we can always translate such first
moment to 0 (which will not affect the covariance matrix since its evolution equation, Eq. (4.71),
is decoupled from the first moments) and Eq. (4.68) guarantee that its evolution will be trivial.
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S1
H (which will be related to the unitary used, in our case, the Partial SWAP), using

Eq. (4.72)

σ1
SE = S1

Hσ
0
SE(S1

H)⊤, (6.2)

where σ1
SE is the covariance matrix of the joint system plus environment state after

the first collision.

Next, in order to obtain the system’s evolution, we separate the joint covariance

matrix as

σ1
SE =

 σ1
S ξ1

SE

(ξ1
SE)⊤ σ1

E

 , (6.3)

where σ1
S is a 2 × 2 block matrix, σ1

E is a 2NA × 2NA block matrix and ξ1
SE is a

2 × 2NA block matrix. As it is demonstrated in Sec. 4.7, σ1
S will be the covariance

matrix of the reduced state of the system, i.e., the system obtained after tracing

out the environment. For obtaining the following steps of the system’s evolution,

we just proceed to evolve the joint system SE with the respective unitaries

σn
SE = Sn

HS
n−1
H · · ·S1

Hσ
0
SE(S1

H)⊤ · · · (Sn−1
H )⊤(Sn

H)⊤ (6.4)

and again separate the evolved joint system as

σn
SE =

 σn
S ξn

SE

(ξn
SE)⊤ σn

E

 , (6.5)

taking σn
S as the covariance matrix of our evolved reduced state. Furthermore, σn

E

is the covariance matrix of the environment’s reduced state.

The reason that we must evolve the whole joint system in Eq. (6.4) is that

we cannot have a map from intermediate covariance matrices of the system to the

final one since we must consider the non-Markovian effects caused by the initial

correlations between the ancillae. This has the same reasoning of why we cannot

break the map of Eq. (2.21) into a succession of intermediate maps. In fact, notice

the resemblance between Eqs. (6.4) and (2.20) and note that Eq. (6.5) has the same

role as Eq. (2.21).
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6.1.2 The Beam Splitter interaction

Here, we present the unitary that we shall use in our CM for each collision. It is an

interaction of immense importance in Quantum Optics, the so-called Beam-Splitter

(BS) [14, 15, 55, 98, 121]. The BS can be defined by the following interaction

Hamiltonian between two bosonic modes A and B

ĤBS = g

2(p̂Aq̂B − q̂Ap̂B), (6.6)

where g > 0.

In the following, we will show that the unitary generated by this Hamiltonian

satisfies the Partial SWAP conditions (Eqs. (2.45) and (2.46)) for the Gaussian

bosonic modes case.

The interaction Hamiltonian above is quadratic in terms of canonical operators,

hence it can be decomposed in terms of Eq. (4.50) with µ = 0 and the Hamiltonian

matrix

HBS =

 0 −igσy

igσy 0

 , (6.7)

where each entry of the matrix above is a 2 × 2 matrix and σy is the y Pauli matrix.

Therefore, the corresponding symplectic transformation will be

SBS = eΩHBSτ

=

 c s

−s c

 , (6.8)

where c = cos(gτ), s = sin(gτ), τ is the duration of the interaction and each entry

is multiplied by I2.

If the modes A and B are Gaussian, they can be described by covariance matrices

σA and σB. And if they are uncorrelated and happen to be in the same local state

(σA = σB = σ), their joint covariance matrix will be

σAB =

σ 0

0 σ

 . (6.9)
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Hence, the unitary Beam Splitter operation in this state will be given by

SBSσABS
⊤
BS =

c −s

s c


σ 0

0 σ


 c s

−s c



=

σ 0

0 σ

 . (6.10)

Consequently, the partial traces in A and B will result in the same state as the initial,

satisfying Eqs. (2.45) and (2.46). These Equations are necessary and sufficient

conditions for a unitary operator to be a Partial SWAP [19].

6.1.3 Correlations block-matrices

Before presenting our results, we will expose important properties of the block ma-

trices that will describe completely the correlations between our ancillae. Suppose

two ancillae of our environment, representing the modes j and k, respectively. We

can take a block matrix made of the covariance matrix terms

ξj,k =

σ2j−1,2k−1 σ2j−1,2k

σ2j,2k−1 σ2j,2k



=

⟨qjqk⟩ − ⟨qj⟩⟨qk⟩ ⟨qjpk⟩ − ⟨qj⟩⟨pk⟩

⟨pjqk⟩ − ⟨pj⟩⟨qk⟩ ⟨pjpk⟩ − ⟨pj⟩⟨pk⟩

 , (6.11)

where we used canonical operators of different modes commute and Eq. (4.57).

Now, given the reduced state ρj,k of the modes j and k, its covariance matrix will

be

σj,k =

 σj ξj,k

ξ⊤
j,k σk

 , (6.12)

where σj(k) is the local covariance matrix of j(k). Furthermore, from the deduction

of Eq. (4.83), we have ξj,k = 03 if and only if ρj,k = ρj ⊗ ρk is the tensor product

of the local density matrices. From Eq. (3.17), the mutual information between j

3In this context, 0 means null matrix.
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and k is I(j : k) = 0 when ρj,k = ρj ⊗ ρk, consequently ξj,k = 0 is necessary and

sufficient to I(j : k) = 0.

For this reason, we often name these components as correlations between bosonic

modes of Gaussian states. For instance, for an environment made of 5 ancillae, we

have

σE =



σA1 ξ1,2 ξ1,3 ξ1,4 ξ1,5

ξ⊤
1,2 σA2 ξ2,3 ξ2,4 ξ2,5

ξ⊤
1,3 ξ⊤

2,3 σA3 ξ3,4 ξ3,5

ξ⊤
1,4 ξ⊤

2,4 ξ⊤
3,4 σA4 ξ4,5

ξ⊤
1,5 ξ⊤

2,5 ξ⊤
3,5 ξ⊤

4,5 σA5


, (6.13)

where all the terms inside the above matrix are actually 2 × 2 block matrices, σAn

are the covariance matrices of the n-th ancilla reduced state and ξj,k represents the

correlations between the ancillae j and k.

6.2 Main results

6.2.1 Correlated nearest-neighbors

We start with a simple, yet insightful result. We apply the system evolution proce-

dure presented in Subsection 6.1.1 for the case where we have NA ancillae that are

correlated only with their nearest neighbors. Additionally, we start supposing that

the ancillae are not necessarily identical for obtaining a more general result and then

restricting it to identical ancillae and comparing it to Homogenization. This means

that the correlation terms of the environment will be in the form ξj,k = ξj,kδk,j+1.

Therefore, the environment of correlated ancillae will initialize in a state with the
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following 2NA × 2NA covariance matrix4

σ0
E =



σA1 ξ1,2 0 · · · 0

ξ⊤
1,2 σA2 ξ2,3 · · · 0

0 ξ⊤
3,4 σA3

. . . ...
... . . . . . . . . . ξNA−1,NA

0 0 · · · ξ⊤
NA−1,NA

σANA


. (6.14)

The joint system will start as

σ0
SE = σ0

S ⊕ σ0
E

=



σ0
S 0 0 · · · 0

0 σA1 ξ1,2 · · · 0

0 ξ⊤
1,2 σA2

. . . . . .
... . . . . . . . . . ξNA−1,NA

0 0 · · · ξ⊤
NA−1,NA

σANA


. (6.15)

This joint state evolves as the system evolves unitarily (collides) with each ancilla

j. They interact via the Hamiltonian

Ĥj = ĤS + ĤAj
+ ĤBSj

, (6.16)

where ĤS = ω
2 (q̂2

S + p̂2
S), ĤAj

= ω
2 (q̂2

Aj
+ p̂2

Aj
), for ω > 0, q̂S(Aj) and p̂S(Aj) are the

quadrature operators of the system (ancilla j) and

ĤBSj
= g

2(p̂S q̂Aj
− q̂S p̂Aj

), (6.17)

for g > 0, is the Beam Splitter interaction of the system with each ancilla j. We

have that ĤS and ĤAj
are local Hamiltonians, so we can set them to 0 by going to

the interaction picture (see Appendix A).

Proceeding, we compute the symplectic transformation corresponding to the
4In this Section, every matrix element is a 2 × 2 block matrix, or a number multiplied by I2.
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unitary generated by the Hamiltonian Ĥj in the interaction picture

Sj
H = eΩHBSj

τ , (6.18)

where HBSj
is the (2NA +1)× (2NA +1) Hamiltonian matrix corresponding to ĤBSj

from Eq. (6.17) and τ is the duration of the collision. For j = 1 (first collision), we

have the following matrix Hamiltonian matrix

H1
BS =



0 −igσy 0 · · · 0

igσy 0 0 · · · 0

0 0 0 · · · 0
... ... ... . . . ...

0 0 0 · · · 0


, (6.19)

where σy is the y Pauli matrix. Consequently, we have the following (2NA + 1) ×

(2NA + 1) symplectic matrix

S1
H =



c s 0 · · · 0

−s c 0 · · · 0

0 0 1 · · · 0
... ... ... . . . ...

0 0 0 · · · 1


, (6.20)

where c = cos(gτ) and s = sin(gτ).

In a completely analogous way, we have the Hamiltonian matrices corresponding
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to the next collisions

H2
BS =



0 0 −igσy · · · 0

0 0 0 · · · 0

igσy 0 0 · · · 0
... ... ... . . . ...

0 0 0 · · · 0


,

...

HNA−1
BS =



0 0 · · · 0 −igσy

0 0 · · · 0 0
... ... . . . ... ...

0 0 · · · 0 0

igσy 0 · · · 0 0


, (6.21)

and obtain the respective symplectic matrices

S2
H =



c 0 s · · · 0

0 1 0 · · · 0

−s 0 c · · · 0
... ... ... . . . ...

0 0 0 · · · 1


,

...

SNA−1
H =



c 0 · · · 0 s

0 1 · · · 0 0
... ... . . . ... ...

0 0 · · · 1 0

−s 0 · · · 0 c


. (6.22)

Next, we continue to follow the procedure described in Subsection 6.1.1 using the

symplectic transformations above. Now we obtain the joint system’s first collisional

step evolution by computing σ1
SE = S1

Hσ
0
SE(S1

H)⊤ and taking the system’s covariance

110



Chapter 6. Initially Correlated Ancillae - Gaussian States CM

matrix as in Eq. (6.5), obtaining5

σ1
S = c2σ0

S + s2σA1 . (6.23)

Doing the next step evolution σ2
SE = S2

Hσ
1
SE(S2

H)⊤, we obtain

σ2
S = c4σ0

S + c2s2σA1 + s2σA2 + cs2(ξ1,2 + ξ⊤
1,2).

And again, σ3
SE = S3

Hσ
2
SE(S3

H)⊤ for the third step, obtaining

σ3
S = c6σ0

S + c4s2σA1 + c2s2σA2 + s2σA3 + c3s2(ξ1,2 + ξ⊤
1,2) + cs2(ξ2,3 + ξ⊤

2,3).

From this, we can begin to see a pattern, from which we can induce

σn
S = c2nσ0

S +
n∑

k=1
c2(n−k)s2σAn +

n−1∑
k=1

c2k−1s2(ξk−1,k + ξ⊤
k−1,k), (6.24)

for the system’s covariance matrix after the nth collision.

Now, if we suppose that the ancillae are identical σAk
= σA, as in the Homoge-

nization case, we obtain, after the use of the geometric sum and some simplifications

σn
S = c2nσ0

S + (1 − c2n)σA +
n−1∑
k=1

c2k−1s2(ξk−1,k + ξ⊤
k−1,k).

The equation above indicates that, if the correlation terms are 0, Homogenization

will happen. Indeed, for null correlation terms, if gτ are such that |c| < 1, then we

will have the steady state σ∞
S = σA.

Also supposing that the nearest-neighbor correlations have the same intensity

ξk−1,k = ξ, for a 2 × 2 block-matrix ξ, we have

σn
S = c2nσ0

S + (1 − c2n)σA + c(1 − c2(n−1))(ξ + ξ⊤). (6.25)

Finally, we obtain, for the case of identical ancillae and same-intensity nearest-
5It is important to remember here that σA1 is a covariance matrix constructed by averages

rather than an operator acting on the Hilbert space of A1. Hence, its elements can contribute to
the elements of σ1

S .
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neighbor correlations, the steady state, which is computed by taking the limit n →

∞ (considering that |c| < 1)

σ∞
S = σA + c(ξ + ξ⊤). (6.26)

The equation above is our first result of obtaining an analytical equation that de-

scribes the CM with the presence of initially correlated ancillae, computing the

effects of such correlations. Also, by changing the entries of ξ we can have control

over the pushing of the entries of the steady state, driving it away from the ancilla’s

covariance matrix σA. This shows a simple and clear visualization of how the cor-

relations break Homogenization, and how we can obtain an additional term in the

steady state of the system which is completely dependent on global correlations,

although the system interacts only locally with ancillae that are locally identical.

Another intriguing observation about the result above can be done. If we con-

sider the initial state of the system and of the local ancillae as thermal states, the

additional correlation term cos(gτ)(ξ + ξ⊤) can heat or cool down the system’s

steady state, depending only on the sign of cos(gτ). For instance, if the system

and local ancillae initial states are thermal states at the same temperature, the

term cos(gτ)(ξ + ξ⊤) can dictate the action of the CM as a thermal machine or a

refrigerator depending only on the values of gτ .

6.2.2 General case

Proceeding analogously as in the case of the nearest-neighbor correlation presented

above, we can obtain the general evolution of a system interacting with NA ancillae,

all correlated with themselves, via BS interactions. Since the interactions are the

same, the symplectic matrices used in the case of the nearest-neighbor correlation

(Eqs. (6.20) and (6.22)) still describe the unitary dynamics. The only difference

is in the initial environment state, its covariance matrix σ0
E will have the most

general form, given, for instance, in Eq. (6.13) (for the case of NA = 5). We

initialize with the joint system’s covariance matrix σ0
S ⊗σ0

E and, using Eq. (6.4), we

proceed analogously as in the case of the nearest-neighbor correlation for obtaining
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the evolution of the system-environment joint state covariance matrix. This way,

obtaining the local system’s covariance matrices from Eq. (6.5), we achieve the

following chain of equations

σ1
S =s2σA1 + c2σ0

S,

σ2
S =c4σ0

S + c2s2σA1 + s2σA2 + cs2(ξ1,2 + ξ⊤
1,2),

σ3
S =c6σ0

S + c4s2σA1 + c2s2σA2 + s2σA3 + c3s2(ξ1,2 + ξ⊤
1,2) + c2s2(ξ1,3 + ξ⊤

1,3) + cs2(ξ2,3 + ξ⊤
2,3),

σ4
S =c8σ0

S + c6s2σA1 + c4s2σA2 + c2s2σA3 + s2σA4 + c5s2(ξ1,2 + ξ⊤
1,2) + c4s2(ξ1,3 + ξ⊤

1,3)

+ c3s2(ξ1,4 + ξ⊤
1,4) + c3s2(ξ2,3 + ξ⊤

2,3) + c2s2(ξ2,4 + ξ⊤
2,4) + cs2(ξ3,4 + ξ⊤

3,4),
... (6.27)

from which, after some observation, we can induce the pattern for the system’s

covariance matrix after the nth collision

σn
S = c2nσ0

S +
n∑

j=1
c2(n−j)s2σAj

+ s2
n−1∑
j=1

n∑
ℓ>j

c2n−j−ℓ(ξj,ℓ + ξ⊤
j,ℓ). (6.28)

Although the very general status of the solution above, it will give us more

interesting results if we analyze more particular cases. First of all, if we suppose

that again all ancillae are equal σAj
= σA and using the geometric sum, we obtain

σn
S = c2nσ0

S + (1 − c2n)σA + s2
n−1∑
j=1

n∑
ℓ>j

c2n−j−ℓ(ξj,ℓ + ξ⊤
j,ℓ). (6.29)

The equation above shows that Homogenization is achieved again if we have no

correlations, since in this case, we have the steady state σ∞
S = σ if |c| < 1. Also, it is

worth noting that the third term of the right-hand side will be fully responsible for

the pushing caused by the correlations and the breaking of Homogenization. This

term is entirely independent of the system’s initial state and from the ancillae local

conditions.
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6.2.3 Distance dependent correlations

We can proceed with a very intuitive restriction from the case above. That is, if the

correlations terms between the ancillae of the initial global state depend only on the

distance between the ancillae, i.e., they only depend on ℓ− j = d

ξj,ℓ = ξ|j−ℓ| = ξd. (6.30)

This simplifies Eq. (6.29) to

σn
S = c2nσ0

S + (1 − c2n)σA + s2
n−1∑
m=1

c2m
m∑

d=1
c−d(ξd + ξ⊤

d ). (6.31)

Here, we can have another way of computing the evolution of the system in the

case of the nearest-neighbors correlation, by restricting ξd = δ1,dξ in the equation

above, arriving at the same results. But another interesting application is for the

Algebraically decaying correlations case, where we consider that the correlations

decay exponentially with the distance

ξd = K1−dξ, d = 1, 2, . . . , (6.32)

for some 2 × 2 matrix ξ and K > 1. Using this choice in Eq. (6.31), we obtain

σn
S = c2nσ0

S + (1 − c2n)σA + Ks2

cK − 1

(
c2 − c2n

s2 − cn−1K1−n − 1
1 − c−1K

)
(ξ + ξ⊤), (6.33)

where we used the geometric sum twice and made a few algebraic manipulations.

From the solution above, we obtain the system’s steady state (for |c| < 1)

σ∞
S = σA + cK

K − c
(ξ + ξ⊤). (6.34)

Now, notice that the case K ≳ 1 means long-range correlations, while K ≫ 1 are

related to short-range correlations. This short-range correlation result is in total

agreement with the nearest-neighbors correlation result. Indeed, if we take the

limit of K → ∞, the steady state in Eq. (6.34) reduces to the nearest-neighbors
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Figure 6.1: Values of cos(gτ)K
K−cos(gτ) versus gτ for different values of K in the interval

gτ ∈ [0, 2π].

correlations steady state of Eq. (6.26), i.e.

σA + cK

K − c
(ξ + ξ⊤) K→∞−−−→ σA + c(ξ + ξ⊤).

