
Universidade de São Paulo

Instituto de F́ısica

Aspectos de complexidade em teoria quântica de campos e

holografia

Felipe Soares Sá

Orientador: Prof. Dr. Diego Trancanelli

Tese de doutorado apresentada ao Insti-

tuto de F́ısica como requisito parcial para a

obtenção do t́ıtulo de Doutor em Ciências.

Banca Examinadora:

Prof(a). Dr(a). Diego Trancanelli (IFUSP)

Prof(a). Dr(a). Victor de Oliveira Rivelles (IFUSP)

Prof(a). Dr(a). Bertha Maŕıa Cuadros Melgar (EEL USP)

Prof(a). Dr(a). Dmitry Melnikov (UFRN)

Prof(a). Dr(a). Alberto Tomas Faraggi Ugalde (UNAB - Chile)

São Paulo

2023

FICHA CATALOGRÁFICA
Preparada pelo Serviço de Biblioteca e Informação
do Instituto de Física da Universidade de São Paulo

 Sá, Felipe Soares

 Aspectos de complexidade em holografia. São Paulo, 2022.

 Tese (Doutorado) – Universidade de São Paulo. Instituto de Física. Depto.
de Física Matemática.

 Orientador: Prof. Dr. Diego Trancanelli

 Área de Concentração: Física de Alta Energia

 Unitermos: 1. Complexidade; 2. Holografia; 3. Transição de Fase.

USP/IF/SBI-83/2022

University of São Paulo

Institute of Physics

Aspects of complexity in quantum field theory and holography

Felipe Soares Sá

Supervisor: Prof. Dr. Diego Trancanelli

Thesis submitted to the Physics Institute of

the University of São Paulo in partial fulfill-

ment of the requirements for the degree of

Doctor of Science.

Examining Committee:

Prof(a). Dr(a). Diego Trancanelli (IFUSP)

Prof(a). Dr(a). Victor de Oliveira Rivelles (IFUSP)

Prof(a). Dr(a). Bertha Maŕıa Cuadros Melgar (EEL USP)

Prof(a). Dr(a). Dmitry Melnikov (UFRN)

Prof(a). Dr(a). Alberto Tomas Faraggi Ugalde (UNAB - Chile)

São Paulo

2023

Acknowledgements

First of all, I would like to thank my family for all the support during these years

and my dear girlfriend Simone that is always at my side, specially during the di�cult

pandemic times. I also need to thank Prof. Dr. Diego Trancanelli for advising me

during my Ph.D. and my research partners and friends Viktor Jahnke and Marcos Cezar

Ribeiro. I also need to say thank you to my great friends Carlos Vargas, Marcia Tenser

and Gabriel Nagaoka for all these years of friendship, learning and support, and to my

dear friend Daniel Teixeira that was a kind of second supervisor during all these years.

Lastly, I am grateful to CNPq for the scholarship, without it this thesis would not exist.

Abstract

Complexity began to receive a lot of attention in high energy physics in the

middle of the first decade of the XXI century, in the context of the study of black holes in

AdS/CFT. The concept comes from computer science, where it emerged due to the need

to classify which types of computational problems are feasible or not to be solved by a

computer. Such a classification results in complexity classes.

Since its incorporation into physics, complexity has been studied from di↵erent

angles. A possible path is the study of complexity from the point of view of holography.

In this context, the growth of complexity in the CFT at the boundary is related to the

growth of the interior of the AdS dual black hole in the interior. This relationship is based

on the conjectures Complexity = Volume (CV) and Complexity = Action (CA).

A second path is the study of complexity in quantum systems, whether continuous

or discrete. One can associate the idea that di↵erent states (or operators) of a quantum

system have di↵erent complexities associated with them, that is, one can estimate the

computational cost for the system to be in a given state. We also can think of complexity

as a quantity which is sensitive to changes in system parameters. As a consequence,

there is the possibility that complexity provides information about important properties

of the system, for example, if it presents a chaotic behavior or if a given parameter change

generates a phase transition.

Key-words: Complexity, Holography, Phase Transition.

Resumo

Complexidade começou a receber bastante destaque na F́ısica de altas energias

em meados da primeira década do século XXI no contexto do estudo de buracos negros

em AdS/CFT. O conceito vem da ciência da computação, onde surgiu por conta da

necessidade de se classificar quais tipos de problemas computacionais são fact́ıveis de

serem resolvidos por um computador ou não. Tal classificação é chamada de classes de

complexidade.

Desde sua incorporação à F́ısica, a Complexidade vem sendo estudada por di-

versos ângulos. Um caminho posśıvel é o estudo da Complexidade do ponto de vista de

holografia. Neste contexto, o crescimento da Complexidade na CFT da borda se relaciona

com crescimento do interior do buraco negro AdS dual no interior. Tal relação se dá a

partir das conjecturas Complexidade = Volume (CV) e Complexidade = Ação (CA).

Um segundo caminho é o do estudo da Complexidade em sistemas quânticos,

sejam eles cont́ınuos ou discretos. Pode-se associar a ideia de que diferentes estados

(ou operadores) de um sistema quântico possuem diferentes complexidades associadas

a eles, ou seja, pode-se então estimar o custo computacional para que o sistema esteja

num dado estado e também temos agora a Complexidade como uma quantidade senśıvel

a mudança de parâmetros do sistema. Como consequência, existe a possibilidade de

que a Complexidade forneça informações sobre propriedades importantes do sistema, por

exemplo, se este apresenta um comportamento caótico ou se uma dada alteração dos

parâmetros geram uma transição de fase.

Palavras-chave: Complexidade, Holografia, Transição de Fase.

Contents

1 Introduction 5

2 Complexity in computer science 9

2.1 Types of computational problems . 11

2.2 Computational resources . 12

2.3 Computational complexity . 15

2.4 Decision problems: P vs NP . 18

3 Holographic complexity 23

3.1 Complexity = Action conjecture . 25

3.2 MT model . 32

3.2.1 Solution order a2 . 33

3.2.2 Late time behaviour . 33

4 Complexity in quantum many-body systems 35

4.1 Complexity of states . 36

4.1.1 General properties for complexity of states 37

4.2 Complexity: Fubini-Study metric . 39

4.2.1 TFD state for scalar field theory . 40

4.2.2 The operator space . 44

4.2.3 Computing the complexity . 48

4.3 Nielsen’s approach . 50

4.3.1 Free fermions in 1+1 . 51

4.3.2 Coupled fermionic oscillators . 53

4.4 Complexity of operators . 59

4.4.1 Complexity and geodesics on the operator space 63

4.4.2 Analytical case for one qubit . 64

4.4.3 The linear geodesic . 67

4.5 Conjugate Points . 68

4.5.1 Solution of the Jacobi equations . 69

4.5.2 Conjugate time . 70

2

4.5.3 Bi-invariant case . 71

4.5.4 Perturbative case . 72

4.6 Complexity of operators and Phase Transitions 73

4.6.1 XX-Model . 74

4.6.2 Numerical analysis . 76

Final remarks 80

Chapter 1

Introduction

The most concrete realization of the holographic principle [1, 2] we have today

is the so-called AdS/CFT correspondence (or gauge/gravity duality), which was proposed

by Juan Maldacena in 1997 [3]. The main statement of the correspondence is that cer-

tain conformal field theories (CFTs) are equivalent to gravitational theories defined in a

higher-dimensional curved geometry, the Anti-de Sitter (AdS) spacetime. The quantum

field theory (QFT) degrees of freedom live in the asymptotic boundary of AdS, while

the gravitational ones live in the interior, or bulk, of the space. Typically, both theories

involved in the AdS/CFT correspondence display additional symmetries, such as super-

symmetry, and their duality is characterized by matching observables computed on the

two sides. The canonical example of the AdS/CFT correspondence is the duality between

N = 4 Super Yang-Mills (SYM) theory, the maximally superconformal quantum field the-

ory in 3 + 1 dimensions with gauge symmetry SU (N), and type IIB superstring theory

on AdS5 ⇥ S5.

Arguably, the most interesting aspect of the AdS/CFT correspondence is its being

an example of a weak/strong duality, meaning that the perturbative regime of one theory

is mapped by the duality to the non-perturbative regime of the dual, and vice-versa. This

opens up a particularly useful approach to physical processes that are hard to calculate

in one formulation, but easier to obtain in the other one. Specifically, the AdS/CFT

correspondence maps the strongly coupled regime of planar N = 4 SYM theory to weakly

coupled type IIB supergravity. This fact, plus the large amount of symmetries, makes it

amenable to analytic computations.

The breakthrough provided by the AdS/CFT correspondence initiated a revo-

lution in theoretical physics, that has involved several areas of research, from nuclear

physics and the study of strongly coupled plasmas to condensed matter theory and the

study of, for example, high temperature super-conductors. Moreover, the existence of the

AdS/CFT correspondence provided an alternative way to study entanglement, a property

of quantum systems which is not present in classical ones. The classical world does not

accommodate the fact that it is possible to separate two non-interacting systems in such

5

way that they are not causally related anymore, but remain correlated, meaning that

knowledge of one of the parts also implies knowledge about the other. This “peculiar”

feature of the quantum world has been a source of great theoretical interest. The initial

debate about the implications of such feature gave rise to the so-called Einstein-Podolsky-

Rosen (EPR) paradox [4], paving the foundations for further investigations in subsequent

years. With John Bell’s work [5], the apparent paradox generated by the existence of

entanglement was solved, improving the understanding of quantum correlations and their

physical implications. Currently, the presence of entanglement as a real feature of quan-

tum systems is not only natural, but central for the development of quantum optical and

quantum computational applications, for instance.

It is easier to define and analyze quantum entanglement in simple cases involving

a few number of qubits. Given a general bipartite system, the standard measure of quan-

tum entanglement between two subsystems is called entanglement entropy (EE). Such

quantity can be easily computed for a system of two qubits (Bell’s pair), for instance,

however its calculation can be rather involved for a many-body or a continuous system.

In order to compute the EE for a QFT, e.g. for its ground state, some sort of sophisticated

mathematical technique, such as the replica trick [6], is usually required. This scenario

improved after the celebrated proposal by Shinsei Ryu and Tadashi Takayanagi of an

holographic alternative to compute the entanglement entropy [7, 8]. The so-called holo-

graphic entanglement entropy proposal claims that the entanglement entropy associated

with a spatial region in a QFT is given by the area of a particular extremal surface in the

holographic dual geometry. The Ryu-Takayanagi proposal motivated Juan Maldacena and

Leonard Susskind to purpose a conjecture which claims that ”ER = EPR” [9]. In this con-

jecture, ER refers to a geometric construction named Einstein-Rosen bridge (ERB) which

is a solution of the Einstein’s equations, while EPR refers to the Einstein-Podolsky-Rosen

experiment. The core of this conjecture is the holographic duality between entanglement

in the boundary CFT and the wormhole geometry in the AdS bulk.

The fact that entanglement, which is a quantity very useful in quantum infor-

mation, has acquired some relevance in the understanding of the structure of space-time,

inspired the idea that further concepts from quantum information could be in some way

useful to the comprehension of open problems in gravity as well. One example of such

tools is the so-called computational complexity. In few words, computational complexity

is a quantity that measures how di�cult it is to implement a task. Problems or operations

in quantum/classical computation can be classified as easy or hard according to the time

that they require to be solved or implemented, which is equivalent to create complexity

classes according to the necessary time required to accomplish such tasks [10].

Computational complexity became useful in high energy physics in the context

of holography. It was pointed out by Susskind [11, 12] that a candidate for a complexity

quantity from the boundary QFT perspective must describe the growth of an ERB at the

6

dual bulk side. On the one hand, classically, the ERB increases its volume indefinitely.

In parallel, a black hole comes to thermal equilibrium really fast, a statement reflected in

their saturation of the chaos bound [13], which supports the conjecture that they are in

fact the fastest scramblers in nature [14]. This should hold for the dual boundary theory as

well. On the other hand, all the time evolution seems to stops after a scrambling time t⇤.

These facts lead us to a question: is there any quantity in the dual boundary theory that

can represent the boundless growth of the ERB? The answer is that the corresponding

quantum state describing the ERB does not stop to evolve, which implies that its com-

putational complexity will also keep evolving after the scrambling time. Summarizing,

computational complexity is the candidate for a dual quantity that describes the growth

of an ERB.

The first concrete association between complexity and some bulk geometrical

quantity was the so-called Complexity=Volume (CV) conjecture [15, 16]. Such conjecture

provided a relation between the complexity of the boundary state and the volume of a

specific codimension-one Cauchy surface in the bulk. In a second moment, inspired by

CV, it was conjectured in [17, 18] that the computational complexity is related to the

classical bulk action computed over a region called Wheeler-DeWitt (WDW) patch. The

so called Complexity=Action (CA) conjecture can be considered as an improved version

of the CV conjecture.

An interesting fact about holographic complexity is that the computations on the

bulk side were performed first. This is in the opposite direction of the holographic entan-

glement entropy version, for example. The entanglement entropy was a well-established

concept in physics long before its holographic formulation by Ryu and Takayanagi. Con-

sequently, the understanding of how to compute complexity in the QFT side became

relevant. Following the seminal works on complexity in the context of quantum computa-

tion by Nielsen [19, 20, 21], the discussion about the corresponding formulation in QFT,

motivated by the holographic complexity, started in [22]. Posteriorly, in [23], Nielsen’s

work was extended for continuous systems, particularly QFTs. This paper was a re-

markable work in the area, providing the basis for future developments on the subject

[24, 25, 26].

From the QFT side, it is possible to make a distinction between two types of

complexity: complexity of states and complexity of operators. The complexity of states

is associated to a defined target state that was obtained from a reference state by the

action of a unitary operator. Here, these two states are the most important pieces of

information, which makes this type of definition suitable to problems where a specific

quantum state is being studied or has some centrality. On the other hand, the complexity

of operators cares more with how a certain operator evolves from the identity by changing

some parameter. Specifically, the time evolution operator is usually studied in this context

since it provides us with two important pieces of information: the Hamiltonian and the

7

time evolution itself. In this sense, the complexity of operators works well for problems

where the Hamiltonian is the main piece of information, instead of a specific quantum

state.

This thesis is organized as follows. In Chapter 2, we are going to provide an

overview about complexity in computer science, focusing on the classes of computational

problem and their asymptotic behavior as well. In Chapter 3, the focus will be on holo-

graphic complexity, more specifically in the CA conjecture. We are going to consider the

complexity for the Mateos-Trancanelli (MT) model, which is a solution of type IIB su-

pergravity dual to a spatially anisotropic finite-temperature N = 4 SYM plasma. Then,

in Chapter 4, we will approach complexity in the context of QFTs, with emphasis on

the complexity of the thermofield double (TFD) state for a charged scalar field theory.

Additionally, the complexity of states for a chain of coupled fermionic oscillators will be

considered as a second example. Lastly, the complexity of operators will be explained

with the intention of studying bosonic or fermionic models that presents quantum phase

transitions.

8

Chapter 2

Complexity in computer science

Computational complexity was already of interest to computer scientists in the

early 1960’s, prior to its relevance to the high energy community. We could say that

computational complexity was born at that time [27]. Just to put things in perspective,

Turing developed his theoretical computational model in 1936: the Turing Machine [28].

Since its idealization, the Turing machine proved to be the right theoretical model for com-

putation. However, it fails to account the amount of computational resources, e.g. time

or memory, needed by a computer to perform some task, a limitation that computational

complexity theory was developed to overcome.

In this discussion about complexity in computer science, we are going to follow

closely the discussion developed in the Nielsen & Chuang book [29], which is a standard

reference for quantum computing. First of all, we need to think about the following

relevant question: What is a computational problem? In order to handle this question,

let us start with some crucial concepts. Whatever computation we are interested in, this is

essentially made of three elements. The first one is named input, which is the information

that needs to be provided for the computer so it can perform the desired computation.

A simple example of an input is a list with two numbers. The second element is named

output, which will be the result of the computation. In general, one does not want to

be completely ignorant about the result of a computation. We may not be fully able to

predict the result of the computation, however, it is desirable to know at least the data

type of the output. For example, imagine that we want a specific name from a phone

book and we ask a computer to search this specific name in a list for us. In this case,

we expect the output to be the desired name or some message like ”This name cannot be

found”. However, we do not expect a number as an output. Finally, the third element

is named algorithm, which is the logical sequence that our computer will follow in order

to obtain the output from the initial information provided by the input. These three

elements together constitute a computational problem.

Without loss of generality, an input x is given by a sequence (or string) of bits,

9

namely

x 2 {0, 1}n, (2.1)

where n is the size of the input, which is essentially the number of the bits in the string.

Bits are the fundamental pieces of classical computers assuming two possible values, 0

or 1. Any information in a classical computer is stored as a sequence of bits, also called

a binary string. For example, the number 27 is stored as 11011 while the letter F is

equivalent to 1000110. Following the same logic, the output from a computational problem

is y 2 {0, 1}m with m 6= n. Notice that the sizes of the input and of the output do not

need to match.

This notion of inputs and outputs as strings of binaries is quite useful to connect

the concepts of algorithms and circuits. In a computational problem, the algorithm that

we give to the computer in order to obtain the output from the input needs to be very spe-

cific and unambiguous. Di↵erent algorithms can build the bridge between the input and

the output, which motivates computer scientists to keep seeking for more e�cient algo-

rithms. In this case, “more e�cient” means algorithms that consume less computational

resources (e.g. memory, processing time, etc). The sequence of instructions provided by

an algorithm is implemented by a circuit. A circuit is a collection of wires and gates,

which carry information around and perform simple operations on a finite number of bits.

In Figure 2.1, we have an example of a simple circuit which is the application of the

so-called NOT gate on a single bit. It flips the bit, taking 1 to 0 and 0 to 1. The wires

carry the bit to and from the NOT gate, providing the information of the sequence of

gates that act on a specific bit. More generally, a circuit may involve many input and

Figure 2.1: Symbol of the NOT gate. If x = 0, we have y = 1. On the other hand, for

x = 1, then y = 0.

output bits, wires and logical gates. A logic gate is a function

f : {0, 1}n ! {0, 1}m (2.2)

from some fixed number n of input bits to some fixed number m of output bits. For

example, the NOT gate is a gate with one input bit and one output bit which computes

10

the function f(a) = 1� a, where a is a single bit, and � is modulo 2 addition

a� b =

8
<

:
0, if a = b

1, if a 6= b
,

with a and b assuming the values 0 or 1. There are many other elementary logical gates

which are useful for computation. A partial list includes the AND gate, the OR gate, the

XOR gate, the NAND gate and the NOR gate. Each of these gates take two bits as input

and produce a single bit as output. These logical gates can be put together to perform an

enormous variety of computations. In fact, if we consider the entire list of logical gates,

it is possible to compute any function given a n bits input and a m bits output [29].

