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Prologue

What is the purpose of this work? This is a dissertation, so it is a requirement of my funding agency

FAPESP and also of my home institution USP. Apart from these bureaucratic requirements, is there

any other purpose? The physics community is driven by peer-review papers that are available online in

repositories such as the Arxiv1. Because of that, for me it does not make much sense to write in this

dissertation what I would otherwise write in a paper as I already did a couple of times by now [1, 2, 3].

Therefore, I used the bureaucratic requirement of doing this dissertation as an opportunity to expose

more broadly my thoughts and current understanding of physics, something that is not a good practice in

specialized papers. I tried to start each subsection with an informal discussion that a wit reader should

be able to follow. These informal discussions are then followed by a technical presentation where I tried

to condense and summarize what I take as the main physical ideas involved in each subject. I hope you

enjoy reading as I enjoyed learning all these fascinating themes.

1https://arxiv.org/
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Abstract

In this dissertation, I will present a twin Higgs model relating the spontaneous breaking of Z2 symmetry,

the cosmological constraints of twin Higgs models, and neutrino masses. The Z2 symmetry is exact in the

model and it contains an SU(2) triplet with hypercharge 1 and its twin copy in addition to the degrees

of freedom present in the original twin Higgs model. The vacuum expectation value of the scalar sector

breaks spontaneously Z2 and electroweak symmetry. Then, by type-II seesaw mechanism, the Standard

Model neutrinos get small masses and their twin gets large masses mitigating the dark radiation problem.

Keywords: Particle Physics; Hierarchy problem; Neutrino Masses; Dark Matter; Twin Higgs Model.
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1 Introduction

What are things made of?

Your body is made of about 1013 cells [4]; each cell is made of about 107 proteins; a protein of 105

molecules; a molecule of atoms; each atom of electrons, protons and neutrons; and nucleons of up and

down quarks. It is not known if the electron, the up and down quarks have an internal structure and

are therefore made of other things. However, if they are not, there seems to be no way to know that for

sure. A reason that can be grasped intuitively, is because the way to tell if something is composite is by

breaking it. But to break something requires enough energy. Therefore, the fact that we see no structure

in the electron, the up and down quarks, only tells us that the energies involved in their binding must be

larger than the available in the experiments designed to break them.

When we consider a familiar object and start to break it into its constituents as we did in the human

body example, in most cases we will end up in electrons, up and down quarks. That is because atoms

seem to be the only objects, as far as we know, that can form the complex structures as the ones that

made familiar objects such as animals, rocks, books, etc. However, by colliding electrons and protons, at

very high energies in kilometers long particle accelerators, we find that new objects are produced that

are not made either of electrons or protons. The objects which we can’t break using current experimental

techniques are the known elementary particles. The list of these particles with its corresponding mass is

[5]:

Particles Log10(Mass/MeV)
photon ∅
gluons ∅

electron neutrino ?
muon neutrino ?
tau neutrino ?

electron -1
up 0

down 0
strange 1
muon 2
charm 3
tau 3

bottom 3
W boson 4
Z boson 4
Higgs 5
top 5

Table 1: List of elementary particles.
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From the discussion presented above, it should be clear that these elementary particles are not nec-

essarily elementary in the sense that they are not made of other things [6]. However, these are the only

things we know today that have the chance of being elementary. Therefore we should take elementary

as a notion about the possibility of being truly elementary. And this possibility depends on the state

of development of technology and on the energies we have available to break and produce other things.

With this technology-dependent notion of elementary, it is then correct to say that particle physics is

the research field that studies elementary particles, and we can then declare that this dissertation is on

particle physics.

For those with a mathematical bend, I want to briefly explore the realm of beings by considering the

structure that emerges when we consider the formal properties of the constituent relation [7]. If a thing

a is made of another thing b we can conversely say that b is a constituent of a. We can understand this

relation formally as a relation ≥ defined in the set of things Ω with the following properties

Reflexive: a ≥ a (1.1)

Antisymmetric: if a ≥ b and b ≥ a then a = b (1.2)

Transitive: if a ≥ b and b ≥ c then a ≥ c (1.3)

for all a, b, c ∈ Ω. In words, this formal properties means that a given thing is one of its constituents,

that if two things are the constituents one of the other they are the same thing, and lastly, if a thing

b is the constituent of a and if c is the constituent of b then c is the constituent of a. The set of all

things Ω with the constituent relation ≥ is a partially ordered set and it may have minimal elements.

An element m ∈ Ω is minimal if there is no a 6= m in Ω such that m ≥ a. An open question in our

endeavor to understand nature is if (Ω,≥) have minimal elements, and what they are. The elementary, or

fundamental constituents of all things, which are equal to the minimal elements of Ω, are the referents of

parts of high energy physics such as string theory. A possibility thought in antiquity, and not invalidated

by theoretical physics, is that everything has constituents and therefore that the set of minimal elements

of Ω is the empty set ∅. Particle physics should be contrasted with these other parts of high energy

physics because its referents are defined by the technological degree to which it is possible to investigate

the constituents of things. To formalize this we can define a new set ΩE that is the set of things that

have binding energies smaller then E. Then, (ΩE ,≥) have minimal elements and they are the referents
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of particle physics. Now is ended the mathematical interlude.

I’ve been talking rather generically on breaking things apart. However, in particle physics, to break

something does not always coincide with our intuitive notion of splitting a thing into its different parts.

An important example to consider is the proton. We know that it is made of quarks and gluons, but

we’ve never detected a free quark or gluon after colliding two protons. In a proton-proton collision, a jet

of particles is produced that include many elementary particles and also other composite particles made

of quarks and gluons such as the pion and the kaon. From the study of these jets of particles, physicists

were able to discover the existence and the properties of the quarks. The conclusion is that if a given

thing is made of something this does not mean that you can find its parts after breaking it. There are

cases, such as protons and neutrons, in which the constituent parts are not found directly in experiments

but rather indirectly after theoretical analysis.

The theory that describes these elementary particles and allows such an analysis is the Standard

Model (SM). Before giving a more technical overview of it let’s expand on the notion of binding energy

presented before. The binding energy of an object is associated with some force that keeps its constituents

together. As an example, the atoms are bind together in molecules due to electromagnetic forces; protons

and neutrons are bind together in the nucleus due to the strong force; and the nuclei of an atom and its

electrons are bind together again due to electromagnetic forces. This way of describing composite objects

as some parts held together by some force seems to vindicate two different ontological notions: matter

and force. However, in the SM these two notions are much alike because the forces are also described by

elementary particles.

The electromagnetic force is associated with the photon, strong force to gluons, the weak force to the

Z and W boson, and gravity to gravitons. All these force particles, and all the other elementary particles

of the SM listed in (1) are in fact excitations of different quantum fields. Also, radiation, which could be

thought of as a different type of substance, is a particular state of the photon fields. We see, therefore,

that particle physics has achieved an ontological unification of great significance. Matter, radiation, and

force are all the same thing: quantum fields.

In a sense, the concept of a quantum field naturally emerges when ones tries to put together quantum

mechanics an special relativity. From quantummechanics comes the notion of superposition and of unitary

evolution, and from special relativity the notion of locality. However, the dynamics and properties of

quantum fields is a topic of advanced courses in the physics curriculum and are part of a large framework

called quantum field theory (QFT) [8, 9, 10, 11, 12]. Most parts of this dissertation will assume that the
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reader is familiar with the subject except the introductory parts of each section, where I will try to give

an intuitive account of what will be presented. For completeness, however, I will give a very brief and

schematic summary of QFTs that can be formulated with a Lagrangian focusing on the SM.

The Standard Model

Lagrangian QFTs, including the SM, are defined by just two ingredients:

Gauge group of symmetries

Quantum fields and their representations

Table 2: Scheme for what defines a QFT

With these two ingredients, one can write all renormalizable terms that respect the Lorentz and gauge

group to determine the Lagrangian of the theory. With the Lagrangian, in many cases, one can make

predictions to determine the values of the free parameters of the theory. An interesting feature of QFTs,

and a subject of present research, is that not all choices of gauge groups and quantum fields yields a valid

theory [13, 14, 15, 16]. For the choices which yields an inconsistent theory, it is commonly said that the

theory have an anomaly. My previous works [1, 2, 3] where related with this topic, in particular with

local anomalies, however, the topic is much broader and includes global anomalies for example [17, 18].

The SM gauge group of symmetries is

GSM = SU(3)× SU(2)× U(1) (1.4)

and the quantum fields are particular representations of GSM. The quantum fields are

Scalar field SU(3) SU(2) U(1)

H 1 2 3

Table 3: Scalar field of the SM and its representation under GSM

plus 3 copies of
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Fermion fields SU(3) SU(2) U(1)

Q 3 2 1

D 3 1 2

L 1 2 -3

U 3 1 -4

E 1 1 6

Table 4: Fermion fields of the SM and their representations under GSM

where 3 and 2 are the fundamental representation of SU(3) and SU(2) respectively, 3 is the conjugate

of the 3 representation, and 1 is the singlet. Following the conventions of previous work [1, 2], I assumed

that fermions are taken as left-handed fields which can be done via charge conjugation. I also assumed

that hypercharge is given for a normalization of the gauge couplings where all charges are integers with

no common divisor and the biggest charge, in absolute value, is positive. The SM is an anomaly-free

theory and it is rather astonishing to see how each piece that makes the SM combine in a precise way to

yield an anomaly-free theory.

The electroweak subgroup SU(2)× U(1) of GSM makes the SM a chiral theory. This means that no

mass term can be formed for the SM fermions using the SM fermion fields without violating electroweak

symmetry. Fermion masses are generated because the electroweak subgroup SU(2)×U(1) is spontaneously

broken to the electromagnetism U(1) [19, 20, 21]. These spontaneous symmetry breaking also gives mass

to the weak gauge bosons by what is called the Anderson-Higgs mechanism [22, 23, 24, 25]. I should add

that this feature is not an additional input to the theory, this breakdown is a dynamical process that takes

place because the Higgs field gets a vacuum expectation value which does not respect the electroweak

subgroup. To be more precise, the Higgs potential is

V (H) = m2H†H +
1

2
λ(H†H)2 (1.5)

which respects the electroweak subgroup SU(2)× U(1). If m2 > 0 the minimum of the potential is at 0

and the vacuum expectation value (VEV) of the Higgs field will respect the symmetry GSM. If m2 < 0

the VEV will be
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〈H†H〉 = −m
2

λ
. (1.6)

and will spontaneously break SU(2) × U(1). The fact that m2 < 0 and that electroweak symmetry is

spontaneously broken to electromagnetism is not an additional input of the SM, but a empirical finding.

It is somewhat in the same level as the empirical discovery that the top Yukawa coupling is approximately

equal to 1 at electroweak scale and not other value.

Because SU(3) ⊆ GSM is not broken, the three colors of quarks are equal in all respects and in this

sense indistinguishable. That is the reason why we talk generically about the up quark and not the “blue”

or “red” up quark. No process in nature is able to distinguish any of them. In contrast, SU(2) × U(1)

is spontaneously broken, giving different identities to the SU(2) × U(1) components of the SM fermion

fields. For example, the left-handed electron and neutrino fields are components of L, the first forms

a mass term together with E which is the conjugate of the right-handed electron field. Both make an

massive Dirac particle. The neutrino, on the other hand, remains massless. This sort of statement have

real physical meaning and are independent of the way we align the VEV of the Higgs. However, to

understand the details of the SM we need to choose a VEV alignment and work with it. The dominant

convention for the VEV alignment of the Higgs is

〈H〉 =

 0

v

 . (1.7)

With this choice we can identify the SU(2) components of the fermion fields as

L =

 νL

eL

 , Q =

 uL

dL

 , D = (dR)
c
, U = (uR)

c
, E = (eR)

c. (1.8)

This identification of the Weyl fermion inside the fermion fields gives more substance to the previous

statement that the SM is a chiral theory. Simply note that left-handed and right-handed fields are in

different representations of SU(2). Furthermore, we should recall that uL, dL, uR and dR are in the 3
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representation of SU(3).