On the other hand, for the long-range correlations case, we have large values

of the correlation effects for small K. See, for instance, Fig. 6.1, which shows the

behaviour of cK
K−c

in function of gτ , for different values of K. For small values of

K, the function cK
K−c

increases dramatically for gτ close to 0 or 2π, amplifying the

effects of the correlation matrix ξ. As in the nearest-neighbor correlations case, the

sign of the function multiplying (ξ + ξ⊤) can be positive or negative. Although in

this case, for small values of K, we see a much larger potential for the positive sign

case and the negative sign case. Recalling, positive or negative values of cK
K−c

(ξ+ξ⊤)

can sign that the effect of correlations heats or cool down the system, respectively.

This happens in the case where the system and ancillae start at thermal states and

when the matrix ξ is diagonal with positive identical elements. Again, this indicates

that this CM can serve as a thermal machine or a refrigerator depending on the

value of gτ and K.
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6.2.4 Ancillae evolution

Here we will obtain each ancilla’s local covariance matrix after its collision with

the state, for the general case of initially correlated ancillae. Importantly, the local

density matrices of each ancilla can change only during the collision with the system,

after each collision, the respective local state of the ancilla doesn’t change. This

can be seen as a consequence of the no-signaling principle,6 which states that local

operations in a local state cannot affect any properties of another local state. Of

course, every collision can affect the correlations between any ancillae, this happens

because the global state of the environment is affected at each collision.

We use the exact same procedure used in Subsection 6.2.2. Analogously, we start

with the most general environment σ0
E and evolve the joint system σ0

S ⊗σ0
E by using

Eq. (6.4) with the symplectic matrices of Eqs. (6.20) and (6.22). In the final step,

we separate the covariance matrix of the joint state as in Eq. (6.5), but we now

take the local covariance matrix of the evolved ancilla (inside the covariance matrix

of the evolved environment σn
E), instead of taking the system’s covariance matrix.

The result for the first four evolved ancillae after their collisions are given in the

following chain of equations

σ′
A1 = s2σS + c2σA1 ,

σ′
A2 = c2s2σS + c2σA2 + s4σA1 − cs2(ξ1,2 + ξ⊤

1,2),

σ′
A3 = c4s2σS + c2σA3 + s4σA2 + c2s4σA1 + cs4(ξ1,2 + ξ⊤

1,2) − c2s2(ξ1,3 + ξ⊤
1,3) − cs2(ξ2,3 + ξ⊤

2,3),

σ′
A4 = c6s2σS + c2σA4 + s4σA3 + c2s4σA2 + c4s4σA1 + c3s4(ξ1,2 + ξ⊤

1,2) + c2s4(ξ1,3 + ξ⊤
1,3)

− c3s2(ξ1,4 + ξ⊤
1,4) + cs4(ξ2,3 + ξ⊤

2,3) − c2s2(ξ2,4 + ξ⊤
2,4) − cs2(ξ3,4 + ξ⊤

3,4), (6.35)

where σ′
Aj

is the covariance matrix of the ancilla j after its collision with the system.

Analyzing the equations above, we induce that the covariance matrix an ancilla
6An exposition to the no-signaling principle can be seen in [91].
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n ≥ 2 after its collision with the system is given by

σ′
An

= c2n−1s2σS + s4
n−1∑
k=1

c2(n−k−1)σAk
+ c2σAn +

n−1∑
m=1

n−1∑
n′>m

c2n−2−n′−ms4(ξm,n′ + ξ⊤
m,n′)

−
n−1∑
m=1

cn−ms2(ξm,n + ξ⊤
m,n). (6.36)

The equation above is quite general, but we can obtain a more conclusive analysis

by making some restrictions. For studying the Homogenization case, we suppose that

all ancillae are initially identical σAj
= σA for every j. After supposing it in the

equation above, using the geometric sum, and making algebraic simplifications, we

obtain

σ′
An

= c2(n−1)s2(σS − σA) + σA +
n−1∑
m=1

n−1∑
n′>m

c2n−n′−m−2s4(ξm,n′ + ξ⊤
m,n′)

−
n−1∑
m=1

cn−ms2(ξm,n + ξ⊤
m,n). (6.37)

Clearly, for this case of initially identical ancillae, if we have null correlations terms

and |c| < 1, then σ∞
S = σ. This means that, after a large number of collisions, the

ancilla will practically not modify its state after interacting with the system. This

agrees with the last Homogenization condition (Eq. (2.48)) and it is the final step

in order to show that, in the absence of initial correlations between the ancillae, our

CM of the system and initially identical ancillae of bosonic modes, interacting via

the BS, indeed corresponds to the Homogenization in the bosonic case.

Again, if we make a restriction over the correlations matrix, making it only

distance dependent (Eq. (6.30)), we obtain

σ′
An

= c2(n−1)s2(σS − σA) + σA +
n−1∑
m=1

n−m−1∑
d=1

c2n−d−2m−2s4(ξd + ξ⊤
d )

−
n−1∑
m=1

cds2(ξd + ξ⊤
d ). (6.38)

In order to consider the cases studied in the previous Subsection for the system’s

evolution, we suppose Algebraically decaying correlations, given by Eq. (6.32). Us-

ing this type of correlation in the Equation above, we have, after using the geometric
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sum twice and making algebraic manipulations

σ′
An

= c2(n−1)s2(σS − σA) + σA + Γn(K, gt)(ξ + ξ⊤), (6.39)

where

Γn(K, τ) = −s2K
cK−1 − (cK−1)n

1 − cK−1 + s4K

c2

(
1

cK − 1
c2 − c2n

s2 − cK(c−1K)1−n − cK

(cK − 1)(1 − c−1K)

)
,

c = cos(τ),

and s = sin(τ). (6.40)

The function Γn(K, τ) will dictate the correlations effects on the nth ancilla state

after its collision with the system. This function vanishes at the limit of large n,

verily

Γ∞(K, τ) = −s2K
cK−1

1 − cK−1 + s4K

(
1

(cK − 1)s2 + c−1K

(cK − 1)(1 − c−1K)

)

= −s2K
cK−1

1 − cK−1 + s2K

(
cK−1

1 − cK−1

)

= 0. (6.41)

Additionally, we see, from the plots of Figs. 6.2 and 6.3, that after oscillating in

the first collision, the function Γn(K, τ) converges monotonically to 0 for large n.

Therefore, the effects of correlations in each ancilla decrease as the ancillae collide

with the system until they eventually vanish.

6.3 Constructing initially correlated ancillae from

H-Graphs

In this Section, we describe a method for constructing an environment of bosonic

ancillae whose correlations depend only on the distance between the ancillae. This

justifies the form of the environment correlations supposed in the last Section (espe-

cially in Subsection 6.2.3) by means of construction made with known systems and
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operations.

The procedure to create such environments is again by making use of Hamil-

tonian graph states or H-graphs [118, 134–138] and is completely analogous to the

procedure presented in Section 5.1 for qubits ancillae. However, due to the versatile

tools of continuous variables, we create a protocol for constructing environments

with the desired form of distance-dependent correlations using H-graphs. Further-

more, graph-states can be produced experimentally by means of optical preparation

with squeezing plus interferometry [140, 141] or optical parametric oscillators [142],

therefore the construction presented here is a feasible example for the experimental

implementation of a correlated environment. The protocol is described as follows.

6.3.1 Constructing covariance matrix elements

If we want an environment with n bosonic modes, suppose initially that the envi-

ronment state is in the n-mode vacuum |ϕ⟩ = |0⟩⊗n. To create graph states, first,

we define the unitary operator

V = e−ik
∑

i,j
GijHij , (6.42)

where Gij are the elements of the adjacency matrix G representing a graph where

the vertices are the ancillae and the edges represent the interactions between them

Figure 6.2: Γn(K, gt) versus n for different values of K, for g = 0.8 and t = 1 fixed.
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Figure 6.3: Γn(K, gt) versus n for different values of g, for K = 2 and t = 1 fixed.

A

A

A

A

A

Figure 6.4: Example of a graph with ancillae in the vertices and the thickness of
the edges between them represent the strength of the correlations (in this case the
correlations are weaker for more distant ancillae), given by the adjacency matrix.

(see Fig. 6.4) and

Hij = i

2
∑
ij

(â†
i â

†
j − âiâj), (6.43)

is the two-mode squeezing interaction Hamiltonian between the modes i and j, the

operator âi(â†
i ) corresponds to the annihilator (creator) operator of the mode i. And

the graph state is defined as the application of this unitary in the vacuum

|ψE⟩ = V |ϕ⟩ . (6.44)

With the canonical commutation relations, one can show that the evolution of
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the canonical operators for each mode i will be given by

V†q̂iV =
∑

j

Mij q̂j and (6.45)

V†p̂iV =
∑

j

M−1
ij p̂j, (6.46)

where

M = eGk. (6.47)

Consequently, we can compute the average of the anti-commutators of the canon-

ical operators, resulting in

1
2⟨{qi, qj}⟩ = 1

2(MM⊤)ij, (6.48)
1
2⟨{pi, pj}⟩ = 1

2[(M⊤M)−1]ij, and (6.49)

⟨qipj⟩ = 0. (6.50)

Supposing now that G is the adjacency matrix of a cyclic graph, then it must be

a circulant matrix [139].7 The diagonalization of such a matrix is given by

G = OΛO†, (6.51)

where the elements of O are discrete Fourier transforms

Ol,m = ei2πlm/n

√
n

, l,m = 0, · · · , n− 1, (6.52)

and Λ is the matrix of eigenvalues Λl,m = δl,mλk, where

λj = 2
(n−1)/2∑

l=0
cl cos(2πlj/n), (6.53)

assuming n odd for convenience.
7Remembering, cyclic graphs are graphs in which the connection strength between the vertices

only depend on their distances. Hence the coefficients have the same value cj for each diagonal
and cj = cn−j , for every 0 ≤ j ≤ n − 1, since we demand that the adjacency matrix must be
symmetric. See, for instance, Eq. (5.5).
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From these equations and Eqs. (6.48), (6.49) and (6.50), we obtain, for cyclic

graphs, after algebraic manipulations

⟨qjqj′⟩ = 1
2n

∑
l

exp
[
i
2πl
n

(j − j′) + 2kλl

]
and

⟨pjpj′⟩ = 1
2n

∑
l

exp
[
i
2πl
n

(j − j′) − 2kλl

]
.

This results in equal local covariance matrices for the ancillae

σA = 1
2n

∑n−1
m=0 e

2kλm 0

0 ∑n−1
m=0 e

−2kλm

 . (6.54)

And correlations block matrices depending only on the distance between the ancillae

ξd =

ξ(q)
d 0

0 ξ
(p)
d

 , (6.55)

where

ξ
(q)
d = ⟨qjqj+d⟩ = 1

2n

n−1∑
m=0

ei2πdm/n+2kλm and (6.56)

ξ
(p)
d = ⟨pjpj+d⟩ = 1

2n

n−1∑
m=0

ei2πdm/n−2kλm . (6.57)

6.3.2 Constructing desired correlations from choosing the

cyclic graph

Here we describe a protocol for obtaining a desired form of correlation term ξ
(q)
d by

choosing properly the coefficients of the adjacency matrix.

First notice that we can rewrite Eq. (6.56) as

ξ
(q)
d =

n−1∑
l=0

ale
iθdl, (6.58)

where al = e2kλl

2n
and θd = 2πd

n
. Now, since λn−l = λl, we have that an−l = al,
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additionally, from λl = λ−l we also have al = a−l. Using these facts, we can write8

n−1∑
l=0

ale
iθdl =

(n−1)/2∑
l=−(n−1)/2

ale
iθdl. (6.59)

Therefore, for large number of ancillae n, we can approximate ξ(q)
d to a Fourier

Series

ξ
(q)
d =

∞∑
l=−∞

ale
iθdl, (6.60)

from which we can obtain the coefficient of the series

al = 1
2π

∫ 2π

0
ξ

(q)
d e−iθdldθd, (6.61)

where θd = 2πd
n

approaches to a continuous variable due to the large n approximation.

We, therefore, obtained a formula for al given a desired form of distance-dependent

correlation ξ
(q)
d . Inverting the definition of al, we obtain the adjacency matrix G

eigenvalues in function of ξ(q)
d

λl = log(2nal)
2k . (6.62)

Finally, from the eigenvalues of the circulant adjacency matrix G, we can obtain

its coefficients by noticing that, from Eq. (6.53), if we go to the large n limit, the

eigenvalues will also be a Fourier Series

λ(θl) =
∞∑

l=0
2cj cos(jθl), (6.63)

where θl = 2πl
n

. From this Fourier Series, we obtain the coefficients

c0 = 1
4π

∫ π

−π
λ(θl)dθl and

cj = 1
2π

∫ π

−π
λ(θl) cos(jθl)dθl for j ≥ 1,

(6.64)

(6.65)

where θj approaches a continuous variable for large n. Whence, from Eqs. (6.61),
8One can prove this equation by noticing that

∑n−1
l=0 ale

iθdl =
∑(n−1)/2

l=0 ale
iθdl +∑n−1

l=(n+1)/2 ale
iθdl and using an−l = al, al = a−l and θd = 2πd

n to show that
∑n−1

l=(n+1)/2 ale
iθdl =∑−1

l=−(n−1)/2 ale
iθdl.
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(6.62), (6.64) and (6.65) we have a procedure of obtaining the coefficients of the

circulant adjacency matrix G from a desired correlation term ξ
(q)
d depending on the

distance between the ancillae.

6.3.3 Application to the case of the Algebraically decaying

correlation

As an important example, which generates an environment as the one used in Sub-

section 6.2.3, we apply these results to find the coefficients for the adjacency matrix

of the cyclic graph which generates the graph state environment with correlations

depending on the distance d described by

ξ
(q)
d = K1−dξ

(q)
0 , (6.66)

where ξ(q)
0 is a real number and K > 1.

From using Eq. (6.61), we obtain

al = 2nK log(K) 1 − (−1)lK−n/2

4π2l2 + n2 log2(K)
ξ

(q)
0 , (6.67)

and after some manipulations, we can write, for large n

a(θl) = 2K log(K)
n

1
θ2

l + log2(K)
ξ

(q)
0 ,

where θl = 2πl
n

. Moreover, from Eq. (6.62) we obtain

λ(θl) =
[ 1
2k log(4K log(K)) − 1

2k log
(
θ2

l + log2(K)
)]
ξ

(q)
0 .

Finally, for obtaining the coefficients of G, we must evaluate the integrals from Eqs.
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(6.64) and (6.65)

c0 = 1
4π

∫ π

−π

[ 1
2k log(4K log(K)) − 1

2k log
(
θ2

l + log2(K)
)]
ξ

(q)
0 dθl and (6.68)

cj = 1
2π

∫ π

−π

[ 1
2k log(4K log(K)) − 1

2k log
(
θ2

l + log2(K)
)]
ξ

(q)
0 cos(jθl)dθl for j ≥ 1.

(6.69)

To obtain such coefficients, these integrals must be computed numerically.

A cyclic graph has its vertices disposed of in the form of a ring (see, for instance,

Figs. 5.1 and 6.4). Therefore, if we want correlations in the form of Eq. (6.66),

the correlations of the first ancilla with its neighbors will decay in relation to its

nearest neighbors and then raise again, since the last neighbors close the ring. In

Figs. 6.5, 6.6, 6.7 and 6.8 we plotted the values of the correlations of the first ancilla

with its neighbors. We computed the correlations according to Eq. (6.66) mirrored

in n/2, mimicking the behavior of the correlations between ancillae disposed of

in a ring form, and computed the correlations of the graph states generated by

using Eqs. (6.68) and (6.69) to prepare the coefficients for the adjacency matrix G

and using Eqs. (6.48), (6.49) and (6.50) to obtain the covariance matrix elements

(and correlations) of the graph state. These plots show a good match between the

correlations generated by the graph states and the desired form of the mirrored Eq.

(6.66).

From choosing the parameters k = 1.0 and ξ
(q)
0 = 1.0 we see that our method

using graph states creates the desired correlations mostly if K is not too close to

1.0, but for K = 1.05 a number of n = 100 of ancillae causes a match between the

correlations which is almost perfect, as can be seen in Fig. 6.5. However, for values

of K too big, we don’t have a very satisfactory match, even for a number of n = 100

ancillae, as can be seen in Fig. 6.8.

Therefore, we conclude that for a region of 1.5 ≲ K ≲ 10.0 and n ≳ 50, our

method of creating an environment with correlations in the form of Eq. (6.66) with

graph states is satisfactory.
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6.3.4 Analysing ξ
(p)
d

If we use the method described above to create the desired correlations ξ(q)
d in graph

states, we automatically constrain the correlations referring to the ξ
(p)
d canonical

operators p̂. In fact, from Eq. (6.57), we can write

ξ
(p)
d =

(n−1)/2∑
l=−(n−1)/2

ble
i2πdl/n, (6.70)

Figure 6.5: Correlations (ξ(q)
d ) versus d: distance of the neighbor ancilla from the

first ancilla. The blue line is the correlation given by Eq. (6.66) mirrored from n/2,
while the red line is the correlation of the graph state generated by our method.
The parameters are k = 1.0, ξ(q)

0 = 1.0 and K = 1.05, with n indicated above the
plots.
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Figure 6.6: Correlations (ξ(q)
d ) versus d: distance of the neighbor ancilla from the

first ancilla. The blue line is the correlation given by Eq. (6.66) mirrored from n/2,
while the red line is the correlation of the graph state generated by our method.
The parameters are k = 1.0, ξ(q)

0 = 1.0 and K = 2.0, with n indicated above the
plots.

Figure 6.7: Correlations (ξ(q)
d ) versus d: distance of the neighbor ancilla from the

first ancilla. The blue line is the correlation given by Eq. (6.66) mirrored from n/2,
while the red line is the correlation of the graph state generated by our method.
The parameters are k = 1.0, ξ(q)

0 = 1.0 and K = 5.0, with n indicated above the
plots.
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where bl = e−2kλk

2n
. And we also have, by definition, that the coefficient of the

correlation ξ
(q)
d is al = e2kλk

2n
. Therefore we can relate them by

bl = 1
4aln2 , (6.71)

from which we conclude that ξ(p)
d is completely fixed by ξ(q)

d .

As an example, we take again the case of Algebraic correlations from Eq. (6.66).

