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“It is a wonderful intellectual achievement, to have traced such profoundly
consequential properties of matter to a basic aspect of identity — that is,
indistinguishability — and the topology of motion in space-time.”

— Franck Wilczek, regarding anyonic particles.

“I don’t need beads and wires
Don’t need no abacus
Don’t need no Pascaline
Don’t need no Babbage ’ngine
I got some news for Google
Don’t even need you too
(...)
Quantum computer, Ain’t no loser”

— Wildebeast, “Quantum Computer”
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Abstract

Research into the realization of Majorana quasiparticles has been driven by the relevance
of quantum computing and topological materials. Initially, efforts were focused on nanowire
realization of Majoranas, but experimental limitations and skepticism led to investigations into
two-dimensional setups such as superconducting vortices [1]–[7]. In this study, we explore
the potential and constraints of superconducting vortices as hosts of topological quasiparticles.
We examine how scalar impurities can cause false-positive signatures of Majoranas in fully
trivial superconductivity. Our findings show that scalar impurities can modify the Caroli-de
Gennes-Matricon (CdGM) spectrum, resulting in spectral properties similar to Majorana Zero
Modes (MZMs). Local scalar perturbations lower the energy of CdGM states and suppress
their total Bardeen-Cooper-Schrieffer (BCS) charge, leading to impurity-driven zero energy
states that cannot be distinguished from topological MZMs using local spectroscopic techniques.
Additionally, extrinsic broadening of the particle-hole symmetric levels results in vanishing
non-local transport signals, making it appear that the BCS charge is zero. These findings
have implications for experimental works that rely on finite energy CdGM states [8]. We also
investigate the potential of hybrid systems of semiconductors and trivial superconductors as
substitutes for intrinsic topological superconductivity, which may provide a more robust way
of retaining topological character [9], [10]. Whereas the p−wave order parameter’s complex
phase places limitations on the number of vortices that can be introduced, the scalar s−wave
order parameter lacks this constraint. This discrepancy is significant because, despite having
an equivalent total number of modes, the edge mode is not suitable for braiding. Furthermore,
we remark that unequivocally topological zero energy mode in the topological region is not
guaranteed for four vortices and is dependent on a suitably large scattering space, even in the
approximation of minimal radii.

Keywords: Computational Physics, Quantum System, Condensed Matter Physics.
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Resumo

A pesquisa sobre a realização de quasipartículas de Majorana foi impulsionada pela relevância
da computação quântica e materiais topológicos. Inicialmente, os esforços foram focados na
realização de nanofios de Majoranas, mas as limitações experimentais e o ceticismo levaram a
investigações sobre configurações bidimensionais, como vórtices supercondutores [1]–[7]. Neste
estudo, exploramos o potencial e as restrições dos vórtices supercondutores como hospedeiros de
quasipartículas topológicas. Examinamos como impurezas escalares podem causar assinaturas
falso-positivas de Majoranas em supercondutividade totalmente trivial. Nossos resultados
mostram que as impurezas escalares podem modificar o espectro de Caroli-de Gennes-Matricon
(CdGM), resultando em propriedades espectrais semelhantes aos Majoranas de energia zero. As
perturbações escalares locais diminuem a energia dos estados CdGM e suprimem sua carga de
Bardeen-Cooper-Schrieffer (BCS) total, levando a estados de energia zero movidos por impurezas
que não podem ser distinguidos dos MZMs topológicos usando técnicas espectroscópicas
locais. Além disso, o alargamento extrínseco dos níveis de simetria partícula-buraco resulta no
desaparecimento de sinais de transporte não locais, fazendo parecer que a carga BCS é zero.
Essas descobertas têm implicações para trabalhos experimentais que dependem de estados CdGM
de energia finita [8]. Também investigamos o potencial de sistemas híbridos de semicondutores
e supercondutores triviais como substitutos para a supercondutividade topológica intrínseca, o
que pode fornecer uma maneira mais robusta de manter o caráter topológico [9], [10]. Enquanto
a fase complexa do parâmetro de ordem p−wave coloca limitações no número de vórtices que
podem ser introduzidos, o parâmetro de ordem escalar s−wave não possui essa restrição. Essa
discrepância é significativa porque, apesar de ter um número total de modos equivalente, o modo
de borda não é adequado para trançar. Além disso, observamos que o modo de energia zero
inequivocamente topológico na região topológica não é garantido para quatro vórtices e depende
de um espaço de espalhamento adequadamente grande, mesmo na aproximação de raio mínimo.

Keywords: Física Computacional, Sistema Quântico, Física da Matéria Condensada.
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Chapter 1

Introduction

In 2016, the Nobel prize in Physics was awarded to D. Thouless, F. Haldane and J. Kosterlitz

for their studies on the unlikely marriage of an abstract branch of mathematics, Algebraic

Topology, and a tangible branch of Physics, of materials [11]–[14]. While Differential Topology

was already an acquaintance of researchers in General Relativity, with the concept of manifolds,

Algebraic Topology seemed to be out-of-place in Physics for a long time. The field started

to show its relevance with the establishment of Topological Quantum Field Theory [15], [16].

Currently, popular research topics in condensed matter make use of topological toolbox, such as

graphene physics, spin liquids and quantum error correction [17]–[19].

Truly remarkable physical phenomena are better understood with the aid of Algebraic

Topology concepts. Topological defects, such as vortices in superconductors, allows for statistics

beyond Fermionic and Bosonic in two-dimensions. The Berry phase, related to topological

properties of the parameter space, can be a measurable quantity and have consequences to

eletronic properties of materials and optics [20]–[22]. Furthermore, topological invariants

can be associated to physical systems, allowing for systematic classifications of materials and

better understanding of the conditions for phase transitions that cannot be described purely via

symmetry breaking [23].

Majorana states are a prominent instance of topological phenomena in materials [24], [25].

In general terms, these quasiparticles arise as solutions of the Dirac equation when the particle is

its own antiparticle [26]. Symmetry and topological properties allow for Majorana’s special set

of features, including robustness to local perturbations and neutral charge [23], [24].

17



Chapter 1. Introduction

Majorana states and Quantum Computing - Resistance to perturbations is a strongly sought-

after property in Quantum Computing, where decoherence due to noise is a prevalent problem

[27], [28]. The robustness of topological states could, therefore, benefit quantum computing

hardware. Indeed, it can be shown that four Majorana states are mappable to a two-level system

(qubit) based on their fermionic parities.

Even more conveniently, not only bound Majorana quasiparticles are robust, they are non-

abelian anyons. In practice, this means that the crossing of wordlines, called braiding, of these

types of particles does not renders a scalar phase, but a unitary matrix [23]. In gate-based

quantum computation, unitary matrices are applied to qubits to perform computational tasks.

Braiding allows for many of the relevant matrices for quantum computing, as exemplified in Fig.

1.1 1 [29].

Figure 1.1: a) Schematic representation of four vortices on a topological superconductor rep-
resenting a two-level system based on their parities, on a spacetime diagram. b) When the
Majorana quasiparticle in vortex γ2 goes around vortex γ3, the crossing of the branch cut can be
mapped to a σx operation. c) A complete exchange of positions between γ2 and γ3 generates a
√
σx operation. Adapted from [29].

Unsurprisingly, research on the realization of Majorana quasiparticles was propelled by the

topical relevance of both Quantum Computing and topological materials fields.

Proposed realizations of Majorana quasiparticles

Majorana states are predicted to exist in two-dimensional electron fluids with external

magnetic field in the Fractional Quantum Hall (FQH) regime and in a topological superconductor
1Not all matrices can be constructed via braiding - this is discussed in Appendix B.
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with vortices.

In this work, we focus on the superconductor realization. In such systems, non-abelian

anyons are predicted to appear in the ends of a nanowire or in vortices in two-dimensional setups.

Until recently, experimental efforts revolved around the nanowire realization of Majoranas,

where the superconducting pairing potential is linearly dependent of the momentum. This type of

pairing is referred to as p-wave and is one of the possible superconducting pairings that provides

topological superconductivity [1].

Highlights from recent research in Majorana physics

The p-wave superconductivity is not only uncommon as a pairing configuration, but it is also

a controversial topic, as the leading candidate material with this pairing, Strontium Ruthenate

(Sr2RuO4), is not unanimously considered as truly topological by the Superconducting Physics

community [2], [30]–[32].

In contrast, it is possible to make use of a more common superconductivity pairing, s-wave,

that independs of momentum. Allied with semiconductors with spin-orbit and a magnetic

insulator, s-wave superconductivity can be used to create effective topological superconductivity

[10]. In this work, we refer to this realization as hybrid semi-superconductor setups. In the

following subsections, we discuss two key papers in hybrid nanowires setups.

Mourik, Vincent et al. (2012) experiment

This work focus on electrical measurements of the nanowire realization of a semiconductor

with strong spin orbit, Indium Antimonide, in contact with a normal and a superconducting

electrode [33].

Fig 1.2 A shows a pictorial representation of the setup: a semiconducting nanowire, placed

on the top of an s-wave (trivial) superconductor, with a magnetic field parallel to the lenght of

the nanowire and spin-orbit component perpendicular to it. At the botton, fig. 1.2 A illustrates

how the addition of a Rashba term, coming from spin-orbit interaction, allows for the separation

of spin up (red) and spin down (blue) components. Furthermore, the curves in black represents

the effect of introducing a parallel magnetic field - it opens a gap.
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Figure 1.2: a) Top: device layout, containing a nanowire, parallel magnetic field, B and per-
pendicular spin-orbit component, BS O, above a s-wave superconductor. Red stars represent the
Majorana quasiparticles, predicted to be at the ends of nanowires. Bottom: dispersion relation,
showing how the addition of terms in the Hamiltonian allows for gap opening. b) Scanning
microscopy of the physical device, indicating normal (N) and superconducting (S) leads, and the
dielectric covered gates, labeled 1 through 4. Adapted from [33].

Figs. 1.3 represent the main results. In fig. 1.3 a, zero bias peaks can be observed for a

wide range of magnetic field strengths, in accordance to the expected robustness of Majorana

quasiparticles. Here, the green arrows represent peaks arising from the gap edges. The presence of

zero-bias peak (ZBP) is an important signature of the presence of Majoranas. In low temperatures,

when the bias V is zero, a prominent peak in conductance is predicted to appear 2.

Fig. 1.3 b showcases the dependency between voltage and magnetic field. Both the zero-bias

peak and the edge peaks can be observed for a range of magnetic fields.

Figure 1.3: a) I-V characteristic as function of the voltage V, for different values of magnetic
field, B, starting from B = 0 mT (bottom curve) to B = 490 mT (top curve). b) Voltage as
function of magnetic field and I-V characteristic. Adapted from [33].

2Refer to section 2.6 for more details on experimental Majorana signatures.
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The paper also seeks to rule out other possible mechanisms for the formation of ZPBs, such

as Kondo effect and trivial Andreev Bound States [34]. However, since 2012, many efforts on

establishing smoking-gun signatures for Majoranas had clarified that resistance of ZBPs to high

magnetic fields are far from enough to claim Majorana presence [2], [35].

Retraction of Zhang, Hao et al. (2018) paper

Moving along in the timeline, we have another important paper, with seemingly more

convincing data to claim the existence of Majorana quasiparticles in condensed matter [36].

This paper, originally titled "Quantized Majorana Conductance", studies Indium Antimonide

again, now covered with Aluminum to create a superconducting shell. The work showcased I-V

characteristic plots with apparent and accordance to the simulated data, presenting zero-bias

peaks. It also displayed conductance in the expected quantized value of G = 2e2/h, where e is

the electron charge and h is Planck’s constant. However, independent reexamination of the raw

data revealed that the plotted data was partially cut out. In 2021, a retraction note was issued.

The corrected data is now republished with the more modest title of "Large zero-bias peaks in

InSb-Al hybrid semiconductor-superconductor nanowire device" [37].

Figure 1.4: The right: fig. 2 from the retracted paper, left side: fig. 3 from the republished paper.
Top row shows voltage bias, V, as function of the I-V characteristic and tunnel-gate voltage,
VTG. Middle row present I-V characteristic as function of the tunnel-gate voltage for V = 0 mV.
Bottom row: sames as middle row, but for Middle row present I-V characteristic as function of
the tunnel-gate voltage for VTG = ±0.2 mV. Adapted from [36] and [37].

A side-by-side comparison of both works is instructive to understand the main issues of the
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original paper. The right side of fig. 1.4 shows fig. 2 from the retracted paper, while the left side

presents fig. 3 from the republished paper [37]. It is noticeable, from the top row figures, that

information was omitted. The sudden valley in conductance around VTG = −7.95V is a possible

sign of charge jump originated from charge disorder. It is important to highlight that disorder in

nanowires is one of the possible causes for the appearance of zero-bias peaks, as seen in 1.5 [3].

Figure 1.5: Non-topological mechanisms for zero-bias peaks in nanowires. In the first row,
simulations containing a quantum dot, with a) showing conductance measure on the left lead
anb b) showing conductance from the right lead. The bottom row of figures shows the effect of
inhomegeneties measured in left (c) and right (d) leads. Adapted from [3].

Another discrepancy can be observed between the middle row plots. In the republished

paper, it is evident, even considering error margins, that the conductance is higher than the

expected conductance value for many tunnel-gate voltage values. The claim that originally gave

the paper’s title was no longer valid.

Lessons learned and applied in this thesis

Such developments in experiments make evident that there are reasons to be careful when

interpreting Majorana signatures. In the present work, we explore alternatives to previous

methods to probe Majorana quasiparticles, motivated by caution, in two different approaches:
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1. Moving from nanowires to vortices

Nanowires possesses practical limitations, such as the need to fine-tune experimental pa-

rameters to control the topological regime and difficulties in implementing quantum gates for

quantum computing-based applications [29], [38], [39]. These practical aspects were motivations

for the shift to two-dimensional setups, where Majorana states may appear bound to the interior

of vortices in superconductors [10], [27], [29], [40].

A second motivation to study vortex-bounded Majoranas is the current skepticism in some ap-

proaches to their detection in nanowires. At the present moment, experimentalists rely on surface

methods, such as Scanning Tunneling Microscopy (STM) and Spectroscopy (STS) to detect the

predicted energy and charge signatures for Majorana states. As discussed, theory predictions are

translated in practice by seeking zero-bias conductance peaks, quantized conductance plateaus,

and Josephson Junction 4π−periodic current as evidences of topological superconductivity [2],

[25]. More recently, non-local surface methods were proposed to evaluate charge neutrality in

such systems [41]. Figure 1.6 is an example of STM/S usage for vortex analysis.

Figure 1.6: Superconducting vortex analyzed via STM/S method. A) Zero-Bias peak spatial
map. B) Intensity plot along the black dashed line in (A). (C) A waterfall plot of (B) with 65
spectra. Adapted from [7].
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However, as previously discussed and illustrated by the results in figure 1.5, such signatures

may arise from different mechanisms in condensed matter [2]–[7]. While theoretical studies

have been carried out in nanowires, two-dimensional setups for Majoranas are a less explored

road that can shed new light on previous difficulties.

In particular, we are interested in explore the limitations of the currently established signatures

of Majoranas in the presence of scalar impurities in superconducting vortices. We show, through

numerical calculations, that both energy and charges of trivial states in vortices can mimic

non-trivial Majoranas signatures (zero energy and charge). Furthermore, we demonstrate that

improving apparatus resolution may not be enough to differentiate Majorana states from non-

topological states due to level broadening. These studies are compiled in our 2022 paper with

collaborators [8].

2. Moving from p-wave pairing to extrinsic topological super-

conductivity in two dimensions

With the same intent of exploring lesser-known paths in Majorana physics, we also analyze the

use of extrinsic topological superconductivity i.e. superconductivity whose topological properties

are engineered in the Hamiltonian, rather than naturally arising from p-wave superconducting

pairing in two dimensions.

We focus on understanding the particularities of adding more than on vortex when trivial

superconductivity is aided with other Hamiltonian terms to create effective topological system.

In p-wave systems the boundary conditions imposes constraints in the number of available

Majorana modes. In practice, this means that both geometry, in the sense of number of domain

walls of the system, and number of injected vortices are factors the determine the number of

Majorana states present in the material.

These difficulties are lifted in s-wave pairing. With this subtlety in mind, we numerically

analyze spectral differences of both setups in terms of topological characterization by making

use of a generalized signature of Majorana character, Majorana Polarization.
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Outline of the thesis

As a whole, this work explore the possibilities and limitations of the vortices in supercon-

ductors as hosts of topological quasiparticles, from a practical standpoint. We approach this

investigation in different ways: first, analyzing impurities in two-dimensional setup and second,

testing the quality of Majorana signatures in a extrinsic topological setup. This leads to the thesis

structure.

• In chapter 2 , we delve into the preliminary theory required to understand the scope of

this work: physics of superconductors, relationship with symmetries, topological aspects,

braiding and experimental techniques.

• In chapter 3, we investigate how fully trivial superconductivity can present false-positive

signatures of Majoranas in the presence of scalar impurities, for both energy and charge

measurements [8]. We explore how apparatus resolution is not necessarily the straight-

forward solution to the signature ambiguity, as the expected level broadening is also

detrimental to unequivocally differentiate Majorana states from the topological trivial

states that may coexist in vortices.

• In chapter 4, we follow the path of examining proximitized superconductivity in two

dimensions, making use of trivial s-wave and additional external parameters to mimic

intrinsic topological superconductivity in vortices [9], [10]. We examine the advantages

and disadvantages of this approach via computational simulation.

• Chapter 5 summarizes conclusions from the previous chapters, discusses limitations on the

making of this thesis and possible implications of the present study on Majorana physics

in vortices.
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Preliminary Theory

2.1 Superconductivity

Although following the historical sequence of events may not always be the best approach

to studying many topics in physics, it will be useful here, as the frameworks follow a mono-

tonical progression from macroscopic to microscopic concepts, with each approach leading to

insights that would allow the development of the next one. The main theories on superconduc-

tivity (SC) that we will briefly cover are, in chronological order: Londons’, Ginzburg-Landau,

Bardeen–Cooper–Schrieffer (BCS) and Bogoliubov-de Gennes (BdG).

Topological superconductivity, in particular, requires the brief introduction of concepts in

Algebraic Topology from section 2.2; thus, it will be covered later in the thesis.

2.1.1 Meissner effect and Londons’ equation

Superconductivity was first observed in 1911, in the form of a complete suppression of

resistivity in Mercury when cooled below a critical temperature [42]. Further studies on super-

conducting material led to, twenty years later, the observation of weak magnetic fields being

expelled - the Meissner effect [43].

The thermodynamic behaviour of the material in relation to an external field leads to one

of several classifications of superconductors. Type I superconductors are materials in which

the magnetization decays instantly above a critical field, Hc. Type II superconductors are

characterized by the magnetization decay from a first critical field Hc1 to a second, higher one,

Hc2. In practice, in type II superconductors there is penetration of flux between the two critical

fields, but not enough to break superconductivity.
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In 1935, the London brothers investigate the phenomenon from the electrodynamics stand-

point [44]. Modeling the supercurrent J⃗ as carried by a fraction ns of electrons with velocity

v⃗,

J⃗ = −ensv⃗. (2.1)

We may take the time derivative of the supercurrent to relate the electric field, E⃗.