The most general renormalizable Lagrangian written with the quantum fields of the SM in a way

consistent with Lorentz and GSM symmetry have many free parameters. However, not all of them have

physical significance. After eliminating the meaningless ones, we end up with 19 free parameters [5]

Free parameters Physical meaning

α strength of electromagnetism

θW relates electromagnetism and weak interaction couplings

g3 strong interactions coupling

v Higgs vacuum expectation value

λ Higgs quartic coupling

θ12, θ23, θ13, δ13 determine mixings of quarks of different flavor

9 Yukawa coupling determine the masses of the charged fermions

θ strong CP violation

Table 5: Free parameters of the SM

The SM has “standard” in its name because it is essentially universally accepted. After tens of

thousands of measurements, the model continues to agree with experimental results. As examples, the

SM predicted the existence of the W, Z, top quark and many of their properties before these particles

were observed [26, 27, 28, 29, 30]. In addition to this, the SM provides what is perhaps the most accurate

prediction of all physics. The fine-structure constant α can be theoretically calculated in terms of the

anomalous magnetic dipole moment of the electron which can be measured with high precision [31].

The fine-structure constant α can also be determined from atom-recoil measurements [32]. Checking the

consistency of such measurements tests the theory. The agreement found this way is to within ten parts

in a billion (10−8) which makes the SM one of the most accurate physical theories constructed thus far.

The observation of the Higgs boson in 2012 marks the experimental confirmation of the last ingredient

of the SM [33, 34].

Some problems of the Standard Model

Although the SM has demonstrated huge successes in providing experimental predictions it has prob-

lems that demonstrate that there needs to be physics beyond it. The problems of the SM are diverse and

very different. There are observational problems related to the existence of facts that are not accounted

for by it such as:
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• Neutrino masses,

• Dark matter,

• Baryon asymmetry,

there are severe theoretical problems related to the extrapolation of the theory to higher energies such

as:

• Gravity,

• Landau pole,

and there are features of the SM that seems to be unnatural and to require an explanation

• Hierarchy problem,

• Cosmological constant,

• Strong CP problem,

• Fermion masses,

• Quantization of electric charge.

There are many different theoretical proposals to account for these different problems. In a sense,

the work of a theoretical particle physicist is to design extensions of the SM that address some of these

problems and that have testable consequences. By doing so, they guide the design of experiments and

enhance the chances of the community to discover new physics. In this endeavor, it is most attractive to

build extensions that relate the solution of different problems in a single framework. That is our aim in

this dissertation. The structure will be the following. Section (3) is the most important part and is the

only part that contains new and original research. In it, we will present a model that relates the solution

of the hierarchy problem, with neutrino masses and dark matter. Before presenting this model we will

describe in (2) the framework which we will use, the twin Higgs models. And in the next subsections,

we will describe in more detail the problems that we are willing to solve. The level of difficulty of each

section increases from the beginning to the end. As an exercise to myself, I tried to make the start of

each section understandable to a non-physicisit.
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1.1 Neutrino masses

Where are the other particles?

We started the previous section with the reducionist ontological question, “what are things made of?”.

Starting from your body, we dive into your constituents until we get to the quarks, gluons, and electrons

that bound together to make your atoms. Just after, I presented the list of elementary particles (1) know

to this day which includes many other particles along with the quarks, gluons, and electrons from which

you are made. So one may wonder, where are the other particles?

With a few exceptions, the answer now is nowhere. The reason is that almost all particles of the SM

are unstable and decay promptly to stable particles. We are aware of them because they are produced

in high energy collisions events that happen in particle physics experiments, such as the Large Hadron

Collider. However, the list of stable elementary particles of the SM is very short

Stable elementary particles
photon

neutrinos
electron

Table 6: List of stable elementary particles of the SM.

Each of these particles is forbidden to decay because nature has symmetries and for each symmetry there

is an associated conservation law. For example, conservation of energy forbids a particle to decay to a

heavier one, therefore massless photons are stable. Conservation of charge forbids a charged particle to

decay to a set of particles such that the sum of charges is different. These two conservation laws then

imply that the electron is stable. The only particles that are lighter than the electron are neutrinos,

photons, and gluons. However, they are all electrically neutral, so any combination of them have zero

total charge. Therefore, there is nothing that the electron can decay to. For short, because the electron

is the lightest particle that has an electric charge, it is stable.

The proton is also stable in the SM. However, it is not in many of its extensions as in Grand Unified

Theories [35, 36]. Therefore, probably the proton is not stable but long-lived. They are so long-lived

that at most a minuscule fraction of them have decayed since the Big Bang. The other rather long-lived

particle is the neutron, which when on its own, outside an atomic nucleus, lives just 15 minutes or so. But

neutrons inside many atomic nuclei can live far longer than the age of the universe. The other neutrinos

are also long-lived and hence stable for practical purposes.

Now we see that it is not a coincidence that we end up in electrons, and quarks bound in protons
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and neutrons when we dive in the constituents of your body. But the list of stable elementary particles

(6) also includes the photon. We are used to deal with the photon field in our everyday lives, and we

encounter it as a coherent state in the form of light. Light does not form complex structures as the atoms.

However, without photons, we would not be able to see anything. It is the fact that the light propagates

almost freely thru space that allows us to get so much information about objects by looking at them. We

see therefore that the photon and the long-lived stable atoms seem to correspond to the old-fashioned

answer that things are made either of matter or radiation. But what about neutrinos?

Neutrinos are more like photons in the sense that they do not form complex structures as atoms do.

But more fundamentally he is more like the electron and the quarks because all of them are fermions.

The neutrino interacts only via weak and gravitational force, which are the weakest forces in the SM.

The weak force has a very short range, the gravitational interaction is extremely weak, and neutrinos

do not participate in the strong or electromagnetic interaction. Thus, neutrinos typically pass through

normal matter unimpeded and undetected. That is why there is no old fashioned word (such as matter

and radiation) that corresponds to them: they where discovered recently in human history. Neutrinos are

created by various radioactive decays. The majority of neutrinos that are detected about the Earth are

from nuclear reactions inside the Sun. At the surface of the Earth, the flux is about 1010 solar neutrinos,

per second per square centimeter. And interestingly, the radioactive decay that happens in a banana

already produces around 106 per day.

From an earthly perspective, neutrinos may seem to be unimportant. We are made of atoms and we

see because of light, so matter and radiation are certainly very important for our lives and our existence.

Neutrinos, on the other hand, seem to not affect us as they typically pass through everything unimpeded.

However, without neutrinos stars would not burn and would not form the heavy atoms that formed the

earth, give emergence to life which evolved to us. Therefore, taking a cosmological perspective we see

that they are indeed very important.

Masses from oscillations

The problem with neutrino masses is that in the SM they are massless but we know they are not.

So let’s expand a bit on the fact that in the SM they are massless. With the identification of the

fermions inside the fermion fields (1.8) it is clear that there can be no neutrino masses because there is

no νR to form a Dirac mass term and because it is not possible to make a Majorana mass term with

νL. This argument however relies on the fact that we have already identified the components inside the
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fermion fields. A somewhat more generic argument can be made. By counting the number of degrees

of freedom associated with Weyl fermions inside the fermion fields (4) of the SM, we find that there are

|Q|+ |D|+ |L|+ |U |+ |E| = 2× 3+ 3+ 2+ 3+ 1 = 15 per family. A Dirac mass term is made using two

Weyl fermions therefore, it is already clear that we can have at most b15/2c = 7 Dirac mass terms per

family in the SM. For the first family, these are the electron, 3 colors of up and down quark. There is

left one Weyl fermion which in principle could be used to make a Majorana mass term. However, there

is no way to make Majorana mass terms from the fermion fields of the SM. Therefore, there can be no

mass term for neutrinos. This Weyl fermion counting argument shows already that the solution to the

neutrino mass problem will need to introduce new Weyl fermions to generate neutrino masses, or other

fields in a precise representation of GSM in such a way that a Majorana mass term is allowed.

Although theoretically, neutrinos are massless, we know empirically that they are not. We know that

because neutrino oscillations have been firmly established [37, 38, 39] which implies that neutrinos are

massive particles.

First of all, what are neutrinos oscillations? Roughly is the following. Neutrinos have three flavors:

there are the electron, the muon, and the tau neutrino. Each of these neutrinos is produced by a different

process that we see in nature. The discovery of neutrino oscillations was the discovery that a fraction of

neutrinos produced by a process that produces just a particular flavor of neutrinos, after traveling a long

distance, where detected as another type of neutrino. This change from one flavor to another as neutrinos

travel thru space is what is know as neutrino oscillations. What oscillates is the flavor of neutrinos as

they fly.

A second question is why neutrino oscillations imply that neutrinos are massive. Oscillations come

about because the flavor eigenstates are not the same as the mass eigenstates. When a neutrino of

definite flavor is produced it is a superposition of different mass eigenstates and each of which evolves

differently as it propagates thru space depending on the mass. This different evolution of the different

mass eigenstates appears as an oscillation in the flavor basis. Due to the implication of the existence

of neutrinos masses, the experimental discovery of neutrino oscillation, and thus neutrino mass, by the

Super-Kamiokande Observatory and the Sudbury Neutrino Observatories was recognized with the 2015

Nobel Prize for Physics [40].

To better understand how neutrino having masses explains neutrino oscillations consider two families

of neutrinos which are related to neutrino mass eigenstates by a generic orthogonal matrix, that is
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 νµ

ντ

 =

 cos θ sin θ

− sin θ cos θ


 ν2

ν3

 . (1.9)

The mass eigenstates are the eigenstates of the free Hamiltonian and not the flavor eigenstates. In

the ultrarelativistic limit, one can show that after propagating a distance L, the initial mass eigenstates

|νi〉 become

|νi(L)〉 = exp

(
−im

2
iL

2E

)
|νi(0)〉 . (1.10)

Then it is straightforward to show that the probability of oscillation from one flavor to the other is given

by

P (νµ → ντ ) = | 〈νµ(L)|ντ 〉 |2 = sin2 2θ sin2
(
∆m2L

4E

)
. (1.11)

Although dealing with only two flavors, these formulas are good approximations for different situations.

This formula is often appropriate for discussing the transition νµ ↔ ντ in atmospheric mixing since

the electron neutrino plays almost no role in this case. It is also appropriate for the solar case of

νe ↔ νx, where νx is a superposition of νµ and ντ . Also, this simple model shows the parameters

that can be measured from neutrino oscillation. We see that the probabilities of oscillations depend on

∆m2
ij = m2

i − m2
j . Therefore, the measurement of neutrino oscillations puts bounds on the masses of

neutrinos. Cosmology is also an avenue to put such bounds.

Besides giving masses to neutrinos, another and related problem is to understand why neutrino masses

are so small compared with the other SM particles. From the observations of neutrino oscillations, we

can find the difference between their squares and we can put bounds on their masses from this. Presently

we know that mν < eV . Comparing with the electron which is the lightest charged lepton of the SM with

a mass of 0.5MeV , we see that neutrinos are at least 106 times lighter. If neutrino mass is proportional

to the Higgs boson vacuum expectation value
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mν = yνv (1.12)

as the other SM particles, sincemν < 0.1eV and v ≈ 100GeV , this would imply that yν < 10−12. The fact

that this Yukawa coupling would be so small is interpreted as unnatural and motivates the introduction

of a mechanism that circumvents the attribution of such a small number. We should add that fermion

masses although unnatural are technically natural because there is an enhanced symmetry when their

masses are zero: chiral symmetry. This is not generically the case for scalar masses and gives rise to the

hierarchy problem which we will see in section (1.3).

From what was presented above we see that neutrino masses are a central theme of present particle

physics. It is arguably, an incontestable evidence of the existence of physics beyond the SM. There are

different proposals that address this problem. Now we will briefly present a particular one, the seesaw

mechanism. Our interest is because it will be incorporated in our model and it is probably the most

well-known mechanism that gives neutrino masses.

Seesaw mechanism

The seesaw mechanism in its three incarnations, the type-I [41, 42, 43, 44, 45, 46], type-II [46, 47, 48,

49], and type-III [50], gives an explanation for why neutrino masses are nonzero and so small compared

with the other fermions of the SM. In this section, we will present the seesaw mechanism type-I, and then

the type-II which is the one we will incorporate in our model to address the neutrino mass problem.

When we presented the problem of neutrino masses, we anticipated that a solution would need to

introduce the right-hand component of the neutrino field or a new fermion field in a particular represen-

tation of GSM such that a Majorana mass term is allowed. The seesaw type-I goes in the first direction

by introducing new fermion singlets which becomes the right-handed component of the neutrino field.

The type-II goes in the other direction introducing a scalar triplet that allows a Majorana mass term for

νL. For simplicity, we will describe these two mechanisms for a single family of the SM (see [51] or [52]

for more details).

