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Resumo

Estudamos a termodinâmica de condensados de Bose-Einstein confinados usando dois
ensembles estatísticos: grande-canônico e canônico. Quando nós temos um sistema
armadilhado, o conceito de limite termodinâmico é diferente em relação ao caso
homogêneo, assim nós temos que uma melhor desrição física do sistema com poucas
partículas é feita pelo ensemble canônico. Primeiro, nós reproduzimos a teoria grande
canônica não interagente, mas agora incluindo as correções de tamanho finito e,
seguindo a mesma ideia, em outras situações, com o gás de Bose fracamente interagente.
Segundo, nós fazemos a mesma ideia só que agora no ensemble canônico, inicialmente
reproduzindo os cálculos padrões não interagentes, depois, nós apresentamos uma teoria
canônica fracamente interagente usando o tratamento perturbativo. Como uma aplicação,
nós estudamos os gases diluídos confinados em diferentes potenciais externos.

Palavras-chave: Mecânica estatística, condensados de Bose-Einstein, tepria quântica de
campos, mecânica quântica.
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Abstract

We study the thermodynamics of confined Bose-Einstein condensates using two
statistical ensembles: grand canonical and canonical. When we have a trapped system,
the concept of the thermodynamic limit is different in relation to the homogeneous case -
and for this, for a better physical description of a system with a small number of
particles, we use the canonical ensemble. First, we reproduced the non-interacting grand
canonical theory but now include the finite-size corrections and follow the same
procedure, in other situations, with a weakly interacting Bose gas. Second, we do the
same idea but now in the canonical ensemble, initially reproducing the standard
non-interacting calculations, and after, we present a weakly interacting canonical theory
using the perturbative treatment.

Key words: Statistical mechanics, Bose-Einstein condensates, quantum field theory,
quantum mechanics.
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Chapter 1

Introduction

In this chapter we will recover the history of Bose-Einstein condensation (BEC) starting
of Bose paper published in 1924 in which have a derivation of Planck’s law from photon
statistics, after by Einstein’s works based in Bose article, and finally experimental
techniques and their relations with finite-size systems which changes the theoretical
results. Also we will outline dissertation sections.

1.1 A brief history about Bose-Einstein condensate

In 1924 by Satyendra Nath Bose presented a new derivation of Planck’s formula using a
the concept of indistinguishability in the photons statistics. First, this work was rejected
in the Philosophical Magazine of London. Bose then asked Einstein to use his influence
to publish the paper. Einstein decided to translate the paper by himself to German and
submitted it to the journal Zeitschrift für Physik [5]. At the end of the article, he
included: “Translator’s Note. Bose’s derivation of Planck’s formula represents, in my
understanding, an important progress. The method used here applies also to the theory of
quantum theory of ideal gases that I will carry out in another place."1

So in 1924-1925, Einstein explored the Bose statistics in three articles for quantum
statistics of ideal quantum gases [6–8], and then, the same idea of Bose statistics (called
Bose gas). He used the matter wave idea developed by Louis de Broglie [9] to describe
the particle’s behavior and hence, it is applied to the Bose statistics. In your second
paper [7], Einstein showed that for a homogeneous gas described by Bose statistics with
constant temperature, a gas fraction occupies the lowest energy level (ground-state) -
called the Bose-Einstein condensate.

One illustrative description of Bose gases is given in Fig. 1.1, where for high
temperatures, we have the "billiard balls" situation, and then when we decrease the
temperature, the "wave packets" appear going to "giant matter wave" in zero
temperature. The result showed by Einstein about heat capacity discontinuity was
contested by George E. Uhlenbeck for finite systems [10]. The discussion about the
thermodynamics of Bose gas for homogeneous and finite systems during that time was

1In German: Anmerkung des Übersetzers. Boses Ableitung der Planckschen Formel bedeutet nach

meiner Meinung einen wichtigen Fortschritt. Die hier benutzte Methode liefert auch die Quantentheorie

des idealen Gases, wie ich an anderer Stelle ausführen will.
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Figure 1.1: This figure shows the scheme of the thermal Bose gas given in [1] - first, for
high temperatures, we have the classical billard balls representation for particles, and with
the decreases of temperature, the wave packets appear; but for a certain temperature Tc,
we have the BEC phase, here with the matter wave overlap and this situation extend at
zero temperature, when we have the pure BEC.

increasing due to the experimental realizations with a fixed number of particles [11, 12].
But the first theoretical discussion about the thermodynamic limit is in [13] for the ideal
Bose gas revisited, where we have the suggestion of canonical ensemble to calculate the
confined Bose gas properties. After, the canonical description of ideal Bose gas was
studied in [14, 15], but with inclusion of the interactions, the problem is open in its
general case, some cases were studied as the dilute gas in a finite box [16].

On the other hand, the theoretical studies about the Bose-Einstein condensates motivated
their experimental realizations. Laser cooling [17–21] were the starting point to do the
BEC experiment in gases. The additional problem is to obtain the BEC temperature that
is less than the usual ultracold experiment temperature. To solve this, magnetic traps
were included to confine the bosons inside of the chamber, characterizing the
magneto-optical trap (MOT), and with radio frequency evaporation, in 1995 were
realized the first Bose-Einstein condensates in gases [2, 22], and the first images
produced of this new state of matter were given by the BEC velocity distribution picture



Figure 1.2: Velocity distribution of the BEC produced in [2], here the first image, on left,
we have the case for high temperatures T > Tc, in the middle figure, characterizing the
condensed state T < Tc, and the right plot for very low temperatures T << Tc.

in Fig. 1.2.

One of the most interesting of ultracold physics is its thermodynamic study which is a
big challenge in this research area. The inclusion of interactions, i.e., the more realistic
model, requires the solution of a many-body problem. The addition of interactions
implies a change in critical temperature [23, 24], condensed fraction, heat capacity, and
ground-state fluctuations with respect to ideal results [25, 26]. To solve these questions
in this dissertation we use the perturbation theory which treats the interaction as a
perturbation of a non-interacting system. But here the focus is in the weakly interactions,
and so, the use of perturbation theory is consistent [27] - the systems with finite number
of particles was discussed in [13] about the ideal Bose gas considering trapped systems,
and it was suggested the use of canonical ensemble because in these situations, the
number of particles is fixed, having one better description of thermodynamic properties.
Besides, given the recent experiments with few number of particles [11, 12], the use of
canonical ensemble at this time is even more important in our theoretical models.

The connection between the statistical ensembles is a good point to check the validity of
the quantities in the thermodynamic limit. When we have a homogeneous gas, the
thermodynamic quantities converge in all ensembles. But there is one that do not
converge, that is the ground-state fluctuation, and this situation opens a great theoretical
discussion about the certain statstical distribution to describe specific experimental
situations. We have many papers about this [28, 29] for ideal case, but with the inclusion
of interactions, the problem is more complicated, however in 2022, one good discussion
was done in [26]. In this dissertation, we discussed this fluctuations in the both cases, but
by perturbation overview, and after, comparating these results with the previous
discussion.

1.2 About this dissertation

The main purpose of this dissertation is to study the thermodynamics of trapped Bose
gases by two different ensembles: canonical and grand canonical. With recent papers



about Bose-Einstein condensates for a few particles, the canonical ensemble is a great
approach to calculate the thermodynamic properties of these systems because is
precisely in the description of few particles and it is physically similar to experimental
realizations. In contrast, the grand canonical systems have a fixed density and due to it is
a precise method to determine the critical temperature of a Bose gas, but the other
thermodynamic properties as the condensed fraction, heat capacity, and principally the
ground-state fluctuations diverge for high temperatures, are not adequate for finite
systems. An additional motivation was to obtain, in the interacting canonical ensemble,
that the heat capacity goes to zero as temperature goes to zero. Previous calculations by
ref. [30] omit these results or get inconsistency [31]. As we show, renormalization of the
self energy solves this long standing problem and finally gives consistent results.

In this dissertation, we have six chapters divided into two principal schemes: for
non-interacting case and the interacting case for two statistical ensembles: grand
canonical and canonical. For the grand canonical ensemble, we have in Chapter 2, the
semiclassical theory for the ideal Bose gas trapped in an external power-law potential but
we put the finite-size corrections expanding the idea done in [32]. Here, we calculate the
thermodynamic properties as the heat capacity, condensed fraction, ground-state
fluctuation and the critical temperature. However, for the case when the spectrum is
quantized as in the finite-box trap, we have other semiclassical overview, similar to the
presented in [15] and here we reproduce this calculation, including the condensed
fraction for this system. Finally, we finish our study doing the exact calculation solving
the summations of the quantum numbers by numerical methods and later, we calculate
the thermodynamic properties in the same form of the semiclassical approach.

Following the developments of Chapter 2, we expanded these ideas for the weakly
interacting systems in Chapter 3. First, we show the grand canonical theory for weakly
interacting systems using the perturbation theory [3, 33] for a semiclassical system - for
the same potential applied in Chapter 2 and calculating the same thermodynamic
properties, and finally comparing the results with the standard limits, for example in the
harmonic trap [34–36]. The exact approach for this situation was not studied here
because when we shall build the interacting spectrum, we have to solve the Schrödinger
equation including the interacting potential or to include the quantum depletions via
Bogoliubov-Popov spectrum [27]. Therefore, in Chapters 2 and 3 we have the grand
canonical overview of ultracold trapped Bose gases.

On chapters 4 and 5, we have the main calculation of this thesis, a complete canonical
theory for Bose gases in which we study the non-interacting Bose gases on Chapter 4
and the weakly interacting Bose gas on Chapter 5. The starting point is the grand
canonical theory and to find the canonical quantity we used the connection between
these ensembles [37–39] and we obtain the same formulas obtained of different
approaches [14, 15], the first reference by path-integral decomposition and the second,
by counting statistics. For each canonical theory, we calculate the thermodynamic
properties using the classical statistical mechanics and the ground-state properties
decomposing the partition function in two contributions, building the canonical
probability to find particles in the ground-state, after using the classical probability
formulas, to calculate the moments of our condensed canonical distribution. These
calculations are valid for any recursive systems and are in Chapter 4 joined with the



non-interacting results - the homogeneous gas, trapped in the finite box and in harmonic
trap and its comparison with the grand canonical results.

In Chapter 5, we expand the canonical idea for the weakly interacting Bose gases, doing
a perturbative canonical representation, using the calculations done in Chapter 3 as a
guide. We realize that the canonical quantities have the same Feynman representation
but with different mathematical representation. The idea was presented in [31], but here
we complete the theory solving the problem in the low temperatures, building a correct
recursive formula renormalizing the energy spectrum for an interacting quantum
particles using the interpretation of divergence of the Green’s function done in [4, 40].
After the detailed presentation of this theory, we apply for the same systems studied in
Chapter 4 to compare the influence of the interactions in the thermodynamics previously
done in Chapter 3. Further, we present a discussion about energies in the canonical
representation.
In Chapter 6 we present our conclusions and future perspectives.



Chapter 2

Grand canonical trapped Bose gas

In an initial study about quantum gases, in textbooks [4,37,40], the calculations are done
in the grand canonical, so as in this ensemble there is the exchange of heat and particles.
Remembering the initial ideas of this ensemble, we have that the chemical potential µ is
fixed besides particle density N/V in the thermodynamic limit. First, let us show the
functional approach of grand canonical distribution starting with grand canonical
partition function ⌅(�, z) for non-interacting systems.

With ⌅(�, z), we can calculate the main thermodynamic properties of the system: the
critical temperature, the heat capacity, and the condensate fraction. As we want to study
the trapped Bose gases, we must include the finite-size corrections which depend on the
number of particles because the thermodynamic limit is modified as seen in [13]. The
motivation is to extend the study about the non-interacting power-law trap done in [32]
including now the finite-size corrections that are inserted in the chemical potential
excluding the ground-state energy. With this correction, we have a more precise grand
partition function ⌅(0), and using the standard statistical mechanics procedure, we
calculate the thermodynamic properties cited in the second line of this paragraph.

2.1 Non-interacting functional theory

Consider a grand canonical D dimensional ideal Bose gas. By the concept of the
partition function, we shall sum over all states and so in a path integral representation
corresponds to the integral of all possible paths for a particle of Boltzmann exponential
action [39]

⌅(0) =
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D e
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(0)[ ⇤

, ]/h̄
, (2.1)

where the Bose fields  (x, ⌧) are periodic in Euclidean time  (x, 0) =  (x, h̄�),
D 

⇤
D is the measure over these fields, and
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(2.2)
is the non-interacting action in Euclidean time. Here, we will use the Euclidean time ⌧ to
include the temperature in our calculations. The technique to calculate Eq. (2.2) is to

20



decompose the Bose field in a function that depends on Euclidean time term and position
contribution (eigenfunctions of time-independent Schrödinger equation) of form

 (x, ⌧) =
X

k,m

ck,m k(x) e
�i!m⌧ (2.3)

where ck,m are complex numbers, !m = 2⇡m/h̄� is the bosonic Matsubara frequency
and  k(x) are the eigenfunctions such that

Ĥ  k(x) = Ek  k(x) (2.4)

with

Ĥ = � h̄
2

2M
r2 + V

(ext)(x). (2.5)

Inserting Eqs. (2.4), (2.3) in Eq. (2.2),

A
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X

k
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k,m
ck,m. (2.6)

The measure depends on complex numbers because now our action is given by Eq. (2.6).
All paths are represented by differential over ck,m of form [33]
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With Eqs. (2.7), (2.6), we can calculate our formula for ⌅(0),
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As ck,m are complex, we may represent its in a general decomposition:

ck,m = xk,m + i yk,m (2.10)

and therefore,
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(2.11)
dc
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dck,m = 2 dxk,m dyk,m (2.12)

Then including these formulas in Eq. (2.9) we will obtain two Gaussian integrals for
each number,
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therefore,

⌅(0) =
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k
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�

�ih̄!m + Ek � µ
. (2.14)

But to continue the thermodynamic calculations, we shall connect the partition function
with thermodynamics calculating the grand canonical free energy

F (0) = � 1

�
ln⌅(0) (2.15)
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#
(2.16)

and this sum is an example of Matsubara sum calculated using the residue theorem
detailed in Appendix A. Then, for a Matsubara function
f(!m) = ln � (�ih̄!m + Ek � µ) /� in Eq. (2.16), the final non-interacting GC free
energy given by Eq. (2.16) is
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1� e

��(Ek�µ)
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. (2.17)

Here, let’s discuss the possible calculations of F (0) because we have an interesting
discussion.

2.2 Semiclassical approximation

As said previously, we have many possibilities to calculate the grand canonical free
energy by Eq. (2.17). The most intuitive possibility is to write the summation over the
quantum numbers as an integral that is equivalent to representing the energy eigenvalues
as a continuum spectrum similar to classical energy representation which is the
Hamiltonian. This situation can be viewed in the case of many particles due to the total
energy forming a band energy structure as seen in Fig. 2.1 in the case of the quantum
harmonic oscillator. Then, as the ground state is not zero, we divide the free energy into
two parts: first refers to the condensed state (in ground-state - k = 0) which is unique,
and second refers to excited states (k 6= 0) that in this approximation will be given by
integral
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1
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ln
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1� e

��(Ek�µ)
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As the excited states are given by summation excluding the ground-state, then the
semiclassical approximation is based on two considerations: first, the chemical potential
is shifted by ground-state energy denoted now by µ̂ called reduced chemical potential,
and as the energies will be represented in phase-space by Hamiltonian H . In summary,

µ ! µ̂ ⌘ µ� EG (2.19)
Ek ! H(p, x) (2.20)



Figure 2.1: Explanation about semiclassical approximation using as an example, the en-
ergy levels of the quantum harmonic oscillator. Here, we have that the level shift given by
h̄! - when this shift is small, these discrete levels become a band, then this small division
can be treated using integration as the equivalence of the summation over the quantum
numbers, but for the BEC semiclassical approximation, we must exclude the ground-state
because that in this energy level, we have the condensate phase.

therefore,

F (0) =
1

�
ln
�
1� e

��(EG�µ)
�
+

1

�

Z
d
D
p d

D
x

(2⇡h̄)D
ln
�
1� e

��(H(p,x)�µ)
�

(2.21)

where
H(p, x) =

p
2

2M
+ V

(ext)(x) (2.22)

is the classical Hamiltonian. The inclusion of reduced chemical potential will be
discussed now because our purpose is to study the trapped Bose gas. When we have
finite systems the finite-size corrections must be included in F (0) and its effects modify
the chemical potential µ (the quantity which is fixed in grand canonical distribution).
From Eq. (2.21), the logarithm function can be expanded in a series,
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By Eq. (2.22), we can divide our free energy into two parts: one for momentum p and
the other for coordinate x, then Eq. (2.24) becomes
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is the thermal wavelength, by simplicity, we defined the ground-state contribution by
F (0)

0 . Therefore,

F (0) = F (0)
0 � 1

��
D

T

1X

n=1

z
n

nD/2+1

Z
d
D
x e

�n�V
(ext)(x)

, (2.27)

where z ⌘ e
�µ is the fugacity and now we will insert the reduced chemical potential to

include the finite-size effects in grand canonical results. For this, we shall expand the
fugacity z in terms of µ̂. By Eq. (2.20), the fugacity power is now written as

z
n = e

n�µ = e
n�(µ̂+EG) = ẑ (1 + n�EG) (2.28)

where ẑ is the reduced fugacity defined as en�µ̂. Finally, inserting this formula in Eq.
(2.27), we have that
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ẑ
n

nD/2+1
(1 + n�EG)

Z
d
D
x e

�n�V
(ext)(x)

. (2.29)

The grand canonical free energy is the starting point of our thermodynamic analysis
because using the classical relations of thermodynamics, we may calculate the average
number of particles N , entropy S, critical temperature T

(0)
c and heat capacity C. One

observation is that the ground-state fluctuations will be calculated in section about exact
calculations. The number of particles N is

N = �
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@F
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(2.30)

the entropy S,

S = �
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(2.31)

and the heat capacity C,

C =
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N

(2.32)

The critical temperature in the non-interacting system Tc is obtained by formula Eq.
(2.30) when the condensed N is zero, the critical chemical potential is zero (because
µc = EG - all particles are in ground-state) and it occurs when � = �c. As seen in Eq.
(2.29), the equation depends on the external potential, then the details of the calculation
of critical temperature T

(0)
c will be made for each system. To find the other

thermodynamic quantities is need to calculate this temperature due to the bosons have
two phases: the condensed phase (when T  Tc) and the normal phase (when T � Tc)
and the difference between these states are that inside a condensate µ̂ is zero while in
thermal gas µ̂ 6= 0. As an example, let’s study the ideal Bose gas confined in a general
power law external potential V (x) (x/l)a in D dimensions, and when a = 2 we have a
harmonic trap and a ! 1 is the finite box. The calculations for ideal systems in a
thermodynamic limit were calculated in Ref. [32]. Here, let’s expand this idea including
the finite-size corrections following the previous discussion in semiclassical
approximation.