∂

∂t
J⃗ =

nse2

mec
E⃗. (2.2)

Then, taking the rotational of eq. (2.2) and considering Maxwell’s equation:

∂

∂t

(
∇ × J⃗ +

nse2

mec
B⃗
)
= 0, (2.3)

where me is the mass of the electron and c is the speed of light. As the Meissner effect implied

the possibility of flux changes over time, the London brothers proposed a more restricted version

of eq. (2.3) to model superconductivity, now known as London’s equation:

∇ × J⃗ +
nse2

mec
B⃗ = 0. (2.4)

London’s equation, when combined with Àmpere’s law, yields

∇ × ∇ × B⃗ = −λB⃗, λ ≡
(
4πnse2

mec2

)−1/2

. (2.5)

The parameter λ is called London penetration depth, a quantifier for how further into the

material could the field penetrate. This can be seen by solving eq. (2.5) for, as an example, an

external field B⃗ = B0ẑ in a radius x. We have λ appearing as a spatial scale:

B⃗ = −B0e−x/λẑ. (2.6)

2.1.2 Ginzburg-Landau formalism

The Ginzburg-Landau theory is a phenomenological approach to superconductivity that

revolves around the concept of order parameter, that is, a parameter that characterizes different

thermodynamic or quantum phases of matter. The idea is to define a partition function depending
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on the order parameter, ϕ, as

Z =
∫ ∞

−∞

dϕe−βN f (ϕ,T,h). (2.7)

Here, T if the temperature, β = T−1 and h is the magnetization. As the integral is dominated by

the minimal value of the exponential argument, we may use

∂F(ϕ,T, h)
∂ϕ

∣∣∣
ϕ=m
= 0. (2.8)

Thus, we obtain the order parameter with an appropriate ansatz for F(ϕ) [45]. The Free energy

density functional, in its simplest form, can be expanded in powers of the order parameter:

F(T ) = F0(T ) + a(T )|ϕ|2 +
1
2

b(T )|ϕ|4 + ... (2.9)

with b(T ) > 0 due to the stability of the solution. From here, it is possible to find the condensation

energy and check that there is a symmetry breaking that dictates the phase transition between

F(T ) and F0(T ) phases when a(T) is negative [46]. In this case,

|ϕ|2 = −
a(T )
b(T )

(2.10)

While developing the theory, Ginzburg and Landau interpreted the order parameter assumed a

complex phase form - a vortex-like solution:

ψ ∝ f(r)eiθ, (2.11)

where f(r) encompasses the radial dependency of the solution, to be deduced later, and θ accounts

oft he angular dependency. Here and onwards, we denote the order parameter solution as ψ

instead of ϕ. In the original paper, ther was no explicit interpretation for ψ: its understanding as

a center-of-mass wavefucntion corresponding to the cooper pair would be developed later.

For the vector potential, A⃗, we have:

A(r) =
1
r

∫ r

0
r′h

(
r′
)

dr′ (2.12)

Evaluated in the center of the vortex, we have:

A(r) =
h(0)

2
r (2.13)
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Away from the center, we encompass the total flux Φ0 =
∮

A.ds, and

A∞ =
Φ0

2πr
(2.14)

In the presence of an electromagnetic (EM) field, we have extra terms in the functional:

F = F0 + a|ψ|2 +
b
2
|ψ|4 +

1
2m∗

[
(−i∇ + 2eA)ψ(r)

]2
+

B2

8π
. (2.15)

The fourth term on the right-hand side is a gauge-invariant form of the kinectic part of the

free energy. We may find the solution for f (r) by minimizing the functional (recall that |ψ|2 =

−a(T)/b(T) in the phase transition):

δF = 0 = aψ + b|ψ|2ψ −
1

2m∗
[(−i∇ + eA)ψ]2, (2.16)

where m∗ = 2me and me is the electron mass. In terms of f(r), in the center of the vortex,

substitution in eq. (2.16) leads to:

f − f 3 − ξ2

(1
r
−
πh(0)r
Φ0

)2

f −
1
r

d
dr

(
r

d f
dr

) = 0, (2.17)

where we introduced the characteristic lenght, ξ(T ):

ξ(T ) =
(

1
2m∗|a(T ))|

)1/2

(2.18)

We can look for polynomial solutions of the form f (r) ≈ crn. Substituting back to eq. (2.17),

crn − (crn)3 − ξ2

(1
r
−
πh(0)r
Φ0

)2

crn − n2crn−2

 = 0. (2.19)

We want to avoid the divergence coming from the last term. Furthermore, respecting the boundary

conditions of f being constant away from the vortex center and f → 0 approaching the vortex

center, an appropriate solution is [47]:

f = tanh
(
αr
ξ

)
. (2.20)

with α being a constant.
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It is important to highlight how successful the theory is: it predicts both types I and II of

superconductivity by considering different regimes, besides recovering the London equation

using the functional formalism [45].

In superconductors, it is worth mentioning two topologically trivial excitations with energies

below the superconducting gap that may appear in the vortex core: Yu-Shiba-Rusinov and

Caroli-de Gennes-Matricon states.

In the next section, we will properly introduce a third type of state trapped in vortices cores,

but of topological nature: Majorana states. All three types belong to a class of subgap states

named Andreev Bound States (ABSs). In a clean system, the topologically trivial and non-trivial

ABSs may have deceptive similarities - this is the central theme for chapter 3.

Yu-Shiba-Rusinov (YSR) - In independent works, L. Yu, H. Shiba and A. I. Rusinov expanded

on the work of A. Abrikosov and L. Gor’kov on superconductors in the presence of paramagnetic

impurities [48]. They demonstrated the appearance of in-gap states in superconductor vortices in

the presence of magnetic impurities. By considering a classical spin 1, in a similar fashion as the

Kondo effect, it is possible to show that low-energy states appear in type-II vortices.

Caroli-de Gennes Matricon (CdGM) - these states appear as low-lying excitations inside of

type-II superconductors [50]. In pristine conditions, the spectrum is:

Em =
m∆0

kFξ
, (2.21)

where m = (n + 1/2), n ∈ Z∗, kF is the Fermi momentum, ξ the bulk coherence length, and ∆0 is

the bulk superconducting pairing potential. Therefore, CdGM states have energies above zero.

Symmetric zero-bias peaks around zero-energy in STM experiments are a signature of these

states [51]. Majorana states, in contrast, have zero-bias peaks precisely at zero energy.

2.1.3 Bardeen–Cooper–Schrieffer (BCS) formalism

Thanks to realizing the need for an order parameter in the Ginzburg-Landau formalism, J.

Bardeen, L. Cooper and J. Schrieffer took the first step to a microscopic theory of supercon-

ductivity. Before discussing their mean-field theoretical approach, we develop the effective

1Here, "classical spin" means to consider the product S.J finite, here S is the spin component and J is the
coupling constant in the interaction term between conducting electrons and the localized spin [49]
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Hamiltonian for superconductivity, coming from the realization that the resulting potential from

electron-phonon interactions is attractive. We also note the importance of scattering processes

for superconductivity, resulting in the condensation of fermions in the ground state.

From a phenomenological standpoint, the attractive potential comes from distortions of the

phonon lattice, modeling the ionic background in superconductors. While free electrons flow

with a characteristic Fermi velocity ϵF , lattice distortions relate to the Debye frequency, ωD. In

superconductors, the differences between timescales difficult the flow of electrons in a phonon

background, resulting in attracted electrons due to the effective electron-phonon interaction [52].

To better understand the phenomenon, we start by considering the free phonon Hamiltonian,

Hph =
∑
qλ

Ωqλ

(
b†qλbqλ +

1
2

)
, (2.22)

where b†qλ, bqλ are phonon operators and Ωqλ is the plasma frequency. The index q refers to

momenta and λ refers to different branches, accounting for the fact that a unit cell will contain

two ions in this model. The electron-phonon interaction in the lattice model is:

Ve−p =
1
V

∑
kσ

∑
q

gqc†k+q,σckσ

(
bqλ + b†

−qλ

)
(2.23)

where cq,σ, c
†
q,σ are the electron operators, a gq is the electron-phonon coupling strength andV is

the volume constraining the modes.

To definge the electron-phonon coupling, we will consider a neutral ionic background; this is

modeled by the Jellium model. In this model, we may relate gq with a plasma frequency for the

whole ionic backgroung, Ω. Considering N as the number of ionic modes, Ze as the ions charge

and M as their masses,

gq =
iZe2

ϵ0q

√
N

2MΩ
(2.24)

We may define a new operator to encompass the phonon contribution for the interaction term.

Aqλ ≡ bqλ + b†
−qλ. (2.25)

In the interaction picture, the evolution parametrized by the imaginary time τ is given by

Aqλ(τ) = eτHph Aqλe−τHph . Now, we may introduce Matsubara Green’s function for the free
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phonons.

D0
λ(q, τ) = −

〈
TτAqλ(τ)A†qλ(0)

〉
0
, (2.26)

where Tτ is the time-ordering operator. In the frequency domain,

D0
λ (q, iqn) =

∫ β

0
dτeiqnτD0

λ(q, τ) (2.27)

=
1

iqn −Ωqλ
−

1
iqn + Ωqλ

(2.28)

=
2Ωqλ

(iqn)2
−

(
Ωqλ

)2 (2.29)

where iqn are the Matsubara frequencies and β ≡ T−1.

From here onwards, for simplification, we account only for longitudinal modes, thus dropping

the dependency on λ. In the dispersionless case, Ωq ≈ Ω, and long wavelength limit we obtain

a form for the phonon-mediated interaction that relates to the Coulomb interaction, V(q), by

combining (2.29) and (2.24).

|gq|
2

V
D0
λ(q,T ) =

1
2

V(q)
(Ω)2

(iqn)2
− (Ω)2 . (2.30)

From here, we can obtain the effective potential in superconductivity and show that it will

be attractive. This potential is given by the sum of the bare Coulomb interaction, and the

phonon-mediated interaction [45].

Ve f f (q, iqn) = V(q) +
|gq|

2

V
D0
λ(q,T ) = V(q)

(iqn)2

(iqn)2
− (Ω)2 (2.31)

With analytical continuation (iqn → ω + iη), we obtain real frequencies and note that since

V(q) is repulsive, the effective potential will be attractive for Matsubara frequencies lower than

the plasma frequency. Similarly, we may also consider the Random Phase Approximation to

renormalize the interactions to avoid divergencies coming from the Coulomb potential. We skip

the derivations here but note that the renormalized potential, VRPA
e f f , has the same form as eq.

(2.31).

We shall examine how a particular electron pair scattering gives rise to the instability of the

ground state in superconductivity. The pair scattering vertex, Λ, is given by the infinite ladder

diagram of the sum of scattering events between time-reversed electron pairs (here, | k ↑⟩ and

| −k ↓⟩), as shown in Fig. 2.1.
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Figure 2.1: Scattering of time-reversed pairs of electrons, in diagrammatic form.

The formal correspondence of diagrams and quantities are shown in table 2.1. Here, G0
σ(k, ikn)

is the single-electron Green’s function.

Diagram Quantity

G0
σ(k, ikn)

−VRPA
e f f (k − p)

Λ(k, p)

Table 2.1: Relevant Feynman diagrams correspondence.

We may disregard external electron propagators and write a Dyson equation for Λ, taking

into account the Feynman rules for Coulomb interaction. It will take the form of a Bethe-Salpeter

equation [53], as described in Fig. 2.2.

Λ(k, p) = −VRPA
e f f (k − p) +

1
Vβ

∑
q

(
−VRPA

e f f (k − q)
)
G0
↑(q)G0

↓(−q)Λ(q, p) (2.32)

Figure 2.2: Dyson equation for the pair scattering vertex in diagrammatic form.

We are interested in analyze the attractive regime. For this purpose, we proceed by taking two
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approximations: first, take into consideration that most phonons participating in this scattering

process have frequencies of the order ωD. We, thus, set ωq = ωD. Second, take the interaction

strength, VRPA
e f f , to be constant. More specifically, VRPA

e f f ≈ −V for |iqn| < ωD and zero otherwise.

The frequency ωD, therefore, will be a cutoff. We arrive at

Λ(k, p) = V +
1
β

ωD∑
iqn

1
V

∑
q

VG0
↑

(q, iqn) G0
↓(−q,−iqn)Λ(q, p) (2.33)

As the right-hand side of the equation is k-independent, we have Λ(k, p) = Λ(p) and will not

contribute to the summation. The self-consistent solution will be constant, of the form:

Λ =
V

1 − V
β

∑
|iqn |<ω0

1
V

∑
q G0
↑

(q, iqn) G0
↓

(−q,−iqn)
(2.34)

The temperature dependency from β implies that λ→ ∞ for low temperatures. Therefore, the

ground state is unstable below a critical temperature Tc, as bound states of time-reversed pairs of

electrons are formed. This condensation happens with all electrons in the Fermi surface, since

VRPA
e f f ≈ −V in this case.

In practice, the system can lower its energy by creating these pairs of fermions, denominated

Cooper pairs, as the energy contribution is negative. Renormalization group analysis shows that

these results hold even for a perturbative potential [45]. The phenomenon is known as Cooper

instability.

At the critical temperature, the denominator in eq. (2.34) is zero. This yields

Tc ∝ exp{−1/Vd(ϵF)}, (2.35)

where d(ϵF) is the Density of States (DOS), ϵF is the Fermi energy. The exponential form

showcases strong sensibility with the DOS and implies that we cannot find a different ground

state via perturbation theory.

Interlude: A brief introduction to Mean-field theory - A generic second quantized form for

the interaction of two different flavors of identical particles is given by

H =
∑

l

ϵA(k)a†kak +
∑

m

ϵB(m)b†mbm +
∑
i jkm

Vi jkma†i b†jambk, (2.36)
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Consider the operator ni j = c†i c j. We may write the operator in terms of its thermal average and

fluctuations:

ni j = ⟨ni j⟩ + δni j (2.37)

where δni j is the fluctuation around the thermal average, ⟨ni j⟩. In the particular case of zero

temperature, the average is in the ground state. For the mean-field approximation, we keep

only the terms linear in the fluctuations. This is equivalent to ignoring correlations. Rewriting eq.

(2.36) in terms of eq. (2.37) and considering the mean-field approximation,

H =
∑

l

ϵA(k)na
k +

∑
m

ϵB(m)nb
m +

∑
i jkn

Vi jkm

[
na

ik

〈
nb

jm

〉
+ nb

jm
〈
na

ik
〉
−

〈
na

ik
〉 〈

nb
jm

〉]
. (2.38)

We now have one-body problems that sense and average effect coming from the other type of

particle. This is more clear writing:

VA
ik =

∑
jm

Vi jkm

〈
nb

jm

〉
(2.39)

VB
jm =

∑
ik

Vi jkm
〈
na

ik
〉

(2.40)

The recursive aspect of the mean-field theory is now evident. To establish the potential, we

would need the state to carry out the average. However, we need the potential in order to obtain

the state. The solution for the potential is, therefore, obtained self-consistently.

Mean-field theory for superconductivity

We start with the simplest effective model for superconductivity [53]:

H =
∑
kσ

ϵkn̂kσ −
g
Ld

∑
k,k′,q

c†k+q↑c
†

−k↓c−k′+q↓ck′↑, (2.41)

where g is a positive constant and Ld is a d-dimensional volume. To apply mean field techniques,

we assume a ground state |Ωs⟩, whose explicit form for this ground state will be derived shortly,

to carry the mean field approximation for the interaction term. The quartic term in fermionic

operators reduces to a one-body operator by introducing:

∆ =
g
Ld

∑
k

〈
Ωs

∣∣∣c−k↓ck↑

∣∣∣Ωs

〉
(2.42)
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∆ is the order parameter. The denomination as an order parameter is pertinent. This band gap is

crucial to explaining the different phase transitions observed in the form of condensation of the

quasiparticles, which leads to the dissipationless flow of current in low energies, as excited states

are energetically costly. The mean-field Hamiltonian is:

H ≈
∑

k

ξkc
†

kσckσ −
(
∆̄c−k↓ck↑ + ∆c†kc†

−k↓

)
+ Ld |∆|

2

g
, (2.43)

with ξk ≡ εk − µ. We can introduce a spinor of the form:

ψk =

 ck↑

c†
−k↓

 (2.44)

and the Hamiltonian can be written as:

H ≈
∑

k

ψk
+

 ξk −∆

−∆ −ξk

ψk +
∑

k

ξk +
Ld|∆|2

g
(2.45)

we can now diagonalize the Hamiltonian using fermionic quasiparticle operators (ak,↑, a
†

−k,↓)

that are linear combinations of the previous ones. The spinoral form of the Dirac Fermions are

denominated Nambu spinors.

 ak↑

a†
−k↓

 =
 cos θk sin θk

sin θk − cos θk


 ck↑

c†
−k↓

 (2.46)

With |Ω⟩ being the fermionic vacuum, we obtain the superconducting ground state, |Ωs⟩, as the

vacuum defined by the Bogoliubov quasiparticles.

|Ωs⟩ =
∏

k

ak↑a−k↓|Ω⟩ ∝
∏

k

(
cos θk − sin θkc

†

k↑c
†

−k↓

)
|Ω⟩ (2.47)

2.1.4 Bogolioubov-de Gennes (BdG)

Although some ideas associated with this formalism were explored in the previous section,

such as the usage of spinor structure in a mean-field Hamiltonian, the Bogolioubov-de Gennes

formalism will be used extensively throughout this thesis and deserves a standalone section.

To understand the capabilities of this formalism, let us start with a metallic Hamiltonian and
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increment a superconducting pairing afterward. In the second quantized form, we have

Hmetal =
∑
σ,p

c†σ,pϵ(p)cσ,p, (2.48)

where c†σ,p is the creation operation of a fermion with momentum p and spin σ. We can use

fermionic anticommutation relations to manipulate the expression (2.48) in order to separate

negative and positive momentum contributions:

Hmetal =
1
2

∑
σ,p

[
ϵ(p)c†σ,pcσ,p − ϵ(−p)cσ,−pc†σ,−p

]
+

1
2

∑
p

ϵ(p). (2.49)

We can now introduce the spinor:

Ψp =



c↑,p

c↓,p

c†
↑,−p

c†
↓,−p


. (2.50)

Making use of spinor structures, the Hamiltonian, up to a constant term, is now:

Hmetal =
1
2

∑
p

Ψ†pHBdG(p)Ψp, (2.51)

with

HBdG =



ϵ(p) 0 0 0

0 ϵ(p) 0 0

0 0 −ϵ(−p) 0

0 0 0 −ϵ(−p)


. (2.52)

Considering now the pair potential, Hpair, that creates and annihilates fermions in pairs of

opposite spins, the Cooper pairs. Note that, in the many-body formalism, the pairing is a two-

body term, it should be quartic on ladder operators. However, we are already implicitly using

mean-field theory to encapsulate the contributions in an average way, such that ∆ ∝ ⟨c↓,−pc↑,p⟩,
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in accordance to eq. (2.42).

Hpair =
∑

p

∆
(
c†
↑,pc†

↓,−p + h. c.
)
. (2.53)

This particular form of pairing, independent of momentum, is called s-wave superconductivity.