The seesaw mechanism type-I [41, 42, 43, 44, 45, 46] works by extending the SM with a new fermion

field νR which is a singlet under GSM. This extension is appealing because it enhances the structural

symmetry between quarks and leptons. This additional fermion field allows us to write a Yukawa term
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that generates mass to the neutrinos with the spontaneous breaking of electroweak symmetry in complete

analogy to what happens with the up quark. However, a singlet under GSM may be equal to its anti-

particle and therefore can have a Majorana mass. More precisely, with the additional degree of freedom

Scalar field SU(3) SU(2) U(1)

(νR)
c 1 1 0

Table 7: Right-handed neutrino and its representation under GSM. This SM extension generates neutrinos
masses by the seesaw mechanism.

it is possible to write the following Yukawa and mass term

Lν mass = YνL
T
σ2H

∗νR +
1

2
MνTRCνR + h.c. (1.13)

Introducing

ν = νL + CνL
T , (1.14)

N = νR + CνR
T , (1.15)

with electroweak symmetry breaking we get

Lν mass =
1

2
m(νN +Nν) +

M

2
NN (1.16)

where m = Yνv. The mass matrix for ν and N is

 0 m

m MR

 . (1.17)

The eigenvalues for this matrix are
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m1 =
1

2
(M +

√
M2 + 4m2), (1.18)

m2 =
1

2
(M −

√
M2 + 4m2). (1.19)

If M � m, the eigenvectors are approximately equal to N and ν with eigenvalues

m1 ≈M, (1.20)

m2 ≈ −m
2

M
, (1.21)

respectively. The field N is then identified with a heavy fermion and ν to the neutrino. Formula (1.21)

then motivates the name of the mechanism since if m1 gets up then m2 gets down. I should add that it

is necessary at least two singlets to account for both solar and atmospheric neutrino mass differences.

The seesaw mechanism type-II [46, 47, 49, 48] extends the SM with a scalar triplet ∆ of SU(2) with

hypercharge Y = 2. With this additional scalar field, the following term is allowed by the symmetry

group of the SM

Lν mass = Y∆L
TCσ2∆L+ h.c. (1.22)

Neutrinos get a mass when the triplet gets a VEV

mν = Y∆〈∆〉. (1.23)

The VEV results from the scalar interaction with the Higgs

∆V = bHTσ2∆
∗H +M2Tr∆†∆+ λ(Tr∆†∆)2. (1.24)
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Before starting the next subsection, note that I answered “where are the other particles?” saying that

now they are nowhere. The “now” in the answer is not an unimportant detail because depending on the

time you take into consideration, the answer could be “everywhere”. The reason is that in the past the

universe was much hotter than it is today. At high temperatures, there is a higher probability for non-

stable particles to be created by energy collisions as happens today in particle accelerators. Depending on

the temperature, the time it takes for a non-stable particle to be created could be smaller than the time it

take to decay. Therefore, the early and hot universe was filled with SM particles, even the non-stable ones.

As we will see, this fact will put constraints in the model we will consider in the next section. However,

to better understand these issues we need to introduce some concepts to talk about the cosmological

history of the universe, which we will do next.

1.2 Dark Matter and Cosmology

What is there?

What is there? The Milkway, the Andromeda galaxy, the Solar System, the Sun, the Moon, Earth’s

atmosphere, Himalaia, human societies, you, me, and many more things. All these things are so diverse

that it may seem impossible to compare all of them reasonably. However, because things are made of more

elementary constituents, a simple way to compare two things is by counting their parts and comparing

these numbers. For example, you are made of about 1027 atoms and the sun of about 1057, therefore

we could say that you are a part in 1030 of the sun. Although this procedure works for things made

approximately of the same constituents, it does not allow us to compare things of different kinds, such

as you and the radiation emitted by the sun. Therefore we may wonder if there is a more general way to

compare things.

The answer is yes, because any two things can be compared with respect to the amount of energy

they contain [53]. For example, the energy of a photon is equal to its wavelength, and your energy is

equal to mc2 with m your mass. Using this two facts we can compare the total energy radiated by the

sun in one second which is approximate 1026 Joules, with your energy which is about 1017 Joules. In this

sense you are a part in 109 of the radiation emitted in a second by the sun. More generally, the fact that

everything can be compared in terms of energy allow us to look to the universe as a certain amount of

energy and to pose questions as, how much of the universe is a particular kind of thing and how much is

another.
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Rather generically, the energy of something is equal to the energy of its parts plus the binding energy

that keeps the parts together. An interesting fact is that for most things, the binding energy is much

smaller than the energy of its constituents. The sole exception we know is the proton and neutron. The

energy of the proton and the neutron is about 1GeV and the sum of the energy of their constituents is

about 103 smaller, around 1MeV . For these baryons, the binding energy is many orders of magnitude

larger than the energies of their constituent quarks, and this has to do with confinement and the strength

of the strong force. This should be contrasted with complex objects built with these baryons. The binding

energy of the hydrogen atom is around 13eV which is 106 smaller than the energy of its constituent proton.

The binding energy of molecules is also much smaller than the energy of the protons and neutrons that

makes them. The consequence of this fact is that the total energy of a particular thing made of baryons,

such as you, your book, planet Earth, etc. is approximately equal to 1GeV times the number of baryons

that make it. For example:

E(you) ≈ #(barions ∈ you)×GeV (1.25)

As showed in the beginning of the previous subsection, apart from ordinary objects which are made

of baryons and electrons, the other stable particles of the SM are the photon and neutrinos. Photons and

neutrinos do not bound in complex objects as baryons and electrons do, therefore the total energy of a

collection of photons and neutrinos is simply the sum of their energies.

From these arguments, if the universe is made just of SM particles then a rough prediction is that

E(universe) ≈ #(barions ∈ universe)×GeV +
∑

photons

E(photons) +
∑

neutrinos
E(neutrino) (1.26)

However this is not true. In fact, at present, the contributions of photons and neutrinos to the total

energy density of the universe is negligible, around 5% comes from baryons, 25% is made of Dark Matter,

and the other 70% is Dark Energy. Now we will make a summary of how we come to this knowledge.

How to know the existence of something we don’t know

For short, we know Dark Matter exists because of gravity. In the theory of General Relativity the
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Einstein field equations

Rµν +Rgµν = 8πGTµν (1.27)

relates the geometry of spacetime Rµν + Rgµν with the distribution of energy within it Tµν . This

statement condenses the reason why physicists were able to discover that the universe is not made just

of SM particles. Because energy is a universal property, by measuring parameters associated with the

geometry of spacetime we can discover what the universe is made of.

The early indications of the existence of DM where based on the comparison of our predictions for the

movement of bodies based on what we could see, and their actual movement. For example, astronomers

can infer the location of celestial bodies by looking at them and their masses from luminosity. Using

these two inputs in a theory of gravity one can predict the subsequent movement of these celestial bodies

including their velocities. However, using the Doppler shift, astronomers can also measure the velocity

of these objects and compare them to the velocities predicted from their positions and masses. Roughly

this procedure allowed physicists to discover indications of DM in different scales from galaxies [54] to

clusters of galaxies [55, 56] (see [57] for more detail).

Another way to find dark matter comes from a deeper understanding of gravity. In the theory of

general relativity massive objects curve spacetime and by doing so they bend the trajectory of light.

They work this way as a gravitational lens. The signature of this phenomena are ellipses of light in the

sky. By measuring this ellipses, astronomers can infer the amount of mass in a given region of space and

this had provided yet another observation of DM [58].

This indications of DM should be contrasted with the evidences that come from what is sometimes

called the era of high precision cosmology [59]. In part, this era started when physicists started to under-

stand some history. Not human history, but the history of the universe. Two events in the cosmological

history of the universe provide a huge part of the information we have about the early universe, and also

about the different energy densities that fill our universe. These are Big Bang Nucleosynthesis (BBN)

and the releasing of the Cosmic Microwave Background (CMB). These two events also provide most of

the constraints on the model we will soon present, therefore we will take the chance to explain in some

detail what they are and to define the parameters that will appear after. However, to understand the

CMB and BBN we need to have some understanding of the cosmological history of the universe which is
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attained by the ΛCDM model.

ΛCDM model

Our understanding of the cosmological history of the universe is built from postulating two properties

of space in the large-scale universe:

Homogeneity

Isotropy

Table 8: Postulates of modern cosmology concerning space.

These postulated properties of space imply that the large-scale universe is described by the Robertson-

Walker metric [60, 61, 62, 63]

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2dΩ2

)
, (1.28)

with a(t) the scale factor and k = 1, 0, or −1 depending on whether the universe is a closed 3-sphere,

flat, or an open 3-hyperboloid, respectively.

The Robertson-Walker metric is a kinematical consequence of homogeneity and isotropy. To under-

stand the dynamics of spacetime we need Einstein field equations (1.27) and the form of the energy-

momentum tensor. Assuming the perfect fluid form for the energy-momentum tensor and imposing that

it is homogeneous and isotropic leads to

Tµν = ρδ0µδ
0
ν + pgijδ

i
µδ

j
ν (1.29)

with ρ and p respectively the energy density and the pressure in the rest frame of the fluid, gij the spacial

part of the Robertson-Walker metric (1.28) and δ the ordinary Kronecker deltas. With this form for

the energy-momentum tensor it is possible to derive the Friedmann equation and the evolution equation

[62, 63], respectively:
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(
ȧ

a

)2

=
8πG

3

∑
i

ρi −
k

a2
, (1.30)

ä

a
+

1

2

(
ȧ

a

)2

= −4πG
∑
i

pi −
k

2a2
. (1.31)

where ρi is the energy density of the i type of thing that makes the universe. The Friedmann equation

relates the rate of increase of the scale factor, as encoded by the Hubble parameter

H ≡ ȧ

a
. (1.32)

to the total energy density of the universe. The Hubble parameter relates how fast the most distant

galaxies are receding from us to their distance from us via Hubble’s law v ≈ Hd.

The energy density is in general expressed in terms of the density parameter

Ωi =
ρi
ρc
, (1.33)

where

ρc =
3H2

8πG
, (1.34)

which would be the total energy density if spacial sections where flat (k = 0), as one can check from the

Friedmann equation. As we will see, precision measurements of the cosmic microwave background, show

the universe today to be extremely spatially flat. Therefore

∑
i

Ωi ≈ 1 (1.35)

and Ωi ends up being almost equal to the fraction of each component of the energy of the universe.
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An additional important feature of the ΛCDMmodel is cosmological inflation [64, 65, 66, 67]. Inflation

is a period shortly after the Big Bang of exponential expansion of space driven by the inflaton field. It is

somewhat controversial for its ad hoc introduction, but currently it is quite established for its importance

in explaining the large-scale structure of the universe, the horizon, flatness and monopole problems.

In a universe with flat spacial section (k = 0) we can use the Friedmann equation to calculate the

functional form of ρ(a) and a(t) for the most relevant types of things that exist in our universe. The

table below shows these results:

Type of energy ρ(a) a(t)

Matter a−3 t2/3

Radiation a−4 t1/2

Dark energy constant eHt

Table 9: Energy density as a function of a and a as a function of time for different types of energy.

For our universe which is almost flat, these expression allow us to rewrite the Friedmann equation as

H(a) ≡ ȧ

a
= H0

√
(Ωb +Ωc)a−3 +Ωra−4 +ΩΛ, (1.36)

which can be integrated to give the expansion history a(t) for any chosen values of the cosmological

parameters. These expression shows very explicitly that the different components of energy of the universe

have observational impacts in the geometry of spacetime. The fit of the values for the density parameters

in the ΛCDM model are [5, 68, 69]

ΩΛ = 0.685(7), (1.37)

Ωc = 0.265(7), (1.38)

Ωb = 0.0493(6), (1.39)

Ωγ = 5.38(15)× 10−5 (1.40)

The relative amount of each energy component justifies the name of the model: the universe in the ΛCDM

model contains three major components: first ΩΛ, a cosmological constant associated with dark energy;

second ΩDM , the postulated cold dark matter (CDM); and third ΩB , ordinary matter. This is the formal
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counterparts of what I told before: at present the contributions of photons and neutrinos to the total

energy density of the universe is negligible, around 5% comes from baryons, 26.5% from Dark Matter,

and the other 68.5% from dark energy.