Ideal Power law trap

Consider a general power law external potential in D dimensions [32],

V (x) =
DX

i=1
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◆ai

(2.33)

where li corresponds at a term with a dimension of length over energy in h̄! units. The
generalization of the power law trap is an interesting idea to represent the two most
common traps: the finite box, when li tends to infinity, and the harmonic trap when
ai = 2. For a power law trap, the total Hamiltonian given by Eq. (2.22) now is
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By Eq. (2.29) for this Hamiltonian, our work will make the coordinate integral for
potential Eq. (2.33) which here is denoted by B below
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and so, inserting Eq. (2.41) in Eq. (2.38),
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Putting this integral in Eq. (2.29), we have that
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We can simplify this equation with definition of polylogarithm function ⇣a(x) whose
definition is

⇣a(x) =
1X
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x
n
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. (2.44)

But before following our calculations we use a simplification about the power of the trap.
By Eq. (2.33) the principal power is given by ai parameter, however, we can use a new
general parameter ↵ defined as
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and in terms of it, for example, when have a three-dimensional harmonic trap, D = 3
and ai = 2 for all i giving ↵ = 3 and for 3�D finite box, ai ! 1 ) ↵ = 3/2. Thus,
Eq. (2.43) can be written as
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Now, using Eq. (2.46), we can calculate N by Eq. (2.30) and with it, have a critical
temperature. Then,
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In critical point, N (0)
0 = 0, � = �c and µ̂ = 0, then,
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but ⇣a(1) = ⇣(a), then
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In ref. [32], it was made the case of homogeneous power law Bose gas when the
finite-size effect is not considered. Here in the first step, we inserted these effects. The
non-interacting critical temperature in thermodynamic limit is denoted by T

(0)
c and it

occurs when EG-term do not contribute in Eq. (2.50), then Eq. (2.50) becomes
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The equation (2.52) is our starting point because the inclusion of the finite-size effect
will shift this homogeneous temperature and this same idea will be applied to interacting
systems. So,
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Now, we can write Tc. By Eq. (2.50)
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and inserting here in Eq. (2.52), we have
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But the ratio Tc/T
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c is given by Eq. (2.53) then we have that
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This formula generalizes the critical temperature shift for a power-law trap. The most
common power-law trap is the three-dimensional harmonic trap and this system has a
potential given by
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and comparing it with Eq. (2.33), we have that
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D = 3 and aj = 2, 8j. So by definition of ↵ (2.45), we have that ↵ = 3. From Eq. (2.47)
for these values of D, ↵, we obtain that
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is the geometric mean value of the frequencies. On the other hand, ⌘ relates with the
critical temperature T
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c by Eq. (2.52),
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that is the same obtained in [41]. The finite-size correction of this system can be
calculated from Eq. (2.57) and we need the ground-state energy EG, then starting with
the Hamiltonian,
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however, to solve the Schrödinger equation of this Hamiltonian it is convenient to write
Eq. (2.63) in terms of a, a† operators [10]
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whose eigenstates are given by a tensor product

|n1, n2, n3i = |n1i|n2i|n3i (2.65)

and the eigenvalues are
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The equation (2.66) admits a ground-state energy, that is when k1 = k2 = k3 = 0,
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3
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and then Eq. (2.66) becomes

Ek1,k2,k3 = EG + h̄(k1 !1 + k2 !2 + k3 !3). (2.68)

Therefore, using Eqs. (2.67), (2.61), (2.59) in Eq. (2.57), we have that the shift of the
critical temperature for this system is given by
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which is the same result obtained from [42].
Now, we can calculate the other thermodynamic properties because now we have the
measure of the critical point and may separate the two phases of the system. The first
quantity calculated is the condensed fraction N

(0)
0 /N which occurs when we have in

condensed state µ̂ = 0. By Eq. (2.48), we can divide it by N in both sides,

1 =
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writing this result in terms of T (0)
c , we have the formula of condensed fraction,
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Its formula is a function of the non-interacting critical temperature in the thermodynamic
limit T (0)

c , but when we have a trapped gas, then is more convenient to represent Eq.
(2.71) on T/Tc-dependence. We see that

T

T
(0)
c

=
T

Tc

Tc

T
(0)
c

(2.72)

with Tc/T
(0)
c given by Eq. (2.53). As made in the calculation of �Tc/T

(0)
c , we will use

the binomial theorem, and the terms with order above 1 with respect to the ground-state
energy will be neglected. Then,
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therefore,
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We can check this formula for the same system studied in the case of Tc which is the
three-dimensional harmonic trap. Substituting Eqs. (2.67), (2.61), (2.59) in Eq. (2.74),
we obtain that
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This result is the same obtained by [39, 42]. To see the difference between this quantity
with and without finite-size corrections in the harmonic trap, first, let us do the plot of the
condensed fraction for isotropic case ! = !̃ for 10, 100, 1000 particles and comparing
these with the plot for the thermodynamic limit as seen in Fig. 2.2. With this plot is
clear that for a few number of particles, this semiclassical result is not good for analysing
the finite-size correction in a box. Then, due to this, we need another semiclassical
treatment of the finite box, and this calculation is calculated in our final section. When
we don’t count the finite-size corrections, the result is the standard calculations given
in [7, 37, 38, 40]. However, for finite systems, we need to include the corrections due to
the ground-state EG and in the case of a finite box, its homogeneous ground-state is zero
in a semiclassical overview - thus, by [10], we have that the correct box ground-state is
not zero and when this result is included, our condensed fraction has a strange behavior.
Of fact, using the ground-state of finite box given by [10] in Eq. (2.75), we have that
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This situation is discussed in the section about non-interacting finite box. As ⇣(1/2) is a
negative number, we see that for low values of T/Tc, the condensed fraction is greater
than 1 and this behavior can be viewed in Fig. 2.3. With this plot is clear that for a few
number of particles, this semiclassical result is not good. Then, due to it, we need
another semiclassical treatment of the finite box, and this calculation is performed in our
final section.



Figure 2.2: Condensate fraction for an isotropic three-dimensional harmonic trap in the
semiclassical approximation as a function of reduced temperature given by Eq. (2.75) for
a different number of particles N . The brown line in zero corresponds to all plots after
the critical point due to, independently of N , the condensate fraction being zero for high
temperatures in the grand canonical ensemble.



Figure 2.3: Condensate fraction for a three-dimensional finite box using the homogeneous
semiclassical approximation as a function of reduced temperature given by Eq. (2.76)
for different numbers of particles N . The brown line in zero corresponds to all plots
after the critical point due to, independently of N , the condensate fraction being zero for
high temperatures in the grand canonical ensemble. Here is clear that this semiclassical
approximation for a box trap is not good enough to describe the finite-size correction, so
we need to do a semiclassical treatment using the discrete energy representation.



Internal energy and heat capacity

We will calculate the internal energy and heat capacity to finalize our calculations for a
non-interacting power-law trap. These quantities have different mathematical formulas
for T < Tc and T > Tc because for the Boson gases, below the critical temperature, the
fugacity is fixed by critical chemical potential and so, in this case, the polylogarithms
converge to the Riemann zeta function; and when under the critical temperature, the
fugacity depends of the temperature, then we must operate with these functions. In both
cases, the condensed contribution of the grand canonical free energy F (0)

0 and N
(0)
0 is

zero.

The internal energy is calculated through the grand canonical probability Pj for a state j

given by

Pj(�, µ̂) =
1

⌅(0)
e
��(Ej�µ̂Nj) (2.77)

and this formula can be written in terms of the fugacity,

Pj(�, ẑ) =
1

⌅(0)
ẑ
Nj e

��Ej . (2.78)

So, we know that we can calculate the mean value of the energy using the classical
equation for an average value of a given probability distribution,

U(�, ẑ) = hEji =
X

j

Ej Pj(�, ẑ), (2.79)

and here inserting Eq. (2.78) in Eq. (2.79), we have that

U = � @

@�
ln(�, ẑ) , (2.80)

where to obtain this formula, we used a common procedure of statistical mechanics,
writing

Ej e
��Ej = � @

@�
e
��Ej . (2.81)

But the natural logarithm of ⌅(0) have connection with the thermodynamics given by
��F (0). Then, Eq. (2.80) becomes

U =
@

@�
(� F (0)). (2.82)

To obtain the heat capacity CN , let’s derivate the internal energy U with respect to the
temperature T for fixed N ,
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where cN ⌘ CN/N . But as we see here, the derivative is fixed in N but N also depends
on T , then is necessary to use the Jacobian technique as made in [38]
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Remembering that the grand canonical free energy and the average number of particles
are given by Eqs. (2.46) and (2.48), and now together with Eqs. (2.82) and (2.84), is
possible to calculate the internal energy in condensed and normal phases. By simplicity,
let us start with the condensed measures (when T < Tc).
Condensed phase - T < Tc

In the condensed phase as discussed previously, the reduced fugacity is fixed in critical
reduced chemical potential. Then, ẑc = 1 ) ⇣a(ẑc) = ⇣(a). So, Eq. (2.46) becomes

F0(T < Tc) = � ⌘

�↵+1
[⇣(↵ + 1) + � EG ⇣(↵)] (2.85)

and putting Eq. (2.85) in Eq. (2.82),
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. (2.86)

To find the heat capacity, we need Eq. (2.48) for condensed state, and then
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and as Eqs. (2.87), (2.86) not depend of ẑ, then Eq. (2.83) becomes
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therefore,
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Normal phase - T > Tc

In the normal phase, the fugacity is not fixed, thus the heat capacity calculations are
more complicated. From Eqs. (2.46) and (2.48),
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[⇣↵+1(ẑ) + � EG ⇣↵(ẑ)] , (2.90)
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By Eq. (2.82), we have that
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As all formulas depend on the ẑ, then to calculate the heat capacity, we need to solve the
Jacobian Eq. (2.85). So,
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⇣↵�1(ẑ) (2.95)

✓
@N

@ẑ
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By Eqs. (2.96) and (2.95) in Eq. (2.84), the denominator can be calculated using the
binomial theorem (1 + x)�1 ⇡ 1� x, besides we multiply Eq. (2.94) and finally, we do
not consider the terms which depend of En

G
with n > 1 because it corresponds to the

higher orders. Therefore, denoting
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@ẑ

◆

�

⇣
@N

@�

⌘

ẑ�
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we have that
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With this result, we can calculate the heat capacity cN(T > Tc) using Eqs. (2.98), (2.93)
in Eqs. (2.83) and (2.84), obtaining
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+
kB �

�↵+1
↵
2
⌘EG

N

⇣↵�2(ẑ) ⇣2↵(ẑ)

⇣
2
↵�1(ẑ)
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⇣↵(ẑ) (2.99)

The equations Eqs. (2.89) and (2.99) can be written as a function of the critical
temperature in the thermodynamic limit T (0)

c given by Eq. (2.52) and hence, the value of
the Boltzmann factor �(0)

c from Eq. (2.51). So, Eq. (2.89) is now
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CN(T > Tc) = N kB
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In the limit of the three-dimensional harmonic trap, we have that this result is similar to
that obtained in [39]. Before continuing the calculations, let us check the limit of high
temperatures. We know that when T ! 1, CN is given by the Dulong-Petit law, in fact,
this limit is satisfied on Eq. (2.101),

CN(T ! 1) = lim
T!1

CN(T > Tc) = N kB ↵ , (2.102)

and again, this result agrees with [32] for a general Dulong-Petit law.



2.2.1 Non-interacting finite box

The power law trap is a good method to generalize the traps in which the spectrum can
be approximated by continuous form. But when we concentrate on studying trapped
systems with boundary conditions, we will have that the energies are quantized by
quantum mechanics, so a semiclassical treatment is different. Here, we studied the
three-dimensional Bose gas in a finite box with length L using an integral approach with
Robinson’s formula and Jacobi elliptic theta function. Consider N bosons in a cubic box
with length L. The potential for its system is given by

V (x) =

(
0 |xj|  L

1 |xj| � L

First, we will calculate the wave function  k(x) using the Schrödinger equation,

Ĥ k(x) = Ek x(x), (2.103)

where Ek are the energy eigenvalues and Ĥ is the Hamiltonian, whose expression is

Ĥ = � h̄
2

2M
r2 + V (x). (2.104)

This problem in three dimensions can be written as a tensor product

 k(x) =
3Y

j=1

 kj(xj) (2.105)

and

Ek =
3X

j=1

Ekj (2.106)

with each  kj(xj) and Ekj functions in one dimension. In form, we’ll make the details
for a one-dimension system, and then, Eq. (2.104) can be written as

d
2
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2
 (x) = 0 (2.107)
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k
2 ⌘ 2MEk
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2 . (2.108)

The boundary conditions for each component are equal because is a cubic trap, so
 (0) =  (L) = 0. Solving Eq. (2.107) with its conditions, we have that
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L
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with nj an integer number, and
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2
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With (2.111), we can generalize the energy for three dimensions using Eq. (2.106).
Expanding the logarithm by Eq. (2.23), we have that
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For simplicity, we can write Eq. (2.113) in terms of dimensionless parameter ⌧ here
defined as
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then Eq. (2.113) becomes
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with
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but (2.116) can be written as
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For �(⌧/n) in a semiclassical treatment, we can expand it in a polynomial formula using
Poisson’s summation formula,
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now we can use Eq. (2.119) here, then Eq. (2.121) becomes
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Therefore, the polynomial formula of �(⌧/n) by Eq. (2.120) using Eq. (2.122) is
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So, by Eq. (2.111), and remembering that the number of particles given by Eq. (2.30),
we have that
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but
(1 + x)3 = 1 + 3x2 + 3x+ 1 (2.125)

then, we obtain that
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The first calculation is to find the critical temperature. Therefore, for a non-interacting
case, µ̂c = 0 with ⌧ = ⌧
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c and N
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and using Eq. (2.123) in Eq. (2.127), we shall see the each ⌧ (0)c -contribution,

�(⌧ (0)
c

/n) =

s
⌧
(0)
c

n


1� 3

2

r
n

⌧
(0)
c

+
n⇡

⌧
(0)
c

�
, (2.128)

�
2(⌧ (0)

c
/n) =

⌧
(0)
c

n


1� 3

2

r
n

⌧
(0)
c

+
n⇡

⌧
(0)
c

�2
, (2.129)

�
3(⌧ (0)

c
/n) =

 
⌧
(0)
c

n

!3/2 
1� 3

2

r
n

⌧
(0)
c

+
n⇡

⌧
(0)
c

�3
. (2.130)

Therefore,
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and separating Eq. (2.131) in polylogarithm contributions,
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In Eq. (2.132), we have some polylogarithms in the critical points, and it can be
calculated by Robinson’s formula (Appendix B),
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Then, putting Eqs. (2.136), (2.135), (2.134), (2.133) in Eq. (2.132), we have that
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The thermodynamic limit of the finite box system is the homogeneous case, then from
Eq. (2.114) for V = L

3, we can write the dimensionless temperature ⌧ (0)c in the function
of t(0)c defined as

t
(0)
c

⌘ Tc

T
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c

, (2.138)

where Tc is the exact critical temperature and T
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c is the critical temperature in the

thermodynamic limit. So,
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From Eq. (2.139), Eq. (2.137) becomes
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and therefore,
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This result is the same obtained in [15, 36] at the first order. To find the high-order
contributions is only to expand the logarithm function in many terms of its power series
representation. Following the same method that was employed in the previous section



about semiclassical representation, let’s calculate the condensed fraction N0/N starting
by Eq. (2.126) with �(⌧/n) given by Eqs. (2.128), (2.129) and (2.130). When we have
the condensed state, the fugacity is equal to 1 and the polylogarithms function reduces
according to Robinson’s formula (Appendix B), then doing the similar method that was
employed in t

(0)
c calculation, we have that
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The parameter ⌧ is given by Eq. (2.133) but now the temperature in numerator is not
critical. As the temperature is shifted by finite-size corrections and ⌧ is a function of
T

(0)
c , we shall include the new critical temperature dependence Tc, for this,

T

T
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, (2.143)

where Tc/T
(0)
c given by Eq. (2.141). As the finite-size correction is small, then we can

use the binomial approximation to calculate the powers of Eq. (2.143). As
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and therefore,
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and hence,

1 =
N

(0)
0

N
+

✓
T

Tc

◆3/2 
1� 3

2

1

N1/3 ⇣2/3(3/2)
ln

✓
0.9574

⇡

2 ⌧0

◆�
, (2.146)

where ⌧0 = N
2/3

/⇣
2/3(3/2). Therefore, not considering the second-order finite-size

corrections, we obtain that the condensed fraction is
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(2.147)
and this formula agrees with that obtained by [36]. As an illustrative result, we have a
plot with the condensed fraction for many values of N . Here, we see that this
semi-classical approximation gives us the correct plots seen in Fig. 2.4. In this figure,
when we do this approximation, we eliminate the problem of low temperatures which
appears for Eq. (2.76) specially for a few particles - but when the LDA approximation is
done according to the integral representation of the summation over the quantum
numbers excluding correctly the ground-state contribution given by Eq. (2.147); and
now, this divergence is eliminated.