The full Hamiltonian, H = Hmetal + Hpair is:

HBdG =



ϵ(p) 0 0 ∆

0 ϵ(p) −∆ 0

0 −∆∗ −ϵ(−p) 0

∆∗ 0 0 −ϵ(−p)


. (2.54)

This Hamiltonian is structured to act on the tensor product of spin and particle/hole Hilbert

spaces. Eq. (2.54), for instance, can be written as:

HBdG = ϵ(p)τz ⊗ I2 − Re(∆)τy ⊗ σy − Im(∆)τx ⊗ σx, (2.55)

where σi are the Pauli spin matrices and τi, also known as “Nambu basis”, are the analogous

structure in particle/hole space [24]. The solution for HBdG will result in linear combinations of

creation and annihilation operators (Bogoliubov quasiparticles).

In some instances, those quasiparticles will obey Majorana statistics, as we shall see in the

section 2.5. This is the case for p-wave superconductivity, where the pairing potential is linear

in the momentum k. The one-dimensional spinless p-wave superconductor is known as Kitaev’s

toy lattice model. In real space, it is expressed as:

H = −µ
∑

x

c†xcx −
1
2

∑
x

(tc†xcx+1 + ∆
∑

x

eiϕc†xc
†

x+1), (2.56)

where t is the intensity of the hopping to nearest neighbors, µ is the chemical potential and ∆

is the superconducting pairing. Note that the fermionic operators are necessarily spinless, as

required by the antisymmetry of the total fermionic wavefunction.

More general pairing potentials are possible but beyond this thesis’s scope. Inspired by

atomic orbitals terminology, we may have s−, p−, d− and f−wave pairings, corresponding to l

= 0, 1, 2 and 3 in total spin angular momentum of the Cooper pairs [54].

In section 2.5, we explore bulk-boundary correspondence in this system and how such a
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model can host topological modes [55]. Nevertheless, prior to this, we will need to introduce

relevant concepts of Topology and their relationships with condensed matter.
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2.2 Algebraic-Topology Aspects in Physics

In Physics, Topology is often associated with Differential Topology, which is particularly

useful in General Relativity. In Condensed Matter, however, we focus on a different subfield,

Algebraic Topology, which mainly studies topological spaces and how to understand equivalences

between than in a quantitative manner.

In this work, algebraic Topology appears in many different senses in the field of Topological

Quantum Computation and Condensed Matter. It is useful to overview relevant mathematical

definitions and illustrate their applications in our physical context, as well as distinguish some

definitions that appear in both physics and mathematics, such as the concept of vortices.

Let us start by defining the key concept in this subarea. Let X be a set. For a certain collection

of its subsets, given by τ, we consider (X, τ) to be a topological space if it satisfies the axioms:

i) ∅ and X belongs to τ

ii) A finite or infinite union of elements of τ also belongs to τ.

iii) A finite intersection of elements of τ also belongs to τ.

A homeomorphism is a continuous map F→ G in which the inverse is also continuous. A

map f: X→ Y , with X, Y being topogical spaces, is continuous if the inverse image of an open

set in Y is an open set in X.

Thus, two topological spaces are homeomorphic to each other if we can deform one into the

other continuously. For geometrical visualization, this can be thought of as modifying the shape

without cutting it [56].

A way to quantify this equivalence is to establish topological invariants, a quantity that

won’t change under continuous deformation. A simple example of a topological invariant is the

Euler characteristic, χ. In Geometry, for a convex polyhedron:

χ = V − E + F. (2.57)

Here, χ is a topological invariant that encapsulates information about the number of vertices (V),

edges (E) and faces (F) of any solid, even if continuously deformed. In Physics, it can be shown,

although not demonstrated here, that two gapped systems are considered equivalent if they can

be continuously deformed into one another without closing the gap [23].

For two topological spaces that are homeomorphic, there may be a class of maps that can

perform these deformations. The continuous deformation between those maps themselves is
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called a homotopy. Formally, with X and Y being topological spaces, a homotopy from the

continuous map f to the continuous map g is a continuous function Ft: X→ Y, with t ∈ [0,1],

with F0 = f and F1 = g.

Finally, the fundamental group π1 of a topological space is the collection of all loops (i.e.,

closed paths) that are homotopic 2. In particular, for a circle (usually denoted as S 1), the different

classes of loops are characterized by their winding number, which denotes the number of times

the loop wind around the circle [45].

2.2.1 Topology and Exchange statistics in (2+1)D

To understand the remarkable effects of dimensionality for exchange statistics due to topology,

we rely on the concept of homotopy. For concrete visualization in two dimensions, we can

imagine a surface of any shape containing a hole somewhere. When restricted to R2, we will have

classes of loops that can be shrunk into a point and a class that cannot, depending on whether the

loop encloses the hole. Those are examples of different homotopy classes.

Particularly in superconductors, one can consider a complex order parameter, ∆(x)eiϕ(x). The

phase maps the parameter onto S 1. Parameters of this form are called "vortex-like". In the surface

of a superconductor, dimensionality limitations will differentiate loops in different homotopy

classes – it corresponds to instances in which the order parameter is not uniquely defined, and a

winding number can be associated with it. As the winding number is an integer, for vortices, we

have π1(S 1) = Z [56]. Counter/clockwise winding in real space will encompass the topological

charge q = ±1, respectively [45].

In the presence of vortices and confined to (2+1) dimensions, non-trivial topology is man-

ifested by the emergence of Anyons. These excitations have fractional statistics, i.e., after an

exchange operation, the application of the parity operator renders an eigenvalue that is neither

-1, as for fermions, nor +1, as for bosons, but a more general complex phase; hence the name

"Any-ons" [56], [57].

2.2.2 Braiding

We can think of the commutation process of a pair of anyons in terms of the mutual swapping

between their worldlines, an operation denoted as “braiding" 3. For our purposes, we shall focus

2The fundamental group is defined as a group for being closed under operations of concatenation of loops.
3This is not the only interpretation; we discuss how braiding does not need to occur in real space in 2.7.1
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on group-theoretical aspects of braiding, but it should be noted that this is yet another aspect of

Algebraic Topology in Condensed Matter, as braiding is a subject of study in Knot Theory. For a

better definition of mathematical properties and schematical visualization of braiding operations,

refer to Appendix A.

An intriguing subset of anyonic particles is the non-abelian anyons, where different braiding

operations are non-commutative. The braiding operations in two dimensions on non-abelian

anyons are unitary matrices. In this section, we show how those operations could be used for

quantum computation, acting as one-qubit quantum gates, which are also based on unitary,

two-dimensional matrices 4. To illustrate this, we follow a review on the subject [29].

On an abstract level, we consider here a two-dimensional system with vortices containing

anyons. In the following subsection, we will delve into details of the physical system, a two-

dimensional topological superconductor.

We begin by writing the fermionic operators, c† and c, as linear combinations of two other

operators, denoted by γi:

c†kl =
1
2

(γk + iγl) (2.58)

ckl =
1
2

(γk − iγl). (2.59)

Using the canonical anticommutation relations of fermions, we notice that {c†kl, ckl} = 1→ γ2
k = 1

and {ckl, ckl} = 0 → γkγl = −γlγk, k , l. The operators γk and γl following this algebra are the

Majorana fermions corresponding to those Dirac fermions. Note that the fermionic operators

have two indexes, identifying the individual contributions of each Majorana.

Majorana fermions are real solutions to Dirac’s equation, implying that its antiparticle is the

particle itself. Majorana fermions bound to topological defects in superconductors are named

Majorana Zero Mode (MZM). They correspond to degenerated ground state solutions from BCS

Hamiltonian.

Two define a two-level system as a basis for a topological qubit, we use the Parity obeservable.

It is instructive to start by defining the Parity operator for Dirac fermions. For each pair of

vortices, indexed by k and l, the Parity Pkl is

Pkl = 1 − 2c†klckl, (2.60)

4Refer to Appendix B for an overview of the circuit model of quantum computation.
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where c†kl and ckl are the operators of creation and annihilation of Dirac fermions. We have even

parity (+1 eigenvalue for the Parity operator) when nkl ≡ c†klckl = 0, i.e., when this level is not

occupied, and we have odd parity when it is occupied.

Initializing with two vortices, one of them with occupation and the other unoccupied, despite

not having local contact between the vortices, the fermion will "jump" from one vortex to the

other. This unpaired fermion, due to Pauli’s exclusion principle, will fill the lower energy level,

so the parity will be even since the population of this level will be completely paired or will jump

to a higher level, resulting in odd parity. We will define even parity state as |+⟩ and odd parity as

|−⟩.

The parity operator can now be written in terms of MZMs as:

Pkl = 1 −
1
2

(γk + iγl)(γk − iγl) = iγkγl. (2.61)

We can define a two-level system for this configuration of four vortices as:

|0⟩ ≡ |+⟩ |−⟩ (2.62)

|1⟩ ≡ |−⟩ |+⟩ , (2.63)

where both states have odd total parity (considering the products of the parities in pairs). Alter-

natively, it would be also possible to define |0⟩ ≡ |+⟩ |−⟩ , |1⟩ ≡ |−⟩ |+⟩, with even total parity, in

an independent fashion, since different parities commute, resulting in uncorrelated subspaces.

Given this definition for odd parity, we can explore how certain operations of Majorana

fermions swapping can lead to Pauli matrices. First, let us consider a situation with four vortices

in which the parity of the two first fermions is even and the two last fermions, odd (P12 = 1 e

P34 = −1). When we circle γ2 around γ3, both parities swap signs, (P12 → −1 e P34 → 1). This

can be seen in terms of Dirac fermions. We have:

P23 = iγ2γ3 = −c12c†34 − c12c34 + c†12c†34 + c†12c†34. (2.64)

Therefore,

P23 |0⟩ = P23 |+⟩ |−⟩ = |−⟩ |+⟩ = |1⟩ . (2.65)

Similarly, up to a global phase, P23 |1⟩ = |−⟩ |+⟩ = |0⟩. In our qubit definition, we have a "bit
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flip", i.e., we have the equivalent as a σx operation, represented in Bloch’s sphere as a θ = π

rotation. Bit rotations can be written in a general manner as:

U = eiβe−
iθ
2 n̂.σ, (2.66)

where β is a phase. If we define β = π
2 , we note that the ”half-braiding“ (or exchange) operation

B23 is equivalent to perform half of the operation, thus it is given by the square root spin flip:

B2,3 = exp
( iπ

4
(I − σx)

)
. (2.67)

Expanding e−iπσx/4 in power series and substituting iγ2γ3 = σx:

B2,3 =

√
i
2

(I + γ2γ3) . (2.68)

Analyzing now the half-braiding of Majoranas in a same pair, such as γ1 and γ2. Applying

P12 = iγ1γ2 in the qubits:

P12 |0⟩ ≡ |+⟩ |−⟩ , P12 |1⟩ ≡ − |−⟩ |+⟩ . (2.69)

Thus, iγ1γ2 acts as a phase flip, or σz. So, we define B12:

B12 = exp
( iπ

4
(1 − σz)

)
=

1
√

2
(I + γ1γ2) . (2.70)

It is important to notice that B12 and B23 do not commute,

[B12, B23] = iγ1γ3, (2.71)

which shows that the exchange operations are non-abelian.

Having spin-flip and bit-flip, we can create many important logical gates for single qubits,

such as Hadamard. However, to achieve universal quantum computation (to be able to perform

any computational operation), it is necessary a universal set of gates, as detailed in Appendix B.

For the gates mentioned, we would obtain it by adding the T-gate (π/8 gate). However, this

gate cannot be performed through braiding, since the minimal operation possible, exchange,

corresponds to an angle of π/4.
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It is worth mentioning that not all braiding processes imply topological protection. First,

braiding is also defined for abelian anyons; in this case, the operation results in a scalar phase,

not being relevant for quantum computing, for instance [58], [59]. Moreover, even when non

abelian braiding is detected, protection is not necessarily guaranteed, as further explained in

Appendix C.
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2.3 Symmetries in Condensed Matter

Symmetry aspects are generally associated with profound physics consequences, as illustrated

by Noether’s theorem for conservation laws. In condensed matter, the idea of symmetry appears in

a multitude of contexts. Most notably, in solid-state physics, continuous translational-symmetry

breaking is what defines a crystal. In the context of topological matter, it is useful to detail the

construction and implication of three types of symmetries: Time-reversal, Particle-Hole and

Chirality.

Time-reversal, T : A Hamiltonian possesses Time-reversal (TR) symmetry when it is invariant

under the application of the operator T = UK , where U is an unitary matrix and K is the

complex conjugation operator. The Hamiltonian, in this case, is composed of real entries. It

follows that:

TH∗T † = H. (2.72)

It can be shown that a TR-preseving Hamiltonian will be at least doubly degenerate. One way

to break degenerescense is adding a magnetic term of Zeeman type, Vz = V0σz, since the Pauli

matrices do not commute.

Particle-Hole, P: To understand this symmetry, it is useful to recall the Bogoulioubov-de

Gennes Hamiltonian, where a fermionic Hamiltonian can be written in terms of spinors, as done

in the p-wave develop section 2.5. A Hamiltonian is particle-hole symmetric when, in its BdG

form, it is invariant under:

P = τxK . (2.73)

where τx is the x-component in Nambu basis. A Hamiltonian is particle-hole symmetric when

obeys

PH∗P† = −H. (2.74)

A consequence of Particle-Hole invariance is a symmetric spectrum around zero energy.

Chirality, S: Also known as sublattice symmetry, it is defined as the product of the two

previous symmetry operators [23].

S = C.P. (2.75)
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One consequence of chirality is a symmetric spectrum with no gap closings.

By considering these symmetries, it is possible to create a classification of topological matter,

also known as the ten-fold way, as shown in Table 2.2. The class nomenclature is inspired by E.

Cartan’s classification of symmetry spaces [60].

Class C P T

A
AIII 1
AI 1

BDI 1 1 1
D 1

DIII 1 1 -1
AII -1
CII 1 -1 -1
C -1
CI 1 -1 1

Table 2.2: Classes of topological systems based on chiral, particle-hole and time-revarsal
symmetries. Missing entries represent the absence of the corresponding symmetry. The other
entries represent the value of the corresponding symmetry operator squared.

Further classification can be done based on topological aspects. In terms of the group

representation of the topological invariant present in the Hamiltonian, we denote Z when the

topological invariant belongs to the set of Integers, while 2Z corresponds to even integers. As

an example of Z topological invariant, we have the winding number, present in vortices in

superconductors.

Another classification is Z2, the cyclic group of order 2. The invariant in Zn follows arithmetic

modulo n. In this category, we have only two possible topological states, as the topological

invariant may assume two values.

An example of this case is the Pfaffian. The Pfaffian of a skew-symmetric matrix A is defined

as:

Pf(A)2 = detA. (2.76)

As shown in 2.2.2, we may associate four MZMs states with two Parity eigenstates, associated

with even or odd parity or, equivalently, to occupied or unoccupied fermionic state. In the ground

state, the action of a single Majorana quasiparticle flips the parity of the state. Such femionic

parity switches can be understood as level crossings. The Pfaffian invariant, Q, is defined as:

QBdG = sign(Pf(iMT HBdGM)) (2.77)
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with M being the unitary

M =

 1 −i

1 i

 . (2.78)

Q can be ±1, indeed belonging to Z2.

The MT HBdGM form results in an antisymmetric matrix, characterized by having doubled

eigenstates, in conformity to the particle-hole symmetry of the Hamiltonian. From the definition

of the Pfaffian, eq. (2.76), we may note that a sign change in a single eigenstate, which

corresponds to a level crossing, will change the sign in QBdG. Therefore, the Pfaffian is an

adequate topological invariant to account for the crossings.

We may now expand the ten-fold way to include the topological invariants in different

dimensions, as shown in Table 2.3.

Class C P T 0 1 2 3
A Z Z

AIII 1 Z Z
AI 1 Z

BDI 1 1 1 Z2 Z
D 1 Z2 Z2 Z

DIII 1 1 -1 Z2 Z2 Z
AII -1 2Z Z2 Z2

CII 1 -1 -1 2Z Z2

C -1 2Z
CI 1 -1 1 2Z

Table 2.3: Classes of topological systems based on symmetries and topological invariants in
dimensions d = 0, 1, 2, 3.

Such classification is useful to understand the consequences of dimensionality reduction

and/or symmetry breaking of relevant symmetries. Furthermore, the periodic structure hints at

the possibility of finding new physical realizations in each of the entries. In chapter 4, we discuss

how different it is possible to build Hamiltonians with symetry constraints in mind to generate

the desired topological phenomena.
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2.4 Physical Systems Hosting Anyons

Non-abelian anyons are predicted to exist in two systems that are currently under extensive

experimental investigation: the two-dimensional electron fluid with external magnetic field in

the Fractional Quantum Hall (FQH) regime, and in a topological superconductor with vortices

[25], [61], [62].

In this section, we introduce the Fractional Quantum Hall Effect (FQHE) and compare, in

terms of anyonic features, with topological superconductivity. As the focus of the present thesis

is on topological superconductors, we postpone the detailing of this physical system for a later

section.

Similarly to the integer quantum Hall effect, the main footprint of the FQHE is the quantized

plateaus in Hall conductivity, σxy, proportional to e2/h. Explicitly,

σxy =
e2

2π
ν (2.79)

In the FQHE case, the filling factor ν possess fractional values.

Discovered around the 1980s, the phenomenon was understood by Robert Laughlin by

considering a many-body trial function for the ground state of the system with ν = 1/m, with

m odd [63]. More general fractions were later established by Duncan Haldane and Bertrand

Halpering [64], [65].

Topology in this system manifests in a different way than what was previously presented.

In interacting systems, the ten-fold way characterization is no longer sufficient. The FQHE

is an example of topologically ordered system, while previously, we examined symmetry

protected systems in section 2.3. Symmetry-protected systems do not maintain topological

protection under the breaking of the necessary symmetry. In topological ordered systems, in

other hand, topology is not associated with symmetry breaking: the phase transition of a normal

two-dimensional electron gas to an FQHE state is not described via symmetry breaking [23].

These specific anyons arising in the FQHE are called ”Fibonacci“ anyons. [66]. Fibonacci

anyons allow for universal quantum computation, unlike Ising anyons, which arise in topological

superconductors with vortices. To fully realize all possible quantum computing operations, Ising

anyon-based qubits require extra elements. One possible implementation relies on using Majo-

ranas in nanowires along with superconductors’ degrees of freedom [67]. Another possibility is

to couple with a quantum dot [68].
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The experimental difficulties presented by FQH systems pose as motivation to work with

topological superconductors. In such systems, non-abelian anyons are predicted to appear in

well-separated ends of a nanowire or in vortices in two-dimensional setups. The minimal system

in which these quasiparticles may arise, the p−wave superconductivity, will be discussed next.

Systems with engineered topological superconductivity will be treated in chapter 4.
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2.5 Topological superconductivity: p-wave pairing

The physical system described in the section 2.1.4, free electrons with s-wave supercon-

ductivity, is a topologically trivial system. In this section, we refer to a different type of

superconductivity to observe topological effects, the p-wave superconductivity, where the

pairing potential is linear in the momentum k.

