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Resumo

A dependência do bias de halos de matéria escura com o seu spin para uma massa fixa é
conhecida por spin bias. Embora os halos mais massivos de maior spin tenham um bias
maior do que os seus correspondentes de mesma massa, o efeito se inverte para os halos de
menores massas. Nós recentemente esclarecemos este cenário complexo, demonstrando
que a inversão do spin bias pode ser completamente explicada pela população de halos
splashback – i.e., halos que em algum momento do passado estiveram no interior do raio de
virial de um outro halo (tipicamente muito mais massivo), mas acabaram saindo deste. O
fato de que os halos splashback causam a inversão do spin bias foi primeiramente explicado
em Tucci et al. (2021). Nós mostramos que, quando essa população específica é excluída
da amostra, somente o spin bias intrínseco permanece – i.e., um bias maior para os halos
de maior spin. Agora que nós entendemos a inversão em massas pequenas, nosso objetivo
é investigar as origens físicas do spin bias intrínseco. A fim de conectar o spin do halo ao
seu bias em um único modelo analítico, investigamos as principais teorias para o momento
angular e o bias dos halos. Também exploramos como esse mecanismo, que é normalmente
estudado em simulações de N-corpos, pode ser estendido para galáxias no contexto da
conexão entre halos e galáxias e de formação de galáxias. Finalmente, exploramos as
possíveis consequências para a cosmologia observacional.

Palavras chave: cosmologia, estruturas em larga escala do Universo, simulações de
N-corpos, halos de matéria escura, galáxias, bias



Abstract

The dependence of dark matter halo bias on spin at fixed mass is known as spin bias.
However, although at the high-mass end the higher-spin halos have a higher bias than their
lower-spin counterparts, this trend inverts for low-mass halos. We have recently clarified
this complex scenario, showing that this inversion of the mass dependence of spin bias can
be completely explained by the population of splashback halos – i.e., halos that at some
point in the past fell inside the virial radius of another halo (typically, a larger-mass halo),
but then exited that parent halo. This dependence of spin bias on splashback halos was
first explained in the recent paper Tucci et al. (2021). What we found is that, when this
specific population is excluded from the sample, only the intrinsic spin bias signal remains –
i.e., a higher bias for higher-spin halos. Now that we understood the low-mass feature, our
goal is to shed light onto the physical origins of the high-mass, intrinsic spin bias. In order
to connect halo spin to its bias in a single analytical framework, we investigate the main
theories for halo angular momentum and halo bias. We also explore how this mechanism,
which is more readily studied via halos in N-body simulations, can be extended to galaxies
in the context of the halo-galaxy connection framework and galaxy formation. Finally, we
study possible consequences for observational cosmology.

Keywords: cosmology, large-scale structure of Universe, N-body simulations, dark matter
halos, galaxies, bias
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CHAPTER 1

Introduction

There is ample evidence for the existence of a cold (i.e., non-relativistic) and dark component
of matter (CDM). As its own name suggests, dark matter is a kind of matter which interacts
gravitationally and, as far as we know, it does not interact through the electromagnetic
or other fundamental forces. Together with the cosmological constant Λ, which is the
simplest way to account for the accelerated expansion of the Universe, as well as the other
cosmological parameters, CDM forms the basis of the standard Λ-CDM model (Planck
Collaboration et al., 2018).

Figure 1.1: Relative abundance of the energy content of the Universe.

Despite its remarkable success, Λ-CDM does not explain neither the nature of dark
matter nor that of Λ, amongst other thrilling open questions. Is Einstein’s General
Relativity the complete theory of gravity? Why the Universe is expanding in an accelerated
way? At the beginning, were there other particles interacting with the inflaton (the scalar
field believed to be responsible for inflation, which is the epoch of accelerated expansion
during the first ∼ 10−33 seconds after the Big Bang, which made the Universe flat and
homogeneous)? Why is there more matter than anti-matter in the Universe? What are the
Neutrinos masses? Cosmological observations coming up in the near future are expected
to shed light into many of these puzzles – and hopefully to find new physics.
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A vast amount of data will be collected in the next years by cosmological surveys
(DESI Collaboration et al., 2016; LSST Science Collaboration et al., 2009; Amendola et al.,
2013), which will map with unprecedented precision the large scale structure (LSS) of the
Universe, i.e., the structure formed by the distribution of galaxies and other extragalactic
objects on large scales (i.e., over distances larger than ∼ 102 Megaparsecs). Perhaps most
surprisingly, the particular way that galaxies are distributed hides information about all
the questions raised in the last paragraph.

A key feature of the next generation of surveys is that they will map a huge number of
objects, allowing for precise statistics, together with the fact that we will finally be able to
see how the Universe looks like on ultra large scales. We do not have accurate tests of
General Relativity on such scales yet, and it is there where we expect to see deviations
from Einstein’s theory of gravity, if they exist at all (Parfrey et al., 2011). Primordial
non-Gaussianities, which reflect the existence of non-trivial interactions of the inflation
with itself or with other particles during inflation, leave an imprint on the statistics of
galaxies on those ultra large scales (Dalal et al., 2008). Neutrinos also affect the clustering
of galaxies, leading to a particular scale-dependent signal that could tell us their masses
(Castorina et al., 2014).

We cosmologists now have to devote great efforts to develop our understanding of
structure formation in the Universe, so that we can maximize our ability to extract
information from the upcoming surveys and ultimately improve our knowledge on the
fundamental laws governing Nature.

1.1 The Large Scale Structure

We believe that inflation gave us the initial conditions of the Universe, such that after
inflation and the subsequent reheating phase it is near-homogeneous, and filled with the
particles described by the standard model of particle physics, such as baryons, as well as
dark matter. The small density fluctuations generated by inflation are characterized by a
Gaussian random field, and the peaks in the that initial density field grow as particles are
brought together by gravitational interactions, forming deep potential wells. When these
overdensities reach a certain threshold, they effectively decouple from the expansion of the
Universe and collapse into gravitationally bound structures known as dark matter halos.
Naturally, halos differ from one to another in terms of properties such as mass, spin, age,
concentration, etc.
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Figure 1.2: Slice of a Millenium N-body cosmological simulation characterizing three
different layers of the large scale structure.

The process of halo formation starts early in the Universe for the dark matter component,
but baryons are also affected by their tight coupling to radiation, which pushes them out
of the heavy and hot overdense regions. This happens until the end of the radiation era,
and when baryons finally decouple from photons in the recombination era (approximately
400.00 years after the Big Bang), they are able to fall into the potential wells created by
the dark matter halos. This gas cools down and starts to flow towards the dark matter
halos, which allows the first galaxies to form. These halos continue to grow at all times,
attracting nearby particles or merging with other (smaller) halos, in a process known as
the hierarchical structure formation model (Dekel and Silk, 1986; Frenk et al., 1988; White
and Frenk, 1991). In the present age of the Universe, dark matter halos can be regarded
as the building blocks of the large scale structure of the universe. Since the ratio between
dark matter and baryonic matter is 5 to 1 (Planck Collaboration et al., 2018), massive,
big halos may host one, or many, or sometimes even hundreds of galaxies.

Given this scenario, it is clear that by studying the statistics of the distribution of dark
matter halos throughout the universe, one is also studying the statistics of the distribution
of galaxies. The galaxy-halo connection refers, for the most part, to the full multivariate
distribution of properties of halos and the galaxies that form within them (Wechsler and
Tinker, 2018; Montero-Dorta et al., 2020). Understanding the connection between halos
and galaxies could help us answer open problems in cosmology and astrophysics, such as
the determination of cosmological parameters, how galaxies form and evolve, and how
galaxies probe the nature and distribution of dark matter.
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Figure 1.3: Evolution of the (projected) dark matter density field in a slice of 100 h−1Mpc
and thickness 15 h−1Mpc from the Millennium-II simulation (Boylan-Kolchin et al., 2009).
The redshift corresponding to each snapshot is shown on the top right. (Zavala and Frenk,
2019)

In the last decade, the rapid development of high-resolution, large-volume numerical
simulations allowed us to start studying in detail the distribution of dark matter halos and
galaxies with progressively more accurate precision (Efstathiou et al., 1985; Stadel, 2001).
These cosmological N-body simulations track the evolution of billions of dark matter
particles in the background of an expanding Universe, as they move around through the
effect of their mutual gravitational forces. These numerical simulations, together with the
advent of a large number of galaxy surveys that could detect and probe the clustering of
galaxies, are powerful tools that can help us in our search for understanding the laws of
Nature.

In principle, anybody can run their own dark matter-only N-body numerical simulation
by using, e.g., the Gadget-4 (Springel et al., 2021) or Ramses codes (Teyssier, 2002), and
then apply halo finder algorithms to detect the halos. The more we refine the methods and
increase the spatial resolution of those simulations, the greater becomes their computational
costs. Most of these simulations are parallelizable, so it is also possible to run them in big
clusters. There are a number state-of-the-art simulations run on supercomputers for a long
time, with snapshots (i.e., 3D portraits of the distribution of the particles at some given
instants) made available for the community to analyse. These simulations typically have
only dark-matter particles, such as in the case of MultiDark (Klypin et al., 2016), Quijote
(Villaescusa-Navarro et al., 2020) and Uchuu (Ishiyama et al., 2021), but some of them
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can also solve hydrodynamical equations in order to account for baryonic physics, such
as the case of Illustris (Springel et al., 2005), Millennium (Boylan-Kolchin et al., 2009),
Eagle (Schaye et al., 2015) and BAHAMAS (McCarthy et al., 2017). Uchuu, which is one
of the latest, has 2 billion dark-matter particles in a box of 2 h−1Gpc and was run in the
ATERUI II supercomputer in Japan, producing 4PB of raw data. Finally, we should also
mention that it is possible to populate the dark-matter only simulations “by hand” with
galaxies, using methods such as halo occupation distribution (HOD) models (Cooray and
Sheth, 2002; Zheng et al., 2005, 2009; Voivodic and Barreira, 2020).

Figure 1.4: Comparision of the BAHAMAS simulations with and without massive neutrinos.
http://www.virgo.dur.ac.uk/2016/10/30/BAHAMAS/index.html

1.2 Bias

The distribution of matter throughout the Universe holds information about new physics,
since it depends sensitively on the precise way in which matter clusters: e.g., the nature of
dark matter as well as the theory of gravity both influence how halos form and evolve.
However, what we observe in astrophysical surveys are objects such as galaxies, quasars,
galaxy groups and clusters, etc., which we call cosmological tracers since they trace the
distribution of matter particles. Even though we don’t observe them directly, dark matter
halos can also be thought as tracers of the underlying matter density.

We can define the bias as the statistical relation between the distribution of the
cosmological tracers to the underlying matter density field (Desjacques et al., 2018). By
constructing an expansion over the observables constructed from the density field, where
the bias parameters are the coefficients, we are able to infer the matter distribution by
looking at the distribution of these cosmological tracers. This connection allows us to
extract information about many open questions in physics, such as the nature of dark
matter, dark energy, gravity and inflation.
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On large scales and at a fixed time, we can say that the overdensity of galaxies (or any
cosmological tracer) and of matter is given by the simple relation:

δg(x) ≡ ng(x)
ng

− 1 = b1 δ(x) = b1

(
ρm(x)
ρm

− 1
)
, (1.1)

where ng(x) is the number of galaxies and ρm(x) is the matter density at a certain location
x, while ng and ρm are their mean over the volume. As we are going to see in more
detail later on, we should write a bias expansion defined at each order in perturbation
theory, and as we explore progressively smaller scales, we also need to add more terms
to the right-hand side of Equation (1.1) in order to take into account those non-linear
interactions. We would also have to add a noise term that reflects the stochastic influence
of small-scale perturbations on the formation of galaxies, but we will neglect this term
here for simplicity.

Cosmological surveys allow us to extract some summary statistics of the galaxy
overdensity, such as the correlation function (its two-point function in real space)
ξgg(r) = 〈δg(x)δg(x+r)〉 or its Fourier transform, the power spectrum Pgg(k) = 〈δg(k)δ∗g(k)〉.
Given the observed statistics of galaxies, we can infer those of the matter density field
by using the appropriate scaled bias parameters, e.g., Pgg(k) = b2

1〈δ(k)δ∗(k)〉. Since the
distribution of matter potentially contains information on new physics, the importance of
a good understanding of galaxy bias becomes quite evident, since it allow us to make the
connection between observations and theory.

As we already saw in the context of halo-galaxy connection, studying the bias of dark-
matter halos, which are the building blocks of the large-scale structure, is an essential step
to understand the bias of galaxies. However, to this day we do not completely understand
its biasing. It is well known that rare, massive halos tend to be found in denser regions in
the universe (i.e., they have a larger bias), while the less massive ones are more usually
found in regions with lower density (i.e., tey have a lower bias) (Kaiser, 1984; Sheth and
Tormen, 1999). In other words, massive halos are more tightly clustered than less massive
ones.

Let us see an example of this fact. If we calculate the matter power spectrum Pmm(k)
and the halo-matter cross spectrum Phm(k) = 〈δh(k)δ∗(k)〉 for halos of different masses in
MDR1 (one of the cosmological simulations of MultiDark), the bias of such halos on large
scales would then be given by b1 = limk→0

Phm(k)
Pmm(k) . As Figure 1.5 shows, the more massive

the halo, the larger is its bias. There is a fitting function provided by Tinker et al. (2010),
through which we can obtain the bias of halos as a function of their mass.
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Figure 1.5: Matter power spectrum and halo-matter cross spectrum for halos of different
bias calculated in MDR1.

The observation that halo bias depends mostly on halo mass is key to several (semi-
)analytical models for halo and galaxy statistics, such as the HOD model. Indeed, we can
say that halo mass is the primary bias parameter – but hardly the only parameter. Halos
of a given mass can differ in their formation history, as well in their properties at any
given time. Moreover, they can live in different large-scale environments, which also affects
their bias. Therefore, a natural question arises: how do these different circumstances
are connected to halo clustering? Recent numerical simulations revealed that, for a fixed
mass, halo clustering depends sensitively on several secondary halo properties (i.e., factors
besides mass, which is the primary bias parameter) such as age, spin and concentration
(Gao et al., 2005; Wechsler et al., 2006; Gao and White, 2007; Sato-Polito et al., 2018).

1.3 Secondary Bias

The first evidence for other dependencies of halo bias besides mass came from numerical
simulations, which found that, at fixed halo mass, lower-mass halos that assemble a
significant portion of their mass early on (i.e., older halos) are more tightly clustered that
those that assemble at later times (younger halos) (Sheth and Tormen, 1999; Gao et al.,
2005). This effect dictated that halo clustering (bias) is not exclusively determined by
halo mass, but also depends on the assembly history of halos. The dependence of halo bias
on other halo properties beside mass has collectively been termed assembly bias because of
this first result. However, since then it has been found that halo bias depends on several
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secondary halo properties, at levels comparable to halo assembly bias, so that a more
appropriate name to this effect is secondary bias.