Figure 2.4: The comparision of the condensate fraction for 10 particles calculated by two
formulas: the red line with Eq. (2.76) and the black line with Eq. (2.147). Is quite clear
that this last formula corresponds to the correct formulation of our primary semi-classical
approximation.



Figure 2.5: The condensate fraction of the three-dimensional finite box for 10, 100 and
1000 particles calculated by Eq. (2.147). The behavior is similar as seen in Fig. 2.3 but
now the problem for a few particles in low temperatures was solved, therefore, we have
the correct semi-classical approximation for the box trap.



Chapter 3

Weakly interacting Bose gas

In real situations, the atoms have interactions between them. However, the inclusion of
the interactions creates a difficulty in our calculations, and the form to study this
influence can be seen by different approaches [4, 33, 40]. In general, the most common is
the perturbation theory treating the interaction as a perturbation under the non-interacting
situation using, as done in this text, with a path integral representation, considering until
the first-order contribution that is known as the Hartree-Fock approximation.
Different from Chapter 2 when we did the study for an ideal D-dimensional power-law
trap, here we will do the calculations for a three-dimensional case because of the
problems of the dimensional crossover as discussed in [43]. So, in this Chapter, we
extend the calculations done in Chapter 2 for three-dimensional dilute gases whose
interaction is described by the delta potential using the perturbative treatment,
calculating the critical temperature shift, the condensed fraction, and the heat capacity
for the power-law traps. As the fully interacting contribution is independent of the
finite-size corrections, we can apply this formalism to see the behavior for the harmonic
trap and the homogeneous box that are derivations of the power-law external potential.

3.1 Semiclassical approach of an interacting Bose gas

The procedure here is the same as done in the non-interacting case. The semiclassical
treatment of the weakly interacting Bose gas is given by the integral of the ideal Green’s
function used in the perturbative formulas of the Hartree and Fock terms as will be
viewed in the next subsection. Following the rules for the standard local density
approximation, the chemical potential µ is shifted by its reduced quantity µ̂ and the
respective fugacity ẑ, and the energy eigenvalues are written as the Hamiltonian.
Another difference concerning the non-interacting system is that the chemical potential
in the critical point will be modified due to interactions. All these points will be shown
in this Chapter.

3.1.1 First-order perturbation theory in a power law trap

When we include the interactions in the system, the total action is modified by
interacting action so, let’s resort to statistical field theory and first, write the grand

42



canonical partition function ⌅ in a functional form,
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is the interacting action for a two-body interaction. As said in the second paragraph, for
a weak interaction we can calculate ⌅ expanding the interacting term in Eq. (3.1) in a
Taylor series over V (int)(x). So, using Eq. (3.3), we have
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and inserting Eq. (3.4) in Eq. (3.1),
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The first term in Eq. (3.5) is the non-interacting grand canonical partition function ⌅(0)

while the second term can be written using the average functional value given by the
general formula,
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and now we may write ⌅ in terms of non-interacting partition function ⌅(0) using Eq.
(3.6), then Eq. (3.5) becomes
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The connection between grand canonical ensemble and thermodynamics is given by the
formula
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then inserting Eq. (3.7) in Eq. (3.8), we obtain that
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Figure 3.1: Diagrammatic expansion of the grand canonical free energy up to first order
perturbation theory, where the two diagrams correspond to the Hartree contribution (H)
and Fock contribution (F ) respectively. The Feynman rules are in Fig. 3.2 and their
respective mathematical formulas are given by Eqs. (3.12) and (3.13).

Figure 3.2: The grand canonical Feynman rules, the line corresponds to Green’s function,
and the vertex with a wiggly line is the interacting integral. With these rules, we have a
scheme to determine the perturbative contribution of free energy for any order.

The term h ⇤(x, ⌧) (x, ⌧) ⇤(x0
, ⌧) (x0

, ⌧)i(0) is known as the four-point correlation
function, to calculate this term we shall consider the all possible combinations and it is
solved using the Wick’s theorem which will decompose this function in clusters of
two-body correlations. These functions have a very important in our discussions because
it is equal to Green’s function in a grand canonical system, and the first term is the
non-interacting free energy given by Eq.(2.25). The logarithm term can be expanded in a
series, and therefore, we have that

F = F (0) + F (1) + ... , (3.10)

where F (1) is the first-order term whose equation is

F (1) = F (H) + F (F )
, (3.11)



with (H) referring to Hartree channel and (F ) to Fock channel and their mathematical
formulas are
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where G
(0)(x, ⌧ ; x

0
, ⌧) is the non-interacting Green’s function. This expansion can be

represented in a diagrammatic form by the Feynman diagrams given by Fig. 3.1, where
the equations (3.12) and (3.13) are the mathematical representation of the first-order
diagrams following the Feynman rules [3].
As we are using the contact interaction [27] given by
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where g is the coupling constant
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with scattering length as and the mass M . Inserting this interaction potential in Eq.
(3.11), we have that the Hartree and Fock terms are equal, thus Eq. (3.11) becomes
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and now our next step is to calculate Green’s function for a three-dimensional system.
We know that the two-body correlation function h (x, ⌧) ⇤(x0
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As we have that ⌧ � ⌧
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> 0, then we shall consider the first term of the previous equation,

G
(0)(x, ⌧ ; x

0
, ⌧

0) =
X

k

 k(x) 
⇤
k
(x0)

e
�(Ek�µ)(⌧�⌧ 0)/h̄

1� e��(Ek�µ)
. (3.18)

As we have a power-law trap, we can use the semi-classical representation of Eq. (3.18),
where now following the same rules written in Chapter 2, but now for the Green’s
function, the integral is over the relative coordinate �x ⌘ x � x

0, and the wave function is
represented as a plane wave in momentum space; therefore Eq. (3.18) becomes
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where X is the center of mass coordinate given by
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Writing Eq. (3.19) for a diagonal term and writing the denominator using the geometric
series, we have that
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where �T is the thermal wavelength,
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Inserting Eq. (3.23) in Eq. (3.16),
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again, using Eq. (2.33) in Eq. (3.24) will have an integral of the same type of Eq. (2.38)
with the difference is that now
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and writing it in terms of ↵ and multiple polylogarithm function ⇣a,b,c(z):
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besides the thermal wavelength and therefore, we have that the first-order formula for
grand canonical free energy F (1)
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we have
F (1) =

⇠

�↵+3/2
⇣3/2,3/2,↵�3/2(ẑ) (3.30)

and hence,
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This form, the total free energy F and number of particles N are equal to
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0 is the condensed free energy

N = N
(0)
0 +

1

�↵
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With Eqs. (3.32) and (3.33) we have complete quantities to study the thermodynamic
properties of the system. As done in Chapter 2, we must calculate the critical point
between the two phases: the BEC and the thermal gas. In the case of non-interacting gas,
the critical point occurs when µ̂ = 0, however, the inclusion of the interactions changes
the critical point through a chemical potential shift, and this situation is studied by
calculating the poles of Green’s function as we show in next subsection.

3.1.2 Green’s function for an interacting system

Let’s start with the two-body correlation function:
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was expanded in the previous subsection about grand canonical free energy. But now we
shall expand the numerator following the same idea of the ⌅ expansion, doing a
perturbation theory in the interacting action given by Eq. (3.3) with respect to the
interacting potential. So,
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where ⌅ is given by Eq. (3.1). The numerator can be written using Wick’s
theorem [4, 39], in terms of correlation function hF [ ⇤

, ]i for any functional F [ ⇤
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then the numerator in Eq. (3.36) becomes
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However, now the denominator can be approximated using the binomial theorem
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where we neglected the second-order term with respect to the interacting action. Here,
this approximation can be used because we have weak interactions. Again, we must
apply Wick’s theorem for the last two correlations in Eq. (3.40), remembering that the
two-body correlation function is, by definition, the grand canonical Green’s
function [4, 39, 40]. When we do this expansion, the interacting Green’s function is
written as
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where the second line corresponds to the Hartree channel and the last line is the Fock
channel. This equation can be written in a compact form as
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where ⌃(x, ⌧ ; x
0
, ⌧

0) is self-energy operator. This is known as Dyson’s equation, and as
done in the case of the grand canonical free energy, this equation can be represented in a
diagrammatic form given by Fig. 3.3. Doing the comparison between Eqs. (3.43) and
(3.44), the first order contributions of ⌃(x, ⌧ ; x

0
, ⌧

0) are given by
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h̄
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0)V (int)(x � x
0)G(0)(x0

, ⌧ ; x
0
, ⌧) , (3.46)

where these formulas also are obtained following the Feynman rules developed in the
previous subsection. The correspondent Hartree and Fock self-energies diagrams are in



Figure 3.3: Diagrammatic expansion of Dyson’s equation Eq. (3.44) up to first order
perturbation theory, where 1 ⌘ (x, ⌧) and 2 ⌘ (x0

, ⌧
0), the two lines correspond to the

interacting G, the one line is non-interacting G
(0), the first diagram corresponds to the

Hartree term and the second, the Fock term. The difference between the self-energy
diagrams and the free energy is that in the self-energy, we cut one line following [3].

Figure 3.4: Diagrammatic representation of the Hartree and Fock self-energy given by
Eqs. (3.45) and (3.46).

Fig. 3.4. These self-energies depend on grand canonical non-interacting Green’s
function G

(0) and this result is a function of the chemical potential µ. From Euclidean
time-position representation, the divergent points are not clear, then we need to go to the
Fourier-Matsubara space. Given our representation of the Green’s function by Eq.
(3.18), we can extend that the general transformation is

G(k; i!m) ⌘
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for the fully G and for G(0). As we are interested in the power-law trap, is convenient to
treat the problem in a semi-classical overview. So we will make this transformation
which, in general, is made in three steps: First, let us introduce the center of mass
coordinate X and the relative coordinate �x as

�x ⌘ x � x
0 (3.48)

so, using Eqs. (3.20) and (3.48), we may represent the coordinates x and x
0 as

x = X +
�x

2
(3.49)

x
0 = X � �x

2
(3.50)

then the dependence of G(x, ⌧ ; x
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Second, we shall make a Fourier transform with respect to the relative coordinates where
will go to the momentum space,
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d
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Third, to do a transformation with respect to the Euclidean time, we have the Mastubara
representation given in function of its Matsubara frequencies !m

G(p, i!m;X) ⌘
Z

h̄�

0

d�⌧ ei!m�⌧
G(p;X,�⌧) , (3.53)

where
!m ⌘ 2⇡m

h̄�
(3.54)

is the bosonic Matsubara frequencies. In Appendix A, we have the details of the formula
for G(0) in Fourier-Matsubara space using the previous transformations. So, we have that

G
(0)(p, i!m;X) =

h̄

�ih̄!m + p2

2M + V (X)� µ̂
. (3.55)

But when we include the interactions in our calculations, this interacting Green’s
function is shifted by self-energies following [4]

G
�1(p, i!m;X) = G

(0)�1
(p, i!m;X)� ⌃(p, i!m;X) (3.56)

then
G(p, i!m;X) =

h̄
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2M + V (X)� µ̂� h̄⌃(p, i!m;X)
. (3.57)

Now we have that Green’s function is written in a complex form and so we see that there
are poles and these points are equivalent to the critical point, but this point has a physical
meaning which is the situation where occurs the phase transition, then it cannot be
complex, then we shall consider the Matsubara frequency equal to zero. Using this
condition in Eq. (3.57),

G(p, 0;X) =
h̄

p2

2M + V (X)� µ̂� h̄⌃(p, 0;X)
. (3.58)

The critical point occurs when p = 0 and the reduced chemical potential µ̂ is calculated
in the minimum with respect to the center of mass coordinate X,

µ̂c ⌘ min
X

(V (X)� h̄⌃(0, 0;X)) (3.59)

and clearly, when we have without interactions, the self-energy contribution is zero and
we recover that µ̂c = minX V (X). We can calculate the self-energies contributions joined
to Eqs. (3.45) and (3.46) remembering that the Fourier transform of ⌃ follows Eq.(3.52)
and (3.53)
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Solving these formulas for p = 0,!m = 0, using that the total self-energy contribution is
equal to the sum of the Hartree and the Fock contribution, we obtain that

⌃(0, 0;X) = �2g

h̄
G

(0)(X, ⌧ ;X, ⌧). (3.61)

By Eqs. (3.22), (2.33) in Eq. (3.61) and after, in Eq. (3.59), we will have that

µ̂c = µ̂
(0)
c

+
2g

�
3
T

⇣3/2(ẑ) (3.62)

and now, we have the critical point of an interacting Bose system. In the next subsection,
we calculate the critical temperature and the condensed fraction.
There is another physical discussion from Eq. (3.58). First, let us remember its
non-interacting version given by Eq. (3.56) which occurs when !m = 0 has a term
dependent on the single particle Hamiltonian H

(0)[p,X]. When we include the
interaction, this Hamiltonian is shifted by one self-energy contribution

H[p,X] ⌘ p
2

2M
+ V (X)� h̄⌃(p, 0;X) (3.63)

and therefore, their eigenvalues can be interpreted as interacting single-particle energies.
This topic will discussed in Chapter 5 with details.

3.1.3 Critical temperature and condensed fraction

From Eq. (3.33), we can calculate the critical temperature, it occurs when N
(0)
0 = 0, N is

fixed, and µ̂ = µ̂c given by Eq. (3.62). First, we shall compute the critical fugacity ẑ and
after, the expansion of this polylogarithm ⇣a(ẑ),
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where �0 is the thermal wavelength Eq. (3.23) calculated in the non-interacting critical
temperature T

(0)
c

⇣a(ẑc) = ⇣(a) +
2g�(0)

c

�
3
0

⇣(a� 1) ⇣(3/2). (3.65)

Now, inserting Eq. (3.65) in Eq. (3.33) with the conditions discussed previously such
that the finite-size term and the fully perturbative contribution do not depend on the
interacting contribution of the fugacity. So, with T

(0)
c , we can write the critical

temperature for interacting systems in terms of non-interacting results. Dividing Eq.
(3.33) by N with N

(0)
0 = 0 inserting Eq. (3.65) with definitions given by Eqs. (2.51),

(3.29), we have
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The ratio Tc/T
(0)
c is denoted by tc, g�

(0)
c is equal to 2as�2(0) and last term of Eq. (3.68)

can be written as 2as/�3(0) (to see the definition of thermal wavelength). So,
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where c is a numeric constant defined as
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The critical reduced temperature tc is

tc =
Tc

T
(0)
c

= 1 +
�Tc

T
(0)
c

. (3.73)

writing Eqs.(3.65) and (3.70) in finite-size term and Eq. (3.65) in Eq. (3.71), we have the
shift of critical temperature caused by the interaction
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To verify this formula, let’s consider the three-dimensional harmonic trap, the same one
studied in Chapter 2. Remembering Eq. (2.62) in Eq. (3.74), with ↵ = D = 3,
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T
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and therefore, we have the same result obtained in [35, 42]. For a weakly homogeneous
trap, ↵ = 3/2 and therefore, the constant c is equal to 8⇣(1/2)/3 and our temperature
shift will be positive and given by

�Tc

T
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= �8⇣(1/2)

3
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�0
, (3.77)

that is the same obtained in [44].
Now we discuss the influence of the trap geometry in the critical temperature value due
to interactions. The interacting correction is the last term of Eq. (3.74) denoted here by�
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As seen in this previous equation, its contribution depends on the parameter ↵ which is
given by Eq. (2.45) with D = 3. The result is a function of the Riemann zeta function,
we shall see the points where this function diverges and when it occurs, we do not
consider its contribution in Eq. (3.78).