In this section, we follow the development in reference [1]. We shall study the case of a

one-dimensional spinless p-wave superconductor, which is the simplest model that supports a

topological phase. To make sense of the Hamiltonian, we will start with Kitaev’s toy lattice

model in real space:

H = −µ
∑

x

c†xcx −
1
2

∑
x

tc†xcx+1 + (∆
∑

x

eiϕc†xc
†

x+1 + h.c.)

 , (2.80)

where t is the intensity of the hopping to nearest neighbors, µ is the chemical potential and ∆ is

the order parameter, as previously presented in section 2.1.4.

We restrain our studies to the bulk part of the system by introducing periodic conditions, we

can now write a diagonalized form in momentum space as:

H =
∑

k

Ebulk(k)a†kak, (2.81)

with Ebulk(k) =
√

(−t cos k − µ)2 + |∆̃k|
2 and where the quasiparticle operators are given by a

linear combination of particles and holes, ak ∝ ck + c†
−k.

In the gapped regime, we will have strong pairing (for µ <-t) and weak pairing (|µ| >t). We

are now able to show that the weak coupling gives rise to a nontrivial topological regime. We

can write the hamiltonian, eq. (2.56), in Bogoliubov-de Gennes form:

H =
1
2

∑
k

C†kHkCk, Hk =

 ϵk ∆̃∗k

∆̃k −ϵk

 . (2.82)

Here, ϵk ≡ −t cos k − µ. We can decomposeHk in Pauli matrices asHk = h(k) ·σ, where h(k) is

a general vector embedding the momentum dependency and σ = σx x̂ + σyŷ + σzẑ, σi, i = x, y, z

are the Pauli Matrices. Due to charge conjugation symmetry, further explained in section 2.73,
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Figure 2.3: Trivial (above) and topological (below) regimes in a Kitaev chain. The circles
represent Majorana particles in a chain. The dashed ovals represent the Fermions encompassing
two Majorana particles each. The pink oval represents the non-zero hopping terms. In the
topological regime, the end Majorana particles are not connected to the Hamiltonian, having
zero energy.

we will have limitations for the values of h(k):

hx,y(k) = −hx,y(−k)

hz(k) = hz(−k). (2.83)

Writing h(k) as a vector, mapping the Brillouin Zone into a sphere, the limitations above will

imply that we can write ĥx,y(0) = s0ẑ and ĥz(π) = sπẑ. Then, running k from 0 to π, we can have

a closed path coming from the north pole and getting back to the same point (for s0 = sπ) or an

open path arising from the north pole and ending at the south (for s0 = −sπ).

We can establish a topological invariant:

ν = s0sπ. (2.84)

Fig. 2.3 shows a diagrammatic representation of the trivial and topological regimes. Analyzing

the Bloch-like sphere in Fig. 2.4, it is noticeable that the path for ν = +1 is topologically trivial

since it can be deformed to a point in the north pole, while the path for ν = −1 is not. The

nontrivial case corresponds to the weak pairing regime. In this situation, unpaired Majoranas can

be found on both edges of the chain.
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Figure 2.4: The two possible types of trajectories in the unit sphere as k go from 0 to π and their
corresponding topological invariant.

2.5.1 Majorana States

Majorana particles are most succinctly known to be a particle that is their own anti-particle

[26]. Conceptualized by Ettore Majorana, is of interest in both condensed matter and particle

physics. For the latter, it may be one of the possible candidates for neutrinos [69]. For the former,

it is the basis for topological effects in certain systems supporting anyons.

In topological superconductors, the non-trivial states obey Majorana properties. This can be

seen by noting that the zero-energy solution in a BdG Hamiltonian representing superconductivity

can be written as being composed by a linear combination of quasiparticles γi,x:

cx ∝ γB,x + iγA,x. (2.85)

Using the canonical algebra for Fermions, we note that such that γi,x = γ†i,x and γi,x, γi′,x′ =

2δii′δxx′ , which are the canonical relations for Majoranas.

Note that the first condition implies that the Majorana particles are real particles. In contrast,

as the Dirac Fermions are composed of a linear combination of the form of eq. (2.85), they are

also known as "complex Fermions".

However, this is not applicable when the fermionic operator embeds spin degrees of freedom,

as it is the case of s-wave superconductivity. The path to overcoming this difficulty for s-wave

systems and obtaining Majorana modes will be covered in the next chapter.

Another relevant characteristic for these states to be understood as Majorana is their charge-

neutral property. This is a natural consequence in superconductors, as particle-hole symmetry is
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present [70]. Charge conjugation is a necessary property for a particle to be its own antiparticle.

Vortices in (2+1) dimensions chiral p-wave superconductors Majoranas are predicted to

appear in the core of the superconductor’s vortices in the topological regime. In domain walls,

Majoranas tend to appear as chiral edges. To understand why it makes sense to find a single

Majorana mode inside a vortex as well, we need to take into consideration that a magnetic flux

has the ability to change the boundary conditions in the system to periodic to anti-periodic, in

an analogous way as the Aharonov-Bohm effect [24]. This can be seen in a simpler manner

by remembering the tight binding form of the Kitaev chain being closed, in the presence of a

magnetic field. The field is incorporated in the tight binding form of the Hamiltonian via Peierls

substitution 5:

t → teiϕ/2, (2.86)

and have this phase related to the superconducting flux, Φ0 = 2e/h as ϕ = 2πΦ/Φ0.

When Φ = Φ0, we have t → −t and anti-periodic conditions. This is precisely what happens

in the presence of vortices, which enclose a flux Φ0. Vortices can be injected in systems in this

manner since a π-flux changes the phase of the order parameter and creates a vortex [72].

In polar coordinates, the appropriate BdG Hamiltonian is [24]:

HBdG =

 −µ |∆(r)|eiθ ∂
∂r +

i
r
∂
∂θ

−|∆(r)|e−iθ ∂
∂r −

i
r
∂
∂θ

µ

 . (2.87)

Here, our vortex profile is gauge-transform to allow for anti-periodic boundary conditions.

Solving for zero energy, we obtain solutions of the form:

ϕ(r, θ) ∝
1
√

r

∫ r

0

(
µ(r′)
|∆(r′)|

dr′
)  −eiθ/2

e−iθ/2

 ≡ f (r)

 −eiθ/2

e−iθ/2

 . (2.88)

This function f(r) is centered in the vortex core, at r = 0.
5The addition of a phase in the hopping terms of a tight-binding Hamiltonian can be shown to be in conformity

with adding a magnetic term in the continuous Hamiltonian [71]
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2.6 Majorana signatures

Majorana particles possess well establish characteristics in theory: they are zero-energy

states that, due to particle-hole symmetry, also have zero charge. Furthermore, the total parity in

Majorana systems is conserved.

In practice, the detection of such properties requires careful experimental analysis. Even

combining experimental tests may not be enough to unequivocally detect Majorana character [3],

[73]. In this section, we describe the main three types of sought-after signatures in experiments.

Limitations and difficulties of pursuing such signatures will be discussed throughout the thesis.

2.6.1 Quantized conductance

When Majorana bound states are present in superconductors, we expect perfect Andreev

reflection, i.e., that incident electrons will be reflected as holes and vice-versa.

In a junction, the scattering matrix is given by

R =

 ree reh

rhe rhh

 , (2.89)

where ri j is the reflection coefficient for a inciding particle i – electron (e) or hole (h) – being

reflected as a particle j (electron or hole). The linear conductance, G, is given by:

G =
2e2

h
Tr

[
rehr†eh

]
. (2.90)

Particle-hole symmetry implies that ree = rhh∗ and reh = reh∗. As the reflection matrix is

unitary by definition, we have det(R) = ±1. In practice, we will have either normal reflection

(electron-to-electron or hole-to-hole) or Andreev reflection.

For different energy levels n and quantum point contact geometry, we arrive at the following

quantized form for the conductance:

G =
4e2

h
n, (2.91)

with n = 0, 1, ... for a trivial system and n = 1/2, 3/2... for a topological system [70], [74].
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2.6.2 Zero bias peaks

The zero-bias peak (ZBP) as a signature follows directly from the quantized conductance

propperty. In low temperatures, following from eq. (2.91), when the bias V is zero, we expect

perfect Andreev reflection and an I-V characteristic as:

dI
dV
=

2e2

h
Γ2

eV2 + Γ2 . (2.92)

This means that we can observe a zero-bias peak in conductance, which can be measured via

Scanning Tunneling Microscopy, an experimental probing method that will be discussed in the

subsequent section.

The main issue with this particular signature is the many possible origins, not necessarily

topological in nature, of a zero-bias peak. For instance, in nanowires, a ZBP may happen in as

consequence of inhomogeneous chemical, dubbed “bad regime”) or a strong disorder regime,

the "ugly" regime, in contrast to the "good" topological regime [3].

Such ambiguities became of particular interest after the retraction of a paper, published in

a high impact journal, that claimed to find perfect quantized conductance in semiconductors-

superconductor nanowires [36]. More rigorous studies on the impact of disorder in Majorana

signatures followed as consequence [35], [75].

2.6.3 Current periodicity in Josephson junctions

In Josephson junctions, two superconductor materials are separated by a normal conductor.

Current may flow despite the presence of a voltage bias; this current, named Josephson current,

follows:

I ∝ sin(ϕ). (2.93)

Therefore, the current follows a 2π periodicity in the order parameter phase difference of the

two superconductors, ϕ. In the presence of Majoranas, the Hamiltonian is modified and Parity

restrictions ensures that the current behaves with:

I ∝ sin(ϕ/2). (2.94)

This implies a 4π periodicity for the Josephson current in the presence of Majoranas.
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2.7 Experimental aspects

In this section, we shall discuss experimental aspects that will be relevant to the comprehen-

sion of results in this present work. First, we delve into the proposed experiment protocols for

manipulation and readout of vortices for quantum computation, in particular, braiding methods.

This is relevant to understand the practical difficulties of implementing gate-based quantum

computing with vortices, an issue that will be further explored in chapter 4. Moreover, we cover

experimental techniques to probe Majorana zero modes in vortices that rely on energy and charge

properties of the states. The techniques will be core concepts to understand chapter 3.

2.7.1 Braiding implementation protocols

To perform quantum computation, a topological qubit needs to be manipulated in order to

perform braiding and, thus, serve as logic quantum gates. Different physical procedures for the

manipulation have been proposed; here we discuss two fundamentally different approaches [29].

Real space protocols

Real space braiding protocols required the movement of vortices in real space, using suitable

apparatus. Real space braiding is considered a difficult approach. This fame relates, in parts, to

the historical development of the field of topological qunatum computatio being more focused

on nanowires rather than two-dimensional systems. In nanowires, due to the spacial limitations

of from being an almost one-dimensional setup, moving vortices would drag particles around,

which may cause quasiparticle poisoning and modify the parity of the system [38]. This can be

detrimental since parity is the needed observable to perform braiding. Nevertheless, methods of

error correction focused on parity flips can be used to aid such procedures, as further explained

in Appendix D [76], [77].

Experimental efforts have also been made to improve the possibility of real space braiding.

The advent of topological setups that are not limited to one dimension and the better understand-

ing of materials with more appropriate parameters, such as superconductivity gap and coherence

length, might be useful for implementing real space braiding.

Furthermore, not all techniques of real-space manipulation and readout of vortices rely

on tunneling current. For instance, Magnetic Force Microscopy (MFM) uses magnetic force

gradients and may be better in bypassing quasiparticle poisoning, besides being particularly
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suitable to ferromagnetic materials [78], [79].

Measurement-based protocols

An alternative to overcome the difficulties of spacially moving vortices, the measurement-

based protocol uses projective measurements to obtain topological charge information. Particular

sequences of such measurements are equivalent to braiding operations, up to an overall phase.

In the case of Majoranas, being Ising anyons, projective measurements can be done via

interferometry [39]. The protocol can be found in terms of Fusion rules formalism on Appendix

A. Furthermore, measurement-based braiding has also been investigated in the case of quasi-

majoranas 6, despite being trivial modes [80].

2.7.2 Probing techniques

Scanning Tunneling Microscopy

In terms of image resolution, regular optical microscopes are limited by light’s wavelengths.

In nanometric scales, therefore, this method is not suitable. Tunneling microscopes, in contrast,

possess better resolution as they are bounded to electronic-scale properties.

In scanning tunneling microscopy (STM), images are obtained by examining the surface of a

sample with a metallic tip [81]. Tip and substrate are not in contact; however, these two elements

will function as electrodes in a vacuum, and the passage of current happens due to tunneling. Fig.

2.5 displays a scheme of scanning tunneling microscope above an irregular sample.

As tunneling is a function of the distance between the two electrodes, it is possible to obtain

detailed topographic information about the examined material with the STM method. It is

possible, for instance, to recreate a crystal’s structure. The earliest experimental work on STM

recreated the surface of materials such as Au(110) and Si(111) surfaces [81].

Scanning Tunneling Spectroscopy

As tunneling also depends on the electron density, information on the electronic properties of

materials can also be obtained via electron scattering. Scanning Tunneling Spectroscopy adapts

STM methods by fixing the tip on a specific position and varying an external voltage. Since

6Refer to Appendix C for more details on quasi-majorana particles.
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Figure 2.5: Pictoric scheme for a Scanning Tunneling Microscope. Scanning surface with
different heights provide different tunneling current values.

we have a constant distance in a fixed position, any variations should be attributed to electronic

properties.

Quantitatively, STS measurements evaluate the current variation in terms of voltage, also

known as I-V characteristics, which is a quantity proportional to the local density of states, ρ

[82].
dI
dV
∝ ρ(eV).

Non-local STM measurements

One way to use STM apparatus to analyze the topological nature of a material is via non-local

conductance, initially proposed for application to probing the nanowire setup [83]. A vortex-

focused setup of uttermost importance throughout this thesis relies on using three-point contacts

to carry non-local measurement of charge, q and local density of states, n [41]. The idea is to

obtain a spacially-resolved mapping of both quantities and analyze the ratio q(r)/n(r) in pairs

of vortices to distinguish trivial and topological in-gap states in vortices. Charge is a relevant

signature for Majorana quasiparticles, as particle-hole symmetry dictates that the zero-energy

state must also have zero charge.

In section 3 we show how, in the presence of impurity and in the dilute limit, where vortices

have enough spacial separation not to affect each other, the charge signature may still be

misleading.
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Ambiguity of MZM signatures in the

presence of scalar impurities

In this chapter, we examine the problem of potentially erroneous indications of the presence

of Majorana states in fully trivial superconductivity in the presence of scalar impurities. We

demonstrate that simply using high-resolution equipment may be insufficient to distinguish

between these states with certainty. In fact, the anticipated broadening of energy levels may

impede our ability to differentiate between Majorana states and topological trivial states that may

also be present in vortices.

Many experiments to identify Majorana modes relied on measuring zero-bias peaks with

scanning tunneling spectroscopy and microscopy 1. In topological superconductors, Majorana

zero modes may be found in superconducting vortices. At sufficiently low electron density, these

vortices should host Majorana zero modes isolated from other in-gap states.

The fundamental challenges in verifying the presence of Majorana Zero Modes (MZMs) in

vortices of topological superconductor candidates is establishing a clear distinction from other

trivial states. In superconducting vortices, non-topological quasiparticle excitations are known

as Caroli-de Gennes-Matricon (CdGM) states [4]. They appear in low-density superconducting

materials, where vortices act as “quantum wells for quasiparticles” [84]. As previoisly discussed

in chapter 2, for CdGM states, the spectrum given by [50] (see Fig. 3.1 (a, b)):

Em =
m∆0

kFξ
, (3.1)

1Check chapter 2 for a review on experimental techniques ans signatures of Majorana quasiparticles.
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where m = (n + 1/2), n is an integer number, kF is the Fermi momentum, ξ the bulk coherence

length, and ∆0 is the amplitude of the bulk superconducting pairing potential.

Note that the predicted spectrum of CdGM states in trivial superconductors lacks a zero-

energy level. From Eq. (3.1), it is clear that an energy resolution better than ∆0/kFξ is required to

detect isolated excited levels. Since this resolution is accessible in state-of-the-art experiments,

tunneling spectroscopy measurements of vortices on topological superconductors are expected

to distinguish Majorana from trivial states [41], [85], [86]. Such differences between CdGM

and MZMs spectra are taken into account for the interpretation of experimental observations of

zero-bias peaks inside vortices [6], [7], [87]–[94].

We intend to challenge this assumption by considering the presence of scalar impurities on

the material. Recent experiments on candidate topological superconductor materials revealed

that many zero-bias peaks, associated with the presence of MZM modes, were not present in all

vortices [88], [92]. Furthermore, some of the detected peaks often appeared to be stabilized by

nearby magnetic [94] or scalar [89] impurities. Although it is well known that zero-bias peaks

can emerge in superconductors without topological properties when magnetic impurities are

present, it is still an open question whether scalar impurities may produce similar effects [95].

Motivated by this scenario, we study the effect of scalar impurities in the in-gap spectrum of

a two-dimensional trivial s-wave superconductor. We chose this system because:

(i) s-wave superconductor is a simple example of a trivial superconductor;

(ii) the Hamiltonian does not contain additional terms that could lead to corrections from

Eq. (3.1). As a result, the spectra and corresponding charge distributions can be traced back

unequivocally to the presence of the impurity potential.

Moreover, influenced by the new generation of experiments in nanowires, non-local measure-

ments with scanning tunneling microscope measurements were suggested as a way to extract the

Bardeen-Cooper-Schrieffer (BCS) charge of in-gap vortex excitations [41]. Because trivial states

have non-zero BCS charge whereas MZMs are strictly chargeless [70], information on the BCS

charge in principle helps to distinguish CdGM states and MZMs.

Our main results are illustrated in Fig. 3.1, which compares the density of states and BCS

charge for a trivial s-wave superconductor with and without an impurity potential. The calcula-

tions reveal that trivial CdGM states mimic MZM’s signatures in two ways. First, electrostatic

inhomogeneities shift the lowest CdGM state energy arbitrarily close to zero, as schematically

shown in Figs. 3.1 (a, b). Second, as the energy separation of these states become smaller than
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the experimental resolution – mainly limited by thermal broadening –, the spectral BCS charge

is also suppressed, as shown in Figs. 3.1 (e, f). As a consequence, electrostatic inhomogeneities

can make CdGM indistinguishable from MZMs when probed by STM experiments, given the

current experimental resolutions.
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Figure 3.1: Energy states inside the vortex for (a) a clean s-wave superconductor and (b) an
s-wave system with screened charge impurity. The blue line shows the position-dependent
superconducting order parameter, and the dashed lines schematically show the energy of in-gap
CdGM states. In panel (b), the black dashed lines indicate the CdGM spectrum without a charged
impurity, whereas the red dashed lines indicate the spectrum with the impurity. The black arrow
highlights the energy shift caused by the impurity potential. Panels (c) and (d) show the density
of states, whereas (e) and (f) show the BCS spectral charge for the s-wave system without and
with impurity respectively.
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3.1 Model

We consider a trivial superconductor modeled as a two-dimensional electron gas with s-wave

superconducting pairing 2. The corresponding tight-binding model on a square lattice (with

lattice constant a) has a normal state Hamiltonian

H0 = (4t − µ)
∑

i

∑
σ

c†iσciσ − t
∑
⟨i, j⟩

∑
σ

c†iσc jσ + h.c., (3.2)

where µ is the onsite energy, t is the hopping constant, c†iσ(ciσ) creates (destroys) an electron of

spin σ at site i, and ⟨i, j⟩ denotes a sum performed over nearest-neighbors. The superconducting

term in the Hamiltonian is

Hs-wave =
∑

i

∆s
i c
†

i↑c
†

i↓ + h.c.,

∆s
i = ∆0eiϕi tanh

(
ri

ξ

)
, (3.3)

where ∆0 is the amplitude of the bulk order parameter, ri is the distance from r = 0 (the vortex

center) to the atomic position i, ξ is the vortex radius, and ϕi = arg(ri) is the order parameter

phase, as shown in Figs. 3.2 (a) and (b). Note that we treat ξ and ∆0 as independent parameters,

since we do not solve the Ginzburg-Landau equations. We also treat spin as a trivial degeneracy

and perform all tight-binding calculations with Kwant [96].