In this case, we have, from the equation above and Eq. (6.67), for large n

bl = 4π2l2 + n2 log(K)2

2nK log(K)
1

4n2 . (6.72)

Applying this in Eq. (6.70) and making a large n approximation, we obtain

ξ
(p)
d =

(n−1)/2∑
l=−(n−1)/2

4π2l2 + n2 log(K)2

2nK log(K)
1

4n2 e
i2πdl/n

≈
∫ π

−π

θ2 + log(K)2

16πK log(K)e
iθddθ

= (−1)d

4πK log(K)d2 . (6.73)

Figure 6.8: Correlations (ξ(q)
d ) versus d: distance of the neighbor ancilla from the

first ancilla. The blue line is the correlation given by Eq. (6.66) mirrored from n/2,
while the red line is the correlation of the graph state generated by our method.
The parameters are k = 1.0, ξ(q)

0 = 1.0 and n = 100, with K indicated above the
plots.
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Therefore, for creating a correlation of Eq. (6.66) type for ξ(q)
d , we must obtain

an oscillating correlation decaying with d2 type for ξ(p)
d . This oscillating ξ(p)

d is also

obtained, for instance, if we create and prepare the correlations from a nearest-

neighbor interaction graph state (see Ref. [96]).

Fortunately, despite the fact that we cannot create correlation terms ξ(q)
d and

ξ
(p)
d which decay equally with the distance, their effect in the initially correlated CM

always acts linearly in the system’s evolution (see Eq. (6.31)). Hence, such correla-

tions affect the system’s evolution differently and can be computed separately.
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Chapter 7

Obtaining Observable Variations

Using QBNs

This is the Chapter concerning the second main project of this thesis. This project

has as its principal goal to compute the statistics of the heat distribution between two

initially correlated parties using Quantum Bayesian Networks (QBNs), described in

Subsection 3.4.2. The QBN formalism, inspired mostly in Ref. [48], has the ad-

vantage of estimating a probability distribution for a process to happen during a

system’s evolution without supposing that a measurement is made. This is opposite

to the most commonly used Two-Point Measurement (TPM) protocol [33–35]. For

the TPM protocol, two measurements are made to obtain the outcome of a desired

observable for the party of interest at two points in time, this way the change of the

observable is obtained during the process. The unwanted character of this proce-

dure is the fact that after each measurement the backaction completely destroys the

coherence of the joint state density matrix, therefore consuming the quantum corre-

lation between the parties. The presence of initial correlations can cause interesting

effects on thermodynamic processes, one of our main influences is the inversion of

heat flow caused by initial correlations [50–53]. Hence, finding a reliable way of

computing the statistics observable in such processes can be a fruitful objective.

In this present Chapter, we construct a more general formalism used to compute

the statistics for the change of any local observable during a process in which the

party of a joint system evolves. In the second part of the Chapter we apply, as
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an example, such general results for the case where the two parties are qubits,

recovering part of the results of Refs. [48] and [54] and exploring the consequences

of our formalism to the study of the variance of the heat distribution in this case. In

the third part of the Chapter, we bring our analysis of the consequences of choosing

different ensembles for the initial density matrix of the joint system over the QBN

statistics, since we found out that this statistic is dependent on the initial density

matrix ambiguity of mixtures. This inquiry creates important interpretative caveats

and thus is one of the main questions of this project. In the final part of this Chapter,

we expose the formalism to obtain the heat distribution of the heat exchange between

two bosonic modes. We obtain the evolution of the distribution of the two first

moments as we observe how the correlations are consumed in the process. As an

important result, we spot the heat flow inversion caused by correlations for the

bosonic case. Finally, we describe the difficulties of using the coherent state ensemble

to describe the QBN, which leads us to the use of quasi-probabilities.

7.1 General results

7.1.1 Statement of the problem

The setup is the same as the one described in Subsection 3.4.2. As already stated,

the system is composed of two parties A and B and we suppose that they evolve

according to a unitary operator U(t). The joint system starts its evolution in the

state

ρAB(0) =
∑

s

Ps |ψs(0)⟩ ⟨ψs(0)| , (7.1)

where {Ps, |ψs(0)⟩}s is an ensemble of quantum states, and we have the observable

OA(t) (which can be time-dependent) acting in A and OB(t) in B with eigenvalues

(eigenvectors) {ai(t)}i ({|ai(t)⟩}i) and {bj(t)}j ({|bj(t)⟩}j), respectively. Then, the

QBN infer that the probability of the joint system to be observed in the states

(|a0, b0⟩ , |a1, b1⟩ · · · , |an, bn⟩) in the respective time instants (0, t1, · · · , tn) is (see the
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deduction of Eq. (3.44) and Fig. 3.4 for the Beaysian Network graph)

P (a0, b0, a1, b1, · · · , an, bn) =
∑

s

PsP (a0, b0|ψs(0))P (a1, b1|ψs(t1)) · · ·P (an, bn|ψs(tn)),

(7.2)

where

P (ak, bk|ψs(t)) = | ⟨ak, bk|ψs(t)⟩ |2

= | ⟨ak, bk|U(t) |ψs(0)⟩ |2 (7.3)

is the conditional probability for the joint state to be observed in |ak, bk⟩ given that

the system started at |ψs(0)⟩.

Here we use the QBN formalism to infer the statistics of a quantity we call the

change of the observable OA(t), in symbols ∆OA. This change happens during a

process, i.e., as the system evolves between two points in time. Accordingly, we only

need the conditional trajectory probability distribution of Eq. (7.2) for two points

in time

P(a0, b0, at, bt) =
∑

s

PsP (a0, b0|ψs(0))P (at, bt|ψs(t)), (7.4)

where we rename t1 = t and a1(b1) = at(bt).

Importantly, this conditional trajectory probability distribution satisfies stan-

dard probability distribution marginalization properties. Consider, for instance,

∑
b0,bt

P(a0, b0, at, bt) =
∑

b0,bt,s

Ps| ⟨a0, b0|ψs(0)⟩ |2| ⟨at, bt|ψs(t)⟩ |2

=
∑

s

Ps ⟨ψs(0)|a0⟩

∑
b0

|b0⟩ ⟨b0|

 ⟨a0|ψs(0)⟩ ⟨ψs(t)|at⟩

∑
bt

|bt⟩ ⟨bt|

 ⟨at|ψs(t)⟩

=
∑

s

Ps| ⟨a0|ψs(0)⟩ |2| ⟨at|ψs(t)⟩ |2

= P(a0, at). (7.5)

And analogously, we have ∑a0,at
P(a0, b0, at, bt) = P(b0, bt). Furthermore, consider
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the sum

∑
a0,b0

P(a0, b0, at, bt) =
∑

s,a0,b0

Ps| ⟨a0, b0|ψs(0)⟩ |2| ⟨at, bt|ψs(t)⟩ |2

=
∑

s

Ps ⟨ψs(0)|
∑

a0,b0

|a0, b0⟩ ⟨a0, b0|

 |ψs(0)⟩ ⟨ψs(t)|at, bt⟩ ⟨at, bt|ψs(t)⟩

= ⟨at, bt|
(∑

s

Ps |ψs(t)⟩ ⟨ψs(t)|
)

|at, bt⟩

= ⟨at, bt| ρAB(t) |at, bt⟩ , (7.6)

which is the standard probability distribution P (at, bt) obtained from the postu-

lates of Quantum Mechanics. Analogously we also obtain ∑
at,bt

P(a0, b0, at, bt) =

⟨a0, b0| ρAB(0) |a0, b0⟩.

With the use of this conditional probability, we can construct the probability of

obtaining a change ∆a in the observable OA(t) during two points in time

p(∆OA = ∆a) =
∑
at,a0

δ(∆a− (at − a0))P(a0, at). (7.7)

Our main inquiry in this Chapter is to investigate the aspects of this probability

distribution, and how the initial correlations between the parts of the global system

affect it. Notice that this change can represent thermodynamic quantities. For

instance, for the case where OA is the Hamiltonian of the subsystem A, for a global

time-independent Hamiltonian, the quantity ∆OA will be the heat, which is the

focus of this project. This definition of heat, as being the difference between the

average of the final and initial local energy which changes only due to the variation

of the local state, means that this quantity represents the variation of energy due to

the stochastic evolution of the state as it interacts with its surroundings. The work

is devoted to the case where the change of energy is caused by an external driving

controlling the Hamiltonian of the system. These definitions of heat and work can

be studied in Ref. [25].
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7.1.2 Characteristic function of the change probability dis-

tribution

In order to obtain a useful expression for the probability distribution of Eq. (7.7),

we can resort to the characteristic function of it

GOA
(k) =

∫ ∞

−∞
(d∆a) eik∆a p(∆OA = ∆a). (7.8)

Using Eq. (7.7) in the definition above, we obtain

GOA
(k) =

∑
a0,at

eik(at−a0)P(a0, at). (7.9)

Proceeding, we expand the distribution P(a0, at) in the equation above, then we

have1

GOA
(k) =

∑
at,a0,s

eik(at−a0)Ps| ⟨a0|ψs⟩ |2| ⟨at|U(t) |ψs⟩ |2

=
∑

at,a0,s

Ps⟨a0|ψs⟩⟨ψs|e−ika0|a0⟩⟨at|U(t)|ψs⟩⟨ψs|U †(t)eikat |at⟩

=
∑

at,a0,s

Ps⟨a0|ψs⟩⟨ψs|e−ikOA(0)|a0⟩⟨at|U(t)|ψs⟩⟨ψs|U †(t)eikOA(t)|at⟩

=
∑

s

Ps⟨ψs|e−ikOA(0)
(∑

a0

|a0⟩⟨a0|
)

|ψs⟩⟨ψs|U †(t)eikOA(t)
(∑

at

|at⟩⟨at|
)
U(t)|ψs⟩

=
∑

s

Ps ⟨ψs| e−ikOA(0) |ψs⟩ ⟨ψs|U †(t)eikOA(t)U(t) |ψs⟩ . (7.10)

From which we obtain the result

G∆OA
(k) =

∑
s

Ps ⟨ψs| e−ikOA(0) |ψs⟩ ⟨ψs| eikOAH
(t) |ψs⟩ . (7.11)

where

OAH
(t) = U †(t)OA(t)U(t) (7.12)

is the operator OA(t) in the Heisenberg picture.

An important comment that can be made here about the characteristic function
1From now on, we call |ψs⟩ = |ψs(0)⟩ for simplicity.
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of Eq. (7.11) is that it has a non-trivial dependence on the choice for the ensemble

of pure states to represent the initial density matrix of the joint state (Eq. (7.1)).

This dependence comes from the fact that the trajectory probability of Eq. (7.2)

is explicitly constructed under the ensemble choice. A possible way to interpret

this dependence is related to the possibility for the probability of Eq. (7.2) to be

associated with different measurement protocols in order to be accessible experimen-

tally. For instance, for the choice of the ensemble of eigenstates of the initial density

matrix, there is a proposal for extracting its probability using identical copies of a

quantum system and postselection [49]. Proposals for measurement protocols in or-

der to obtain distributions related to other ensemble choices can be a fruitful future

research theme.

7.1.3 Statistical moments of the change probability distri-

bution

An important utility of the characteristic function is that we can easily obtain for-

mulae for the statistic moments of the random variables from it. This can be done,

for the characteristic function of the distribution above, by the equation2

⟨(∆OA)n⟩ = (−i)n∂
n (GOA

(k))
∂kn

∣∣∣∣
k=0

. (7.13)

Using this equation in the result of Eq. (7.11), we obtain the average of OA(t)

⟨∆OA⟩ =
∑

s

Ps ⟨ψs| (OAH
(t) − OA(0)) |ψs⟩ , (7.14)

which can be rewritten as

⟨∆OA⟩ = Tr {(OAH
(t) − OA(0))ρAB(0)} . (7.15)

This equation for the first moment makes clear that the average of OA(t) computed

using QBNs takes into consideration all coherences of the initial state as well as
2This relation between statistical moments and the characteristic function can be obtained

simply by direct differentiation of Eq. (7.8) and setting k = 0.
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quantum correlations, as opposed to the TPM protocol, as desired. Interestingly,

we can see that this quantity is independent of the ensemble choice of the initial

density matrix.

The second moment of OA(t) is

⟨(∆OA(t))2⟩ =
∑

s

Ps

(
⟨ψs|

(
(OAH

(t))2 + (OA(0))2
)

|ψs⟩ − 2 ⟨ψs| OA(0) |ψs⟩ ⟨ψs| OAH
(t) |ψs⟩

)
.

(7.16)

In this equation, we already start to observe a dependence on the choice of the

ensemble of the initial density matrix in the second moment of the distribution. For

higher moments the results will be more complex but with a similar aspect. We

restrict the focus to these two moments since they will already expose the desired

attributes of the probability distribution for our analysis.

7.1.4 Comparison with TPM

Here we will compare our results for the statistics obtained using QBN with the

standard TPM statistics.3 The TPM supposes that measurements are made for

two points in time in order to obtain the variation (or change) of some observable.

So, supposing the same bipartite setup presented to the QBN case in Subsection

7.1.1, we additionally suppose that a projective measurement is made initially in

the eigenbasis {|a0⟩}a0 of the operator OA(0) and finally in the eigenbasis {|at⟩}at

of the operator OA(t). The probability of the initial global system ρAB(0) to have

outcomes a0 and at, respectively, in these two measurements is

PTPM(a0, at) = P (at|a0)P (a0), (7.17)

where P (a0) = Pa0 = ⟨a0| ρA(0) |a0⟩, with ρA = TrB(ρAB(0)), is the probability of

the first measurement to have an outcome a0. While P (at|a0) is the probability of

having an outcome at for the second measurement after the backaction of the first
3In Section II of Ref. [34] the TPM statistics is presented in details.
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measurement and the evolution between them

P (at|a0) = Tr
{
|at⟩ ⟨at|U(t)ρ′

AB(0)U †(t) |at⟩ ⟨at|
}
, (7.18)

where ρ′
AB(0) = |a0⟩⟨a0|ρAB(0)|a0⟩⟨a0|

Pa0
is the backaction of ρ after the first measurement

and U(t) is the unitary evolution operator between the two measurements.

If now we desire to obtain the probability of a change ∆a in the observable OA(t)

with this probability distribution, we define

pTPM(∆OA = ∆a) =
∑
at,a0

δ(∆a− (at − a0))PTPM(a0, at). (7.19)

Using Eqs. (7.17) and (7.18), we obtain (see Appendix D for the computation) the

following characteristic function for this probability distribution

GOATPM
(k) = Tr

{
eikOAH

(t)e−ikOA(0)DOA(0)(ρAB(0))
}
, (7.20)

where DOA(0)(•) = ∑
a0 |a0⟩ ⟨a0|• |a0⟩ ⟨a0| and {|a0⟩}a0 are the eigenvectors of OA(0).

The only dependence of the joint system’s initial state in this characteristic func-

tion is given by DOA(0)(ρAB(0)). Thus all contributions from the initial coherence, in

the eigenbasis of OA(0) vanish in contrast with the QBN characteristic function of

Eq. (7.11) which takes into account the coherence of the initial state. Importantly,

the QBN characteristic function of Eq. (7.11), compute in the ensemble choice of

the eigenvectors of ρAB(0), is equivalent to the TPM characteristic function in Eq.

(7.20) for the case where [ρAB(0),OA(0)] = 0, which is the case where there is no

coherence for the initial state in the eigenbasis of OA(0).

7.2 Application to qubits

Here we apply our general results to the case where the systems A and B are qubits.

As already said, our main goal is to obtain the heat probability distribution during

an interaction taking into account the effects of the initial correlations between the

parties. Among other results, this predicts the inversion of the heat flow caused by
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initial correlations. The first experimental observation of this fact was obtained for

this two-qubit setup in Ref. [54] and we describe these statistics with our results

using QBNs. Reference [48], which initially proposed QBNs, also described the heat

average of [54] using QBNs and its probability distribution for specific initial states.

Thus our analysis with two-qubit systems will serve as a sanity check for our general

methods of obtaining the statistical moments of the heat probability distribution

and its characteristic function by comparing our results with the ones obtained in

Refs. [48, 54] and, additionally, we are now able to compute the unexplored second

moment of the heat distribution.

7.2.1 Setup and statistical moments

We suppose that the two qubits have local Hamiltonians HA(B) = ω0(1 − σA(B)
z )/2,

interacting via the unitary

U(g, t) = e−it π
2g

(σA
+⊗σB

−+σA
−⊗σB

+ ), (7.21)

for σ+(−) defined according to Eq. (2.33). The joint system starts at the state

ρAB(0) = ρA
th ⊗ ρB

th + χAB, (7.22)

where

ρ
A(B)
th = 1

(1 + e−ω0βA(B))

1 0

0 e−ω0βA(B)

 ,
are the locally thermal states of the Hamiltonian HA(B)

4 and the term

χAB =



0 0 0 0

0 0 α 0

0 α∗ 0 0

0 0 0 0


,

4These locally thermal states are different from the one described in Appendix A, Section A.4,
only due to their local Hamiltonians. Also, the unitary of Eq. (7.21) is simply the Partial SWAP
of Eq. (2.44) multiplied by a phase. The slight differences in these definitions from the previous
Chapters are made in order to have a better comparison with the results of Ref. [48].
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is responsible for the coherence and correlations between the parties with α satisfy-

ing |α| ≤ exp [−ω0(βA + βB)] /
(
(1 + e−ω0βA)(1 + e−ω0βB )

)
for the positivity of the

density matrix. In fact, the mutual information between the parties is 0 when α is

null and reaches its maximum when |α| = ℵ, where

ℵ = exp [−ω0(βA + βB)] /
(
(1 + e−ω0βA)(1 + e−ω0βB )

)
, (7.23)

which is a result obtained in Ref. [54].

As already said, for the case where the Hamiltonian is time-independent, we

define the heat received by the subsystem A as the change of the local Hamiltonian

HA during the evolution from time 0 to t

QA(t) = ∆HA. (7.24)

Using the result of Eq. (7.14) for the average of the change of an operator, we

have

⟨QA(t)⟩ = Tr
{(
U †(g, t)HAU(g, t) −HA

)
ρAB(0)

}
. (7.25)

Computing the trace using Eqs. (7.21) and (7.22), we obtain

⟨QA(t)⟩ = ω0

[
Im(α) sin

(
πt

g

)
+ 1

2 sin2
(
πt

2g

)(
tanh

(
ω0βA

2

)
− tanh

(
ω0βB

2

))]
.

(7.26)

This result describes correctly the heat flow inversion caused by the initial correla-

tions between the two qubits. This can be achieved for negative values of Im(α), as

can be seen in Fig. 7.1. In this figure, we can spot the heat average initially going

from the colder system A to the hotter system B for the cases where Im(α) < 0 and

a stronger manifestation of such effect for the case with maximum correlation, i.e.,

for Im(α) = −ℵ.