The divergence is when we have ⇣(1) and the multiple zeta functions have a negative
argument, that is, these conditions may occur for two Riemann functions in our constant
c: ⇣(↵� 1) and ⇣(↵� 5/2, 3/2, 3/2). The first quantity has two conditions: when
3/2  ↵ < 2, ⇣(↵� 1) < 0 and for ↵ > 2, ⇣(↵� 1) > 0 - for ↵ = 2, ⇣(↵� 1) = ⇣(1)
and it contribution is zero. On the other hand, for ↵ < 5/2, ⇣(↵� 5/2, 3/2, 3/2)
diverges and it does not contribute in Eq.(3.78), but for ↵ � 5/2,
⇣(↵� 5/2, 3/2, 3/2) > 0 such that it value is less than ⇣(3/2)⇣(↵� 1).

Therefore, we have two behaviors: when 3/2  ↵  2, the critical temperature
increases, and for ↵ > 2, the critical temperature decreases. Then remembering that ↵
depends on 1/ai power of our external potential Eq. (2.24), we see that the harmonic
confinement ↵ = 3 will have a negative shift but when the power increases, ↵ decreases
and the homogeneous trap ↵ = 3/2 has a positive shift.
Usually, the finite-size correction of critical temperature is represented in terms of N
because its effects are important for low values of N but this contribution is in �(0)

c . The
calculation of condensed fraction N

(0)
0 /N is similar to the one done in the critical

temperature case. When we compute the condensed properties, T < Tc, the fugacity is
fixed by its polylogarithm expansion Eq. (3.65). To simplify our calculations, we know
that the process of calculating the critical temperature and condensed fraction is similar,
so let’s use some previous results to obtain N

(0)
0 /N . Then,
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As discussed in the previous section, the critical temperature Tc is shifted by perturbation
contribution and finite-size corrections for finite traps, and usually, the condensed
fraction is written in terms of T/Tc ratio because in function this is easier to find the
discontinuity of heat capacity and of other thermodynamic quantities. Here, for
simplicity, let us write it equation with T/T

(0)
c besides this consideration implies in our

plots. Using Eq. (3.65) in Eq. (3.74), we have
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and inserting Eq. (3.61) in Eq. (3.81),
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for ⇠ expression we can write it in function of ⌘ and so, is possible to simplify our
formula for N (0)

0 /N . By Eqs. (3.29) and (2.51), we have
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and therefore,
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we have the condensed fraction of a weakly interacting power-law trap
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Doing the same representation made in a non-interacting case, let us put Eq. (3.91) as a
function of T/Tc. So,
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Finally, inserting Eq. (3.74) in Eq. (3.92) with the condition that the terms with
asEG, E
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where c is given by Eq. (3.72). This result is for a general power-law trap. To check this
result, let us see the limit for the three-dimensional harmonic trap that occurs when
↵ = 3. Then substituting Eq. (2.62) for the non-interacting critical temperature and Eq.
(2.67) for the ground-state energy, we have that
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and this result is the same as obtained in [34, 41] and when as = 0, we recover our
non-interacting result given by Eq. (2.75). In fact, the inclusion of the interactions
decreases the condensed fraction plot with respect to the non-interacting formula, and we
recover this idea. To see better the behavior of the condensed fraction, we have a plot for
the three-dimensional isotropic harmonic trap given by Fig. 3.5. The constant c is
negative in this case and therefore, the interacting contribution is greater than 1, so, this
plot is less than the non-interacting plot. Following this same study, we can see the
interaction influence in the box trap. For this, we consider the thermodynamic limit of
this confinement which is the Eq. (3.93) without ground-state contributions. For the box,
we have that ↵ = 3/2, therefore, inserting this condition in Eq. (3.93), we obtain
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whose plot is in Fig. 3.6. Here, the interaction increases the critical temperature, while in
the harmonic trap, it decreases with respect to the thermodynamic limit result. In both
cases, we did the plots for Rubidium 87 as an example to see the behavior of the
condensate fraction which is the most important of condensate properties. Another
interesting point is that the perturbative contribution does not depend on the number of
particles, that is, the finite-size term is independent of the interaction. The behavior of
the plots is different for the traps: while the harmonic trap the plot is less than the
non-interacting curve following the critical temperature value, the homogenous box is
the inverse.

3.1.4 Internal energy and heat capacity

The most important quantities in the statistical mechanics of the Bose gas are the critical
temperature and the condensed fraction. But there are other important quantities in the
thermodynamic characterization which are the internal energy and the heat capacity. We
know that in high temperatures, the heat capacity converges to the Dulong-Petit law. The
calculations for the non-interacting case were performed in Chapter 2 with a general
dimension D; for our interacting case we have the same idea but now the critical
fugacity is shifted by interacting contributions, for the general terms, we have the fully
perturbative contribution. Here, we calculated the heat capacity specially for the
condensed state because in this state we have the maximum point, and consequently, we
can compare this behavior with the canonical plots done in Chapter 5.

Then, let us start with the calculation of the internal energy U following the same
formulas developed in Chapter 2. Starting with Eq. (2.82) but now we have that F (0) is



Figure 3.5: Condensate fraction of the isotropic three-dimensional harmonic trap in the
thermodynamic limit. The black line corresponds to the non-interacting curve while the
red line is the interacting plot - here we have that the interaction decreases the curve
behavior, following the prevision given by the critical temperature calculation.

now F given by Eq. (3.32). We are interested in the calculations of the condensed state
(T  Tc) - then in this case, by Eq. (3.33), the number of particles is fixed by this
equation in the critical temperature point. Besides, the fugacity is equal to the critical
fugacity polylnarithm expansion Eq. (3.65) and N

(0)
0 = F (0)

0 = 0. Then, first doing the
derivative of Eq. (3.32) in Eq. (2.82), we have that
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where ⇠ was substituted by g(M/2⇡h̄2)3/2 ⌘. However, the second step, that is the
calculation of the heat capacity, we have that the derivative must be done with N

constant. Then, this situation is solved by substituting ⌘ from Eq. (3.33) with � = �c.



Figure 3.6: Condensate fraction of the isotropic three-dimensional finite box in the ther-
modynamic limit. The black line corresponds to the non-interacting curve while the red
line is the interacting plot - here we have that the interaction decreases the curve behavior,
following the prevision given by the critical temperature calculation.
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For simplicity, Eq. (3.96) can be written as

U(T < Tc) = U1(T < Tc) + U2(T < Tc) + U3(T < Tc) , (3.98)

where
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U2(T < Tc) = N EG (↵� 1)

✓
T

Tc

◆↵
, (3.100)



and
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Now, we can calculate the heat capacity by Eq. (2.83) for each decomposition of
U(T  Tc) such that

C(T < Tc) = C1(T < Tc) + C2(T < Tc) + C3(T < Tc) , (3.102)

where,
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Now, the polylogarithm function in the critical point follows Eq. (3.65), and here as this
expansion has two contributions, we have that to discard the terms that depend on
asEG, E

2
G
, a

2
s
.

To see the behavior of the heat capacity in the condensate phase, we study the two traps
studied in the non-interacting case which are the harmonic trap and the finite box. By
Eqs. (3.103), (3.104) and (3.105), we have that their only depend of ↵ and the interaction
parameter g.
Starting with the three-dimensional harmonic trap, that is, when ↵ = 3, we obtain that

Cmax = 12N kB
⇣4(ẑc)
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and using Eq. (3.89), Eq. (3.106) becomes
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To compare its value with the non-interacting result given by Eq. (2.100) in the critical
point when T/Tc = 1,
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and is clear that Eq. (3.108) is less than Eq. (3.107). Therefore, the inclusion of the
interaction increases the maximum point of the heat capacity. Now, let us see the box
case looking only at perturbative contribution, thus now ↵ = 3/2. When we have this
value for ↵, the last term in Eq. (3.103) does not contribute due to its divergence,
therefore,
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and clearly, this result is less than the homogeneous case which is given by

C
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When we studied the normal phase (T > Tc), for high temperatures, shall have the
Dulong-Petit limit as seen in the non-interacting case. As in the normal phase, the
fugacity is different from the critical point, then the polylogarithm derivatives to � and ẑ

must be considered. Then in this case, we shall write this observable following the same
procedure done in the non-interacting calculation Eq. (2.84). Here, we have the the
internal energy is given by
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and the number of particles N
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Applying the Jacobian technique to calculate the heat capacity as done in Eq. (2.84), we
obtain that
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Now including Eqs. (3.113), (3.114), (3.115) and (3.116) in Eq. (2.83), we obtain that

C(T > Tc)

NkB
=


↵(↵+1)

⇣↵+1(ẑ)
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⇣↵�1(ẑ)
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When we do not have interactions, this equation returns to the non-interacting result
given by Eq. (2.101). Finally, checking the limit for the high temperature limit, T ! 1,
we have that

C(T ! 1) = N kB ↵ , (3.118)

that is the Dulong-Petit law. Therefore, the inclusion of the interactions increases the
maximum point of heat capacity for the harmonic trap and decreases for the finite box;
moreover the classical limit is satisfied for high temperatures. The interesting here is that
we have a semiclassical description of dilute Bose gases in the power law trap.
Therefore, in a semiclassical description of the weakly interacting power law trap, the
main thermodynamic properties are modified due to interactions but the magnitude of
this modification depends of the size of the trap power. As these observables are
functions of the polylogarithms and Riemann zeta functions, there are values where
these functions diverge, is positive or negative, and this discussion was done with details
in the section about the critical temperature, and this situation is reproduced in other
quantities, as the condensed fraction and the heat capacity.



Chapter 4

Non-interacting canonical ensemble

The canonical ensemble consists of a statistical distribution in which the number of
particles is fixed; besides the system exchanges heat with a bath reservoir at a fixed
temperature T . But in general experiments with magnetic and optical traps, the system
can be described theoretically using the canonical ensemble of a form more consistent
compared with the grand canonical results, however, in the thermodynamic limit, these
two ensembles are equivalent as shown in [13]. In this chapter, we present a recursive
canonical theory for non-interacting Bose gas which was studied previously
in [14, 15, 45] using different approaches: in [14, 45] used the classical counting statistics
while in [15] by cycle decomposition.

First, we did the calculations to build a recursive non-interacting canonical theory using
as a starting point, the grand canonical result developed in Chapter 2. After
following [15, 36, 39], we connected these two ensembles to find the recursive formula
for the N -particle partition function ZN(�). So, with the ZN(�)-equation, we calculated
the canonical probability and its moments: first which has a relation with the condensed
fraction, and the second, with the ground-state fluctuations and to finalize, the other
thermodynamic quantities: entropy, internal energy and heat capacity. As an application,
we studied the homogeneous case, the gas confined in a three dimensional box, and in a
harmonic trap.

4.1 Non-interacting canonical description

Our starting point is equation (2.17). It corresponds to grand canonical free energy for a
non-interacting system, but as we want the partition function, let’s use the connection
between free energy and partition function, and so
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To write a formula of ⌅(0) we shall expand the term which depends of quantum numbers
k in a power series,
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then,
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The summation over quantum numbers is a term that is very similar to a single particle
partition function in the canonical ensemble by classical theory. The physical
interpretation of this term is a single-particle partition function with total energy equal to
n times single particle energy Ek, therefore it term is denoted by Z1(n�),
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hence, (4.3) becomes
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The details about the development of this equation are in chapter 2 then here these
passages were not shown. We are in a grand canonical ensemble yet, to build a canonical
result must remember the connection between these two approaches1
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Z
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where B denotes a bosonic system throughout the dissertation. Here we follow [15], by
Eq. (4.6), the N -particle partition function is a coefficient of fugacity series and it value
can be calculated by equation
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and the N -th derivative of ⌅(0) involves chain rule and generalized Leibniz rule. In fact,
by equation (4.5), the first derivative is given by
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now we have a product of two functions and here will use the general Leibniz rule,
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Using Eq. (4.9) in Eq. (4.8), we have that
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1See, for instance, Ref. [37], p.178.



but
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then inserting Eq. (4.12) in Eq. (4.11),
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however by Eq. (4.7) definition,
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Therefore, putting Eq. (4.14) in Eq. (4.13) and after in (4.7), ZB

N
(�) can be written in a

recursive form,
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This equation is the center of our theory and it is the same result obtained in [14, 15].
With it, we can calculate all thermodynamic quantities using the classical formulas of
connection between the canonical approach and thermodynamics. But the two main
quantities which are condensed fraction and ground-state fluctuations may be calculated
using the general formula of canonical probability and we will see that these variables
are also functions of ZB

N
. The average values are calculated by moments of grand

canonical distribution and for this, we need canonical probability in the next section.

4.1.1 Canonical probability and mean values

Starting with Eq. (4.4), we can write it separating in two contributions: condensed phase
(when k = 0) - �1(�) and normal phase (when k 6= 0) - ⇠n(�),
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and then, Eq. (4.16) can be used in Eq. (4.5),
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As we are interested in ground-state properties, then in Eq. (4.19) the first term that
depends of �1 can be factored in a new form using Eq. (2.23),
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and therefore,
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To find the canonical probability, let’s remember the discussion about canonical
ensemble - a system with temperature T in a thermal bath such that the number of
particles N is fixed. This condition can be represented by formula
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developed in [14], where PC(N, �) represents the canonical probability for N particles
with temperature T . Here the delta function fixes N is equal to the sum of all occupation
numbers nk. To calculate the average values of a statistical distribution, we need to
remember the connection between the canonical and grand canonical ensembles, that is
given by

A(�, z) =
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where A is any functional in GCE and A any functional in CE. As the probability is a
functional, then Eq. (4.23) can be used to connect these two quantities, representing the
grand canonical probability by P(n, �; z). In Eq. (4.22) H represents the non-interacting
Hamiltonian in terms of occupation numbers,
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The sum over nk may be separated into ground-state and excited contributions. Making a
decomposition of Eq. (4.22) using Eq. (4.24), we have that
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but as the delta function is fixing n with respect to �n(�), then the parenthesis in Eq.
(4.25) can be written
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then putting Eq. (4.26) in Eq. (4.25) and after in Eq. (4.23),
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and finally, inserting Eq. (4.21) in Eq. (4.27), we have
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but the last exponential term can be written in the function of Eq. (4.21) and so,
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and now returning in equation (4.23), the canonical result of probability is
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Now we have a canonical probability to find n particles in the ground state. With it, we
can calculate the moments of canonical distribution as the condensed fraction which
corresponds to the first moment, and the variance which depends of the second moment.
These quantities were also calculated using the cycle decomposition [15]. In the next
underlines, we calculated the moments of a canonical distribution, specially the first
which corresponds to the condensed fraction and the second which represents the
variance following the idea introduced by [14].

First moment

By general probability theory when we have a probability distribution, the average value
of any function f is
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In case of condensed fraction, our purpose is to calculate the first moment of
ground-state and for it, we shall compute the mean value of n occupation number,
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and here inserting Eq. (4.30) in Eq. (4.32), we have
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making a transformation in last summation such that n+ 1 ⌘ u, we have that
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Finally, the condensed fraction is defined as Eq. (4.34) divided by total number of
particles N ,
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Second moment

For the second moment, we have the same idea which was employed in first moment. In
fact,
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and using the transformation n+ 1 ⌘ u in Eq. (4.30) and Eq. (4.36), we have that
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this formula was also obtained in Chapter 3 of [36]. Therefore, using the general formula
of variance given by

�n0 ⌘
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and substituting Eqs. (4.34) and (4.37) in Eq. (4.38), we will have the ground-state
fluctuations in the canonical ensemble,
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This last quantity corresponds to the ground-state fluctuation and its discussion will be
made in Chapter 6 because about this topic there is an interesting theoretical discussion
involving what are the better statistical ensemble to describe the Bose gases. Then in the
next section, we have the application of this canonical theory of the main traps as the
heat capacity and the condensed fraction. But also there are other quantities such as
entropy, and internal energy which also can be calculated in a recursive formula.
Besides, it is possible, approximately, to calculate the critical temperature from the
maximum point of the heat capacity. So, we can compare our results with the literature
and the large particle limit equivalent to the grand canonical results.

Other thermodynamic quantities

As said in the previous paragraph, the other thermodynamic quantities as entropy,
internal energy, and heat capacity are calculated using ZN(�) as starting point.
Following [37, 38], we have that the internal energy is given by

UN(�) = � @

@�
lnZN(�), (4.40)

but including our results as a function of T , Eq. (4.40) becomes

UN(T ) = kB T
2 @
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To calculate the heat capacity, let us use Eq. (2.32) with energy now given by Eq. (4.41),
and then we have that

CN(T ) = kB T
@
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lnZN(T ). (4.42)

With this equation, it is possible to determine the canonical critical temperature Tc by
calculating the maximum point of Eq. (4.42),
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The last important quantity is the entropy SN(T ); for this, from Eq. (2.31) and that the
canonical free energy FN(T ) given by

FN(T ) = �kB T lnZN(T ), (4.44)

we have that
SN(T ) = kB

@

@T
(T lnZN(T )) . (4.45)

Now we have the complete quantities for a Bose gas described in a canonical ensemble.
In the next section, we will study these observables in standard confinements.