To match the typical ratios for µ/∆0 reported in experiments we set µ = 0.05t and ∆0 = 0.02t.

We also set ξ = 10a, unless stated otherwise, to ensure that the vortex size is negligible compared

to the system size (200a × 200a).

2Refer to chapter 2 for a deeper review on this type of superconductivity.
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Figure 3.2: Magnitude (a) and phase (b) of the superconducting order parameter (as defined
in Eq. (3.3)). The BCS charge-resolved spectrum of in-gap vortex states is shown for s-wave
superconductor (c) without and (d) with an screened charge impurity with δµ = 0.06t and η = 5a.

Figure 3.2 (c) show the spectrum and the respective integrated BCS charge expectation

values, Q ≡
∑

iQ(ri) where Q(ri) := ⟨Ψ|c†i ci − cic
†

i |Ψ⟩ is the local charge for a given eigenstate,

of in-gap vortex states for this system as a function of the vortex radius ξ. Finite energy levels

approach zero as ξ increases, as expected for quantum-confined levels.
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3.2 Effects of an impurity potential

We would like to test whether local changes in the electrostatic potential can shift the energy

of CdGM states arbitrarily close to zero energy. In this situation, the lowest-energy trivial

states may have energy smaller than the experimental resolution, resulting in a near-zero-bias

conductance peak, similar to the one produced by MZMs.

To demonstrate this phenomenon, we consider the effects of an isolated screened charge

impurity close to the vortex core. This choice is inspired by recent experiments in iron-based

superconductors [88], [89], [92] showing that scalar impurities favor the presence of zero-bias

peaks inside vortices.

We model the presence of a screened charged impurity on the s-wave Hamiltonian by

incorporating an onsite modulation term as follows [97], [98]:

Himp = δµ
∑
i,σ

e−r2
i /2η

2
c†iσciσ , (3.4)

where δµ is the potential strength of the impurity, and η is the screening length. Next, we

calculate the energy spectra and the integrated charge Q of the quasiparticles.

Figure 3.3 shows the resulting low-energy spectra as a function of η and δµ, revealing a

resemblance to the spectra of a topological superconductor with a vortex. Both charge and energy

of the lowest-energy state approach zero, while the shifts of energy and charges of higher energy

states are exponentially suppressed 3.

The local BCS charges Q(r) for the lowest-energy in-vortex state with and without the

impurity are shown in Fig. 3.3 (c). We verified that, although the total charge is suppressed

[Fig. 3.3(a, b)], the local charge is weakly affected by the impurity. Thus, one should be able to

distinguish CdGM and Majorana states with an arbitrarily small resolution, since MZMs have

zero BCS charge everywhere. However, as we show in the next section, the energy shift together

with level broadening of the lowest-energy CdGM states results in a vanishing spectral BCS

charge.

3See Appendix E for a quantitative discussion on perturbative effects of impurities in higher energy states.
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Figure 3.3: BCS charge for an s-wave system with impurity. In panels (a,b), the spectrum evolves
as a function of (a) impurity size η (δµ = 0.025t), (b) impurity strength δµ (η = 5a). (c) BCS
charge (black) and BCS charge spectral density (red) for the lowest energy state for a system
without (dashed line) and with (solid line) an impurity with η = 5a and δµ = 0.05t.

The effects of the vortex size and impurity screening length on the lowest-energy state,

E1/2, and its charge are shown in Fig. 3.4. The data clearly shows a suppression of E1/2 and Q

on large regions of the {η, δµ} parameter space, indicating that the above results hold beyond

the highly-localized impurity regime, η ≪ ξ. This also suggests that smooth fluctuations in

the underlying electrostatic potential can mimic Majorana signatures. Furhtermore, due to

particle-hole symmetry, E1/2 and Q tend to be correlated.
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Figure 3.4: Dependence of lowest energy state E1/2 (a, c) and BCS charge (b, d) on (a, b) η and
ξ, (c, d) η and δµ. In (a, b) we choose δµ = 0.06t, and in (c, d) we choose ξ = 5a.
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3.3 Experimental relevance

In this section, we highlight the relevance of our results for the interpretation of current exper-

imental data from Scanning Tunneling Spectroscopy (STS) and Scanning Tunneling Microscopy

(STM) experiments [7], [88], [92].

Thus far, we have discussed the changes in the global properties of CdGM state due to the the

presence of scalar impurities at the vortex site. Since vortices tend to be pinned by defects and

impurities [99], this picture can be favored in samples in which some degree of surface disorder

is present, as it seems to be the case in Fe(Se,Te) surfaces [92].

Moreover, STS conductance peaks at energies below of what would be estimated as E1/2

are usually “ruled out” as CdGM states [7], [92]. As we have shown, such a heuristic picture is

not accurate in the presence of impurities: the results shown in Figs. 3.2 and 3.3 show that the

energy of the first CdGM state can be significantly lower than the value of E1/2 estimated from

bulk parameters and serve as a cautionary tale against ruling out these near-zero states as CdGM

states.

Another important point of attention when comparing the raw CdGM spectra with the peaks

appearing in STS measurements is the role of the thermal effects of the STS peaks, which

effectively sets an energy resolution. To illustrate the limitations introduced by such energy

resolution, we defined the spatially-resolved spectral density A(ω, r), and the spectral BCS

charge C(ω, r) at energy ω and position r:

G(ω) = [ω − H + iγ]−1 , (3.5)

G(ω, r) ≡ ⟨r|G(ω)|r⟩ , (3.6)

A(ω, r) ≡ −
1
π

Im Tr [G(ω, r)] , (3.7)

C(ω, r) = −
1
π

Im Tr [G(ω, r)Q(r)] , (3.8)

where γ is a positive small parameter that sets the level broadening.
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Figure 3.5: Density of states A(ω) ≡ (−1/π)Im G(ω) of an s-wave superconductor as a function
of level broadening γ (η = 5a). In panel (a), one can observe that the two trivial states are
distinguishable in the absence of an impurity (δµ = 0) up to γ ∼ E1/2. As the impurity strength
increases, as shown in panels (b-d), the trivial states are shifted to smaller energies ω and
therefore one cannot distinguish them even with a much smaller level broadening γ.

Typical experimental broadenings are of order γ ∼ 0.1 ∆0 (mostly arising from thermal

effects) whereas the energy spacing estimated without impurities is E1/2 ∼ 0.5∆0. [7] Thus, for

clean systems, scanning tunneling transport experiments should indeed be able to resolve the

energies of MZMs and CdGM states. However, electrostatic inhomogeneities that make E1/2 ∼ γ

impede a clear distinction between trivial and non-trivial states due to the constraint imposed by

particle-hole symmetry that implies the shifting of positive and negative energy states towards

zero energy.

We illustrate the effects of level broadening in Figs. 3.1 and 3.5. Figure 3.1 shows contour

plots of A(ω, r) [Fig. 3.1(c,d)] and C(ω, r) [Fig. 3.1(e,f)] for energies within the gap and positions

inside the vortex. In the absence of impurities [Fig. 3.1(c) and (e)], one obtains peaks in

A(ω ≈ ±E1/2, r ≈ 0) originating from the first CdGM state, as expected. Some smaller peaks

for excited CdGM states (with nodes at r ≈ 0) are also seen. The BCS charge for these states

oscillates in position along the vortex, changing sign.
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A different picture is observed in the presence of impurities and a modest thermal broadening

(γ/E1/2 ≈ 0.27). There is a single peak in the spectra charge density near zero energy A(ω ≈

0, r ≈ 0), and the BCS charge at these energies is very close to zero. In Fig. 3.5 we illustrate

how much the level broadening affects our results. In the absence of impurities [Fig. 3.5(a)], the

energies of CdGM states are determined by the bulk parameters. Therefore, the two lowest-energy

peaks are distinguishable up to γ/E1/2 ∼ 1. As the energy levels shift towards zero, the two lowest-

energy peaks cannot be resolved for γ/E1/2 ≳ 0.5 (Fig. 3.5 (b)). In some cases, these peaks cannot

be resolved even for relatively “small" broadening values γ/E1/2 ∼ 0.1 or lower (Fig. 3.5 (c-d)).

In a similar manner, since particle-hole symmetry ensures that Qm=1(r) = −Qm=−1(r), the BCS

charge also becomes negligible, as shown in Fig. 3.1 (f).

Notice that the combined effect of the shifting of the energy levels toward zero and a moderate

broadening can effectively “disguise” the lowest CdGM state as a zero-bias peak (see. e.g., Figs.

3.5 (c,d)) in experiments. Interestingly, some STS experimental data show vortex bound states as

peaks near but not at zero bias in the tunneling spectra [88], a result which is consistent with this

picture.

These observations suggest that recent experiments claiming impurity-assisted formation of

MZMs [89] should be interpreted carefully. At the same time that local changes in the chemical

potential could lead to a topological phase transition, trivial CdGM states can also be shifted

arbitrarily close to zero energy. Thus, zero-bias peaks in the vicinity of scalar impurities are

ambiguous signatures and cannot fully distinguish MZM and CdGM states.
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3.4 Concluding Remarks

In this chapter, we have found that scalar impurities within vortices can alter the CdGM

spectrum, resulting in spectral features that resemble those of MZMs. This is exemplified by

using the unequivocally non-topological case of s-wave superconductivity. We see that scalar

perturbations near the vortex center can decrease the energy of CdGM states and suppress their

global BCS charge.

We highlight that this is a general result. Particularly, the energy and charge of CdGM modes

can be shifted arbitrarily close to zero for a broad range of values in the parameter space of the

model proposed, as shown in Fig. 3.4.

Consequently, distinguishing between impurity-driven zero energy states and topological

MZMs using only local spectroscopic techniques may not be possible. Moreover, extrinsic

broadening effects on particle-hole symmetric levels lead to apparent vanishing of the BCS

charge. These considerations are particularly relevant to experimental works that often rely on

the fact that CdGM states have finite energy.

To complement current local STS set-ups, non-local probes with adequate experimental

resolution could potentially be used to map changes in the BCS charge at a local level, as argued

in Ref. [41]. In summary, it is important to provide a description of the spectroscopic properties

as they will be affected by the presence of electrostatic inhomogeneities.
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Multi-vortex configurations in

semiconductor-superconductor hybrid

systems

The common approach to obtain topologically non-trivial excitations involves using p-wave

superconductivity, where the superconducting pairing is linearly proportional to the momentum.

The naturally arising fermion parity anomaly allows for the creation of unpaired Majorana

quasiparticles with anyonic statistics. However, this type of superconductivity is not common in

materials [2]. Moreover, there is no consensus regarding the superconducting paring nature of

the leading candidate for this pairing, Strontium Ruthenate (Sr2RuO4) [30]–[32].

Naturally, a more common and less controversial type of superconductivity became a topic of

interest. The s-wave superconductivity, found in Al and Nb, can be aided by other contributions

to the Hamiltonian to generate effective topological superconductivity [100]. One of the earliest

proposals, the Fu-Kane model, include combining s-wave pairing and topological insulators [40].

In this chapter, we focus on a following proposal, using s-wave, semiconductors with spin-orbit

and a magnetic insulator [10].

4.1 The hybrid setup

To understad how an appropriate combination of terms may give rise to a system analogous

to p-wave superconductivity, it is instructive to review relevant symmetries in condensed matter;

section 2.3 contains a review of the topic. With symmetry considerations in mind, we can explore
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how to construct a topologically non-trivial Hamiltonian from scratch. Here is the initial generic

Hamiltonian, with a kinetic term, η = 1/(2m), and chemical potential, µ:

H0 = (−η∇2 − µ)τz. (4.1)

Here, τi, i = {x, y, z, 0} are equivalent to Pauli matrices in particle-hole space. The proportionality

with τz accounts for the particle-hole symmetry of the system 1. We are dealing with differential

operators in the Hamiltonian, as we intend to analyze real-space properties at this point of the

thesis.

We wish to add s-wave superconductivity. Considering a vortex-like order parameter for the

s-wave superconductivity:

∆(r) = ∆0 f (r)eiθτx, (4.2)

where f (r) is the radial function of the order parameter and θ encompasses the angular de-

pendency. However, due to the spin degree of freedom, it is impossible to generate unpaired

Majoranas [2].

If allied with a magnetic insulator in the z direction to provide a Zeeman component to the

Hamiltonian, we may break time-reversal symmetry:

HZeeman = Vzσz. (4.3)

Vz is the strength of the Zeeman component. This is needed due to Kramer’s degeneracy.

Kramer’s theorem states that, for spin-half systems, each energy eigenstate has a degenerate,

time-reversed pair [24].

However, we now have a conservation law for the z component of spin. The system is trivial

again because the bands crossing belongs to different spin species and thus are not coupled.

Adding the spin-orbit coupling term, Hs.o., is crucial to providing spin terms in x and y directions,

thus breaking σz symmetry.

Hs.o. =
α

2
(σ+p− − σ−p+)τz. (4.4)

This is a Rashba-type spin-orbit term with strength α. In practice, that can be achieved by

introducing a semiconductor with spin-orbit, such as InAs and InSb [4]. The final setup can be

1Refer to subsection 2.1.4 for a review on Bogoliubov-de Gennes formalism.
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visualized in Fig. 4.1.

Figure 4.1: Physical setup for the hybrid device studied.

The final model, in the Nambu basis, becomes:

H = (−η∇2 − µ)τz + Vzσz +
α

2
(σ+p− − σ−p+)τz. + ∆0 f (r)eiθτx. (4.5)

Note that our final Hamiltonian breaks time-reversal symmetry and preserves particle-hole

symmetry, fitting in the symmetry class D, as shown in the table 2.3. In this setting, a point-like

defect (as a vortex) can host gapless states and possess Z2 protection, in analogy with a chiral

p-wave system [101]. Due to the particle-hole symmetry of the system, it is convenient to write

the Hamiltonian in Bogoliubov-de Gennes (BdG) form:

HBdG =

 H0 ∆

∆∗ −σyH0σy

 , (4.6)

with H0 ≡ (−η∇2 − µ)τz +Vzσz +
α
2 (σ+p− −σ−p+)τz. For this case of a single vortex, the angular

dependency for this case can be avoided by performing a rotation of ei(σx/2−iτx/2)θ [9]. This can

also be achieved with a gauge transformation of the fermion operators as cσ → cσe−iθ/2, which

omits the angular factor in the order parameter, since ∆(r) = ⟨c↓c↑⟩.

The Hamiltonian for the electron sector is the 2x2 matrix:

HBdG =

 −η(∂2
r +

1
r∂r) + Vz − µ +α(∂r +

1
r ) + λ∆(r)

−α∂r − λ∆(r) −η(∂2
r +

1
r∂r −

1
r2 ) − Vz − µ

 . (4.7)
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We write the corresponding reduced spinor for the electronic part as:

Ψ(r) =

 u↑(r)

u↓(r)

 (4.8)

As the Majorana particles are the zero-energy quasiparticles for this Hamiltonian, we are

interested in solutions for HBdGΨ(r) = 0. We obtain the coupled equations:

−∂2
r u↑(r) −

1
r
∂ru↑(r) + u↑(r) + ∂ru↓(r) +

u↓(r)
r
− ∆(r)u↓(r) = 0, (4.9)

−∂ru↑(r) + ∆(r)u↑(r) − ∂2
r u↓(r) −

1
r
∂ru↓(r) +

u↓(r)
r2 − u↓(r) = 0, (4.10)

where we considered the parameters provided in reference [10], η = α = Vz = −λ = 1, ∆0 = 0.1

and µ = 0. Now we can solve the differential equations from the Hamiltonian through Boundary

Value Problem (BVP) technique.

In Fig. 4.2, we plot the spinor components of the reduced BdG Hamiltonian of this system,

which we will denote as u↑(r) and u↓(r).

Note the results are quantitatively different from Fig. 2 of the original reference for the hybrid

model [10]. While our results indicate u↓(r) with negative initial first derivative, the results

showcase a negative initial first derivative.

Upon further review and after discussion with the original paper authors, both parts concluded

that our results in Fig. 4.2 are nevertheless correct. This is partially due sign-error typo in the

caption of Fig 2 in [10]. The correct initial condition is Ψ0(r = 0) = −(1, 0)T . Furthermore, sign

of the first derivative was incorrect. Our results also consistent with Fig 3 of a later paper from

the same authors, apart from the sign of the initial conditions [9].
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Figure 4.2: Spinor components from the reduced BdG Hamiltonian with a vortex-like order
parameter. where we used η = α = Vz = −λ = 1, ∆0 = 0.1 and µ = 0.
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4.2 Zero-energy spinor components for many vortices

Using the setup discussed in the last section, we can now extrapolate the results from the

literature to obtain a more general expression, considering more vortices. For this purpose, we

need to modify the order parameter to correspond to multiple different positions for the new

vortices, Ri. A general way to account for this behavior would take the following form [102]:

∆(r,Ri, θ, θi) =
∏
i=1

f (|r − Ri|) exp
[
iϕi(r,Ri, θ, θi)

]
. (4.11)

Where the i index counts the number of vortices. The term f (r − Ri) is the radial component of

the order parameter, that can be obtained self-consistently.

The component ϕi(r, θ) accounts for the angle between the vortex positions and ni are the

winding numbers of the vortices. This form mantains the parity of the order parameter as even,

thus, it is still compatible with s-wave pairing. This is important to preserve the required overall

antisymmetry of the fermionic wavefunction.

Figure 4.3: A visual scheme for two vortices in real space. The distance between vortices is
assumed to be greater than the vortex core, Rcore = 1.
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In polar coordinates, we can write the coordinates of the vortices in a given distance d of the

reference point P in terms of the coordinates of our origin as:

Ri(r, θ) =
√

r2
i + d2 + 2rid cos θ, (4.12)

θi(r,Ri, θ) = ni arctan
(

sin θ
cos θ − d/Ri

)
, (4.13)

where ri is the distance between vortex i and P. We introduce ni = ±1 to account for different

winding numbers. Thus, our final form for the order parameter is:

∆(r,Ri, θ, θi) = ΠN∆0 f (r − Ri)ei(θ−niθi). (4.14)

A sketch for the real space interaction between two vortices is shown in Fig. 4.3.