Additionally, with the result of Eq. (7.16), we can obtain the second moment of
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the heat probability distribution

⟨Q2
A(t)⟩ =

∑
i

λi(⟨λi|
(
(U †(g, t)HAU(g, t))2 +H2

A

)
|λi⟩

− 2 ⟨λi|HA |λi⟩ ⟨λi|U †(g, t)HAU(g, t) |λi⟩), (7.27)

where {λi}i and {|λi⟩}i are the eigenvalues and eigenvectors of the initial density

matrix ρAB(0). We choose to compute the second moment in the eigenvector en-

semble of the initial density matrix since it is the ensemble that causes the smaller

variance (to be seen in the next section). With this, we compute (see Fig. 7.1)

numerically the heat variance Var(QA)(t) = ⟨Q2
A(t)⟩ − ⟨QA(t)⟩2 for different choices

of α for βA = 2/ω0 and βB = 1/ω0, i.e., initially A colder than B. For both negative

and positive values of Im(α), the presence of correlations decreases considerably the

maximum of the variance. Interestingly, for the cases where the mutual information

has its maximum Im(α) = ±ℵ we have a higher diminishing of the variance than

in the smaller correlation case of Im(α) = ±1/20. This seems to indicate that the

greater the correlations, the smaller the variance, which is a pattern that will also

be seen in the last Section of this Chapter, on the bosonic modes case. Intuitively,

we could think of this reduction of the variance as an approximation to the classical

thermodynamic case. However, we might interpret this as a case where correlations

decrease the entropy of the processes, and hence this could be possibly a cause for

the reduction of the variance. This reasoning was influenced by Ref. [143], which

affirms that mutual correlations between parties can be analogous to an information

reservatory, similar to a Maxwell’s demon.

7.2.2 Obtaining the probability distribution

We can compute the characteristic function for the heat probability distribution

using the result of Eq. (7.11) to the conditions above, obtaining

GQA
(k) =

∑
s

λs ⟨λs| e−ikHA |λs⟩ ⟨λs| eikU†(g,t)HAU(g,t) |λs⟩ . (7.28)

As a sanity check, we numerically computed the probability distribution of the
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heat from this characteristic function by applying the inverse Fourier transform on

it for a set of parameters. The computation was not possible in analytical form,

since the integral of the inverse Fourier transform of the characteristic function from

Eq. (7.28) is not analytically tractable. We now compare it to the probability

distributions obtained in Ref. [48].

Figure 7.1: Heat (in unites of ω0)/ Variance of the heat (in unites of ω2
0) versus t.

The blue lines represent the heat received by A and the blue dashed lines represent
the variance of the heat when the qubits are initially correlated. The red lines
represent the heat received by A and the red dashed lines represent the variance
of the heat when the qubits are initially uncorrelated. The parameters are g = 1,
βA = 2/ω0 and βB = 1/ω0. Each plot has a different value of α. In the first line
we have, from left to right, Im(α) = −ℵ and Im(α) = +ℵ, and in the second line
Im(α) = −1/20 and Im(α) = +1/20.
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The probability distributions of Ref. [48] are

P (QA = −ω0) =
eω0βB

(
eω0βA/2 cos

(
πt
2g

)
+ eω0βB/2 sin

(
πt
2g

))2

(eω0βA + 1) (eω0βB + 1) (eω0βA + eω0βB ) , (7.29)

P (QA = 0) =

(
eω0βA + eω0βB

) (
2 + eω0βA + eω0βB + 2eω0(βA+βB)

)
+
(
eω0βA − eω0βB

)2
cos

(
πt
g

)
2 (eω0βA + 1) (eω0βB + 1) (eω0βA + eω0βB )

+
2eω0(βA+βB)/2

(
eω0βA − eω0βB

)
sin

(
πt
g

)
2 (eω0βA + 1) (eω0βB + 1) (eω0βA + eω0βB ) , (7.30)

P (QA = +ω0) =
eω0βA

(
eω0βB/2 cos

(
πt
2g

)
− eω0βA/2 sin

(
πt
2g

))2

(eω0βA + 1) (eω0βB + 1) (eω0βA + eω0βB ) . (7.31)

As an example, in Fig. 7.2 we plot the probability distributions of QA = −ω0, QA =

0 and QA = +ω0 computed numerically for initial states ρAB(0) with βA = 2/ω0,

βB = 1/ω0 and α = −i e−ω0(βA+βB)/2

(1+e−ω0βA )(1+e−ω0βB ) during an evolution in time. These plots

match perfectly with the curves of the probabilities above.

7.3 Dependence on the ambiguity of mixtures

In the results of Eqs. (7.11) and (7.16) an explicit dependence can be verified

of the characteristic function and of the second moment of the change ∆OA on

the choice of the ensemble of states {Ps, |ψs⟩}s for the mixture of states in the

initial density matrix of Eq. (7.1).5 Therefore, this dependence is present in the
5Remember that in further equations after Eq. (7.1) we omitted the (0) in |ψs(0)⟩ for simplicity

of notation.

Figure 7.2: P (QA) versus t, for different values of QA, computed numerically with
the inverse Fourier transform of the characteristic function of Eq. (7.28) (green full
line) and for different values of QA, using Eqs. (7.29), (7.30), and (7.31) from Ref.
[48] (dashed black line). The initial joint state is prepared at ρAB(0) of Eq. (7.22)
with βA = 2/ω0, βB = 1/ω0, α = −i e−ω0(βA+βB)/2

(1+e−ω0βA )(1+e−ω0βB ) and we have g = 1.
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probability distribution of ∆OA. The dependence is a consequence of the fact that

our construction of the QBN is a causal network stemming from different possible

initial states. Although different choices of these initial states result in the same

initial density matrix, they don’t necessarily cause the same chain of events with

the same chances of occurring.

A compelling result is that, although we have a probability distribution depen-

dence on the ambiguity of mixtures, the average of the ∆OA has not. This can be

clearly seen in the result of Eq. (7.15). On the other hand, the second moment does

depend on the ensemble choice for the initial density matrix, and thus the variance

will also depend on it.

7.3.1 The variance for the qubits case

Due to its importance in the statistics of a random variable, we analyze in more detail

the variance dependence on the ambiguity of mixtures. We compute its values for

different choices of ensembles of the initial density matrix for the case of qubits

states described in Sec. 7.2. Here, the random variable under analysis is the heat

received by A: ∆HA = QA. We obtain the variance of the heat

Var(QA)(t) = ⟨Q2
A(t)⟩ − ⟨QA(t)⟩2, (7.32)

from Eq. (7.25) for computing the average and Eq. (7.16) for computing the second

moment, from which we have

⟨Q2
A(t)⟩ = Tr

{(
(U †(g, t)HAU(g, t))2 +H2

A

)
ρAB(0)

}
− 2

∑
s

Ps ⟨ψs|HA |ψs⟩ ⟨ψs|U †(g, t)HAU(g, t) |ψs⟩ , (7.33)

depending on the ensemble {Ps, |ψs⟩}s of the initial density matrix.

For generating a set of different ensembles for the same initial density matrix

ρAB(0), we recall a seminal result from Ref. [144]. This reference reveals that, given

a density matrix ρ with an eigen-ensemble6 {λi, |λj⟩}j, we can generate an ensemble
6An eigen-ensemble of a density matrix ρ is an ensemble of ρ in which all elements are orthonor-

mal eigenvectors.
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{Pi, |ψi⟩}i of ρ with the formula

√
Pi |ψi⟩ =

k∑
i=1

√
λjMij |λi⟩ , i = 1, · · · , r, (7.34)

where k = dim(Support(ρ)),7 r ≥ k and Mij are the elements of any r × k matrix

M whose columns are orthonormal vectors in Cr.8

Using this result, we suppose an initial state ρAB(0) given by Eq. (7.22) with

βA = 2/ω0, βB = 1/ω0 and α = −i exp [−ω0(βA + βB)] /
(
(1 + e−ωβA)(1 + e−ωβB )

)
.

For the generation of eight different equivalent ensembles of ρAB(0), we used Eq.

(7.34) with eight different choices of matrices M (see the matrices chosen in Ap-

pendix D). In Fig. 7.3, we see the variance as a function of time computed using

such ensembles in Eq. (7.33) and compared with the computation of the variance

using the eigen-ensemble. We see the pattern that the variance computed in general

ensembles is greater than or equal to the variance computed in an eigen-ensemble.

From these results, we have physical reasons to suppose that the eigen-ensemble is

the choice of the ensemble that minimizes the variance of the probability distribution

for a change of an observable using a QBN. This is a conjecture which comes from the

results mentioned and from the following ideas. The intuition of this conjecture is

in our supposition that the presence of indistinguishability between non-orthogonal

states of an ensemble can increase the variance of a distribution generated by such

an ensemble. Therefore, the conjecture is a consequence of noticing that the eigen-

ensembles are the only ones without such superpositions. Counterexamples or proof

for such conjecture can be a future research exploration.
7The set Support(ρ) is the linear space spanned by the set of eigenvectors or ρ with non-zero

eigenvalues.
8This can be proved simply by noticing that, given Pi and |ψi⟩ defined by Eq. (7.34), we have

r∑
i=1

Pi |ψi⟩ ⟨ψi| =
r∑

i=1

k,k∑
l=1,m=1

M∗
ilMim

√
λmλl |λm⟩ ⟨λl|

=
k∑

m=1
λm |λm⟩ ⟨λm|

= ρ, (7.35)

where in the second equality we used that the columns of M are orthonormal vectors.
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In Fig. 7.3, we see that for the case of the matrices M7 and M8 (see Appendix

D), the ensembles are also composed by eigenvectors of ρAB(0), but they are non-

orthogonal to each other. Consequently, their variances have higher values than

the ones generated for an eigen-ensemble.9 Furthermore, the matrix M8 generates

a more superposed ensemble than the one generated by M7. Hence we can see a

larger variance in this case.

7.4 Heat exchanged between bosonic modes

We continue to pursue the main goal of the second project of this thesis: to obtain

the probability distribution of the heat exchanged by two systems using QBNs due

to its advantage to describe the statistics of initially correlated quantum systems. In

this Section, we obtain results for the probability distribution of the heat exchanged

between two initially correlated Gaussian bosonic modes. We expose numerical

results concerning the first two moments of the heat probability distribution in this

case, and finally, we present the difficulties of our explorations concerning an attempt

to use coherent states as an ensemble of the initial density matrix.

7.4.1 Statement of the problem

We suppose that the systems A and B are bosonic modes with local Hamiltonians

ĤA(B) = ω
(
â†(b̂†)â(b̂) + 1

2

)
, (7.36)

where â(â†) and b̂(b̂†) are the annihilator (creator) operators of the modes in A and

B, respectively. Their interaction is given by the beam splitter unitary

U(t) = e−itĤBS , (7.37)

where

ĤBS = ig(â†b̂− b̂†â). (7.38)
9Remember that the eigen-ensemble definition demands that the vectors are orthogonal among

them, in addition to eigenvectors.
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Figure 7.3: Variance of QA (in units of ω2
0) versus t. The green curves represent the

variance computed with the ensembles generated by the respective matrix M (see
Appendix D) with the use of Eq. (7.34) while the gray curves represent the variance
computed in an eigen-ensemble. The initial state ρAB(0) is given by Eq. (7.22) with
βA = 2/ω0, βB = 1/ω0 and α = −i exp [−ω0(βA + βB)] /

(
(1 + e−ωβA)(1 + e−ωβB )

)
.

For the unitary U(g, t) we have g = 1.
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We now suppose that the initial global state is given by Eq. (7.1), with the

restriction that the states are Gaussian and the initial averages of the state canonical

moments are 0. Consequently, according to the results of Chapter 4 (see Subsection

4.6.5), the state can be fully described by a covariance matrix. Additionally, the

system evolution is a consequence of a unitary global evolution generated by a

quadratic Hamiltonian followed by a partial trace, hence all evolved states of the

system are Gaussian (see Chapter 4, Section 4.7).

Again, we define the heat received by the system A as the variation of its local

Hamiltonian ĤA, in other words

QA(t) = ∆ĤA. (7.39)

Our main goal is to obtain the statistics of P (QA(t)) using the results of Section

7.1.

7.4.2 Initial states in the Simon form

We make a further restriction on the initial Gaussian states to obtain more clear

results. As we intend to explore the effects of quantum correlations, we suppose

that the initial joint state is in the normal Simon form (Eq. (4.116)). Therefore the

joint system’s initial covariance matrix is

σAB =



a 0 c+ 0

0 a 0 c−

c+ 0 b 0

0 c− 0 b


, (7.40)

where a and b are positive real numbers. Beyond the fact that any two-mode Gaus-

sian state can be transformed by means of local unitaries in a state with a covariance

matrix in the Simon form, this form also assumes that the local states are thermal,

which will be useful to thermodynamic interpretations. The parameters a and b are

147



Chapter 7. Obtaining Observable Variations Using QBNs

related to their local inverse of temperatures βA and βB by means of

a(b) = 1
2 coth

(
ωβA(B)

2

)
, (7.41)

hence the parameters a and b are proportional to their system’s temperature, i.e.,

if a > b, then the temperature of A is bigger than the temperature of B and vice-

versa.10

We are going to focus on two important correlated two-mode states. First, the

two-mode squeezed thermal state (TMST), its covariant matrix in Eq. (4.117),

namely

σtmst =



a 0 c 0

0 a 0 −c

c 0 b 0

0 −c 0 b


, (7.42)

which is a Simon form with opposite correlation terms. Second, we shall use the

state we call two-mode thermal under beam splitter(TSBS) state. It has the following

covariance matrix

σtsbs =



a 0 c 0

0 a 0 c

c 0 b 0

0 c 0 b


, (7.43)

which is a covariance matrix in the Simon form in the case where the correlation

terms are identical. The name chosen for this state comes simply from the fact that

it is the result of the application of a beam splitter unitary in two uncorrelated local

thermal states. This can be seen by the direct application of the unitary evolution in

terms of the symplectic matrix of the beam splitter (see Eq. (6.8)) in the two-mode

local thermal states.

The value of the correlation terms c in (7.43) can be positive or negative. There-

fore, for further use, we shall call TSBS positive state the TSBS state for c > 0 and
10This relation is a consequence of Eq. (C.35) and from Section C.13 discussion for the

case of local Hamiltonians HA(B) given by Eq. (7.36) and locally thermal states ρA(B) =
e−βA(B)HA(B)/ZA(B), where ZA(B) = Tr

{
e−βA(B)HA(B)

}
.
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TSBS negative state the TSBS state for c < 0.

7.4.3 The heat average and correlations evolution

From Eq. (7.15), we can obtain the heat average with the formula

⟨QA(t)⟩ = ⟨U(t)†ĤAU(t)⟩ − ⟨ĤA⟩. (7.44)

Since ⟨ĤA⟩ = ω
2 (⟨q̂2

A⟩+⟨p̂2
A⟩) and the initial state has the covariance matrix given

by Eq. (7.41), we obtain

⟨ĤA⟩ = ωa. (7.45)

Similarly, we have

⟨U †(t)ĤAU(t)⟩ = ω

2

( (
⟨q̂2

A⟩ + ⟨p̂2
A⟩
)

cos2(g) +
(
⟨q̂2

B⟩ + ⟨p̂2
B⟩
)

sin2(g)

+ (⟨q̂Aq̂B⟩ + ⟨p̂Ap̂B⟩) sin(2g)
)

= ω

2

(
2a cos2(g) + 2b sin2(g) + (c+ + c−) sin(2g)

)
. (7.46)

Hence, we obtain

⟨QA(t)⟩ = ω
(

sin2(gt)(b− a) + 1
2 sin(2gt)(c+ + c−)

)
. (7.47)

This result for the average pinpoints important aspects of the heat flow between

two bosonic modes interacting via a beam splitter. The first term ω sin2(gt)(b− a)

indicates the ordinary heat flowing from the hot system to the cold system disre-

garding the initial correlations. As for the second term ω
2 sin(2gt)(c+ +c−), the effect

of the correlations is completely manifest. The sign of the sum c+ + c− dictates the

tendency of the correlations to reverse the heat flow or to increase the ordinary flow.

Intriguingly, for a very usual state of correlated thermal two-mode states, namely,

the two-mode squeezed thermal states, we have c− = −c+ (see Eq. (7.42)) causing

the effect of the correlations in the average heat flow to be null. However, the TSBS

states are the ones that maximize the effect of the correlations in the heat flow.

For the case of TSBS negative states, the reversing of the heat flow is maximally
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achieved.

Additionally, we analyze the correlation quantifiers during the evolution of the

system. For our results, the mutual information is computed according to the evolu-

tion of the covariance matrix using Eqs. (4.114), (4.115) and (3.20). The quantum

discord is obtained by inverting Eqs. (4.131), (4.132), (4.133) and (4.134) numeri-

cally to obtain the parameters τ and η and use Eq. (4.129) to the computation for

each covariance matrix during the evolution. The quantity we call classical correla-

tion (J (A|B)) is the difference between the mutual information and the quantum

discord computed to each state J (A|B) = I(A : B) − D(A|B). From Eqs. (3.32),

(3.33) and (3.34) we can interpret J (A|B) as the maximum information one can

obtain for the mode A with the outcomes of a quantum measurement in the mode

B.

In Fig. 7.4, in the left-hand plot, we have the correlation quantifiers for an

initial state in the TSBS negative state (c+ = c− = −1.0). As described in [50–53],

and analogously as founded in Ref. [54] for qubits, the mutual information, as well

as the quantum discord, are completed consumed so that the heat flow inversion

happens. After this correlation consumption, the correlations and the heat average

oscillate due to the unitary nature of the interaction. It is important to point out

that this is the first explicit computation for the heat flow inversion caused by initial

correlations in the Gaussian bosonic case.

In the central plot of Fig. 7.4, we have an initially uncorrelated state (c+ = c− =

0), the correlations are simply created during the evolution and start to oscillate with

the unitary evolution. Unfortunately, if initially, we have a state with a covariance

matrix in the Simon form, but we don’t have c− = c+, the Beam-Splitter unitary

evolution causes the local states not to be locally thermal during the evolution. This

precludes the use of the method from Ref. [131] described in Subsection 4.8.3 to

compute the quantum discord for two-mode Gaussian states, since it only considers

locally thermal states. Hence, in the right-hand side plot of Fig. 7.4, we compute

only the mutual information evolution as a quantifier of correlations, together with

the heat average of the two-mode squeezed thermal state (c+ = −c− = 1.4). In this

case, we see a consumption of correlations although the correlations don’t affect the
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Figure 7.4: Heat average in units of ω (red), mutual information (black), quantum
discord (blue), and classical correlations (yellow) versus time of interaction. Each
plot represents a different initial state with different values of c+ and c− described
above each plot, all the initial states are in the Simon form with a = 1.3, b = 2.0.

heat flow. This is an indication that the correlations may be consumed in order to

affect higher moments of the heat, instead of just affecting the average. The analysis

of this specific case (for the two-mode squeezed thermal state with (c+ = −c− = 1.4)

will strengthen this statement in the next subsection, when we expose the evolution

of the variance.