We are going to talk more about logical gates and circuits later in the context

of quantum computers. For now, let us approach some questions concerning algorithms

in a di↵erent way. Despite the circuit being the fundamental sequence of operations that

the computer will follow in order to perform the computation, we can also think about

algorithms as a computer program built to accomplish some task. For example, consider

a sorted list of names. It is completely possible for a modern computer to search for a

specific name in this list. The question is how long the computer will take to perform this

task. For a short list, it will be almost immediate. However, what happens if we keep

increasing the size of the list, which is equivalent to adding more and more names to it?

This is the kind of question that we are going to answer in the next pages.

2.1 Types of computational problems

Before we advance in the study of computational complexity in context of com-

puter science, it is important to realize what are the di↵erent types of computational

problems. We are not going to cover all of them, however it is safe to point out that they

can be divided in four main categories [30]:

1. Decision Problems: Given an input x, the algorithm provides YES or NO as possible

answers. The standard example of decision problem is the primality testing, where

the algorithm needs to determine, given a positive integer n, if n is a prime number

or not.

2. Search Problems: Di↵erently from a Decision Problem, the answer of a Search

Problem can be any kind of string. An important example of this category of

computational problems is factoring. Given a positive integer n, the algorithm will

provide a list of the prime factors of n. A second example of a search problem is an

algorithm that searches for a specific entry in a dictionary. The answer will be the

data related to this specific entry.

11

3. Counting Problems: Consider a problem R. The task of counting the number of

solutions of R that respects some constraints is a Counting Problem. For example,

given a graph G there is a set of subsgraphs of G called spanning trees, which are

all the subgraphs G that includes every vertex of G and that are trees.1 Then, the

task related to find the spanning trees of G is a Counting Problem.

4. Optimization Problems: Given a set of possible solutions of a computational prob-

lem, the task of searching for the best solution among them is an Optimization

Problem. As an example, let us consider again a graph G with n vertices. Then

choose two specific vertices, which we will denote as u and v. A Counting Problem

that could be applied on G is to figure out all the possible paths from u to v while

a further Optimization Problem would be to select the shortest one among all such

paths. A second example of an Optimization Problem is the Travelling Salesman

Problem: given a list of cities and the distances between each pair of cities, find the

shortest possible route that visits each city exactly once and returns to the origin

city.

It is also important to point that in spite of the classification mentioned above,

there is some arbitrariness in classifying computational problems. In fact, every problem

can be seen as a search problem [30]. This does not mean that our classification in useless,

but we need to be open minded about this question of classifying computational problems.

Equally important than understanding the types of computational problems is to

figure out the computational resources required for a computer to accomplish some task.

This is the main object of study for the computational complexity: quantify the time and

resources required to solve computational problems.

2.2 Computational resources

Di↵erent models of computation lead to various resource requirements to accom-

plish the computation. Even in the case of a well-understood computational problem like

addition of integers, di↵erences between computational models may be of interest and may

also produce distinct resource requirements. Consequently, as the first step to understand

a problem, we would like to find a way of quantifying resource requirements which are

independent of relatively simple changes in the computational model. A possible way to

do this is by the introduction of the asymptotic notation, which is used to summarize

the essential behavior of a function. This asymptotic notation can be used, for example,

to summarize the number of time steps that are required by a given algorithm, without

worrying too much about the exact time count.

1
In graph theory, trees are graphs that do not have loops, i.e., their branches (or internal lines) do

not loop back around and reconnect to itself.

12

The concept of time steps is essential in the analysis of circuits. If we are allowed

to apply just one gate at each time step, the number of logical gates is equal the number

of time steps. In this sense, we can quantify the time of execution of some algorithm by

the number of gates applied. Then, this kind of circuit is running in series. On the other

hand, if we are allowed to apply more than one gate at each time step, it is not correct

to quantify the time of execution of the algorithm by the number of gates in the circuit.

This kind of circuit is running in parallel. Another way to consider this idea of time steps

is related to number of iterations that the algorithm needs in order to solve the desired

task. Each iteration corresponds to one time step, which means that we are able to relate

the number of iterations with the size of the input. If the size increases, the number of

iterations also increases in some way. This correlation, as we will see soon, can be useful

in order to study the complexity of some computational problem.

Suppose that we are interested in the number of time steps necessary to add

two n-bit numbers. Perhaps a specific algorithm requires 3n + 5 log n + 16 time steps

to perform this task. However, in the limit of a large problem size the only term which

matters is the 3n term. Furthermore, we neglect constant factors as being of secondary

importance to the analysis of the algorithm. The essential behavior of the algorithm is

summed up by saying that the number of operations required scales like n, where n is the

number of bits in the numbers being added. The precise application of the asymptotic

notation requires the analysis of three tools.

The first one is the so-called big O notation. This tool is used to set upper

bounds on the behavior of a function. Suppose f(n) and g(n) are two functions on the

non-negative integers. The function f(n) is in the class of functions O(g(n)), or just f(n)

is O(g(n)), if there are constants c and n0 such that for all values of n greater than n0,

f(n) cg(n). That is, for su�ciently large n, the function g(n) is an upper bound on

f(n), up to an unimportant constant factor. The big O notation is particularly useful for

studying the worst-case behavior of specific algorithms, where we are often satisfied with

an upper bound on the resources consumed by an algorithm.

It is also interesting to set lower bounds on the resources required for a certain

class of algorithms, e.g., the entire class of algorithms which can be used to multiply two

numbers. For this task, the big ⌦ notation is useful. A function f(n) is said to be ⌦(g(n))

if there exist constants c and n0 such that for all n greater than n0, cg(n) f(n). That

is, for su�ciently large n, g(n) is a lower bound on f(n), up to an unimportant constant

factor.

The last tool is called big ⇥ notation which is used to indicate that f(n) behaves

the same as g(n) asymptotically, up to unimportant constant factors. That is, we say

f(n) is ⇥(g(n)) if it is both O(g(n)) and ⌦(g(n)).

Let us now consider some simple examples from [29]:

1. The function f(n) = 2n is in the class O(n2), since 2n n2 for all positive n.

13

2. The function f(n) = 2n is ⌦(n3), since n3 2n for su�ciently large n.

3. The function f(n) = 7n2+
p
n log n is dominated by the term 7n2 for large values of

n. As a consequence, for su�ciently large values of n, we have that 7n2 7n2 8n2.

Then, the function 7n2 +
p
n log n is ⇥(n2).

As an example of the use of the asymptotic notation in the context of quantifying

computational resources, let us consider the problem of sorting an n element list of names

into alphabetical order. Many sorting algorithms are based upon the compare-and-swap

operation: two elements of an n-element list are compared and swapped if they are in

the wrong order. Considering that the compare-and-swap operation is the only allowed

operation performed by the algorithm, how many of such operations are required in order

to ensure that the list was correctly sorted?

In Python, a simple algorithm called selection sort uses the compare-and-swap

operations to solve the sorting problem:

names =

[’Einstein’, ’Newton’, ’Bohr’, ’Heisenberg’, ’Faraday’, ’Curie’, ’Feynman’]

iterations = 0

for i in range(len(names)):

for j in range(i+1,len(names)):

if names[i] > names[j]:

names[i], names[j] = names[j], names[i]

iterations += 1

print(names)

print(iterations)

In the above example, we considered a list with seven names. However, the selection sort

algorithm also works for a list of any size. As output, the algorithm will provide us with

the sorted list and the number of iterations and the number of iterations, namely:

[’Bohr’, ’Curie’, ’Einstein’, ’Faraday’, ’Feynman’, ’Heisenberg’, ’Newton’]

21

This algorithm applies the compare-and-swap operations n(n � 1)/2 times, which corre-

sponds to the number of iterations. In the above case, the input size is n = 7, which

provides 7(7� 1)/2 = 21 iterations, in accordance with what was presented in the above

output. Lastly, we can say that the number of iterations used by the algorithm is ⇥(n2).

14

It is important to point out that there is at least one more e�cient algorithm

to handle sorting problems. The heapsort algorithm takes O(n log n) compare-and-swap

operations to sort a list. In contrast with the selection sort algorithm, the heapsort splits

the input list in a sorted and an unsorted region. Then, it iteratively shrinks the unsorted

region by extracting the largest element from it and inserting it into the sorted region. This

split in two distinct regions makes the heapsort an improved version of the selection sort

algorithm. In fact, any algorithm based upon the compare-and-swap operation requires

⌦(n log n) of such operations. Thus, the sorting problem requires ⇥(n log n) compare-

and-swap operations, in general.

2.3 Computational complexity

The main question in the study of computational complexity is the following:

What time and space resources are required to perform a computation? Problems like

addition and multiplication of numbers, or even sort an unsorted list, are considered as

e�ciently solvable because there are fast algorithms to accomplish these tasks, which

means that theses algorithms do not consume too much space when they are running. On

the other hand, there are many other problems that have no fast algorithm, at least so

far, and are very unlikely to be solved.

In this sense of considering resources as the space and/or time required for the

algorithm to run the task, computational complexity is the study of time and space re-

sources required to solve computational problems. The task of computational complexity

is to prove the existence of lower bounds on the resources required by the best possible

algorithm that solves a problem, even if the desired algorithm is not explicitly known. In

fact, computational complexity is complementary to the field of algorithm design. Ideally,

the most e�cient algorithms to accomplish a task would match perfectly with the lower

bounds proved by computational complexity.

Consider a problem that takes n bits as input. For example, we might be inter-

ested to determinate if a particular n-bit number is prime or not. The main classification

that is desirable to be made in computational complexity is between problems that can

be solved using resources bounded by a polynomial function Poly(n) or which require

resources that grow faster than any polynomial function on n. For this latter case, we

usually say that the resources required are exponential in the problem size Exp(n).2 In

this sense, a problem is considered as easy, tractable or feasible if there is an algorithm

for solving the problem using polynomial resources. On the other hand, a problem is

intractable or infeasible if the best possible algorithm requires exponential resources.

Let us consider as an example the task of adding two numbers x1 and x2. Both

2
Here we are not being so precise about the term exponential, since there are functions like nlogn

which grow faster than any polynomial but they grow slower than any true exponential.

15

numbers have a binary string representation, i.e., x1 2 {0, 1}n1 and x2 2 {0, 1}n2 with

n1 6= n2 in general. The total size of the input is n = n1 + n2 and these two numbers

can be added using a number of elementary operations that scales as ⇥(n). This means

that the algorithm which adds two numbers requires a polynomial, in this case linear,

number of operations to perform its tasks. On the other hand, it is believed, although not

mathematically proven, that the problem of factoring an integer into its prime factors is

intractable. That is, the belief is that there is no algorithm which can factor an arbitrary

n-bit integer using O(Poly(n)) operations.

It is important to notice that the polynomial versus exponential classification of

an algorithm is sometimes tricky. For example, an algorithm that solves a problem using

2n/1000 operations is probably more useful than one which runs in n1000 operations. Only

for very large input sizes (n ⇡ 108) the “e�cient” polynomial algorithm will be preferable

to the “ine�cient” exponential algorithm [29]. In many cases, it may be more practical

to choose the “ine�cient” algorithm.

Computer scientists are not only interested in the polynomial versus exponential

classification of problems. This is merely, for historical reasons, the simplest way of

understanding how di�cult a computational problem is. However, it is possible to make

a better distinction between computational problems. We already know three tools that

can be used to classify functions in di↵erent categories. This kind of process is quite

useful for the study of computational complexity. Di↵erent computational problems may

have the same asymptotic behavior, which means that the functions f(n) related to these

problems belong to the same⇥ (or at least O) class of functions. This classification process

will provide us with the notion of complexity classes. From now on, we will assume that

the function f(n) provides a running time of an algorithm based in the size n of the input.

In this sense, n could be the size of an n-bit string in the addition problem of two integers

or even the size of a list in the sorting problem. Whatever the interpretation of n is, we

can consider the following complexity classes:

1. Constant time O(1): The running time of the algorithm does not depend on the

input size. A simple example of a task that runs in a constant time is to select a

specific entry of a list or a matrix. The time an algorithm requires to perform this

task will not change if the size of the input increases.

2. Logarithmic time O(log n): The running time of the algorithm increases slower

than the input size. As an example, consider that we need to search for a name in a

sorted dictionary. The algorithm does not need to check each word in the dictionary

from the beginning until it finds the desired word. Instead, the algorithm can open

the dictionary half way through and check if the word on that position is the one

required. If it is not, the word is certainly either in the first or in the second half.

As a result, half of the possibilities are eliminated in the first iteration. Then the

16

algorithm will keep repeating this process until it finds the required word. This

binary search algorithm is far more e�cient that searching all the entries in the

dictionary.

3. Linear time O(n): The running time of the algorithm increases at the same rate

as the input size. The example of such computational problem is the unsorted list

search. Di↵erently from the sorted list case, the algorithm cannot take advantage of

the fact that the list is sorted. Then, in the worst case, every word in the list needs

to be checked. It is clear that the desired word can be found after the algorithm

checks around 30% of the list, however, if the input size n is increased, this minimum

percentage also will increase.

4. Log-linear time O(n log n): This kind of computational problem requires an algo-

rithm that applies operations with total log n complexity on each input. The stan-

dard example of Log-linear time algorithms is the e�cient sorting (Merge Sort),

which is the computational problem of sort an unsorted list.

5. Quadratic time O(n2): Analogously to the previous case, these are computational

problems that require operations with total complexity O(n) on each input. This

is the characteristic complexity of any algorithm that perform a double loop, for

example, to check all the entries of a matrix.

6. Polynomial time O(Poly(n)): In this complexity class we accommodate computa-

tional problems with higher exponents (n3, n4, etc). A simple example of a Polyno-

mial time algorithm is any loop inside loop implementation.

7. Exponential time O(Exp(n)): This complexity class accommodates problems that

are considered hard to handle even for a small input size. If we increase the input size

by one, the complexity is doubled or even tripled, based on whatever is the number

that is being raised to the power n, so the complexity of the problems gets out of

control pretty fast. As a consequence, problems with a fairly small input size might

become computationally intractable, which means they are just not possible to do

in a reasonable amount of time using modern computers. The standard example of

an exponential complex problem is the Traveling Salesman Problem.

It is shown in Figure 2.2 the behavior of di↵erent complexity classes. It is impor-

tant to notice that any fair and well-formulated computational problem can be handled by

a modern computer if we are considering a very small input size. Take, for instance, the

Traveling Salesman Problem. Surely it is important to solve this problem for a fairly small

input size, however, what a company really wants is to solve this problem for thousands

of cities. The conclusion here is that the discussion around computational complexity

17

Input Size

Complexity

12

log(n)

n

n log(n)

n
2

2n

Figure 2.2: The growing of the di↵erent classes of computational complexity.

is relevant when the input size is very large. In this sense, the asymptotic notation fits

perfectly in this discussion of complexity classes.

2.4 Decision problems: P vs NP

Previously it was pointed out that there are four categories of computational

problems: Decision Problems, Search Problems, Counting Problems and Optimization

Problems. Each of these categories of computational problems have their own character-

istics and relevance. However, Decision Problems constitute the most important class of

computational problems. The reason for such importance is that the main ideas of com-

putational complexity are most easily and often formulated in terms of decision problems.

There is also a simplest and elegant theory formulated for decision problems, which can

be generalized quite naturally for more complex scenarios, and historically computational

complexity arose primarily from the study of decision problems [29].

Just a quick review, in a Decision Problem, given an input x with size n, the

algorithm provides YES or NO as possible outputs. For example, consider the computa-

tional problem of determining if a number is prime or not. We want to know what is the

fastest algorithm that provides the answer. In a more quantitative way, it is said that a

problem is in TIME(f(n)) if there exists an algorithm which solves the problem in a time

O(f(n)), where n is the input size of x, also called as the length of x. Let us denote by

P the collection of computational problems that can be solved in polynomial time, which

means that they belong to TIME(nk) for some finite k. On the other hand, there are

problems that require exponential time to be solved. Despite the fact that exponential

times can become huge very quickly, computational problems in this category are still

feasible at least until a certain input size. In this sense, let us name the collection of

computational problems that can be solved in a finite amount of time by R.

Let us consider three examples of computational problems related to P and R.

The first one is the n ⇥ n Chess, which is a decision problem that is not in P. Given a

18

n⇥ n board state, the algorithm will require an exponential amount of time to figure out

if black or white will win. The second one is Tetris. Considering an initial arrangement

of pieces and the sequence of pieces that are going to come, it is possible by trying all the

possibilities to verify if the player can survive or not. The interesting fact about Tetris is

that it is not known that it is in P or not. The last one is the Halting Problem. Given a

computer program in any language (e.g.: Python, Java, etc), will this program sometime

halt (or stop)? It could be very helpful to make an algorithm that is capable to say if the

computer program will run forever or eventually will provide some output. The problem

is that there is not an algorithm capable to perform such task for any computer program.

Therefore, the Halting Problem is not in R.

Given the examples above, it is important to point that most of decision problems

are uncomputable, which means that most of them are not in R. In order to prove this

statement, let us work on a very clever argument. Consider that we have a certain amount

of decision problems that we want to solve. We also know that the algorithms to solve

these problems exist. Then, a relevant question here is: for any decision problem, is

there an algorithm that solves it? An algorithm, for more complex that it could be, is

ultimately a binary string. Any natural number can be represented as a binary string,

which means that there is correspondence between an algorithm and a natural number.

As a consequence, we can think of the space of all possible algorithms as the space of the

natural numbers N. Every algorithm is ultimately reduced to a natural number. On the

other hand, a decision problem is a function that maps inputs to YES or NO (1 or 0). An

input is also a binary string, in other words, a natural number. Then, a decision problem

reduces to a function

f : N �! {0, 1}. (2.3)

However, in the most general sense, a decision problem has an infinity of possible inputs,

which results in an infinity amount of outputs that are 0 or 1. In order to encode a

decision problem in binary language, it is necessary an infinite binary string. It is known

that real numbers are many times encoded as infinite strings in binary language.3 In this

sense, decision problems are similar to real numbers in the same way that algorithms are

ultimately natural numbers. Then, we can think in the space of all decision problems

as the space of the real numbers R. The conclusion here is that the space of decision

problems is much bigger than the space of algorithms, or in other words, there are much

more problems than algorithms to solve them. In general, every algorithm only solves one

specific decision problem.

The interesting fact is that somehow most of the problems that someone can think

of are solvable. However, mathematically speaking, most of the problems that someone

could think of should not be solvable. With this idea in mind, there are some decision

3
For example, the real number

1
3 can be represented in binary language as 0.01010101..., where “.” is

called binary point.