Our coupled system for more than one vortex cannot be solved by separation of variables

anymore due to the modified order parameter, which is no longer rotationally invariant. Explicitly,

the new set of BdG equations are:

−∂2
r u↑ −

1
r
∂ru↑ −

1
r2∂

2
θu↑ + u↑ +

ie−iθ

2

(
−i∂ru↓ −

1
r
∂θu↓

)
− ∆(r, θ)u↓ = 0 (4.15)

−
ieiθ

2

(
−i∂ru↑ +

1
r
∂θu↑

)
+ ∆∗(r, θ)u↑ − ∂2

r u↓ −
1
r
∂ru↓ −

1
r2∂

2
θu↓ − u↓ = 0. (4.16)

To solve this coupled system, we use the Finite Differences method, further explained in Appendix

F [103]. Once cast in a discretized form, we use a routine to invert sparse matrices and obtain

the N-vortices spinor components. As a sanity check, we may test whether our generalization

can be reduced to the one-vortex case reproduces the result for one vortex. Fig. 4.4 demonstrates

that this is the case 2.
2Refer to Appendix F for details and comparison between Boundary Value Problem and Finite Differences

methods.
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Figure 4.4: Spinor component solutions. Using parameters to account for one vortex.
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4.3 Topological Characterization for many vortices

In order to understand and quantify the topological nature of the generalized proposal,

starting with the original semi-superconductor Hamiltonian, we can introduce our modeled order

parameter, tweak parameters and analyze relevant observables.

In this section, we check the proximitized s-wave, semiconductor and magnetic insulator

setup and compare with the standard p-wave setup in the previous section. Note that the system

will be topological when Vz > Vc
z , or Vz >

√
µ2 + ∆2

0 [9]. The parameters used from here onwards

are, unless stated otherwise, ∆=5, µ=0, Vz=10 and η=2.

4.3.1 Majorana Polarization

For precision, we use a scattering space of 100-by-100 sites system. We may plot the density

of states to observe spatial signatures case 3. For a more quantitative test, we can use Majorana

Polarization, a measure of the particle-hole symmetry of the system, useful to analyze whether

the vortices have a topological character [104], [105]. A generalized formulation of the Majorana

Polarization is:

MP =
∑
⟨Ψ| C j |Ψ⟩∑
⟨Ψ| r j |Ψ⟩

, (4.17)

where C j is the particle-hole operator and r j is the projection onto a site j. Majorana states obey

⟨Ψ| C j |Ψ⟩ = 1, thus the expression, when evaluated over a region, determines the localization of

the Majorana state, with MP→ 1 representing a localized state in a given region. For the system

we are considering, C j = σx.

Fig. 4.5 presents a spectrum with clear zero-energy mode and high Majorana Polarization. It

also features two gap openings: fo small Vz, the gap is open because Vz <

√
µ2 + ∆2

0. A second

gap opening is also expected for higher magnetic fields.

3We are using the kwant.plotter.map() method in Kwant, as opposed to the usual kwant.plotter.density() for
improved site-level resolution.
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Figure 4.5: Single vortex case: Spectrum. Here, ∆ = 0.5.

Majorana polarization may be represented as a vector field, with the x component of each

arrow corresponding to Re(⟨Ψ| C j |Ψ⟩) and the y component being Im(⟨Ψ| C j |Ψ⟩), as it brings to

light how components may cancel each other over a given region [106].

4.3.2 Multiple Vortices

We are interested in investigating the possibilities of working with several vortices. For this

purpose, we move to two vortices, as pictured in Fig. 4.6. We start by placing two vortices at r1

=(10,0) and r2=(-10,0), in units of the lattice length. In realistic systems, vortices too close to

each other may fuse into a single trivial Fermion, however, vortices too far away may be affected

by the proximity of the edges. In the present computational simulations, the vortices’ radii is

taken to be effectively zero; the more complex case of finite radius will be taken into account in

Chapter 3. Therefore, fusion by proximity is minimized.

Fig. 4.6 a showcases a well-localized density of states and Fig. 4.6 b, the vectorial Majo-

rana Polarization. Higher values of the order parameter will increase radial symmetry in this

representation, which may lead to canceling components on a given region.
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Figure 4.6: Two vortices case: a) spatial distribution of the density of states, b) spatial distribution
of the Majorana Polarization.

In Fig. 4.7, the spectrum for two vortices as a function of the external magnetic field reveals

a robust zero-energy mode, with high Majorana Polarization, up until the gap opening at ∆ = 5.

For ∆ ≤ 5, the spectrum shows many near-zero energy states. Note the absence of the first gap

opening.
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Figure 4.7: Two vortices case positioned at r1 = (30,0) and r2 = (-30,0): Spectrum as a function
of Vz.

With more than a single vortex, we can also investigate the effect of different relative phases

between vortices. As described previously in Eq. (4.13), for many vortices we have:

∆ = ∆0

∏
n

exp{in arctan(yn, xn)} (4.18)
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where n is the n-th vortex added and yn, xn are the respective x- and y-coordinates for the vortex n.

The phase n = ±1 represents the relative phase of the vortices. We may establish the convention

(n1,...,nN) to indicate the phases of the first to the N-th vortex, respectively.

In Fig. 4.8, the vortex at r2=(10,0) possess a negative phase factor. Differences in Majorana

Polarization as a function of Vz are minimal when compared to Fig. 4.7, where the vortex at

r2=(-10,0) carries a positive phase factor.
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Figure 4.8: Two vortices case, with (-1,1) phases, positioned at r1 = (10,0) and r2 = (-10,0): a)
spatial distribution of the density of states, b) spatial distribution of the Majorana Polarization.

Four vortices

We now investigate four vortices, as this is the required number of vortices to define a single

qubit. We place the vortices at r1 = (20,0), r2 = (-20,0), r3 = (0, 20) and r4 = (0,-20). It is

straightforward to note the detrimental aspect of relative phases here by comparing right and left
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sides of Fig. 4.9.
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Figure 4.9: Four vortices. a) spatial distribution of the density of states for for (+1,-1,+1,-1)
phases. b) spatial distribution of the density of states for for (-1,+1,+1,-1) phases. c) spatial
distribution of the Majorana Polarization for (+1,-1,+1,-1) phases. d) spatial distribution of the
Majorana Polarization for (-1,+1,+1,-1) phases.

Different relative phase also impact the spectrum, as shown in Fig. 4.10. Similarly to the

two-vortex case, there intervals of Zeeman magnitude where clear zero-energy mode can be

found. However, in other intervals, the spectrum is crowded with very near zero-energy spurious

states that can pose a problem for experimental identification. Moreover, the energy scales for

the levels are critically different for different relative phases.
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Figure 4.10: Four vortices case positioned at r1 = (20,0), r2 = (-20,0), r3 = (0, 20) and r4 =

(0,-20). a) spectrum as a function of Vz for (+1,-1,+1,-1) phases. b) spectrum as a function of Vz

for (-1,+1,+1,-1) phases.

Note, also, the impact of the scattering region in Fig. 4.11, where 200x200 sites are used

instead of 100x100 sites. As expected, it is possible to obtain a much cleaner spectrum because

hybridization among vortices and edge effects should be minimized.
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Figure 4.11: Four vortices case positioned at r1 = (20,0), r2 = (-20,0), r3 = (0, 20) and r4 =

(0,-20): spectrum as a function of Vz on a 200x200 sites scattering setup.
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4.4 Concluding remarks

We investigate whether the ability to retain topological character would be more robust in

a the hybrid system, as opposed to traditional p−wave system that we considered in the last

section.

The first difference comes from the inherently different nature of the boundary conditions

for these types of superconductivity. While the complex phase of the p−wave order parameter

imposes restrictions to the number of vortices added, the scalar s−wave order parameter do not

hold the same constraint. This is relevant because although the total number of modes are the

same, the edge mode will not be useful for braiding.

However, a direct comparison between the two flavors of superconductivity in real space is

severely limited by numerical factors. The computational method for finding the wavefunction

components require sparse diagonalization, which tends to be costly, specially for complex

matrices [107]. Increasing scattering space region is ideal for resolution, but increases memory

consumption. This restriction makes it difficult to avoid hybridization among vortices and edge

effects, even in the approximation of minimal radii.

Particularly for spectrum analysis, it is difficult to select the appropriate lowest energy state.

This is most likely the explanation to why the first gap opening is generally absent for more than

a single vortex: proper selection of the appropriate states is not a trivial matter, and many in-gap

trivial Andreev states may be accidentally taken into account. It is interesting, however, to note

that it is possible to find sets of parameters with high Majorana polarization.
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Conclusions

The search for Majorana quasiparticles has been driven by the growing interest in both

quantum computing and topological materials. While much of the experimental efforts have

focused on nanowire realizations, the limitations and skepticism surrounding this approach have

prompted investigations into two-dimensional setups such as superconducting vortices. The

present thesis has explored the potential and limitations of these vortices as hosts for topological

quasiparticles.

In the second chapter of our work, we delve into the issue of false-positive signatures of

Majoranas in the presence of scalar impurities in fully trivial superconductivity. We investigate

both energy and charge measurements and show that high apparatus resolution alone is not

sufficient to resolve the signature ambiguity. In fact, the expected level broadening can hinder

the unequivocal differentiation between Majorana states and topological trivial states that may

coexist in vortices.

Moving on to the third chapter, we explore the use of proximitized superconductivity, where

we employ trivial s-wave and additional external parameters to mimic intrinsic topological

superconductivity in vortices. We use computational simulation to examine the advantages and

disadvantages of this approach.

Our work have interesting implications for experimental studies on Majorana physics in

vortices. One of our main findings is the formal confirmation that considering the experimental

energy resolution higher than the lowest CdGM mode as a sufficient criteria for differentiation of

trivial and non-trivial states is a misconception. We have shown that this energy scale is, in fact,

nothing more than an upper bound when scalar impurities are present.

Additionally, our work highlights the benefits of combining different contemporary ap-
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proaches, such as the recent exploration of non-local BCS charge measurements, when aiming

for convincing evidence of presence or absence of Majorana quasiparticles.

However, we also note the instrumental limitations posed by memory-consuming calculations

and the current lack of direct accessibility of Majorana polarization through experiments. Further

research and technological advancements will surely be needed to fully realize the potential of

Majorana quasiparticles and their applications in quantum computing and beyond.
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Braiding and Fusion formalisms

In three dimensions, the permutation operation, P, applied on wavefunctions of indistinguish-

able particles in positions r1 and r2 is given by

PΦ(r1, r2) = aΦ(r2, r1), (A.1)

with a = ±1. When a = 1, the wavefunction represents Bosons; when a = -1, Fermions. In two

dimensions, however, the permutation may take a more general form:

PΦ(r1, r2) = eiθΦ(r2, r1), (A.2)

where eiθ is not necessarily ±1. This is a consequence of the dimensionality restriction forcing

that permutation trajectories characterized by different winding numbers cannot be continuously

deformed into one another [108]. This peculiarity of two-dimensions calls for a more general

description than the permutation operation. The braid group for n particles is defined as:

σ jσk = σkσ j (A.3)

when | j − k| ≥ 2, and

σ jσ j+1σ j = σ j+1σ jσ j+1 . (A.4)

The operation σi represents the counter-clockwise permutation of adjacent particles [109].

Visualizations of these properties are portrayed in Figures A.1 and A.2.
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Figure A.1: Pictorial demonstration of first braiding relation. Braiding diagrams can be composed
by concatenation of the end of an operation with the beginning of another for each particle, as
shown by the purple arrows. The dashed lines represent that the trajectory is below the full line.

Figure A.2: Pictorial demonstration of second braiding relation. Braiding diagrams can be
composed by concatenation of the end of an operation with the beginning of another for each
particle, as shown by the purple arrows. The dashed lines represent that the trajectory is below
the full line. Smaller, lesser-spaced dashed lines are below both the larger dashed line and the
full line.

The braiding of non abelian anyons can create several single qubit gates, as detailed in the

main text.

90



Appendix A. Braiding and Fusion formalisms

Fusion rules - Although braiding realizes quantum gates, the readout of the outcome of a

quantum circuit relies on obtaining the final topological charges [29], [109].

The physical process of fusion brings together two particles that will output another particle.

This may happen univocally, as is the case for abelian anyons, or it may happen through multiple

fusion channels, allowing for different particles.

In general, for two particles a and b, their fusion is expressed as:

a × b =
∑

i

N i
abi, (A.5)

where i are the possible particles obtained from this fusion process.

The relationship of different fusion ordering of operations is given by the F-matrix compo-

nents, also known as an F-move. For instance, the process a × b = i followed by c × i = d is

related to the process b × c = j followed by a × j = d via:

|i⟩ =
∑

j

(Fd
abc)

i
j | j⟩ , (A.6)

Another important operation is the R-move, corresponding to the clockwise exchange of two

anyons with a well defined fusion channel.

The Braiding unitary, B, relates to F- and R-moves via:

B = F−1RF . (A.7)

Figure A.3 is a diagramatic visualization of the above identity. From it, we may understand

braiding as an F-move changing an i particle output to a j particle output followed by an R-move

on a and b particles and another F-move, changing j to i particle again.
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Figure A.3: Pictorial demonstration of B = F−1RF.

Anyons in Majorana systems are of Ising type, in constract to anyons the Fractional Quantum

Hall Effect, of Fibonacci type. For our purposes, we are interested in the Ising fusion rules,

which are:

σ × σ = 1 + ψ , (A.8)

σ × ψ = σ , (A.9)

ψ + ψ = 1 . (A.10)

where σ are the non-abelian anyons. ψ are the Fermions are and 1 is the vacuum [23], [109].

Therefore, fusion of anyons may produce a normal Fermion. As an example of this fusion,

proximitized Majoranas hybridize and lose topological character, behaving as Fermions.

An interesting application of fusion relates to measurement-based braiding, as mentioned in

subsection 2.7.1 in the main text. Equation 13 from reference [39] relates forced measurements
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with braiding, using the formalism of fusion rules.

Π̂
(23→14)
M3

Π̂
(24→12)
M2

Π̂
(12→23)
M1

=
eiϕM

da

a

a

ā a

ā aa

a
∝ R(14)

aa ⊗ |ā, a; 0⟩ ⟨ā, a; 0| ,

where R(14)
aa represents the R-move of anyons 1 and 4 with topological charge a.
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Circuit Model of Quantum Computation

Quantum computers are currently a topic of increasing interest due to their predicted opti-

mized capabilities, compared to their classical counterparts, to perform specific computational

tasks [110]. For instance, it may be useful to perform complex numerical studies such as the sim-

ulation of large interacting systems, molecular dynamics and protein folding, an unprecedented

development in chemistry and pharmaceutical research. On the other hand, it also raises security

concerns, as it may break Rivest-Shamir-Adleman (RSA) encryption, the most popular available

security protocol [111].

Among the main challenges for implementing a reliable quantum computer, the stability of

the quantum bits (qubits) is one of the most difficult, as they might lose quantum coherence due

to environmental noise. An approach to overcome decoherence is to work with non-local qubits,

as proposed in Topological Quantum Computation (TQC) protocols[23], [27], [109]. The idea is

to use the inherent robustness of topological degenerated ground state spaces to encode quantum

information in a locally-protected manner.

The best-established framework for quantum computing is the quantum circuit model 1 [109].

Analogous to Computer Science’s circuit model, logical gates modify the bits to obtain the

desired outcome. In the quantum context, the gates are unitary matrices operating in the qubit

states.

An essential set of gates that acts on a single qubit are the Pauli matrices. In particular, the

σx matrix is also known as the bit flip gate and the σz matrix is the phase-flip gate. As the Pauli

matrices act as π-rotations along the corresponding axis in the sphere, the significance of bit-

and phase-flips can be better visualized in the Bloch sphere. By definition, we have the |0⟩ state

1Other models include One-way Quantum Computation and Adiabatic Quantum computation.
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in the northmost point of the Bloch sphere and |1⟩ state in the southmost point.

Figure B.1: Bloch sphere visualization. a - A qubit in the bloch sphere, initialized in |0⟩ state.
b - Action of σx on the initial qubit, performing a bit-flip and bringing the qubit to state |1⟩. c -
Action of σz on the bit-flipped qubit, now performing a phase-flip, indicated by the red color of
the state.

The Hadamard gate is given by:

H =
1
√

2

 1 1

1 −1

 . (B.1)

and is the single-qubit gate most commonly used to bring qubits to a superposition - particularly,

an equiprobable one.

Figure B.2: Action of the Hadamard gate on the initial qubit, |0⟩, creating an equal superposition
of |0⟩ and |1⟩
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For two-qubit states, a gate worth highlighting is the controlled-NOT gate (CNOT), used to

create entangled states. For the first qubit being the target state and the second qubit being the

control, the matrix format of CNOT is:

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (B.2)

With the aid of single-qubit gates, CNOT enables the creation of all four maximally entangled

states (Bell states). These states are essencial for many basic quantum algorithms, such as

Superdense Coding [111].

Figure B.3: Action of the CNOT gate on the initial qubit, 1
√

2
(|0⟩ + |1⟩) |0⟩, on the Q-Sphere, a

generalization of the Bloch sphere for multi-qubits. creating the entangled state 1
√

2
(|00⟩ + |11⟩)

To be able to perform any possible algorithm and to satisfy the di Vicenzo criteria for

a quantum computer [112], we need a universal set of quantum gates. The mathematical

definition of this set requires that the matrices span U(N) densely. Therefore, there is some

freedom of choice of individual gates.

A typical set involves basic-single qubit gates, densily spanning U(2), such as the Hadamard

and the S-phase gate, and a two-qubit gate capable of performing entanglement - in general,
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CNOT. The S-gate is defined as:

S =

 1 0

0 eiπ/4

 = √σz . (B.3)

This is the Clifford set of gates. From this set, to obtain a universal set, it is required to add the

T-gate, defined as T =
√

S . This particular gate is unachievable via braiding of Ising anyons, thus

rendering the topological implementation of quantum computing using Majoranas non-universal.

B.1 Example: Hadamard gate in the TQC hardware

Casting the x and z Pauli matrices in terms of fermionic operators:

σx = i(c1,2 + c
†

1,2)(c3,4 + c
†

3,4) (B.4)

σz = (2c
†

1,2c1,2 − 1) . (B.5)

Braiding of same-vortex Majorana Fermions, such as fermions 1 and 2, becomes:

B1,2 = exp
(
−
π

4
c1c2

)
=

1
√

2
(I − iσz) = e−

iπ
4

1 0

0 i

 . (B.6)

For Majoranas in different vortices, for instance, Majoranas 2 and 3, we have:

B2,3 = exp
(
−
π

4
c2c3

)
=

1
√

2
(I − iσx) =

1
√

2

 1 −i

−i 1

 . (B.7)

From the obtained matrix form of the braiding operations, the Hadamard gate (B.1) can be

written of the following sequence of intra- and inter-vortices braiding:

H = B1,2B2,3B1,2 . (B.8)
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Majorana-like states in vortices

The following examples showcase how states with similar signatures to Majoranas can be

created and, even more strikingly, may be able to perform braiding operations.

However, braiding does not imply topological protection. In practice, as anyons are not

elementary particles, but arise from effective Hamiltonians, the anyon candidate γi must obey:

[H, γi] ∝ exp(L/ξ) , (C.1)

where L characterizes the distance between γi and other anyons present in the system and ξ is a

size scale for these quasiparticles [23], [109]. To ensure topological protection, one must ensure

that L ≪ ξ, which may not always be the case.