7.4.4 The evolution of the heat variance and correlations

Here we compute the variance of the heat distribution with the choice of the eigen-

ensemble of the initial density matrix. Again, from Eq. (7.16), we have the second

moment

⟨Q2
A(t)⟩ =

∑
i

λi(⟨λi|
(
(U †(g, t)HAU(g, t))2 +H2

A

)
|λi⟩

− 2 ⟨λi|HA |λi⟩ ⟨λi|U †(g, t)HAU(g, t) |λi⟩), (7.48)

where {λi}i and {|λi⟩}i are the eigenvalues and eigenvectors of the initial density

matrix ρAB(0). Due to the complexity of computing the eigenvalues and eigenvectors

of ρAB(0), we compute the quantity above numerically.

The numerical computations are made supposing a finite Fock space, i.e., we

consider in the trace computations all the Fock basis elements from the ground

state |0⟩ to a higher energy state |N⟩ for each mode. The adequate value of N for

a good approximation depends on the temperature of the state in question. The
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higher the temperature of the state, the higher the states of the Fock basis need to

be considered. For our computations, the number N = 25 of the first Fock basis

elements is sufficient for the convergence of the trace for its correct value. Given the

initial state covariance matrix σAB (and supposing null first moments) we obtain its

density matrix ρAB(0) by using Eq. (4.77) which is computed in the Fock basis with

its first N = 25 elements for each of the two modes. After obtaining the eigenvalues

and eigenvectors of ρAB(0) in this finite Fock basis, we are able to compute ⟨Q2
A(t)⟩

from Eq. (7.48). Therefore, using also the results for the heat average, we can

compute numerically the variance of the heat distributions.

From these computations, we obtain the plots of Fig. 7.5. For the three plots,

representing different initial correlations quantifiers between the modes, we can ob-

serve that the variance peaks match the correlation minima while the variance lo-

cal minima are often accompanied by the presence of correlations maxima. This

strengthens our analysis at the end of the Subsection 7.2.1 when we concluded that

the presence of correlations, for the qubits case, decreases the variance of the distri-

bution. Here we observe the same behavior for the bosonic case. This indicates that

this relation between the variance and correlations can be a more general behavior.

Furthermore, the right-hand side plot, in Fig. 7.5, is the case where the initial

state is the two-mode squeezed thermal state with (c+ = −c− = 1.4). Recalling

the last Subsection, for this initial state, the correlations have no effect on the heat

average flow, however, in this plot the variance seems to have a large influence due

to the presence of correlations.11 The increasing of the variance as the correlations

decrease can be a marking that other moments of the heat distribution, rather than

only the average, can consume correlations.

7.4.5 Profile of correlations in the initial state

Since we observed different behavior of the heat flow and of the heat variance for

initially different states at the Simon form, we explore the content of the correlations

for different states in the Simon form. In Fig. 7.6 we plot the mutual information
11Unfortunately, as stated in the last Subsection, for this case it is not possible to compute the

quantum discord during the evolution using the method of the Subsection 4.8.3.
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Figure 7.5: Heat variance in units of ω2 (purple), mutual information (black), quan-
tum discord (blue), and classical correlations (yellow) versus time of interaction.
Each plot represents a different initial state, all the initial states are in the Simon
form with a = 1.3, b = 2.0, and the correlation terms are described above each plot.
(For the case of c+ = c− = 0, we amplified the correlation values five times for a
visible comparison in the plot.)

(representing the total correlation content) between the modes as well as the quan-

tum discord and the classical correlations content between the modes for different

values of c+ and c− for fixed local temperatures a = 2 and b = 10.

To prepare the plots we randomly peaked 100, 000 points of r ∈ [1/10, 10] and

τ ∈ [τmin, τmax] where τmin and τmax are defined in the footnote of Page 85. This

way, we create 100, 000 Simon states with a = 2, b = 10 and c+, and c+ given by

the parametrization of Eqs. (4.133) and (4.134). With the covariance matrices, we

compute the mutual information with the use of Eqs. (4.114), (4.115) and (3.20).

Additionally, we use the values of a, b, r and τ from each state to obtain the value of

η (see footnote of Page 85) and finally, we use Eq. (4.129) to compute the quantum

discord of each state.

We see from Fig. 7.6 that the mutual information is almost radially equally

distributed for different values of c+ and c−, i.e., the total correlations seem to

increase as |c+| + |c−| increases. Differently, the quantum discord has not this radial

pattern, it seems to decrease as c− and c+ approaches to the c+ = 0 and c− = 0

axes. Also, the quantum discord increases substantially at the border regions with

higher |c−| and |c+| and with |c−| ≈ |c+|. These richer regions in quantum discord

are correspondent to the TSBS states (c− = c+) and two-mode squeezed thermal

states c− = −c+ and this can be a justification about why these initial states cause

the higher correlations effects in the statistical moments of the heat. Curiously,

the TSBS states regions are slightly richer in quantum discord than the two-mode
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Figure 7.6: From left to right: mutual information, quantum discord, and classical
information content as a function of c+ (horizontal axis) and c− (vertical axis), for
Simon states prepared with a = 2 and b = 10.

squeezed thermal states, and the classical correlations are more present in two-mode

squeezed thermal states than in TSBS states regions.

7.4.6 Attempts to use coherent states ensembles

In order to be able to obtain analytical solutions for the heat distribution of Gaus-

sian bosonic systems, we attempt to use the choice of coherent states ensemble to

construct our QBN. With this choice, the initial density matrix has the following

form

ρAB(0) =
∫
C2
d2α d2β P (α, β) |α, β⟩ ⟨α, β| , (7.49)

where P (α, β) = W1(α, β) is the Glauber-Sudarshan P-function (see Eq. (4.47)) and

|α, β⟩ = |α⟩A ⊗ |β⟩B when |α(β)⟩A(B) is a coherent state in A(B) with eigenvalues

α(β).

We now have the caveat of determining the adequate function Ps of Eq. (7.4)

in order to construct the heat probability distribution using Eq. (7.7). We now

call the function Ps as the seed probability. The QBN developed in Sections 3.4 and

7.1 is the sum of successive products of conditional probabilities given the possible

evolution of hidden layers states12 times the seed probability (see Fig. 3.4 and Eq.

(3.44)). The seed probability Ps could be understood as representing the probability

distribution for the mixed initial state to be in each of the pure states of the initial
12We call hidden layers the set of states in the upper line of the graph in Fig. 3.4, which are the

states which are not directly accessible but are the cause of the conditional probabilities.
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hidden layer. However, as we shall see, the most suitable choice for representing the

seed probability Ps for the case where the vectors of the ensemble choice of the initial

density matrix (|ψs⟩) are coherent states |α, β⟩ is the Glauber-Sudarshan P-function

P (α, β), which is a quasi-probability distribution.

We can argue in favor of the last sentence above by supposing that we want our

probability distribution to respect the marginalization conditions given in Eqs. (7.5)

and (7.6). Let the probability distribution P(a0, at, b0, bt) of Eq. (7.4) for the choice

of coherent states ensemble be of the form

P(a0, at, b0, bt) =
∫
C2
d2α d2β f(α, β)| ⟨a0, b0|α, β⟩ |2| ⟨at, bt|U(t) |α, β⟩ |2. (7.50)

We want to find the function f(α, β) for the seed probability from imposing Eq.

(7.6) to the probability distribution above.

Consider the sum

∑
a0,b0

P(a0, b0, at, bt) =
∫
C2
d2α d2β f(α, β)| ⟨at, bt|U(t) |α, β⟩ |2

= ⟨at, bt|U(t)
(∫

C2
d2α d2β f(α, β) |α, β⟩ ⟨α, β|

)
U †(t) |at, bt⟩ ,

(7.51)

hence this sum is equal to ⟨at, bt|U(t)ρAB(0)U †(t) |at, bt⟩ (in order to satisfy Eq.

(7.5)) if and only if f(α, β) = P (α, β) (see Eq. (7.49)). The marginalization condi-

tion Eq. (7.5) is also satisfied by direct application of f(α, β) = P (α, β).

One could guess that the most suitable function to play the role of f(α, β) would

be the Husimi Q-function Q(α, β) since it is a valid probability distribution for every

α and β. However, this function represents the probability of obtaining outcomes α

and β for heterodyne measurements in A and B, and the seed probability need not

assume that a measurement is indeed made. In fact, if we suppose in Eq. (7.51)

that f(α, β) = Q(α, β), then we have

∑
a0,b0

P(a0, b0, at, bt) = ⟨at, bt|U(t)ρ′
ABU

†(t) |at, bt⟩ , (7.52)
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where

ρ′
AB =

∫
C2
d2α d2β Q(α, β) |α, β⟩ ⟨α, β| . (7.53)

This density matrix is the result of performing the heterodyne measurement {Mα,β =
1
π

|α, β⟩ ⟨α, β|}α,β in ρAB(0) without revealing the outcome (see Appendix D, Section

D.3). Therefore, the correct interpretation of the QBN probability distribution

PQ(a0, at, b0, bt) =
∫
C2
d2α d2β Q(α, β)| ⟨a0, b0|α, β⟩ |2| ⟨at, bt|U(t) |α, β⟩ |2, (7.54)

is that this corresponds to the trajectory probability of the joint system after a

heterodyne measurement {Mα,β = 1
π

|α, β⟩ ⟨α, β|}α,β is made in the initial state

without revealing its outcome.

In conclusion, if we want QBN with the coherent states ensemble choice to respect

correct marginalization conditions, the distribution must have the form

P(a0, at, b0, bt) =
∫
C2
d2α d2β P (α, β)| ⟨a0, b0|α, β⟩ |2| ⟨at, bt|U(t) |α, β⟩ |2. (7.55)

However, since P (α, β) is a quasi-probability distribution, our QBN distribution

P(a0, at, b0, bt), in general, is not a probability distribution and therefore cannot be

used to compute statistical moments in the usual manner.

The attempt to use the coherent state’s ensemble led to the interesting situ-

ation that, if we wish to satisfy marginalization conditions, the distribution loses

its original physical meaning. In future research, it can be promising to relate the

distribution of Eq. (7.55) to quasi-probability definitions and results [145, 146].
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Chapter 8

Conclusions and further

perspectives

The main motivation of this thesis was to explore new effects of quantum correlations

in two distinct situations.

The first project, relative to chapters 5 and 6, explored the effects of initial global

correlations between the ancillae in the evolution and thermalization of a system

that interacts locally with them in a collisional model setup. As a benchmark for

comparison, we contrasted our results to well-known papers concerning collisional

models and the asymptotic behavior of the system, leading us to a comparison with

Refs. [18, 19], in which the model studied is very similar to our model explored

in Chapter 5. The new component introduced in our studies (the initial ancillae

correlations) revealed highly non-negligible effects, pushing the system towards dif-

ferent steady states and breaking the Homogenization proposed in [19]. These facts

were numerically glimpsed in the qubit model and fully described for the bosonic

modes case thanks to the very feasible description of Gaussian bosonic states. It was

our initial intention to obtain the full description of the initial correlations effects in

bosonic Gaussian modes and to construct a physical model capable of mimicking the

initial correlations between the ancillae. Both goals were achieved and led us to the

use of H-Graphs to prepare correlated bosonic modes. From Chapter 5 we can con-

clude that it is possible to create an environment with distance-dependent correlated

ancillae with the use of H-graphs in qubits. We couldn’t obtain analytical closed
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expressions for preparing environments with the desired correlations, however, with

numerical approaches it was possible to visualize non-trivial correlation patterns,

as it is shown in Section 5.1. In Chapter 6, Section 6.3, we obtained a satisfactory

method for such preparation of correlated ancillae for the Gaussian bosonic case,

additionally it would be stimulating to suggest in detail a platform for physical im-

plementation. This is a future work perspective and possibly a feasible candidate to

implement in the context of waveguide-QED [103, 104]. Another alternative would

be to recycle the ancillae and apply a periodic set of gates in them before they inter-

act with the system to prepare the initial correlations between neighbors’ ancillae.

This “on the go” scheme of preparing correlations between ancillae can be applied,

for the qubits case, can be implemented in recent quantum computing platforms.

Additionally, the very structure of continuous variables graph-states itself [48], used

in Section 6.3, is proposed under the possibility of optical preparation with offline

squeezing plus interferometry [140, 141] or optical parametric oscillators [142].

The analytical results obtained in the Gaussian case raise a variety of inquiries.

A special inquiry is about the underlying mechanisms of the pushing effects since

there is still a lack of interpretation about how correlations can deviate the system

towards the specific forms of Eqs. (6.26) and (6.34), for instance. One possible future

research is to analyze this model from the perspective of Quantum Trajectories [8,

57, 147].

It is also important to remember that such kind of deviations can be present in a

wide variety of collisional models rather than in the Homogenization context due to

the generality of Eq. (6.24), and this could indicate the presence of such effects in a

diversity of physical situations. For instance, one could consider not locally identical

initial ancillae, but ancillae whose states fluctuate around an average. In this case,

the steady state of the system without the initial ancillae correlations would be the

average of the ancillae state, however, if we consider the initial correlations, the

steady state would be pushed in the same way. Therefore, exploring the possibility

of new environmental correlations inducing pushing in a system can be a fruitful

direction for research.

A very relevant question to be asked is about the necessity for the ancillae cor-
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relations to be of quantum nature. This is also a future work possibility that can

be very challenging for qubits ancillae but feasible for bosonic systems with the use

of continuous variables methods [14–16, 131]. Another possible exploration of the

internal correlations of the ancillae with the use of our results is to analyze how

the many-body weaving of the ancillae set can be changed with the collisions. This

concept, proposed in [148], characterizes multipartite correlations and describes how

correlations scale with the size of the many-body system.

Furthermore, Eqs. (6.26) and (6.34) give non-trivial results for thermodynamics.

As already indicated in Section 6.2, we could have an initial local thermal system and

ancillae (it could also be possible to have them in the same temperature), and Eqs.

(6.26) and (6.34) indicate that, depending on the strength of the collision and on the

ancillae initial correlations configuration, the system could get dramatically warmer

or colder in the steady state. These predictions could result in a thermal machine

or refrigerator in which correlations are consumed, rather than work. Therefore,

a deeper study of this feature can give interesting insights into thermodynamics.

Finally, a random distribution in the initial correlations of the ancillae could nullify

or interfere with the pushing effect on the system. Further analysis of this subject

could clarify this pushing effect in general physical systems.

In chapter 7, regarding the second project, we refer to the statistics of thermo-

dynamic quantities using QBNs and our main search was to estimate an adequate

probability distribution for the heat distribution which fully considered the effects

of initial quantum correlations. We aimed to achieve this goal using QBNs initially

proposed in Ref. [48]. In Chapter 7 we obtained, inspired by this main question,

a general framework using QBNs to estimate probability distributions to describe

observable variations (or changes) during a physical process. This framework was

further reduced to the particular case for our studies of the heat distribution, but we

can have a wide variety of applications due to the generality of the observable whose

change can be explored. For instance, with this framework we are able to estimate

the probability distribution variation of the number of particles (when the observ-

able is the number operator) or work (in the presence of external time-dependent

force on the Hamiltonian), being a possibly fruitful road for future research. The
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characteristic function of such distribution obtained in Eq. (7.11), as well as the

statistical moments resulting from it, takes under consideration the initial quantum

coherences of the system to describe the full statistics of the changes and reduces

to the TPM statistics for the case where there is no initial coherence in the eigen-

basis of the initial observable in question. Additionally, this formalism is feasible

to quantum fluctuation theorems [48] and has an experimental validation protocol

based on the postselection of independent multiple copies [49]. Therefore, we ex-

pect that this formalism can be useful for further explorations of the statistics of

thermodynamic quantities when one desires to consider entirely the effects of initial

quantum correlations and quantum coherence.

Another important aspect observed from the result of the QBN characteristic

function for the observable changes, obtained in Eq. (7.11), is its dependence on the

choice of the ensemble to describe the initial covariance matrix. As a consequence,

the statistical moments will also depend on this choice, with the notable exception of

the average. Part of our analysis focuses on the behavior of the variance under this

ensemble choice dependence since it is in our interest to understand which choice of

initial ensemble causes in the probability distribution a smaller deviation from the

average. In our analysis of the statistic of the heat exchange between two interacting

qubits, we proved to agree with the results of Refs. [48, 54], we concluded that the

probability distribution generated by the eigen-ensemble of the initial density matrix

would minimize the variance in relation to any other ensemble choice. We made this

affirmation as a conjecture, justified by the example explored in Section 7.2 and by

the intuitive perspective, in which non-orthogonal ensembles would engender a larger

variance distribution due to the indistinguishability of states. An ongoing research

effort to prove analytically this statement or to discover counterexamples continues.

And further research relating this feature to related papers as, for instance, Refs.

[144, 149, 150] could illuminate this issue. This is related to the general question

of how the ensemble choice affects the QBN probability distributions and which is

the physical meaning of these different choices. The answer might be in relating

the distributions to different measurement schemes. Hence, it can be worthwhile

future research to relate our QBN probability distribution results concerning its
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dependence on initial density matrices ensemble choice to different measurement

schemes. This is done in Ref. [49] concerning the eigen-ensemble choice and a

possible generalization can be explored.

Continuing to pursue our main goal in this second project, we focused on obtain-

ing the statistics of the heat exchanged between two initially correlated Gaussian

bosonic modes during a Beam Splitter interaction. We obtained the heat average for

this case and observed that the heat average predicts a heat flow inversion caused

by the initial correlations between the bosonic modes, analogous to the already ex-

perimentally proved qubits case [54]. This heat flow inversion cannot happen if

the initial global state is the well-known two-mode squeezed thermal state, rather

we observed that the heat flow inversion is maximally obtained for the case where

the initial states are initially two local thermal states correlated by application of a

Beam Splitter unitary (which we called TSBS states). However, it is still an open

question and future query to interpret why an initial two-mode squeezed thermal

state is unable to cause the heat flow inversion while the TSBS states can since both

are rich in quantum correlations (quantum discord) and mutual information between

the modes (see Subsection 7.4.5). Is there a feature or resource created during the

preparation of the TSBS states which isn’t present in a two-mode squeezed state?