Figure 1.6: 90x90x30 Mpc slice of a cosmological simulation at z = 0 for halos with mass
logM = 10.8h−1M�. Red halos are the 5% more concentrated halos and green halos are
the 5% less concentrated ones (Li et al., 2008). We see that these two population of halos
of same mass but distinct concentrations display different clustering features and thus
have different bias.

Since galaxies also differ from one another in term of properties such as color, star
formation rate, metallicity, morphology, etc., and they reside in halos of different masses,
it is natural to expect that secondary bias also extends to galaxies. Secondary galaxy bias
concerns the effect of how galaxy clustering depends on secondary galaxy properties, at
fixed host halo mass.

To this day we do not have neither conclusive observational evidence n, or a complete
analytical framework to explain all the secondary bias trends. Our work focuses on
measuring these effects with high precision in cosmological N-body simulations, and
attempting some theoretical explanations for the results. We are also interested in
developing and implementing new techniques to find observational signatures of secondary
bias.

Amongst our projects, Montero-Dorta et al. (2020, 2021) are two first-author
publications by Prof. Dr. Antonio Montero-Dorta and co-authored by Prof. Dr. Raul
Abramo and Beatriz Tucci. In Montero-Dorta et al. (2020) we study the galaxy-halo
connection and secondary galaxy bias (see also Section 4.3), while in Montero-Dorta et al.
(2021) we have proposed a new route to probe spin bias in observations, using the kinetic
Sunyaev-Zel’Dovich effect (see Section 7.3).

Amongst those secondary bias effects, halo spin bias, i.e., the dependence of halo
clustering on spin (intrinsic angular momentum) at fixed halo mass, was widely thought
to result in a higher bias for higher-spin halos, over the entire halo mass range (Gao and
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White, 2007; Villarreal et al., 2017; Salcedo et al., 2018). However, in Sato-Polito et al.
(2018) (the result of a project also developed along with the same supervisors at the Physics
Institute of the University of São Paulo), our group used the high-resolution MultiDark
numerical simulations to show that this trend actually inverts at the low-mass end, with
lower-spin halos being more tightly clustered than their higher-spin counterparts. This
surprising result was later confirmed by Johnson et al. (2019) using two other simulations,
Vishnu and Consuelo.

We have recently explained this effect in a first-author publication by Beatriz Tucci and
co-authored by her advisors (Tucci et al., 2021), where we demonstrated how splashback
halos can fully explain the low-mass spin bias inversion (see Section 7.1). Splashback
halos are distinct halos which at some previous time were classified as subhalos. This
means that a splashback halo at a given redshift passed through the virial radius of an
eventual host halo at an earlier time, but then exited that halo. It is well known that
splashback halos are responsible for part of the low-mass secondary bias with respect to
halo assembly history (Dalal et al., 2008; Sunayama et al., 2016; Mansfield and Kravtsov,
2020), therefore we unveiled a link between two different secondary bias trends: spin bias
and assembly bias.

In Tucci et al. (2021) we found that when the population of splashback halos is removed,
the spin bias inversion at low-masses vanishes, and only the intrinsic spin bias signal
remains, i.e., the dependence of halo clustering at fixed mass on spin for high-mass halos.
Since we were able to successfully clean the statistical signal of spin bias at low-masses,
isolating what seemed to be a complex effect, we now expect to shed light into the physical
mechanisms behind the high-mass trend, with the ultimate goal of providing a complete
picture for the origin of halo spin bias.

Developing an analytical framework for high-mass spin bias analytically is a step
further in complexity, compared with what we have done for low-mass spin bias. We have
gone through the main theory for the origin of halo spin, Tidal Torque Theory (TTT)
(White, 1984; Doroshkevich, 1970; Catelan and Theuns, 1996), which states that halo spin
arises due to misalignment between the initial shear and inertia tensors (see Section 5.1).
We also studied the two main analytical models of halo formation which are capable of
making predictions for halo bias, the excursion set approach and the peak formalism (see
Chapter 3).

During this process we came up with two hypothesis. First, TTT in the peak formalism
(Catelan and Theuns, 1996) can give us the relation between halo angular momentum and
peak curvature, which is related to large-scale halo bias. Second, a model for the barrier
of halos that depends on the initial shear (Castorina et al., 2016) could be implemented
in principle, if we could use TTT to relate halo spin to the shear-dependent quantity
appearing in the barrier. In order to understand these ideas, we will develop the necessary
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background of the aforementioned theories in the first part of this thesis, while the second
part will introduce secondary halo bias in more detail and what we have investigated so
far regarding halo spin bias.

1.4 Outline

The rest of the text is organised as follows:

Chapter 2 introduces some important quantities in the study of structure formation and
provides the necessary theoretical background.

Chapter 3 discusses the main analytical models of halo formation, such as the peak
formalism, excursion sets and ellipsoidal collapse model.

Chapter 4 demonstrates how we can study dark matter halos though cosmological N-body
numerical simulations.

Chapter 5 features the theories we have so far for the origin of the angular momentum of
dark matter halos.

Chapter 6 consists of a brief review on secondary halo bias, showing how we can measure
it in simulations and focusing on what we know so far about assembly bias.

Chapter 7 explains the physical origins of low-mass spin bias and displays our ideas for
high-mass spin bias.
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PART I

Dark Matter Halos
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CHAPTER 2

How do halos cluster?

This chapter and the next one will be quite technical, since we will learn all the necessary
tools to tackle the spin bias puzzle. For that, we will explore many of the important
theoretical tools developed in the last years to explain structure formation in the Universe.
Equipped with them, we are able to provide a consistent theoretical framework for LSS
and to efficiently extract cosmological information from the upcoming surveys.

2.1 Setting the stage

The first step is to develop a model for the clustering of matter, which takes place under
gravitational collapse given the initial density perturbations (see Coles 2001 for a review).
Unlike the case of the CMB, for which a linear perturbation theory description is sufficient,
the matter perturbations become nonlinear at low/intermediate redshifts on scales of
relevance for cosmology. Strictly speaking, the nonlinearity depends on the scale we
are looking at, and processes can only be studied with numerical N-body simulations or
heuristic arguments. At large scales and initial times we can make use of perturbation
theory to accurately predict matter clustering, and this can be extended to quasi-linear
scales as long as the results converge at sufficient high order up a maximum scale of validity
(see Bernardeau et al. 2002 for a review).

Notably, as our observations give us the statistics of the distribution of galaxies and
not of matter, the second step is to connect our theory of matter clustering to that of
galaxy1 clustering. The bias parameters will provide us the statistical relation between
the two, as we are going to discuss in Section 2.5. As stated in Desjacques et al. (2018),
“the perturbative theory of galaxy clustering, valid on quasi-linear scales, is based on two
key ingredients: (i) a perturbation theory prediction for the matter density and tidal field;
(ii) a complete parametrization of galaxy bias at each order in perturbation theory”.

1In the context of the bias expansion, “galaxy” can also refer to any cosmological tracer, such as
dark-matter halos, quasars, etc.
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Notation and assumptions

In this thesis we will assume a spatially flat background described by the Friedmann-
Robertson-Walker (FRW) metric, as supported by cosmological observations (Dodelson
and Schmidt, 2020). We will use comoving coordinates2, such that in this background
the matter particles will remain at a fixed position while the Universe expands. Further,
as we add perturbations to the FRW metric, we also need to specify the gauge, since
the General Relativity field equations are invariant under a change of coordinates, i.e.,
diffeomorfisms. We will choose to attach the observers to the points in the unperturbed
frame in comoving coordinates, and work in the so-called conformal-Newtonian gauge,
in which the equations for dark matter reduce to the Newtonian case (Luca Amendola,
2010). We will often use as our time variable the conformal time3. Finally, we will be
dealing with scalar perturbations only, e.g., matter density scalar perturbations, and not
vector or tensor (gravitational waves) perturbations. We will also assume that the initial
fluctuations are purely adiabatic (density) perturbations, and therefore we will neglect
entropy (isocurvature) perturbations.

2.2 Cosmological perturbations

Since the initial conditions of the LSS are given by inflation, which is originated by quantum
mechanical vacuum fluctuations, we ought to work with Gaussian random fields in order
to describe the precise initial conditions of our Universe, as they are not deterministic (for
an overview on inflation, we refer the reader to Mukhanov 2005; Baumann 2009).

In agreement with the cosmological principle, we will assume that all the cosmological
random fields are statistically homogeneous and isotropic. We will use the fair sample
hypothesis, which states that samples extracted from regions of the Universe that are
sufficiently distant from each other are independent realizations of the same physical
process. Thus, we have the ergodic hypothesis, which allows us to trade ensemble averages
with spatial averages if the volumes are large enough.

Gaussian random fields and their moments

As we already saw in Chapter 1, the cosmological matter perturbations:

δ(x) ≡ ρ(x)− ρ
ρ

, (2.1)

2The physical coordinate xph(t) and comoving one x are related by the scale factor a(t), such that
xph(t) = a(t)x.

3The conformal time τ and physical time t are related by the scale factor a such that dτ ≡ a−1t.
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or its Fourier transform:
δ(k) =

∫
d3x δ(x) e−ik·x (2.2)

can be written in terms of a Gaussian random field with zero mean, i.e., 〈δ(x)〉 = 〈δ(k)〉 = 0.
If we are able to measure the density fluctuations at their actual positions (in real space),
then we can compute their two-point correlation function ξ(r) as:

ξ(r) ≡ ξ(|x1 − x2|) ≡ 〈δ(x1)δ(x2)〉 , (2.3)

since statistical homogeneity imposes that the correlation functions ξ(x1,x2) are invariant
under global translations on a fixed time slice, such that it can be written as ξ(x1 − x2).
Moreover, statistical isotropy requires this quantity to be invariant under global rotations,
allowing us to write the correlation function as ξ(|x1 − x2|). In Fourier space, we obtain
the power spectrum P (k):

〈δ(k)δ∗(k′)〉 = P (k) (2π)3 δD(k − k′) , (2.4)

where statistical homogeneity requires the Dirac delta and statistical isotropy requires
P (k) to depend only on k = |k|. Its amplitude given by:

PDF(|δ(k)|) = 1√
2πσ2

P (k)
exp

{
−1

2
|δ(k)|2
σ2
P (k)

}
, (2.5)

where σ2
P (k) = (2π)3P (k)/Ṽ (k), with Ṽ (k) expressing the phase space volume over which

we define the mode k. Another related quantity is the variance of an isotropic random
field, which is also the value of the correlation function in the limit of zero separation:

ξ(0) = 1
2π2

∫ ∞
0

dk k2 P (k) =
∫ ∞

0

dk

k
∆2(k) , (2.6)

where we have defined the dimensionless power spectrum ∆2(k) ≡ k3P (k)/(2π2).

Smoothed Fields

We often deal with the smoothed version of the matter density field, δR, which is
obtained by convolving the density field with a spherically symmetric kernel WR at
a given smoothing filter scale R. The kernels are normalized as

∫
d3xWR(|x|) = 1, such

that limk→0WR(k) = 1. We list below the most used filtering kernels and their Fourier
transform.
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• Sharp-k filter

WR(x) = 3
4πR3

[
3 j1(x/R)

x/R

]
, WR(k) = ΘH(1− kR) (2.7)

• Gaussian filter

WR(x) = 1
[2πR2]3/2 e

− 1
2x

2/R2
WR(k) = e−

1
2R

2k2 (2.8)

• Tophat filter

WR(x) = 3
4πR3 ΘH

(
1− x

R

)
, WR(k) = 3 j1(kR)

kR
(2.9)

Here, j1(x) is the spherical Bessel function:

j1(x) = sin x− x cosx
x2 . (2.10)

The shape of the filter in real space should reflect in some sense the Lagrangian
density profile of halos. Therefore, the sharp-k filter is not physical, as the corresponding
real-space filtering kernel WR(x) is not always positive. Since convolution in real space is
a multiplication in Fourier space, we have that the variance of the matter field on a scale
R is

S(R) ≡ σ2(R) = 〈δ2
R〉 =

∫ ∞
0

d ln k ∆2(k) |WR(k)|2 . (2.11)

We can generalize this definition to obtain the spectral moments of the matter power
spectrum smoothed on a scale R,

σ2
n(R) ≡

∫ ∞
0

d ln k ∆2(k) k2n |WR(k)|2 , (2.12)

from which we recover S(R) = σ2
0(R).

The two-point correlation function

Since ξ(r) will represent a fundamental tool for the measurement of halo clustering in this
project, we will devote some time to better understand its interpretation, following the
pedagogical arguments presented in Luca Amendola (2010).

If ρ0dV is the average number of particles in the infinitesimal volume and dNab = 〈nanb〉
is the average number of pairs in the volumes dVa and dVb (i.e. the product of the number
of particles in one volume times the number in another volume), for volumes separated by
rab, then the 2-point correlation function ξ(rab) is defined for rab > 0 as
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dNab = 〈nanb〉 = ρ2
0dVadVb[1 + ξ(rab)] . (2.13)

If the distribution has been obtained by throwing the N particles at random (i.e.
without any preference with respect to the place), then there is no reason for dNab to
depend on the location, then

〈nanb〉 = 〈na〉〈nb〉 = ρ2
0dVadVb . (2.14)

If ξ 6= 0, the particles are correlated. Then the correlation function can be written as
a spatial average of the product of the density contrast δ(ra) = na/(ρ0dVa) − 1 at two
different points:

ξ(rab) = dNab

ρ2dVadVb
− 1 = 〈δ(ra)δ(rb)〉 . (2.15)

If this average is taken to be the sample average, then it means we have to average over
all possible positions:

ξ(r) = 1
V

∫
δ(y)δ(y + r)dVy . (2.16)

In practice it is easier to derive the correlation function as the average density of
particles at a distance r from another particle, i.e. by choosing the volume dVa so that
ρ0dVa = 1. Then the number of pairs is given by the number of particles in the volume dVb

dNab = ρ0dVb[1 + ξ(rb)] , (2.17)

ξ(r) = dN(r)
ρ0dV

− 1 = 〈ρc〉
ρ0
− 1 , (2.18)

where 〈ρc〉 is the average number of particles at distance r from any given particle and
ρ0 is the expected number of particles at the same distance in a uniform distribution. If
ξ(r) > 0, there are more particles than in a uniform distribution.