Topological protection is, therefore, a more subtle matter: qubits analogous to Majorana

qubits may be proposed, but will not necessarily have the inherent topological protection.

C.1 Poor man’s majoranas

The denomination "poor man’s Majorana" comes from the fact that these bound states show

signatures in agreement with MBS, but only in sweet spots of the parameter space. The earliest

proposal of a "poor man’s Majorana" required two quantum dots and an s-wave superconductor

[113]. The dots are in a homogeneous magnetic field and have different polarization angles. The

angle dependence, embedded in hopping and tunneling parameters, allows for perfect Andreev

reflection, as required for MBS formation. It is similar to MBS, but does not have topological

protection.

A Parity qubit can be established from this system. Parity measurements must be carried
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out in a non-local way, by measuring the charge in both dots simultaneously or via non-local

transport. Furthermore, adding another dot may allow for creating Bell states and obtaining

coherence times. A similar setup, with improved controllability, substitutes the superconductor

with a third quantum dot with proximity-induced superconductivity [114].

A refined proposal exhibits quadratic protection against decoherence, an improvement in

the linear protection from the original Poor Man’s ideation [115]. This setup uses two quantum

dots and a semi-superconductor hybrid and relies on elastic co-tunneling and crossed Andreev

reflections as tuning mechanisms. The robustness, however, occurs in one of the dots, but not in

both.

C.2 Quasi-majoranas

Quasimajoranas are trivial states that emerge in semi-superconductor setups with a smooth

confinement tunneling barrier [116]. They mimic several topological signatures, such as quan-

tized zero-bias peaks, the 4π Josephson effect, and the tunneling spectrum in the presence of a

normal quantum dot.

Quasimajoranas are braidable via measurement-based protocols but lack true topological pro-

tection and are hence sensitive to magnetic impurities or other short-range disorder mechanisms

that could break the smoothness of the potential barrier [80].

99



Appendix D

Quasiparticle poisoning and error

correction

Despite being protected against environmental effects, qubit errors are still possible during

the readout in these topological setups. The most pronounced source of error for Majorana

systems consists of quasiparticle poisoning, which changes the total parity of the system. For the

two-level system for Majorana qubits, parity errors translate as bit-flip errors [76].

The strategy to overcome this issue comes from the classical computing theory of error

correction. Earlier studies on error correction in the quantum computing context are attributed to

Peter Shor, who proposed the introduction of redundancy in encoding the bits [77]. We could,

for instance, encode the physical |0⟩ state as |0000⟩ (which will be called “logical qubit"). If the

state obtained is, |0100⟩, it is most likely to represent the state |0000⟩, with an isolated error.

Error-correcting codes based on redundancy are usually identified by the notation [[N, k, d]] f ,

where f denotes that the code is for fermions, N is the number of real qubits, k is the name of

logical qubits and d is the “code distance", i.e., the smallest number of errors that need to occur

to map one logical qubit to another.

D.1 Quantum Error Correction Protocols

Most quantum error-correcting (QEC) protocols in the literature apply to bosonic systems,

which is not the case for superconducting qubits or Majorana-based qubits [76]. Many rele-

vant fermionic proposals for error-correcting still point to difficulties regarding the real-space

manipulation of vortices, which might drag quasiparticles and is especially detrimental in
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one-dimensional systems [38].

A relevant family of protocols against this phenomenon rests on the classical Reed-Muller

code and has a relatively easy physical implementation since it relies on the fixed total parity

of the system [76]. For the construction of this protocol, we need to create stabilizer operators,

which perform measurements on the ancillary part of the circuit to obtain information about the

possible errors in the real qubits. In general, we can construct operators as a product of MZMs

(denoted by γn):

Oi ∼

2N∏
n=1

γ
vi

n
n , (D.1)

where vi
n = (vi

1, v
i
2, ..., v

i
2N , ) is a vector with vi

n = 0, 1, equipped with Z2 addition and

multiplication operations. The stabilizer matrix is defined by:

S = (v1, v2...v2N)T , (D.2)

with S · S T = 0, which characterizes binary weakly self-dual matrices. These matrices are

important in both classical and quantum error-correcting schemes, since the codespace, which is

the space of the codewords (valid codified bits), is given by C = span[v1...vm].

With a parity check measurement on C, it is possible to identify whether the logical bit is

or is not one of the codewords, i.e., if it is an error. A particular weakly self-dual matrix, with

parameters

RM f (r,m) =


2m−1, 2m−1 −

r∑
j=0

(
m
j

)
, 2r+1


 (D.3)

is a subset of the Reed-Muller protocol and can be shown to correct quasiparticle poisoning

[62].
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Perturbative corrections due to the

impurity potential

From Fig. 3.3 (b) it is evident that lower energy states have larger shifts than higher energy

ones. This quantitative difference can be traced back to the nature of the confined wavefunctions

and is obtained using perturbation theory arguments.

For an s-wave superconductor, the eigenstates are written as [117]:

Ψm(r) =

 um(r)

vm(r)

 ∝ e−K(r)

 Jm(kFr)

Jm+1(kFr)

 , (E.1)

with Jm(kFr) being the order-n Bessel function of the first kind and

K(r) =
1
ℏvF

∫ r

0
dr′ ∆(r′) , (E.2)

where vF is the Fermi velocity in the normal state. For low-energy in-gap states En ≪ ∆0, we

expand the superconducting pairing as ∆(r) ≈ ∆0
ξ

r. Therefore:

K(r) ≈
∆0

2ℏvFξ
r2 =:

r2

2ξ̃
. (E.3)

The first-order corrections to the energy levels are given by

δEm = ⟨Ψm|Himp|Ψm⟩. (E.4)

Assuming that there are not many states inside the vortex and particularly considering the
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low-energy ones, the Bessel functions can be approximated by their asymptotic form with

kFr ≪ 1.

In this regime, the energy correction follows a power law in k2
F/α, given by:

δEm =
πδµ

m!α

(
k2

F

4α

)m

, α :=
1

2η2 +
1

2ξ̃2
. (E.5)

By carrying out first-order corrections on the eigenstates, we can understand the perturbative

effects of the impurity on the charge. We find:

δQm = 2
∑
n,m

βmn(δµ, η)βmn(1,∞)
Em − En

. (E.6)

with

βmn(δµ, η) := ⟨ψm|δH|ψn⟩ ≈
πδµ

m − n

 1
m!n!

(
k2

F

4α

)m+n
2
 Γ((m + n + 2)/2)

α
.

Taking the lowest order term in Eq. E.6, we find:

δQm =


π2µδµ

2α2∆2
0

(
k4

F ξ̃
2

2α

) 3
2
Γ(5/2), m = 1

π2µδµ

2α2∆2
0(m−1)3

[
1

m!2

(
k4

F ξ̃
2

2α

)m+1
2
]
Γ
(

m+3
2

)
, m , 1

. (E.7)

Therefore we obtain a polynomial dependence on k4
F ξ̃

2/2α. The results lead to the conclusion

that the higher-energy states have smaller corrections in both energy and charge.
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Appendix F

Finite Differences Method for the single

vortex case

We may solve the coupled system obtained for the s-wave superconductivity, magnetic

insulator and semiconductor setup by using a Finite Differences method. Although it is not

particularly necessary for this Hamiltonian, it will be essential for the cases where rotational

symmetry is lost, i. e. general situations with more than one vortex. It is, thus, useful to introduce

the formalism for the more straightforward one-vortex case.

To apply the Finite Differences method, we interpret derivatives as a difference of infinitesimal

values. We need to discretize the space by creating a mesh:

r(i)→ i∆r, (F.1)

where i indexes the position. We may write first and second derivatives using the central Euler

method, which simplifies the adjustment of boundary values. This method also reduces the

computational error, of order O(r3), compared to O(r2) from both forward or backwards Euler

method [118]. For the radial derivatives, we have:

∂ru(i, j)↑,↓ =
u(i + 1, j)↑,↓ − u(i − 1, j)↑,↓

2∆r
(F.2)

∂2
r u(i, j)↑,↓ =

u(i + 1, j)↑,↓ − 2u(i, j)↑,↓ + u(i − 1, j)↑,↓
∆r2 . (F.3)
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Appendix F. Finite Differences Method for the single vortex case

The corresponding equations for the discretized Hamiltonian for one vortex are:

−u(i + 1)↑ + 2u(i)↑ − u(i − 1)↑
∆r2 +

−u(i + 1)↑ + u(i − 1)↑
2∆r

+ u(i)↑

+
u(i + 1)↓ − u(i − 1)↓

2∆r
+

u(i)↓
r(i)
− ∆u(i)↓ = 0 (F.4)

−
u(i + 1)↑ − u(i − 1)↑

2∆r
+ ∆u(i)↑

−
u(i + 1)↓ − 2u(i)↓ + u(i − 1)↓

∆r2 +
−u(i + 1)↓ + u(i − 1)↓

2∆r
+

u(i)↓
r(i)2 − u(i)↓ = 0 . (F.5)

In matrix form, we have Mx = b, where M is the matrix of the finite difference coefficients, x

is a vector containing the spinor solution information:

x = (u(0)↑, ...u(N)↑, u(0)↓, ...u(N)↓)T (F.6)

and b is the solution vector, in which we can embed boundary condition information. Before

doing so, it is important to notice that the coefficient matrix will have undetermined points in the

borders, ghost points. We can deal with those points by using interpolation and considering the

forward Euler method in the initial borders and the backward method for the ends. Including

these in the system, we obtain an invertible 2N x 2N matrix with non-zero terms in four blocks:

M =



2
∆r2 + 1 − 1

∆r2 +
1

2r∆r ... −∆(0) + 1
r − 1

2∆r ...

− 1
∆r2 +

1
2r∆r

2
∆r2 + 1 − 1

∆r2 −
1

2r∆r − 1
2∆r −∆(1) + 1

r
1

2∆r
. . .

. . .

...
. . .

...
. . .

∆(0) 1
2∆r ... 2

∆r2 +
1
r2 − 1 − 1

∆r2 +
1

2r∆r

1
2∆r ∆(1) − 1

∆r2 +
1

2r∆r
2
∆r2 +

1
r2 − 1 − 1

∆r2 −
1

2r∆r
. . .

. . .

...
...

. . .


. We can determine the initial value conditions by estimating u(0)↑,↓, u(1)↑,↓ and u(2)↑,↓ and using

the first two rows of the matrix. Since u↑ has a −BesselJ(0, r) form and u↓ has a BesselJ(1, r)

form, from the problem, u↑(1) = 1 and u↓(0) = 0, we can determine u(1)↑,↓ and u(2)↑,↓ using

equation (F.3) and the known values of derivatives for the Bessel function at these points. This

gives u(1)↑ = 1, u(2)↑ = −0.5∆r, u(1)↓ = ∆r2 + 3 and u(2)↓ = −∆r. Plugging back to the matrix,

we obtain b(0) and b(1). Similarly, for b(2N-2), b(2N-1) and b(2N), we have the condition of
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Appendix F. Finite Differences Method for the single vortex case

u(40)↑,↓ = 0.

It is interesting to notice that reorganizing columns and rows in M, x and b allows to obtain

the boundary conditions using only u(0)↑,↓, u(1)↑,↓ , u(39)↑,↓ and u(40)↑,↓. The almost diagonal

form is also computationally less time consuming. The results, compared to the numerical

solution obtained via NumPy’s solve_bvp routine, are shown in figure F.1.

Figure F.1: Comparison between bvp_solve and finite differences methods.

F.1 Generalization for many vortices

To solve this coupled system by using a finite differences method, we need to discretize by

creating a mesh in both r and θ coordinates:

r(i)→ i∆r, θ( j)→ j∆θ. (F.7)

By central finite differences, the derivatives in θ are:

∂θu(i, j)↑,↓ =
u(i, j + 1)↑,↓ − u(i, j − 1)↑,↓

2∆θ
(F.8)

∂2
θu(i, j)↑,↓ =

u(i, j + 1)↑,↓ − 2u(i, j)↑,↓ + u(i, j − 1)↑,↓
∆θ2 . (F.9)

The radial derivatives are analogous and can be found in (F.3), where we solve the system for the

simpler one vortex case. The corresponding equations for the discretized Hamiltonian is:

−η

(
u(i + 1, j)↑ − 2u(i, j)↑ + u(i − 1, j)↑

∆r2 +
u(i + 1, j)↑ − u(i − 1, j)↑

r(i)2∆r

+
u(i, j + 1)↑ − 2u(i, j)↑ + u(i, j − 1)↑

r2∆θ2

)
+ (Vz − µ)u(i, j)↑ − ∆u(i, j)↓

+
1
2
αie−iθ

(
i
u(i + 1, j)↓ − u(i − 1, j)↓

2∆r
−

u(i, j + 1)↓ − u(i, j − 1)↓
r(i)

)
= 0 (F.10)

106



Appendix F. Finite Differences Method for the single vortex case

−
1
2
αieiθ

(
−i

u(i + 1, j)↑ − u(i − 1, j)↑
2∆r

)
+ ∆u(i, j)↑ − (Vz + µ)u(i, j)↓

−η

(
+

u(i + 1, j)↓ − 2u(i, j)↓ + u(i − 1, j)↓
∆r2 +

u(i + 1, j)↓ − u(i − 1, j)↓
2∆r

+
u(i, j + 1)↓ − 2u(i, j)↓ + u(i, j − 1)↓

r(i)2∆θ2

)
= 0 . (F.11)

Once again, we will solve Mx = b where M is the matrix of the finite difference coefficients, x is

a vector of the form

xr,θ = (u(0, 0)↑, u(1, 0)↑, ...u(Nr,Nθ)↑, u(0, 0)↓, ...u(Nr,Nθ)↓)T (F.12)

and b is the solution vector and Nr,Nθ are the mesh size of the radial and angular coordinates.

Here, dim[xr,θ] = 2NrNθ, a great increase in comparison of dim[x] = 2Nr for the one-vortex case

in (F.3).

Since, in this construction of xr,θ, we are iterating through the radial mesh first, it means that

the coefficients of the matrices obey:

u(i, i ± 1)↑,↓ = u(i, i ± Nr)↑,↓ , (F.13)

because each consecutive column value, for a fixed row value, is separated by ±Nr entries.

The non-zero coefficients of M are:

u↑,1(i, i − N) = −
η

r(i)2∆θ2

u↑,1(i, i − 1) = −
η

∆r2 +
η

2r(i)∆r

u↑,1(i, i) =
2η
∆r2 +

2η
r2∆θ2 + Vz − µ

u↑,1(i, i + 1) = −
η

∆r2 −
η

2r(i)∆r

u↑,1(i, i + N) = −
η

r(i)2∆θ2
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u↓,1(i, i − N) =
αe−iθ( j)

2
1

r(i)2∆θ

u↓,1(i, i − 1) =
αe−iθ( j)

2
i

2∆r

u↓,1(i, i) = λ∆(i)

u↓,1(i, i + 1) =
αe−iθ( j)

2
−i

2∆r

u↓,1(i, i + N) =
αe−iθ( j)

2
−1

r(i)2∆θ

u↑,2(i, i − N) =
−αeiθ( j)

2
−1

r(i)2∆θ

u↑,2(i, i − 1) =
−αeiθ( j)

2
i

2∆r

u↑,2(i, i) = −λ∆(i)

u↑,2(i, i + 1) =
−αeiθ( j)

2
−i

2∆r

u↑,2(i, i + N) =
−αeiθ( j)

2
1

r(i)2∆θ

u↓,2(i, i − N) = −
η

r(i)2∆θ2

u↓,2(i, i − 1) = −
η

∆r2 +
η

2r(i)∆r

u↓,2(i, i) =
2η
∆r2 +

2η
r2∆θ2 − Vz − µ

u↓,2(i, i + 1) = −
η

∆r2 −
η

2r(i)∆r

u↓,2(i, i + N) = −
η

r(i)2∆θ2 .

The matrix will have the following structure:

M =

U1 D1

U2 D2

 ,
where U1, U2, D1 and D2 correspond to submatrices for the coefficients of the up and down

component for equations 1 and 2. This matrix is very sparse; for the block of up components

and first equation, we have:

108



Appendix F. Finite Differences Method for the single vortex case

U1 =

1
. . .

1

u1
(N;N−N) ... u1

(N;N−1) u1
(N;N) u1

(N;N+1) ... u1
(N;N+N)

. . . ...
. . .

. . .
. . . ...

. . .

u1
(N2−1;N2−1−N) ... u1

(N2−1;N2−1−1) u1
(N2−1;N2−1) u1

(N2−1;N2−1+1) ... u1
(N2−1;N2−1+N)

1
. . .

1


The other submatrices are analogous. We have identities in the first Nr by Nr block and in the

last one of each submatrices because those entries corresponds to θ = 0 and θ = 2π, respectively.

Those are the values where the matrix should reduce to the one-vortex case. Therefore, we

may use our solutions obtained from the single vortex, which we will name {s(i)}, as boundary

conditions of the blocks. Including this information, we define some of the components of b:

b =



s(i)↑

u(1, 1)↑
...

u(39, 39)↑

s(i)↑

s(i)↓

u(1, 1)↓
...

u(39, 39)↓

s(i)↓



. (F.14)
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Appendix G

Near zero-energy Caroli-de

Gennes-Matricon vortex states in the

presence of impurities

In the following pages are the contents of the paper “Near zero-energy Caroli-de Gennes-

Matricon vortex states in the presence of impurities”, published on Physical Review B and related

to Chapter 3: “Ambiguity of MZM signatures in the presence of scalar” impurities of the present

thesis.
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Caroli–de Gennes–Matricon (CdGM) states are localized states with a discrete energy spectrum bound to
the core of vortices in superconductors. In topological superconductors, CdGM states are predicted to coexist
with zero energy, chargeless states widely known as Majorana zero modes (MZMs). Due to their energy
difference, current experiments rely on scanning tunneling spectroscopy methods to distinguish between them.
This work shows that electrostatic inhomogeneities can push trivial CdGM states arbitrarily close to zero energy
in nontopological systems where no MZM is present. Furthermore, the BCS charge of CdGM states is suppressed
under the same mechanism. Through exploration of the impurity parameter space, we establish that these two
phenomena generally happen in consonance. Our results show that energy and charge shifts in CdGM may be
enough to imitate the spectroscopic signatures of MZMs even in cases where the estimated CdGM level spacing
(in the absence of impurities) is much larger than the typical experimental level broadening.

DOI: 10.1103/PhysRevB.107.184509

I. INTRODUCTION

Andreev bound states are a class of low-energy quasipar-
ticle excitations that appear in metallic regions confined by
a superconducting gap. A particular type of Andreev bound
state excitations exists on zero-dimensional defects in topo-
logical superconductors. These zero energy excitations are
known as Majorana zero modes (MZMs) [1–5]. Since these
quasiparticles are topologically protected non-Abelian anyons
[6–8], they can be used to build fault-tolerant qubits [9]. The
interest in building robust quantum computers led to intense
efforts to search for and identify MZMs.