As for our analysis of the variance for the heat exchange between two bosonic

modes, we spotted that the variance decreases at the same time as the correlations

(classical and quantum) are consumed for the heat flow inversion. Furthermore, the

variance oscillates, achieving its maxima when the correlations are at their minima

and its minima when the correlations reach their maxima. Therefore, this indicates

that the presence of correlations decreases the variance. Since it was also observed

for the qubits case, it might suggest that this fact is present in more general physical

situations. Further investigations into the subject and interpretations can also be a

theme for future research. A suggestion for such interpretation can be inspired by

Ref. [143], which indicates that the presence of correlations can decrease the entropy

of a system. If we suppose a similar reasoning for the entropy of the process, it might

be possible that the correlations decrease the variance of the distribution.

Additionally, for the bosonic case where the initial joint state is a two-mode
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squeezed thermal state, during the exchange of heat between the parties the cor-

relations are consumed causing no effect on the heat average behavior. Instead, it

causes an increasing effect on the variance of the heat distribution. This can be the

first indication that correlations can be consumed to affect other heat distribution

moments rather than the average.

Finally, regarding our attempt to use the coherent state ensemble choice to de-

scribe the bosonic QBN distribution, we concluded that the suitable seed probability

distribution to the coherent-states ensemble is the Glauber-Sudarshan P-function,

due to marginalization conditions. So the necessity of satisfying the marginalization

conditions led our QBN distribution to lose its initial probabilistic interpretation.

Therefore, the use of quasi-probabilities as seed probabilities still lacks better inter-

pretations, and an ongoing research direction is to enlighten these results, relating

it to other interpretations of quasi-probabilities [42, 145, 146, 151].
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Appendix A

Some proofs and definitions in

Open Quantum Systems and

Collisional Models

A.1 Some properties of purity

Given a density matrix ρ, we can make its spectral decomposition (since it is a

hermitian operator)

ρ =
∑

k

λk |λk⟩ ⟨λk| , (A.1)

where λk and |λk⟩ are respectively the eigenvalues and eigenvectors of ρ. Notice

that, from the semi positivity and normalization condition (Eqs. (2.4) and (2.5)),

we obtain

λk ≥ 0 and
∑

k

λk = 1, (A.2)

which implies that we can treat λk as the probabilities. Now, computing the purity

of ρ, we obtain

P(ρ) = Tr
{∑

k

∑
l

λkλl |λk⟩ ⟨λk|λl⟩ ⟨λl|
}

=
∑

k

λ2
k ≤ 1, (A.3)

the above quantity is less or equal to 1 since it is a sum of probabilities squared and

can be 1 if and only if all the probabilities are 0 except one λk which is 1, and in
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this case, we arrive at a pure state.

Moreover, we can argue that the case where the purity is at its minimum is

the situation where the state is more mixed. This is the case where we have no

information that gives preference for the system to be in one state or another,

so λk = 1/d, ∀k (since λk represents the probability of the system being in the

element of basis |λk⟩), where d is the dimension of the Hilbert space of the system.

Consequently, we shall have

P(ρ) =
∑

k

λ2
k =

∑
k

1
d2 = 1

d
, (A.4)

and thus we have the lower bound for P(ρ). This result can also be obtained by using

Lagrange multipliers for minimizing P(ρ) under the constraint of ρ normalization

(Eq. (2.5)).

A.2 The partial trace

If we treat a bipartite system AB in a Hilbert space HAB = HA ⊗ HB, the partial

trace comes from the idea of creating the adequate description for the subsystem

A by summing the average effects of B. For accounting the effects of B, one can

proceed as follows, suppose the most general linear operator O that acts on HAB

O =
∑

k

Ak ⊗Bk, (A.5)

where Ak and Bk are generic operators that act in HA and HB respectively. The

partial trace with respect to B is defined to be the trace of all the operators that act

only on HB space

TrB O =
∑

k

Ak ⊗ Tr{Bk}, (A.6)

or, equivalently

TrB O =
∑

k

∑
α

⟨α|B Ak ⊗Bk |α⟩B , (A.7)
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where {|α⟩B} is some basis of HB. Evidently, TrB O is not a number, but an operator

acting on HA and

Tr{O} = TrA{TrB{O}}. (A.8)

Together with the definition of partial trace, we have the notion of reduced density

matrix of a state ρ in AB

ρA = TrB ρ, (A.9)

which describes the system that we would see if we only looked at A making an

average of the effects of B. The intuition may come from the fact that if OA is an

operator acting in HA, then

⟨OA⟩ = Tr{OAρ} = TrA{OA TrB{ρ}} = TrA{OAρA} = Tr{OAρA}, (A.10)

where in the last equality we exchange TrA for the full trace Tr since all the operator

inside the trace acts only on OA.The above equation means that ρA acts just like a

density matrix should act for computing averages only on A.

A.3 Interaction Picture

We shall make the description of this formalism just for completeness, here we are

strictly following Ref. [91].

Notice that the von Neumann Equation (Eq. 2.11), just like Schödinger’s Equa-

tion, also describes a closed system evolving under a time-dependent Hamiltonian

H(t). So, given a quantum state ρ that evolves under such time-dependent Hamil-

tonian, we can define a new density matrix given by

ρ̃ = S(t)ρS†(t), (A.11)

where S(t) is an arbitrary time-dependent unitary.

The density matrix ρ̃ is now a state that describes the system ρ in a rotating
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frame and evolves according to a von Neumann equation

dρ̃

dt
= −i[H̃(t), ρ̃], (A.12)

where

H̃(t) = i
dS(t)
dt

S†(t) + S(t)H(t)S†(t). (A.13)

To prove Eqs. A.12 and A.13, we need only to differentiate ρ̃ in function of t

dρ̃

dt
= dS(t)

dt
ρS†(t) + S(t)dρ

dt
S†(t) + S(t)ρdS

†(t)
dt

= dS(t)
dt

S†(t)ρ̃− iS(t)[H(t), ρ]S†(t) + ρ̃S(t)dS
†(t)
dt

= dS(t)
dt

S†(t)ρ̃− i[S(t)H(t)S†(t), ρ̃] − ρ̃
dS(t)
dt

S†(t)

= −i[S(t)H(t)S†(t) + i
dS(t)
dt

S†(t), ρ̃] = −i[H̃(t), ρ̃],

where in the second equality we used the von Neumann Equation for ρ, and in the

third equality we used that dS(t)
dt
S†(t) = −S(t)dS†(t)

dt
since d

dt
(S(t)S†(t)) = 0.

The appropriate choice of S(t) can make a time-dependent Hamiltonian become

time-independent and vice-versa. If we have a time-independent Hamiltonian that

can be divided in

H = H0 + V, (A.14)

then, if we chose

S(t) = eiH0t, (A.15)

we obtain

H̃(t) = eiH0tV e−iH0t. (A.16)

which means that we eliminate the direct dependence on the “free” Hamiltonian H0

on the but add a time dependence.

For the case where [H0, V ] = 0, we have, from the equation above

H̃(t) = V, (A.17)
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which is a time-independent Hamiltonian, and means that the effective Hamilto-

nian will act just as the interaction Hamiltonian setting H0 = 0. The assumption

[H0, V ] = 0 is valid for almost all of our cases of study in this thesis, and represents

interactions that conserve the system’s internal energy.

A.4 Thermal states

Given a system with Hamiltonian H described by a density matrix ρ, we affirm that

it is in a thermal state with temperature T when

ρ =
∑

i

e−βEi

Z
|Ei⟩ ⟨Ei| = e−βH

Z
, (A.18)

where β = 1/T , {Ei}i and {|Ei⟩}i are, respectively, the sets of eigenvalues and

eigenvectors of H and Z = Tr
{
e−βH

}
is the partition function.

This is just the quantum version of the Gibbs distribution. Whereas, in classical

physics, the probability distribution of a system in thermal equilibrium at temper-

ature T is only dependent on its energy and is equal to

p(Ei) = e
− 1

kBT
Ei

Z
, (A.19)

where Ei is the energy of the system, kB is the Boltzmann constant and Z =∑
i e

− 1
kBT

Ei (where the index i means “summing over all states for all possible en-

ergies Ei”) is again the partition function. Finally, we just have that Eq. A.18

is

ρ =
∑

i

p(Ei) |Ei⟩ ⟨Ei| . (A.20)

For the case of a qubit, if we are dealing, for instance, with a standard Hamilto-

nian

H = Eσz, (A.21)

with E > 0, then if |0⟩ and |1⟩ are the eigenvectors of σz (with eigenvalues −1 and

1, respectively), we shall have the same eigenvectors for H with eigenvalues −E and
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E, respectively. Hence, if the qubit is in a thermal state at temperature T , Eq. A.18

will result in

ρ =

 eβE

Z
0

0 e−βE

Z

 =

1 − p 0

0 p,

 , (A.22)

where β = 1/T , Z = eβE(1 + e−2βE) and p = 1
2(1 − tanh(βE)). Notice that

0 ≤ p ≤ 1/2 with the bounds achieved at β → ∞ and β → 0, respectively.

A.5 Proof of ρnS,rest → 0 and ρnA,rest → 0

This section of the Appendix is presented just for the completeness of the thesis.

This was done following the results of Ref. [19].

For proving the properties above, it is sufficient to prove that ρn
S and ρn

A converge

to ρA. The proof of these convergences can be made with the use of the Banach

Theorem (see Ref. [152]). But to enunciate such a theorem, we must first define

what is a contractive map.

Let S be a space with a distance function D. A map T is called contractive if

and only if, for any ρ and η that belong to S, we have

D(T [ρ], T [η]) ≤ kD(ρ, η), where 0 ≤ k < 1. (A.23)

The Banach Theorem states that, if a map T is contractive, then it has

a fixed point η∗ ∈ S in which the interaction of the map converges to it, i.e.,

limN→∞ TN [ρ] = η∗ for any ρ ∈ S.

It is important to notice that if a map is contractive and has a fixed point (of

course, this will always be true by the theorem stated above), then the fixed point

will be unique. The proof is very simple: let ρ and η be two fixed points of a

contractive map T , then it must be true that

D(T [ρ], T [η]) ≤ kD(ρ, η) ⇒ D(ρ, η) ≤ kD(ρ, η),

and the inequality above is true for some k where 0 ≤ k < 1 if, and only if,

ρ = η. Hence the Banach Theorem also implies the uniqueness of the fixed point of
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a contractive map.

The space S that we shall consider is the space of density matrices operators

in the Hilbert space of the system HS while we want to show that the map E ,

that makes the evolution of the system in the Homogenization case of Sec. 2.3.6, is

contractive and has the fixed point ρA.

In order to show the above facts, we first parametrize our initial system’s state

as

ρ0
S = 1

2I + w⃗· σ⃗, (A.24)

where I is the identity operator, w⃗ is a vector of real numbers with 3 components,

with |w⃗| ≤ 1/2 and σ⃗ = (σx, σy, σz) is the vector of Pauli matrices, it can be shown

that every qubit density matrix can be parametrized in a Eq. (A.24) form (see

Ref. [91]). We also parametrize the ancilla’s initial state as

ρA = 1
2I + t⃗· σ⃗. (A.25)

These parametrization permits us to represent ρ0
S = (1, wx, wy, wz) and ρA = (1, t1, t2, t3)

as vectors in the operator basis {I/2, σx, σy, σz} spanning the space of qubit density

matrices.

Using this parametrizations and Eq. (2.50), we can write our map E as

E [ρ0
S] = ρ1

S = 1
2I + (s2t⃗+ c2w⃗) · σ⃗ + ics[⃗t· σ⃗, w⃗· σ⃗]

= 1
2I + [s2t⃗+ c2w⃗ − 2cs(⃗t× w⃗)] · σ⃗ = 1

2I + w⃗′ · σ⃗, (A.26)

where we used that σkσl = δklI + iϵjklσj (ϵjkl is the Levi-Civita symbol) in the third

equality and we defined

w′
j = s2tj + (c2δjl − 2csϵjkltk)wl.
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Now we can write Eq. (A.26) as a transformation w⃗ → w⃗′ in the following way



1

w′
x

w′
y

w′
z


=



1 0 0 0

s2tx c2 2cstz −2csty
s2ty −2cstz c2 2cstx
s2tz 2csty −2cstx c2





1

wx

wy

wz


, (A.27)

the equation above can be rewritten as E [ρ0
S] = Tρ0

S, with the vector representation

of ρ0
S and

T =

 1 0⃗T

s2t⃗ T,

 (A.28)

where 0⃗ is the vector of 3 components with 0 in the entries. Finally, it is straight-

forward to prove that TρA = ρA using Eqs. (A.27) and (A.28) and hence that ρA is

a fixed point of E .

Furthermore, to prove that E is contrative, let us define v⃗ such that η = 1
2I+v⃗· σ⃗

is a density matrix and r⃗ = w⃗ − v⃗ and use the trace distance definition, so that

D(ρ, η) = Tr |(w⃗ − v⃗) · σ⃗| = Tr |r⃗· σ⃗| = 2|r⃗|, (A.29)

where we used that the eigenvalues of r⃗· σ⃗ are ±|r⃗|. Similarly, we obtain that

D(E [ρ], E [η]) = 2|r⃗′|, (A.30)

where

r⃗′ = w⃗′ − v⃗′ = s2t⃗+ Tw⃗ − s2t⃗− Tv⃗ = T(w⃗ − v⃗) = Tr⃗

= c2r⃗ − 2cst⃗× r⃗,

where we used Eqs. (A.27) and (A.28) in the last equality. The equation above

implies that

|r⃗′|2 = c4|r⃗|2 + 4c2s2|⃗t× r⃗|2 = |r⃗|2c2(c2 + 4s2 |⃗t|2 sin2 β),
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where in the first equality we used that r⃗ is orthogonal to t⃗×r⃗ and in the last equality

we used that |⃗t × r⃗| = |⃗t||r⃗| sin β, for some 0 ≤ β ≤ π. Now, since |⃗t|2 ≤ 1/4, we

must have c2 + 4s2|⃗t|2 sin2 β ≤ c2 + s2 sin2 β ≤ 1 since sin2 β ≤ 1. Using this in the

equation above, we obtain

|r⃗′| ≤ |c||r⃗|.

Finally, combining the equation above with Eqs. (A.29) and (A.30), we obtain

D(E [ρ], E [η]) = 2|r⃗′| ≤ 2|c||r⃗| = |c|D(ρ, η),

from which we obtain that E is a contractive map if |c| < 1 and thus it converges to

its fixed point ρA due to Banach Theorem.

Turning the attention now to the ancillae evolution, we have from Eq. 2.53 that

if we want to satisfy, for any δ, the condition of Eq. (2.48), we must have a bound

for the distance between the first collision and the original ancilla state D(ρ1
A, ρA).

The condition of Eq. 2.48 implies that

D(ρ1
A, ρA) ≤ δ. (A.31)

Now, since ρ1
A depends on the initial system state ρ0

S, we must use the value of ρ0
S

that makes the greatest distance above. This is the case where the two states are

pure and mutually orthogonal, i.e., w⃗ = −t⃗ and |⃗t| = 1/2. Using this and Eq. (2.52)

in the equation above, we obtain

2s2 Tr |⃗t· σ⃗| = 2s2 ≤ δ,

and this implies Eq. (2.54). And since this assures that the distance between ρn
A

and ρA is smaller than δ for any n > 1, this completes the convergence of ρn
A to ρA.
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B.1 Some useful equations

Given a function that can be expanded in the series of the form

f(x) =
∞∑

i=0
aix

i, (B.1)

where ai are complex numbers, and an operator A that can define f(A) such that

f(A) =
∞∑

i=0
aiA

n. (B.2)

If A can be diagonalized as

A =
∑

α

λα |λα⟩ ⟨λα| , (B.3)
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where {λα}α and {|λα⟩}α are respectivley the eigenvalues and eigenvectors of A,

then

f(A) =
∞∑

i=0
ai

(∑
α

λα |λα⟩ ⟨λα|
)i

=
∞∑

i=0
ai

∑
α

λi
α |λα⟩ ⟨λα|

=
∑

α

( ∞∑
i=0

aiλ
i
α

)
|λα⟩ ⟨λα|

=
∑

α

f(λα) |λα⟩ ⟨λα| .

Writing succinctly,

f(A) =
∑

α

f(λα) |λα⟩ ⟨λα| . (B.4)

B.2 Proof of Eq. (3.10)

Being the density matrix ρ diagonalized as in Eq. (3.8) and given that the function

x log x can be Taylor expanded, we can use Eq. (B.4) to obtain

ρ log ρ =
∑

i

λi log λi |λi⟩ ⟨λi| , (B.5)

and hence we arrive at

− Tr(ρ log ρ) = −
∑

i

λi log λi. (B.6)
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Continuous Variables

C.1 Notation for vectors and matrices of opera-

tors

Given two vector of operators â and b̂, we can build an operator

âTb̂ =
∑

j

âjb̂j, (C.1)

and matrix of operators âb̂
T with components

(âb̂
T)jk = âjb̂k. (C.2)

Since operators don’t always commute, we have, in general, ââT ̸= (ââT)T, because

the elements inside the vectors may not commute. Therefore, we can define the

following commutators and anti-commutators

[â, âT] = ââT − (ââT)T, (C.3)

{â, âT} = ââT + (ââT)T, (C.4)
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to express such differences. Combining both equations, we obtain

{â, âT} + [â, âT] = 2ââT. (C.5)

We can also write

[â, âT]jk = âjâk − âkâj, (C.6)

{â, âT}jk = âjâk + âkâj. (C.7)

C.2 The direct sum

Given two matrices N (with dimension n1 × n2) and M (with dimension m1 ×m2),

then the direct sum of both matrices is

N ⊕M =

 N 0n1×m2

0m1×n2 M,

 (C.8)

where 0n×m means a n×m null matrix.