In practice, a direct estimation of the shell density (Eq. 2.18) is difficult because of the
complicated boundary and selection procedure that a real survey often has. The simplest
way to measure ξ is to compare the real catalog to an artificial random catalog with exactly
the same boundaries and the same selection function (the selection function here is the
mean number of objects). Then the estimator can be written as (Davis and Peebles, 1983)

ξ = DD

DR
− 1, (2.19)

where DD means the number of galaxies at distance r counted by an observer centered on
a real galaxy (data D). This is divided by the number of galaxies DR at the same distance
but in the random catalog.
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In other words, instead of calculating the volume of the shell (which is a difficult task
in realistic cases), we estimate ξ by counting the galaxies in the Monte Carlo realization.
In this way all possible boundaries and selection function effects can be taken into account
through the random catalog, since they will affect DD and DR in the same way.

The most commonly-used estimator (also used in this work) is from Landy and Szalay
(1993),

ξ = 1
RR

[
DD

(
nR
nD

)2
− 2DR

(
nR
nD

)
+RR

]
, (2.20)

where nD and nR are the mean number densities of galaxies in the data and random
catalogs. While this estimator requires more computational time it is less sensitive to the
size of the random catalog and handles edge corrections well, which can affect clustering
measurements on large scales (Coil, 2013).

2.3 Large Scale Structure fields

This section will give us useful definitions of the fields defined on the study of structure
formation in the Universe and with which we will be dealing throughout this thesis. The
notation presented here is a mixture of Hahn and Paranjape (2014); Castorina et al. (2016);
Desjacques et al. (2018).

Tidal field

The first field (or tidal tensor, as it is a second-rank tensor) we can define is the local
gravitational observable of General Relativity, the second derivative of the gravitational
potential Φ, which is related to δ via the Poisson equation,

Φ = F−1{−k−2δ(k)} , (2.21)

such that the tidal field reads

ψij = ∂ijΦ = F−1
{
kikj
k2 δ(k)

}
, (2.22)

where F−1 denotes the inverse Fourier transform. Its eigenvalues are λ1 ≤ λ2 ≤ λ3. and
we define (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6) = (ψ11, ψ22, ψ33, ψ12, ψ13, ψ23). In an arbitrary basis, we
can define the following useful combination of matrix elements
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σ ν ≡ ψ1 + ψ2 + ψ3 (2.23)
σ l2 ≡

√
15 (ψ1 − ψ3)/2 (2.24)

σ l3 ≡
√

5 (ψ1 − 2ψ2 + ψ3)/2 (2.25)
σ lA ≡

√
15ψA , A = 4, 5, 6, (2.26)

where σ is the smoothed variance filtered with a tophat (see Section 2.2).

Shear field

The shear is the traceless part of the tidal field

Kij = F−1
{[
kikj
k2 −

1
3δij

]
δ(k)

}
(2.27)

with eigenvalues κ1 ≤ κ2 ≤ κ3.

Delta

The matter fluctuation δ is the trace of the tidal field, i.e.,

δ = Tr ∂ijψ = λ1 + λ2 + λ3 . (2.28)

Nabla of Delta

We can define the first derivative of δ as

η = ∇δ = F−1{ikδ(k)} . (2.29)

Hessian of Delta

The second derivative of δ in turn is

Hij = ζij = ∂ijδ = F−1{−kikjδ(k)} , (2.30)

with eigenvalues ζ1 ≤ ζ2 ≤ ζ3.

Curvature

The curvature
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x = −(ζ1 + ζ2 + ζ3)/σ2 (2.31)

will be an important quantity in the peak formalism (Section 3.5), as it reflects the
“sharpness” or “shalloweness” of the peak. The highest the curvature x, the sharper the
peak. The spectral moment σ2 is defined in Equation (2.12) and smoothed with a Gaussian
filter.

Ellipicity and Prolateness

The ellipicity e and prolateness p associated to the tidal tensor are

Y = eδ = (λ3 − λ1)/2 (2.32)
Z = pδ = (λ3 − 2λ2 + λ1)/2 , (2.33)

characterize the asymmetry of the isodensity profile (Catelan and Theuns, 1996), while

y = −(ζ3 − ζ1)/(2σ2) (2.34)
z = −(ζ3 − 2ζ2 + ζ1)/(2σ2) , (2.35)

describe the shape of the peak (Bardeen et al., 1986).

Tidal Anisotropy

We can note that, since

Kij =
(
∂ij
∇2 − δij

)
δ (2.36)

and thus Kij = diag(λi − 1
3(λ1 + λ2 + λ3)) in the eigenbasis of the tidal field, we get that

tr(Kij)2 = (λ2
1 + λ2

2 + λ2
3)− 2

3(λ1 + λ2 + λ3)2 + 3
9(λ1 + λ2 + λ3)2 (2.37)

=
(

1− 2
3 + 1

3

)
(λ1 + λ2 + λ3)2 − 2(λ1λ2 + λ1λ3 + λ2λ3) (2.38)

= 2
3(λ1 + λ2 + λ3)2 − 2(λ1λ2 + λ1λ3 + λ2λ3) . (2.39)

We can define the tidal anisotropy as α (Paranjape et al., 2018)
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α = 1
2[(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2] (2.40)

= (λ2
1 + λ2

2 + λ2
3)− (λ1λ2 + λ1λ3 + λ2λ3) (2.41)

= (λ1 + λ2 + λ3)2 − 3(λ1λ2 + λ1λ3 + λ2λ3) (2.42)

such that

α = 3
2 tr(Kij)2 . (2.43)

2.4 The Cosmic Web

We can use the value of the eigenvalues of the tidal field at each region of the LSS to
define its different components. These structures are composed by nodes (λ1 < 0), a
region to which matter is infalling from all directions, filaments (λ1 < 0 & λ2 > 0),
where matter is only receding along its axis, sheets (λ2 < 0 & λ3 > 0), where the infall
happens only in one direction and finally voids (λ3 < 0), a structure from which matter is
receding in all directions. It is claimed that the position of halos in the cosmic web highly
affects its internal and clustering properties (Musso et al., 2018; Paranjape et al., 2018;
Ramakrishnan et al., 2019).

Figure 2.1: Slice of a MultiDark simulation indicating the different components of the
cosmic web.

32



2.5 Bias

The bias can be broadly defined as the statistical relation between the distribution of the
cosmological tracers (galaxies, dark matter halos, quasars, etc.) to their underlying matter
density field. This connection allows us to extract information about many open questions
in physics, such as the nature of dark matter, dark energy, gravity and inflation.

Figure 2.2: Slice of a Numerical Simulation. Left: dark matter density field. Right:
distribution of dark matter halos. Comparing two images, we can visually see how halos
are biased tracers of the underlying density field. Cooray and Sheth (2002)

The Bias Expansion

The bias expansion is built from the bias parameters, which are defined at each order in
perturbation theory and at fixed time. Assuming that on large scales structure formation
is completely driven by gravity, these constitute a finite set of parameters on quasi-linear
scales. We restrict ourselves to these scales where highly non-linear effects do not play an
important role, such as complicated and yet not understood processes of galaxy formation
and evolution (see Desjacques et al. 2018 for a review).

In summary, we can write the overdensity of the cosmological tracers, such as galaxies,
as a function of certain operators O(x, τ), where the bias parameters are defined as their
coefficients, i.e.,

δg(x, τ) =
∑
O

bO(τ)O(x, τ) . (2.44)

In order to characterize galaxy clustering on the scales where the bias expansion is
valid, we have then to write down all operators4 at each order in perturbation theory
allowed by general covariance, as for instance powers of the tidal field operator.

4“Operators” here are not in the same sense of usual Quantum Field Theory (QFT), where the fields
act on a Hilbert space. Presumably use such word because these will be renormalized as we do for fields
in QFT.
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Note that this perturbative bias expansion is ill-defined, considering that on large scales
contributions of higher-order bias terms are not necessarily suppressed and some physical
quantities might depend on an arbitrary smoothing scale which should be irrelevant. We
can then redefine these operators by introducing local counterterms that absorb the large
contributions. In this way, we naturally obtain an effective theory, where the physical
bias parameters are the coefficients of renormalized operators and do not depend on any
smoothing scale. For more information, see e.g. Assassi et al. (2014).

The Basis of Operators

The allowed operators and corresponding appearing in the expansion can be broken in
three categories. First, the local observables of long-wavelength spacetime perturbations.
As the equivalence principle states, these are the operators related to second derivatives
of the gravitational potential ψ, such as δ which is related to ∇2ψ through the Poisson
equation (see Section 2.3) or the shear field5 (see Section 2.3). The second category is the
one of higher derivative ones, which are also gravitational observables but involve more
than two derivatives of ψ, as for instance ∇2δ. Lastly we have the stochastic contributions,
which besides the leading order one which takes into account the small-scale effects of
galaxy formation processes, also introduces a stochastic contribution in the expansion
for each operator. These bias terms can be seen as a “scatter” in the deterministic bias
parameters bO.

Here, we will briefly discuss which are the operators appearing in the bias expansion
at first and second orders, i.e.,

δg = b1δ + b∇2δ∇2δ + ε 1st order (2.45)
+ b2δ

2 + bK2K2 + εδδ . 2nd order (2.46)

Since the tidal field ∂ijψ is our gravitational observable, naturally the first operator
appearing in the expansion is its trace, δ, and its square at second order, δ2. From the
remaining traceless part of the tidal field, the shear field Kij, we have at second order
the invariant K2 ≡ (Kij)2 (see Section 2.3) which arises to account for non-spherically
symmetric processes of galaxy formation.

The non-local, higher-derivative bias b∇2δ appears when we take into consideration that
the cosmological tracers are not point-like, but they actually have an extension which is
characterized by R∗. In the case of galaxies, for example, this is usually the size of its host
halo, but it can be considerably larger. If e.g. flux of ionizing UV radiation affects galaxy

5Note that ∂ij/∇2 counts as zero net spatial derivatives.
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formation, then R∗ is of the order of several hundred Mpc. To account for this non-locality,
our simple, local operator δ has to be re-scaled to a functional with an appropriate kernel,
and if we expand the re-scaled δ(x) around x the first term appearing will be the operator
∇2δ (terms involving its first derivatives vanish due to isotropy). The higher-derivative
term is suppressed on large scales, since ∇2δ(x) becomes −k2δ(k) in Fourier space – see
Lazeyras and Schmidt (2019) for its actual measurement.

Our theory relies on the study of how large-scale perturbations affect galaxy clustering,
so we do not consider how small-scale perturbations influence galaxy formation. However,
we can treat them as stochastic contributions, in a Universe without primordial non-
gaussianities (which is the case we usually assume) and introduce stochastic fields in our
expansion, such as ε. The higher-order stochastic term εδδ arises due to the fact that
the presence of stochasticity at a given time couples to gravitational evolution. This
contribution do not correlate with the long wavelengths perturbations and its correlation
with ε vanishes on large scales, such that its contribution can be neglected for two-point
statistics analysis.

35



CHAPTER 3

How do halos form?

The next sections will be devoted to give us an overview of the developed models to
understand structure formation in the Universe, the peak formalism and excursion sets,
which are constructed in Lagrangian space, that is, in the initial matter density field
extrapolated to a desired reference time using the linear growth. The peak formalism
claims that halos are formed by peaks in the initial density field, while excursion sets
assumes that a halo of radius R is formed when the smoothed density at R first reaches a
density threshold δcr. Both assumptions can be combined in the so-called excursion-set
peaks approach.

These analytical models are able to give us a predictions which match reasonably well
with numerical N-body simulations (see Chapter 4), despite their simple assumptions. The
main observable predicted by these models is the halo mass function. This quantity gives
us the number of halos of a given mass, so that it can be readily tested against N-body
simulations, and from it we can obtain some of the bias parameters.

This chapter is intended to give a brief summary on the contents of Chapters 5 and 6
from Desjacques et al. (2018) which will be important for developing our hypothesis on
the high-mass spin bias.

3.1 Spherical Collapse

The prediction of the density threshold δcr relies on the spherical collapse approximation,
which treats the collapse of halos as spherically-symmetric homogeneous density
perturbations in a FLRW metric (Gunn and Gott, 1972). Such perturbations are know
to evolve independently of its surroundings and thus depend only on the matter at its
interior (Einstein and Straus, 1945; Carrera and Giulini, 2010), such that the equations of
motion can be easily solved for the evolution of its radius R ,

d2R

dt2
= −GM(< R)

R2 = −4πG
3 ρm,i(1 + ∆i)

R3
i

R2 , (3.1)
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where Ri, ∆i and ρm,i are the initial radius, average density contrast and comoving
background matter density, respectively. For an Einstein de-Sitter Universe, the solution is
given by linearly growing modes at first, as expected, until a turn around (when the radius
is maximum). The turn-around radius can be determined by integrating Equation (3.1),
setting dR/dt = 0 and solving the resulting energy conservation equation for R. After
turn around, the halo radius decreases until it collapses to a singularity at R = 0. This
unphysical solution does not happen in Nature, where gradient instabilities due to shell
cross break spherical symmetry and lead to a complex bound structure as we see in N-body
simulations.

Assuming that virialization is perfect and instantaneous, it is possible to estimate the
density of the virialized halo, which in linear theory and at the time of collapse is the
critical density δcr ' 1.686 (Desjacques et al., 2018). Of course, this is a rough estimate
which also neglects the effects of shear, angular momentum or small-scale perturbations
in the gravitational collapse to bounds structures. Spherical symmetry is indeed a good
approximation for the formation of massive halos, but the collapse of small halos tend to
depend more on the shear field, leading to an ellipsoidal collapse where the axes aligned
with different eigenvalues of the shear field collapse in different times. This effect can be
modeled by extending the constant barrier δcr to a stochastic barrier that depends on halo
mass (see Section 3.4).

3.2 Press-Schechter

The Press-Schechter halo mass function (Press and Schechter, 1974) can be derived based
on the assumption that the (linear and smoothed) matter perturbations are Gaussian
and that a Lagrangian volume V = (4π/3)R3 collapses to form a halo of M = ρ̄mV when
the linearly extrapolated, smoothed density perturbation δR exceeds the critical density
threshold δcr of spherical collapse.

The last, naïve assumption lead to the halo mass function

n̄h,PS(M) = ρm
M

νc fPS(νc)
∣∣∣∣∣d ln σ(R)
d lnM

∣∣∣∣∣ , (3.2)

where

fPS(ν) =
√

2
π
νc exp

(
−ν

2
c

2

)
, (3.3)

which is not properly normalized, since when integrated over all halo masses, the resulting
matter contained in halos corresponds to only half of the matter density available. At first,
Press and Schechter (1974) added a “fudge factor of 2” to fix their prediction, but later this
incorrect normalization was realized to be a consequence of the so-called cloud-in-cloud

37



problem (Peacock and Heavens, 1990). The nature of this problem is that the Press-
Schechter formalism does not take into account the possibility that an underdense region
identified on a scale R may be inside a halo on a bigger scale R′ > R (Bond et al., 1991)
(see Figure 3.1). This can be solved by the excursion set approach with the first-crossing
constrain.