19

problems that can be solved in polynomial time by what we could name as a “lucky

algorithm”. This kind of problems constitute a class of decision problems, just like P,

EXP and R, called NP. Here, NP refers to nondeterministic polynomial problems. Any

algorithm that solves a problems in NP does it by guessing. In this context, guessing

means that the algorithm will try just one guess and it will achieve the right answer,

without checking all the possibilities. One should notice that this method is not a realistic

model of computation. While this nondeterministic model of computation is useful, it is

not possible to apply it in a real computer, given that this method does not provide the

notion of what is theoretically possible to be solved. The Tetris example illustrates very

well the true meaning of these guessing that we are talking about. It was already pointed

out that it is possible to solve Tetris in an exponential time by checking all the possibilities.

However, Tetris is actually in NP. We do not need to check all the possibilities in order

to answer the question “Do I survive or not?”. Instead, the algorithm can make some

guesses related to the incoming pieces. Eventually, there will be a sequence of choices that

will provide the right answer for the problem. Here lies the central di↵erence between a

deterministic and a nondeterministic model of computation. Deterministic algorithms will

always provides the answer for our decision problem. On the other hand, nondeterminitic

algorithms may or may not work in addition of being highly sensitive to any change in

the problem parameters. Looking back again to the Tetris case, if we change the initial

arrangement of the pieces or even the sequence of incoming ones, the sequence of guesses

that the algorithm makes will need to change.

Another way to think about NP is that this is the collection of decision problems

whose solutions can be checked in polynomial time. In this sense, check means that if

the answer of a decision problems is YES, it is possible to make an algorithm that can

prove and check this answer in polynomial time. Likewise, every problem that could be

solved in polynomial time can also be checked in polynomial time, which implies that P

is inside of NP. This statement lead us to the following question: Is P equal to NP? In

fact, at the time of writing, this question has no answer. More than that, this question is

one of the famous Millennium Prize Problems. So far, what we have is a conjecture that

says P 6= NP. This statement means that there are problems in NP that are not in P.

Problems inP can be solved by a real computer without too much computational resources

in comparison to problems that requires exponential time. On the other hand, problems

in NP can be only solved by a theoretical computer, which makes NP a powerful model

of computation in comparison to P. However, while the common sense may lead us too

soon to this conclusion, we cannot prove such statement yet. Another way to think about

P 6= NP is by realizing that proving solutions is more di�cult than checking solutions.

For example, consider that we have a di↵erential equation with no known solution. It is

not di�cult to convince ourselves that to develop a proof or even write an algorithm that

provides all the solution of this equation is much harder than checking if a given solution

20

solves the di↵erential equation.

Many puzzle games like Sudoku or Tetris are in somewhere between P and NP

[31]. In order to make this statement more precise, we will refer to this region (or space

of computational problems) as NP�P. Essentially, computational problems in NP�P

can be close to P, but not in P, or as far as possible of P. In this latter case, these

problems are denoted as NP-hard. They are at least as hard as every problem in NP,

including problems beyond NP�P as well. In this sense, a computational problem is said

to be NP-complete if it is in NP \NP-hard. The complete complexity zoo for decision

problems is shown in Figure 2.3. The NP-complete problems are in the borderline of the

NP space of problems. The same logic applies to decision problems in EXP. A problem

is EXP-hard if it is as hard as every problem in EXP. There are also problems which

are EXP-complete, for example, solving a chess table.

Figure 2.3: Complete scheme of complexity classes for decision problems.

A legitimate question in this discussion of NP-hard and NP-complete is how do

we know that a computational problem is as hard as every problem in NP? What does

this claim really means? In order to answer this question, let us first talk about reductions.

This process is a method for designing algorithms. Consider a problem A that has no

solution yet and a problem B whose solution is known, i.e., there is an algorithm that

solves B. One alternative to answer problem A is try to convert it into problem B. If

such process is possible, a reduction was performed and then it becomes possible to solve

problem A using the same algorithm that solves problem B. Possibly, this reduction

process will not provide the most e�cient algorithm for the solution of the problem A,

but at least there is a known way to solve it.

21

This reduction process is crucial in the classification of decision problems. First,

the reduction has a preferred direction from simple problems to more complex problems.

As a result, suppose that A is known to be NP-complete.4 If it is possible to reduce A

to B, it means that B is at least as hard as A. However, all the NP-complete problems

can be reduced to each other, which provides a method to verify if a NP-hard problem

is actually NP-complete.

With this brief discussion on P vs NP, we conclude this section on complexity in

computer science. The next step will be holographic complexity. In the following section,

we are going to understand the role that computational complexity plays in the context

of high energy physics and its connection with the study of black holes.

4
An example of a well known NP-complete problem is the 3-Partition problem [32].

22

Chapter 3

Holographic complexity

The standard physical setup for discussions of holographic complexity has been

the eternal two-sided AdS black hole (see Figure 3.1). The bulk geometry is dual to the

thermofield double state in the boundary theory [33], namely

|TFD (tL, tR)i =
1p
Z

1X

n=0

e�
�En
2 e�iEn(tL,tR) |ni

L
|ni

R
, (3.1)

where L and R refers to the left and right boundaries, {|ni} are the energy states of

one copy of the boundary theory and Z is the partition function. The TFD state is an

entangled state between two copies of the boundary CFT. Its entanglement is responsible

for the geometric connection in the bulk, i.e., the Einstein-Rosen bridge [9].

We already mentioned the question on the growth of the black hole interior in

terms of boundary quantities. The conjectured holographic complexity seems to provide

such an explanation, since a characteristic property of quantum complexity is that it

continues to grow for very long times after the system has thermalized. Indeed, complexity

is conjectured to continue to grow until a time scale which is exponential in the number

of degrees of freedom of the system Cmax ⇠ eN [34].

There are two conjectures proposed for holographic complexity. The first one is

the Complexity=Volume conjecture, which equates the complexity to the volume of the

extremal/maximal time slice anchored at boundary times tL and tR [11, 12], namely

CV = max

V (B)

GN`

�
, (3.2)

where ` is a certain length scale associated with the geometry. The second one is the

Complexity=Action conjecture [17, 18]. This conjecture relates the boundary complexity

with the gravitational action evaluated on a region of space-time known as the Wheeler-

DeWitt (WDW) patch, i.e., the region bounded by the null surfaces anchored at the

23

relevant times on the left and right boundaries, namely

CA =
AWDW

⇡
. (3.3)

Also notice that the WDW patch is the domain of dependence of the maximal time

slice appearing in the CV conjecture (see Figure 3.1). Focusing our attention to the CA

Figure 3.1: The Penrose diagram for a two sided AdS black hole. On the left and right

boundaries, we have the two dual QFTs. According to the CV, the volume of the extremal

curve (brown) connecting the two boundaries is the complexity of the boundary TFD

state. Alternatively, following CA, the action over the WDW patch (yellow) is complexity

of the boundary state. [35]

conjecture, it was pointed in [17, 18] that the late time growth rate of the complexity

is proportional to 2M/⇡, independently of the boundary curvature and the space-time

dimension. Furthermore, it was suggested that this saturation of the growth rate is

related to Lloyd’s bound on the rate of computation by a system with energy M [36]. In

the general case
dCA
dt
 2E

⇡
, (3.4)

where E is the energy of the black hole. The above result is valid for other types of black

holes than the neutral/static one.1

The saturation of the complexity growth leads us to the conjecture that black

holes are the fastest computers in nature [18]. Such conjecture motivated physicists to

verify if there are certain types of black holes whose holographic complexity violates

Lloyd’s bound. In [18], it was proposed a sequence of arguments that lead us to consider

growth bound for the complexity. A similar conjecture was presented before by Lloyd

in the context of computer science [36]. Computers are physical systems, so what they

can do is limited by the laws of physics. Computers can’t process information beyond

some limit that is determined by it s energy and number of degrees of freedom that it

1
Here, neutral and static means that the black hole has no electric charge and angular momentum.

24

haves. Moreover, there are certain limits in physics that are described by speed of light

c, the quantum scale ~ and the gravitational constant G that need to be respected by a

computer. The same logic applies for complexity. In this sense, it was proposed in [18]

that complexity growth should be limited by the energy of the system, namely

dC
dt
 2E

⇡~ , (3.5)

where E is the average energy of system described by a state | i. The bound conjectured

in (3.5) isn’t only for quantum systems, it can be extended for black holes. By using the

first law of thermodynamics, it’s possible to rewrite (3.5) as

dC
dt

Z

S

gs

TdS, (3.6)

with S being the black hole’s entropy and T being its temperature. The gs in the integral

refers to the ground state of the black hole. In order to approach more closely the satura-

tion of the complexity growth, we are going to consider the complexity of an anisotropic

black hole. The idea here is to study potential e↵ects of the anisotropy on the complexity.

From now on, we will focus in a deeper understanding of the CA proposal. Our

goal is to compute the holographic complexity of the Mateos-Trancanelli (MT) Model

[37, 38]. The MT model is a solution of type IIB supergravity that was designed to

model the e↵ects of anisotropy in the quark-gluon plasma (QGP) created during heavy

ion collisions. The anisotropy is present in the initial stages after the collision and it leads

to di↵erent transverse and longitudinal pressures in the plasma. Additionally, above order

(a/T)4, where a is the anisotropy parameter and T is the temperature of the black brane,

the boundary theory of the model presents a conformal anomaly.

3.1 Complexity = Action conjecture

The Complexity=Action conjecture was initially proposed in [17, 18], however,

these preliminary works were focused in the late time behavior of the complexity in

order to incorporate the concept of Lloyd’s bound for complexity. Afterwards, the time-

dependent complexity for the neutral and charged AdS-Schwarzschild black hole was

computed, as well as for the BTZ black hole [23]. Since then, this work became the

standard reference in the study of time-dependent complexity. Based on [23], it was

computed in [39] the computational complexity for the MT Model up to order (a/T)2.

However, the derivation of complexity using CA in [39] was focused in bulk geometries

described by metrics like

ds2 = �Gtt (r) dt
2 +Grr (r) dr

2 +Gij (r) dx
idxj, (3.7)

25

where r is the radial AdS coordinate and (t, xi) are the boundary coordinates with i =

1, 2, . . . , d�1, while the original one in [23] was performed for “Schwarzschild like” metrics.

In the end, there is no extraordinary di↵erence between the approaches, it is just a question

of convenience. From now on, we are going to follow the steps of [39].

Consider a neutral black brane with a generic bulk action of the form

A =
1

16⇡G

Z
ddxdr

p
�gL (r, x) . (3.8)

In the (r, t, xi) coordinate system, the boundary is located at r =1. We also assume the

existence of a horizon at r = rH , where Gtt has a zero and Grr has a simple pole.

In the computations of holographic complexity, it is necessary to avoid the ap-

parent singularity at r = rH and also use coordinates that cover the two sides of the

geometry. Thus, we are going to use the Eddington-Finkelstein coordinates

u = t� r⇤ (r) , v = t+ r⇤ (r) , (3.9)

where r⇤ (r) is the tortoise coordinate, given by

r⇤ (r) =

Z
dr

s
Grr (r)

Gtt (r)
, (3.10)

in such way that the metric (3.7) becomes

ds2 = �Guv (r) dudv +Gij (r) dx
idxj. (3.11)

The CA conjecture claims that the complexity of the boundary state is given by

the gravitational action evaluated in a region of the bulk known as the Wheeler-DeWitt

(WDW) patch, namely

CA (tL, tR) =
AWDW (tL, tR)

⇡
, (3.12)

where the WDW patch is the domain of dependence of any spatial slice anchored at a given

pair of boundary times (tL, tR), as shown in Figure 3.2. Without any loss of generality,

we consider the time evolution of holographic complexity for the symmetric configuration

tL = tR = t/2. The action on the WDW patch is divergent because such region extends

until the asymptotic boundaries of the space-time, which are located at r =1. In order

to bypass this problem for now, we regularize this divergence by introducing a cuto↵

surface at r = r1 close to the boundaries. Also, we introduce a cuto↵ surface r = "0 close

to the past and future singularities. The gravitational action on the WDW patch can be

written as

AWDW = Abulk +AGHY +Ajoint, (3.13)

26

Figure 3.2: The WDW patch (blue region) in two di↵erent regimes. On the left, we

have that t < tc. In this situation, the WDW patch intersects both the future and past

singularities. On the right, we have the regime t > tc, where there is a additional null-null

joint terms instead to the WDW patch intersect the past singularity. Figure from [23].

where

Abulk =
1

16⇡G

Z

M
dd+1x

p
�gL (x) (3.14)

is the bulk action evaluated over a manifold M, which in our case is the WDW patch. In

order to have a well-defined variational principle, it is is necessary to introduce two addi-

tional terms to the AWDW . The first one is the Gibbons-Hawking-York (GHY) boundary

term

AGHY =
1

8⇡G

Z

B
ddx

p
|h|K, (3.15)

where h is the determinant of the induced metric on B, namely

hij = gµ⌫
@xµ

@�i

@x⌫

@�j
, (3.16)

with �i being the coordinates on B, and K is the trace of the extrinsic curvature

K = gµ⌫Kµ⌫ , Kµ⌫ = rµn⌫ . (3.17)

The unit vector n⌫ is normal to the surface B. The GHY term is necessary when the

boundary includes space-like and time-like segments, which we denoted as B. In principle,

there would be also a second boundary term for null-like segments. However, by following

[40], this term is defined in terms of the parameter , analogous to K, which measure how

much the null surface fails to be a�nely parametrized. Then, we can set = 0, implying

that it is not necessary to consider these null boundary terms. The second term is the

joint term, which is necessary when the intersection between two boundary terms is not

27

smooth. This term can be written as

Ajoint =
1

8⇡G

Z

⌃

dd�1x
p
G⌘, (3.18)

where G = det (Gij) and we are considering the intersection of a null-like segment with any

another boundary segment, so it includes combinations of the type null/null, null/time-like

and null/space-like. The WDW patch shown has no time-like/time-like, time-like/space-

like or space-like/space-like intersections. Otherwise, we would have needed to consider

additional joint terms for these kind of combinations.

As shown in Figure 3.2, the WDW patch intersects both the future and the past

singularity at early times. At later times, which means t > tc, the WDW patch no longer

intersects the past singularity. This time scale separating these two regimes is given by

tc = 2 (r⇤1 � r⇤ (0)) , r⇤1 = lim
r!1

r⇤ (r) . (3.19)

Let us start focusing in the later time regime (t > tc). Once the WDW patch no longer

intersects with the past singularity, there are no surface and joint terms related to the past

singularity. Instead, there is an additional joint term that comes from the intersection of

two null boundaries. In order to compute the bulk contribution, due to the symmetry of

the WDW patch, we can split the right side of the WDW patch in three regions, which

we denote I, II and III. The total bulk action will be twice this value, once we need

to consider the also the left side of the WDW patch. Then, the bulk action contribution

from each of the part is

AI

bulk
=

Vd�1

8⇡G

Z
rh

"0

dr
p
�g

✓
t

2
+ r⇤1 � r⇤ (r)

◆
L (r) ,

AII

bulk
=

Vd�1

8⇡G

Z
r1

rh

dr
p
�g2 (r⇤1 � r⇤ (r))L (r) ,

AIII

bulk
=

Vd�1

8⇡G

Z
rh

rm

dr
p
�g

✓
� t

2
+ r⇤1 � r⇤ (r)

◆
L (r) , (3.20)

where L (r) is the on-shell Lagrangian. The joint point rm refers to the intersection

between the two null boundaries, which is given by

t

2
� r⇤1 + r⇤ (rm) = 0. (3.21)

The equation for the rm can be solved numerically. Note that it is possible to recover

the equation that gives the critical time tc when we take the limit rm ! 0 in the above

equation. Then, summing all the three contributions in (3.20), we obtain that

Abulk = A0
bulk

+
Vd�1

8⇡G

Z
rm

"0

dr
p
�g

✓
t

2
� r⇤1 + r⇤ (r)

◆
L (r) , (3.22)

28

where A0
bulk

is the total bulk action in the t < tc regime, namely

A0
bulk

=
Vd�1

2⇡G

Z
r1

rh

dr
p
�g (r⇤1 � r⇤ (r))L (r) . (3.23)

It was pointed in [23, 39] that the total bulk action has no time dependence in the regime

t < tc. Since we are going to study the time derivative of the complexity, in order to

investigate violations of the Lloyd’s bound (3.4), it is not necessary to pay too much

attention to the early times regime.

The next step is to compute the GHY terms. For the later times regime, we have

three boundaries, two at r = r1 (two sides of the geometry) and the other at r = "0

(future singularity). In both cases the, outward-directed normal vector is of the form

nµ = (nt, nr, ni) = b (0, 1, 0) , (3.24)

where b is some normalization constant in such way that n2 = 1 for space-like vectors and

n2 = �1 for time-like vectors. Then, the space-like normal vector at r = r1 is given

n(s)
µ

=
⇣
0,
p
Grr (r1), 0

⌘
(3.25)

and the time-like normal vector at r = "0 is

n(t)
µ

=
⇣
0,
p
�Grr ("0), 0

⌘
. (3.26)

The extrinsic curvature, in terms of a generic normal vector nµ of the form (3.24) is

K = rµn
µ =

b

2Grr

✓
@rGtt

Gtt

+
@rG

G

◆����
r="0,r1

, (3.27)

where b =
p
±Grr depending if nµ is space-like or time-like and G = det (Gij). The

induced metric on a surface of r constant is

ds2
ind

= �Gtt (r) dt
2 +Gij (r) dx

idxj, (3.28)

in such way that the GHY term becomes

AGHY (r) =
Vd�1

16⇡G
� (r)

Z

B
dt, � =

r
GttG

Grr

✓
@rGtt

Gtt

+
@rG

G

◆
, (3.29)

29

with the integration over t depending of the boundary that is being considered. Then

Afuture

GHY
("0) =

Vd�1

8⇡G
� ("0)

✓
t

2
+ r⇤1 � r⇤ ("0)

◆
,

Apast

GHY
("0) =

Vd�1

8⇡G
� ("0)

✓
� t

2
+ r⇤1 � r⇤ ("0)

◆
,

AGHY (r1) =
Vd�1

8⇡G
� (r1) (r⇤1 � r⇤ (r1)) , (3.30)

where we also computed the GHY term for the past singularity. We also obtain the GHY

term for the t < tc regime:

A0
GHY

=
Vd�1

8⇡G
� (r1) (r⇤1 � r⇤ (r1)) +

Vd�1

4⇡G
� ("0) (r

⇤
1 � r⇤ ("0)) . (3.31)

Finally, the total GHY term is the contribution of the future singularity plus the ones

from the boundary at r = r1, namely

AGHY =
Vd�1

8⇡G
� ("0)

✓
t

2
+ r⇤1 � r⇤ ("0)

◆
+A0

GHY
. (3.32)

The last step is to compute the contribution from the joint terms. In the regime

t > tc, there are the null-null joint point at rm, the null/space-like joint point- at r = r1

and the null/time-like joint point at r = "0. For the null-null joint point, we have that

Ajoint =
1

8⇡G

Z

⌃

dd�1x
p
G⌘, (3.33)

where ⌘ is defined in terms of the left and right null vectors which parametrize the null

boundaries of the WDW patch, namely

⌘ = log

����
1

2
kL · kR

���� . (3.34)

The vectors kL and kR are given by

kL

µ
= �↵@µ (t� r⇤) , kR

µ
= ↵@µ (t+ r⇤) , (3.35)

in such way that

⌘ = � log

����
Gtt (r)

↵2

���� . (3.36)

Then, the null-null joint term is

Anull

joint
= �Vd�1

8⇡G

p
G (rm) log

����
Gtt (rm)

↵2

���� , (3.37)

30

where rm is given by (3.21). We still have to compute the joint contributions at r = "0 and

r = r1, however, it was pointed in [23] that for a large class of isotropic systems, the con-

tribution from the asymptotic boundaries do not depend on time, while the contributions

at r = "0 vanish. Then, we obtain that

A0
joint

= Abdry

joint
=

Vd�1

8⇡G
G (r1) log |Gtt (r1)| (3.38)

for the regime t < tc, while for t > tc we have that

Ajoint = Abdry

joint
� Vd�1

8⇡G

p
G (rm) log

����
Gtt (rm)

↵2

���� . (3.39)

Summarizing the results, in the regime t > tc, the action pieces computed over

the WDW patch are

Abulk = A0
bulk

+
Vd�1

8⇡G

Z
rm

"0

dr
p
�g

✓
�t

2
+ r⇤ (r)� r⇤ (0)

◆
L (r)

AGHY =
Vd�1

8⇡G
� ("0)

�t

2
+A0

GHY

Ajoint = A0
joint
� Vd�1

8⇡G

p
G (rm) log

����
Gtt (rm)

↵2

���� , (3.40)

where we introduced the parameter �t = t� tc, in such way that

�t

2
+ r⇤ (rm)� r⇤ (0) = 0. (3.41)

Then, the time derivative of each action term above is

dAbulk

dt
=

Vd�1

16⇡G

Z
rm

"0

dr
p
�gL (r)

dAGHY

dt
=

Vd�1

16⇡G
� ("0)

dAjoint

dt
=

Vd�1

16⇡G

"
1

2

r
Gtt

GGrr

G0 log

����
Gtt

↵2

����+
r

G

GrrGtt

G0
tt

#�����
r=rm

, (3.42)

in other words

dAWDW

dt
=

Vd�1

16⇡G

"Z
rm

"0

dr
p
�gL (r) + � ("0) +

1

2

r
Gtt

GGrr

G0 log

����
Gtt

↵2

����+
r

G

GrrGtt

G0
tt

!�����
r=rm

#
.

(3.43)

This is the time derivative of the action on the WDW patch.