In addition to showing in greater depth how dark matter fits into our understanding of the universe,

we introduced these concepts because the energy density of non-visible radiation will be one of the main

constrains to the model we will present in the next section. So we also want to show where ρ fits in

the current cosmological model for our universe. As anticipated, the constraints to dark radiation comes

mainly from BBN and CMB, which are two of the most important sources of information of the early

universe. For that reason in the next two paragraphs we will give a briefly summary of them.

BBN is a period from a few seconds to a few minutes after inflation in the early universe when neutrons

and protons bound together in deuterium, helium, lithium and other light elements. This event in the

early universe relates present-day deuterium to hydrogen ratio D/H abundance and the overall density of

baryons in the universe. Therefore, by measuring the D/H abundance physicists can estimate the energy

density of baryons in the universe Ωb. The formation of these elements happened in the photon-baryons

plasma, therefore the amount of photon impact directly these ratios. In particular, if the energy density

in radiation has a fraction of dark radiation, that is, some form of relativistic energy such as neutrinos,

that behaves differently from photons, this has effects in these ratios.

CMB is electromagnetic radiation released in an early stage of the universe. There was a time after the

Big Bang when the universe was an extremely dense plasma of charged particles and photons. At this time

photons have a very short mean free path because they interact with the charged particles. However, the

universe expanded and cooled until it reached what is known as the epoch of recombination. At the epoch

of recombination the charged particles that made the plasma bound together in neutral atoms and the

universe became transparent to electromagnetic radiation. The photons released from this last scattering

exist today as the CMB. The CMB is a nearly perfect blackbody with a temperature of about 2.7255(6)K

[5, 70]. Although the CMB is extraordinarily uniform but it have some anisotropies (fluctuations). The

fluctuations in the CMB are indications of initial density perturbations that allowed for the formation

of early gravitational wells as well as the dynamics of the photon-baryon fluid. In this manner, the

temperature fluctuations of the CMB are dependent on the baryons and radiation energy density in the

universe at the time of recombination. In fact, different features of the CMB power spectrum constrains

essentially all of the cosmological parameter [71, 72].

For all that was said, to understand the nature of dark matter is one of the central problems of particle
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physics. Next, we will present a particular framework that tries to address this problem. Later we will

see how this framework is incorporated into our model.

Asymmetric Dark Matter

We will present the framework of Asymmetric Dark Matter (ADM) [73, 74, 75, 76, 77, 78] which are

naturally accomodate in the twin Higgs framework that we will present in the next section. For more

detailed reviews see [79, 80, 81].

The motivation for ADM comes from the observation that DM and baryon abundances are very close

to each other observationally [5, 68, 69], that is

ρDM ≈ 5ρB . (1.41)

In many models describing the early universe, this coincidence is just an accident and these two quantities

are unrelated. For example, in baryogenesis [82, 83, 84], the baryon density is set by CP-violating

parameters and out-of-equilibrium dynamics associated with baryon number violating processes. On

the other hand, in the WIMP freeze-out DM paradigm [85, 86] this density is fixed by the annihilation

cross-section of DM. While it is possible that this coincidence is an accident, or that this ratio is set

anthropically, dynamics may also play a role. The ADM hypothesis simply states that the present-day

DM density is similarly due to a DM particle-antiparticle asymmetry. The DM density is then set by its

asymmetry, which can be directly connected to the baryon asymmetry

nX − nX ≈ nb − nb. (1.42)

rather than by its annihilation cross-section. Because (1.41) and (1.42) a prediction of the asymmetric

dark matter framework is that mDM ≈ 5mb ≈ 5GeV .

Asymmetric dark matter is a particular framework to pursue models that address the dark matter

problem which is motivated by the comparable densities of dark matter and ordinary matter. For all that

was said, to understand the nature of dark matter is one of the most salient problems of particle physics.

In section (2) we will explain how dark matter can be understood in a twin Higgs model, a framework
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that addresses the hierarchy problem which we will discuss next.

1.3 The Hierarchy Problem

Nature is like an onion

At the beginning of this section, we introduced the elementary particles of the SM with the warning

that they are not necessarily elementary in the sense of not being made of other objects. I adverted that

is possible that we see no structure in these elementary particles because the energies involved in their

binding are larger than the available in the experiments designed to break them. The meaning of these

sentences can be grasped intuitively, however, deep theoretical arguments are underlying it and constitute

one of the most significant recent developments of theoretical physics [87, 88, 89].

Before a more formal presentation, let’s expand a little on the intuitive notions involved by giving an

example. If you let the apparatus you are using to read this dissertation to fall on the ground from rest,

its perpendicular motion will be approximately described by

h(t) = h0 −
1

2
gt2 (1.43)

with h0 the height your apparatus is from the ground, g ≈ 10m/s2 the acceleration of gravity. One may

wonder, why g is constant? Newton’s law of gravitation teaches us that the acceleration is proportional

to the distance square, and not constant. Furthermore, we know Newton was overcome by Einstein, so

we should use Einstein’s field equations (1.27) instead. But as mentioned in the introduction, Einstein’s

theory of gravity breaks when we extrapolate it to arbitrarily high energies, so by this reasoning we

should use the correct theory of gravity, which may be string theory.

The fact that we don’t need to use the final theory of gravity to find out the approximate trajectory

of your apparatus if you let it fall, highlights a profound fact about nature which in turn had allowed

the development of science. Nature is like an onion made of different layers, and each layer gives rise

to patterns that are approximately insensitive to the details of the more interior layers. This aspect of

nature allows us to built our understanding of nature by dissecting these different layers and exploring

their independent features as we move in. After understanding the dynamics of a layer we move to the

next and then we can understand how the specificity of the inner layer produces small corrections to the
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other one. This intuitive idea of nature as an onion can be made precise with the renormalization group

formalism. Instead of layers, we have energy scales, with higher energies corresponding to more internal

layers.

Following these developments of theoretical physics, the modern view on the SM is that it is an

Effective Field Theory (EFT) [90, 91, 92, 93]. In addition to the two ingredients that define a QFT

presented before (2), in an EFT we also have a certain energy interval bounded above by the theory

cutoff Λ in which the EFT is valid. In an EFT the Lagrangian includes high-order operators and not

just renormalizable, the cutoff divide appropriately these non-renormalizable terms whose effects are

suppressed when considering process below the cutoff. Energies above this domain are generically called

ultraviolet (UV), and many times one imagines that there is a UV theory for which the EFT is an effective

description. This UV theory may be another EFT but it is not necessarily a QFT. For example, Fermi

theory is an EFT and the SM is its UV completion which is also an EFT. The UV completion of the SM

can be string theory which is not a QFT.

Why the Higgs is light?

Having introduced the idea of EFT we are in a position to explain the electroweak hierarchy problem.

It has to do with the sensitivity of the mass of a scalar to UV physics combined with the discovery that

the Higgs mass is much smaller than the apparent cutoff Λ of the SM. An indication of the problem can

be seen by calculating the quantum corrections δm2 to the Higgs mass parameter.

m2
h = m2

0 + δm2 (1.44)

Considering the SM as an effective field theory up to some scale Λ and using cutoff regularization to

calculate the quantum correction one can find that the biggest contribution comes from the top loop

which gives

h

t

t

h
= − 3y2t

8π2
Λ2. (1.45)
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Therefore

δm2 ⊃ 3y2t
4π2

Λ2 (1.46)

which depends quadratically on the cutoff. We see that if the cutoff Λ is greater than a few TeV we have

δm2 much bigger than the value found experimentally for the Higgs mass parameter m2 = (90GeV )2.

Then the bare mass parameter must be finely tunned against the quantum corrections to reproduce the

observed value of the Higgs mass.

As mentioned before, the fact that quantum corrections are quadratic with the cutoff should be

regarded as an indication of the sensitivity of the Higgs mass parameter to UV physics. That is because,

in a sensible renormalization scheme that factorizes scales properly, such as dimensional regularization,

there are no Λ2 loop contributions. However, imposing a hard cutoff in momentum space can be thought

of as a modification of the UV physics that signals this sensitivity. In a sense, this is the bottom-up

argument for the hierarchy problem.

We can better appreciate the hierarchy problem from a top-down perspective by considering the

following toy model (see [93] for more detail). Consider the theory that describes a light scalar φ with

mass m coupled to a heavy-fermion ψ with mass M � m:

S =

∫
d4x

[
1

2
(∂φ)2 − 1

2
m2φ2 − 1

4!
λφ4 + ψi/∂ψ −Mψψ + yφψγ5ψ

]
. (1.47)

Because M � m, we can integrate out the heavy-fermion and obtain an effective field theory for the

scalar which is valid for energies E � M . The tree-level effective action S0
eff for the scalar is equal to

the action (1.47) with ψ = 0. To calculate the quadratic part of the 1-loop effective action S(1)
eff , we need

to compare the 1-loop correction to the scalar propagator obtained using the tree-level EFT and the full

theory.

In dimensional regularization, the 1-loop correction to the scalar propagator obtained using the tree

level EFT yields
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φ

φ

φ
= − iλµ̃

ε

2

∫
d4−εk

(2π)4−ε

−i
k2 +m2 − iε

=
iλ

32π2
m2

[
2

ε
+ 1 + ln

(
µ2

m2

)
+O(ε)

]
(1.48)

In the full theory, this same diagram appears and therefore it drops out when comparing the 1-loop

corrections of the two theories. Therefore, the 1-loop corrections to the effective action must give the

same as the diagram with a fermion running in the loop

φ

ψ

ψ

φ
= −(−y)2

∫
d4k

(2π)4
Tr
[ −i(−/k − /p+M)

(k + p)2 +M2 − iε
γ5

−i(−/k +M)

k2 +m2 − iε
γ5
]

(1.49)

Recalling that γ5 is not well defined for d 6= 4 we need to eliminate it using (γ5)2 = 1 and γ5/pγ5 = −/p

before starting dimensional regularization. Then this diagram gives

− iy2

4π2

{
1

ε
(p2 + 2M2) +

p2

2
ln

(
µ2

M2

)
+m2

[
1 + ln

(
µ2

M2

)]
+O(ε,M−2)

}
(1.50)

and using MS scheme we get

φ φ
= − iy2

4π2

{
p2

2
ln

(
µ2

M2

)
+m2

[
1 + ln

(
µ2

M2

)]
+O(ε,M−2)

}
. (1.51)

From this result, we see that the quadratic part of the effective action at 1-loop is given by

S
(0)
eff + S

(1)
eff =

∫
d4x

[
−1

2
Z(µ)∂µφ∂

µφ− 1

2
M2(µ)φ2 + ...

]
(1.52)

with Wilson coefficients
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Z(µ) = 1 +
y2

8π2
ln

(
µ2

M2

)
, (1.53)

M2(µ) = m2 +
y2

4π2
M2

[
1 + ln

(
µ2

M2

)]
. (1.54)

These results show that the scalar mass is proportional to M2 and therefore quadratically sensitive to

the UV scale, which in this case is equal to the fermion mass M . By fine-tuning the three-level and loop

contributions at a particular scale µ one can circumvent this problem. However, such fine-tuning would

not survive if we changed the renormalization scale by a relative factor of O(1), and is thus regarded as

“unnatural”. This fine-tunning would be worst if we add other heavy fermions for example. In any case,

this simple toy model shows that, in a sense, a natural expectation is that the Higgs mass parameter is

proportional to the square of the cutoff Λ of the SM. In this example, the cutoff is given by the mass of the

heavy-fermion, but rather generic new physics would give similar contributions. Even more generally, if

there is new physics that renders the Higgs mass calculable, then the SM fields will also give contributions

of this sort.

This toy model shows very explicitly that the scalar mass parameter has a quadratic dependence

on the fermion mass which defines the cutoff scale Λ for this low energy EFT. As mentioned before,

the quadratic divergence (1.46) can be thought of as a stand-in for the finite threshold corrections. Or

conversely, we can argue that from the bottom-up perspective, the quadratic divergences are a handy

way to estimate the effects of new physics.

At this point, we presented the fact that a scalar mass is quadratically sensitive to UV physics. Follows

from this fact that a natural expectation is that the mass of any scalar is of the order of the cutoff of its

EFT. In the SM the Higgs is a scalar and its mass is 125GeV . However, we know that the SM is valid

up to energies of the order of TeV, therefore its cutoff seems to be at least this high. The failure of this

prediction for the Higgs mass is the hierarchy problem.