Figure 3.1: Illustration of a two-dimensional Gaussian density field δ(R) in a side length
of 50 h−1 Mpc smoothed on different scales R: 0.4 h−1Mpc (top left), 1 h−1Mpc (top
right), 2 h−1Mpc (bottom left). The fields with R = 1 h−1Mpc and R = 2 h−1Mpc, along
with the spherical collapse threshold (δcr = 1.686, black plane), are superimposed in the
bottom-right panel. Note that there are regions which are above threshold at the larger
smoothing scale R = 2 h−1Mpc but below the threshold at R = 1 h−1Mpc, what illustrates
the cloud-in-cloud problem. Desjacques et al. (2018)

3.3 Excursion Sets

The main assumption of the excursion set formalism is that a Lagrangian point q belongs
to a halo of radius R if its radius is the maximum smoothing scale at which the smoothed
linear overdensity

δ(R) ≡ δR(q) =
∫
d3xWR(|x|) δ(1)(q + x) (3.4)
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exceeds the critical overdensity δcr at the time considered (Desjacques et al., 2018). The
most common filtering kernels WR are described in Section 2.2. Note that, since the shape
of the filters in real space reflect the Lagrangian density profile of halos, the sharp-k filter
is not physically motivated, as it can have negative values in real space.

To find the halo in which a given point in the Universe belongs to, we consider how δ(R)
centered at this point changes as a function of smoothing scale R. We begin at R→∞,
where the density fluctuations are zero, and decrease the scale evaluating the overdensity
at each R. The density contrast at any given smoothing scale fluctuates around zero with
corresponding variance S(R) ≡ σ2(R). The smoothing scale at which the density contrast
first reaches δcr give us the mass scale M(R) of the halo to which the given point belongs.
The first-crossing conditions assures that we are treating isolate objects and keeping track
of the underdensities inside them, thus naturally solving the cloud-in-cloud problem. The
excursion set approach thus yields a mass function which is properly normalized, allowing
us to estimate the value of some bias parameters of dark-matter halos, although in general
they under-predict the formation of high-mass halos.

Figure 3.2: Random walk trajectory for δ as a function of S ≡ S(R). An object has
crossed the critical threshold at S1 ≡ S(R1), but at a certain point S2 ≡ S(R2) (where
R2 < R1) it lays below the threshold, what again characterizes the cloud-in-cloud problem.
In the excursion set approach, this trajectory will be associated to an object of R1, as it
represents the “time” at which the trajectory first crosses the threshold. (Maggiore and
Riotto, 2010a)

The overdensity trajectories as a function of smoothing scale can be thought of as
random walks, where R is the time variable. Since S(R) is a monotonic decreasing function
of R, we can use it alternatively as the time variable. The solutions to the excursion
set equations can be obtained numerically using Monte-Carlo techniques (Bond et al.,
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1991), while analytically we have exact solutions in two scenarios. First, when the steps
of the random walk are completely independent, i.e. the Markovian case with sharp-k
filter (Bond et al., 1991), or when the steps are completely correlated. However, as we
discussed before, these do not represent the realistic cases of halo formation, even though
it is possible to expand around these two filters in order to obtain solutions for more
physically motivated filters, such as a top-hat (see Section 2.2).

However, any of them do not agree well with the bias parameters measured from
numerical simulations (Desjacques et al., 2018), leading us to the need of a more realistic
model of halo collapse. In the next section, we are going to extend the assumption that
halo collapse has spherical symmetry, through which we obtained the constant barrier δcr
in the spherical collapse model, to the ellipsoidal collapse model using stochastic barriers.

3.4 Ellipsoidal Collapse Model

Overdense regions of the Gaussian density field are in general triaxal (Doroshkevich, 1970;
Bardeen et al., 1986), and not spherical as the spherical collapse model assumes. Also, this
models does not take into account the role of the tidal shear Kij, although this quantity
has been show influence structure formation (Hoffman, 1986; Del Popolo and Gambera,
1998).

Despite the complicated shape of actual protohalo patches seen in N-body simulations,
we can study them through the collapse of an isolated homogeneous ellipsoid and
approximate the dynamics of a ellipsoidal collapse into a moving excursion-set barrier.
Since shear tends to slows down the collapse of low-mass halos, its effect can be translated
into a barrier B(M) that decreases monotonically with M . In this model, the relative
abundance of high-mass halos increases, in such a way that the halo mass function is in
better agreement with the results from N-body simulations when compared to the usual
excursion set approach (Sheth and Tormen, 2002).

While the spherical collapse has a dependence only on one scalar quantity of the tidal
field, which is its trace δ (see Section 2.3), the critical density of the non-spherical collapse
also depends on the other two invariants constructed from the tidal field: tr[(Kij)2] and
tr[(Kij)3]. The three invariants of the tidal field can be parametrized as

δ, K2 ≡
3
2tr(K

2
ij), K3 ≡

9
2tr(K

3
ij) . (3.5)

Note that K2 is the tidal anisotropy α that we obtained in Section 2.3, so that
K2 = 3e2 + p2, where e and p are the shear ellipticity and prolateness. The factor
of 3/2 ensures that 〈K2〉 = S, implying that for Gaussian initial conditions, 5K2 is a
χ2-distributed with 5 d.o.f., while 9/2 is added such that |K3| ≤ K

3/2
2 .
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In order to calculate the tidal bias parameters, we have to develop a model for the
barrier B characterizing the first-crossing of multi-dimensional random walks (δ,K2, . . .).
However, we do not have yet a complete theory of Lagrangian bias with the dependence
of the galaxy number density on K2` and K3` separately. While the bias parameters such
as b1 and b2 can be considered as a response of a long wave-length density perturbation δ,
the tidal bias can be seen as a response to the long wave-length perturbation K2` and K3`.
Sheth et al. (2013) considered though a simple model where the barrier is given by

B(S,K2) = δcr

(
1 +

√
K2

Kc

)
, (3.6)

where Kc is the characteristic scale for the effect of the tidal shear. The dependence of the
barrier on S is only given by K2 ∝ S. Due to the fact that K2 ≥ 0, we have that B ≥ δcr.
Now, we have a first-crossing distribution of 2-dimensional walks that start from a given
δ` and K2`.

Fuzzy Barrier

Numerical studies of the ellipsoidal collapse and Lagrangian halos show that the collapse
barrier is “fuzzy” (Sheth et al., 2001), in the sense that, for a fixed S, there is a large
range of possible δcr, as one can see in Figure 3.3. For each dark matter halo, one can
trace back its dark matter particles to the initial position and calculate its mean density
with a tophat sphere centered at the initial center-of-mass. These overdensities linearly
extrapolated to z = 0 indicate the snapshot of the collapse barrier. The mean barriers
increase with decreasing halo mass, as expected from the ellipsoidal collapse model. The
scatter Σ around the mean barrier is generated by other quantities beside the density such
as the tidal shear, which correlate with the large-scale environment.

This scatter in the barrier is actually a consequence from the fact that we are projecting
the actual, multi-dimensional collapse barrier onto a simpler sub-space in which S is the
only variable. The dependence of halo collapse on the tidal shear tensor Kij can only be
fully captured by the moving barrier B(S) if the shear is explicitly accounted for.

An alternative to introducing the tidal shear in the barrier explicitly is thus to use a
“fuzzy” moving barrier that includes the scatter around the mean such as the square-root
barrier (Paranjape et al., 2012)

B(S) = δcr + β
√
S , (3.7)

where β can be calibrated in simulations. This approximation turns to be more convenient
than introducing an explicit dependence on the tidal shear Kij and other fields for the
purposes of calculating the halo mass function and the bias parameters. This ansatz
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Figure 3.3: Smoothed linear overdensity, extrapolated to z = 0 for the Lagrangian regions
that collapse and form halos by z = 0, as a function of halo mass parametrized through
σ(M) . Circles correspond to the mean overdensities, whereas diamonds show the median
overdensities. Shown for comparison are the spherical collapse barrier (blue dashed line),
the ellipsoidal collapse barrier of (Sheth et al., 2001) (red dashed line), and the collapse
barrier associated with the Sheth-Tormen mass function (Sheth and Tormen, 1999) (green
dashed line). The upper panel shows the scatter Σ in the barrier height as a function of
σ(M). From Robertson et al. (2009). (Desjacques et al., 2018)

is adopted in the excursion-set peak approach. Alternatively, the scatter has also been
modeled as a “diffusive barrier” in the context of the path integral approach (Maggiore
and Riotto, 2010b). The resulting mass functions are in good agreements with simulations
(Achitouv et al., 2013).

3.5 The Peak Formalism

To understand the formation of dark matter haloes, we will start by studying how they
are connected to their progenitors in the initial density field.
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Figure 3.4: Evolution of the initial density field. (Bernardeau et al., 2002)

First, we will naturally assume that the initial smoothed density field extrapolated to
the collapse epoch using linear theory, δR(q) ≡ δ

(1)
R (q), to be a homogeneous Gaussian

random field of zero mean. If we denote {q1,q2, . . . ,qp, . . .} by the positions of a set
of points referring to e.g. the positions of halo centers, we can write their Lagrangian
comoving number density as a sum of Dirac distributions

ng(q) =
∑
p

δD(q − qp) . (3.8)

As shown by Kac, Rice and BBKS, since we are assuming δR to be a homogeneous
Gaussian random field of zero mean, the number density of their stationary points nsp(q)
can be entirely expressed in terms of the normalized dimensionless variables ν ≡ δR/σ0(R)
(note that this differs from the peak significance νc ≡ δcr/σ0(R) ) and its derivatives,
ηi ≡ ∂iδR/σ1(R) and ζij ≡ ∂ijδR/σ2(R), where the spectral moments are defined as

ν ≡ δR
σ0(R)

(
6= νc ≡

δcr
σ0(R)

)
ηi ≡

∂iδR
σ1(R) ζij ≡

∂ijδR
σ2(R) (3.9)

σ2
n(R) ≡

∫
k
k2nW 2

R(k)P (k), (3.10)

whereWR(k) is a spherically symmetric filter and P (k) is the linear matter power spectrum.
In order for the peak constrain be consistent, we have to use a filtering kernel WR(k) (see
Section 2.2) such that σn(R) converges at least up to n = 2. While this is not true for a
top-hat filter, this is the case for a Gaussian filter and, apparently, for the actual filter
WR(k) which can be measured by tracing back the halos of N-body simulations to the
initial conditions. For example, the Lagrangian density profile of halos Dalal et al. (2008)
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indicates that the actual filter is more extended than a tophat, but more compact than a
Gaussian. Here we will assume a Gaussian filter for simplicity.

The number density stationary points, which are defined as points qp satisfying
ηi(qp) = 0, can be written as

nsp(q) = δD[η(q)]
∣∣∣∣∣∂η(qp)
∂qp

∣∣∣∣∣ . (3.11)

In the neighbourhood of a stationary point, we have that

ηi(q) = ηi(qp) + ∂jηi(qp)(q − qp)j +O
(
(q − qp)2

)
(3.12)

= σ2

σ1
ζij(qp)(q − qp)j +O

(
(q − qp)2

)
(3.13)

=
√

3
R1(R)ζij(qp)(q − qp)

j +O
(
(q − qp)2

)
, (3.14)

where R1 is the mean distance between stationary point defined from

Rn(R) ≡
√

3 σn(R)
σn+1(R) , (3.15)

which gives an ordered sequence of characteristic lengths Rn+1 ≥ Rn, where R0 is the
typical separation between zero-crossings of the density field. R0 and R1 are the only
scales involved in the calculation of the peak correlation functions. If the Hessian ζij is
invertible, we can thus write the Kac-Rice formula

nsp(q) =
∑
p

δD(q − qp) = 33/2

R3
1
|det ζij(q)| δD[η(q)] , (3.16)

or
nsp(q) =

(
σ1

σ2

)3
|det ζij(q)| δD[η(q)] , (3.17)

which holds for any smooth random field. In order to restrict our counting to density
maxima, we have that ζij(qp) must be negative definite and impose a certain threshold
height νc, such that the localized number density of “BBKS peaks” (Bardeen et al., 1986)
of height νc then reads

npk(q) = 33/2

R3
1
|det ζij(q)| δD[η(q)] ΘH(λ3) δD[ν(q)− νc] , (3.18)

where λ3 is the smallest eigenvalue of −ζij.
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3.6 Excursion-Set Peaks

The ideas of excursion sets, which rely on random-walks at all points of space, can be
conciliated with the peak formalism approach, which only rely on a subset of points where
initial density maxima are located. The combination of the BBKS peak constraint with the
up-crossing condition has been dubbed excursion-set peaks (ESP) (Musso and Sheth, 2012;
Paranjape and Sheth, 2012). The up-crossing condition guarantees that peaks smoothed
on a scale R are not embedded in a peak associated to a larger smoothing scale, i.e., it
solves the peak-in-peak effect (with analogy to the cloud-in-cloud problem, see Section 3.2).

Figure 3.5: Top panel: Logarithmic mass function of SO halos (with ∆ SO = 200) extracted
from N-body simulations. Different symbols refer to different redshifts as indicated in the
figure. The solid, dotted and dashed curves represent the ESP prediction at z = 0, 1 and
2. Bottom panel: Fractional deviation of the simulations from the ESP prediction. In
both panels, error bars denote the scatter among realizations. From Moradinezhad Dizgah
et al. (2016).

ESPτ

Castorina et al. (2016) incorporated the effect of shear in the ESP model by introducing a
dependence of a fuzzy barrier on τ ,

τ 2 ≡
3q2

(3) + (l2 − γ
√

15y)2 + (l3 − γ
√

5z)2

(1− γ2) , (3.19)
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Figure 3.6: Distribution of the z = 0 protohalo overdensity in the WMAP3 simulation
as a function of mass, coloured by the measured values of τσ0T

√
(1− γ2)/5. Horizontal

line shows the spherical collapse value δcr = 1.674 (the spherical collapse threshold for
the cosmology considered). The dots correspond to 104 randomly chosen halos with more
than 200 particles.

where
q2

(3) ≡
l24 + l25 + l26

3 , (3.20)

which captures the misalignment between the tidal shear and shape tensor as it depends
only on off-diagonal shear components in the shape eigenbasis. They thus consider the
barrier

B(S) = δcr + β
√
S τ

√
(1− γ2)/5 , (3.21)

where, as in Equation (3.7), β is a free parameter to be fitted from N-body simulations
at z = 0. We can see in Figure 3.6 that there is a correlation indeed in the scatter of
halo overdensities with the τ parameter. The idea is that high-sheared regions, which
are expected to have a higher τ , tend to slow down the collapse of halos, as the different
directions of the shear eigenvectors will have different collapse times. Halos of same mass
in high-sheared regions have thus to be formed in high-density regions.

As we are going to see in Section 7.2, this model, which is known as ESPτ , will
constitute one of our hypothesis for the origins of high-mass spin bias.
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CHAPTER 4

How do we study halos?