The notation ⊕N
n=1 An means the direct sum of the An matrices from 1 to N

N⊕
n=1

An = A1 ⊕ A2 ⊕ · · · ⊕ AN . (C.9)

C.3 General Gaussian integral

For further use, here we expose the well-known generalization of the Gaussian inte-

gral. Given a positive definite 2n× 2n matrix A and a 2n-dimensional vector b, we

have ∫
R2n

dr e−r⊤Ar+r⊤b = πn

√
det A

e
1
4 b⊤A−1b. (C.10)

C.4 Proof of Eq. (4.18)

For proving this equation, we define a vector of operators f̂(r) = e−irTΩr̂r̂eirTΩr̂,

from which we have f̂(0) = r̂, where 0 here means a 2n vector of 0s. Now, making
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a Taylor expansion of f̂(r) around r = 0, we get

f̂k(r) = f̂k(0) +
∑

j

rj
∂f̂k(r′)
∂r′

j

∣∣∣∣
r′=0

+
∑
jl

rjrl
∂2f̂k(r′)
∂r′

j∂r′
l

∣∣∣∣
r′=0

+ · · · . (C.11)

But

∂f̂k(r′)
∂r′

∣∣∣∣
r′=0

= ∂

∂r′

(
e−i

∑
lm

r′
lΩlmr̂m r̂ke

∑
st

r′
sΩstr̂t

) ∣∣∣∣
r′=0

= −i
∑
m

Ωjm[r̂m, r̂k]

=
∑
m

ΩjmΩmk

= −δjk,

and it is easy to show that higher-order derivatives are 0. Using these results in

Eq. (C.11), we obtain f̂(r) = r̂ − r.

C.5 Proof of Eq. (4.26)

We have that, from the definition of |α⟩ (Eq. (4.25))

âj |α⟩ = âjD̂α |0⟩

= αjD̂α |0⟩

= αj |α⟩ , (C.12)

where in the second equality we used the following result. From Eq. (4.24), we have

âjD̂α |0⟩ = D̂αD̂
†
αâjD̂α |0⟩

= D̂α(âj + αj) |0⟩

= αjD̂α |0⟩ . (C.13)
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C.6 Proof of the formula of the coherent state

expanded in the Fock basis (Eq. (4.27))

We can assume that a coherent state can be expanded in the Fock basis as |α⟩ =∑∞
m=0 cm |m⟩ for some coefficients cm, then

â |α⟩ =
∞∑

m=0
cmâ |m⟩

=
∞∑

m=0
cm

√
m |m− 1⟩

=
∞∑

m=0
cm+1

√
m+ 1 |m⟩

= α
∞∑

m=0
cm |m⟩ ,

since α is the eigenvalue of â for the eigenvector |α⟩. From the linear independence

of the kets |m⟩, we must have the recurrence equation

cm+1
√
m+ 1 = αcm,

whose solution is

cm = A
αm

√
m!
,

where A is a constant to be determined by normalization. Then

⟨α|α⟩ =
∞∑

m=0
|cm|2

= |A|2
∞∑

m=0

|α|2m

m!

= |A|2e|α|2

= 1

=⇒ A = e−|α|2/2,

so finally

|α⟩ =
∞∑

m=0
e−|α|2/2 α

m

√
m!

|m⟩ . (C.14)
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C.7 Completeness relation for coherent states

Using the Fock basis decomposition (Eq. (4.27))

1
π

∫
C
d2α |α⟩ ⟨α| = 1

π

∞∑
m,n=0

∫
C
d2α

αmα∗n

√
m!n!

e−|α|2 |m⟩ ⟨n|

= 1
π

∞∑
m,n=0

∫ ∞

0
dρ̂
∫ 2π

0
dϕei(m−n)ϕ e

−ρ̂2
ρ̂m+n+1

√
m!n!

|m⟩ ⟨n|

=
∞∑

m=0
2
∫ ∞

0
dρ̂
e−ρ̂2

ρ̂2m+1

m! |m⟩ ⟨m|

=
∞∑

m=0
|m⟩ ⟨m|

= I, (C.15)

where in the second equality we used that
∫ 2π

0 ei(m−n)ϕdϕ = 2πδmn and parametrized

α = ρ̂eiϕ and in the last equality we used the Gamma function
∫∞

0 e−ρ̂2
ρ̂2m+1dρ̂ =

m!/2.

C.8 Proof of the Fourier-Weyl relation

From the completeness relation for coherent states, we can expand any bounded

operator Â as

Â = 1
π2

∫
C2
dαdβ ⟨α| Â |β⟩ |α⟩ ⟨β| , (C.16)

notice that if

|α⟩ ⟨β| = 1
π

∫
C
d2γ Tr

{
|α⟩ ⟨β| D̂γ

}
D̂†

γ, (C.17)
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the proof would be complete. So we shall demonstrate Eq. (C.17), applying D̂−α

from the left of Eq. (C.17) and D̂β from the right, we obtain

|0⟩ ⟨0| = 1
π

∫
C
d2γ Tr

{
|α⟩ ⟨β| D̂γ

}
D̂−αD̂−γD̂β

= 1
π

∫
C
d2γ Tr{|α⟩ ⟨β − γ|}e

1
2 (γβ∗−γ∗β)D̂−αD̂−γD̂β

= 1
π

∫
C
d2γ ⟨β − γ|α⟩ e

1
2 (γβ∗−γ∗β)D̂−αD̂−γD̂β

= 1
π

∫
C
d2γe− 1

2 |β−α−γ|2D̂β−α−γ

= 1
π

∫
C
d2γe− 1

2 |γ|2D̂γ, (C.18)

where in the second equality we used Eq. 4.28, in the third equality we used Eq.

4.29, and at the last equality we made a change of variables. Thus we must prove

that 1
π

∫
C d

2γe− 1
2 |γ|2D̂γ = |0⟩ ⟨0| in order to complete the proof. For this, notice that

by applying it on a Fock basis vector |m⟩, we have

1
π

∫
C
d2γe− 1

2 |γ|2D̂γ |m⟩ = 1
π

∫
C
d2γe− 1

2 |γ|2D̂γ
â†m

√
m!

|0⟩

= 1
π

∫
C
d2γe− 1

2 |γ|2D̂γ
â†m

√
m!
D̂†

γD̂γ |0⟩

= 1
π

∫
C
d2γe− 1

2 |γ|2 (â† − γ∗)m

√
m!

|γ⟩

=
∫
C

d2γ

π
e−|γ|2 (â† − γ∗)m

√
m!

∞∑
n=0

γn

√
n!

|n⟩

=
∞∑

n=0

m∑
j=0

∫
C

d2γ

π
e−|γ|2

(
m

j

)
(−γ)∗jγn

√
m!n!

â†(m−j) |n⟩

=
m∑

j=0

(
m

j

)
(−1)j |m⟩

= δm0 |0⟩ , (C.19)

where in the third equality we used that D̂γ â
†D̂†

γ = â† − γ∗, in the forth equality we

used Eq. (4.27), in the sixth equality we used 1
π

∫
C d

2γe−|γ|2γ∗jγn = n!δjn and in the

last step we used the fact that ∑m
j=0

(
m
j

)
(−1)j = (1 − 1)m = δm0. Finally, we have

that Eq. (C.19) implies (C.18) which is equivalent to Eq. (C.17).
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C.9 Proof of Eq. (4.42)

Given the definitions of Eq. (4.41) and Eq. (4.21) and using that the one mode

vector r′ = (q′, p′), we have

W (q, p) = 1
π2

∫
R

∫
R
dq′dp′ei(pq′−qp′)χ(q′, p′)

= 1
2π2

∫
R

∫
R
dq′dp′ei(pq′−qp′)

∫
R
dx ⟨x| D̂− r′

2
ρ̂D̂− r′

2
|x⟩

= 1
π2

∫
R

∫
R

∫
R
dq′dp′dx eipq′

eip′(x−q)
〈
x− q′

2

∣∣∣∣∣ ρ̂
∣∣∣∣∣x+ q′

2

〉

= 1
π

∫
R
dq′ eipq′

〈
q − q′

2

∣∣∣∣∣ ρ̂
∣∣∣∣∣q + q′

2

〉

= 2
π

∫
R
dq′ eipq′ ⟨q − q′| ρ̂ |q + q′⟩ , (C.20)

where in the second equality we expanded the trace of the definition of χ(q′, p′) (Eq.

(4.38)) in therms of a first quadrature basis |x⟩, we used the cyclic property of the

trace and used that D̂−r′ = D̂−r′/2D̂−r′/2 and in the third equality we used that

D̂−r′/2 = e− i
2 q′p̂e

i
2 p′q̂e

i
8 q′p′ and thus D̂−r′/2 |x⟩ =

∣∣∣x+ q′

2

〉
e

i
2 p′xe

i
8 q′p′ .

C.10 Proof of Eq. (4.47)

From applying the Weyl operator D̂α from the left of Eq. (C.18) and its conjugate

transpose operator from the right of this equation, we obtain

|α⟩ ⟨α| = 1
π

∫
C
d2γe− 1

2 |γ|2e(αγ∗−α∗γ)D̂−γ, (C.21)
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where we used Eq. (4.28) so that D̂αD̂γD̂−α = e(αγ∗−α∗γ)D̂γ. Using the equation

above, we obtain

∫
C
d2αP (α) |α⟩ ⟨α| = 1

π

∫
C
d2γe− 1

2 |γ|2
∫
C
d2αe(αγ∗−α∗γ)P (α)D̂−γ

= 1
π

∫
C
d2γe− 1

2 |γ|2χ1(γ)D̂−γ

= 1
π

∫
C
d2γ χ0(γ)D̂−γ

= ρ̂, (C.22)

where in the second equality we used the inverse Fourier transform of P (α) (since

P (α) =
∫
C d

2βe(αγ∗−α∗γ)χ1(β) then it’s inverse will be χ1(γ) =
∫
C d

2αe(αγ∗−α∗γ)P (α)),

in the third equality we used Eq. (4.44) to relate χ1(α) to χ0(α) and in the forth

equality we used the Fourier-Weyl relation (Eq. (4.35)).

C.11 Proof of Eq. (4.49)

Using the Fourier Weyl relation, (Eq. (4.35)) we obtain

1
π

⟨α| ρ̂ |α⟩ = 1
π2

∫
C
d2βχ0(β) ⟨α| D̂−β |α⟩

= 1
π2

∫
C
d2βe

1
2 (αβ∗−α∗β)χ0(β) ⟨α|α− β⟩

= 1
π2

∫
C
d2βe(αβ∗−α∗β)χ0(β)e− |β|2

2

= W−1(α), (C.23)

where in the second equality we used Eq. (4.28) to obtain D̂−β |α⟩ = D̂α−β |0⟩ e 1
2 (αβ∗−α∗β) =

|α− β⟩ e 1
2 (αβ∗−α∗β) and in the third equality we used Eq. (4.29).
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C.12 Proof of the Robertson-Schrödinger relation

(Eq. (4.58))

In order to obtain the formula, first consider the following 2n× 2n complex matrix

τ = 2 Tr
[
(r̂ − r̄)(r̂ − r̄)†ρ̂

]
. (C.24)

We can show that this operator is positive semi-definite in the following way. Sup-

pose v ∈ C2n, then we have

v†τv = 2v† Tr
[
(r̂ − r̄)(r̂ − r̄)†ρ̂

]
v

= 2 Tr
[
v†(r̂ − r̄)(r̂ − r̄)†vρ̂

]
= 2 Tr

[
ÔÔ†ρ̂

]
≥ 0, (C.25)

where O = v†(r̂ − r̄). In the second equality, we used Eqs. (C.1) and (C.2) which

imply

v† Tr
[
(r̂ − r̄)(r̂ − r̄)†ρ̂

]
v =

∑
jk

vj Tr [(r̂ − r̄)j(r̂ − r̄)kρ̂] vk

= Tr
∑

jk

vj(r̂ − r̄)j(r̂ − r̄)kvkρ̂


= Tr

[
v†(r̂ − r̄)(r̂ − r̄)†vρ̂

]
,

and in the last step of Eq. (C.25), we used the fact that for every operator O, OO† is

positive semidefinite and ρ̂ is also semidefinite, hence OO†ρ̂ is positive semidefinite.

This concludes the proof that τ ≥ 0. Now, from Eq. (C.5) and from τ ≥ 0, we have
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that

τ = 2 Tr
[
(r̂ − r̄)(r̂ − r̄)†ρ̂

]
= Tr

[
{(r̂ − r̄), (r̂ − r̄)†}ρ̂

]
+ Tr

[
[(r̂ − r̄), (r̄ − r̄)†]ρ̂

]
= Tr

[
{(r̂ − r̄), (r̂ − r̄)†}ρ̂

]
+ Tr

[
[r̂, r̄†]ρ̂

]
= 2σ + iΩ

≥ 0, (C.26)

where in the third equality we used Eqs. (4.56) and (4.11). Finally, we obtain

σ + iΩ
2 ≥ 0. (C.27)

C.13 Density matrix and covariance matrix of free

Gaussian bosonic modes

If we have a Gaussian state of N free bosonic modes, then it will have the form

ρ̂free = e−r̂⊤Λr̂

Z
, (C.28)

where Λ = diag(λ1, λ2, · · · , λN), λj > 0, ∀j and Z = Tr
(
e−r̂⊤Λr̂

)
. Since the modes

are non-interacting, we have

ρ̂free =
n⊗

j=1

e−
λj
2 (q̂2

j +p̂2
j )

Zj

, (C.29)

where Zj = Tr
(
e−

λj
2 (q̂2

j +p̂2
j )
)

. Computing explicitly and using the geometric series,

we obtain

Zj =
∞∑

nj=0
e−λj(nj+1/2)

= e−λj/2

1 − e−λj
. (C.30)
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Consequently, the density matrix will be

ρ̂free =
n⊗

j=1

e−
λj
2 (q̂2

j +p̂2
j )

Zj

=
n⊗

j=1

∞∑
nj=0

e−λj(nj+1/2)

Zj

|nj⟩ ⟨nj|

=
n⊗

j=1

(
1 − e−λj

) ∞∑
nj=0

e−λjnj |nj⟩ ⟨nj| (C.31)

For a mode j, we have a well-known average, called the Bose-Einstein distribu-

tion

n̄j = ⟨â†
j âj⟩ = 1

eλj − 1 . (C.32)

We can rewrite the density matrix of free bosonic modes in terms of the Bose-

Einstein distribution

ρ̂free =
n⊗

j=1

1
1 + n̄j

∞∑
nj=0

(
n̄j

n̄j + 1

)nj

|nj⟩ ⟨nj| . (C.33)

From Eq. (4.3) we have that, for a mode j,

⟨q̂2
j ⟩ = ⟨p̂2

j⟩ = ⟨a†
jaj⟩ + 1/2, (C.34)

and hence, using Eq. (C.32), we have

⟨q̂2
j ⟩ = ⟨p̂2

j⟩ = 1
2 coth(λj/2). (C.35)

For this state ⟨qj⟩ = ⟨pj⟩ = 0, ∀j, so the covariance matrix will be

σij = 1
2⟨{r̂i, r̂j}⟩

= 1
2 coth(λj/2)δij (C.36)

which means

σ = 1
2 coth

(
Λ
2

)
. (C.37)
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This can also be rewritten as

σ =
n⊕

j=1
νj

1 0

0 1

 , (C.38)

where νj = 1
2 coth

(
λj

2

)
.

Notice that from Eqs. (C.34) and (C.35) we can describe the diagonal covariance

matrix elements in terms of the Bose-Einstein distributions

νj = n̄j + 1
2 . (C.39)

Finally, we can write the density matrix in terms of the diagonal elements of the

covariance matrix

ρ̂free =
n⊗

j=1

1
νj + 1/2

∞∑
nj=0

(
νj − 1/2
νj + 1/2

)nj

|nj⟩ ⟨nj| . (C.40)

C.14 Obtaining symplectic eigenvalues

According to the Williamson’s theorem (Eq. (4.78)), given a positive definite matrix

M , there is a symplectic matrix S such that

M = SDST, (C.41)

where

D = Dn ⊗ I2, with Dn = diag(d1, d2, · · · , dn), (C.42)

with dj > 0, ∀j.

Notice that the matrix iΩM is hermitian, hence it can be diagonalized as

iΩM = BΛB†, (C.43)

where Λ is a diagonal matrix of eigenvalues and B is a unitary matrix with eigen-
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vectors as columns. Using the properties of the symplectic matrix S and of the

symplectic form Ω, we can relate Λ to the symplectic eigenvalues, this can be done

as follows. From Eq. (C.42) we obtain

iΩM = iΩSDS⊤

= iΩS(Dn ⊗ I2)S⊤

= iS−⊤(Ω)(Dn ⊗ I2)S⊤

= iS−⊤(In ⊗ Ω1)(Dn ⊗ I2)S⊤

= iS−⊤(Dn ⊗ Ω1)S⊤

= S−⊤(Dn ⊗ iΩ1)S⊤ (C.44)

where in the third equality, we used ΩS = S−⊤Ω.1

Finally, notice that

iΩ1 = −U2σzU
†
2 , (C.45)

where U2 = 1√
2

1 1

i −i,

. The formula above can be shown by direct evaluation,

and applying it in Eq. (C.44), it follows that

iΩM = S−⊤(In ⊗ U2)(Dn ⊗ (−σz))(In ⊗ U †
2)S⊤, (C.46)

which is in the form of Eq. (C.43). Identifying the unitary B = S−⊤(In ⊗ U2) and

Λ = Dn ⊗ (−σz) we conclude that we can obtain the symplectic eigenvalues (the

diagonal elements of Dn) by computing the eigenvalues of iΩM and taking their

absolute values (since the eigenvalues of iΩM come in pairs of plus and minus the

diagonal elements of Dn).
1This is a consequence of the fact that if S is a symplectic matrix, S⊤ also is symplectic (this

can be seen by taking the transpose of Eq. (4.76) and using that Ω⊤ = −Ω). Using this fact, we
have that S⊤ΩS = Ω and applying S−⊤ from the left hand side, we obtain ΩS = S−⊤Ω.
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C.15 Justifying the existence of a Hamiltonian

matrix corresponding to any symplectic ma-

trix

We want to prove that, given a matrix S ∈ Sp2n,R with strictly positive eigenvalues,

then there exists a real and symmetric matrix H such that S = eΩH . Furthermore,

there exists a unitary Ŝ such that

Sr̂ = Ŝ†r̂Ŝ, (C.47)

for any 2n vector of canonical operators r̂.

Given S ∈ Sp2n,R with strictly positive eigenvalues, we can define the following

matrix

H = Ω⊤ logS. (C.48)

By construction, H has positive elements. For proving that H is symmetric, notice

that

H⊤ = log
(
S⊤
)

Ω

= ΩΩ⊤ log
(
S⊤
)

Ω

= Ω log
(
Ω⊤S⊤Ω

)
= Ω log

(
S−1

)
= −Ω log (S)

= Ω⊤ log (S)

= H, (C.49)

where repeatedly used that −Ω = Ω⊤ = Ω−1 and in the fourth equality we used the

fact that ΩS = S−⊤Ω (which is proved in the previous section of this Appendix)

which implies S = Ω⊤S−⊤Ω ⇒ Ω⊤S−1Ω. Since we have that H, given by Eq.