The electroweak hierarchy problem sometimes called the little hierarchy problem, associated with

the stabilization of the Higgs mass to TeV scales, should be contrasted with the big hierarchy problem,

which requires the stabilization of the Higgs mass beyond. Solutions to the big hierarchy in general

involve supersymmetry or compositeness. However, these solutions to the big hierarchy problem, seems

to require low energy model building to properly address the little hierarchy problem [94]. As we will

see, the Twin Higgs model is an attempt to solve the little hierarchy problem that can be incorporated
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in both supersymmetric and composite Higgs models to address the big hierarchy problem.

The electroweak hierarchy problem can be converted into a strategy for new physics. We imagine

that the Higgs mass is natural because the theory changes not far from the weak scale. This motivates

the search of models in which the quadratic divergences are canceled by some mechanism. We are going

to do this next.
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2 Twin Higgs

In the previous section, we saw some of the problems of the SM, now we will focus on solutions starting

with the hierarchy problem. We saw that the hierarchy problem arises from the combination of the

fact that the Higgs mass parameter is sensitive to UV physics and the discovery that the Higgs mass is

125GeV . A solution to this problem would need to explain why this mass is apparent so much smaller

than the cutoff of the SM which seems to be at least of order TeV.

Theories beyond the SM that address the hierarchy problem generally involve new particles that

cancel the top quark quadratic divergences (1.46) which are called top partners. If top partners are

charged under the SM color group they are subjected to stringent limits from searches at the LHC

[95, 96, 97, 98, 99, 100, 101]. Therefore, besides having a mechanism that explains why the Higgs mass

is smaller than 1 TeV, a valid solution to the hierarchy problem should account for the fact that top

partners were not found by LHC.

Twin Higgs models [102, 103, 104, 105] combine two ideas to address the hierarchy problem and the

associated problem related with top partners:

Z2

{
The Higgs is a pseudo-Nambu-Goldstone boson

Neutral naturalness

}

Table 10: Main idea of twin Higgs models. The fact that the Higgs is a pseudo-Nambu-Goldstone boson
is combined with neutral naturalness using a Z2 symmetry.

Neutral naturalness [106, 107] is the framework where top partners carry no charge under the strong

interactions and therefore avoid stringent limits from LHC. In the next subsection, we will explain what

it means to have the Higgs as a pseudo-Nambu-Goldstone boson (pNGB).

2.1 Nambu-Goldstone bosons

Nambu-Goldstone bosons (NGBs) arise whenever a continuous global symmetry is spontaneously broken.

If the symmetry is exact, the NGBs are exactly massless and have only derivative couplings. The simplest

example is provided by the theory of a complex scalar. The Lagrangian is given by
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L = ∂µφ
∗∂µφ+m2φ∗φ+

1

2
λ2(φ∗φ)2 (2.1)

which is invariant under the U(1) symmetry

φ→ eiαφ, φ∗ → e−iαφ∗ (2.2)

for α ∈ R.

If m2 is positive, the minimum of the potential is at φ = 0. The vacuum is unique, the theory is in

the unbroken phase and there are two elementary excitations with mass m corresponding to the real and

imaginary components of φ. If m2 is negative, the minimum of the potential is at

|φ|2 = v ≡ −m
2

λ2
. (2.3)

The vacuum is not unique, because there is a continuous set of vacuum states related by each other by a

phase rotation. All these vacua are physically equivalent.

Near the vacuum, the field φ can be represented as

φ(x) = v +
1√
2
ϕ(x) +

i√
2
χ(x) (2.4)

where ϕ(x) and χ(x) are real fields. Then in terms of this fields

L =
1

2
(∂µϕ∂

µϕ+ ∂µχ∂
µχ)−

[
λ2v2ϕ2 +

λ2v√
2
ϕ(ϕ2 + χ2) +

λ2

8
(ϕ2 + χ2)2

]
. (2.5)

We can see that the mass of the excitation ϕ is
√
2λv and that excitation χ is massless.

The broken phase of the complex scalar field theory is arguably the simplest realization of Goldstone’s
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theorem, which states that there is a massless mode for each broken symmetry generator of a spontaneous

broken continuous symmetry. The massless modes are known as NGBs. In the example above the

spontaneously broken symmetry is U(1) which has a single broken generator, hence the NGBs χ is

unique.

In the SM, as mentioned in the introduction, we have the spontaneous breaking of electroweak to

electromagnetism symmetry, SU(2)×U(1) → U(1). This pattern of symmetry breaking produce |SU(2)×

U(1)| − |U(1)| = |SU(2)| + |U(1)| − |U(1)| = |SU(2)| = 22 − 1 = 3 NGBs. However, because these are

gauge symmetries the NGBs are absorbed by the gauge bosons giving their masses. This mechanism for

giving masses to the gauge bosons are known as the Anderson-Higgs mechanism.

Now we will present another example that will be useful in the model we will present in the next

section. We will look in more detail to a model that is often considered in the literature in which the

electroweak symmetry breaking is accomplished by the Higgs doublet plus a complex scalar triplet with

hypercharge Y = 1. First lets analyse the relation between the generators of SU(2)×U(1) and the vacuum

expectation value of the theory. Fist note that the three fields of an SU(2) triplet can be combined in

a 2 × 2 traceless matrix ∆ = ∆aσa, where σa with a = 1, 2, 3 are the Pauli matrices. It can be shown

that ∆ transforms as ∆ → U∆U† under SU(2) with U ∈ SU(2). Taking the standard convention for the

VEV of the Higgs in the SM we know that Q = T3 + Y and with this fact we can check that

Q〈∆〉Q = 0 (2.6)

just for 〈∆〉 = 0 or 〈∆〉 6= 0 but Y = 1 or −1. We see therefore, that adding an SU(2) triplet to the SM

with a non-zero vacuum expectation value, will break SU(2)×U(1) to U(1)em when Y = 1,−1, and will

break it to nothing otherwise. We see therefore, that depending on the assignment of the hypercharge

of the triplet, the symmetry breaking pattern will be very different. In particular the counting of NGBs

is different in each case. For the case in which Y = 1,−1 we have SU(2) × U(1) → U(1)em which gives

(3 + 1) − 1 = 3 NGBs. When Y 6= 1,−1 we have SU(2) × U(1) breaking to nothing and therefore we

have 3 + 1 = 4 NGBs.

From a Lagrangian point of view these statements can be checked rather explicitly. The general

potential for an SU(2) doublet with hypercharge 1/2 and an SU(2) triplet with hypercharge 1 is
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V =m2H†H + λ(H†H)2 +M2Tr∆†∆+ λ1(Tr∆
†∆)2 ++λ3Tr∆

†∆∆†∆

+ λ4H
†HTr∆†∆+ λ5H

†∆∆†H +
(
b∗H†∆H∗ + h.c.

)
.

(2.7)

Notice that when the hypercharge of the triplet is different from 1 or −1, from a Lagragian perspective

means that b = 0 because the H†∆H∗ is not gauge-invariant anymore. In the case b = 0, this potential

have a minimum for

〈H†H〉 = v2 =
M2(λ4 + λ5)− 2m2(λ1 + λ3)

4λ(λ1 + λ3)− (λ4 + λ5)2
, (2.8)

〈∆†∆〉 = V 2 =
m2(λ4 + λ5)− 2λM2

4λ(λ1 + λ3)− (λ4 + λ5)2
. (2.9)

Instead of working with m2 and M2 we can invert the relations above to get

M2 = −(λ4 + λ5)v
2 − 2V 2(λ1 + λ3), (2.10)

m2 = −2λv2 − V 2(λ4 + λ5). (2.11)

Expanding the theory with

H =

 H+

h+ v + ia

 , ∆ =

∆++ ∆+
√
2

∆+
√
2

∆0
s + V + i∆0

a

 , (2.12)

and using the expressions for m2 and M2 in terms of v2 and V 2 we find that the fields H+ and ∆+ mix

and their mixing is encoded by the mass matrix

λ5
2

(
(H+)∗ (∆+)∗

) −V 2
√
2vV

√
2vV −v2


 H+

∆+

 , (2.13)
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which have mass eigenstates

S+ = sin θ∆+ + cos θH+, (2.14)

S− = cos θ∆+ − sin θH+, (2.15)

with θ = arctan(
√
2V/v) and masses respectively equal to

m+ = 0, (2.16)

m− = −λ5
2
(v2 + V 2). (2.17)

The scalar fields hA and ∆0
s also mix with an mass matrix

(
hA ∆0

s

) 4λv2 2vV (λ4 + λ5)

2vV (λ4 + λ5) 4V 2(λ1 + λ3)


 hA

∆0
s

 , (2.18)

which have two non-zero eigenvalues, corresponding to two massive scalar particles. Finally, a, ∆0
a and

∆+ are mass eigenstates with masses respectively equal to

ma = 0, (2.19)

m∆0
a
= 0, (2.20)

m∆+ = −λ5v2 − 2λ3V
2. (2.21)

We see that for this symmetry breaking pattern we end up with 4 NGBs: S+, a and ∆0
a. Recall that

S+ is a complex scalar field, and therefore contains two degrees of freedom. This number of NGBs is in

agreement with the counting of broken generators because setting b = 0 is equivalent, from a Lagrangian

perspective, to have the hypercharge of ∆ different from 1,−1. However, when b 6= 0 the symmetry

breaking pattern is the usual SU(2)L × U(1)Y → U(1)em and we will have just 3 NGBs. This can be
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checked explicitly by including the term with b coupling in the Lagrangian. However, the formulas are

excessively complicated to include here. In any case, an interesting conclusion is that one of the NGBs

will acquire a mass which will be proportional to b.

We should add that if the symmetry which is spontaneously broken is not exact, then the would-be

NGBs get a mass proportional to the parameters that break the symmetry explicitly. In these cases,

they are known as pseudo-Nambu-Goldstone bosons (pNGBs). An important example to consider is the

pion of QCD. The pion is a pNGBs associated with the spontaneous breaking of chiral symmetry, and

their masses are proportional to the quark masses, which are the parameters that explicitly break chiral

symmetry.

The generic idea behind twin Higgs models is to have the Higgs as a pNGB of an spontaneously broken

global symmetry [108, 109, 110]. The actual implementation of this idea, however, is not so simple because

generically the electroweak gauge and Yukawa interactions explicitly break the global symmetry to which

the pNGB Higgs is associated and reintroduce the quadratic divergences to the Higgs mass parameter.

This problem can be addressed by controlling radiative corrections from gauge and Yukawa interactions.

This can be done by breaking symmetry collectively [111, 112, 113], by making the size of the gauge

group generating the pNGB Higgs large and thus separating the momentum cutoff scale from the cutoff

of the theory [114, 115], or by using a discrete symmetry as in Twin Higgs models [102, 105]. By having

a discrete symmetry controlling the radiative correction from gauge and Yukawa interactons, Twin Higgs

models end up with colorless top parners. Next, we will see in detail how this happens.

2.2 Z2 symmetry

In Twin Higgs models the SM is extended with a twin sector and the Higgs boson is a pNGB of broken

global symmetry. There is an Z2 exchange symmetry between the SM and the twin sector that ensures

that the radiative corrections to the Higgs potential respects the global symmetry and therefore does not

reintroduce the quadratic divergences to the Higgs boson mass.

We will illustrate the basic idea by way of a simple example where the global symmetry is SU(4)×U(1)

and is realized linearly. We assume that the SM Higgs doublet is part of a complex scalar field H which

transforms in the fundamental representation of SU(4). The potential for H is

42



V (H) = m2H†H + λ(H†H)2 (2.22)

and respects SU(4). Gauge interactions are introduced by gauging the SU(2)A×U(1)A×SU(2)B×U(1)B

subgroup of SU(4)× U(1). The field H is taken to be

H =

 HA

HB

 (2.23)

with HA having the same quantum numbers as the Higgs field (1) under SU(2)A × U(1)A and being a

singlet of SU(2)B ×U(1)B , and conversely for HB . The subgroup SU(2)A ×U(1)A is identified with the

electroweak gauge group of the SM and HA with the Higgs field. If m2 is negative, H will acquire a VEV

〈H〉 = m√
2λ

= f (2.24)

that spontaneously breaks SU(4)×U(1) to SU(3)×U(1). This symmetry breaking pattern will produce

|SU(4)| − |SU(3)| = (42 − 1) − (32 − 1) = 7 massless NGBs. Depending on the alignment of the VEV,

different NGBs will be eaten. If it is aligned along HB , the SM Higgs doublet HA will remain massless.