4.2 Results for an ideal trapped systems

As an application of this non-interacting canonical theory, we will apply it to classical
confinement Bose systems. First, to check the validity of the model we studied the
homogeneous Bose gas after we studied two principal systems: the finite box and the
harmonic trap. For each system, we calculated the heat capacity, condensed fraction, and
ground-state fluctuations. This last quantity is significant in the context of the
convergence of the statistical ensembles in studies of certain physical situations. One
great vantage to using the recursive canonical description is that the finite-size condition
is already included because we started of fact that N is fixed and the one-particle
partition function is calculated in an exact form.

4.2.1 Homogeneous Bose gas

Let us consider a homogeneous non-interacting Bose gas in three dimensions. In this
case, the spectrum of gas is a continuum, then when we will make the calculation of
thermodynamic quantities, we shall use an integral representation in terms of
phase-space. The reason for it will be shown now: the external potential V (x) is zero in
all space (because the homogeneous system does not have boundary conditions), then

V (x) = 0, (4.46)

and writing the Schrödinger equation for Eq. (4.46),

r2
 (x) + k

2
 (x) = 0, (4.47)

where
k
2 ⌘ 2ME

h̄
2 . (4.48)

Solving Eq. (4.47) in all space, we have that the wave function is written as a plane wave

 (x) =
1p
V

e
�ik.x

. (4.49)

where k is a real number. When we do not have the ground state, the thermodynamic
limit is represented as a sum over all values of k,

P
k
, can be written as an integral in all

space of moments k in the form
X

k

f(k) ! f(0) +
V

(2⇡)3

Z
d
3
k f(k), (4.50)



where V is the volume. Therefore using Eqs. (4.48), (4.50) in Eq. (4.4), we have that

Z1(n�) = 1 +
V

(2⇡)3

Z
d
3
k e

�n�h̄
2
k
2
/2M (4.51)

and making this Gaussian integral, we have that

Z1(n�) = 1 +
V

�
3
T
n3/2

, (4.52)

where �T is the thermal wavelength

�T ⌘

s
2⇡h̄2

�

M
. (4.53)

However, Eq. (4.52) can be written in function of dimensionless temperature t defined as
the ratio of general temperature T of the critical temperature in thermodynamic limit
T

(0)
c , in fact,

t ⌘ T

T
(0)
c

. (4.54)

where

T
(0)
c

=
2⇡h̄2

MkB

✓
N

V ⇣(3/2)

◆2/3

. (4.55)

Then, looking Eqs. (4.52) and (4.53), we have that

V

�
3
T

= ⌧
3/2 (4.56)

where ⌧ is defined by Eq. (2.114) and now can be written as

⌧ =

✓
N

⇣(3/2)

◆2/3

t. (4.57)

Therefore, (4.52) can be written as

Z1(n⌧) = 1 +
⌧
3/2

n3/2
, (4.58)

and now, we may calculate the all thermodynamic properties of this system in the
function of the dimensionless temperature t using Eq. (4.15) as a starting point. Our
homogeneous plots are in Fig. 4.1 for the condensed fraction and in Fig. 4.2 for the heat
capacity.

4.2.2 Three dimensional Bose gas in a finite box

Now let us consider a more realistic case, that is a Bose gas confined in a box with length
L, the same system shown in section (2.2). The external potential is given by

V (x) =

(
0 |xj|  L/2,

1 |xj| � L/2.



Figure 4.1: Condensed fraction of a homogeneous Bose gas as a function

Here, the difference between this case and the homogeneous system is that now we have
boundary conditions and it will give that the energies eigenvalues are discrete. Seeing
Chapter 2, the energies are given by Eqs. (2.106) and (2.111),

Ek1,k2,k3 =
h̄
2
⇡
2(k2

1 + k
2
2 + k

2
3)

2ML2
, (4.59)

and using Eq. (4.59) in Eq. (4.4), we have that

Z1(n�) =
X

k1,k2,k3

e
�n�h̄

2
⇡
2(k21+k

2
2+k

2
3)/(2ML

2)
, (4.60)

as each coordinate is independent, we can write Eq. (4.60) as a single summation, where
now the letter m represents the general quantum number among k1, k2, k3,

Z1(n�) =

" 1X

m=1

e
�n�h̄

2
⇡
2
m

2
/(2ML

2)

#3
. (4.61)

Again, let’s write Z1(n�) in terms of ⌧ as made in the homogeneous case using the same
dimensionless temperature ⌧ given by Eq. (4.57) but now our volume is L3, and then

�h̄
2
⇡
2

2ML2
=

⇡

4⌧
, (4.62)



Figure 4.2: Heat capacity for a homogeneous 3D Bose gas as a function of the temperature
in the canonical ensemble.

and including this result in Eq. (4.61), we have

Z1(n⌧) =

" 1X

m=1

e
�n⇡m

2
/(4⌧)

#3
. (4.63)

Given Eq. (4.63), we can plot the thermodynamic quantities following the same
procedure done in the homogeneous case, the condensed fraction, ground-state
fluctuation, and heat capacity given by Fig. 4.3, 4.5 and Fig. 4.4.

4.2.3 Bose gas in a three-dimensional harmonic trap

In this case, the potential V (x) for a three dimensional harmonic trap with frequencies
!1,!2,!3 is given by Eq. (2.58) and the Hamiltonian by Eq. (2.59). We know that our
analytical purpose is to calculate Z1(n�) Eq. (4.49). Then using Eq. (2.64) in Eq. (4.49),

Z1(n�) =
X

k1,k2,k3

e
�n�(EG+h̄(k1 !1+k2 !2+k3 !3)) (4.64)



Figure 4.3: Condensed fraction of a 3D finite box as a function of the temperature in the
canonical ensemble for different numbers of particles N .

as each coordinate is independent, then we can separate this summation for each
quantum number ki,

Z1(n�) = e
�n�EG

1X

k1=0

e
�n�h̄!1k1

1X

k2=0

e
�n�h̄!2k2

1X

k3=0

e
�n�h̄!3k3 . (4.65)

The summation over ni is a geometric series,

1X

m=0

x
m =

1

1� x
, (4.66)

where x is less than 1; so applying Eq. (4.66) in Eq. (4.65), we have a simple formula of
Z1(n�),

Z1(n�) =
e
�n�EG

(1� e�n�h̄!1)(1� e�n�h̄!2)(1� e�n�h̄!3)
. (4.67)

Again as made in other symmetries, let’s put this result in terms of its respective
dimensionless temperature ⌧ . Looking the Chapter 2, this harmonic trap in a
semiclassical approach was studied generically from power law trap potential because
Eq. (2.58) is a type of power law potential Eq. (2.33). So is convenient to define ⌧ as



Figure 4.4: Heat capacity of a Bose gas in a 3D finite box as a function of the temperature
in the canonical ensemble for different numbers of particles N .

done in Eq. (2.69), where !̃ is given by Eq. (2.61). Using the result of critical
temperature T

(0)
c given by (2.62). So, inserting Eq. (2.62) in (2.69), ⌧ can be written as

⌧ =


N

⇣(3)

�1/3
t, (4.68)

with t given by Eq. (4.54). Therefore, Eq. (4.67) in function of ⌧ is now

Z1(n⌧) =
e
�3n!/(2!̃⌧)

(1� e�n!1/(!̃⌧))(1� e�n!2/(!̃⌧))(1� e�n!1/(!̃⌧))
. (4.69)

Given Eq. (4.69), we can plot the thermodynamic quantities following the same
procedure done in homogeneous and finite box cases, the condensed fraction,
ground-state fluctuation and heat capacity given by Figs. 4.7, 4.8 and 4.6.

4.3 Discussion of the results

By our plots for the canonical quantities, we see that in both cases when the number of
particles increases, the critical dimensionless temperature nears one, and this situation is
seen specially in the heat capacity plots Figs. 4.6, 4.4 and 4.2 - for 10 particles, the



Figure 4.5: Ground-state fluctuation of a Bose gas in a 3D finite box as a function of the
temperature in the canonical ensemble for different numbers of particles N .

dimensionless critical temperature is far to 1 but for 10000 this value converges to 1
following the grand canonical previews.

With the heat capacity plot, we can discover the canonical critical temperature by Eq.
(4.43). To see better these temperatures, we have two tables for different values of N in
two traps: the finite box (table 1) and the isotropic harmonic trap (table 2). The idea is to
compare these values with their grand canonical results developed in Chapter 2, where
the finite-size corrections were put.

N Canonical grand canonical
10 1.82 1.12
100 1.37 1.23
1000 1.20 1.19
10000 1.12 1.12

Table 4.1: Values of critical temperatures for a trapped Bose gas in a three-dimensional
finite box calculated by two ensembles: canonical through Eq. (4.43) and grand canonical
through Eq. (2.141).



Figure 4.6: Heat capacity of a Bose gas in a 3D isotropic harmonic trap as a function of
the temperature in the canonical ensemble for different numbers of particles N .

N Canonical grand canonical
10 0.72 0.66
100 0.78 0.84
1000 0.89 0.93
10000 0.95 0.97

Table 4.2: Values of critical temperatures for a trapped Bose gas in a three-dimensional
isotropic harmonic trap calculated by two ensembles: canonical through Eq. (4.43) and
grand canonical through Eq. (2.69).

With these tables, we see that when increases the number of particles, the canonical
results converge into grand canonical results, which makes sense because, in the
thermodynamic limit, the two ensembles are equivalents. For a few particles, in our case,
for 10 and 100, the results have a greater difference that is explained by the fact that the
grand canonical finite-size correction used here is up to first order. The result is closer
when we consider more terms in our polylogarithm expansion - so, the inclusion of the
finite-size correction is essential in the study of trapped Bose gases in the grand



Figure 4.7: Condensed fraction of a Bose gas in a 3D isotropic harmonic trap as a function
of the temperature in the canonical ensemble for different numbers of particles N .

canonical ensemble, but the canonical ensemble gives us a more precise value.



Figure 4.8: Ground-state fluctuation of a Bose gas in a 3D isotropic harmonic trap as a
function of the temperature in the canonical ensemble for different numbers of particles
N .



Chapter 5

Weakly interacting canonical theory

In some situations, we can approximate the physical system as a non-interacting gas and
this condition in a canonical overview was described in chapter 4, however, in the
majority of experiments, the interactions are very important in the physical behavior, and
then its inclusion in the calculations is necessary for a better description. Here we
continue studying a confined Bose gas in a canonical approach but now including
interactions. To include these interactions, we started with a grand canonical idea writing
the grand partition function ⌅ and after extracting the N -particle partition function
ZN(�) and we show through this chapter, the self-energies have to be included in
one-quasiparticle partition function Z1(n�).

To study the interactions in quantum statistical mechanics, we can use the many
possibilities depending on the interaction’s type, and in our case, the interest is to
calculate the thermodynamic properties for weakly interacting trapped Bose gases. As
we have weak interactions, the perturbation theory up to the first order expands the
interaction action in powers of the interacting potential.

5.1 Full N -particle partition function

5.1.1 General canonical formula

To get the canonical partition function, we shall start with the grand canonical ensemble
as done in the non-interacting case, but now with the interacting grand partition function
⌅ given by Eq. (3.7). So, for simplicity, we define a new notation for wave function as
 x ⌘  (x, ⌧) and the term h ⇤(x, ⌧) (x, ⌧) ⇤(x0

, ⌧) (x0
, ⌧)i(0) from Wick’s theorem is

given by

h ⇤
x
 x  

⇤
x0  x0i(0) = h ⇤

x
 xi(0) h ⇤

x0  x0i(0) + h ⇤
x
 x0i(0) h ⇤

x0  xi(0). (5.1)

As seen here, in the first order, the interacting contribution has two terms: one which
represents the direct product between each coordinate h ⇤

x
 xi(0) h ⇤

x0  x0i(0) called the
Hartree channel and other which contains the product of exchange term
h ⇤

x
 x0i(0) h ⇤

x0  xi(0) called the Fock channel and this results is known as the
Hartree-Fock approximation.

Each two-body correlation term in Eq. (5.1) is the Green’s function of the Schrödinger
field calculated in non-interacting grand canonical system G

(0)(x, ⌧ ; x
0
, ⌧

0). However, in

77



Figure 5.1: Diagrammatic representation of the grand partition function that mathemat-
ically is represented by Eq. (5.4). Here we have an important difference between the
grand canonical free energy F diagrams described in Fig. 3.1 are only connected due to
the logarithm function, while the partition function contains all diagrams: connected and
disconnected as viewed in [3, 4]. As we are doing the calculation until the first order, the
diagrams are the same as viewed in Fig. 3.1 except by the dimensional constant 1/�.

Eq. (5.1), we have the diagonal terms because these products are over the same
imaginary time ⌧ . Then, let us consider the limit of general formula of G(0) when ⌧ 0
converges to ⌧ ,

G
(0)(x, ⌧ ; x

0
, ⌧) = lim

⌧ 0#⌧
G

(0)(x, ⌧ ; x
0
, ⌧

0) =
X

k

 k(x) 
⇤
k
(x0)

1

e�(Ek�µ) � 1
. (5.2)

Putting Eq. (5.2) in Eq. (5.1) with G
(0)
x,x0 ⌘ G

(0)(x, ⌧ ; x
0
, ⌧), we have that

h ⇤
x
 x  

⇤
x0  x0i(0) = G

(0)
x,x

G
(0)
x0,x0 +G

(0)
x,x0 G

(0)
x0,x, (5.3)

and inserting Eq. (5.3) in Eq. (3.7), we have that

⌅ = ⌅(0)
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(5.4)
With the equation Eq. (5.4), we have the grand canonical result for the first-order grand
partition function because its formula depends on Green’s function Eq. (5.2) and ⌅(0),
and both expressions are functions of the chemical potential µ. But to build a canonical
theory starting with this result, we must write ⌅ as a power series of fugacity z whose
coefficients will be the canonical quantities.

The grand partition function ⌅ is a dimensionless quantity. To calculate the
thermodynamic quantities, we need the grand canonical free energy given by Eq. (2.15)
but now for any system. As discussed in Chapter 3, the free energy and consequently, the
partition function can be represented in a pictorial representation, where the only
difference between ⌅ and F is the mathematical formulas. The expansion up to the first
order is shown in Fig. 3.1.