31

3.2 MT model

The Mateos-Trancanelli (MT) Model is a solution of type IIB supergravity which

is dual to a spatially anisotropic finite-temperature N = 4 Super Yang-Mills (SYM)

plasma [37, 38]. The e↵ective action for the model in five dimensions is given by

A =
1

16⇡GN

Z

M
d5x
p
�g

R +

12

L2
� 1

2
(@�)2 � 1

2
e2� (@�)2

�
+ SGHY , (3.44)

where �, � and gµ⌫ are the dilaton field, the axion field and the metric, respectively. The

SGHY is the already known boundary term on @M and GN is the Newton’s constant in

five dimensions. From the action (3.44), we obtain the five Einstein equations and the

dilation equation. Then, we can consider the following Ansatz for the metric, namely

ds2 = e��(r)/2

�r2F (r)B (r) dt2 +

dr2

r2F (r)
+ r2

�
dx2 + dy2 +H (r) dz2

��
, (3.45)

where r is the AdS bulk coordinate and (t, x, y, z) are boundary gauge theory coordinates.

The above solution has a horizon at r = rh, where F (rh) = 0, and the boundary is located

at r =1, with F = B = H = 1 and � = 0. We set the AdS radius L = 1 for simplicity.

The axion field is proportional to the coordinate z, i.e.,

� = az, (3.46)

which introduce the anisotropy in the system by the parameter a. When a = 0, the

solution (3.45) reduces to the gravity dual of N = 4 SYM theory with gauge group

SU (N). Lastly, the H function is written in terms of the dilaton field, namely

H (r) = e��(r). (3.47)

This way, the six equations of motion can be written in terms of the functions

B (r) and F (r), as well as the dilaton field � (r). However, this system can be reduced

to three di↵erential coupled equations,2 which can be solved analytically for small values

of the anisotropy parameter (a⌧ T). The strategy is to expand B, F and � as a power

series of a, that is

F (r) = 1� r4
h

r4
+ a2F2 (r) + a4F4 (r) +O

�
a6
�
,

B (r) = 1 + a2B2 (r) + a4B4 (r) +O
�
a6
�
,

� (r) = a2�2 (r) + a4�4 (r) +O
�
a6
�
, (3.48)

2
Such procedure is detailed in [38].

32

where only even powers of a can appear due the symmetry z ! �z. Then, the equations
of motion can be solved order by order until the desired power of a.

3.2.1 Solution order a2

In [39] it was considered the analytic solutions until order a2, which are given by

F (r) = 1� r4
h

r4
+

a2

24r4r2
h

8r2r2

h
� 2r4

h
(4 + 5 log 2) +

�
3r4 + 7r4

h

�
log

✓
1 +

r2
h

r2

◆�
,

B (r) = 1� a2

24r2
h

10r2

h

r2 + r2
h

+ log

✓
1 +

r2
h

r2

◆�
,

� (r) = � a2

4r2
h

log

✓
1 +

r2
h

r2

◆
. (3.49)

Once we have the solution for F , B and the dilaton �, we are in position to compute

some useful quantities. For example, from the Euclidean continuation of the metric, it is

possible to compute the Hawking temperature

TH =
r2
h

p
B (rh)F 0 (rh)

4⇡
=

rh
⇡

+
a2

48⇡rh
(5 log 2� 2) , (3.50)

as well as the Bekenstein-Hawking entropy

S =
Ah

4GN

=
V3r3h
4GN

✓
1 +

5a2

16r2
h

log 2

◆
. (3.51)

Then, we are able to compute the black brane’s mass by the first law of thermodynamics,

which provides

M (a) =

Z
TdS =

V3

16⇡GN

3r4

h
+

a2r2
h

4
(5 log 2� 1)

�
. (3.52)

The computation of the black brane’s mass is crucial to compute the Lloyd’s bound (3.4).

Now we have all the ingredients to compute the holographic complexity for the MT model.

3.2.2 Late time behaviour

Let us first approach the solution computation of the complexity for the late

time limit, where rm ! rh. Such situation is interesting due the fact that we expect the

saturation of the Lloyd’s bound in this limit. Thus, the time derivative of the WDW

33

patch in (3.43) becomes

dAWDW

dt
=

Vd�1

16⇡G

"Z
rh

o

dr
p
�gL (r) +

r
GttG

Grr

✓
@rGtt

Gtt

+
@rG

G

◆�����
r="0

+

 r
G

GrrGtt

G0
tt

!�����
r=rh

#
,

(3.53)

where

Gtt (r) = e��(r)/2r2F (r)B (r) ,

Grr (r) =
e��(r)/2

r2F (r)
,

G (r) = e�5�(r)/2r6. (3.54)

The final expression for the time derivative of the AWDW is then

dAWDW

dt
=

V3

16⇡GN

3r4

h
+

a2r2
h

4
(5 log 2� 1)

�
= 2M (a) ,

which matches the mass of the black brane (3.52). Finally, the time derivative of the

complexity saturates the Lloyd’s bound, as was conjectured in [17, 18], i.e.

dCA
dt

=
2M

⇡
. (3.55)

Just a last comment, if we want to study the full time behavior of the holographic

complexity, it is necessary to solve the equation (3.41) in order to obtain rm as a function

of �t. Then, we would be in position to place it in (3.43). Once the time derivative of the

complexity is zero for t < tc, the parameter �t is useful to describe the time behavior of

dCA/dt in the regime t > tc. Such procedure was also done in [39] numerically. The result

was that the time derivative of CA violates the Lloyd’s bound at initial times, approaching

this bound from above at late times.

34

Chapter 4

Complexity in quantum many-body

systems

The study of complexity in quantum computing is not something new. The pio-

neering studies by Nielsen and collaborators [19, 20, 21] provided an interesting formalism

to quantify complexity for quantum systems. However, recent works in holography drew

attention to the use of complexity in di↵erent areas of research. Since then, other pro-

posals to compute computational complexity have been tried, as well as adaptations of

Nielsen’s geometric notion of complexity.

Let us try to set a timeline for the developments of computational complexity

since holographic complexity was conjectured. Here we are going to focus on the study of

complexity in quantum systems, either continuous (QFT) or discrete ones (spin chains).

The initial question that was made after the rising of holographic complexity is if is

it possible to obtain a method to compute complexity in QFT. The first proposal for

complexity in QFT appeared in [22] where the author used Nielsen’s formalism with

the proper modifications required for continuous systems. Specifically, complexity was

thought of as a line integral using the Fubini-Study metric [41]. After the works using the

Fubini-Study metric, Nielsen’s formalism become popular and it was used in [23], where

the authors have further introduced a more general notion of metric than the previous

one.

Before we continue, it is important to recall the two di↵erent notions of complexity

already mentioned in the Introduction: complexity of states and complexity of operators.

The first one measures the complexity between two quantum states of interest. The

second one focuses on the complexity of a unitary operator that acts on a certain Hilbert

space. Most commonly, this operator is taken as the time evolution operator U(t). Each

notion of complexity has its own pros and cons. The use of the complexity of states

is recommended in a situation where we are interested in some property of the relevant

states in a problem. For instance, by studying the complexity of distinct ground states as

a function of their coupling constants it is possible to diagnose quantum phase transitions,

35

including topological nature, as one crosses a quantum critical point [42, 43, 44]. On the

other hand, the complexity of operators is more advantageous in physical setups where

the main information is in the Hamiltonian, as in the example of spin chains in condensed

matter models.

4.1 Complexity of states

The so-called complexity of states measures the optimal coast to prepare a final

state, let us denote it by target state | T i, from an initial state, named reference state

| Ri. This task can be accomplished by the action of a unitary operator U on the target

state | T i. At this point, it is interesting to make a parallel with the notion of complexity

that it is already known from classical/quantum computing. If we consider a string of n

qubits, the reference state can be chosen as

| Ri =
NY

i=1

⌦ |0i
i
, (4.1)

where |0i
i
corresponds to the the spin down configuration for the i-th position (or lattice)

of the string. Then, if we want to reach a certain configuration of this spin chain, which

means to build a correspondent target state, in complexity language, we need to apply

a set of elementary gates on | Ri. The sequence that these gates are applied constitute

a quantum circuit, as is shown in Figure 4.1. At each time step s, there were applied a

Figure 4.1: A general quantum circuit where | T i is obtained from | Ri by applying a

sequence of elementary gates gi. We also can indicate the intermediate state | ni that is
produced after every step, namely | ni = gngn�1 · · · g2g1.

certain number of gates on some qubits. Here, it is important to make some assumptions.

First, if we want to quantify complexity in a realistic way, it is reasonable that it does not

exist a “super” quantum gate that implements the circuit in just one time step. Second, it

is also reasonable to assume that one gate acts only on a few qubits, otherwise, most part

of the circuit could be implemented fast and easily. In the standard quantum computing

literature [45, 29], it is common to consider gates that act at most on three qubits. Lastly,

36

we assume that the quantum circuit runs in parallel, which means that more than one

gate is allowed to act at each time step.

We are going to consider two cases for the complexity of states, both in the context

of QFTs: the Fubini-Study method [22] for a complex scalar field theory and Nielsen’s

method [19, 20, 21] for fermions in 1+1. Both methods present some similarities. In fact,

any method to compute complexity needs to follow essentially the same recipe. However,

Nielsen’s method presents a greater degree of generality, as we are going to see.

4.1.1 General properties for complexity of states

In order to present the basic elements that constitute the idea of computational

complexity, let us keep in mind that we are trying to achieve a target state from a reference

state by building a quantum circuit. In this sense, the concept of circuit depth is quite

relevant. The quantum circuit takes a certain number of time steps to reach the target

state from the reference state. So, this number of time steps is called depth of the circuit

(see Figure 4.1). The concept of depth is important because the complexity of the target

state is defined as the depth of the optimal quantum circuit required to build the target

state from the reference state. This choice for complexity is quite intuitive: the bigger the

circuit is, the more complex the task is. However, such choice only works if we consider

circuits running in parallel. For circuits in series, which means only one gate acting at

each time step, a better choice for complexity is the number of gates needed to implement

the circuit.

There is nothing special about this reference state. Actually, any quantum state

of the system can be chosen as the reference state, however, it is interesting to select

a convenient one. In this context, convenient means “simple and unentangled”. What

one thinks to be a simple state is relative, nevertheless, simplicity in this context refers

to a state that easily allows us to build other states by applying unitary operators on

it. For example, in a spin chain, a good candidate for the simplest state was shown in

4.1. Sometimes the ground state of H can be picked as the simplest state. In general,

the choice of target state will depend on additional information that will come from

the system. Furthermore, the complexity associated to some state or process is not an

absolute quantity, it will depend on the reference state. Then, it is useful and smart to

consider the reference state as having zero complexity, agreeing with the choice of this

state as reference.

The assumption about the absence of entanglement exist because of two reasons.

First, to produce entanglement can be considered a task by itself, which means that

there is a complexity associated to entanglement production. Second, the calculation

of complexity associated to the ground state of the system is relevant in holography.

For example, we denote by complexity of formation the additional complexity needed

37

to prepare the entangled thermofield double state for two copies of the boundary CFT

compared to the complexity required to prepare the individual vacuum states of the two

copies [46].

Back to the discussion of complexity in QFT, once the reference and target states

are known, we reach the target state by the action of a set of unitary operators on the

reference state. The complexity of such process (or state) corresponds to the minimum

number of operations required to implement this task. In order to make this claim more

precise, we need to determinate the set of elementary unitary operators. Let us denote

this operator space by G, whose elements will make the quantum circuit required to build

the target state. Consider that the target and reference states are related by

| T i = U (1) | Ri , U (0) = I, (4.2)

where I is the identity operator. We introduced a parameter s 2 [0, 1] such that U (1)

is the desired operator which provides the target state | Ri. Then, we now have the

boundary conditions for the operator U (s). However, this operator is expected to be the

result of series of successive operations on | T i, parameterized by s. Then, it is natural

to think about a intermediate state

| (s)i = U (s) | Ri , U (s) =
 �P exp

�i

Z
s

0

G (s0) ds0
�
, (4.3)

where
 �P denotes a path ordering such that the operators at smaller s are applied to the

state first, as is shown in Figure 4.1.

With the expression for U (s) in mind, it is natural to think that there are di↵erent

ways to build U (s), however, in order to compute the complexity of | Ri, we need to

figure out the optimal operator Uopt that respects the boundary conditions (4.2). In

Nielsen’s work [19, 20, 21], the idea was to define a cost function F
⇣
U (s) , U̇ (s)

⌘
which

accomplishes all possible paths between | T i and | Ri. Then, the depth of the circuit

acquires a more precise form

D (U) =

Z 1

0

F
⇣
U (s) , U̇ (s)

⌘
ds. (4.4)

Now, the problem of finding the optimal circuit reduces to the problem of minimizing the

functional (4.4). Once Uopt is known, the complexity of | T i is

C (| T i , | Ri) = D (Uopt) = min
U(s)

Z 1

0

F
⇣
U (s) , U̇ (s)

⌘
ds. (4.5)

In general, the cost function F is some local functional of the position U (s) in the

operator space G and a vector U̇ (s) in the tangent space at this point. Then, a reasonable

38

cost function must satisfy a number of desirable features:

1. Continuity: F
⇣
U (s) , U̇ (s)

⌘
should be continuous, i. e., F 2 C1.

2. Positivity: 8U 2 G,F
⇣
U (s) , U̇ (s)

⌘
� 0, where F

⇣
U (s) , U̇ (s)

⌘
= 0 only if U is

the identity.

3. Positive Homogeneity: F
⇣
U (s) ,�U̇ (s)

⌘
= �F

⇣
U (s) ,�U̇ (s)

⌘
, 8� 2 R.

4. Triangle inequality: F
⇣
U, U̇ + U̇ 0

⌘
 F

⇣
U, U̇

⌘
+F

⇣
U, U̇ 0

⌘
for all tangent vectors

U̇ and U̇ 0.

The cost function in (4.4) that respects the properties above defines a length for a class of

geometries known as Finsler manifolds. Now, more technically speaking, Nielsen proposes

that the problem of finding an optimal circuit is equivalent to find the minimal path, i.e.,

the geodesic, on G. Then, the complexity is identified as the length of this geodesic.

So far we just presented the formal recipe to compute complexity. Now, it is time

to consider the necessary ingredients, that is, the operator space G, the cost function F
and the states chosen in the process (reference and target). The complexity is intimately

connected to the choice of these ingredients. In the next sections, we are going to provide

such ingredients and to consider two physical examples: the complexity of the TFD state

for a charged scalar field theory and the complexity for 1 + 1 fermionic QFT on a lattice.

4.2 Complexity: Fubini-Study metric

It was proposed in [22] to choose the Fubini-Study metric (or quantum infor-

mation metric) [47] as the metric of the operator space G. As a consequence, the cost

function will be the line element in this space. The Fubini-Study metric is given by

dsFS =
q
|@s | (s)i|2 � |h (s)| @s | (s)i|2, (4.6)

where | (s)i is given by (4.3) and @s is the derivative on the curve parameter s. The

Fubini-Study metric represents a quantity that measures the distance between states in a

parameterized Hilbert space H (s). This fact provides a reasonable motivation to consider

(4.6) as the cost function for the complexity.1 The expression in (4.6) is similar to the

Riemannian metric, however, it is possible to consider a general version of (4.6), namely

ds(p)
FS

= ||@s | (s)i|p � |h (s)| @s | (s)i|p|1/p , (4.7)

1
For a complete review about the Fubini-Study metric, see [41, 45].

39

where p � 1. The case p = 2 leads to the standard Fubini-Study metric. Other values

of p will provide a di↵erent measure for the operator space, which implies in a di↵erent

complexity, even though the set of allowed gates keeps the same.

The next step would be to specify what is | (s)i, however, in order to accomplish

that, we first need to obtain more details about the physical setup that we are handling.

For the complexity using FS metric, we are going to consider the complexity of the TFD

state for a complex scalar field theory [48]. This physical setup is interesting due to

the presence of the additional U (1) symmetry group, which implies a conserved electric

charge. Such fact is interesting because there is the possibility to compare, at least at

a qualitative level, the computation from the QFT side with the holographic side for

charged AdS black holes.

4.2.1 TFD state for scalar field theory

Consider a complex scalar field theory in d dimensions whose Hamiltonian is given

by

H =

Z
dd�1x

⇥
⇡†⇡ +r�† ·r�+m2�†�

⇤
, (4.8)

where m is the mass of the field � (x) and ⇡ (x) = @0�† is the conjugate momentum.