However, the SU(4) × U(1) global symmetry is broken explicitly by Yukawa and gauge interactions

generating a mass to the NGBs that are proportional to the parameters that explicit break the symmetry.

The top Yukawa interactions take the form

λAHAqAtA + λBHBqBtB (2.25)

These interactions generate quadratically divergent corrections to the Higgs potential at one-loop order

that take the form
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∆V =
3λ2AΛ

2

8π2
H†

AHA +
3λ2BΛ

2

9π2
H†

BHB , (2.26)

below the cutoff Λ of the theory. Adding an Z2 symmetry that exchanges A ↔ B enforces that λA =

λB ≡ λ which makes

∆V =
3λ2Λ2

8π2
(H†

AHA +H†
BHB) =

3λ2Λ2

8π2
H†H, (2.27)

respecting the SU(4) symmetry. Therefore, it does not contribute any more to the mass of the pNGBs.

The other gauge and the Yukawa interactions will also generate corrections to the Higgs potential that

respects the U(4) due to the Z2 symmetry that exchanges the two sectors. In conclusion, there are no

quadratically divergent contributions to the Higgs mass at one-loop order. However, gauge and Yukawa

interactions still breaks the U(4) symmetry and these introduces logarithmically divergent corrections.

The leading contributions are

∆V ⊃ 3y4

16π2

(
|HA|4 log

Λ2

y2|HA|2
+ |HB |4 log

Λ2

y2|HB |2

)
. (2.28)

To sum up, the Z2 ensures that the corrections to the Higgs potential respects SU(4), and therefore,

Z2 protects the pNGB from quadratic divergences. The leading contributions to the SM Higgs potential

are logarithmic, this other divergence restricts the mechanism of twin Higgs models to protect the weak

scale from radiative corrections up to scales of order 5-10 TeV.

The previous argument was based on the simple example where the global symmetry is SU(4)×U(1)

and is realized linearly. However, the cancellation is independent of the details of the UV theory. To

see this we will consider the low-energy EFT for the light pNBG in which the symmetry is realized

nonlinearly.

We parametrize the pNGB degrees of freedom in terms of fields Πa(x) that transform nonlinearly

under the broken symmetry. Then
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H =

 HA

HB

 = exp

(
i

f
Π

)


0

0

0

f


, (2.29)

where f is the vacuum expectation value of H and Π is given by

Π =



0 0 0 h1

0 0 0 h2

0 0 0 0

h∗1 h∗2 0 0


, (2.30)

where we assumed unitary gauge where all the B sector NGBs have been eaten by the corresponding

vector bosons. Expanding the exponential gives

H =


h if√

h†h
sin
(√

h†h
f

)
0

f cos
(√

h†h
f

)
 , (2.31)

showing that

HA = h if√
h†h

sin

(√
h†h
f

)
= ih + ..., (2.32)

HB =

 0

f cos
(√

h†h
f

)
 =

 0

f − 1
2f h†h + ...

 . (2.33)

where h = (h1, h2)
T is the Higgs doublet of the SM. Using this expressions in (2.25) we get
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iλthqAtA + λt

(
f − 1

2f
h†h

)
qBtB . (2.34)

We can evaluate the radiative contributions to the Higgs mass parameter using this Lagrangian from

the diagrams

Figure 1: Cancellation mechanism of twin Higgs model. The different colors of the green top loop and
the blue twin-top loop are meant to emphasize that they are charged under different color groups. The
first in the SM QCD, the second in twin-QCD.

Evaluating these diagrams we find out that the quadratic divergences coming from the first one exactly

cancel the ones coming from the second one. We see that the twin-top particles are responsible for the

stabilization of the Higgs potential. As mentioned at the beginning of this section, twin Higgs models

combine the idea that the Higgs is a pNGB of a spontaneous broken global symmetry with the idea

of neutral naturalness using the Z2 symmetry. The diagram above shows very explicitly that in the

twin Higgs model the top-partners, the twin-top, are not charged under the SM color group (corrigir).

These theories demonstrate that, contrary to the conventional wisdom, stabilizing the weak scale does

not require new light particles transforming under the SM gauge groups.

The Goldstone Higgs is protected from radiative corrections from Z2-symmetric physics above the

scale f . Therefore, to address the hierarchy problem it is necessary to generate a mild hierarchy v < f

so that in the strong coupling limit the cutoff Λ ≈ 4πf is of order 5 TeV. Therefore, the Z2 symmetry

can’t be exact. In original twin Higgs proposal [102], vacuum misalignment between electroweak and

new physics scales is realized by adding explicit Z2 breaking terms. Alternatively, it is possible to have

Z2 broken spontaneously [116, 117, 118, 119, 120] or it may remain exact as long as the contributions

are correctly suppressed [121]. In the model we will present in the next section, we have Z2 broken

spontaneously.
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While the mirror Twin Higgs addresses the little hierarchy problem, it does not address the big

hierarchy problem, as nothing stabilizes the scale f against radiative corrections. However, the Twin

Higgs model can be incorporated in composite Higgs [122, 123, 124] or supersymmetric [125, 126, 127, 128]

models to address the big hierarchy problem. Alternativelly, one can postpone the solution of the big

hierarchy problem with additional copies of the Twin Higgs mechanism [129].

2.3 Twin Dark matter and Cosmology

We saw in the introduction that the ideas of matter and radiation where unified by modern physics with

the concept of the quantum field. Nevertheless, matter and radiation are indeed very different things.

One of the most striking differences between the two is the diversity we see in the matter and that we

cannot see in radiation. The fact that simple atoms can combine in molecules, and they combine in

proteins and so on, gives rise to all the richness we see in the world, including you. Interestingly, we are

only able to see the richness of forms of matter because radiation is quite homogeneous and does not

interact with itself. If the photons that are now reaching you from these letters decided to interact with

themselves forming interesting bound states as the proton and electron do, you would not be able to see

anything. Therefore, in a very concrete sense, the fact that photons are boring is what allows us to see.

In any case, in many models, Dark Matter is more like radiation than matter. Not in the sense of

being massless, which we know can’t be the case due to the gravitational effects of Dark Matter, but

in the sense that they do not form complex structures as matter. On the other hand, in twin Higgs

models, Dark Matter can have components very similar to ordinary matter. If the Z2 symmetry where

exact, dark-quarks would form dark-protons and dark-neutrons which would bound with dark-electrons

in dark-atoms and then make dark-molecules. It would be possible to have a dark-planets orbiting

around dark-starts. In a particular dark-planet, due to particular dark-environmental conditions, some

dark-molecules may have form dark-proteins, and from that, dark-life may have emerged. The process

of evolution would also be at play in this dark-planet, and it is conceivable that life had evolved to more

complex forms, maybe a dark-human. All this hypothetical but possible scenario could have happened

here. The only interaction between the two sectors is from the Higgs boson and gravitational. Therefore

apart from the huge perturbation on the orbits of the solar system due to a dark-Sun, it would be possible

that a dark-person, just like you, exists where you are. You can’t see him, and you can occupy the same

space as him because no interaction forbids this to happen. And maybe, this dark-person is a physicist

trying to understand why the Higgs boson mass parameter is small, and why there is a small fraction
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of matter that is not “ordinary-matter” (which for us is dark matter). And he could be considering a

twin-Higgs model in which his dark-matter (our matter) is a twin-sector.

This somewhat wild speculation shows that twin Higgs models are a natural environment in which

to implement the ADM idea. More formally, because the SM and the twin sector are related by the Z2

symmetry, it is reasonable to suppose that the mechanism responsible for baryogenesis will produce a

similar asymmetry in the twin sector. If there is a small Z2 breaking and twin baryons are a bit heavier

or their numbers slightly larger than ordinary baryons, they would have an abundance that can match

with the observed abundance of dark matter. This provides an elegant explanation for dark matter,

the asymmetric twin dark matter [130, 131, 132, 133, 134]. There are other ways to accommodate dark

matter in twin Higgs models, as WIMPs [18, 135, 136], SIMPs [137] and Freeze-in [138]. More generally,

the twin sector contains suitable multiple candidates for dark matter: twin-neutrino [139], the neutralino

of supersymmetric twin Higgs [140], some exotic twin baryons and atoms [141]. Therefore, twin Higgs

models can address the DM and the hierarchy problem in a single framework.

Although twin Higgs models have suitable candidates for dark matter, they are constrained by cos-

mology [103, 142, 143, 144, 145, 146]. Because the Higgs portal coupling that makes the Higgs natural

also keeps the two sectors in thermal equilibrium down to O(GeV ) temperatures. The presence of twin

relativistic degrees of freedom at the time of decoupling of the two sectors adds to dark radiation at late

times and conflicts with the tight constraints on dark radiation from BBN [147, 69] and from the CMB

[68, 69]. This limit on dark radiation is often quoted as a limit on the effective additional number of

neutrinos ∆Neff. Therefore, before explaining in more detail the cosmological problem of twin Higgs let’s

define the meaning of ∆Neff.

The energy density ρi for a relativistic particle i in thermal equilibrium can be calculated as a function

of its temperature Ti and is given by

ρi = gi

∫
d3p

(2π)3
fi(p, Ti)E(p) =

aB
2
giT

4
i ×


1 boson

7
8 fermion

. (2.35)

As showed in the previous sections photons and neutrinos are relativistic today and contribute to the

present energy density in radiation
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ρ = ργ + ρν = ργ

[
1 + 3× 7

8
×
(
Tν
Tγ

)4
]
. (2.36)

Their temperature today is different because they are not in thermal equilibrium anymore. After most of

the neutrinos had decoupled from the thermal bath, which contained photons, electrons, and positrons,

the electron-positron annihilation occurred increasing the photon bath temperature. Using conservation

of comoving entropy it is possible to show that

Tν
Tγ

≈
(

4

11

)1/3

. (2.37)

This motivates us to define the effective number of neutrino species Neff, by the equation

ρ = ργ

[
1 +Neff × 7

8

(
4

11

)4/3
]
, (2.38)

or conversely

Neff =
8

7

(
11

4

)4/3(
ρ

ργ
− 1

)
. (2.39)

This definition is used because there are several ways that an additional number of neutrinos impact

the anisotropy of the CMB. Current CMB constraints on Neff are dominated by the impact of the neutrino

energy density on the expansion rate, affecting the CMB damping tail [148]. It also has effects on BBN.

Present bounds of CMB and BBN on ∆Neff are

∆Neff ≡ Neff −NSM
eff = 0.11± 0.23 (2.40)

at 2σ confidence level [5, 68, 69]. I should add that the SM prediction is not NSM
eff = 3 because neutrinos

had decoupled from the photons before complete electron-positron annihilation. The best SM prediction

is NSM
eff = 3.046.
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Now that we know the bounds on ∆Neff 2.40 and its meaning (2.39) we can understand the cosmo-

logical problem of twin Higgs. In the context of twin Higgs models, we have ρ = ρA + ρB and therefore

∆Neff =
8

7

(
11

4

)4/3
ρB
ργ
. (2.41)

We see that to find out the contribution to ∆Neff from twin Higgs models we need to estimate the ratio

between ρB and ργ . Conversely, we can find the ratio between ρB and ρA and use the fact that ρA ≈ 0.6ργ

which can be seen from (2.38) and Neff ≈ 3.

In the twin Higgs framework, the cancellation of quadratic divergences arises from a Higgs portal

interaction between the SM Higgs doublet and its twin partner. This interaction keeps the two sectors

in thermal equilibrium down to O(GeV ) temperatures [144, 143]. Then the universe cools down and the

energy density in the two sectors changes independently affecting CMB and BBN.