The goal of this chapter is to introduce one of the main tools for the study of dark matter
halos and structure formation in the Universe, which is through the use of numerical N-
body cosmological simulations. These are powerful tools which allow us to investigate the
clustering, properties and evolution of halos up to non-linear scales, where our theoretical
frameworks usually break down. Furthermore, with the advent of hydrodynamical N-body
simulations, we are able to study the dynamics of galaxies and the halo-galaxy connection.
This leads us to a better understanding of the rules of structure formation in the Universe,
therefore allowing us to efficiently extract cosmological information from the upcoming
surveys.

For example, the comparison of the analytical models presented in Chapter 3 with
numerical simulations can be done by tracing back the dark-matter particles containing at
a halo to the initial conditions, which can be easily done as particles carry a unique ID
across the entire simulation.

Here, we will explore some of the state-of-the-art numerical simulations which were
used throughout this work, discuss about how we can find halos in these simulations,
analyse which are their main properties and finally see how we can use these tools to learn
about the connection between halos and galaxies.

While the last chapter was devoted to introduce the theoretical tools that we have so
far, here we will become acquainted with numerical analysis in N-body simulations, so
that we will be able not only to develop an analytical framework for spin bias but also to
test it in numerical simulations.

4.1 N-body Simulations

N-body simulations are numerical tools which consists on distributing a large number of
particles inside a box according to the initial conditions given by inflation and then evolving
those particles in time by solving the Poisson equation for their mutual gravitational
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Figure 4.1: (Left) The initial distribution of matter at the beginning of the N-Body
simulation. (Right) The final distribution of matter at the final snapshot of the simulation
after structure formation. TensorFlow Blog.

interaction. Each time step of the simulation produces a snapshot, and the final snapshot
corresponding to z = 0 reproduces the patterns seen in the LSS of our Universe.

Of course, this final distribution may differ one from another depending on the
cosmological parameters (besides possible issues related to numerical resolution and
equation solvers, for example). It is also possible to add extra interaction between the
particles, such as a cross-section between the dark matter particles motivated by particle
physics models of self-interacting dark matter (SIDM). These modifications are very
useful for us to test how the LSS observables, such as the power spectrum, (sub)halo
mass function, splashback radius, etc, would change if we change the physics behind the
simulation. Therefore, these modified N-body numerical simulations can give us clues on
how signs of new physics would manifest themselves in the data extracted from observations,
thus helping us understanding the aforementioned open questions in cosmology.
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MultiDark

Figure 4.2: (Left): Slice through SMDPL at redshift z=1 (Stefan Gottlöber, IDL). (Right):
Slice through MDPL2 at redshift z=0. The size of points is correlated with their mass,
while overlaying dots are emphasized by brighter color. (Kristin Riebe, Topcat)

The MultiDark suite of cosmological dark matter only simulations spans boxes of different
sizes. As we can see in the table below, with them we are able to reach a large range
of scales and masses. Therefore, they constitute a very useful tool to study e.g. halo
clustering and the Baryon Acoustic Oscillations. For us, they will be valuable tools for us
to analyse secondary halo bias, since they allow us to measure the properties of halos and
their clustering. The catalogs used in this work follow a Planck cosmology are downloaded
from the CosmoSim database1.

In order to calculate the correlation function for a large mass range and thus estimate
the secondary bias of dark matter halos, a combination of 5 MultiDark boxes with different
sizes is made (see the methodology in Section 6.1). As Figure 4.3 displays, each box has a
different mass function and thus covers a different mass range.

1https://www.cosmosim.org/cms/files/rockstar-data/
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Figure 4.3: (Left): Halo mass function (HMF) of VSMDPL at z = 0. (Right): HMF of
SMDPL at z = 0.

Dark matter halos are basically a collection of dark matter particles in the simulation
which have collapsed when reaching a certain density threshold. There are several halo
finders which we can use to detect these halos in the simulation, given the distribution of
dark matter particles in the box. The halo catalogues of MultiDark are produced using
the ROCKSTAR (Robust Overdensity Calculation using K-Space Topologically Adaptive
Refinement) halo finder (Behroozi et al., 2012), which is based on a refinement of friends-
of-friends groups (see Section 4.1) in six phase-space dimensions and one time dimension.
ROCKSTAR identifies dark-matter halos and their substructures, as well as tidal features.
We can see in Section 4.1 how the halo catalog produced by ROCKSTAR looks like. It
consists on a huge file for each snapshot (∼ 100 GB) with several halo properties, allowing
us to analyze many of the halo internal and environmental properties.

The properties of halos however need a large amount of dark-matter particles for them
to be well defined. Thus, in order to maintain a reasonable numerical resolution, a mass
cut is made, in such a way that only halos with more than ∼500 particles are taken into
account. The size, number of particles, mass resolution and the mass cut (in h−1Msun and
log) are shown below for the MultiDark boxes used.
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VSMDPL SMDPL MDPL2 BigMDPL HugeMDPL
size Mpc/h 160 400 1000 2500 4000
particles 38403 38403 38403 38403 40963

res Msun/h 6.2× 106 9.6× 107 1.5× 109 2.4× 1010 7.9× 1010

cut Msun/h > 3.1× 109 > 4.8× 1010 > 7.5× 1011 > 1.2× 1013 > 3.9× 1013

log Msun/h > 9.49 > 10.68 > 11.88 > 13.08 > 13.60

Illustris

The Illustris Project are magneto-hydrodynamical simulations with dark matter only and
also dark matter with baryonic content simulations, where it is implemented state-of-the
art physical models of galaxy formation and evolution. They represent an excellent tool
to study the physical mechanisms behind the galaxy-halo connection.

Figure 4.4: (Left): Redshift evolution of a whole box slice from z = 4 to z = 0, showing
four projections: dark matter density, gas density, gas temperature, and gas metallicity.
(Right): Sample of massive galaxies from z = 5 (left) to z = 0 (right), showing their
stellar light distribution (rest-frame B,g,r band composites) and their gas surface densities.
Illustris Collaboration.

Several boxes with different sizes and particle resolution are available as well. In order
to solve the physics of galaxy formation, the resolution of hydrodynamical simulations has
to be considerably higher than a dark matter only simulation, allowing for the study of
small-scale physics such as star formation, AGN feedback, etc. However, the drawback is
that these boxes usually have a small volume due its high computational cost.

The recent project of IllustrisTNG has made available some hydrodynamical boxes on
larger scales, being the TNG300 (300 Mpc side length) the largest one. Such boxes allow
us for the study of the large-scale clustering of halos and galaxies, besides the connection
between their small-scale properties, as we have show in Montero-Dorta et al. (2020) (see
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Section 4.3). Furthermore, together with TNG100 (100 Mpc side length), we were able
to probe how the kinetic Sunyaev-Zeldovich effect, which arises due to the scattering of
photons on the electrons of the gas in galaxy clusters, can be used as a observational probe
of halo spin bias (see Section 7.3).

Dark matter halos are defined in Illustris with the Friends-of-Friends algorithm (Knebe,
2011), where particles are linked together if their distance lies below a certain threshold,
called linking length. This means that the distances of particles at the boundary of such a
linked object (a “FOF group”) are smaller or equal than the linking length, corresponding
to a density threshold. FOF groups cannot intersect, so that a particle can be assigned
uniquely to just one FOF group (for a given linking length). Further, there are small
“sub-halos” living inside the dark-matter halo, which are substructures defined with smaller
linking lengths lying completely within their host.

Uchuu

The Uchuu2 dark matter only simulations (Ishiyama et al., 2021) can be downloaded from
http://skiesanduniverses.org/Simulations/Uchuu/ and uses a Planck2015 cosmology. It
was run by the supercomputer ATERUI II in Japan.

Uchuu has impressive particle resolution when compared to other simulations of the
same type, allowing us to analyze the clustering of low-mass halos on very large scales.
For example, the 2 h−1Gpc Uchuu box and the 2.5 h−1Gpc BMDPL MultiDark box
have 128003 and 38403 particles, respectively. We can reach the range of halo masses
log(Mvir/h

−1M�) ∼ 11.0−−14.0. Its halo catalogs are also produced using ROCKSTAR.

4.2 Halo Properties

Virial Mass and Radius

As one can imagine, there are several properties we can define for halos, as we do for
galaxies. The most essential one is halo mass. However, this apparently simple property is
not trivially defined. In numerical simulations, for example, we can define it as the sum of
all particles bounded to the halo (e.g., inside a FOF group as in Illustris). A practical and
perhaps the most used definition of halo mass is the virial mass, i.e., the mass inside the
radius in which the virial theorem applies. In order to understand it, we have to remember
that the critical density of the universe is defined as

ρcr = 3H2(t)
8πG , (4.1)

2“Uchuu” is a Japanese word meaning “Universe”.
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Figure 4.5: Dark matter distribution in Uchuu at z = 0. The image shows a 2000 h−1Mpc
× 2000 h−1Mpc projected volume with a thickness of 25 h−1Mpc. The white box in the
top panel is the same region visualized in the left-bottom panel, in which the spatial
volume is equivalent to the Bolshoi simulation. Uchuu Images.

where H(t) is given by the Friedmann equations according to the considered cosmology
(Dodelson, 2003).

If we define the radius R∆ at which the mean density of the halo is equal to a certain
constant ∆ times the critical density of the universe, i.e., ρ̄(R∆) = ∆ ρcr, we have that the
mass M∆ of this halo is given by

M∆ = 4
3πR

3
∆ ∆ ρcr . (4.2)

If we want to estimate ∆ to be the density threshold inside which the virial theorem
holds, then using the spherical collapse model (see Chapter 3) for an Einsten de-Sitter
universe we obtain that ∆vir ≈ 178 (Bryan and Norman, 1998), from which we can define
the virial mass of halos Mvir. It is very common in the literature for people to use simply
M200 for the virial mass.

Splashback Radius

The virial radius of halos may not be a good definition of the halo boundary. Sometimes
there are some objects which are still gravitationally bounded to the object, but that
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Figure 4.6: Comparision between the splashback radius Rsp, R200 and Rvir in a simulation.
From http://www.benediktdiemer.com/research/splashback/.

happen to be in orbit outside the virial radius of their host halo. These “ex-subhalos” are
known as splashback (or backsplash) halos, living in the so-called splashback radius Rsp, so
that we can also define a corresponding mass Msp. The splashback radius covers a few
times the virial radius of the host (Wang et al., 2009; Adhikari et al., 2014) and is claimed
to be a “more physical” boundary of halos (More et al., 2015). Its location can be in
principle be detected in real data (More et al., 2016) and it has been shown to depend on
accretion rate, redshift, cosmology (Diemer et al., 2017), cosmic expansion and gravity
(Adhikari et al., 2018).

Besides mass, there are several other halo properties we can define. As we discussed
in Chapter 1, halo mass is the primary halo property in the sense that it is the property
to which halo bias is most sensitive. However, at fixed halo mass, bias also depend the
secondary halo properties, such as spin, concentration and age.
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Halo Spin
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Figure 4.7: Spin distribution in SMDPL at z = 0.

Spin, a dimensionless quantity which characterizes the angular momentum of halos, is
given by

λ = |J |√
2MvirVvirRvir

, (4.3)

where J is the halo angular momentum calculated inside the virial radius Rvir and Vvir is
its circular velocity at Rvir. Naturally, we could also calculate this quantity with other
density threshold besides the virial one.
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Figure 4.8: Spin distribution in SMDPL at z = 0.

Halo Age

Age, a1/2, is defined as the scale factor at which half of the peak mass of the halo was
accreted.
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Figure 4.9: Concentration distribution in Illustris TNG300 at z = 0.

Halo Concentration

We know that halo age correlates with halo concentration, which is defined as

cvir = Rvir

Rs

(4.4)

where Rs is the Kyplin scale radius (Klypin et al., 2011) from the NFW density profile
Navarro et al. (1996),

ρ(r) = ρ0

(r/Rs)(1 + r/Rs)2 , (4.5)

a fitting function for the density profile of halos that was found to fit well to every dark
matter halo.
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Figure 4.10: Halo density profile (purple) and NFW fit (blue), where the dashed lines show
the locations of Rs and R200. Taken from http://www.benediktdiemer.com/visualization/
theory-toy-models/.

4.3 Galaxy-Halo Connection

As we saw in Chapter 1, according to our cosmological observations the ratio between the
amount of baryons to dark matter in the Universe is 1/5. In our current cosmological
models, basically every galaxy form within a dark matter halo, in such a way that their
properties and distribution throughout the Universe are intimately connected.

Currently we am interested in better understanding such connections and how they can
give us hints on galaxy clustering, formation and evolution models. At the end of the day,
most of our data comes from galaxies (and will come in the near future). Then, making
this connection can help us testing our analytical models of the large scale structure,
besides from extracting information on cosmological parameters and e.g. the nature of
dark matter.
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Figure 4.11: (Top left): Dark matter distribution in the Uchuu N-body simulation. (Bottom
left): Galaxies in the Hubble Deep Field from HST. (Right): Illustris hydrodynamical
simulation. (Diagram borrowed from Antonio Montero-Dorta)

In a recent work (Montero-Dorta et al., 2020), we measured with high precision and
analyzed the properties and clustering of galaxies with respect to dark matter halos
in the magneto-hydrodynamical IllustrisTNG300 simulation. In order to illustrate the
galaxy-halo connection, we can see for example in the left hand plot of Figure 4.12 how
the (g-i) colour of galaxies is related to the mass and age of the halo where the galaxy lives.
A higher (lower) value of (g-i) colour corresponds to a redder (bluer) galaxy. High-mass
halos are only inhabited by very red galaxies and, at fixed halo mass, older halos tend to
host redder galaxies, but the correlation seems stronger at the low-mass end. In the right
hand plot we see that halo assembly bias is manifested in the clustering of galaxies: at
fixed halo mass, older halos and redder galaxies are more clustered than younger halos
and bluer galaxies, but the signal vanishes at the high-mass end.

We did similar analyses for star formation rate, stellar radius, galaxy spin and velocity
dispersion, illustrating how secondary halo bias manifests itself on galaxies as well.
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Figure 4.12: (Left): Distribution of central galaxy (g-i) colour as a function of halo mass.
The colour code indicates the age of the halo where each galaxy lives, which is described
by the halo formation redshift. (Right): Galaxy assembly bias with 50% redder (bluer)
galaxies in orange (blue); halo assembly bias with 50% older (younger) halos in darker
(lighter) grey tones. Montero-Dorta et al. (2020)
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CHAPTER 5

How do halos spin?