In terms of the annihilation operators (ak, bk) and creation operators
⇣
a†
k
, b†

k

⌘
of the

particle and anti-particle, respectively, the field � (x) and its conjugate momentum have

the following form:

� (x) =

Z
dd�1kp
2!k

h
ake

�ikx + b†
k
eikx

i
,

⇡ (x) = i

Z
dd�1k

r
!k

2

h
a†
k
eikx � bke

�ikx

i
, (4.9)

where !k =
p
k2 +m2. Another relevant quantity for our analysis is the U (1) conserved

charge

Q = iq

Z
dd�1x

⇥
�†@0�� �@0�†⇤ , (4.10)

where q is the electric charge of the field � (x). From the canonical commutation relations

[� (t, ~x) , ⇡ (t, ~x0)] =
⇥
�† (t, ~x) , ⇡† (t, ~x0)

⇤
= i�d�1 (~x� ~x0) , (4.11)

we have that

h
a~k, a

†
~k0

i
= �d�1

⇣
~k � ~k0

⌘
,

h
b~k, b

†
~k0

i
= �d�1

⇣
~k � ~k0

⌘
, (4.12)

40

where all the other commutators involving a, a†, b and b† are equal zero. We can use (4.9)

to write H and Q in terms of the annihilation and creation operators, namely

H =

Z
dd�1k!k

h
a†
k
ak + b†

k
bk + 1

i
,

Q = q

Z
dd�1k

h
a†
k
ak � b†

k
bk
i
. (4.13)

The vacuum state |0i is such that

ak |0i = bk |0i = 0, (4.14)

while excited states can be obtained by the application of a†
k
and b†

k
on |0i, more precisely

|nk,mk0i =

⇣
a†
k

⌘nk

p
n!

⇣
b†
k

⌘nk

p
m!

|0i . (4.15)

The state |nk,mk0i has n particles with momentum ~k andm anti-particles with momentum
~k0, while its energy and electric charge are E = nk!k + mk0!k0 and Q = (nk �mk0) q,

respectively.

After reviewing the basics of QFT related to this system, let us use the quantities

obtained above to work on the computation of the complexity. Since we are interested

in the TFD state for this theory, we need to consider two Hilbert spaces that initially

are not entangled to each other. We can do that by considering two copies of the theory.

Then, the Hilbert space becomes H = HL ⌦HR, where HLand HR denotes the left and

right QFT, respectively. The basis for such spaces can be generated by the eigenstates of

the total number operators N L

k
= aL†

k
aL
k
+bL†

k
bL
k
and NR

k
= aR†

k
aR
k
+bR†

k
bR
k
. The vacuum of

the system remains quite the same, however, we need to remember that |0i = |0Li⌦ |0Ri.
Nevertheless, the decomposition of the Hilbert space is not unique. We can choose a

di↵erent set of annihilation and creation operators Ak, A
†
k
, Bk and B†

k
, in such way that

H = H1 ⌦ H2. We also get a di↵erent “vacuum state” |⌦i = |⌦1i ⌦ |⌦2i which is

annihilated by A1
k
, A2

k
, B1

k
and B2

k
. The vacuum |⌦i cannot be understood as the zero

energy state, but rather as the state with no particles created by A†
k
and B†

k
.

The set of operators ak, a
†
k
, bk, b

†
k
and Ak, A

†
k
, Bk, B

†
k
are connected by the

so-called Bogoliubov transformations, namely

A1
k
= cosh ✓ka

L

k
� sinh ✓kb

R†
k
,

A2
k
= cosh ✓ka

R

k
� sinh ✓kb

L†
k
,

B1
k
= cosh ✓kb

L

k
� sinh ✓ka

R†
k
,

B2
k
= cosh ✓kb

R

k
� sinh ✓ka

L†
k
, (4.16)

41

which are transformations that preserve the algebra of the creation and annihilation

operators. We can also write the particle and anti-particle number operator, namely,

N1
k
= A1†

k
A1

k
and N

1
k
= B1†

k
B1

k
, as

N1
k
= cosh2 ✓ka

L†
k
aL
k
� cosh ✓k sinh ✓k

⇣
aL†
k
bR†
k

+ aL
k
bR
k

⌘
+ sinh2 ✓kb

R

k
bR†
k
,

N
1
k
= cosh2 ✓kb

L†
k
bL
k
� sinh ✓k cosh ✓k

⇣
aR†
k
bL†
k

+ aR
k
bL
k

⌘
+ sinh2 ✓ka

R

k
aR†
k
. (4.17)

In a similar way

N2
k
= cosh2 ✓ka

R†
k
aR
k
� cosh ✓k sinh ✓k

⇣
aR†
k
bL†
k

+ aR
k
bL
k

⌘
+ sinh2 ✓kb

L

k
bL†
k
,

N
2
k
= cosh2 ✓kb

R†
k
bR
k
� sinh ✓k cosh ✓k

⇣
aL†
k
bR†
k

+ aL
k
bR
k

⌘
+ sinh2 ✓ka

L

k
aL†
k
, (4.18)

which implies that

⇣
N1

k
�N

2
k

⌘
|⌦i =

⇣
aL†
k
aL
k
� bR†

k
bR
k

⌘
|⌦i = 0,

⇣
N

1
k
�N2

k

⌘
|⌦i =

⇣
bL†
k
bL
k
� aR†

k
aR
k

⌘
|⌦i = 0. (4.19)

The expressions in (4.19) led us to two other important results:

�
N L

k
�NR

k

�
|⌦i = 0,

(QL +QR) |⌦i = 0. (4.20)

In order to take advantage of the results right above, let us expand |⌦i in basis generated

by the eigenstates of N L

k
and NR

k
, namely

|⌦i =
Y

~ki

X

n,m

Cn,m |nki , qiL |mki ,�qiR . (4.21)

In order to satisfy the second equation in (4.20), we are already considering that the states

on the left have positive electric charge, while the state on the right have �q. Also,
Q
~ki

means that we are considering the product state between all the possible values of ~k.2 As

a direct consequence of the first equation in (4.19), we obtain

�
N L

k
�NR

k

�
|⌦i =

Y

~ki

X

n,m

Cn,m (nk �mk) |n, qia |m,�qi
b
= 0, (4.22)

which implies that Cn,m = �nm. Also, we can apply A1
k
on |⌦i in order to obtain the

following recurrence relation:

Cn+1 = tanh ✓kCn. (4.23)

2
In (4.21), we are discretizing the possible values of ~k just as a matter of notation.

42

The recurrence relation (4.23) leads us to rewrite Cn as

Cn = en ln(tanh ✓k), (4.24)

allowing us to rewrite |⌦i, namely

|⌦i =
Y

~ki

1X

n=0

en ln(tanh ✓ki) |nki , qiL |nki ,�qiR . (4.25)

Another useful way to represent |⌦i is by noticing that

|nk, qiL |nk,�qiR =

⇣
aL†
k
bR†
k

⌘n

n!
|0i , (4.26)

since we want the simplest state that respects (4.20). Then, we have that

|⌦i = exp

X

ki

tanh ✓kia
L†
ki
bR†
ki

!
|0i . (4.27)

The expression for the vacuum |⌦i in (4.25) was built only with general properties of

the Bogoliubov transformations (4.16). Such fact is interesting because we have a free

parameter ✓k, which can provide di↵erent interpretations for the non-canonical Hilbert

space decomposition.

The next step is to figure out the parameter ✓k in order to |⌦i becomes the TFD

state. This can be done by a direct comparison to the usual formula for the TFD state,

namely

|TFDi =
1X

n=0

e��En/2 |ni
L
|ni

R
, (4.28)

where En is the energy of simple state |n, qi. Consider the total Hamiltonian of the system

with the addition of a chemical potential µ, namely

H = HL +HR + µ (QL �QR) . (4.29)

If we apply H on one of the basis state in (4.25), we obtain

H |n, qi
L
|n,�qi

R
= 2n (!k + µq) |n, qi

L
|n,�qi

R
, (4.30)

which implies that

tanh ✓k = e�
�
2 (!k+µq). (4.31)

43

The charged TFD state is then

|TFDqi = exp

✓Z
dd�1ke�

�
2 (!k+µq)aL†

k
bR†
k

◆
|0i . (4.32)

In order to understand the time dependence of the complexity, we need to consider

a time dependent TFD state, which means that we need to apply the time evolution

operator on that. In terms of the creation and annihilation operator, the Hamiltonian

(4.29) has the following form:

H =

Z
dd�1k

h
(!k + µq)

⇣
aL†
k
aL
k
+ bR†

k
bR
k
+ 1

⌘
+ (!k � µq)

⇣
bL†
k
bL
k
+ aR†

k
aR
k
+ 1

⌘i
.

(4.33)

The creation and annihilation operators that appears in H commute to each other, which

allow us to ignore the second term in (4.33) because it just contributes to the time

evolution of the TFD state as an overall phase. Then, the time evolution operator is

given by

UT (t) = exp

✓
�i

Z
dd�1k (!k + µq)

⇣
aL†
k
aL
k
+ bR†

k
bR
k
+ 1

⌘
t

◆
, (4.34)

Using the inverse Bogoliubov transformations

aL
k
= cosh ✓kA

1
k
+ sinh ✓kB

2†
k
,

aR
k
= cosh ✓kA

2
k
+ sinh ✓kB

1†
k
,

bL
k
= cosh ✓kB

1
k
+ sinh ✓kA

2†
k
,

bR
k
= cosh ✓kB

2
k
+ sinh ✓kA

1†
k
, (4.35)

the Hamiltonian (4.33) becomes

H =

Z
dd�1k (!k + µq)

h
cosh 2✓k

⇣
A1†

k
A1

k
+B2

k
B2†

k

⌘
+ sinh 2✓k

⇣
A1

k
B2

k
+ A1†

k
B2†

k

⌘i
.

(4.36)

The time dependent TFD state is then

|TFDq (t)i = e�iHt |TFDqi , (4.37)

where we are considering H given by (4.36).

4.2.2 The operator space

The time dependent TFD state is obtained from (4.32) by the application of the

time evolution operator. Since we are interested in |TFDq (t)i as the target state, it is

intuitive to consider |TFDqi as the reference state. Then, the complexity that will be

obtained is time dependent and it essentially measures the computational cost to evolve

44

the TFD state in time. Consider the operator U (s) as the one that implements the time

evolution on our reference state. We already obtained in (4.34) that U (1) = UT (t), which

is the boundary condition for s = 1. Now, we need to figure out what is the operator

space where U (s) lives. In order to do that, let us rewrite (4.36) as

H =

Z
dd�1k (!k + µq)

h
2 cosh 2✓kL

(0)
k

+ sinh 2✓k
⇣
L(+)
k

+ L(�)
k

⌘i
, (4.38)

where

L(0)
k

=
1

2

⇣
A1†

k
A1

k
+B2

k
B2†

k

⌘
,

L(+)
k

= A1†
k
B2†

k
,

L(�)
k

= A1
k
B2

k
. (4.39)

The set of operators
n
L(0)
k
, L(+)

k
, L(�)

k

o
are the generators of an SU (1, 1) Lie algebra with

the following commutation relations:

h
L(+)
k

, L(�)
k

i
= �2L(0)

k
,

h
L(0)
k
, L(±)

k

i
= ±L(±)

k
. (4.40)

Then, it is possible to rewrite the time evolution operator as

UT (t) = exp

Z
dd�1k

⇣
↵(0)
k

(t)L(0)
k

+ ↵(+)
k

(t)L(+)
k

+ ↵(�)
k

(t)L(�)
k

⌘�
, (4.41)

with

↵(±)
k

(t) = �i (!k + µq) t sinh 2✓k,

↵(0)
k

(t) = �2i (!k + µq) t cosh 2✓k. (4.42)

Since the time evolution operator has an exponential decomposition in terms of SU (1, 1)

generators, it is reasonable to assume that the operator U (s), which connects the target

and reference state, is an element of the SU (1, 1) group.

Let us come back quickly to some general aspects of the complexity calculation.

The intermediate state | (s)i in (4.3) is built from | Ri by the action of some unitary

operator U (s) in such way that | (1)i = | T i. Since U (s) is an element of SU (1, 1)

group, it can be written as

U (s) = exp

Z
dd�1k

⇣
�(0)
k

(s)L(0)
k

+ �(+)
k

(s)L(+)
k

+ �(�)
k

(s)L(�)
k

⌘�
, (4.43)

where U (s) must match UT (t) when s = 1. The elements of SU (1, 1) have the following

45

well-known decomposition [49]

U (s) = exp

Z
dd�1k�(+)

k
(s)L(+)

k

�
exp

Z
dd�1k log

⇣
�(0)
k

⌘
L(0)
k

� Z
dd�1k�(�)

k
(s)L(�)

k

�
,

(4.44)

where

�(±)
k

=
2�(±)

k
sinh ⌘k

2⌘k cosh ⌘k � 2�(0)
k

sinh ⌘k
,

�(0)
k

=

cosh ⌘k �

�(0)
k

2⌘k
sinh ⌘k

!�2

,

⌘2
k
=
�(0)2
k

4
� �(+)

k
�(�)
k

. (4.45)

The expression (4.44) is quite useful because it is possible to figure out that

L(�)
k

|TFDqi = 0,

L(0)
k

|TFDqi =
1

2
|TFDqi , (4.46)

which shows that only L(+)
k

has a non-trivial contribution for the operator U (s). As a

result, the intermediate state becomes

| (s)i = exp

Z
dd�1k log

✓q
�(0)
k

(s)

◆�
exp

Z
dd�1k�(+)

k
(s)L(+)

k

�
|TFDqi , (4.47)

where by imposing the normalization condition on | (s)i, we obtain

����(0)
k

��� = 1�
����(+)

k

���
2

. (4.48)

Applying the normalization condition (4.48) in (4.47), we obtain the final expression for

the intermediate state | (s)i, namely

| (s)i = exp

"Z
dd�1k

log

 r
1�

����(+)
k

���
2
!

+ �(+)
k

(s)L(+)
k

!#
|TFDqi (4.49)

Once we built | (s)i, we are in condition to compute the line element in operator

space provided by the Fubini-Study metric in (4.6). By computing the s derivative of

| (s)i, we obtain that

@s | (s)i =
Z

dd�1k

0

BB@
@s
����(+)

k

���
2

2

✓
1�

����(+)
k

���
2
◆ + @s�

(+)
k

(s)L(+)
k

1

CCA | (s)i . (4.50)

46

The next step is to place (4.49) and (4.50) in (4.6). Then, we obtain

ds2
FS

=

Z
dd�1k0

Z
dd�1k@s�

(+)⇤
k0 (s) @s�

(+)
k

(s)
hD

L(�)
k0 L(+)

k

E
�
D
L(�)
k0

ED
L(+)
k

Ei
, (4.51)

where hi means the expectation value of an operator with relation to the state | (s)i. It
is possible to show that D

L(+)
k

E
=
D
L(�)
k

E
= 0, (4.52)

where it was necessary to use

hTFDq|L(+)
k

|TFDqi = hTFDq|L(�)
k

|TFDqi = 0. (4.53)

In a similar way, the second expectation value in (4.51) is

D
L(�)
k

L(+)
k

E
=

1�

����(+)
k

(s)
���
2
� " 1X

n=0

(n+ 1)2
✓����(+)

k
(s)

���
2
◆n

#
�d�1

⇣
~k � ~k0

⌘
. (4.54)

By solving the infinity sum above, namely

1X

n=0

(n+ 1)2
✓����(+)

k
(s)

���
2
◆n

=
1

✓
1�

����(+)
k

(s)
���
2
◆3 , (4.55)

we obtain the final expression for the Fubini-Study metric

dsFS =

vuuuut
Z

dd�1k

2

4

���@s�(+)
k

(s)
���

1�
����(+)

k
(s)

���

3

5

2

. (4.56)

The expression above is essentially the complexity of the charged |TFDq (t)i, however, in
[48] it was considered the Fubini-Study metric in (4.7) with p = 1, which leads to

C = min
�
(+)
k (s)

Z 1

0

ds

Z
dd�1k

2

64

���@s�(+)
k

(s)
���

1�
����(+)

k
(s)

���
2

3

75 . (4.57)

The complexity of the |TFDq (t)i now depends essentially on �(+)
k

(s), which

is related to the coe�cients
n
�(0)
k

(s) , �(+)
k

(s) , �(�)
k

(s)
o

from (4.43) by the relations

in (4.45). Also, the operator U (s) in (4.43) must match the time evolution opera-

tor UT (t) for s = 1. This condition is equivalent to impose that the set of coe�-

cients
n
�(0)
k

(s) , �(+)
k

(s) , �(�)
k

(s)
o

is equal to the coe�cients
n
↵(0)
k

(t) ,↵(+)
k

(t) ,↵(�)
k

(t)
o

47

in (4.41) for s = 1. The conditions above provide the following way to write �(+)
k

(s) :

�(+)
k

(s) = �i sinh 2✓k sin�

cos�+ i cosh 2✓k sin�
,

� = (!k + µq) ts. (4.58)

The expression for �(+)
k

(s) in (4.58) satisfies all the boundary conditions and the necessary

matches between U (s) and UT (t) at s = 1. By computing

���@s�(+)
k

(s)
��� =

sinh 2✓k (!k + µq) t

cos2�+ cosh2 2✓k sin
2�

(4.59)

and

1�
����(+)

k
(s)

���
2

=
1

cos2�+ cosh2 2✓k sin
2�

, (4.60)

we obtain

C (t) =

Z 1

0

ds

Z
dd�1k sinh 2✓k (!k + µq) t. (4.61)

4.2.3 Computing the complexity

The last step is to solve the integrals in (4.61). The one in s is quite direct,

allowing us to rewrite the expression for the complexity as

C (t) =

Z
dd�1k sinh 2✓k (!k + µq) t. (4.62)

Now, remember that the parameter ✓k and the quantity !k + µq are related by

tanh ✓k = e�
�
2 (!k+µq), (4.63)

which implies that

cosh2 ✓k =
1

1� e��(!k+µq)
,

sinh2 ✓k =
e��(!k+µq)

1� e��(!k+µq)
. (4.64)

Then, the expression for C (t) becomes

C (t) = 2t

Z
dd�1k

e�
�
2 (!k+µq)

1� e��(!k+µq)
(!k + µq) . (4.65)

If we consider the massless case, which means !k = |k| = k, the expression for C (t) can

be written as

C (t) = 2t⌦k,d�2

1X

n=0

Z
dkkd�2 (k + µq) e�(n+

1
2)�(k+µq), (4.66)

48

where ⌦k,d�2 is the d� 2 sphere volume. By solving the integral em in k, the expression

right above becomes

C (t) = 2��dt⌦k,d�2� (d� 1)
1X

n=0

e�(n+
1
2)�µq

�
n+ 1

2

�d

✓
d� 1 +

✓
n+

1

2

◆
q�µ

◆
. (4.67)

In order to obtain an analytic form for (4.67), let us consider the case where �µq ⌧ 1,

which leads to a considerable simplification of C (t):

C (t) = 2��dt⌦k,d�2� (d� 1)
1X

n=0

(d� 1)

✓
n+

1

2

◆�d

� (d� 2)

✓
n+

1

2

◆�(d�1)

�µq

!
.