First, we see that Green’s function G
(0) given by Eq. (5.2) can be written using a

geometric series in Bose-Einstein distribution because, in general, Bose systems the
chemical potential is smaller to energy eigenvalues, then is convenient to use this



representation,
1

ex � 1
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1X

n=1

e
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, when |x| << 1 (5.5)

and putting (5.5) in (5.2) where now x ⌘ �(E(0)
k

� µ) and then,
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0
, ⌧) =

1X

n=1

e
n�µ (x, nh̄�; x

0
, 0)(0) , (5.6)

where (x, nh̄�; x
0
, 0)(0) is the spectral representation of Green’s function of Schrödinger

field (or the propagator) [39]
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To do the canonical form of Green’s functions, we must use its spectral representation
given by Eq. (5.6) in Eq. (5.4), where the first term G

(0)
x,x G

(0)
x0,x0 corresponds to Hartree

contribution and the second, G(0)
x,x0 G

(0)
x0,x, to the Fock contribution. This form, the first

order perturbation term in equation (5.4) that will be denoted by ⌅(1) can be written as
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where z ⌘ e
�µ is the fugacity. As Eq. (5.8) is big, we’ll write it in a small form

separating the Hartree and Fock channels,
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Z
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where,
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and

[F ] ⌘
1X

k,l=1

z
k+l (x, kh̄�; x
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, lh̄�; x, 0)(0) ⌅(0)
. (5.11)

Now, to connect the grand canonical with canonical results we shall represent the
non-interaction partition function ⌅(0) in the function of z but it is easy due to

⌅(0) =
1X

N=0

Z
(0)
N

(�) zN , (5.12)

then the Hartree and Fock terms can be written fully in function of z and as we know that
the general connection between GC and C ensemble is given by formula

⌅ =
1X

N=0

ZN(�) z
N
, (5.13)



therefore, we may obtain the canonical partition function ZN(�) writing Eqs. (5.10) and
(5.11) using Eq. (5.13), for simplicity, we’ll make the details of the calculations for the
Hartree term and after, we’ll substitute for the Fock term. So, using Eq. (5.10) and
substituting Eq. (5.13) in Eq. (5.9), we obtain that
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(5.14)
and then,
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(5.15)
The idea is to write it term in an equation of type-(5.13). For it, let’s make a
transformation of form N

0 ⌘ N + k + l and denoting the Hartree integral I(H)
k,l

(�) by

I
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we put these results in Eq. (5.15) and then we see that this term can be written as a new
sum over N 0 whose expression are be given by
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By Eq. (5.17) we see that the sum over n and l is restricted by N
0 and using Eq. (5.13) as

model, we can define the first order Hartree term of canonical partition function by

Z
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N 0 (�) = ��

2

N
0X
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Z
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N 0�k�l

(�) I(H)
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The next step is to solve this restricted summation in Eq. (5.18). For it, we make explicit
our restricted sum:

N
0X

k,l=1

Z
(0)
N 0�k�l

(�) I(H)
k,l

(�) (5.19)

The question is: How do we make this summation? The idea is to decompose Eq. (5.19)
in two sums, one to l and the other to a new variable ↵ that corresponds to k and l and is
defined as ↵ ⌘ k + l. It implies that N 0 � ↵ = N and k = ↵� l. Substituting this in Eq.
(5.19), we changed the variable n until ↵ of form

N
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To evaluate the sum over ↵, we have to know its bounds. Its expression is restricted over
N

0, so we have that the highest bound is equal to N
0, otherwise ↵ = k + l, and its lowest

values are 1, and therefore, the lowest bound is equal to 2. So,
N
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. (5.21)



As min(l) = 1, then the summation over l starts in 1 but it highest bound is a function of
↵ and as k is included in ↵, we’ll fix it in k = 1 and so, the lowest bound will be ↵� 1.
This consideration is corrected because its is self-consistency with initial bounds in
infinite sums. Using the discuss about index l and Eq. (5.21) in Eq. (5.20) we have that
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The fraction ��/2 can be written as �(1/2h̄)(h̄�) and therefore rewriting Eq. (5.18) we
obtain that
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The same for Fock term
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with
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and
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(5.26)
where D is the direct term and E is the exchange term.
Here, we have an interesting discussion about these integrals. The canonical
representation of the Hartree and Fock contributions is given by Eqs. (5.25) and (5.26),
as the connection between the two ensembles is measured by fugacity expansion and the
grand canonical ensemble is the generating function of all canonical functions, we have
that the canonical diagrams are the same as the grand canonical theory, but the difference
is the Feynman rules. The canonical diagrams are shown in Fig. 5.2, where the canonical
Feynman rules are described in Fig. 5.3. By Eq. (5.13) and its connection with the
canonical ensemble, we can write the total first order partition function as [15]
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5.1.2 Recursive N -particle partition function

By equation (5.27), we have that the fully N -particle partition function ZN(�) is in
function of non-interacting result Z(0)

N
(�). But from Eq. (4.15), the ideal result is written

as a recursive equation; and following this idea we want to write Eq. (5.27) in a recursive



Figure 5.2: The diagrammatic representation of the canonical Hartree and Fock contri-
butions of ZB

N
(�). These diagrams are computed following the canonical Feynman rules

given by Fig.5.3, where we have the same pictorial representation of the grand canonical
ensemble but now with their respective canonical representations.

formula at the same form of Eq. (4.15) because we may use the same numerical methods
to find the thermodynamic quantities.

To discover the recursive formula of ZN(�), first, by simplicity, let’s denote the sum of
Hartree and Fock integrals I(D)

l,k�l
(�) + I

(E)
l,k�l

by f(k, l). Using f(k, l) in Eq. (5.27), we
have
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and can write it in terms of a single index n as
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The non-interacting term Z
(0)
N�n

(�) can be written using Eq. (5.27) and so, Eq. (5.29)
will be a term in function of ZB

N
(�),

Z
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and hence,

Z
B

N
(�) =

1

N

NX

n=1

"
Z1(n�)�

N

2h̄

n�1X

l=1

f(n, l)

#"
Z

B

N�n
(�) +

1

2h̄

N�nX

k=2

n�1X

l=1

f(k, l)Z(0)
N�k�n

(�)

#

(5.31)
the term which depends of f(n, l)f(k, l) here is neglected since this product is of second
order. Therefore, up to first order Eq. (5.31) is equal to
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(5.32)



Figure 5.3: The canonical Feynman rules: the wiggly line is the interacting contribution
represented by the interacting integral over the coordinates x and x

0, the circle around the
same point x with length n is the one-particle propagator for the same coordinate, while
the line corresponds to the one-particle propagator for two coordinates x and x

0. We see
that we have the same diagrams but now the Green’s function G is substituted by the
propagator.

Note that the sum over k from 2 to N � n is equal to sum over k between 1 and N � n

and the summations in the last term of Eq. (5.32) can be written as

NX
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l=1

f(k, l) .

(5.33)
this nested sum on n and k can be changed by looking the terms is the (n, k). The nested
summation corresponds to all points in the triangle in figure 5.4, and changing the order
of the summation gives
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but
N�kX

n=1

Z1(n�)Z
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(�) = (N � k)Z(0)
N�k

(�) (5.35)

and it is equal to
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Z1(n�)Z
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(�) = (N � k)ZB

N�k
(�) (5.36)

because in first order when let’s substitute Z
(0)
N�k

(�) in terms of ZB

N�k
(�) they are equal
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Figure 5.4: Triangle for nested summation in (n, k) plane.
P

N�1
n=1

P
N�n

k=1 corresponds
to adding points following each vertical line and later summing all vertical lines. This
is equivalent to sum all points along each horizontal line and later add all the horizontal
lines, which corresponds to

P
N�1
k=1

P
N�k

n=1 .

(remember that the second order terms are neglected) and so,
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and inserting Eq. (5.36) in Eq. (5.34) and on Eq. (5.32), we obtain
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and doing the simplifications, we obtain the recursive formula for interacting partition in
the first order [15],
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and now we have the recursive formula for fully N -particle partition function in the
canonical ensemble.

5.1.3 Problem of recursive N -particle partition function

From Eq. (5.39), we have that the fully ZN(�) depends of Z1(n�) and of Hartree and
Fock integrals. However it formula has a numerical/physical problem: by Eqs. (5.25)
and (5.26), we have that both terms are proportional to �, therefore when we see the



limit for low temperatures (� ! 1), the second term is major that Z1(n�) implying that
our N -particle partition function will be negative, that is a physical problem.

One way to solve this problem is to renormalize Eq. (5.39). The general idea is to
correct Z1(n�) so as it is greater than the sum of Hartree and Fock integrals and so, the
interacting kernel will be always positive. For this, let us include the energy corrections
Z1(n�) writing it as a new Ẑ1(n�), where

Ẑ1(n�) =
X

k

e
�n�Ê

(n)
k . (5.40)

where the new energies Ê(n)
k

are now shifted by self-energies which correspond to the
interacting contribution of quasiparticle energy. However the discussion about
self-energies comes from interacting Green’s function and Dyson’s equation are
described in a grand canonical ensemble. Therefore, is necessary to write a canonical
theory of these corrections because as we are studying a physical system in the canonical
ensemble must eliminate the chemical potential of our results. In the next section, let us
discuss this theory starting with the original grand canonical approach. With this new
renormalization, we check that this new representation for the single particle partition
Z1(n�) eliminates the problem for low temperatures.

5.2 Interacting Green’s function and self-energy in

canonical ensemble

As done in Chapter 3, we must start with the interacting Green’s function in the grand
canonical ensemble given by Eq. (3.35). With the same procedure of perturbation theory,
we obtain that the full G can be written as an integral equation known as Dyson’s
equation (3.44), where the self-energy ⌃(x, ⌧ ; x

0
, ⌧

0) up to first-order is equal to the
summation of the Hartree and Fock contributions Eqs. (3.45) and (3.46) whose
diagrammatic representation is given by Fig. 3.3. These self-energies depend of grand
canonical non-interacting Green’s function G

(0) and this result is a function of the
chemical potential µ. But as done in fully N -particle partition function calculation, G(0)

can be written as a power series of fugacity from (5.6). So is more convenient to write
⌃(D),(E)(x, ⌧ ; x

0
, ⌧

0) in a new series with respect to fugacity,
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Figure 5.5: The canonical representation of the Hartree and Fock self-energy following
the Feynman rules shown in Fig. 5.3. The difference between the partition function
and the self-energy diagrams is that for the self-energy we cut one line as done in the
grand canonical case. Again, we have the same diagrams but with different mathematical
formulas.

are the canonical representations of self-energies. The interesting here is that the
canonical self-energies follow the same Feynman diagrams, but different mathematical
formulas of grand canonical results Eqs. (3.45), (3.46). Still, the difference is that the
canonical representation of non-interacting Green’s function is the one-particle
Schrödinger propagator.
As discussed in the final of the section about Green’s function in the grand canonical
ensemble of Chapter 3, by the Fourier-Matsubara representation of this function, we
obtain the single particle Hamiltonian. For an interacting Bose gases, this function is
shifted by the self-energies without Matsubara frequency dependence. Therefore our
work will calculate the Fourier-Matsubara representation of the self-energy. By Eq.
(3.56) follows the same transformation of G which is given by Eq. (3.47), then for ⌃, we
have that
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where the dependence of new ⌃ is over the quantum numbers and the Matsubara
frequencies, in principle. This formula depends on the classical coordinate-Euclidean
time dependence and by Eqs. (5.41) and (5.42), the Fourier representation of the Hartree
and Fock results follow the same series,

⌃(D)(k, i!m) =
1X

n=1

�
(D)
n

(k, i!m)z
n (5.46)

⌃(E)(k, i!m) =
1X

n=1

�
(E)
n

(k, i!m)z
n (5.47)

such that
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Figure 5.6: The canonical representation of the Hartree and Fock self-energy in the
Fourier space whose mathematical formulas are given by Eqs. (5.50) and (5.51). Now we
have the vertices as a function of the quantum number vector k, and the dependence of
the imaginary time disappeared because the Matsubara term is zero for the energy contri-
bution.
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and inserting Eq. (5.43) in Eq. (5.48) and Eq. (5.44) in Eq. (5.49) for both contributions,
the integral of the imaginary time difference is one because the delta function will give
this result and with the symmetry of integral of the Matsubara exponential, don’t have the
Matsubara frequency dependence. This condition shows us that the energy eigenvalues
do not depend on imaginary time contribution, and therefore, the final result is
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From Eqs. (5.50) and (5.51), we have that the self-energy is a function of quantum
numbers k. By Eq. (3.63), the correspondent eigenvalues of this Hamiltonian are given
by

E
(n)
k

= Ek � h̄�n(k) (5.52)

where
�n(k) = �

(D)
n

(k) + �
(E)
n

(k) (5.53)

with each � given by Eqs. (5.50) and (5.51). Therefore, we have a complete
representation of a single quasiparticle energy and with this formula, we can renormalize
our single-particle partition function Z̃1(n�) writing

Z̃1(n�) =
X

k

e
�n�E

(n)
k (5.54)

where E
(n)
k

given by Eq. (5.52). As an application of this formula, let’s calculate the
thermodynamic properties of interacting canonical systems with specific weak
interactions, but before we have the final recursive formula inserting Eq. (5.54) in Eq.
(5.39),
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Now, as a check, and finalizing our interacting canonical theory, let’s show that when we
include this correction in our Z1(n�), the canonical kernel becomes positive for all
temperatures and so, the final formula is consistent.

Checking the consistency of the N -particle partition function

Starting with Eq. (5.55), the idea now is to show that Z̃1(n�) is greater than
n
P

n�1
l=1 (I

(D)
l,n�l

(�) + I
(E)
l,n�l

(�))/(2h̄). Then, for this, remembering the definition of the
Hartree and Fock integrals Eqs. (5.25), (5.26), we have that these integrals depend on the
one-particle Schrödinger propagator (x,mh̄�; x

0
, 0)(0) given by Eq. (5.7). On the other

hand, Eq. (5.80) depends of the canonical self-energies �n(k) whose formulas are given
in Eqs. (5.50) and (5.51). First, let’s start with Hartree and Fock integrals, substituting
Eq. (5.7) in Eqs. (5.25) and (5.26), we have that
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Now, let’s see the Z̃1(n�), expanding the perturbative contribution:
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e
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here, inserting Eq. (5.53), after, in Eqs. (5.50) and (5.51), we obtain that
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(5.58)

Now, substituting the propagators by its general formula Eq. (5.7), we have that
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and putting Eqs. (5.59), (5.56) in our canonical kernel of equation Eq. (5.55),
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Here, we have a good point: the terms that depend on the product of  are similar in Eqs.
(5.59) and (5.56), and both are positive independently of �. Therefore, the integrals over
x, x

0 are always positive. The first line in Eq. (5.60) is the fully non-interacting partition
function also always positive, so, the only check is to see the exponential term. Clearly,
the exponential of n�(Ek + Ek

0) is positive for any �, let’s see for the last line of Eq.
(5.60),
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Therefore, we have that
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and solving the double summation,
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To see the positivity of this formula, we can suppose that Ek

0 > Ek. And is clear that Eq.
(5.63) is positive for any �, thus
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and finally, our recursive formula is consistent. Now, we can apply this approach to
study the trapped interacting Bose gases.



Figure 5.7: Representations of the possible paths for three non-interacting particles for
different overviews: a) we have all possible paths and combinations in a period h̄�, in b)
we have the same paths but now with the three periods closing the cycle of length 3h̄�
and in c) the representation in a Feynman cylinder.

5.3 Thermodynamic quantities

As done in Chapter 4 about the canonical approach of the non-interacting gases, with the
recursive formulas for Z̃1(n�) and Z

B

N
(�), we can calculate the main quantities to

describe the condensate that are the heat capacity, condensate fraction and ground-state
fluctuation. The interesting here is that the recursive formulas for the interacting systems
follow the same recursive idea of the ideal case and this condition is proved in this
section.
Remembering the discussion about the canonical probability done in 4.2.1, our idea is to
show the same probability to find n particles in the ground state given a temperature � in
the interacting case and in the non-interacting case. For this, we will use the cycle
representation of ZB

N
(�) following the procedure used in [15]. The integrals involving

the propagators correspond to closed cycles that can be represented in Fig. 5.7. In the
ideal case, each closed cycle corresponds to the single particle partition function whose
formula is

Z1(n�) ⌘
Z

d
3
x1...d

3
xn (x1, h̄�; xn, 0)

(0)
...(x2, h̄�; x1, 0)

(0)
. (5.65)

and its illustrative representation in Fig. 5.8. As we have a bosonic system, our
N -particle partition function must be proportional to the sums over all possible
permutations of Z1(n�) as discussed in [36]. When we include interactions, these
integrals have some differences due to the Hartree and Fock contributions derived in our
perturbative expansions. But we can interpret the Hartree and Fock as the modified cycle
representation and this is more clear in Fig. 5.9. In the case of interactions, Fig. 5.9 is a
modified representation of Fig. 5.8, where our Z1(�)Z1(2�) has two contributions: the
direct cycles I(D)

1,2 (�) and the exchange cycles I(E)
1,2 (�). The cycles have the same

behavior, however, for direct and exchange terms, we need the interacting wiggly line to
represent the two-body interaction. Then, to see better this discussion, let’s compare Eqs.
(5.65), (5.25) and (5.26) for three particles. First, for (5.65):

Z1(�) ⌘
Z

d
3
x1 (x1, h̄�; x1, 0)

(0)
, (5.66)



Figure 5.8: An illustrative representation of the non-interacting paths in the Feynman
cylinder - in the left figure, we have the product of two cycles, one with length 1 (in red)
and the other with length 2 (in green), in the right figure, one cycle with length 3 (in blue)
- but all figures were done for a period 3h̄�.

Z1(2�) ⌘
Z

d
3
x1 d

3
x2 (x1, h̄�; x2, 0)

(0) (x2, h̄�; x1, 0)
(0)

, (5.67)

Z1(3�) ⌘
Z

d
3
x1 d

3
x2 d

3
x3 (x1, h̄�; x3, 0)

(0) (x3, h̄�; x2, 0)
(0)(x2, h̄�; x1, 0)

(0)
. (5.68)

Now for the Hartree and Fock terms,

I
(D)
1,2 (�) = h̄�

Z
d
3
x1 d

3
x2 V

(int)(x � x
0) (x1, h̄�; x1, 0)

(0) (x2, 2h̄�; x2, 0)
(0)

, (5.69)

I
(E)
1,2 (�) = h̄�

Z
d
3
x1 d

3
x2 V

(int)(x � x
0) (x1, h̄�; x2, 0)

(0) (x2, 2h̄�; x1, 0)
(0)

. (5.70)

Looking at these integrals, we see that Eqs. (5.69) and (5.70) are quite similar to Z1(2�)
except by interacting potential. Therefore, we can interpret that the Hartree and Fock
integrals are the cycle representation of the interactions; so, the formula Eq. (5.27) is the
cycle decomposition of first-order N particle partition function, where now, the
non-interacting result is actually, its cycle formula [36]

Z
(0)B
N

(�) =
1

N !

X

P

NY

n=1

[Z1(n�)]
Cn

, (5.71)

where P represents the permutations and Cn is the cycle numbers such that
N =

P
nCn. The interacting part of Eq. (5.27) can be written in the same form as Eq.

(5.71) because the term I
(D)
l,k�l

(�) + I
(E)
l,k�l

(�) is proportional to Z1(k�), the summations
over k, l correspond to the possible permutations with respect to the non-interacting
system. We see this result writing Eq. (5.71) in a cycle length formalism,

Z
B

N
(�) =

NX

C1,...,CN

NY

n=1

1

Cn!