Halo spin is a dimensionless quantity which characterizes the angular momentum of dark
matter halos. In the definition of Bullock et al. (2001), halo spin is given by:

λ = |J |√
2MvirVvirRvir

, (5.1)

where J is the halo angular momentum defined in the usual way, and Vvir is its circular
velocity at the virial radius Rvir. For a spherically symmetric object the spin is basically
the ratio between its angular velocity and the velocity needed for it to be rotationally
supported. In the next sections, we will learn how we can predict the angular momentum
of halos, and especially TTT will represent an important tool for the development of our
theory for the origin of high-mass spin bias.
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Figure 5.1: (Upper): Relation between spin and halo mass colored by halo angular
momentum in HMDPL at z = 0. (Lower): mean angular momentum as a function of halo
mass.
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TNG300 at z = 0.

5.1 Tidal Torque Theory

Peebles (1969) was the first to estimate the angular momentum acquisition of protogalaxies,
where they showed to be a second-order effect by using first-order approximations for the
density and velocity fields to calculate the growth of a spherical region in an expanding
universe. Doroshkevich (1970) showed however that by relaxing the spherical symmetry
condition that the angular momentum grows at first order. These calculations were further
developed by White (1984), who improved the model and discussed some of its limitations.
They obtained that the coupling between the first-order tidal field with the zero-order
anisotropy of a collapsing object produces a first-order torque, which results in the angular
momentum growing to first-order and proportional to time (Heavens and Peacock, 1988).

These studies gave rise to the Tidal Torque Theory (TTT), the most well accepted
theory for the origin of angular momentum. In this theory, halo spin arises due to the
misalignment between its shape tensor and the shear field exerted by the surrounding
matter distribution. TTT accurately predicts the evolution of angular momentum only
during linear and quasi-linear regimes of structure formation, while at late times non-linear
processes such as mergers tend to also affect its evolution (Porciani et al., 2002; López
et al., 2019).

We are going to consider the evolution of the angular momentum of a protohalo in a
FLRW Universe, where dark matter is considered a presurelles cold fluid. The origin of
the Cartesian coordinate system is assumed to coincide with the centre of mass. Since we
are interested in the intrinsic angular motion, we disregard the centre–of–mass motion.
Thus, inside an Eulerian volume V it is is given by

L(t) =
∫
a3V

dr ρ(t) r× v , (5.2)

where r(t) = a(t)x is the physical distance and x is the comoving one, while v(t) = dr/dt
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is the velocity field and u(t) = adx/dt is the peculiar one. Writing it as a function of
comoving coordinates, we obtain

L(t) = ρ a4(t)
∫
V
dx (1 + δ) x× u , (5.3)

where we wrote the density as a function of its fluctuations ρ = ρ(1 + δ). We can also write
this expression in Lagrangian coordinates, where the evolution of angular momentum of a
spherical region of volume VL is

L(t) = ρ a3(t)
∫
VL

dq (q + S) × dS
dt
. (5.4)

As stated in the Zel’Dovich approximation (Zel’Dovich, 1970), in linear regime matter
motion can be described by x(t) = q + S(q, t), where S(q, t) is the displacement
vector, which can be written with its spatial and temporal components decoupled, i.e.
S(q, t) = f(q)D(t). Moreover, due to the relation between the velocity field and the
gravitational potential in linear regime, we have that its spatial part is due only to the
initial matter surroundings. We can thus write x(q, t) ≈ q +D(t)∇ψ(q) and obtain

L(t) = a2(t)Ḋ(t)
∫
VL

dq ρ̄(t)a3(t) q×∇ψ(q) . (5.5)

Assuming that the gradient ∇ψ(q) doesn’t change much inside the Lagrangian volume
VL, we can perform a Taylor expansion,

∂αψ(q) ' ∂αψ(0) + qβ Tαβ (5.6)

where we identified the tidal tensor Tαβ ≡ ∂α∂βψ(0). Thus, we finally arrive to the
expression

Lα(t) = a2(t)Ḋ(t) ε γ
αβ T βσ Iσγ (5.7)

where we have identified the inertia tensor

Iσγ ≡
∫
VL

dq ρ̄(t)a3(t) qσqγ . (5.8)

Note that we can write this expression as a function of the shear and shape tensors
(which are the detraced part of the tidal and inertia tensors, respectively) as

Li(t) = a2(t)Ḋ(t) εijkKj
l I

lk (5.9)

We can also note that, for a spherical region, Iσγ ∝ q5δσγ, so that Lα ∝ ε γ
αβ T

β
γ = 0,
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i.e., there is no angular momentum growth at first order.
In an EdS Universe, we have that a2Ḋ ∝ D3/2 ≈ t, the evolution of angular momentum

in halos should then grow as t ∝ a3/2. They grow until approximately the turnaround
time, when and influence of the matter surroundings ceases due to the distance to the
collapsed halo. From that point, the angular momentum should remain constant. However,
as we mentioned before, looking at numerical N-body simulations we know that this is not
the case, as we can see e.g. in Figure 5.3.

Since spin bias is an effect which already manifests itself in high redshifts (see Chapter 7),
we can in principle try to use TTT as a toy model to better understand spin bias, as it
accurately predicts halo spin and only fails at recent times.

Figure 5.3: Evolution of halo angular momentum JFOF in black circles compared with the
TTT prediction JTTT in dashed lines. The colored areas show the interquartile range of
the W and L samples, which correspond to the terciles that have respectively most gained
and lost angular momentum in each mass bin (López et al., 2019).

5.2 Tidal Torque Theory in the Peak Formalism

It has been shown in Catelan and Theuns (1996) that if we restrict that our halos are
centred in density maxima peaks, we can write the ensemble average of angular momentum

L ≡
√
〈L2〉ψ = `L∗ , (5.10)

where
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L∗ ≡ a2Ḋηoσ0R
5
∗ (5.11)

and

` ≡ 96π√
153

(1− γ2)1/2
(
ν

γ x

)5/2 A(e, p)1/2

B(e, p)3/2 (5.12)

where the polynomials are defined as

A(e, p) ≡ [p(p+ 1)]2 + 3e2(1− 6p+ 2p2 + 3e2) (5.13)

and
B(e, p) ≡ (1− 2p)[(1 + p2)− 9e2] . (5.14)

The parameter x is an indicator of the ‘sharpness’ of the peak, where sharper peaks
have higher x; the parameters e and p characterize the asymmetry of the isodensity profile
(see Section 2.3). The parameter e(≥ 0) measures the ellipticity of the matter distribution
in the plane (q1, q3), while p determines the oblateness (0 ≤ p ≤ e) or the prolateness
(−e ≤ p ≤ 0) of the triaxial ellipsoid. If e = 0, then p = 0, and the ellipsoid is a sphere.
For a sphere, A(0, 0) = 0 and B(e, p) = 1.

The distribution of the peak shape parameters P(ν, x, e, p) was obtained in Bardeen
et al. (1986) and reads

P(ν, x, e, p) = P0 x
8W(e, p) exp

[
−ν

2

2 −
5
2x

2(3e2 + p2)− (x− γν)2

1(1− γ2)

]
. (5.15)

inside the allowed domain of a triangle formed by 0 ≤ e ≤ 1/4, −e ≤ p ≤ e

and 1/4 ≤ e ≤ 1/2, 3e − 1 ≤ p ≤ e, where P0 ≡ 3253/2/(2π)3R3
∗(1 − γ2)1/2 and

W(e, p) ≡ e(e2 − p2)B(e, p).

5.3 Halo Spin from Major Mergers

As first presented in Vitvitska et al. (2002), it is possible to construct a random walk model
in which halo spin is generated by the random accretion of satellites. Periods of enhanced
mass accretion tend to increase the angular momentum of halos, while a long period of
stacked accretion decrease angular momentum. This model is based on the evolution of
the angular momentum of individual halo progenitors, instead of the entire Lagrangian
volume as in TTT, and the evolution of the angular momentum of the progenitors is very
irregular, instead of the constant increase predicted by TTT.
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They do not assume correlation between the angular momenta of accreted objects, and
their position is randomly distributed in a sphere around the protohalo. Here, tidal torques
produce the random tangential velocities of merging satellites. They use the extended
Press-Schechter approximation to calculate the growth of mass, angular momentum, and
spin parameter for halos and compare with numerical simulations.

The random walk model naturally explain some features seen in N-body simulation,
such as the bumps seen in the angular momentum of the progenitors when they pass
through major mergers and the stead decline when only small satellites are accreted. It
provides a good fit to the final lognormal distribution of the spin parameter, besides
reproducing its weak dependence on mass and redshift.

Since halos which have no major mergers since z = 3 tend to have a lower spin, an
interesting claim stated there is that halos which rotate faster should host elliptical galaxies
and the ones which rotate slower should host spiral galaxies. This is because galaxy color
correlate with assembly history and recent major mergers, where elliptical galaxies form
from majors of spiral ones.

Note that, in principle, both pictures can be fitted together. An initial region
corresponding to a halo of a final higher spin when compared to a low one might both have
a higher initial misalignment between the protohalo shape and shear, as TTT predicts,
and produce a higher fraction of final bigger satellites, which turn out to be accreted by
the halo during its assemble history as predicted in the random walk model.
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PART II

Secondary Halo Spin Bias
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CHAPTER 6

Secondary Bias

It is well known that the bias of dark matter halos depends primarily on their masses
(Kaiser, 1984). However it has been detected in numerical simulations that, at fixed
halo mass, halo clustering also depends on secondary halo properties, such as age Sheth
and Tormen (1999); Gao et al. (2004), concentration (Wechsler and Tinker, 2018; Sato-
Polito et al., 2018), spin (Gao and White, 2007; Bett et al., 2007), substructure content
(Villarreal et al., 2017), etc. Since it was first detected for age and concentration, which
correlate with halo assembly history, the effect was denominated halo assembly bias at first.
Nowadays the name secondary halo bias is preferred, since for other secondary properties
the phenomenum seem to be caused by different physical mechanisms than assembly bias.

Figure 6.1: 90x90x30 Mpc slice of a cosmological simulation at z = 0. The open red circles
indicate the 5% of halos at log M = 10.8 with the highest concentration. We can see that,
for halos of this mass, more concentrated (red) halos are in more biased regions than less
concentrated (green) halos. (Li et al., 2008; Wechsler and Tinker, 2018)

Understanding these trends is of interest not only for more realistic e.g. Halo Occupation
Distribution (HOD) (Zentner, 2007; Hearin et al., 2016) and galaxy formation models
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(Wechsler and Tinker, 2018), but also because to this day we do not have neither conclusive
observational evidence neither a complete analytical framework to explain these phenomena.
Also, separating the population of cosmological tracers into subgroups, e.g. according to
their properties, can help in the extraction of cosmological parameters (Mergulhão et al.,
2021).

6.1 Measuring Secondary Bias

We use the set of high-performance routines Corrfunc developed by Sinha (2016) to
calculate the two-point correlation function in the aforementioned cosmological N-body
simulations. Equipped with these tools, we can study secondary bias by estimating the
relative bias of galaxies or halos of a given mass selected according to some secondary
property, such as spin, concentration or age.

To quantify the dependence of halo clustering on a secondary property S, the relative
bias between a subsample of halos selected according to S and all halos in the same
primary bias property (B) range can be measured by (Sato-Polito et al., 2018; Tucci et al.,
2021)

b2(r, B, S) = ξ(r, B, S)
ξ(r, B) , (6.1)

where the primary bias paramater B along this work will be Mvir and the secondary
parameters S can be λ, a1/2 or c200. This quantity therefore tell us whether a certain
subsample of halos chosen according to a secondary property S tend to be more clustered
(b2 > 1) or less clustered (b2 < 1) than the entire sample in a given mass bin. In this
work, the analysis is made for halos with the same virial mass, i.e., the same primary bias
parameter B.
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Figure 6.2: Methodology: divide each box into subboxes; divide the halos in each subbox
into mass bins; for a fixes mass bin, calculate the correlation function for the population
of 25% highest secondary parameter S (ξ+), 25% lowest (ξ−) and entire population (ξ).
Thanks to Nelson Schuback for the diagram.

Each box is divided into smaller subboxes (e.g., the box MDPL2 with box size 1.000
h−1Mpc is divided into 64 subboxes with subbox size 250 h−1Mpc - see Chapter 1), in
order to have statistics for the halo correlation function.

Each subbox is divided into mass bins (e.g., pick up the halos with mass bewteen 10.6
and 11.8 and divide them in bins with a width of 0.15). The mass range is determined
by the halo mass function of each box and by the mass cut of ∼500 particles. Since the
primary bias parameter is mass, the analysis of halo bias dependence on its secondary
properties has to be made for a fixed mass. However, in order to have a high enough
number of halos to calculate the correlation function, halos with a mass in a small mass
width are taken, small enough to don’t affect the secondary bias analysis.

In each subbox, the halos are sorted with respect to one of the secondary property
(e.g., spin) in such a way that they can be divided into 4 subpopulations, including the
25% of the halos which have the highest value of that parameter (e.g., spin) and the 25%
of those with lowest values.

The relative bias for a given secondary parameter is calculated in Eq. 6.1 by the
correlation function of the 25% highest (or lowest) subpopulation ξ(r, B, S) divided by
the correlation function obtained for the entire subpopulation ξ(r, B), thus obtaining the
secondary bias b+ = ξ+/ξ for the highest and b− = ξ−/ξ for the lowest spin quartile. A
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further average over the scales is made to obtain the value of the relative bias of each
quartile for a given mass bin. In Figure 6.3, we have averaged over the scales of 5 h−1Mpc
to 15 h−1Mpc to calculate the relative bias.
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Figure 6.3: Secondary bias for halo age, concentration and spin measured in several
MultiDark boxes and redshifts.

6.2 Interpretation of the Relative Bias

It is noteworthy that the relative bias measured here should be seen as an “effective” bias,
as it does not correspond to any particular bias parameter of the bias expansion (see
Section 2.5). Usually secondary bias are measured on highly non-linear scales, where the
bias expansion is no longer valid. Unless the measurement is performed on quasi-linear
or linear scales, secondary bias should be seen only as a difference of clustering of halo
subpopulations (of a given mass) selected according to a secondary property.

The dependence of the large-scale bias parameters as defined in the bias expansion
were measured with separate universe (SU) simulations (Wagner et al., 2015; Barreira
and Schmidt, 2017), as done in e.g. Lazeyras et al. (2017); Ramakrishnan and Paranjape
(2020). These are simulations are based on the “peak-background split” (PBS) argument
(Kaiser, 1984; Bardeen et al., 1986), which states that for halo and galaxy formation
processes a long-wavelength density perturbation acts like a local modification of the
background density, such that the expectation value of the density in such a region is given
by the average abundance of tracers in a fictitious FRW spacetime with modified physical
background density – a “separate universe”. Thus, each bias parameter can be seen as
a response to the long wavelength perturbation of its corresponding operator, and can
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be calculated by taking derivatives of the mass function in simulations with a modified
background density. We have implemented SU with Gadget-4 (Springel et al., 2021) and
we intend to use these results to investigate the dependence of b1, b2 and bK2 on halo spin
(see Section 7.2).