To estimate the ratio of energy densities at CMB and BBN times, first, note that when all i species

are in thermal equilibrium the energy density (2.35) is given simply by ρ = g∗T
4 with

g∗ = Nbosons +
7

8
Nfermions. (2.42)

the effective number of relativistic species. As the universe cools, degrees of freedom become nonrelativistic

and annihilate changing the energy density of the bath. This change can be found from thermodynamics

using the conservation of comoving entropy. For species in thermal equilibrium, the comoving entropy

is given by s ∝ g∗T
3. By conservation of comoving entropy, when a sector transitions from an initial

effective number of degrees of freedom g∗i at temperature to a lower one g∗f with all species in thermal

equilibrium at both stages, we have

Tf
Ti

=

(
g∗i
g∗f

)1/3

(2.43)

and therefore the ratio of energy densities increases
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ρf
ρi

=
g∗f
g∗i

(
Tf
Ti

)4

=
g∗f
g∗i

(
g∗i
g∗f

)4/3

=

(
g∗i
g∗f

)1/3

. (2.44)

Because the bounds on energy density in hidden radiation come from BBN and CMB, we are interested

in evaluating (2.41) at these times which happened after the decoupling of the two sectors at O(GeV )

temperatures. Using (2.44) with i =decoupling and f =BBN we have

ρB
ρA

∣∣∣∣
BBN

≈
(
g∗B
g∗A

∣∣∣∣
D

)1/3(
g∗A
g∗B

∣∣∣∣
BBN

)1/3
ρB
ρA

∣∣∣∣
D
=

(
g∗A
g∗B

∣∣∣∣
BBN

)1/3(
g∗B
g∗A

∣∣∣∣
D

)4/3

(2.45)

where we use that at decoupling the temperature of both sectors, are equal and therefore

ρB
ρA

∣∣∣∣
D
=
g∗B
g∗A

∣∣∣∣
D
. (2.46)

Using this expression in (2.41) and the fact that today ργ ≈ 0.6ρA gives

∆Neff =
8

7

(
11

4

)4/3
ρB
ργ

∣∣∣∣
BBN

≈ 1

0.6

8

7

(
11

4

)4/3
ρB
ρA

∣∣∣∣
BBN

≈ 7.3

(
g∗A
g∗B

∣∣∣∣
BBN

)1/3(
g∗B
g∗A

∣∣∣∣
D

)4/3

. (2.47)

Now we see that if Z2 is exact than g∗B = g∗A both at decoupling and at BBN which imply that

∆Neff ≈ 7.3 > 0.1 is at least 3 sigma out of the measured value and is therefore excluded by current

bounds. This argument shows that a viable twin Higgs can’t have an exact Z2.

This bound may be somewhat relaxed if the dark radiation scatters with a short mean free path, as

opposed to free streaming like neutrinos [149]. Another possibility is to remove all of the “unnecessary”

light degrees of freedom from the twin sector. This is accomplished in Fraternal Twin Higgs models [150]

in which the twin sector is taken to contain only the third generation of fermions, as well as the twin

EW and QCD gauge bosons. One can further remove light degrees of freedom by assuming that the twin

sector is vector-like [151].

Even another possibility is highlighted by this rough calculation. By equation (2.47) we see that
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having more degrees of freedom in the A sector than in the B sector at decoupling would decrease ∆Neff.

This was considered in [132], which explored a scenario in which decoupling occurred between the two

QCD phase transitions. However, this is not enough. Let’s review the argument: suppose we have

neutrinos, electrons, positrons, and photons in the twin-sector at decoupling

g∗B
∣∣
D

= 2 + 2× 2× 7

8
+ 3× 2× 7

8
= 10.75 (2.48)

and in the SM sector we have the same plus the muon, the 3 light quarks, and gluons which have not

confined yet

g∗A
∣∣
D

= 10.75 + 8× 2 + 3× 3× 2× 2× 7

8
+ 2× 2× 7

8
= 61.75. (2.49)

At BBN both sectors have the same g∗, then

∆Neff ≈ 7.3

(
10.75

61.75

)4/3

≈ 0.70, (2.50)

which ameliorates the tension but does not resolve it. Even if we also include the charm quark and the

tau lepton in the SM sector at decoupling, we would have g∗A = 75.75 which would give ∆Neff = 0.5

which is still in tension with current bounds.

However if twin-neutrinos are heavy at decoupling, having masses larger than few GeV, then

g∗B
∣∣
D

= 5.5 (2.51)

and at BBN the twin-sector will have just 2 relativistic degrees of freedom. In the SM, on the other hand,

g∗ will be 3.4 at BBN because neutrinos are not in thermal equilibrium with photons anymore and their

lower temperature suppress their contribution to the energy density. Using this we end up with
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∆Neff ≈ 7.3

(
3.4

2

)(
5.5

61.75

)4/3

≈ 0.5 (2.52)

or including the other degrees of freedom in the SM at decoupling

∆Neff ≈ 7.3

(
3.4

2

)(
5.5

75.75

)4/3

≈ 0.37. (2.53)

All these results are still in tension with the∆Neff measurement but giving neutrino masses and having

the decoupling temperature between the two QCD phase transitions the model is not excluded. In the

next section, we will show how our model accomplishes this by giving heavy masses to twin neutrinos at

the same time that gives small masses to SM neutrinos and spontaneously breaks the Z2 symmetry.
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3 Neutrino Masses in Twin Higgs with Spontaneous Z2 Breaking

So far we had shown that the twin Higgs model was constructed as a solution to the electroweak hierarchy

problem and that they can also accommodate dark matter. Then we showed that it has problems related

to the presence of dark radiation at the time when the two sectors decoupled. We showed how this

problem could be mitigated if twin-neutrinos have masses above a few GeV . Now we will show how

spontaneously breaking the Z2 symmetry in twin Higgs models can be used to give SM neutrino masses

at the same time that the cosmological problem that affects twin Higgs models is ameliorated.

In original twin Higgs model, vacuum misalignment between electroweak and new physics scales is

realized by adding explicit Z2 breaking terms. Alternatively, it is possible to have Z2 broken spontaneously

[116, 117, 118, 119, 120] or it may remain exact as long as the contributions are correctly suppressed

[121]. In the model we will present next, we have Z2 broken spontaneously.

To sum up, the Z2 symmetry is exact in the model and it contains an SU(2) triplet with hypercharge

1 and its twin copy in addition to the degrees of freedom present in the original twin Higgs model. The

vacuum expectation value of the scalar sector breaks spontaneously Z2 and electroweak symmetry. Then,

by type-II seesaw mechanism, the SM neutrinos get small masses in comparison to other SM fermions and

their twin gets large masses mitigating the dark radiation problem. In section (3.1) we will present the

model and show the pattern of spontaneous Z2 symmetry breaking, in section (3.2) we will investigate the

vacuum expectation value of the theory and find relations between the physical quantities of the model

and in section (3.3) we will explain neutrino masses.

3.1 Spontaneous Z2 breaking

Following the example presented in the original proposal [102], we assume the Higgs field HA to be part

of a complex scalar

H =

 HA

HB

 (3.1)

which transform in the fundamental representation of SU(4). This global symmetry is broken explicitly

by gauge and Yukawa interactions, but it is assumed to hold approximatelly. The novelty of our model is
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to assume that the Z2 symmetry that exchange the SM with the twin sector is exact and the introduction

of an SU(2) triplet with hypercharge 1:

∆A =

 ∆++
A ∆+

A/
√
2

∆+
A/

√
2 ∆0

A

 , (3.2)

and its B copy. The introduction of this triplet will allow Z2 and electroweak spontaneous symmetry

breaking.

Ignoring quarks, the most general Lagrangian respecting the Z2 symmetry is

−L = −(DHA)
†DHA − (DHB)

†DHB +m2H†H + λ(H†H)2 + λ̃H†
AHAH

†
BHB

− (D∆A)
†D∆A − (D∆B)

†D∆B +M2(Tr∆†
A∆A +Tr∆†

B∆B)

+ λ1

(
Tr∆†

A∆A +Tr∆†
B∆B

)2
+ λ2

(
Tr∆†

A∆A

)(
Tr∆†

B∆B

)
+ λ3

(
Tr∆†

A∆A∆
†
A∆A +Tr∆†

B∆B∆
†
B∆B

)
+ λ4H

†H
(
Tr∆†

A∆A +Tr∆†
B∆B

)
+ λ5

(
H†

A∆A∆
†
AHA +H†

B∆B∆
†
BHB

)
+
{
b∗
(
H†

A∆AH
∗
A +H†

B∆BH
∗
B

)
+ κ

(
LT
Aε∆AεLA + LT

Bε∆BεLB

)
+ h.c.

}
.

(3.3)

where ε12 = −ε21 = 1. We want to investigate the minimum of the potential associated with this

model and show that this minimum can produce spontaneous Z2 and electroweak symmetry breaking.

However, it is hard to find analytical formulas and meaningful results approaching this problem in full

generality. But we can gain understanding investigating the case in which b is small compared with the

other-dimensional parameters of the model because in this case the potential greatly simplifies and we

can find analytical formulas that hold to first order in b. Furthermore, when b = 0, lepton number is

conserved.

To proceed we define

〈HA〉 ≡ v + δvb+O(b2), 〈HB〉 ≡ f + δfb+O(b2),

〈∆A〉 ≡ V + δV b+O(b2), 〈∆B〉 ≡ F + δFb+O(b2).

(3.4)
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The potential associated with the Lagrangian (3.3) in the ground state, neglecting terms of order b is

m2(v2 + f2) + λ(v2 + f2)2 + λ̃(v2f2) +M2(V 2 + F 2)

+ λ1(V
2 + F 2)2 + λ2V

2F 2 + λ3(V
4 + F 4) + λ4(v

2 + f2)(V 2 + F 2) + λ5(v
2V 2 + f2F 2)

(3.5)

This potential has a critical point for

v2 =
M2(2λλ5 + λ̃(λ4 + λ5))−m2(2λ̃(λ1 + λ3) + λ5(λ4 + λ5))

2λ
(
4λ̃(λ1 + λ3) + λ25

)
+ λ̃(λ̃(λ1 + λ3)− λ4(λ4 + λ5))

, (3.6)

f2 =
m2(λ4λ5 − 2λ̃(λ1 + λ3)) +M2(λ̃λ4 − 2λλ5)

2λ
(
4λ̃(λ1 + λ3) + λ25

)
+ λ̃(λ̃(λ1 + λ3)− λ4(λ4 + λ5))

, (3.7)

F 2 =
λ̃
(
m2(2λ4 + λ5)−M2(4λ+ λ̃)

)
2λ
(
4λ̃(λ1 + λ3) + λ25

)
+ 2λ̃(λ̃(λ1 + λ3)− λ4(λ4 + λ5))

, (3.8)

and V = 0.

The Hessian matrix associated with this critical point is



2λ1 + 2λ3 2λ1 + λ2 λ4 + λ5 λ4

2λ1 + λ2 2λ1 + 2λ3 λ4 λ4 + λ5

λ4 + λ5 λ4 2λ 2λ+ λ̃

λ4 λ4 + λ5 2λ+ λ̃ 2λ


(3.9)

where the order of the lines/columns is related to v,f ,V and F respectively. This matrix is definite-

positive for different regions of the parameter space. Therefore, the critical point (3.8) can be indeed a

minimum of the potential. It is easy to see that there are regions of the parameter space in which

r =
f

v
> 3 (3.10)

as phenomenologically needed [152]. And it is also possible to show that these regions have overlap
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with the regions in which the Hessian matrix (3.9) is definite-positive, that is, the region in which

the critical point is a minimum. We see, therefore, that the introduction of the triplet has lead to a

phenomenologically viable pattern of Z2 and electroweak spontaneous breaking.

As a consistent check one can compute the corrections of order b to the values (3.8) and verify that they

are indeed of order b. The results of the next sections will be presented using the zero-order approximation

(3.8), therefore, all results should be taken as tree-level exact up to order b corrections. An important

feature of this model is that 〈∆A〉 is not zero for non-zero b. To be precise, we have

〈∆A〉 =
λ5

2(r2 − 1)
(
λ25 − λ̃λ2 + 2λ̃λ3

)b+O(b2). (3.11)

This no null vacuum expectation value for the triplet contributes to the T parameter and puts a bound

on b. However, the bounds that comes from neutrinos will be more stringent, so we will not worry with

this by now. Similarly the corrections to 〈HA〉, 〈HB〉 and 〈∆B〉 can be calculated and are

δv =
v
(
2λ̃
(
r2 − 1

) (
λ24 − 2(2λ+ λ̃)(λ1 + λ3)

)
+ λ25r

2(2λ+ λ̃) + λ̃λ4λ5
(
3r2 − 2

))
4Fλ5

(
λ
(
4λ̃(λ1 + λ3) + λ25

)
+ λ̃(λ̃(λ1 + λ3)− λ4(λ4 + λ5))

) (3.12)

δf =
v
(
2λ̃
(
r2 − 1

) (
4λ(λ1 + λ3)− λ24

)
− 2λλ25r

2 + λ̃λ4λ5r
2
)

4Fλ5r
(
λ
(
4λ̃(λ1 + λ3) + λ25

)
+ λ̃(λ̃(λ1 + λ3)− λ4(λ4 + λ5))

) (3.13)

δF =
4λλ5 + λ5r

2(−(8λ+ λ̃)) + 2λ̃λ4
(
r2 − 1

)
4 (r2 − 1)

(
λ
(
4λ̃(λ1 + λ3) + λ25

)
+ λ̃(λ̃(λ1 + λ3)− λ4(λ4 + λ5))

) (3.14)

The dimensionful parametersM2 and m2 are not directly observable in this model and have no simple

physical meaning, therefore it is useful to rewrite them in terms of v2 and r2 giving:

M2 = −

(
λ4λ5 + 2λ̃

(
r2 − 1

)
(λ1 + λ3) + λ5r

2(λ4 + λ5)
)

λ5
v2, (3.15a)

m2 = −

(
2λλ5 + λ5r

2(2λ+ λ̃) + λ̃λ4
(
r2 − 1

))
λ5

v2. (3.15b)

We will use these expressions in the next section to analyze the spectrum of the scalars of the theory.
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They will allow us to express the masses in terms of the physical parameters v and r instead of m and

M . We can also use these expressions to rewrite

F 2 =
λ̃(r2 − 1)

λ5
v2. (3.16)

This expression shows that, although we have an additional triplet in our model, we have only two

scales which are set by the vacuum expectation value of HA and HB . Since we are most interested in the

case in which these two values are comparable, in the end, all masses are determined by the scale of v.