(4.68)

The sums in the above expression converge in such way that the expression for C (t) is

now written in terms of gamma functions � (d) and Riemann zeta functions ⇣ (d), namely

C (t) = 2��dt⌦k,d�2

⇥
� (d)

�
2d � 1

�
⇣ (d)� (d� 2)� (d� 1)

�
2d�1 � 1

�
⇣ (d� 1) �µq

⇤
.

(4.69)

Despite the complicated functions that appears in the expression for the complexity, notice

that the total energy for the neutral scalar field is

E =

Z
dd�1k

P1
nk=0 nkke��nkk

P1
nk=0 e

��nkk
=

Z
dd�1k

ke��k

1� e��k
= ⌦k,d�2�

�d� (d) ⇣ (d) , (4.70)

while the total charge is

Q =

Z
dd�1k

qe��nk(k+µq)

1� e��nk(k+µq)
= q⌦k,d�2�

�(d�1)� (d� 1) ⇣ (d� 1) , (4.71)

which leads to

C (t) = 2t
⇥�
2d � 1

�
E � (d� 2)

�
2d�1 � 1

�
µQ

⇤
. (4.72)

It is expected that using CA [18], the holographic complexity for the charged AdS

black hole approaches at late times as

dCA
dt

=
2

⇡
(M � µQ) , (4.73)

which is the conjectured Lloyd’s bound for this kind of black hole [18]. We have here

a qualitative agreement between the complexity computed by the QFT side and the

conjectured bound. In a more quantitative analysis, it can be pointed out a violation

of the Lloyd’s bound in (4.72). However, even in holographic computation there is an

apparent violation of this bound for the charged AdS black hole [18, 50].

49

4.3 Nielsen’s approach

In this section we are going to introduce the Nielsen’s method for computing

complexity. Many of the necessary concepts to precisely define complexity were already

introduced in the previous section. Just as a quick review, we need essentially the same

ingredients of the Fubini-Study method: the reference state | Ri, the target state | Ri and
the operator U (s) which connects these two states. We also keep having the intermediate

states | (s)i and the same boundary conditions for U (s) presented in (4.2) and (4.3).

Let us start to talk about the di↵erences. Consider that the reference and target

states are connected by the following unitary operator:

U (s) =
 �
P exp

�i

Z
s

0

ds0Y I (s0)LI

�
, (4.74)

where we are already considering that the set of operators LI forms a basis for some Lie

algebra g and I = 1, 2, · · · , dim g. The coe�cients Y I (s) are called control functions.

Making again an analogy to quantum circuits, the Y I (s) functions essentially measure

how much each generator LI contributes to the circuit at each step s. Similarly to the

Fubini-Study case, we need to specify the group manifold where U (s) belongs to, which

is essentially our operator space. By di↵erentiating (4.74) with respect to s, we obtain

Y I (s)LI = (@sU (s))U�1 (s) . (4.75)

It would be interesting to isolate Y I (s) on the left-hand side of (4.75), leading to the

possibility to determinate Y I (s) from specific properties of the group. For example, if we

consider the SU (2) group, we could use the trace properties of the Pauli matrices and the

fact that there is a well-known general matrix form for the elements of SU (2) to figure

out what Y I (s) is. For higher dimensional cases, we can introduce the Cartan-Killing

form

K (X, Y) = Tr (adj
X
adj

Y
) . (4.76)

In the above expression, adj
X

means adjoint representation of X 2 g, given by

(adj
X
)M
N

= xKfM

KN
, (4.77)

where xK are the coe�cients of the expansion X = xILI . Notice also that

�
adj

LI

�M
N

= fM

IN
, (4.78)

which provides the Cartan-Killing metric of g, namely

KIJ = K (LI , LJ) = fM

IN
fN

JM
, (4.79)

50

where fL

IJ
is the structure constant of the Lie algebra, defined as

[LI , LJ] = fK

IJ
Lk. (4.80)

Then, we can multiply (4.75) by LJ and then trace it. As a result, we obtain

Y I (s)KIJ =
⇥
(@sU (s))U�1 (s)

⇤M
N
fN

JM
, (4.81)

where we need to consider some dim g⇥ dim g representation of (@sU (s))U�1 (s).

The introduction of the Cartan-Killing metric allows us to define the following

line element

ds2 = KIJY
I (s)Y J (�) , (4.82)

in such way that we could consider the cost function (4.13) as

D (U) =

Z 1

0

ds
p

KIJY I (s)Y J (s). (4.83)

Then, the complexity of the target state is

C = D (Uopt) = min
Y I(s)

Z 1

0

ds
p
KIJY I (s)Y J (s). (4.84)

Now, we have essentially the problem of computing complexity in terms of the information

that comes from the Lie algebra g. Next, we are going to consider the complexity between

ground states connected by Bogoliubov transformations in a fermionic field theory. In

special, we are going to focus on the toy model for fermions on a lattice presented in [26].

4.3.1 Free fermions in 1+1

Let us start considering the Dirac Lagrangian in d dimensions

L = ̄ (i�µ@µ �m) , (4.85)

where = †�0 is the adjoint spinor and �µ are the gamma matrices. The conjugate

momentum is given by

⇧ (x) =
L

@ (@0 (x))
= i † (x) , (4.86)

while the Hamiltonian is

H =

Z
dd�1x

⇥
�i ̄�i@i +m ̄

⇤
. (4.87)

51

Let us focus on Majorana fermions in 1 + 1 dimensions, which allows us to consider a

purely imaginary representation for the gamma matrices, namely

�0 =

0 �i
i 0

!
, �1 =

0 i

i 0

!
, (4.88)

while our Majorana spinor can be written as

 =

 1

 2

!
, (4.89)

where the two spinor components 1 and 2 are real Grassmann variables. It is possible

to rewrite the Hamiltonian (4.87) in terms of the spinor components, namely

H =

Z
dx

⇥
�i

�
 1@x

1 � 2@x
2
�
� im

⇥
 1, 2

⇤⇤
. (4.90)

By defining the complex Grassmann variables

 =
 1 � i 2

p
2

, † =
 1 + i 2

p
2

, (4.91)

the Hamiltonian becomes

H =

Z
dx

⇥
�i

�
 @x + †@x

†�+m
⇥
 †,

⇤⇤
. (4.92)

We can regulate this Hamiltonian by placing it on a lattice with spacing �. As a

result, we obtain

H =
N�1X

n=0

h
�i

⇣
 n n+1 +

†
n
 †

n+1

⌘
+ !

⇥
 †

n
, n

⇤i
, (4.93)

where ! = �m. Now, considering periodic boundary conditions n = n+N , the discrete

Fourier transform is

 n =
1p
N

N�1X

k=0

 ke
2⇡ink/N (4.94)

and its inverse transformation

 k =
1p
N

N�1X

n=0

 ne
�2⇡ink/N . (4.95)

From the canonical quantization conditions

�
 n,

†
m

= �nm, { n, m} =

�
 †

n
, †

m

= 0, (4.96)

52

we obtain n
 k,

†
k0

o
= �kk0 , { k, k0} =

n
 †

k
, †

k0

o
= 0, (4.97)

which is the well-known algebra of the creation and annihilation operators. By placing

(4.94) in H, we obtain that

H =
N�1X

k=0

h
�i

⇣
 k �ke

�2⇡ik/N + †
k
 †

�k
e2⇡ik/N

⌘
+ !

h
 †

k
, k

ii
. (4.98)

From the fact that k = k+N , it is possible to rearrange the Hamiltonian in such way

that

H = !
h
 †

0, 0

i
+

N�1
2X

k=1

h
!
h
 †

N�k
, N�k

i
+ !

h
 †

k
, k

i
+ g (k)

⇣
 †

k
 †

N�k
� k N�k

⌘i
,

(4.99)

where

g (k) = 2 sin

✓
2⇡ik

N

◆
. (4.100)

Lastly, it is possible to redefine the variables in H as

ak = k, a†
k
= †

k
,

bk = N�k, b†
k
= †

N�k
, (4.101)

leading us to a interesting expression for H, namely

H =

N�1
2X

k=1

Hk + !
h
 †

0, 0

i
, (4.102)

with

Hk = !
h
b†
k
, bk

i
+ !

h
a†
k
, ak

i
+ g (k)

⇣
a†
k
b†
k
� akbk

⌘
. (4.103)

For each mode k, we have a Hamiltonian Hk that describes two coupled fermionic os-

cillators. This allow us to consider the complexity of a single pair of coupled fermionic

oscillators, in such way that will be possible to generalize the result for the entire lattice.

4.3.2 Coupled fermionic oscillators

Consider two coupled fermionic oscillators, whose Hamiltonian is given by

H = !
⇥
b†, b

⇤
+ !

⇥
a†, a

⇤
+ g

�
a†b† � ab

�
. (4.104)

53

Let us consider the Bogoliubov transformations

A = cos ✓a+ sin ✓b†,

A† = cos ✓a† + sin ✓b,

B = cos ✓b� sin ✓a†,

B† = cos ✓b† � sin ✓a, (4.105)

and the inversion transformations

a = cos ✓A� sin ✓B†,

a† = cos ✓A† � sin ✓B,

b = cos ✓B + sin ✓A†,

b† = cos ✓B† + sin ✓A, (4.106)

which preserve the anti-commutation relations, in such way that

H =
h
! cos (2✓) +

g

2
sin (2✓)

i �⇥
A†, A

⇤
+
⇥
B†, B

⇤�
+
h
! sin (2✓)� g

2
cos (2✓)

i �
[A,B]�

⇥
A†, B†⇤� .

(4.107)

To obtain a diagonal Hamiltonian, we need to set the transformation parameters in order

to cancel the second term in (4.107), namely

tan (2✓) =
g

2!
. (4.108)

As a direct consequence

cos (2✓) =
2!p

4!2 + g2
, sin (2✓) =

gp
4!2 + g2

, (4.109)

resulting in

H = �
�⇥
A†, A

⇤
+
⇥
B†, B

⇤�
, (4.110)

where

� =
1

2

p
4!2 + g2. (4.111)

Similarly to the Fubini-Study case, the fact that the new vacuum |⌦i has no

particles provides the following recurrence condition:

�
A†A� B†B

�
|⌦i =

�
a†a� b†b

�
|⌦i = 0. (4.112)

The above expression shows that |⌦i has the same number of particles and anti-particles

created by a† and b†, respectively. Then, the decomposition of |⌦i in the old basis is given

54

by

|⌦i = C00 |00i+ C11 |11i . (4.113)

By applying A and B on |⌦i, we obtain the coe�cients ↵ and �, namely

|⌦i = cos ✓ |00i+ i sin ✓ |11i . (4.114)

Now, let us take advantage of the fact that our system lives in a four-dimensional Hilbert

space H2 ⌦H2, allowing us to choose

|0i =

1

0

!
, |1i =

0

1

!
, (4.115)

in such way that

|00i =

0

BBBB@

1

0

0

0

1

CCCCA
, |11i =

0

BBBB@

0

0

0

1

1

CCCCA
, |01i =

0

BBBB@

0

1

0

1

1

CCCCA
, |10i =

0

BBBB@

0

0

1

0

1

CCCCA
. (4.116)

In this matrix representation, the vacuum |⌦i has the form

|⌦i =

0

BBBB@

cos ✓

0

0

i sin ✓

1

CCCCA
= U(4⇥4)

0

BBBB@

1

0

0

0

1

CCCCA
, (4.117)

where

U(4⇥4) =

0

BBBB@

cos ✓ 0 0 i sin ✓

0 cos ✓ 0 0

0 0 cos ✓ 0

i sin ✓ 0 0 cos ✓

1

CCCCA
. (4.118)

Nevertheless, the operator U changes only the first and fourth component of |00i, in such

way that we can consider this problem using 2⇥ 2 matrices, namely

cos ✓

i sin ✓

!
= U(2⇥2)

1

0

!
. (4.119)

Then, the complexity of |⌦i will be computed considering a 2⇥2 unitary matrix.

Actually, it is possible to extract the U (1) phase eiy and consider that U (s) 2 U (1) ⇥

55

SU (2), which has the following general form

U (s) = eiy(s)

↵ (s) ��⇤ (s)

� (s) ↵⇤ (s)

!
, |↵|2 + |�|2 = 1, (4.120)

where ↵, � 2 C. Another way to express U (s) is by considering ↵, � as ↵ = a + ib and

� = c+ id, in such way that

U = eiy

a+ ib �c+ id

c+ id a� bi

!
, (4.121)

with

a2 + b2 + c2 + d2 = 1. (4.122)

In special, the expression right above is the equation of a sphere S3, which allow us to

represent U as a sphere.3 As a result, we obtain

U = eiy

cos ⇢ cos ⌧ + i sin� sin ⇢ cos� sin ⇢+ i cos ⇢ sin ⌧

i cos ⇢ sin ⌧ � cos� sin ⇢ cos ⇢ cos ⌧ � i sin� sin ⇢

!
, (4.123)

where y,�, ⌧ 2 [0, 2⇡) and ⇢ 2 [0, ⇡/2]. Once we have the operator space, it is time to

consider the intermediate states | (s)i = U (s) |00i, where U (s) is given by (4.123). Also,

it is known that the generators of U (2) can be taken as

L0 = iI2, Li = i�i, (4.124)

where I2 is the identity in two dimensions and �i are the Pauli matrices.4 Then, the

commutation relations between the generators are

[Li, Lj] = �2"kijLk, [L0, Li] = 0, (4.125)

which provide us the following form for the Cartan-Killing metric (4.79):

KIJ = �IJ . (4.126)

As a consequence, it is possible to solve (4.81) in order to obtain the control functions

YI (s) and the cost function (4.83), namely

Y I (s) =
1

2
Tr

⇥
(@sU (s))U�1 (s)LI

⇤
(4.127)

3
Here, a and b are not any kind of annihilation operators, just real variables that we are considering

to express the complex parameter ↵.
4
For the generators of U (2), let us consider I = 0, 1, 2, 3, while i = 1, 2, 3.

56

and

D (U) =

Z 1

0

ds
p
�IJY I (s)Y J (s), (4.128)

where U (s) is the one shown in (4.123). By computing explicitly (4.128), we obtain that

D (U) =

Z 1

0

ds
q

(⇢0)2 + cos2 ⇢ (⌧ 0)2 + sin2 ⇢ (�0)2 + (y0)2, (4.129)

where ⇢0 refers to the derivative with respect to the curve parameter.

The expression above is the cost function for any operator U 2 U (2). However,

if we want the complexity of |⌦i, we need to find the optimal path in the y, ⇢, ⌧ and �

that minimizes (4.129). Then, the geodesic equations are

y00 = 0,

⇢00 � sin ⇢ cos ⇢�02 + sin ⇢ cos ⇢⌧ 02 = 0,

⌧ 00 � 2 tan ⇢⇢0⌧ 0 = 0,

�00 + 2 cot ⇢�0⇢0 = 0. (4.130)

Instead to solve these equations, we can take advantage to the fact that the metric in

(4.129) have at least three Killing vectors @

@y
, @

@�
and @

@⌧
, in such way that

d

ds

✓
kµ

dxµ

ds

◆
= 0, (4.131)

where xµ (s) = (⌧ (s) , y (s) ,� (s) , ⇢ (s)). Then, we obtain three constants of motion

y0 = c1,

cos2 ⇢⌧ 0 = c2,

sin2 ⇢�0 = c3, (4.132)

with c1, c2 and c3 being constants to be defined. The equations provided by the constants

of motion seem more treatable than the ones in (4.130).

The next step is to consider the boundary conditions. At s = 0, we have that

U (0) = I, which lead us to arrange the coordinates y, ⇢, ⌧ and � in such way that the

U (s) in (4.123) at s = 0 becomes the identity. As a result, we obtain that the initial

vector xµ (0) is

⌧ (0) = 0, y (0) = 0, � (0) = �0, ⇢ (0) = 0. (4.133)

For the boundary conditions at s = 1, we first need to figure out what is the matrix that

57

accomplish the relation shown in (4.119). One possibility is

U (1) =

cos ✓ i sin ✓e�i�

i sin ✓ cos ✓e�i�

!
, (4.134)

where � is an arbitrary phase with � 2 [�⇡, ⇡). Considering the U (1), we need to arrange

the coordinates xµ again so that U (s) in (4.123) matches (4.134). Then, we obtain that

⌧ (1) = ✓, y (1) = ��
2
, � (1) =

⇡

2
� ✓, ⇢ (1) =

�

2
. (4.135)

We would hope to solve the equations in (4.130) with the help of (4.132). However,

what happens is that the equation for � is trivially solved, which makes it impossible to

determinate � (s). For the other coordinates, we have

y (s) = ��
2
s, ⇢ (s) =

�

2
s, ⌧ (s) = ✓s, (4.136)

in such way that

D (Uopt) =

Z 1

0

ds

r⇣�
2

⌘2

+ cos2
⇣�
2

⌘
✓2 + sin2

⇣�
2

⌘
(�0)2 +

⇣�
2

⌘2

. (4.137)

However, since � is an arbitrary phase, it is clear that if we set it to be zero, we will

obtain a lower value for the depth, namely

C = D (Uopt) =
1

2
arctan

⇣ g

2!

⌘
, (4.138)

where we used equation (4.108) in order to obtain the answer in terms of the Hamiltonian

parameters. The expression right above is the complexity of the Bogoliubov transformed

ground state |⌦i for a system of two coupled fermionic oscillators. However, the Hamil-

tonian in (4.102) describes a chain of N/2 coupled fermionic oscillators. For each value

of k we have a di↵erent pair of coupled oscillators. Also, there is not any mix between

di↵erent k’s in the coupling term (4.102), which means that the Hilbert space is of the

form H =
QN�1

2
k=1 ⌦Hk. Once the system is completely decoupled between di↵erent values

of k, the Bogoliubov transformations preserve such feature. As a consequence, the total

new vacuum |⌦T i after we perform the Bogoliubov transformations on each k�oscillator,
will be |⌦T i =

QN�1
2

k=1 ⌦ |⌦ki. Finally, the total complexity of the process will be sum of

the complexity of each |⌦ki, namely

C (|⌦T i) =
N�1

2X

n=1

1

2
arctan

✓
g (k)

2!