6.3 Assembly Bias

Perhaps the most well studied case of secondary bias is assembly bias, i.e., the secondary
dependence of halo clustering on halo assembly history. There are several quantities which
encode the history of mass accretion of halos, which usually correlate one with another.
We can define the half-mass scale a1/2, which is the time at which the halo has accreted
half of its peak mass (see Section 4.2), and say that old halos as those which accreted
most of their mass early on, i.e., those with a low a1/2. In Figure 6.3, we can see that old
halos more tightly clustered than young halos over the entire mass range, since old halos
display a higher relative bias. A crossover at the high-mass end has been discussed in
the literature (Sato-Polito et al., 2018) (i.e., an inversion of the trend where very massive
young halos turn to be more tightly clustered), but the limited quantity of massive halos
in this range does not allow for a statistically significant detection. The crossover can be
possibily detected by using different indicators of age with a fraction other than 1/2 used
in the definition of a1/2 (Chue et al., 2018).

Figure 6.4: Bias at z = 0 as a function of halo mass and formation time. Gao et al. (2005)

Since the definition of a1/2 is somehow vague and its determination in real data is
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impossible, as we do not have access to the mass history of halos and thus neither the
time at which they accreted half of their peak mass, a more convenient way to measure
assembly bias is through halo concentration, which also encodes the assembly history of
halos (see Section 4.2). We can see in Figure 6.3 that divide the concentration trend in two
regimes, at high and low masses. At high masses, low-concentrated halos have a higher
relative bias than high-concentrated halos, while the opposite is true below the crossover
mass of log(Mvir/h

−1M�) ≈ 13.0 at z = 0. Note that this is the critical mass M∗ at which
ν = δcr/σ(z = 0,M∗) = 1. The concentration trend can be measured also as a function of
ν for all redshifts, and its trend is quite similar (see Figure 6.5), as the peak height can be
seen as a measure of halo mass independent of redshift.

The reason behind these trends will be clarified in the next two sections, where we
denote “high-mass assembly bias” as the trend of the relative bias of concentration for
masses higher than the crossover mass and “low-mass assembly bias” for masses lower
than that.
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Figure 6.5: Relative bias for halo concentration as a function of ν.

6.4 High-Mass Assembly Bias

In the Peak Formalism

It was presented in Dalal et al. (2008) how high-mass assembly bias can be explained in
the peak formalism. At fixed peak height, low concentrated halos are associated with
peaks of a low curvature, and therefore of a higher bias. In the high-mass regime, the
collapse of halos is nearly spherical (Bardeen et al., 1986), so that the collapse threshold
can be well approximated by δc ≈ 1.68, which is derived from the spherical collapse model
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(Gunn and Gott, 1972). Marginalizing over the peak parameters for halos of a given mass,
we obtain that b ∼ δc/σ

2 (Press and Schechter, 1974; Cole and Kaiser, 1989). However,
halos of different curvatures s = d〈δ〉/d(logM) also have different bias.

Knowing that we can estimate the environment density δenv where halos of a given
mass live by the Taylor expansion δb = δ+ ∆(logM)× dδ/d(logM) + . . ., we can pick two
peaks with curvatures s1 and s2 and note that peak 1 of a shallower curvature (i.e., s1 > s2

and |s1| > |s2|) has a larger background density, and thus is associated to a larger bias.
The dependence of halo bias on curvature can be estimated as in Bardeen et al. (1986),

bL ≈ σ−1ν − γx
1− γ2 , (6.2)

where ν = δ/σ, x = δ/σs and γ = 〈νx〉.
At high masses, there is also a direct relation between halo curvature and mass accretion

history. In the spherical collapse picture, halos collapse when their density δ reaches δc.
Therefore, we can estimate the mass accretion history of halos by inspecting how the
smoothed overdensity 〈δ〉 varies with smoothing scale. We thus expect halo accretion rate
to be related to halo curvature as d(logM)/d(log a) = −[d(log δ)/d(log a)]−1. Since the
assembly history of halos and their concentration are correlated, we would expect that
halos with a lower concentration to be formed by shallow peaks in the initial density field,
which we just saw to be related to a higher bias. We now understand from peak arguments
why massive, low-concentrated halos have a higher bias at fixed mass. The interpretation
is that halos living in high density environments have an enhanced mass supply, such that
they grow faster than halos residing in low density environments.

In Excursion Sets

Since the peak curvature and the slope δ′ strongly correlates [or completely in the case of
a Gaussian filter (Desjacques et al., 2018)], the same conclusions can be obtained in the
excursion set formalism (Zentner, 2007; Gao et al., 2005). However, since in assembly bias
the small-scale assembly history of halos correlates with the large-scale background density,
in this we have to account for correlated random walks instead of the usual Markovian
random walks of the standard excursion-set approach (Maggiore and Riotto, 2010a). The
steeper the slope |δ′|, the lower a1/2 is, since the collapse barrier is reached relatively earlier
for halos of the same mass. Furthermore, these old, early-forming halos live in isolated
environment (underdense regions with δ′ < 0) with less mass accretion at recent times,
which leads to steeper halo profiles and higher concentration.
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6.5 Low-Mass Assembly Bias

At low-masses, insights from the halo formation picture in the initial density field are not
enough to understand the assembly bias trend, since non-linear effects turn to be more
important. For example, in Figure 6.6 we see that the trend in concentration inverts at
the characteristic mass scale (that is, the mass M∗ for which ν = δc/σ(M∗, z) = 1 at a
given redshift z).

Mansfield and Kravtsov (2020) claims that there are three main causes of low-mass
assembly bias: splashbacks, tidal fields and hot environments.
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Figure 6.6: Relative bias for halo concentration calculated in several MultiDark boxes at
z = 0.

It was shown also in Dalal et al. (2008) that splashback halos account for part of the
assembly bias signal. This was later confirmed and discussed in several works (Wang et al.,
2009; Sunayama et al., 2016; Mansfield and Kravtsov, 2020).

Splashback Halos

Splashback halos are distinct halos that were subhalos at some previous time, i.e., passed
through the virial radius of a larger halo.
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Figure 6.7: Splashback halos were previously subhalos that happen to be outside the virial
radius of their hosts.

As we saw in Section 4.2, they live in the vicinity of massive halos in the so-called
splashback radius (Wang et al., 2009; Adhikari et al., 2014). Since they still live near
to their previous, massive hosts, they have a larger bias than other halos of same mass.
Even on large scales these halos will track their previous hosts, such that they will be
more strongly clustered. They are typically low-mass “ex-subhalos” which have their mass
accretion ceased when inside their previous hosts. As a consequence, these halos are older
and more concentrated than other halos of same mass. Their different mass assembly
history combined with their higher bias leads to part of the low-mass assembly bias signal.

Tidal Forces and Hot Environments

Splashback halos alone cannot fully explain low-mass assembly bias. There is still signal
when the population is removed (Dalal et al., 2008; Sunayama et al., 2016; Mansfield and
Kravtsov, 2020) or when the halo boundary definition is changed, such that splashbacks
can lie inside the radius of larger halos (Villarreal et al., 2017).

Another effect which contributes for the low-mass assembly bias is the stalled mass
accretion of halos due to tidal forces exerted by the surrounding distribution of matter.
This can happen due to a gravitationally dominant massive halo (Hahn et al., 2009; Salcedo
et al., 2018) or the structures of the cosmic web region in which the halo is located (Musso
et al., 2018).

It could also be possible that small halos located in hot environments with deep potential
wells have smaller accretion due to the high velocities of infalling matter (Dalal et al.,
2008). Note that although tidal forces and gravitational heating usually are correlated
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effects, their cause is different, as the first arises due to large second derivatives of the
gravitational potential while the second is due to deep gravitational potentials.
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CHAPTER 7

Spin Bias

Halo spin bias refers to the secondary dependence of halo clustering on spin, a dimensionless
quantity defined in Section 4.2 which characterizes the angular momentum of halos. It was
thought that high-spin halos were more tightly clustered than low-spin halos, independently
of their mass (Gao and White, 2007; Bett et al., 2007; Faltenbacher and White, 2010;
Lacerna and Padilla, 2012; Villarreal et al., 2017; Lazeyras et al., 2017; Salcedo et al., 2018).
However, the research project carried out by Gabriela Sato-Polito, a former student of our
group, together with Dr. Antonio Montero-Dorta and Prof. Raul Abramo (Sato-Polito
et al., 2018), revealed that this is not the complete picture. They were the first in the
literature to show the “low-mass spin bias inversion”, i.e., the fact that the spin bias trend
inverts at low masses.

Figure 7.1: Relative spin bias measure with MultiDark boxes at z=0. Red (blue) tones
correspond to 25% highest (lowest) spin halos.

77



In Figure 7.1, we can see this particular shape of the relative bias measured for halo
spin in 5 different MultiDark simulations at z = 0 (see Section 6.1): at fixed halo mass,
high-spin halos are more tightly clustered than low-spin halos, while the opposite is
true at the very low-mass end. The inversion was not detected before Sato-Polito et al.
(2018) in the literature as the simulations used there did not have enough resolution to
probe spin bias at such low masses. This feature was only possible to be detected with
the advent of the high-resolution simulation SMDPL (see Section 4.1), which allowed
Sato-Polito et al. (2018) to investigate the clustering of halos below the “mass of crossover”
log(Mc/h

−1M�) ' 11.5. In Figure 7.1, we further confirmed and extended this analysis
with VSMDPL to even lower halo masses. A later work (Johnson et al., 2019) that was
done comparing the MultiDark results with 2 other high-resolution simulations (Vishnu
and Consuelo) showed the same “spin crossover” at low masses (also for z = 0).

Most of the attempts to provide a plausible explanation for the origins of spin bias have
focused on the high-mass end (i.e., above the spin crossover). In this context, Salcedo et al.
(2018) showed little correlation between spin bias and the proximity to a significantly more
massive halo, which seems to discard the massive-neighbour theory. Lacerna and Padilla
(2012), on the other hand, attributed the high bias of high-spin halos to their location in
the cosmic web, as material from filaments accreted by massive halos (predominantly in
high-density environments) can increase the halos’ angular momenta. Johnson et al. (2019),
introduces the notion of “twin” bias, a tweak to the massive-companion argument by which
high-spin halos are slightly more likely to be found near other halos of comparable mass.
Johnson et al. (2019), who actually address the entire mass range, further suggests that
spin bias could in fact be described by a combination of twin bias and the contribution of
other residual secondary dependencies.

The Lacerna and Padilla (2012) theory for the origin of spin bias at the high mass
end is that highly biased halos are located in filaments, so that the accretion of matter in
preferential directions spins up the halos. However, when Johnson et al. (2019) measure
the local anisotropy of halos, defined upon the eigenvalues of the inertia tensor inside
a neighbour radius, they find no correlation with halo spin. This seems to contradict
Lacerna and Padilla (2012) theory, since halos located in filaments are known to have high
anisotropy values when calculated in similar scales to the neighbour radius.

All the above works provide interesting information about spin bias, but a definite
explanation for spin bias is yet to be established. The purposes of our work is precisely to
provide a full and consistent picture for halo spin bias.

78



7.1 The origins of Low-Mass Spin Bias

Given that Sato-Polito et al. (2018) was the first work to show the low mass spin bias
signal, confirmed later by Johnson et al. (2019), before the beginning of this research
project there was no previous explanation in the literature for the origins of the low-mass
spin bias signal. Sato-Polito et al. (2018) only characterizes the effect, while Johnson et al.
(2019) proposes the twin bias mechanism to account for spin bias in the entire mass range,
and it fails to account for the low-mass signal.

In Tucci et al. (2021), we explained the physical mechanism behind spin bias for
low-mass halos. We showed that the low-mass spin bias inversion (the fact that, at fixed
halo mass, low spin halos are more tightly clustered than high spin halos, while the opposite
is true at the high-mass end) is completely caused by the population of typically low-mass
splashback halos.

Splashback Halos

As we already saw in Section 4.2, splashback halos are distinct halos that were subhalos
at some previous time and live in the so-called splashback radius. Since they live in the
vicinity of their previous, massive hosts, they have a larger bias than other halos of similar
mass. As we discussed in Section 6.5, it is well known that splashback halos are responsible
for part of the low mass secondary bias seen in concentration and age.
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Figure 7.2: Relative spin bias measured in different MultiDark boxes and redshifts.
The upper panel displays the results with all the halos, while the lower one shows the
measurement after the removal of splashback halos. Dashed lines indicate the results with
splashbacks.

In MultiDark, we identified splashback halos with the redshift of last accretion zfirstacc

given by ROCKSTAR, which is higher than the analyzed redshift if the halo has ever passed
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through the virial radius of a larger halo (zfirstacc > z). The halos presenting this feature
and which are also distinct halos (pid=1), i.e., those which do not lie inside the virial
radius of a larger halo in the analyzed redshift, are thus identified as splashback halos.
Even composing only a small percentage of the total population (see Figure 7.3), when
this subpopulation is removed and the spin bias is analyzed, the crossover at low masses
disappears and there is no significant spin bias signal (Figure 7.2).
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Figure 7.3: At z = 0.0, percentage of splashback halos in each mass bin (all halos); inside
each mass bin, percentage of splashback halos in the low spin quartile (λ−: 25% lower spin
halos) and in the high spin quartile (λ+: 25% higher spin halos). (Tucci et al., 2021)

Indeed, the spin bias at low masses without the subpopulation of splashback halos is
statistically null for the entire low mass range. In order to prove that they are responsible
for the spin bias signal, we have to understand how they are connected with halo spin
and the large scale environment. As a first step, we characterized the subpopulation of
splashback halos. The following facts contribute for the idea that splashback halos are
indeed responsible for the low mass spin bias.

As Figure 7.2 displays, spin bias at low masses is a recent phenomenon which becomes
important only at low masses, low redshifts and specific of low spin halos. Figure 7.3
shows that splashback halos are only a considerable part of the population of halos at low
masses, low redshifts and they are significantly more present in the population of low spin
halos.

Since splashbacks naturally have a higher bias than other halos of same mass, it is the
unbalance between the fraction of splashbacks present in the spin quartiles that causes
the low-mass inversion. The larger fraction of splashbacks in the low-spin quartile causes
it to have a larger bias than the high-spin one, and when this specific population of halos
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is removed, there is no more difference of clustering between the spin quartiles. The
physical mechanism responsible for the low spin of splashbacks will be discussed in the
next subsections.