The first generation of experiments to identify Majorana
modes relied on measuring zero-bias peaks with tunneling
probes. These peaks indicate the existence of zero energy
excitations. However, to interpret these zero-bias peaks as
Majorana zero modes, one must rule out the existence of
other (trivial) excitations. Due to this ambiguity, together with
theoretical progress showing that zero energy trivial states are
possible, a new generation of experiments combining local
and nonlocal probes was recently developed in nanodevice
platforms [10–18].

In bulk topological superconductor candidates, an alterna-
tive procedure to detect Majorana zero modes is by piercing
the superconductor with a magnetic field. With an applied
field, superconducting vortices are formed. At sufficiently low
electron density, these vortices should host Majorana zero
modes isolated from other in-gap states. Thus, one can again
probe the MZMs by scanning tunneling spectroscopy. Again,
one of the fundamental challenges in verifying the presence of

*bsmend@usp.br

MZMs in vortices of topological superconductor candidates is
establishing a clear distinction from other trivial states.

In superconducting vortices, nontopological quasiparti-
cle excitations are known as Caroli–de Gennes–Matricon
(CdGM) states [19]. They appear in low-density supercon-
ducting materials, where vortices act as “quantum wells for
quasiparticles” [20]. In trivial superconductors, vortices con-
tain bound states with a low-energy spectrum given by [21]
[see Figs. 1(a) and 1(b)]

Em = m�0

kF ξ
, (1)

where m = (n + 1/2), n is an integer number, kF is the Fermi
momentum, ξ the bulk coherence length, and �0 is the bulk
superconducting pairing potential. The predicted spectrum of
CdGM states in trivial superconductors lacks a zero energy
level. These features establish the difference between CdGM
and MZMs spectra and underlie the interpretation of experi-
mental observations of zero-bias peaks inside vortices [5,22–
30]. From Eq. (1), it is clear that an energy resolution better
than �0/kF ξ is required to detect isolated excited levels. Since
this resolution is accessible in state-of-the-art experiments,
tunneling spectroscopy measurements of vortices on topo-
logical superconductors are expected to distinguish Majorana
from trivial states [31–33].

Recent experiments on candidate topological superconduc-
tor materials revealed that many zero-bias peaks, associated
with the presence of MZM modes, were not present in all
vortices [26,30]. Furthermore, some of the detected peaks
often appeared to be stabilized by nearby magnetic [28] or
scalar [23] impurities. Although it is well known that zero-
bias peaks can emerge in superconductors without topological
properties when magnetic impurities are present, it is still an

2469-9950/2023/107(18)/184509(7) 184509-1 ©2023 American Physical Society
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FIG. 1. Energy states inside the vortex for (a) a clean s-wave
superconductor and (b) an s-wave system with screened charge im-
purity. The blue line shows the position-dependent superconducting
order parameter, and the dashed lines schematically show the energy
of in-gap CdGM states. In (b), the black dashed lines indicate the
CdGM spectrum without a charged impurity, whereas the red dashed
lines indicate the spectrum with the impurity. The black arrow high-
lights the energy shift caused by the impurity potential. (c),(d) The
density of states; (e),(f) the BCS spectral charge for the s-wave
system without and with impurity, respectively.

open question whether scalar impurities may produce similar
effects [34].

Motivated by this scenario, we study the effect of scalar
impurities in the in-gap spectrum of a two-dimensional triv-
ial s-wave superconductor. We revisit this system because
(i) an s-wave superconductor is a simple example of a trivial
superconductor, and (ii) the Hamiltonian does not contain ad-
ditional terms that could lead to corrections from Eq. (1). As a
result, the spectra and corresponding charge distributions can
be traced back unequivocally to the presence of the impurity
potential.

Moreover, influenced by the new generation of experi-
ments in nanowires, nonlocal measurements with scanning
tunneling microscope measurements were suggested as a way
to extract the Bardeen-Cooper-Schrieffer (BCS) charge of

in-gap vortex excitations [31]. Because trivial states have
nonzero BCS charge whereas MZMs are strictly chargeless
[7], information on the BCS charge, in principle, helps to
distinguish CdGM states and MZMs.

Our main results are illustrated in Fig. 1, which compares
the density of states and BCS charge for a trivial s-wave
superconductor with and without an impurity potential. The
calculations reveal that trivial CdGM states mimic MZM’s
signatures in two ways. First, electrostatic inhomogeneities
shift the lowest CdGM state energy arbitrarily close to zero, as
schematically shown in Figs. 1(a) and 1(b). Second, as the en-
ergy separation of these states become smaller than the exper-
imental resolution—mainly limited by thermal broadening—
the spectral BCS charge is also suppressed, as shown in
Figs. 1(e) and 1(f). As a consequence, electrostatic inho-
mogeneities can make CdGM indistinguishable from MZMs
when probed by scanning tunneling microscopy (STM) exper-
iments, given the current experimental resolutions.

II. MODEL

We consider a trivial superconductor modeled as a
two-dimensional electron gas with s-wave superconducting
pairing. The corresponding tight-binding model on a square
lattice (with lattice constant a) has a normal state Hamiltonian,

H0 = (4t − μ)
∑

i

∑
σ

c†
iσ ciσ − t

∑
〈i, j〉

∑
σ

c†
iσ c jσ , (2)

where μ is the on-site energy, t is the hopping constant,
c†

iσ (ciσ ) creates (destroys) an electron of spin σ at site i, and
〈i, j〉 denotes a sum performed over nearest neighbors. The
superconducting term in the Hamiltonian is

Hs-wave =
∑

i

�s
i c

†
i↑c†

i↓ + H.c.,

�s
i = �0eiφi tanh

(
ri

ξ

)
, (3)

where �0 is the amplitude of the bulk order parameter, ri

is the distance from r = 0 (the vortex center) to the atomic
position i, ξ is the vortex radius, and φi = arg(ri ) is the order
parameter phase, as shown in Figs. 2(a) and 2(b). Note that
we treat ξ and �0 as independent parameters since we do not
solve the Ginzburg-Landau equations. To match the typical
ratios for μ/�0 reported in experiments, we set μ = 0.05t and
�0 = 0.02t . We also set ξ = 10a, unless stated otherwise, to
ensure that the vortex size is negligible compared to the sys-
tem size (200a × 200a). We treat spin as a trivial degeneracy
and perform all tight-binding calculations with KWANT [35].

Figure 2(c) show the spectrum and the respective integrated
BCS charge expectation values, i.e., Q ≡ ∑

i Q(ri ) where
Q(ri ) := 〈�|c†

i ci − cic
†
i |�〉 is the local charge for a given

eigenstate, of in-gap vortex states for this system as a function
of the vortex radius ξ . Finite energy levels approach zero as ξ

increases, as expected for quantum-confined levels.

III. EFFECTS OF AN IMPURITY POTENTIAL

An inspection of Eq. (1) suggests that local changes in
the electrostatic potential can shift the energy of CdGM
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FIG. 2. (a) Magnitude and (b) phase of the superconducting or-
der parameter [as defined in Eq. (3)]. The BCS charge-resolved
spectrum of in-gap vortex states is shown for an s-wave supercon-
ductor (c) without and (d) with a screened charge impurity with
δμ = 0.06t and η = 5a.

states arbitrarily close to zero energy. In this situation, the
lowest-energy trivial states may have energy smaller than the
experimental resolution, resulting in a near-zero-bias con-
ductance peak, similar to the one produced by MZMs. To
demonstrate this phenomenon, we consider the effects of an
isolated screened charge impurity close to the vortex core.
This choice is inspired by recent experiments in iron-based
superconductors [23,26,30] showing that scalar impurities fa-
vor the presence of zero-bias peaks inside vortices.

We model the presence of a screened charged impurity on
the s-wave Hamiltonian by incorporating an on-site modula-
tion term as follows [36,37]:

Himp = δμ
∑
i,σ

e−r2
i /2η2

c†
iσ ciσ , (4)

where δμ is the potential strength of the impurity and η is the
screening length. Next, we calculate the energy spectra and
the integrated charge Q ≡ ∑

i Q(ri ) of the Andreev quasipar-
ticles.

Figure 3 shows the resulting low-energy spectra as a func-
tion of η and δμ, revealing a resemblance to the spectra
of a topological superconductor with a vortex. Furthermore,
both charge and energy of the lowest-energy state approach
zero, while the shifts of energy and charges of higher-energy

FIG. 3. BCS charge for an s-wave system with impurity. In
(a) and (b), the spectrum evolves as a function of (a) impurity size
η (δμ = 0.025t) and (b) impurity strength δμ (η = 5a). (c) BCS
charge (black) and BCS charge spectral density (red) for the lowest-
energy state for a system without (dashed line) and with (solid line)
an impurity with η = 5a and δμ = 0.05t .

states are exponentially suppressed (see the Appendix for a
quantitative discussion).

The local BCS charges Q(r) for the lowest-energy in-
vortex state with and without the impurity are shown in
Fig. 3(c). We verified that although the total charge is sup-
pressed [Figs. 3(a) and 3(b)], the local charge is weakly
affected by the impurity. Thus, one should be able to distin-
guish CdGM and Majorana states with an arbitrarily small
resolution since MZMs have zero BCS charge everywhere.
However, as we show in the next section, the energy shift
together with level broadening of the lowest-energy CdGM
states results in a vanishing spectral BCS charge.

The effects of the vortex size and impurity screening length
on the energy and charge of the lowest-energy state [E1/2,
as defined in Eq. (1)] are shown in Fig. 4. The data clearly
show a suppression of E1/2 and Q on large regions of the
{η, δμ} parameter space, indicating that the above results
hold beyond the highly localized impurity regime, η � ξ .
This also suggests that smooth fluctuations in the underlying
electrostatic potential can mimic Majorana signatures. Finally,
let us note that due to particle-hole symmetry, E1/2 and Q tend
to be correlated.

IV. EXPERIMENTAL RELEVANCE

In this section, we aim to establish the relevance of our
results for the interpretation of current experimental data from
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FIG. 4. Dependence of (a),(c) lowest-energy state E1/2 and
(b),(d) BCS charge on (a),(b) η and ξ and (c),(d) η and δμ. In (a),(b),
we choose δμ = 0.06t , and in (c),(d), we choose ξ = 5a.

scanning tunneling spectroscopy (STS) and scanning tunnel-
ing microscopy (STM) experiments [26,29,30].

Thus far, we have discussed the changes in the global
properties of the CdGM state due to the the presence of scalar
impurities at the vortex site. Since vortices tend to be pinned
by defects and impurities [38], this picture can be favored in
samples in which some degree of surface disorder is present,
as seems to be the case in Fe(Se,Te) surfaces [26].

Moreover, experimental estimates of E1/2 [as defined in
Eq. (1)] are commonly used as a proxy for the position of the
first CdGM state. As such, STS conductance peaks at energies
below this estimate are usually “ruled out” as CdGM states
[26,29]. As we have shown, such a heuristic picture is not
accurate in the presence of impurities: the results shown in
Figs. 2 and 3 show that the energy of the first CdGM state can
be significantly lower than the value of E1/2 estimated from
bulk parameters and serve as a cautionary tale against ruling
out these near zero states as CdGM states.

Another important point of attention when comparing the
raw CdGM spectra with the peaks appearing in STS measure-
ments is the role of the thermal effects of the STS peaks,
which effectively sets an energy resolution. To illustrate the
limitations introduced by such energy resolution, we defined
the spatially resolved spectral density A(ω, r), and the spectral
BCS charge C(ω, r) at energy ω and position r,

G(ω) = [ω − H + iγ ]−1, (5)

G(ω, r) ≡ 〈r|G(ω)|r〉, (6)

FIG. 5. Density of states A(ω) ≡ (−1/π )Im Tr G(ω) of an η-
wave superconductor as a function of level broadening γ (η = 5a).
In (a), one can observe that the two trivial states are distinguishable in
the absence of an impurity (δμ = 0) up to γ ∼ E1/2. As the impurity
strength increases, as shown in (b)–(d), the trivial states are shifted
to smaller energies ω and therefore one cannot distinguish them even
with a much smaller level broadening γ .

A(ω, r) ≡ − 1

π
ImTr[G(ω, r)], (7)

C(ω, r) = − 1

π
ImTr[G(ω, r)Q(r)], (8)

where γ is a positive small parameter that sets the level broad-
ening.

Typical experimental broadenings are of the order of γ ∼
0.1 �0 (mostly arising from thermal effects), whereas the
energy spacing estimated without impurities is E1/2 ∼ 0.5�0

[29]. Thus, for clean systems, scanning tunneling transport
experiments should indeed be able to resolve the energies
of MZMs and CdGM states. However, electrostatic inho-
mogeneities that make E1/2 ∼ γ impede a clear distinction
between trivial and nontrivial states due to the constraint im-
posed by particle-hole symmetry that implies the shifting of
positive and negative energy states towards zero energy.

We illustrate the effects of level broadening in Figs. 1 and
5. Figure 1 shows contour plots of A(ω, r) [Figs. 1(c) and
1(d)] and C(ω, r) [Figs. 1(e) and 1(f)] for energies within
the gap and positions inside the vortex. In the absence of
impurities [Figs. 1(c) and 1(e)], one obtains peaks in A(ω ≈
±E1/2, r ≈ 0) originating from the first CdGM state, as ex-
pected. Some smaller peaks for excited CdGM states (with
nodes at r ≈ 0) are also seen. The BCS charge for these states
oscillates in position along the vortex, changing sign.
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A different picture is observed in the presence of impurities
and a modest thermal broadening (γ /E1/2 ≈ 0.27). There is
a single peak in the spectra charge density near zero energy
A(ω ≈ 0, r ≈ 0), and the BCS charge at these energies is very
close to zero. In Fig. 5, we illustrate how much the level
broadening affects our results. In the absence of impurities
[Fig. 5(a)], the energies of CdGM states are determined by
the bulk parameters. Therefore, the two lowest-energy peaks
are distinguishable up to γ /E1/2 ∼ 1. As the energy levels
shift towards zero, the two lowest-energy peaks cannot be
resolved for γ /E1/2 � 0.5 [Fig. 5(b)]. In some cases, these
peaks cannot be resolved even for relatively “small” broad-
ening values of γ /E1/2 ∼ 0.1 or lower [Figs. 5(c) and 5(d)].
In a similar manner, since particle-hole symmetry ensures
that Qm=1(r) = −Qm=−1(r), the BCS charge also becomes
negligible, as shown in Fig. 1(f).

Notice that the combined effect of the shifting of the energy
levels toward zero and a moderate broadening can effectively
“disguise” the lowest CdGM state as a “zero-bias peak” [see,
e.g., Figs. 5(c) and 5(d)] in experiments. Interestingly, some
STS experimental data show vortex bound states as peaks near
but not at zero bias in the tunneling spectra [30], a result which
is consistent with this picture.

These observations suggest that recent experiments claim-
ing impurity-assisted formation of MZMs [23] should be
interpreted carefully. At the same time that local changes
in the chemical potential could lead to a topological phase
transition, trivial CdGM states can also be shifted arbitrarily
close to zero energy. Thus, zero-bias peaks in the vicinity of
scalar impurities are ambiguous signatures and cannot fully
distinguish MZM and CdGM states.

V. CONCLUDING REMARKS

Our main results can be summarized as follows: the pres-
ence of scalar impurities in vortices can modify the CdGM
spectrum, leading to similar spectral properties to MZMs. We
illustrate this fact in the extreme limiting case of a nontopo-
logical (s-wave) superconductor showing zero energy states
and a vanishing global BCS charge.

This is, in fact, a very general result: local scalar perturba-
tions in the vicinity of the vortex center lower the energy of
CdGM states and suppress their total BCS charge. In partic-
ular, the energy and charge of CdGM modes can be shifted
arbitrarily close to zero for a broad range of values in the
parameter space of the proposed model, as shown in Fig. 4. As
a consequence, such impurity-driven zero energy states cannot
be set apart from topological MZMs using only local spectro-
scopic techniques. Furthermore, due to extrinsic broadening
of the particle-hole symmetric levels, near zero energy states
will render vanishing nonlocal transport signals, therefore re-
sulting in the apparent vanishing of the BCS charge. These
considerations are particularly relevant to experimental works
that often rely on the fact that CdGM states have finite energy.

One possible route to complement the current local STS
setups could be provided by nonlocal probes. As argued in
Ref. [31], nonlocal transport measurements could, in prin-
ciple, map the changes in the BCS charge at a local level
provided that the experimental resolution allows for a distinc-
tion between MZM and CdGM states. Thus, it is important

to provide a description of the spectroscopic properties as
they will be affected by the presence of electrostatic inhomo-
geneities.

All the scripts and resulting data used to prepare this
manuscript are freely available on Zenodo [39].
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APPENDIX: PERTURBATIVE CORRECTIONS DUE
TO THE IMPURITY POTENTIAL

From Fig. 3(b), it is evident that lower-energy states have
larger shifts than higher-energy ones. This quantitative dif-
ference can be traced back to the nature of the confined
wave functions and is obtained using perturbation theory ar-
guments.

For an η-wave superconductor, the eigenstates are written
as [40]

�m(r) =
(

um(r)
vm(r)

)
∝ e−K (r)

(
Jm(kF r)

Jm+1(kF r)

)
, (A1)

with Jm(kF r) being the order-n Bessel function of the first kind
and

K (r) = 1

h̄vF

∫ r

0
dr′ �(r′), (A2)

where vF is the Fermi velocity in the normal state. For
low-energy in-gap states En � �0, we expand the supercon-
ducting pairing as �(r) ≈ �0

ξ
r. Therefore,

K (r) ≈ �0

2h̄vF ξ
r2 =:

r2

2ξ̃
. (A3)

The first-order corrections to the energy levels are given by

δEm = 〈�m|Himp|�m〉. (A4)

Assuming that there are not many states inside the vortex
and particularly considering the low-energy ones, the Bessel

184509-5



BRUNA S. DE MENDONÇA et al. PHYSICAL REVIEW B 107, 184509 (2023)

functions can be approximated by their asymptotic form with
kF r � 1.

In this regime, the energy correction follows a power law
in k2

F /α, given by

δEm = πδμ

m!α

(
k2

F

4α

)m

, α := 1

2η2
+ 1

2ξ̃ 2
. (A5)

By carrying out first-order corrections on the eigenstates,
we can understand the perturbative effects of the impurity on
the charge. We find

δQm = 2
∑
n �=m

βmn(δμ, η)βmn(1,∞)

Em − En
, (A6)

with

βmn(δμ, η) := 〈ψm|δH |ψn〉

≈ πδμ

m − n

[
1

m!n!

(
k2

F

4α

) m+n
2

]
�[(m + n + 2)/2]

α
.

Taking the lowest-order term in Eq. (A6), we find

δQm =
⎧⎨
⎩

π2μδμ

2α2�2
0

( k4
F ξ̃ 2

2α

) 3
2 �(5/2), m = 1

π2μδμ

2α2�2
0(m−1)3

[
1

m!2

( k4
F ξ̃ 2

2α

) m+1
2

]
�

(
m+3

2

)
, m �= 1.

(A7)

Therefore, we obtain a polynomial dependence on k4
F ξ̃ 2/2α.

The results lead to the conclusion that the higher-energy states
have smaller corrections in both energy and charge.
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