◆
, g (k) = 2 sin

✓
2⇡k

N

◆
. (4.139)

The above result is not so illuminating than the one obtained for the complex

58

scalar field case (4.72). The Bogoliubov transformations applied in this case do not

include time, which means that we are not in position to perform some analysis about the

time behavior of the complexity. However, in this example, we have demonstrated the

procedure to compute complexity for a many-body system step by step. Despite the fact

that original discussion was about complexity in QFT, the procedure described above is

essentially the same if we don’t want to place the QFT on a lattice.

4.4 Complexity of operators

In the previous sections the main properties of the so-called complexity of states

were presented, as well as two examples of applications. The core of this definition of

complexity is to provide a quantity related to the reference state and the target state. In

this sense, the result of the computation is highly dependent on the choice of such states.

This could not be di↵erent since we are measuring the complexity between two states of

interest. On the other hand, the complexity of operators, that was widely discussed in

[51, 52], essentially measures the complexity of the time evolution operator

U(t) = e�iHt, (4.140)

where H is the Hamiltonian of system. At this point, the first main di↵erence between

the two approaches of complexity appears. First of all, the time evolution operator U(t)

is a crucial piece of information for the study of quantum systems. This operators is

responsible for the time evolution of the quantum system, implying that the complexity

associated with this operator will carry a direct dependence of time, allowing us to study

the time evolution of the complexity itself. Second, while the complexity of states is

highly dependent on the choices of reference and target state, the complexity of operators

is interested on the time evolution operator, which is an operator relevant for any quantum

system. Thus, the complexity of operators seems to have a major degree of generality

in comparison with the complexity of states since the time evolution operator is unique

given the Hamiltonian of the system.

In order to present the main concepts related to complexity of operators, it is im-

portant to highlight that both types of complexity share similar mathematical objects and

ideas, despite their conceptual di↵erences. Because of these similarities, the presentation

of some objects can seem repetitive, however, it is important to clarify that even similar

objects will have di↵erent uses depending of which complexity we are talking about.

Consider that we are handling a system that is composed by L lattice sites where

we can have bosonic or fermionic degrees of freedom. Then, the Hilbert space of this H

59

system has the following tensor factorization

H = CN ⌦ CN ⌦ · · ·⌦ CN , (4.141)

where N is the number of bosonic or fermionic degrees of freedom on each site. Once we

are talking about operator complexity, it is important to define the operator space U that

acts on the Hilbert space H, that is

U(H) = SU(NL). (4.142)

For example, if our system is a spin chain with two sites, then the operator space is SU(4).

The operator space is a key concept in the complexity of operators. Essentially, as we are

going to see soon, the geometry of this space will provide key aspects of the complexity.

In order to study geometrical aspects of SU(NL), it is necessary that we choose

a basis for the Lie algebra of the group. At this point, it is time to discuss the very

important notion for complexity of operators: locality. The idea here is that we need

to classify the generators of the Lie algebra as local or non-local. Another way that

we can refer to these classes of generators is as simple or hard, respectively. Despite of

di↵erent nomenclatures, in quantum computing, it is quite standard to choose some simple

operators as the elementary gates to be used in building circuits. On the other hand, in

the geometric approach, we can pick di↵erent types of operators from the operator space.

As consequence, it is natural to choose a k-local subspace of the Lie algebra of the unitary

group manifold to correspond to simple directions. All the other directions that are not

in the k-local subspace are considered hard directions. As we are going to see in details

soon, the way that we will distinguish simple and hard directions will be by the insertion

of a penalty over the hard directions.

The question now is what are going to be the rule to choose the k-local subspace?

In order to answer this question, let us consider the case of SU(2). It is well known that

we can pick the Pauli matrices

�1 =

0 1

1 0

!
, �2 =

0 �i
i 0

!
, and �3 =

1 0

0 �1

!
(4.143)

as a basis of the SU(2) Lie algebra with commutation relations

[�i, �j] = 2i✏ijk�k. (4.144)

In fact, for the case of one single qubit, the idea of a k-local subspace seems unnecessary.

However, for L � 2, it is possible to build the basis of SU(2L) using the Pauli matrices

60

plus the identity matrix I2, namely

n
I2, �1, �2, �3

o
. (4.145)

For example, considering two qubits (L = 2), from (4.145) it is possible to generate

16 operators via tensor product, once each qubits contributes with 4 matrices. As a

consequence, if we take out the 4⇥4 identity matrix from this list, we obtain the generators

of SU(4), which are given by

Ta = {I2 ⌦ �i, �i ⌦ I2, �i ⌦ �j}, a = 1, . . . , 15 and i, j = 1, . . . , 3. (4.146)

It is possible to repeat this same process for any number of qubits. The total number of

ordered tensor products is (2L)2 � 1, which is precisely the dimension of the Lie algebra

su(2L). In this sense, TA are the generators of su(2L), providing the following commutation

relations

[Ta, Tb] = if c

ab
Tc, (4.147)

where f c

ab
are the structure constants of the Lie algebra. In this sense, the philosophy

related to the complexity of states is quite similar to Nielsen’s approach for complexity

of states: we are going to look for a minimal-length geodesic on SU(NL) with respect to

a right-invariant metric chosen in such way that it penalizes the contribution of non-local

directions for the unitary operators.

The criteria for non-local directions is quite simple. Once the generators of the

Lie algebra will be build as tensor products between individual generators of the su(N),

which represents the generators of the group for individual sites. We can introduce then

a set of matrices t(n)
i

that are composed by the identity matrix IN and the generators

of su(N), where i = 0, 1, 2, . . . , dim(su(N)) and n runs over the number of sites. In

this context, the k-local subspace is composed by all the generators built with at least

k matrices t(n)
i

.5 All the remaining generators will form the non-local subspace, whose

directions will be penalized in such way that these non-local generators will increase the

complexity of the operator more than local generators.

In order to clarify the criteria described right above, let us consider the case of

three qubits (L = 3). In this situation, the matrices t(n)
i

= {I2, �1, �2, �3} can be used

to produce the generators of su(8) as

Ta = t(1)
i
⌦ t(2)

j
⌦ t(3)

k
, (4.148)

where a = 1, 2, 3, . . . , 63 and i = 0, 1, 2, 3. Here, the generators Ta can be organized in

5
In this construction, we will always have a combination with only identity matrices that needs to be

unconsidered in order match the dimension of su(NL
).

61

the following way:

{�i ⌦ I2 ⌦ I2, I2 ⌦ �i ⌦ I2, I2 ⌦ I2 ⌦ �i} 1-local generators,

{�i ⌦ �j ⌦ I2, �i ⌦ I2 ⌦ �j, I2 ⌦ �i ⌦ �j} 2-local generators,

{�i ⌦ �j ⌦ �k} 3-local generators.

In this sense, for the generators shown right above, we can say that local subspace is

generated by the 1-local and 2-local operators, which provide 36 local directions. On the

other hand, the 3-local operators will provide 27 non-local directions. This analysis for

SU(8) explicitly shows what will be the criteria to classify a generator as easy or hard:

any operator that is at most 2-local can be considered as generating an easy direction on

the manifold, which means that no penalization will be applied over this direction. This

choice of criteria comes from quantum computing where the most important gates acts

on one or two qubits at most.

It is important to point that the criteria of locality is arbitrary. However, what

makes sense is that only a small portion of the generators are considered local, otherwise,

the criteria of locality would not make sense if the most part of the generators are con-

sidered local. In the case of three qubits, almost 57% of the generators are local. Such

fact could allow someone to point that the this fact is contradictory with the statement

that most part of the generators should be non-local. The point here is that three qubits

is just a small number. Following our criteria for locality, if we consider a system with L

qubits, the number of 1-local and 2-local operators are given by

N1�local = 3L, (4.149)

N2�local =
9L(L� 1)

2
, (4.150)

respectively. Then, the number of non-local generators (3-local, 4-local, etc.) can be

computed by the di↵erence between the dimension of the Lie algebra 2L � 1 and the

number of local generators (1-local and 2-local). The result is that

Nnon�local = 2L � 3

2
(3L� 1)L� 1. (4.151)

Despite the fact that (4.151) is not that illuminating, if we think on the asymptotic be-

haviour of (4.150) and (4.151) as function of L, the number of local generators grows

polynomially while the growth for the non-local generators are exponential. The conclu-

sion here is that as the dimension of the spin chain increases, the number of non-local

generators eventually will dominate, what is in agreement with the assumption that the

set of local generators should be quite smaller than the non-local set.

62

4.4.1 Complexity and geodesics on the operator space

Similarly to what it was already shown during the explanation of the Nielsen’s

approach for complexity of states, our objective here is to obtain the complexity of U(t)

from the identity operator I through the computation of the geodesic on the operator

space U(H). In this sense, the operators in U(H) can be written in terms of the generators

Ta as

U(s) =
 �P exp

�i

Z
s

0

ds0V a(s0)Ta

�
, (4.152)

where Ta are the generators of the Lie algebra of the group, V a(s) are the velocities

that control the motion of U(s) through the directions provided by Ta and s is the curve

parameter on the geodesic with s 2 [0, 1]. The operator U(s) also satisfies the following

boundary condition:

U(0) = I and U(1) = Utarget, (4.153)

where it is important to emphasize that Utarget = U(t). The metric on U(H) can be

obtained via the Cartan-Killing form

Kab = �f d

ac
f c

bd
, (4.154)

which can provide a positive-definite metric. However, we still need to apply the penal-

ization over the non-local directions. This process can be done by hand directly in the

construction of the metric. Let us start splitting the generators in two groups

Ta = {T↵, T↵̇},

where T↵ refers to all the local generators (1-local, 2-local, 3-local, etc.) and T↵̇ to all the

non-local. The range of ↵ and � will depend on the specific algebra. For example, if the

group manifold is SU(8), which means three qubits, ↵ = 1, 2, . . . , 36 and ↵ = 1, 2, . . . , 27.

Then, the metric of operator space can be modified from the (4.154) as

Gab =

K↵� 0

0 (1 + µ)K
↵̇�̇

!
, (4.155)

where µ is the cost factor that penalizes motion in non-local directions. If we set µ = 0,

we re-obtain the standard case where all the directions will contribute the same amount

for the complexity.

Once we choose the direction that will be penalized, the geodesic on U(H) can

be provided by the Euler-Arnold equation, namely

Gab

dV b

ds
= f c

ab
V bGcdV

d, (4.156)

63

where f C

ab
are the structure constants given in (4.147) and Gcd the metric in (4.154).

Another equation that must be satisfied by U(s) is the well known matrix equation for

the unitary operator
dU(s)

ds
= �iV a(s)TaU(s). (4.157)

Lastly, the complexity is given by the geodesic length between the target unitary operator

Utarget and the identity operator I, that is

C(Utarget) = min

Z 1

0

ds
p

GabV a(s)V b(s). (4.158)

In order to illustrate the entire process describe right above, we are going to consider the

analytical case of one qubit.

4.4.2 Analytical case for one qubit

Considering the case of one qubit, we have the operator space being SU(2), where

the generators of the Lie algebra are the Pauli matrices in (4.143). For this Lie algebra,

the structures constants are f c

ab
= 2✏abd�dc, providing the following Cartan-Killing form:

Kab = �ab. (4.159)

For the case of one qubit there is not a good notion of locality, at least for the Pauli basis.

However, it is possible to consider one generator of the Lie algebra as non-local just to

have at least one non-local direction. In this sense, the metric (4.155) becomes

Gab =

0

B@
1 0 0

0 1 0

0 0 1 + µ

1

CA , (4.160)

where �3 was chosen as the non-local generator.

The next step is to solve the Euler-Arnold equations (4.156), that have the fol-

lowing form for su(2):

dV 1

ds
= 2µV 2V 3, (4.161)

dV 2

ds
= �2µV 1V 3, (4.162)

dV 3

ds
= 0. (4.163)

64

The system of equations displayed right above can be solved by

V1(s) = C1 cos (C3µs) + C2 sin (C3µs), (4.164)

V2(s) = C2 cos (C3µs)� C1 sin (C3µs), (4.165)

V3(s) =
C3

2
, (4.166)

where C1, C2 and C3 are integration constant that need to be fixed. Once we have solved

the geodesic equation for all the Va, which allows us to obtain the tangent vector at any

point along the geodesic, it is now possible to compute the complexity between U(0) = I
and U(1) = Utarget, namely

C =

r
(C1)2 + (C2)2 +

1 + µ

4
(C3)2. (4.167)

The first interesting characteristic of the complexity is that it is s-independent, which leads

us to the following conclusion: the complexity depends only of the initial configuration of

the tangent vector, provided by C1, C2 e C3, and the cost factor µ.

Now, the task is to compute the values of the integration constants. It can be

achieved by imposing the boundary condition U(1) = Utarget, where in our case Utarget =

e�iHt. However, to impose the boundary conditions, we need first to obtain the expression

of U(s) in terms of tangent vectors Va. From (4.157), using the information from (4.166),

we obtain that

U(s) =

0

@
�(s)

⇣
cos(s!)� iC3(µ+1) sin(s!)

2!

⌘
� (iC1+C2)�(s) sin(s!)

!

(C2�iC1)�(�s) sin(s!)
!

�(�s)
⇣
cos(s!) + iC3(µ+1) sin(s!)

2!

⌘

1

A ,

(4.168)

where

�(s) = e
iC3µs

2 . (4.169)

The constants Ci are inside this new parameter ! that can be interpreted as a character-

istic frequency of the systems, namely

!2 = (C1)
2 + (C2)

2 +
(1 + µ)2

4
(C3)

2. (4.170)

The expression for U(s) in (4.168) provides the set of unitary on the path between

the identity matrix (s = 0) and the target operator (s = 1). It is already known that the

target operator is the time evolution operator U(t). However, nothing was told about the

Hamiltonian so far. For one single qubit, without losing generality, we can consider an

Hamiltonian like

H = J1T1 + J2T2 + J3T3, (4.171)

65

2 4 6 8 10 12
Time

0.5

1.0

1.5

2.0

2.5

3.0

Complexity

Figure 4.2: Complexity as function of time for J1 = 1, J2 = 2, J3 = 0 and µ = 10.

The complexity has an initial linear growth, reaching a maximum value and than keeps

oscillating linearly.

where J1, J2 and J3 are projections of H in the directions generated by T1, T2 and T3,

respectively. Once H is known, we are able to perform the match between U(s = 1) and

U(t). Such process results in a system of three equations that can be solved numerically.6

As a result, we obtain the value of the integration constants and place them in 4.167,

obtaining this way the time dependent complexity numerically. In Figure 4.2 it is shown

the behavior of complexity for a certain combination of the system parameters. The linear

oscillation of the complexity is quite similar to what was presented in [53]. Such behavior

is due to the fact that the group SU(2) ' S3. After a certain time, the minimal length

starts to connect two antipodal points of the sphere. Then, the minimal length switches

direction, shrinking until become zero again.

In principle, the formalism presented in this section can be applied for bigger

lattices. The problem is that the number of directions on the group manifold increases fast.

For example, considering two qubits, the number of generators is 15, which means this

same number of coupled di↵erential equations from (4.156). Even solving these di↵erential

equations, there is also the problem of setting the integration constants. Instead of find

the solutions of (4.156), the integration constants and consequently the complexity, it is

possible to explore the behavior of the complexity at early times by analyzing solutions

close to the so-called linear geodesic.

6
It was used the function FindRoot from Mathematica in order to find the value of the constants C1,

C2 and C3 that satisfies the matrix equation U(1) = Utarget.

66

4.4.3 The linear geodesic

Before we get into the discussion about the linear geodesic, it is important to

point out that the most di�cult part of solving the equations (4.156) is in the cost factor

µ. If we set this parameter equal zero, which is called bi-invariant case, the equations in

(4.156) become

Gab

dV b

ds
= fabcV

bV c, (4.172)

where it was considered that for µ = 0 the metric Gab reduced to Euclidean metric �ab. In

situations where fabc is completely anti-symmetric, the right hand side of (4.172) becomes

zero, implying that
dV a

ds
= 0. (4.173)

The above equation can be easily solved by V a = Ca, where the integration constants Ca

can be fixed by applying the boundary conditions (4.153) with Utarget being e�iHt. Then,

as a result we obtain

CaTa = Ht+ 2⇡k, k 2 Z. (4.174)

With the above result, the complexity in (4.158) can be rewritten as

C(t) = min
kn

vuut 1

NL

NLX

n=1

(Ent+ 2⇡kn)
2, (4.175)

where En are the energy eigenstates of the Hamiltonian, {k1, . . . , kNL} are integers that

sum to zero due to the traceless condition of V (s) and N and L are the number of bosonic

or fermionic degrees of freedom on each site and lattices of the chain, respectively.

For the cases where (4.156) cannot be easily solved, the linear geodesic approach

becomes useful. This approximation consists in the assumption that at early times the

complexity grows linearly through the local directions generated by T↵. Eventually, the

non-local directions will start to take part of the process, which could be understood as

the limit of the linear geodesic. Mathematically speaking, the velocities in this case are

given by

V ↵ = v↵ and V ↵̇ = 0, (4.176)

where v↵ are constants to be fixed by the boundary conditions.

It was pointed in (4.171) a specific decomposition of H over the Ta generators for

the case of one qubit. However, such decomposition can be generalized for any system,

namely

H = JaTb, Ja =
1

NL
Tr (HT a) . (4.177)

Here, we can make the assumption that quadratic Hamiltonians have decomposition only

over local directions, since non-local direction could be related with high order terms of

67

the theory. In this sense, for the case of quadratic Hamiltonians, the v↵ constants become

v↵ = J↵t. (4.178)

Once we assumed that the linear geodesic is the correct minimum, the complexity acquires

a similar, but simpler, form than (4.175), namely

C(t) = t

vuut 1

NL

NLX

n=1

E2
n
. (4.179)

The expression above presents a linear growth for the complexity, agreeing with holo-

graphic calculations [11, 12, 18]. The next step is to understand how far we can go

with the assumption that the linear geodesic is the appropriate behavior of the minimum

related to the complexity of the system.

4.5 Conjugate Points

The linear geodesic is quite adequate to describe the early time behavior of com-

plexity. However, it is well-known that there is limit for the linear growth of complexity,

which saturates to its maximum at t ⇠ eN . After such time, the complexity fluctuates

around its maximum value [54]. As a consequence, the linear geodesic cannot be the cor-

rect minimum indefinitely. At some point, another curve on the group manifold will take

the place of correct minimum. In order to figure out this process for the linear geodesic,

we can study the so-called conjugate points on U . Let V (s) be the geodesic determined by

the Euler-Arnold equations (4.156). As a consequence, we can think on U(s) : [0, 1]! U
as the geodesic on the group manifold. That said, if there exists a variation � through the

geodesic curve, namely U(⌘, s) : [��, �]⇥ [0, 1]! U , such that U(⌘, s) obeys the geodesic

equation at first order in ⌘, U(0, s) = U(s), U(⌘, 0) = I and U(⌘, 1) = U(1) + O(⌘2).