Our results unveil a specific link between spin bias and assembly bias, since splashback
halos have been shown to account for some part of the assembly bias signal at the low-mass
end. However, their impact on spin bias is far more severe, since the signal completely
vanishes after their removal (see Figure 7.4).
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Figure 7.4: The effect of splashback halos on spin bias and assembly bias (i.e., the secondary
bias for halo concentration and age) at z = 0 in VSMDPL, SMDPL, and MDPL2. Solid
(dashed) lines display the relative bias measured by including (removing) splashback halos.
(Tucci et al., 2021)

Consistency checks

We can see in Figure 7.5 that the fact that the spin bias signal disappears without
splashback halos is not an artifact related to the amount of halos which are taken out of
the sample. If we randomly remove the same amount of halos in each mass bin, the trend
remains roughly the same as the spin bias measure with the entire population.
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Figure 7.5: Relative spin bias measured in SMDPL at z = 0. Left: The same amount of
splashback halos in each mass bin is randomly removed. Right: Reference plot with all
the halos.
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Figure 7.6: Spin distributions over the MultiDark boxes used. Upper left: For halos of
all masses (no threshold). Upper right: 500 particle threshold used in the paper. Bottom
left: 250 particle threshold for comparison with the 500 particle threshold employed in the
analysis. Bottom right: 750 particle threshold also for comparison.

We have tested the consistency of spin distributions at a given mass across different
boxes/particle resolutions. The normalized histograms for VSMDPL, SMDPL, and MDPL2
are shown in Figure 7.6 for different mass cut resolutions. In this work, we use the 500
particle threshold, for which the spin distribution is consistent across the different boxes.
Also, the distributions are consistent for different particle resolutions (250 and 750 particle
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thresholds). We show in Figure 7.7 the mean and standard deviation of spin as a function
of mass. The 500 particle threshold guarantee a consistent spin distribution across the
mass range analysed in this work.
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Figure 7.7: Mean and standard deviation of spin in the MultiDark boxes used. Dashed
lines show different particle resolution thresholds.

We have tested defining the spin quartiles and then removing splashback halos, instead
of removing the splashbacks before separating the population in quartiles. The results
are displayed in Figure 7.8 and we notice that they are very similar when defining the
quartiles before or after the removal of splashback halos. The high spin quartile only
“absorbs” ∼ 5% of the lower spin halos.
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Figure 7.8: Spin bias at z = 0. Left: The low and high spin quartiles are defined after all
splashback halos being removed from the sample. Right: Spin quartiles are defined before
the removal of all splashback halos.

We have further investigated the effect of splashback halos in Uchuu (see Section 4.1).
Since the halo catalogs are also produced with ROCKSTAR, the splashbacks are also identified
as distinct halos with zfirstacc > z. As Figure 7.9 shows, in Uchuu the inversion at low

83



masses also vanishes after the removal of splashbacks. We can also see the splashback
effect as a function of scale. As in the case of assembly bias (Sunayama et al., 2016), their
effect is larger on small scales.

Figure 7.9: Ratio between the relative bias of the 25% highest and lowest spin
subpopulations minus one in each mass and radial bin calculated in Uchuu at z = 0. Left:
with splashback halos, the inversion is present at low masses. Right: without splashback
halos, the inversion disappears.

Major Mergers

What remains to be understood is the reason why splashbacks have a lower spin than
other halos of the same mass. In principle, this fact could be explained by the picture
presented in Vitvitska et al. (2002) (see Section 5.3), where the low spin of halos is caused
by periods of slow mass accretion. Therefore, in principle, splashback halos could have a
lower spin due to a lack of recent major mergers. However, we see in Figure 7.10 that they
do not differ from the mean population in the fraction of recent major mergers, suggesting
that this may not be the origin of their lower spin when compared to other halos of same
mass.
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Figure 7.10: Percentage of non-splashback and splashback halos which have undergone a
recent major merger (z < 3) in each mass bin in SMDPL at z = 0.

Tidal Stripping

A very important feature of splashback halos is that have a very particular mass assembly
history, the reason why they are one of the causes of low-mass assembly bias (see Section 6.5).
Tidal stripping is a dynamical process which takes place due to tidal interactions with
a more massive halo and results in mass and spin loss (Lee et al., 2018). Of course,
subhalos and splashback halos are expected to suffer from intense tidal stripping with
their (previous) host.
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Figure 7.11: Left: Spin history for splashback and not splashback halos of
log(Mvir/h

−1M�) = 10.0 at VSMDPL and z = 0. Right: Mass history for splashback, not
splashback halos and subhalos of log(Mvir/h

−1M�) = 10.0 at VSMDPL and z = 0.

We see in Figure 7.11 that low mass, low spin halos at z = 0 had their spin and mass
decreased with time, what suggests that there is a dynamical process responsible for it.
Also, splashback halos of a lower spin at z = 0 lost more spin, while the spin of high spin
halos didn’t evolve with time, indicating that this dynamical mechanism lowers their spin.
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We also see in this figure that splashback halos (and subhalos) loose mass with time, the
effect behind more pronounced for the low spin ones. All these facts contribute to the
tidal stripping mechanism, which is a dynamical processes that has as consequences mass
and spin loss. It is more intense in high dense regions and affects at most low-mass halos.
Therefore splashback halos are be more subjected by it than other halos of similar mass
due to intense tidal forces from the previous host halo, not only during the subhalo epoch
but also when still orbiting the previous host.

In MultiDark we have access to the tidal force felt by each halo, defined as the ratio
Rvir/RHill, where RHill is the “Hill radius”, which can be expressed as

RHill ' d
(
m

3M

)1/3
(7.1)

and represents the sphere of influence of a halo. In essence, in the restricted three-body
problem, consisting of a body of mass M at a distance d from a smaller body of mass
m�M , a third body of negligible mass can have stable circular orbits around the smaller
mass m only within the Hill radius. However, halos in general do not follow circular orbits
around each other and it only considers the strongest tidal force from any nearby halo.
For splashbacks and subhalos their (previous) host halo is in general the most tidally
influential nearby halo. A halo is prone to be subject to significant tidal stripping when
the tidal force is typically greater than one (Hahn et al., 2009).
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Figure 7.12: Left: Tidal force averaged over past dynamical time at VSMDPL and z = 0.
Right: Same but dividing splashback halos and subhalos into spin quartiles.

We see in Figure 7.12 that splashback halos (and subhalos) have suffered more tidal
forces during their past dynamical time than not splashback halos, and also that the low
spin subpopulations felt even higher ones, what also contributes to the tidal stripping
picture. Subhalos feel the most intense tidal forces due to the distribution of dark matter
particles from the host halo around it. Splashbacks then were subject to these very intense
tidal forces during their subhalo epoch, and most of them are still subject to tidal forces
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from their previous host when living near it (see the diagram in Figure 7.13).

Figure 7.13: Diagram of how splashback halos lose spin due to tidal stripping during the
subhalo epoch. Made by Antonio Montero-Dorta.

We conclude here then that splashback halos account for the low-mass spin bias
inversion. They have a higher bias due to the proximity to a massive neighbour and a
lower spin due to the tidal stripping mechanism (Tucci et al., 2021). After elucidating the
inversion and clarifying what seemed to be a complex scenario, our task is now to develop
an explanation for the origins of the intrinsic spin bias, i.e., the trend of a higher bias for
high-spin halos that remains after the removal of splashbacks at high-masses.

7.2 What are the origins of High-Mass Spin Bias?

Some clues

Our measurements displayed here so far, such as in Figure 7.1, do not concern the
dependence of the strict bias parameters on spin. However, if we are going to develop
a model for spin bias, we should be able to reproduce the dependence of the strict bias
parameters on mass and spin, e.g., b1(m,λ), and then test it against simulations. In
Lazeyras et al. (2021), it has been measured with forward model techniques how the
bias parameters b1, b2 and bK2 vary with respect to the spin parameter, as we can see in
Figure 7.14. For a fixed mass, b1 seems to have a linear dependence on spin, while b2 has
a quadratic one. It is very hard to interpret the bK2 dependence, but we will try to give a
simple reasoning here.

It is well known that the relation bK2(b1) is monotonically decreasing and has negative
values for massive halos (Lazeyras and Schmidt, 2018), as the more massive the halo (those
with higher b1), the more unlikely it is to be found in a high-K2 region. This is because a
higher shear field tends to slow down the formation of halos.
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According to TTT, halos with a higher spin are more likely to be formed in regions
with a higher initial shear (and hence K2). Actually, as we know halo spin is proportional
to the misalignment between the shape and tidal tensors, but it is also proportional to the
shear magnitude. For the highest mass bin it is much more unlikely for a halo of low-spin
to be found in a high-K2 region, which seems to be consistent with the TTT picture.

Figure 7.14: Large-scale bias parameters b1, b2 and bK2 as a function of halo spin for three
different mass bins (Lazeyras et al., 2021).

Our Hypothesis

As we saw in Chapter 3, in the ESP scenario we have the variables the density δ and the
curvature x, where δ is constrained by the barrier B. A first approach would be to relate
spin to curvature, which is known to be related to the large-scale density and thus to bias.
This will be our “curvature” hypothesis. Another possibility is to relate the barrier to
spin, and then derive a dependence of bias on spin. We will denote this hypothesis as the
“barrier” one.

Can we use TTT to better understand spin bias? In Figure 7.2, we can note that
high-mass spin bias is an effect which already manifests itself at z = 1.5 (a = 0.4), where
TTT is still a good prediction for the evolution of the angular momentum of massive halos,
as we can see in Figure 5.3. Therefore, in both hypothesis we will use the TTT framework
to predict halo angular momentum.

We will be trying to investigate whether the bias dependence on spin at the high-mass
end come from the relation between curvature and spin or from the relation between the
barrier and spin during the next sections (and months, as we have not reached a conclusion
yet).
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Curvature

Inspired by Dalal et al. (2008), where high-mass assembly bias was explained by the peak
curvature of halos (see Section 6.4), which is related to the mass accretion rate and thus
provides a connection between halo concentration and bias. Here, we can try to use the
same line of reasoning, since TTT in the peak formalism (see Section 5.2) gives us the
relation between halo angular momentum and peak curvature,

` ≡ 96π√
153

(1− γ2)1/2
(
ν

γ x

)5/2 A(e, p)1/2

B(e, p)3/2 , (7.2)

which we display here again for simplicity. As we can see, angular momentum is inversely
proportional to the curvature x, which reflects the “sharpness” of the peak: the higher is
x, the sharper is the peak (see Section 2.3).

The idea is then similar to assembly bias, where halos of a higher spin are formed by
shallower peaks, and thus inherit a larger bias than other halos of same mass. In this
sense, both trends (at least at high-masses) would arise due to the same mechanism, which
is the relation to different peak curvatures of the initial density field.

Figure 7.15: Halos of same height formed by shallower peaks (thus inheriting a higher
bias) are associated with a high angular momentum.

Barrier

In the ESPτ model proposed by Castorina et al. (2016), the barrier for gravitational
collapse of halos is modelled to depend on τ , which in turn depends on the misalignment
between the inertia and shear tensors (see Section 3.6). Halo spin is also known to depend
on such misalignment, as predicted by TTT (see Section 5.1). Therefore, in principle,
we could relate halo spin to τ . In Castorina et al. (2016), they integrate the halo mass
function obtained by the barrier over τ in order to provide a prediction for the number of
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halos of a given mass m. Here, we could refrain from performing the integral and derive
a mass function which depends both on halo mass and spin, and with that provide a
prediction for spin bias in the form of b(m,λ).

The interpretation here would be that halos of a higher spin form in regions where the
shear is higher. As shear tends to slow down the formation of halos, these have to struggle
more to form and thus to be in a higher density region, what in turn is the reason why
they have a higher bias.

Tests in simulations

We can test our two hypothesis by first dividing the halos into high-spin and low-spin
quartiles at z = 0. Then, we take the ID of the dark-matter particles contained in each
halo and trace them back to the initial conditions by performing a matching. The value of
a certain field f associated to a halo with Nk particles of position qi ∈ LK (Lagrangian
space) is defined as

〈f〉 = 1
Nk

∑
qi∈LK

f(q) , (7.3)

where then we can calculate interesting quantities such as the initial smoothed density
and peak curvature for a given protohalo. The value of f(q) can be determined by making
a density grid, calculating the field in Fourier space (where derivatives are more easily
calculated) and Fourier transforming back to the grid (see Section 2.3).

Some interesting, useful tests we are doing are the relation between the initial peak
curvature and the misalignment between the initial shape and shear tensors (i.e., the
prediction given by TTT for halo angular momentum, whose validity is also going to be
tested), the relation between τ and angular momentum, and how the scatter of the initial
smoothed density at fixed halo mass correlates with τ and the final spin.

7.3 Observing Spin Bias

There is a great debate on the literature about finding conclusive evidences for secondary
bias in real data (Montero-Dorta et al., 2017). While most the attempts have focused on
observational signatures of assembly bias, in a recent publication Montero-Dorta et al.
(2021) we have proposed a new way of observing halo spin bias. We have analyzed in
IllustrisTNG300 how the kinetic Sunyaev-Zel’dovich effect (kSZ) can be used as a proxy
for halo spin, while the thermal Sunyaev-Zel’dovich effect (tSZ) traces halo mass.
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Figure 7.16: Gas temperature of a single halo of log(Mvir/h
−1M�) = 12.83 in Illustris

TNG100. The coordinates are with respect to the halo center.

The Sunyaev-Zel’dovich effects (Sunyaev and Zeldovich, 1970, 1980b,a) happen due
to the inverse Tompson scattering of photons when interact with the electrons of galaxy
clusters, causing anisotropies in the CMB fluctuations. In the tSZ, the scattering takes
place due to the thermal, random motion of the electrons inside the cluster, such that the
temperature of the photons will depend on the number density of electrons along the line
of sight, which is proportional to the total gas mass in the halo and as a consequence to
halo mass as well.

The kSZ in turn reflects the rotation of the gas, since it is sensitive to the dot product
between the velocity of electrons and the line of sight. As a consequence, the effect is
maximum when the rotational axis of the halo is perpendicular to the line of sight, where
in one hemisphere will have most of the electrons “entering the plane” and in the other
they will be “exiting the plane”. This produces a dipole pattern in the gas temperature due
to its coherent rotation inside the cluster (see Figure 7.16), which is known to correlate
with the angular momentum of the host halo and thus represents a proxy for halo spin. Of
course, there is also a huge amount of turbulent motion of the electrons, and the rotation
axis of the halo will not always be perpendicular to the line of sight. However, the gas
rotation will usually be expected to generate a dipole signal in its temperature.
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Given that halo spin bias is the relative clustering of halos selected according to spin
at fixed halo mass, we compare this signal with the relative clustering of halos selected
according to kSZ at fixed tSZ, as shown in Figure 7.17. Since we recover a very similar
trend, this represents an alternative route of measuring secondary bias in real data.

Figure 7.17: (Left): Relative bias of subsets of kSZ (tracing halo spin) as a function
of halo mass. We see that the signal is very similar to the halo spin bias measured in
IllustrisTNG300 and MultiDark. (Right): Same but as a function of tSZ (tracing halo
mass). Montero-Dorta et al. (2021)
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