(C.48), is real and symmetric, then we have S = eΩH and, by the construction of
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Eq. (4.65), there must be a unitary Ŝ = e− 1
2 r̂†H r̂ such that

Sr̂ = Ŝ†r̂Ŝ. (C.50)

C.16 Proof for the parametrization of Eq. (4.77)

We can start the proof as follows. Since ρ̂G is a Gaussian state, then (see Eqs. (4.52)

and (4.53)) it can be described as

ρ̂G = e− 1
2 (r̂−r̄)TM(r̂−r̄)

Z
, (C.51)

where M is a positive definite matrix and Z is a normalization constant. From

Williamson’s Theorem, we can diagonalize M with the use of a symplectic matrix

S. Defining a new valid vector of canonical operators Ŷ = S(r̂ − r̄) and using Eq.

(4.78), we can rewrite the Gaussian state as

ρ̂G = e− 1
2 Ŷ⊤

DŶ

Z
. (C.52)

Since D is a diagonal matrix, the state ρ̂G in the equation above represents a set of

free non-interacting harmonic oscillators described by the canonical operators in Ŷ.

The covariance matrix of non-interacting harmonic oscillators has the simple form

of (see Eq. (C.37), and the whole Section for a proof)

σ̃ = 1
2⟨Ŷ, Ŷ

⊤
⟩

= 1
2 coth

(
D

2

)
. (C.53)
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Now, consider the following relations

σ = 1
2⟨{(r̂ − r̄), (r̂ − r̄)⊤}⟩

= 1
2⟨{S−1Ŷ, Ŷ

⊤
S−⊤}⟩

= 1
2S

−1⟨{Ŷ, Ŷ
⊤

}⟩S−⊤

= S−1σ̃S−⊤

= 1
2S

−1 coth
(
D

2

)
S−⊤. (C.54)

We can use the equation above to obtain the relation between M and σ. With the

use of Eq. (C.46), we have

coth
(
iΩM

2

)
= S−1(In ⊗ U2) coth

(
Dn ⊗ (−σz)

2

)
(In ⊗ U †

2)S, (C.55)

where U2 =

1 1

i −i

 and Dn = diag(d1, d2, · · · , dn) such that D = Dn ⊗ I2. Using

the fact that coth(•) is a odd function, we have that coth
(

Dn⊗(−σz)
2

)
= coth(Dn/2)⊗

(−σz), and hence

coth
(
iΩM

2

)
= S−1(In ⊗ U2) (coth(Dn/2) ⊗ (−σz)) (In ⊗ U †

2)S

= S−1 coth(Dn/2) ⊗ (iΩ1)S

= S−1(coth(Dn/2) ⊗ I2)(In ⊗ iΩ1)S

= S−1(coth(D/2)iΩS

= S−1(coth(D/2)S−⊤iΩ

= 2σiΩ, (C.56)

where in the second equality we used Eq. (C.45), in the fifth equality we used that

S−⊤Ω = ΩS (with is proved in the previous section of this Appendix), and in the

last equality we used Eq. (C.54).
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Applying iΩ in both sides of Eq. (C.56), and using that (iΩ)2 = I, we obtain

iΩ coth
(
iΩM

2

)
iΩ = 2iΩσ. (C.57)

Since iΩ is unitary, the equation above can be rewritten as

2iΩσ = coth
(
MiΩ

2

)
, (C.58)

inverting this result we finally obtain

M = 2arccoth(2iΩσ)iΩ. (C.59)

C.17 Proof that the commutator between any sec-

ond order operators is a second order oper-

ator

Given two generic second order operators Ô1 = 1
2
∑

jk O1jkr̂j r̂k +∑
j µ1j r̂j and Ô2 =

1
2
∑

jk O2jkr̂j r̂k +∑
j µ2j r̂j, the commutator between them will be

[O1,O2] =1
4
∑
jklm

O1jkO2lm[r̂j r̂k, r̂lr̂m] + 1
2
∑
jkl

O1jkµ2l[r̂j r̂k, r̂l]

+ 1
2
∑
jlm

O2lmµ1j[r̂j, r̂lr̂m] +
∑
jm

µ1jµ2m[r̂j, r̂m]. (C.60)

In order to show that the above commutator is at most of the second order, we start

by noticing that

[r̂j r̂k, r̂lr̂m] =r̂j[r̂k, r̂l]r̂m + [r̂j, r̂l]r̂kr̂m + r̂lr̂j[r̂k, r̂m] + r̂l[r̂j, r̂m]r̂k

=ir̂j r̂mΩkl + ir̂kr̂mΩjl + ir̂lr̂jΩkm + ir̂lr̂kΩjm, (C.61)

where in the first equality we used that [AB,CD] = A[B,C]D + [A,C]BD +

CA[B,D] + C[A,D]B an in the second equality we used Eq. (4.11). The above

commutator is thus at most of the second-order on canonical operators, and using
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again Eq. (4.11) we can similarly show that [r̂j r̂k, r̂l], [r̂j, r̂lr̂m] and [r̂j, r̂m] are all

at most second order operators. Hence, we conclude that the commutator of two

generic second-order Hamiltonians in Eq. (C.60) is a second-order operator, as we

intended.

C.18 Proof of Eq. (4.114)

Analyzing a mode j, notice that

S(ρ̂freej
) = − Tr

[
ρ̂freej

log
(
ρ̂freej

)]
= − Tr

ρ̂freej
log

 1
νj + 1/2

∞∑
nj=0

(
νj − 1/2
νj + 1/2

)nj

|nj⟩ ⟨nj|


= − Tr

ρ̂freej
log

 ∞∑
nj=0

(
νj − 1/2
νj + 1/2

)nj

|nj⟩ ⟨nj|


+ Tr

[
ρ̂freej

log (νj + 1/2)
]

= − Tr
ρ̂freej

∞∑
nj=0

log
((

νj − 1/2
νj + 1/2

)nj
)

|nj⟩ ⟨nj|

+ log(νj + 1/2)

= − Tr
ρ̂freej

∞∑
nj=0

nj log
(
νj − 1/2
νj + 1/2

)
|nj⟩ ⟨nj|

+ log(νj + 1/2)

= − log
(
νj − 1/2
νj + 1/2

)
Tr
ρ̂freej

∞∑
nj=0

nj |nj⟩ ⟨nj|

+ log(νj + 1/2)

= − log
(
νj − 1/2
νj + 1/2

)
Tr
[
ρ̂freej

n̂j

]
+ log(νj + 1/2)

= − log
(
νj − 1/2
νj + 1/2

)
n̄j + log(νj + 1/2)

= − log
(
νj − 1/2
νj + 1/2

)
(νj − 1/2) + log(νj + 1/2)

= (νj + 1/2) log(νj + 1/2) − (νj − 1/2) log(νj − 1/2). (C.62)

The equation above, together with Eq. (4.113) justifies Eqs. (4.114) and (4.115). In

the Equation above, we used that log (∑n(cn) |n⟩ ⟨n|) = ∑
n log(cn) |n⟩ ⟨n| (for any

positive cn) in the forth equality, and we used Eq. (C.39) in the ninth equality.
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C.19 Proof of Simon normal form statement

The statement says that any covariance matrix representing a two-mode Gaussian

state can be reduced, by local single-mode symplectic transformation, to the follow-

ing form

σS =



a 0 c+ 0

0 a 0 c−

c+ 0 b 0

0 c− 0 b


, (C.63)

with a and b positive real numbers, and c+ and c− real numbers satisfying the

Bona-fide conditions.

For the proof, suppose that σ is a generic covariance matrix of a two-mode state.

Williamson’s theorem (Eq. (4.78)) states that any single-mode covariance matrix

can be diagonalized by means of a single-mode symplectic transformation into xI,

where x > 0. Consequently, there exist symplectic transformations Sa acting in the

first mode and Sb acting in the second mode, such that

S⊤
b S

⊤
a σSaSb =

 aI C

C⊤ bI

 , (C.64)

where a and b are positive real numbers and C is a 2 × 2 real matrix. Since aI

and bI are invariant under transformations that are orthogonal and symplectic, we

can apply the orthogonal and symplectic transformations needed to diagonalize the

off-diagonal block-matrix C, according to the Singular Value Decomposition (SVD).2

C.20 Proof that S(E(|α⟩ ⟨α|)) = S(E(|0⟩ ⟨0|)) for any

Gaussian channel E

The covariance matrix of any coherent state |α⟩ ⟨α| and the vacuum |0⟩ ⟨0| has the

same value, namely I/2, their only difference exists in their first moments.

From the results of Section 4.7, and as it was shown in Eqs. (4.67) and (4.72), the
2See such version of the SVD in Chapter 5 of Ref. [14].
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evolution of the first moments and of the covariance matrix for a Gaussian state are

decoupled during all the Stinespring dilation process. Since any quantum channel

can be expressed by a Stinespring dilation, we conclude that any Gaussian channel

evolution must have a decoupled behavior between the covariance matrix and the

first moments. Consequently, if the input of two states with the same covariance

matrix are inputs to a quantum channel, their outputs will also have the same

covariance matrix.

Therefore, the outputs of E(|α⟩ ⟨α|) = E(|0⟩ |0⟩) will have the same covariance

matrix. Finally, since the entropy of a Gaussian state only depends on its covariance

matrix (Eqs. (4.114) and (4.115)), we conclude that their entropy will be the same.

C.21 Computations to obtain Eq. (4.129)

For obtaining Eq. (4.129), we must compute S(ρ̂AB), S(ρ̂B) and S(E(|0⟩ ⟨0|)).

The entropies S(ρ̂AB) = g(ν−)+g(ν+) and S(ρ̂B) = g(β) are direct consequences

of Eq. (4.114) and from the fact that the local covariance matrix of ρ̂B is already in

its diagonal form.

The entropy of E(|0⟩ ⟨0|) can be obtained from the fact that the covariance

matrix of the vacuum is σvac = I/2 and it’s evolution through the phase-insensitive

Gaussian channel E is given by Eq. (4.119). Hence, the evolved covariance matrix

will be I2(τ + η)/2, which has only the symplectic eigenvalues (τ + η)/2, and the

result follows from Eq. (4.114).

C.22 Two-mode squeezed thermal state, EPR state,

and friends

Here we give examples of how to construct the Simon form of the two-mode squeezed

thermal state, EPR state, and other kinds of local thermal states from canonical

operations acting in initial thermal states.
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C.22.1 Two-mode squeezed thermal state

Given two bosonic modes A and B, the Two-mode squeezing operator (for further

applications of the two-mode squeezing, see Refs. [55, 121, 122]) is a unitary operator

defined as

Ŝts(ξ) = eξ∗âb̂−ξâ†b̂†
, (C.65)

where â(b̂) is the annihilator operator and â†(b̂†) is the creation operator acting in

the mode A(B). For a real parameter r, it has the form

Ŝts(ξ)(r) = er(âb̂−â†b̂†). (C.66)

The Hamiltonian matrix that generates this operator is

Hts(r) = r



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


. (C.67)

Therefore the correspondent symplectic matrix is

Sts(r) = eΩHts(r)

=



cosh(r) 0 sinh(r) 0

0 cosh(r) 0 − sinh(r)

sinh(r) 0 cosh(r) 0

0 − sinh(r) 0 cosh(r)


. (C.68)

From Eq. (C.37), we have that the thermal state of two bosonic modes A and

B with local Hamiltonians HA(B) = ω
(
â†(b̂†)â(b̂) + 1

2

)
is

σth
AB =



n̄A + 1/2 0 0 0

0 n̄A + 1/2 0 0

0 0 n̄B + 1/2 0

0 0 0 n̄B + 1/2


, (C.69)
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where n̄A + 1/2 = 1
2 coth

(
ωβA

2

)
and βA(B) is the inverse of the temperature of A(B).

Hence, the two-mode squeezed thermal state is just the two-mode squeezed applied

in this thermal state

σTMST
AB = Sts(r)σth

ABS
⊤
ts

=



a 0 c 0

0 a 0 −c

c 0 b 0

0 −c 0 b


, (C.70)

where a =
(
n̄A + 1

2

)
cosh2(r)+

(
n̄B + 1

2

)
sinh2(r), b =

(
n̄B + 1

2

)
cosh2(r)+

(
n̄A + 1

2

)
sinh2(r)

and c = 1
2(1 + n̄A + n̄B) sinh(2r).

C.22.2 EPR state

The EPR state is defined as the two-mode squeezed operator applied in the vacuum.

The vacuum is equivalent to a thermal state at 0 temperature, thus a two-mode

vacuum state has covariance matrix σvac
AB = 1

2I4. Therefore, the EPR covariance

matrix for a squeezing operator Ŝts(r) is

σEP R = 1
2Sts(r)S⊤

ts(r)

=



β 0
√
β2 − 1 0

0 β 0 −
√
β2 − 1

√
β2 − 1 0 β 0

0 −
√
β2 − 1 0 β


, (C.71)

where β = 1
2 cosh(2r). If we change the sign of r, i.e., r → −r, then the off-diagonal

terms of the matrix switch sign.
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Obtaining Observables Variations

Using QBNs

D.1 Proof of Eq. (7.20)

With the use of Eqs. (7.17) and (7.18) we have

PTPM(a0, at) =
∑

bt,b,b1
⟨at, bt|U(t) |a0, b⟩ ⟨a0, b| ρAB(0) |a0, b

′⟩ ⟨a0, b
′|U †(t) |at, bt⟩ ,

(D.1)

where we just used that IB = ∑
b |b⟩ ⟨b|, for the basis {|b⟩}b and {|b′⟩}b′ of B.

Let the characteristic function for the shift probability of Eq. (7.19) be

GOATPM
(k) =

∫ ∞

−∞
(d∆a) eik∆a pTPM(∆OA = ∆a), (D.2)

from which we have

GOATPM
(k) =

∑
a0,at

eik(at−a0)PTPM(a0, at). (D.3)
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Applying Eq. (D.1) in this characteristic function, we obtain

GOATPM
(k) =

∑
bt,b,b′,a0,at

⟨bt, at|U(t)e−ika0 |a0, b⟩ ⟨a0, b| ρAB(0) |a0, b
′⟩ ⟨a0, b

′|U †(t)eikat |at, bt⟩

=
∑

bt,b,b′,a0,at

⟨bt, at|U(t)e−ikOA(0) |a0, b⟩ ⟨a0, b| ρAB(0) |a0, b
′⟩ ⟨a0, b

′|U †(t)eikOA(t) |at, bt⟩

=
∑

bt,a0,at

⟨bt, at|U(t)e−ikOA(0) |a0⟩ ⟨a0| ρAB(0) |a0⟩ ⟨a0|U †(t)eikOA(t) |at, bt⟩

= Tr
{
U(t)e−ikOA(0)

(∑
a0

|a0⟩ ⟨a0| ρAB(0) |a0⟩ ⟨a0|
)
U †(t)eikOA(t)

}

= Tr
{
e−ikOA(0)DOA(0)(ρAB(0))U †(t)eikOA(t)U(t)

}
= Tr

{
eikU†(t)OA(t)U(t)e−ikOA(0)DOA(0)(ρAB(0))

}
,

(D.4)

which is the desired equation, where DOA(0)(•) = ∑
a0 |a0⟩ ⟨a0| • |a0⟩ ⟨a0|.
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D.2 Matrices for generating ensembles in Subsec-

tion 7.3.1

The matrices used to generate the different ensembles of ρ0
AB with the use of Eq.

(7.34) in Subsection 7.3.1 are the following

M1 =



0 0 1

0 −
√

3
2 0

√
3

2 −1
4 0

1
2

√
3

4 0


, M2 =



0 1 0

0 0 −1
2

√
3

2 0
√

3
4

1
2 0 −3

4


,

M3 = 1√
3



0 1 1

1 0 1

1 −1 0

1 1 −1


, M4 = 1√

3



0 1 1

1 0 −1

1 −1 1

1 1 0


,

M5 =



0 0 1

−1
2 −

√
3

2 0
√

3
4 −1

4 0

−3
4

√
3

4 0


, M6 =


0 1 0

0 0 1

1 0 0

 ,

M7 =


0 cos(0.1) sin(0.1)

0 sin(0.1) − cos(0.1)

1 0 0

 and M8 =


0 cos

(
π
4

)
sin

(
π
4

)
0 sin

(
π
4

)
− cos

(
π
4

)
1 0 0

 .

D.3 The QBN generated by post-measurements

Suppose we have an observable OC acting on the joint Hilbert space of A and B

described in the setup of Section 7.1. Given the eigenvalues {|ci⟩}i and eigenvectors

{|ci⟩}i of OC , we can define the projective measurement {Mi = |ci⟩ ⟨ci|}i. Then, if

such projective measurement is made in the initial joint state ρAB(0) but the outcome
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is not revealed, the state is uploaded to the average of all possible backactions

ρ′
AB =

∑
i

Pci

MiρAB(0)M †
i

Pci

=
∑

i

MiρAB(0)M †
i

=
∑

i

Pci
|ci⟩ ⟨ci| , (D.5)

where Pci
= Tr

{
MiρAB(0)M †

i

}
= ⟨ci| ρAB(0) |ci⟩ is the probability of the measure to

have the outcome ci. Hence, the probability distribution generated by

POC
(a0, b0, at, bt) =

∑
i

Pci
| ⟨a0, b0|ci⟩ |2| ⟨at, bt|U(t) |ci⟩ |2, (D.6)

is withe the seed probability Pci
the QBN generated by the post-measured density

matrix ρ′
AB.

This is exactly the case of Eq. (7.54), where the seed probability Pci
is the Husimi

Q-function Q(α, β), representing the probability of having an outcome (αβ) for the

projeticve measurement { 1
π
Mα,β |α, β⟩ ⟨α, β|}α,β and the kets |ci⟩ are coherent states

|α, β⟩. Thus the matrix

ρ′
AB =

∑
i

Pci
|ci⟩ ⟨ci|

=
∫
C2
d2α d2β Q(α, β) |α, β⟩ ⟨α, β| , (D.7)

is the density matrix after a heterodyne measurement is made without the out-

come being revealed. This interpretation explains the result of Eq. (7.52), i.e.,

POC
(at, bt) = ⟨at, bt|U(t)ρ′

ABU
†(t) |at, bt⟩.
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