✓
Z1(n�)

n

◆Cn

� 1

2h̄

NX

k=2

k�1X

l=1

h
I
(D)
l,k�l

(�) + I
(E)
l,k�l

(�)
i

⇥
N�kX

C1,...,CN�k

N�kY

n=1

1

Cn!

✓
Z1(n�)

n

◆Cn

. (5.72)



Figure 5.9: The Hartree and Fock integrals in their respective Feynman cylinder repre-
sentations - the pictorial form is the same as the one shown in Fig. 5.8 but now we have
the interacting contribution given by wiggly line connecting the two cycles.

This formula can be written as

Z
B

N
(�) =

NX

C1,...,CN

NY

n=1

1

Cn!

✓
Z1(n�)

n

◆Cn

, (5.73)

where

Z1(n�) = Z1(n�)

"
1� 1

2h̄

NX

k=2

k�1X

l=1

⇣
I
(D)
l,k�l

(�) + I
(E)
l,k�l

(�)
⌘#

(5.74)

is a new single particle partition function including the corrections due to interactions.
So, we have the same structure of founded in [36]. This means that we have the same
cycle representation of the moments of the ground state canonical distribution, and
therefore, we have the same formula of PC(n, �) given by Eq. (4.30), but now with
Z

B

N
(�) given by Eq. (5.55). So, the condensate properties and their moments are given

by Eqs. (4.35) and (4.39).

5.4 Results for trapped Bose gases with a contact

interaction

Now, we have a complete theory of the canonical ensemble for an interacting system. To
illustrate the application of this theory, we studied the dilute Bose gas in many trapped
confinements: inside a box and in a harmonic trap, in general, the dilute interaction is
represented by contact interacting potential given by [27]

V
(int)(x � x

0) = g �(x � x
0), (5.75)

where g is the coupling constant given by

g =
4⇡h̄2

as

M
. (5.76)

Here, we must calculate the Hartree and Fock integrals by Eqs. (5.25) and (5.26) joint
with the self-energies contributions in one-particle partition function Z̃1(n�) given by



Eq. (5.54). Finally, for each situation, we have to compute Eq. (5.39) using these
previous quantities, but to calculate it we need the Schrödinger propagator
(x, nh̄�|x0

, 0)(0). However, for Eq. (5.75), the Hartree and Fock contributions are equal.
So, the equations which will be used in this section are

I
(D,E)
l,n�l

(�) = gh̄�

Z
d
3
x (x, lh̄�; x, 0)(0) (x, (n� l)h̄�; x, 0)(0) , (5.77)

and
�
(D,E)
n

(k) = �g

h̄

Z
d
3
x k(x) 

⇤
k
(x) (x, nh̄�; x, 0)(0). (5.78)

In the case of a Bose gas with contact interaction, Eq. (5.53) becomes

�n(k) = 2�(D,E)
n

(k), (5.79)

and
E

(n)
k

= Ek � 2 h̄ �(D,E)
n

(k). (5.80)

Therefore, our renormalized single-particle partition function Z̃1(n�) is written with Eq.
(5.80) in Eq. (5.54). So, the fully N -particle partition function Z

B

N
(�) given by Eq.

(5.39), now can be written as

Z
B

N
(�) =

1

N

NX

n=1

"
Z̃1(n�)�

n

h̄

n�1X

l=1

I
(D,E)
l,n�l

(�)

#
Z

B

N�n
(�), (5.81)

and it is the formula that will be calculated for two systems: the dilute Bose gas in a
finite box and the dilute gas in a harmonic trap. The last quantity, the renormalized
single-particle partition function can be written as

Z̃1(n�) =
X

k

e
�n�Ek

�
1� 2nh̄��(D,E)

n
(k)
�
. (5.82)

At the end of the calculations, we will put the results in terms of the dimensionless
temperature ⌧ equivalent for each system. The numerical procedure is the same as done
in the non-interacting case. The plots were done using the code shown in Appendix F.

5.4.1 Dilute Bose gas in a finite box

Following section 2.2 of Chapter 2, we have the expression of the wave function  k(x)
as a product of one-dimensional results Eqs. (2.105) and (2.109). The equation (2.109)
can be written in other representations,

 kj(xj) =

r
2

L
sin

✓
⇡kjxj

L

◆
(5.83)

and therefore, we can calculate the one-particle propagator for this system which is given
by Eq. (5.7),

(x, kh̄�; x
0
, 0)(0) =

3Y

j=1

�
xj, kh̄�; x

0
j
, 0
�(0)

, (5.84)



where
�
xj, kh̄�; x

0
j
, 0
�(0)

=
1X

kj=1

| kj(xj)|2 e�k�Ekj , (5.85)

and

Ekj =
h̄
2
⇡
2
k
2
j

2ML2
. (5.86)

So inserting Eqs. (5.86), (5.83) in Eq. (5.85) we have that

�
xj, kh̄�; x

0
j
, 0
�(0)

=
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kj=1

2

L
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✓
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e
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2
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2
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2
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2
(5.87)

but
sinh2(x) =

1

2
(1� cosh(2x)), (5.88)

then Eq. (5.87) becomes

�
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0
j
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�(0)

=
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1X

kj=1


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✓
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e
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2
⇡
2
k
2
j /2ML

2
(5.89)

and now we have the propagator in one dimension. By Eq. (5.77 we can calculate them
using a classical decomposition which follows Eq. (5.84),

I
(D,E)
l,n�l

(�) = gh̄�

3Y

j=1

Xl,n�l(�) (5.90)

where

Xl,n�l(�) =

Z
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(0)
. (5.91)

Inserting Eq. (5.89) in Eq. (5.91),
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Our problem now is to calculate the last integral over xj . For this, let us consider the
cosine integral:

Z
L

0

dx cos

✓
2⇡kjxj

L

◆
=

L

2⇡kj
sin(2⇡kj) = L�kj ,0 , (5.94)



where here we used the Kronecker delta to resume the full possible results. Then
applying this idea in our integral in Eq. (5.93), we have that
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and now inserting Eq. (5.95) in Eq. (5.93), we have that
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Finally, substituting Eq. (5.96) in Eq. (5.90), we have that the Hartree-Fock integral is
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(5.97)
The last quantity is the self-energy given by Eq. (5.78), using the same transformation
which was used in Eq. (5.77). So,

�
(D,E)
n

(k) = �g

h̄

3Y

j=1

�
(D,E)
n

(kj), (5.98)

where �(D,E)
n (kj) is the one-dimensional result following Eq. (5.78),

�
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(kj) ⌘
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⇤
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(0)
. (5.99)

As we see, the self-energy contribution results depend on quantum numbers nj and
particle number n. Then, in this calculation, it is more convenient to represent the wave
function in terms of the exponential as done in Eq. (2.109), so using Eqs. (2.109) and
(5.89), we obtain
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The result of this last integral is
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So inserting Eq. (5.101) in Eq.(5.100), we have
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and therefore, with Eq. (4.61) and Eq. (5.98)
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With the complete formulas, we can calculate the thermodynamic quantities for this
system following the recursive formulas for the non-interacting case, but before we shall
put the Hartree-Fock integrals and the self-energy as a function of the dimensionless
temperature ⌧ which in the box case is given by Eq. (4.57). To write Z̃1(n�) and
I
(D,E)
l,n�l

(�) from Eqs. (5.56), (5.103) and (5.97) we know that
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where here was used that g is given by Eq. (5.76) and ⌧ by Eq. (4.57). Therefore,
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and
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So, we can write the renormalized one-particle partition function Ẑ1(n�) using Eqs.
(5.56) and (5.106),
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where Ek is given by Eq. (4.59). Finally, with this equation and Eq. (5.105), we have the
canonical formula,
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(5.108)
With this final formula, we can plot the thermodynamic quantities for this system for
some values of the gas parameter asn1/3. To illustrate the behavior for many particles,
we fixed the gas parameter in asn

1/3 = 0.1. Using the same formulas of Chapter 4: Eqs.
(4.42), (4.35) and (4.39). First, in figure 5.10, we have the condensed fraction for various
numbers of particles, 10, 100, 1000 considering the gas parameter equal to 0.1; after we
have the heat capacity plot for the same N ’s and interacting parameter in 5.11.



Figure 5.10: Condensed fraction for 10, 100, 1000 particles in a weakly interacting finite
box with gas parameter given by asn

1/3 = 0.1.

5.4.2 Dilute Bose gas in a harmonic trap

From Eqs. (5.77) and (5.78), we need the propagators of the three-dimensional harmonic
oscillator. Then, for to compute the imaginary-time evolution amplitude (x, kh̄�|x, 0)(0)
we start from the 1D path integral representation

(x, kh̄�; x0
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Z
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In Appendix D we present the details of calculations of the formula Eq. (5.109), and it
final result is
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�
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(5.110)
Generalizing Eq. (5.110) for three dimensions, and taking for simplicity



Figure 5.11: Heat capacity for 10, 100, 1000 particles in a weakly interacting finite box
with gas parameter given by asn

1/3 = 0.1.

! = !x = !y = !z, we obtain the one-particle harmonic propagator as
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(5.111)
Now that we calculated the harmonic one-particle propagator, we can use the canonical
formalism developed in the previous section to compute Eq. (5.77). Substituting Eq.
(5.111) in Eq. (5.75), we have that
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Figure 5.12: Ground state fluctuation for 10, 100, 1000 particles in a weakly interacting
finite box with gas parameter given by asn

1/3 = 0.1.

and solving the Gaussian integral we get
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But the hyperbolic trigonometric expression can be written as
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and inserting Eq. (2.56) in Eq. (2.55) gives
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Equation (5.115) is complicated, but can be simplified with a non-interacting partition
function denoted here by Z

(0)
1 (n�). Let’s see how this is possible. The one-particle

partition function Z
(0)
1 (n�) has another representation, that is by integral over diagonal

terms in non-interacting time-evolution propagator (x, t; x
0
, 0)(0):
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According to Eq. (5.110), we have for Eq. (5.116):
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and hence,

Z1(n�) =
1

8 sinh3
�
n�h̄!

2

� . (5.118)

By equation (2.2.1), we see that the hyperbolic sines in Eq. (2.70) can be written in
terms of Z(0)
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Therefore, equation (5.115) is equal to
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Now the next step is to calculate the self-energies contributions given by Eq. (5.78). We
know that the quantum harmonic oscillator can be solved by two possibilities: using the
matrix formula as made in non-interacting calculation. But here, we need of analytical
formula of the wave functions because Eq. (5.78) is an integral. So, the
three-dimensional wave function is given by
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where Hn(x) is the Hermite polynomial. The quantum number vector k is defined as
(k1, k2, k3). Due to the complicated formula of this wave function, is more convenient to
write Eq. (5.78) as a product following Eqs. (5.98) and (5.98). So, we will solve Eq.
(5.99) and after include this result in Eq. (5.98). Using the one-dimensional results of



Eqs. (5.111) and (5.121), (5.78) is written as an equation that depends on the
Hermite-Gauss integral, then
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however,
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therefore,
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Here our problem is the last integral in Eq. (5.125) because it is a complicated integral.
In Appendix D we have the details of the solution to this integral. For simplicity, let us
denote the integral in Eq. (5.125) as X(n, kj),
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The Hermite-Gauss integral can be given by [46]
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where (x)⌫ is the Pochhammer symbol [46, 47] defined as
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. (5.128)



Then, applying Eq. (5.127) in Eq. (5.126), we have
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where
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The Gamma function in Eq. (5.129) [47] is
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using Eq. (5.131) in Eq. (5.129),
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Then with Eq. (5.132), we can calculate Eq. (5.125) and we obtain that
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Now the next step is to substitute the values of a2 in terms of n-dependence. As a2 is
given by Eq. (5.130), then
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Therefore putting Eqs. (5.135), (5.134) in Eq. (5.133), we have a complete formula of
one-dimensional self-energy,
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The final result of three-dimensional self-energy is given by Eq. (5.78), that is,
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This formula can be simplified by developing the Pochhammmer symbols. As the
numbers are integers, then the gamma function will reduce to factorials. First, we see that
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The other Pochhammer symbol (�kj)⌫ is
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Another simplification is over the exponentials,
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and therefore inserting Eqs. (5.141), (5.140), (5.139), (5.138) in Eq. (5.137), we obtain
that
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that is the self-energy contribution of a harmonic trap with contact interaction. Now, we
have the complete formulas to build the N -particle partition function Z

B

N
(�). The same

procedure used in the finite box case will be done here, writing Eqs. (5.142) and (5.120)
in a function of ⌧ using Eqs. (5.76) and (4.68). So, the constant is given by
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where l is the harmonic oscillator length,

l ⌘
r

h̄

M!
. (5.144)

Then with this representation, Eq. (5.142) becomes
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and therefore, Eq. (5.56) now is given by
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Figure 5.13: Condensed fraction for 10, 100, 1000 particles in a weakly interacting har-
monic trap with gas parameter given by asn

1/3 = 0.1.

where k is the quantum number vectors and Ek given by Eq. (2.68). Then, the fully
Z
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(�) given by Eq. (5.55) for a three-dimensional harmonic trap is now,
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Now with the complete canonical scheme, we can compute the thermal properties of this
system following the same parameters and different values of N as done in the finite box
case. Then, by Eq. (4.35) we have the condensed fraction shown in Fig. 5.13, the heat
capacity Eq. (4.6) in Fig. ; and finally, the comparison for the condensed fraction for 10
particles between ideal and interacting case as shown in 5.16.

5.5 Discussion of results

In the same form that was done in the previous chapter, we can do a table with the
critical temperatures calculated by two ensembles to compare them. As seen in Chapter
3, the interacting corrections do not depend on the number of particles Eq. (3.74), its
value is fixed and depends on scattering length. Therefore, now we are interested in
comparing the values with and without interaction calculated in the canonical ensemble



Figure 5.14: Heat capacity for 10, 100, 1000 particles in a weakly interacting harmonic
trap with gas parameter given by asn

1/3 = 0.1.

and after, with the grand canonical preview. We did the plots for the heat capacity for
1000 particles, to check the consistency of our calculations for the harmonic trap and
finite box given by Fig. 5.16 and Fig. 5.17. Each plot was done for two cases: the black
line is the non-interacting case and the red line, is the interacting case done for a gas
parameter given by asn

1/3 = 0.1.
Here, we have the behavior of the traps due to interaction. For the harmonic trap, the
interacting critical temperature is less than the non-interacting result, following the grand
canonical preview. Another good point is the maximum point of the heat capacity in the
critical point and by our grand canonical analysis, the prevision is that this maximum is
greater than its ideal correspondent, and this behavior is seen in Fig. 5.16.
Of the same form as done in the non-interacting case, we have a table with the critical
temperatures for each value of N , first for harmonic trap in Table 4.2 and second, for box
trap in Table 5.1, but now the difference is that due to fact of the interacting shift do not
depend of the number of particles, we compare the canonical non-interacting result given
by Eq. () with the canonical interacting result Eq. ().

The good point of this weakly interacting canonical theory is that it has results agreeing
with the grand canonical previews developed in Chapter 3. But when the number of
particles increases, both calculations are similar. To see the difference between the



Figure 5.15: Ground state fluctuation for 10, 100, 1000 particles in a weakly interacting
harmonic trap with gas parameter given by asn

1/3 = 0.1.

N Canonical
Interacting

Canonical Non-
Interacting

10 1.82 1.82
100 1.38 1.37
1000 1.24 1.20

Table 5.1: Values of critical temperatures for a trapped Bose gas in a three-dimensional
finite box calculated by two ensembles: canonical through Eq. (4.43) and grand canonical
through Eq. (2.141).

N Canonical
Interacting

Canonical Non-
Interacting

10 0.65 0.72
100 0.72 0.78
1000 0.85 0.89

Table 5.2: Values of critical temperatures for a trapped Bose gas in a three-dimensional
isotropic harmonic trap calculated by two ensembles: canonical through Eq. (4.43) and
grand canonical through Eq. (2.69).



Figure 5.16: Heat capacity for 1000 particles confined in a harmonic trap for two condi-
tions: first, the black line representing the non-interacting case asn

1/3 = 0 and in red, the
weakly interacting situation with gas parameter given by asn

1/3 = 0.1.

interacting and non-interacting canonical theory, we have the plots for the heat capacity,
condensate fraction, and ground-state fluctuation for each system, finite box, and
harmonic trap. The plots are in the Figs. 5.16, 5.17, 5.19, 5.18, 5.20 and 5.21. Clearly,
the canonical interacting plots follow the grand canonical previews showing consistency
with the previous theory developed in Chapter 3.



Figure 5.17: Heat capacity for 1000 particles confined in a finite box for two conditions:
first, the black line representing the non-interacting case asn1/3 = 0 and in red, the weakly
interacting situation with gas parameter given by asn

1/3 = 0.1.



Figure 5.18: Condensed fraction for 1000 particles confined in a box trap for two condi-
tions: first, the black line representing the non-interacting case asn

1/3 = 0 and in red, the
weakly interacting situation with gas parameter given by asn

1/3 = 0.1.