Note that when r = 1, F = V = 0 and Z2 is not spontaneously broken.

3.2 Scalar spectrum

To investigate the spectrum of the scalar sector of the theory we need to expand the scalar field around

the minimum (3.8) for a particular choice of the alignment of the vacuum expectation values. We choose

HA =

 H+
A

v + hA + iaA

 , HB =

 H+
B

f + hB + iaB

 ,

for the scalar doublet to agree with the conventions of the SM, and

∆A =

 ∆++
A

∆+
A√
2

∆+
A√
2

∆0
As

+ i∆0
Aa

 and ∆B =

 ∆++
B

∆+
B√
2

∆+
B√
2

F +∆0
Bs

+ i∆0
Ba

 . (3.17)

for the scalar triplets. Writting the potential of (3.3) for this choice of vacuum alignment we can find the

spectrum of masses by analysing the terms quadratic with the fields.

For the doublets we have 3 Goldstone bosons in the A sector

m2
H+

A

= 0, (3.18a)

m2
aA

= 0, (3.18b)
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and one in the B

m2
aB

= 0. (3.19a)

For the triplets of the A sector we have

m2
∆++

A

=
v2
(
λ̃
(
r2 − 1

)
(λ2 − 2λ3)− λ25r

2
)

λ5
, (3.20a)

m2
∆+

A

=
λ̃
(
r2 − 1

)
v2(λ2 − 2λ3)

λ5
+

1

2
λ5
(
1− 2r2

)
v2, (3.20b)

m2
∆0

Aa

= −

(
r2 − 1

)
v2
(
−λ̃λ2 + 2λ̃λ3 + λ25

)
λ5

, (3.20c)

m2
∆0

As

= m2
∆0

Aa

, (3.20d)

The spectrum of ∆A is not algebraically independent because the 3 different masses are defined in

terms of just 2 adimensional parameters λ5 and λ̃(λ2 − 2λ3). By inverting these expressions we can

express both adimensional couplings in terms of the physical quantities and we are left with 3 − 2 = 1

constraint equation relating the masses. The constraint equation is

m2
∆++

A

− 2m2
∆+

A

+m2
∆0

Aa

= 0 (3.21)

and the couplings can be given by

λ5 =
1

v2

(
m2

∆A0
a

−m2
∆++

A

)
, (3.22)

λ̃(λ2 − 2λ3) =
λ5

r2 − 1

1

v2

(
r2m2

∆A0
a

− (r2 − 1)m2
∆++

A

)
. (3.23)
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For the B sector we have

m2
∆++

B

= −
v2
(
2λ̃λ3

(
r2 − 1

)
+ λ25r

2
)

λ5
, (3.24a)

m2
∆0

Ba

= 0. (3.24b)

using the previous equations allow us to write

λ̃λ3 = − 1

2(r2 − 1)

1

v2

(
m2

∆A0
a

−m2
∆++

A

)(m2
∆++

B

v2
+
r2

v2

(
m2

∆A0
a

−m2
∆++

A

))
(3.25)

The complex scalar fields H+
B and ∆+

B mix and their terms in the potential are

(
(H+

B )∗ (∆+
B)

∗

) λ̃−
(
r2 − 1

)
v2 1

2Fλ5rv

1
2Fλ5rv − 1

4λ5r
2v2


 H+

B

∆+
B

 (3.26)

which have mass eigenstates

SB+ = cos θ∆+
B + sin θH+

B , (3.27)

SB− = cos θ∆+
B − sin θH+

B , (3.28)

with θ = arctan(rv/2F ) and masses respectively equal to

m2
SB+

= 0 (3.29)

m2
SB−

= −1

4
v2
(
4λ̃
(
r2 − 1

)
+ λ5r

2
)
. (3.30)

This leads to
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λ̃ = − 1

4(r2 − 1)

(
4
m2

SB−

v2
+
r2

v2

(
m2

∆A0
a

−m2
∆++

A

))
(3.31)

From, (3.31), (3.23),(3.25),(3.22), we see that we can express λ̃, λ2, λ3 and λ5 using the physical tree

level masses of the scalar particles. In particular, we can use this expression in (3.16) to write another

equation relating physical parameters of the model, namely

(
m2

∆A0
a

−m2
∆++

A

)
F 2 +

[
m2

SB−
+
r2

4

(
m2

∆A0
a

−m2
∆++

A

)]
v2 = 0. (3.32)

An interesting feature of this formula is that it relates A sector masses with B sector masses. It could be

used to infer the mass of SB− by measuring at LHC the masses of ∆A0
a
and ∆++

A once we know F .

We also have the mixing of hA, hB and ∆0
Bs

encoded by the mass matrix

(
hA hB ∆0

Bs

)
4λv2 2rv2(2λ+ λ̃) 2Fλ4v

2rv2(2λ+ λ̃) 4λr2v2 2Frv(λ4 + λ5)

2Fλ4v 2Frv(λ4 + λ5)
4λ̃

(
r2−1

)
v2(λ1+λ3)

λ5




hA

hB

∆0
Bs

 (3.33)

When, r = 1 the field ∆0
Bs

is massless and

2v2
(
hA hB

) 2 2λ+ λ̃

2λ+ λ̃ 2


 hA

hB

 , (3.34)

which have eigenvectors

h+ = hB + hA, (3.35)

h− = hB − hA, (3.36)
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with eigenvalues

m2
h+ = 2v2(4λ+ λ̃), (3.37)

m2
h− = −2v2λ̃. (3.38)

Because the mass terms are continuous functions of r and the eigenvalues are also a continuous

function of the entries of a matrix, for r not equal to 1 but close to it the eigenvalues and eigenvectors

will be similar to the ones above.

We see therefore that in the A side the Goldstone bosons are H+
A and aA, and that in the B sector

they are aB , ∆0
Ba

and SB+. The 3 Goldstone bosons of the A sector will be eaten by the SU(2)L×U(1)Y

gauge bosons giving their masses as is the case in the SM. In the B sector, notice, that when b = 0 this

is effectively the same as having the hypercharge of ∆B different from −1. But when the hypercharge

of ∆B is different from −1, 0, 1 this means that the spontaneous breaking pattern is from SU(2)× U(1)

to nothing, and therefore there are 4 Goldstones associated with this spontaneous symmetry breaking

pattern. Indeed, in the B sector we have aB , ∆0
BA

and SB+ as Goldstones, a total of 4 degrees of freedom,

recall that SB+ is a complex scalar field and therefore have 2 degrees of freedom. Notice that, when b 6= 0

one of this Goldstones will acquire a mass proportional to b and the three other will be eaten by the

(SU(2) × U(1))B gauge bosons. The conclusions is that we will have a scalar particle with Lagrangian

mass parameter proportional to b in the B sector.

At this point, a possible concern is that the region of the parameter space which gives a spectrum of

masses consistent with phenomenological constraints have no intersection with the region of the parameter

space such that the critical point is a minimum and that the adimensional parameters of the model are

in the perturbative region. To demonstrate that this is not the case, notice that for r = 3, m∆A0
a
,m∆

A
++
a

both are of the order TeV to avoid phenomenological constraints from searches at the LHC, and such that

the difference between their square divided by v is order one, gives perturbative adimensional parameters

and one can have a definite positive Hessian matrix in this case. For concreteness, consider m∆A0
a
= 5v

and m∆
A

++
a

=
√
25− 0.1v. With this choice λ5 = −0.1, and the Hessian matrix (3.9) can be definite

positive with the other dimensional parameters in the perturbative region.

To sum up, the scale of the scalar spectrum of this model is given by the VEV of the Higgs v. We

see that we can naturally avoid phenomenological constraints assuming order one couplings with no fine
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tunning. In addition, the expression for the tree level masses are not algebraically independent. Due to

this fact we where able to find algebraic relations between them which translates in the physical relations

(3.21) and (3.32). This physical relations should be taken as finger prints of our model.

3.3 Neutrino Masses and Dark Matter

With ∆B getting a large vacuum expectation value (3.16) and ∆A only a tiny one (3.11) from a small b

term we have large neutrino masses in the B sector and tiny ones in the A sector from the type-II seesaw

mechanism [46, 48, 49]. To be more precise, with electroweak and Z2 spontaneous symmetry breaking

we will have

L = κ
(
LT
Aε∆AεLA + LT

Bε∆BεLB

)
+ h.c. ⊇ κ(〈∆A〉νTACνA + 〈∆B〉νTBCνB) + h.c (3.39)

and therefore

mνB
= κ〈∆B〉 = κ

√
λ̃(r2 − 1)

λ5
v, (3.40)

mνA
= κ〈∆A〉 =

λ5κ

2(r2 − 1)
(
λ25 − λ̃λ2 + 2λ̃λ3

)b. (3.41)

For three families κ is a matrix. From current bounds on neutrino masses we find that b is of order

eV [5]. Note that the large hierarchy between v and b have no explanation in this model. However, as is

the case for Yukawa couplings, it is technically natural to have b small seems lepton number is attained

when b = 0. In addition, it is arguably more elegant to have different dimensional parameters giving

masses to neutrinos and to the other fermions of the SM.

As anticipated in (2.53), having large B side neutrino masses will mitigate the cosmological problem

that affects twin Higgs models related to dark radiation. As presented before, twin-neutrinos will not be

relativistic when the two sectors decouple and therefore we will have
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∆Neff ≈ 7.3

(
3.4

2

)(
5.5

75.75

)4/3

≈ 0.37. (3.42)

which is in tension with current bounds but is not excluded yet. Recall that the symmetry breaking

pattern that we have, will produce a scalar in the B sector with mass proportional to b which we know

is order an eV. However, recall that the mass of scalar fields are quadratically sensitive to UV physics

and that just the Higgs is protected by the approximate SU(4) symmetry, therefore we expect that

the radiative corrections will increase its mass to electroweak scales and hence it will not contribute

significantly to Neff.

Finally, these model have different candidates for dark matter as is the case in other twin Higgs models

[130, 131, 132, 133, 134, 18, 135, 136, 137, 138, 139, 140, 141]. We should mention that if we tried to

mitigate even more the cosmological problem by breaking B electromagnetism, another problem would be

created. The B electrons and positrons would not annihilate sufficiently and would become overabundant

and overclose the universe.
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4 Conclusions

The hierarchy problem, dark matter, and neutrino masses are some of the problems of current particle

physics. In this work, we presented Twin Higgs models which are a solution to the hierarchy problem. We

saw that in these models the Z2 symmetry needs to be broken. Then, we constructed a Twin Higgs model

with an additional triplet that leads to the spontaneous breaking of the Z2 and electroweak symmetry.

This symmetry breaking pattern gives small masses to SM neutrinos and big masses to twin-neutrino

solving the neutrino mass problem and mitigating the radiation problem associated with twin Higgs. In

addition, our model has many dark degrees of freedom. These new particles could be the actual things

causing the phenomena associated with dark matter and therefore could solve the dark matter problem.

There are many proposals to solve the problems of particle physics. It is arguably more aesthetical to

have different problems solved in a coordinated way by a single framework. In addition, our model has

phenomenological implications and signatures that could be searched for by present experiments.
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