Figure 5.19: Condensed fraction for 1000 particles confined in a three-dimensional
isotropic harmonic trap for two conditions: first, the black line representing the non-
interacting case asn1/3 = 0 and in red, the weakly interacting situation with gas parameter
given by asn

1/3 = 0.1.



Figure 5.20: Ground state fluctuation for 1000 particles confined in a box trap for two
conditions: first, the black line representing the non-interacting case asn

1/3 = 0 and in
red, the weakly interacting situation with gas parameter given by asn

1/3 = 0.1.



Figure 5.21: Ground state fluctuation for 1000 particles confined in a three-dimensional
isotropic harmonic trap for two conditions: first, the black line representing the non-
interacting case asn1/3 = 0 and in red, the weakly interacting situation with gas parameter
given by asn

1/3 = 0.1.



Chapter 6

Conclusions

This thesis studied the thermodynamics of the Bose gases using two different statistical
ensembles, the grand canonical, and the canonical ensemble for two situations: the
non-interacting and interacting case. The main idea was to describe the results for each
ensemble and to check the validity of these in the thermodynamic limit when we have a
large number of particles and we have one equivalence between them. We know that in
the thermodynamic limit when the number of particles is very large, all statistical
ensembles are equivalent.

By chapters 2 and 3, we saw that the inclusion of the interactions changes the critical
temperature Tc. While in the finite box, the temperature increases, for the harmonic trap
it decreases. The canonical results for these traps follow this idea as seen in Figs. 5.17
and 5.16 in the case of condensed fraction, clearly the plots follow the same grand
canonical standard. The interesting here is that the critical temperatures have two
corrections: first, the finite-size correction that is due to the new thermodynamic limit for
confined Bose gas [13], and the perturbative correction due to interactions. The first shift
depends on the number of particles when N is large, we have a small correction
following the classical thermodynamic limit, and the second shift depends on the power
interaction joined with the non-interacting critical temperature T

(0)
c . For the heat

capacity, in the harmonic trap, the maximum point is greater than the non-interacting
result while in the finite box is less than the non-interacting value. This behavior is seen
in the canonical approach agreeing with our grand canonical one.

In Chapters 4 and 5, we developed the canonical theory, first with the classical
non-interacting gas and later, with interactions. The results qualitatively agree with the
grand canonical ones; this situation is described, first, in the ideal case when the plots for
large N agree with the grand canonical ones with the finite-size correction as done in
Figs. , while for interacting cases, we checked the critical temperatures with the grand
canonical results. Again, we have that the canonical results agree with the grand
canonical ones - and the same analysis method was employed for these two cases: with
and without interaction. In Chapter 5 we developed the weakly interacting canonical
theory where the Feynman diagrams are the same as the grand canonical theory but with
different Feynman rules - and this is important to do a canonical perturbation theory for
any order. We corrected the ground state due to interactions and could correctly obtain
the heat capacity for low temperatures, and old problem finally solved.
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Appendix A

Matsubara sums

The general calculations in the grand canonical ensemble use the summations over
Matsubara frequencies called the Matsubara sums. As the dependence of these formulas
on !m is complex, we shall use the techniques of complex calculus. Here let us use the
residues theorem as made in [33], [47] joined with the classical techniques to solve the
complex integrations.

Then, let us consider a general Matsubara sum

S ⌘
1X

m=�1
F (!m) (A.1)

where F (!m) is any function of !m ⌘ 2m⇡/� (bosons). The idea is to write this sum as
a complex integral and, in fact, it is possible using an auxiliary function g(z) that has a
form of the Bose-Einstein distribution,

g(z) ⌘ �
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(A.2)

and the interesting here is that g(z) has a simple pole for z = ih̄!m because

e
�z = e

i�h̄!m = e
2i⇡m = 1 (A.3)

and the denominator in (A.2) diverges in this case. We know that the complex integral
over a contour can be calculated using the residues theorem [47]
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with pole order k. Then considering a new function h(z) such that h(z) = F (�iz) g(z)
and applying (A.4), we have that
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Figure A.1: Region of integration for complex logarithm, we need to exclude the real
line such that z > Ek and here, we will have two contributions: positive branch z

+ and
negative branch z

�.

we see that our function has the same pole of g(z) and this pole there is for
m 2 (�1,1) and from (A.5),
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and this last limit is equal to 1. Then now, the Matsubara sum can be written as an
integral, I

C

F (�iz) g(z) dz = 2⇡i�
1X

m=�1
F (!m). (A.8)

As an example, let’s calculate a classical Matsubara sum that appears in the calculation
of the grand partition function ⌅ in Chapter 2. Then,
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where
F (�iz) = ln(z � Ek) (A.10)

and g(z) given by (A.2). But we know that there is the logarithm ln(x) when x > 1, so
we have that F (�iz) has a branch cut along z 2 (�1, Ek) implying on z > Ek and
therefore, we can use the contour C as a circumference given by Fig. A.1 to make the
complex integral. Then (A.9) for (A.10) becomes
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where
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Each integral can be solved using the partial integration and here we see that g(z) can be
written as a differential form [33]
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As example, solving (A.13) with (A.15), we will obtain a other integral form of I1,
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So, with (A.17), (A.16) in (A.11),
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and finally, using the Dirac identity for (A.12)-terms,
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Appendix B

Robinson’s formula

The polylogarithm function ⇣a(z), in general, has a series representation,

⇣a(e
x) =
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e
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(B.1)

where our interest is to calculate the polylogarithm for an exponential function because
its result appears in the grand canonical calculations. Then starting from (B.1), let us use
a trick following [44] adding 0 in (B.1),
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but here, we have a finesse: the first integral can be solved by the gamma function, and
the rest, can be made by expanding the exponential in a Taylor series. Then, let’s do the
first part. Remembering the definition of the gamma function
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and doing a transformation of variables, nx ⌘ �t, we have that
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where the integral over t is equal to �(1� a) from (B.3). Therefore,
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The second part is to expand the exponential in a Taylor series,

e
nx =

1X

k=0

(nx)k

k!
(B.6)
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and inserting (B.6) in (B.5), we have that

⇣a(e
x) = (�x)a�1 �(1� a) +

1X

k=0

x
k

k!

 1X

n=1

�
Z 1

0

dn

!
1

na�k
. (B.7)

Here, the summation over n is equal to the Riemann zeta function ⇣(a� k) but the
integral is zero because a < 1. Therefore, we have the called Robinson’s formula,

⇣a(e
x) = (�x)a�1 �(1� a) +

1X

k=0

x
k

k!
⇣(a� k). (B.8)

This formula is valid for a < 1, but for a = 1, we need to do a new calculation.



Appendix C

Fourier-Matsubara transform of the

non-interacting Green’s function

Let’s make the details of these calculations for the non-interacting case, By [4, 15, 39, 40]
we know that

G
(0)
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�x

2
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2
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0
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=
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(C.1)
Expanding the hyperbolic sine in the denominator of (3.55), we have that
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but this last result is equal to the geometric series,

1
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then (C.2) becomes
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where H(p,X) is the grand canonical Hamiltonian,

H(p,X) =
p
2

2M
+ V (X)� µ̂ ⌘ p

2

2M
+ V(X, µ̂). (C.5)

Inserting (C.5) in (C.4), we have that
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We know that the complete Fourier-Matsubara transform is
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then inserting (C.6) in (C.7),
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The integrals over relative coordinates and momentum form a pair of Fourier transform
and inverse Fourier transform. Therefore, this last result is equal to the same exponential
without the Fourier kernel, in other words,
Z

d�x e
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Putting (C.10) in (C.9), we obtain that

G
(0)(p,!m;X) =

1X

n=0

e
�n�(p2

/2M+V)
Z

h̄�

0

d�⌧ ei!m�⌧
✓(�⌧) e�⌧(p

2
/2M+V)/h̄

, (C.11)

making the summation over n we have the geometric series,
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the integral over �⌧ ,
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and looking that the exponential of the Matsubara frequency is 1 because

!m =
2⇡m

h̄�
) e

i�h̄!m = 1; (C.14)

therefore, by putting (C.12), (C.13) and (C.14) in (C.11), we have the complete formula
of the Fourier-Matsubara representation of G(0),

G
(0)(p,!m;X) =

h̄

�ih̄!m + p2

2M + V (X)� µ̂
. (C.15)



Appendix D

Imaginary time propagator for a

quantum harmonic oscillator

In the section about dilute Bose gas in a harmonic trap, we need the one-particle
Schrödinger propagator (x, kh̄�|x0

, 0)(0). In particular, for this system, the exact formula
coincides with the semiclassical approximation, then let’s use the Feynman
representation for the propagator. To compute the imaginary-time evolution amplitude
(x, kh̄�|x, 0)(0) we must use the path integral representation

(x, kh̄�; x0
, 0)(0) =

Z
x(kh̄�)=x
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Dx exp
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, (D.1)

where the ẋ represents the derivative with respect to the imaginary time ⌧ . The solution
of this path integral is obtained using the semiclassical approximation (or Van
Vleck-Pauli-Morette formula) in real time:

Z
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where S[xcl] is the classical action for quantum harmonic oscillator whose form is given
by

S[xcl] =
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dt0
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and xcl is obtained through Euler-Lagrange equation for it classical path with xcl(0) = x
0

and xcl(t) = x, i.e.,
@L
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� d
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✓
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Solving (D.4) with boundary conditions cited by the previous paragraph, we obtain

xcl(t0) = x
0 cos(!t0) +
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�
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and putting this path in (D.3),
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Finally, including this result in (D.2) remembering that the determinant of function
depends of its eigenvalues, we obtain1

(x, t; x0
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going back to imaginary time with ⌧ = it, we finally get
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1Alternative derivations can be found in Ref. [48].



Appendix E

Integrals with Hermite polynomials

The calculation of the Hermite-Gauss integrals is a good challenge to solve because we
have the classical Gaussian function joined the Hermite functions, that are one class of
special functions. There are many possible integrals to calculate including these two
functions, however in this dissertation, the purpose is to find the quadratic dependence in
the Hermite polynomials. Therefore, we need to solve

Z 1

�1
dxHm(x)Hn(x) e

�a
2
x
2 ⌘ I(m,n; a) . (E.1)

The first step for this is to represent the Hermite polynomial from generating function
g(x, t) [47, 49] as
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then we can represent the product of two Hermite polynomials following
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but to compare the all sides of (E.3), we shall expand the left side in a power series,
before we showed that

e
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and here, the factor (s+ t)p can be written using the binomial expansion,
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is the combinatory. Therefore,
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doing the transformations p ! m+ n� 2⌫ and j ! m� ⌫, we have
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and finally,
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Our purpose is to solve (E.1). With (E.9), we can represent now our integral in a function
of one Hermite polynomial,
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This form, we have

I(n,m; a) =
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However this last integral can be calculated by [46]
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putting x
0 ! xa, y ! 1/a and m+ n� 2⌫ ! 2(↵� ⌫) ⌘ 2n0, (E.11) becomes
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however, this Gamma function and the other factorials can be written as Pochhammer
symbols (x)n defined in (5.128). Here, let’s remember that as m,n, ⌫ are integer
numbers, the factorials have a relationship with the Gamma functions and therefore, with
the Pochhammer symbols. Then, with this approach, we can write (E.13) in an elegant
form, that is our final result,
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dxHm(x)Hn(x) e

�a
2
x
2
=

2m+n

am+n+1
(1�a

2)
m+n

2 �

✓
m+ n+ 1

2

◆ 1X

⌫=0

(�m)⌫(�n)⌫
⌫!(1�m�n

2 )⌫

✓
a
2

2(a2 � 1)

◆⌫
.

(E.14)



Appendix F

Code for numerical calculation of the

canonical approach

In this section, we have the code used in our interacting canonical calculations. The
structure of the program to calculate the N particle partition function is the same for any
trap, but the kernel is different depending on the trap. Here, we show the code for the
heat capacity calculated for a weakly interacting Bose gas confined in a
three-dimensional harmonic trap; the interesting here is that the non-interacting case is
obtained when we put as = 0, then we have a general code for these two possibilities.
Then, the idea to do this recursive N particle partition function is, first, to calculate the
single particle partition function Z̃1(n�), that in the harmonic case is given by Eq.
(5.146); after, to write the N particle function Z

B

N
(�) complementing with the fully

perturbative result in our single-particle canonical kernel, and finally, with a recursive
scheme to do a complete N particle partition function using one auxiliar function ⌘k(�)
of form

Z
B

N
(�) ⌘

NY

k=1

⌘k(�) , (F.1)

where ⌘k(�) is given by [36]
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1
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kX

m=2
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, (F.2)

with Z1(n�) is the reduced single particle partition function defined as

Z1(n�) ⌘ e
n�EG

"
Z̃1(n�)�
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2h̄

n�1X
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⇣
I
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l,n�l

(�) + I
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(�)
⌘#

. (F.3)

The Hartree and Fock integrals, the renormalized Z1(n�) are given by Eqs. (5.120) and
(5.146). Finally, to obtain the heat capacity by Eq. (4.42).
Below, we have the code in C++ utilized in our calculations, where some lines were
divided into two or three lines to fit on the page.

# inc lude < s t d i o . h>
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# inc lude <math . h>
# inc lude < s t d l i b . h>

c o n s t i n t N = 1000 ;
c o n s t double eps = 0 . 0 1 ;
c o n s t double z e t a = 1 .0201 ;
c o n s t double Pi = 3 .14159 ;
c o n s t double c = pow (N/ z e t a , 0 . 3 3 3 3 3 ) ;

i n t main ( )
{
double t , sd ;
double Soma ( double ) ;
FILE * f p t r ;

f p t r = fopen ( " Kond1000kast −mat . d a t " , "w" ) ;

f o r ( t = 0 . 0 1 ; t <= 2 . 0 0 ; t = t + eps )
{

sd = t * ( ( t + 0 . 0 0 1 ) * Soma ( t +0.001) −2* t *Soma ( t ) + ( t − 0 . 0 0 1 ) *
Soma ( t − 0 . 0 0 1 ) ) / ( 0 . 0 0 1 * 0 . 0 0 1 ) ;
f p r i n t f ( f p t r , " %7.4 f %7.4 f \ n " , t , sd /N ) ;

}
f c l o s e ( f p t r ) ;

}

double Soma ( double t )
{ i n t k ,m, l , n , f a c t ( i n t n ) ;
double t au , f a k t , expo , sum , prod , N0 ;
double Z1 [N+1 ] , e t a [N+1 ] , Z01 [N+1 ] , f [N+1] ;

t a u = t * c ;
f o r ( k = 1 ; k <= N ; k++ )

{
f [ k ] = 1 / ( pow(1 − exp ( − k / t a u ) , 3 ) ) ;

}

t a u = t * c ;
f o r ( k = 1 ; k <= N ; k ++)

f o r ( m = 0 ; m <= 30 ; m++)
f o r ( n = 0 ; n <= m ; n ++)

{ f a k t = 0 . 0 ;
{ expo = exp ( − k*m/ t a u )* f a c t ( 2 * (m−n ) ) *

pow ( − 0 . 2 5 ,m−n ) / ( f a c t ( n )* pow ( f a c t (m−n ) , 3 ) ) ; f a k t = f a k t + expo



*pow ( ( exp ( k / t a u ) − 1 ) / exp ( k / t a u ) ,m−n ) ; }
Z01 [ k ] = f [ k ] − 0 . 7 9 * ( 0 . 2 / pow ( 1 0 0 0 , 0 . 3 3 3 3 3 3 3 ) ) * ( k / t a u )

* ( f a k t * f a k t * f a k t −1)*pow ( exp ( k / t a u ) − exp ( − k / t a u ) , − 1 . 5 ) ;
}

t a u = t * c ;
f o r ( k = 1 ; k <= N ; k ++)

{ f a k t = 0 . 0 ;
f o r ( l = 1 ; l <= k−1 ; l ++ )

{ sum = f [ l ]* f [ k− l ] * f [ k ] ; f a k t = f a k t + pow ( sum , 0 . 5 ) ; }
Z1 [ k ] = Z01 [ k ]* pow (1 + 0 . 7 9 * ( 0 . 1 / pow ( 1 0 0 0 , 0 . 3 3 3 3 3 3 3 ) )
* ( k / ( Z01 [ k ]* t a u ) ) * f a k t , −1 ) ;

}

f o r ( k = 1 ; k <= N ; k++ )
{ sum = 0 . 0 ; prod = 1 . 0 ;

f o r ( m = 2 ; m <= k ; m++ )
{ prod = prod / e t a [ k+1−m] ; sum = sum + Z1 [m]* prod ; }

e t a [ k ] = ( Z1 [ 1 ] + sum ) / k ;
}

f o r ( k = 1 ; k <= N ; k++ )
{ N0 = N0 + l o g ( e t a [ k ] ) ; }

re turn N0 ;
}

i n t f a c t ( i n t n ) {
i f ( n > 1)

re turn exp ( l o g ( n ) + l o g ( f a c t o r i a l ( n − 1 ) ) ) ;
e l s e

re turn 1 ;
}
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