Conjugate points along a geodesic segment mean that the segment is a saddle point, not

a minimum. Therefore, conjugate points are an obstruction to a geodesic segment being

locally minimizing.

In order to find conjugate points, we look for a velocity perturbation �V (s), also

called a Jacobi field, which obeys a first order di↵erential equation known as the Jacobi

equation, with adequate boundary conditions. As a direct consequence of the perturbation

�V (s), there will be a first order change �U in the target unitary operator. Setting the

�U perturbation to zero will provide a boundary condition for the Jacobi equation, which

is equivalent to find a conjugate point.

The Jacobi equation, in this context, is obtained by studying the first order

correction of the Euler-Arnold equation, around the original unperturbed geodesic. In

68

our case, the original geodesic is the linear one V = Ht, which will receive a velocity

perturbation

Ht! Ht+ �V (s). (4.180)

If we place the right above perturbation in Euler-Arnold equation (4.156), we obtain the

Jacobi equations as

i
d�VL(s)

ds
= µt[H, �VNL(s)]L,

i
d�VNL(s)

ds
=

µt

1 + µ
[H, �VNL(s)]NL, (4.181)

where the subscripts L (local) and NL (non-local) denote projection into the local (AL)

and non-local (ANL) subspace, namely

�VL =
1

NL

X

↵

Tr (�V T ↵)T↵,

�VNL =
1

NL

X

↵̇

Tr
�
�V T ↵̇

�
T↵̇, (4.182)

where T↵ and T↵̇ are bases for the local and non-local subspace, respectively.

4.5.1 Solution of the Jacobi equations

In order to solve the Jacobi equations (4.181), notice that in the second equation

there is the commutator of a non-local projection �VNL with the Hamiltonian, projected

over the non-local subspace. Such commutator can be generalized as a super-operator

C : ANL ! ANL, defined as

C(X) = [H,X]NL, (4.183)

where X is a non-local operator. The introduction of the super-operator C(X) will be

useful in order to solve the non-local equation in (4.181). Consider that exists a new basis

T̃↵̇ for the non-local subspace where C(T̃↵̇) is diagonal, namely

C(T̃↵̇) = [H, T̃↵̇]NL = �↵̇T̃↵̇, (4.184)

where it is possible to write �VNL =
P

↵̇
�Ṽ ↵̇T̃↵̇ in the tilde basis. With the decomposition

(4.184), the non-local equations in (4.181) become

i
d�Ṽ ↵̇

ds
=

µt

1 + µ
�↵̇�Ṽ

↵̇, (4.185)

69

with no summation over ↵̇ on the right-hand side. The solution of the above equation is

given by

�Ṽ ↵̇(s) = �Ṽ ↵̇(0) exp

✓
�iµ�↵̇s
1 + µ

◆
, (4.186)

where �Ṽ ↵̇(0) are integration constants. If we place the above solution in the local equa-

tion of (4.181), we obtain that

i
d�VL(s)

ds
= µt

X

↵̇

�Ṽ ↵̇(0) exp

✓
�iµ�↵̇s
1 + µ

◆
[H, T̃↵̇]L, (4.187)

whose the solution is

�VL(s) = �VL(0)� iµt
X

↵̇

�Ṽ ↵̇(0)
exp

⇣
�iµt�↵̇s

1+µ

⌘
� 1

�iµt�↵̇s

1+µ

[H, T̃↵̇]L. (4.188)

In the above solution, �VL(0) are integration constants due the local Jacobi equation.

Notice that the solutions in (4.186) and (4.188) depend on the existence of the

tilde basis {T̃↵̇}. It is possible to obtain this basis from (4.184) assuming that there exists

a relation between the basis {T̃↵̇} and {T↵̇} of the form

T̃↵̇ = ⇤ �̇

↵̇
T↵̇, (4.189)

where ⇤ �̇

↵̇
is obtained from the relation

⇤ �̇

↵̇

⇣
iJ↵f ⇢̇

↵�̇

⌘
⇤⇤ �̇
⇢̇

= D �̇

↵̇
. (4.190)

In the right above equation, D �̇

↵̇
is a diagonal matrix with the �↵̇ in its diagonal. In

other words, the ⇤ �̇

↵̇
will provide to us the basis {T̃↵̇} as well as the eigenvalues of the

super-operator C(T̃↵̇).

4.5.2 Conjugate time

The idea is to use the solutions (4.186) and (4.188) to determine the appear-

ance of the conjugate point. This can be accomplished by understanding the first order

perturbation to the unitary U(1) provided by �V , namely

U(1) = P exp

✓
�i

Z 1

0

ds(Ht+ �V (s))

◆
= e�iHt � i�U(1), (4.191)

where �U(1) is the first order term from the expansion of U(1) in a Dyson series,

U�1�U(1) =

Z 1

0

dseiHts�V (s)e�iHt. (4.192)

70

Considering the expression right above, a conjugate point is obtained from the condition

U�1�U(1) = 0. (4.193)

If we place the solutions (4.186) and (4.188) in (4.192), it is possible to consider

U�1�U(1) as a super-operator Y(µ) : �V (0)! U�1�U(1), whose the action is given by

Y(µ) (�V (0)) =

Z 1

0

dseiHts

�VL(0)� iµt

X

↵̇

�Ṽ ↵̇(0)
exp

⇣
�iµt�↵̇s

1+µ

⌘
� 1

�iµt�↵̇s

1+µ

[H, T̃↵̇]L

+ �Ṽ ↵̇(0) exp

✓
�iµ�↵̇s
1 + µ

◆�
e�iHts. (4.194)

In this super-operator language, a conjugate point corresponds to a zero mode of Y(µ). In

general, the zero mode conditions will provide an equation of the form �(µ, g1, . . . , gn, t) =

0, where g1, . . . , gn are the Hamiltonian parameters. If it is possible to solve this equation

for t, either analytically or numerically, we obtain the so-called conjugate time tc, which

is the instant of time where the first conjugate point appears.

4.5.3 Bi-invariant case

Finding the zero modes of Y(µ) for general values of µ is analytically di�cult. It

can be done numerically using the method proposed in [55], but it still is a hard process.

On the other hand, the bi-invariant case (µ = 0) is much simpler, allowing us to obtain

the conjugate points exactly. For the bi-invariant case, the expression (4.194) becomes

Y(0)(�V (0)) =

Z 1

0

dseiHts�V (0)e�iHt, (4.195)

where this simplified form is due the fact that µ = 0 all generators are considered to be

local (or easy).

It is not di�cult to realize that the eigenoperators of Y(0) are the energy eigen-

states projectors |mi hn|. Placing these projectors in (4.195), we obtain that

Y(0)(|mi hn|) = �mn(t) |mi hn| , �mn(t) =
ei�mnt � 1

i�mnt
, (4.196)

where �mn(t) are the eigenvalues of Y(0) and �mn = Em � En. If we impose the zero

mode condition for �mn(t), we obtain a family of conjugate points that are given by the

condition

tmn =
2⇡

�mn
. (4.197)

The linear geodesic develops a number of conjugate points that is as larger as the number

of eigenstates of the Hamiltonian, with Em 6= En, at the times given by (4.197). We are

71

interested on the first time at the first conjugate points appears. Then, the conjugate

time tc is given by

tc =
2⇡

Emax � Emin

, (4.198)

where Emax and Emin corresponds to the higher and lower eigenvalues, respectively.

The analysis of the first conjugate point is relevant for understand how long it

takes to the complexity saturates. It is expected that tc is sensitive to changes on the

Hamiltonian parameters, which is a promising connection between the physical behavior

of the system and the abstract geometry of the group manifold.

4.5.4 Perturbative case

In the bi-invariant case, the conjugate points appear for certain times tmn that

are given by (4.197). It was already pointed out that it could be a di�cult task to find a

similar rule for the general case (µ 6= 0). However, instead of making (µ = 0), it is possible

to consider small values of µ and perform some perturbation theory for this parameter.

Small values of µ essentially mean that there is still a di↵erentiation between local and

non-local directions, however, in terms of penalization of choosing non-local generators,

this di↵erence is quite small, more precisely speaking, µ⌧ 1.

We can start rewriting the velocity perturbation �V (s) as

�V (s) = �V (0)(s) + µ�V (1)(s) + µ2�V (2)(s) +O(µ3). (4.199)

If we place (4.199) in (4.181), it is possible to solve the Jacobi equation order to order in

µ. The zero-th order equation is quite simple,

d

ds
�V (0)(s) = 0 ! �V (0)(s) = �V (0)(0), (4.200)

which is nothing less than the already known bi-invariant case for the conjugate points

analysis. The new results will come from the first order correction, namely

d

ds
�V (1)

L
(s) = �it[H, �V (0)

NL
(0)]L, (4.201)

d

ds
�V (1)

NL
(s) = �it[H, �V (0)

NL
(0)]NL, (4.202)

whose the solution is

�V (1)(s) = �V (1)(0)� ist[H, �V (0)
NL

(0)]. (4.203)

If we place (4.200) and (4.202) together, we obtain the full solution of �V (s) up to first

order on µ, which is

�V (s) = �V (0)(0) + µ
⇣
�V (1)(0)� ist[H, �V (0)

NL
(0)]

⌘
. (4.204)

72

Once we have the perturbative solution, it is time to figure out some relation

for the development of conjugate points. In this sense, we could try to obtain a family

of conjugate points that are similar to the ones provided by (4.197). It can be done by

finding the zero modes of Y(µ) perturbatively, order to order, namely

hm|Y(µ)(�V (s))|ni =
Z 1

0

dseits�mn

hm|�V (0)(0)|ni

+ µhm|
⇣
�V (1)(0)� ist�mn�V

(0)
NL

(0)
⌘
|ni

�
, (4.205)

where we are considering the matrix elements of Y(µ) in order to make the result simpler.

The next step is to perform the integral in (4.205), resulting in

hm|Y(µ)(�V (s))|ni = �nm(t)hm|
�
�V (0)(0) + V (1)(0)µ|ni

�

� µt
@�nm(t)

@t
hm|�V (0)

NL
(0)|ni. (4.206)

It is reasonable to expect that the times tmn, for this perturbative case, have the form

tmn = t(0)
mn

+ µt(1)
mn

+ µ2t(2)
mn

+O(µ3), (4.207)

where t(0)mn are nothing less than the set of bi-invariant conjugate points and t(n)mn for n � 1

are the higher order corrections. By placing (4.207) in (4.206) and imposing the zero

modes condition, we obtain that the first order correction for tmn is

t(1)
mn

= t(0)
mn

hm|�V (0)
NL

(0)|ni
hm|�V (0)(0)|ni . (4.208)

From the bi-invariant case, it is already known that �V (0)(0) = |mi hn|, which can provide

a significant simplification on the denominator of (4.208). Then, the final expression for

the times tmn is

tmn = t(0)
mn

⇣
1 + µhm|�V (0)

NL
(0)|ni

⌘
. (4.209)

For the perturbative case, the first order correction depends on the matrix ele-

ments of the non-local projection of |mi hn|, which is not trivial to compute. Additionally,

the so-called conjugate time tc corresponds to the lesser value provided by (4.209).

4.6 Complexity of operators and Phase Transitions

Our goal here is to lay hands on the tools developed so far to study the relation

between complexity of states and quantum phase transitions. There are already some

works where the authors explore phase transitions in the context of complexity of states

73

[42, 43, 44], however, complexity of states was not duly explored on this direction. In a

nutshell, phase transitions represent abrupt changes that occur in the equilibrium state of

the system, at specific points, due the change of certain parameters. Thermal (classical)

phase transitions occur at a specific temperature Tc, named critical temperature. On

the other hand, quantum phase transitions occur at zero temperature due the change

of some parameter � which measures the relative weight of two competing terms in an

Hamiltonian. At certain critical value �c, the ground state of the system changes abruptly.

The investigation here will consist on realizing if the complexity toolbox is capable

to ‘feel’ a quantum phase transition. It is expected that two quantities manage to do such

task: the complexity by itself and the conjugate time tc. In order to accomplish this task,

the system that will be considered is the one-dimensional XX-Model. The choice of this

system is due to two facts: 1) This model was exhaustively studied, which means that are

many already known results about it; 2) There is a connections between the XX-Model

and the Bose-Hubbard Model (BHM) [56] in the so-called hard-core boson limit [57].

The BHM is a bosonic model on periodic chain with L sites, whose Hamiltonian

is

H = �J
LX

i=1

⇣
a†
i
ai+1 + aia

†
i+1

⌘
+

U

2

LX

i=1

ni(ni � 1), ni = a†
i
ai, (4.210)

where the first term is the kinetic, or hopping, term that controls the jump of particles

between adjacent sites, while the second term is the repulsive local potential (U > 0) term

at a single site due to particle-particle interaction. What is interesting in our context is

the fact that the BHM displays a quantum phase transition between a superfluid phase

and a Mott insulator phase as one changes the ratio U/J of the parameters.

The problem here is that the BHM is not a model of qubits: at the L sites of

the chain it is possible to have an arbitrary number of bosons, instead of just the two

values of the qubit. However, in the limit of large U , namely the strong coupling limit or

hard-core boson limit, we can assume that there are no many fluctuation on the number

of bosons, which is equivalent to have either 0 or 1 particle at each site. Consequently,

the model can be mapped to an SU(2) spin-1/2 model, which is the XX-Model that we

are going to discuss next.

4.6.1 XX-Model

The XX-Model makes part of a important class of exactly soluble models that

are very important in condensed matter physics and statistical mechanics. These models

can be put together in what we call of XY-Model. Consider a one-dimensional spin chain

with L sites, each described by Pauli operators �↵
a
, with a = 1, . . . , L and ↵ 2 {x, y, z}.

74

The general Hamiltonian for the XY-Model is given by

H = �
LX

i=1

⇥
Jx�

x

i
�x

i+1 + Jx�
y

i
�y

i+1 + h�z

i

⇤
, (4.211)

where the first two terms describe a nearest-neighbor interaction in the xy plane, while

the last one describes a magnetic field pointing in the z direction. The model is called

XY because the interaction is anisotropic, which is usually defined as

Jx = J

✓
1 + �

2

◆
, Jy = J

✓
1� �
2

◆
, (4.212)

where � 2 [0, 1] is called the anisotropy parameter and J is a constant. If � = 0 the

couplings in the x and y directions become equal and we refer to it, instead, as the

XX-model, namely

H = �
LX

i=1

⇥
J
�
�x

i
�x

i+1 + �y

i
�y

i+1

�
+ h�z

i

⇤
. (4.213)

On the other hand, if � = 1, the y part of the interaction vanishes and we are left with

H = �
LX

i=1

⇥
J�x

i
�x

i+1 + h�z

i

⇤
, (4.214)

which is called transverse field Ising model (TFIM).

There are a lot that we can say about these models, however, we are going to focus

on the quantum phase transition of the XX-Model. In order to analyse such phenomena,

we are going to consider as order parameter the average spin of the system, which we will

refer to as magnetization, namely

m =
1

L

LX

i=1

h�z

i
i, (4.215)

where h�z

i
i is the expected value of �z

i
for the ground state. The magnetization takes

values in the range m 2 [�1, 1], which are the quantum phases of the system. If m = �1,
all spins are downward. On the other hand, if m = 1, all spins are upward.

The magnetization is susceptible to the changes on h/J , like the complexity and

the conjugate time are expected to be. In this sense, our strategy will be to make a

parallel between these three quantities. We want to see if the complexity and tc a similar

sensibility to the changes of h/J than the magnetization.

75

4.6.2 Numerical analysis

We will start with a detailed analysis of three qubits (L = 3) for the XX-Model

in the bi-invariant case (µ = 0), where we have 63 generators with 36 being local and 27

non-local. The XX-Model is an example ofH being purely local, which fits perfectly in the

formalism developed so far. For our model, it is possible to compute the magnetization

and conjugate time tc for three qubits. The result is shown in the Figure 4.3, where we

clearly see the phase transition of the model.

-6 -4 -2 2 4 6
h/J

-1.5

-1.0

-0.5

0.5

1.0

1.5

Bi-invariant case (� = 0)

tc dtc/dt m

Figure 4.3: Comparison between conjugate time, its derivative and magnetization in the

XX-Model for three qubits.

In Figure 4.3, the green curve represents the magnetization m of the model. For

|h/J | > 1.4, all spins are oriented to the same direction (upward or downward), while

for |h/J | < 1.4 we have a no-orientated configuration for the spins. At points where the

magnetization changes abruptly, we observe kinks in the conjugate time tc (blue curve).

These kinks are discontinuities in tc that seems to appear only when the ordering of

spins changes. In order to check if these kinks aren’t numerical errors, we also plotted

the derivative of tc (orange curve), which have notable discontinuities at the same points

than the kinks of tc.

The fact that tc is sensitive to the phase transitions is not a big surprise. It is

known that quantum phase transitions are related to change of the ground state. If we

go back to (4.198), we see that tc is essentially a function of the gap between lowest and

highest energies. When the ground states abruptly changes, so does its energy, implying

a similar change in tc. These changes in energies of the system are better understood

if we take a look at the level crossing of the model, which is shown in Figure 4.4. For

h/J ⇠ 1.4 we see the last crossing for lowest and highest energies. Then, from this point

on, there is no crossing anymore, which corresponds to the upward spin case. A similar

76

e↵ect happens for h/J ⇠ �1.4.

-2 -1 1 2
h/J

-6

-4

-2

2

4

6

En

E1 E2 E3 E4

E5 E6 E7 E8

Figure 4.4: Level crossing of the XX-Model for three qubits.

On the other hand, for µ ⌧ 1, we do not have the kinks of tc so well located

than in the bi-invariant case, as can be seen in Figure 4.5. What happens is a small

displacement of the kinks due the first correction provided by µ. We still have the kinks

close to points where the magnetization changes abruptly, however, it is not safe anymore

to claim that the discontinuities from tc are related to the phase transition.

-4 -2 2 4
h/J

-1.0

-0.5

0.5

1.0

tc, m

� = 0 � = 0.2 � = 0.7 m(h/J)

Figure 4.5: Conjugate time in the perturbative case (µ⌧ 1).

What seems to be case is that the bi-invariant conjugate time provides a good

correspondence with the phase transition of the XX-model. On the other hand, when we

consider the perturbative conjugate point, this correspondence get worse as we increase

µ. It shouldn’t be really surprising because the µ parameter is not in the Hamiltonian,

which means that changing this parameter will not interfere on the energies of the sys-

77

tem. The µ parameter introduces in our problem an anisotropy between simple and hard

directions on the group manifold, which potentially will have some e↵ects on the final

complexity. However, it is missing a connection between µ and some physical quantity of

the model. Some possibility would arise in models with higher order terms where H isn’t

quadratic anymore. These high order terms will be related to non-local generators and a

combination of the coupling constants associated to these terms could be used to build

the dimensionless parameter µ. In this sense, the bi-invariant conjugate time is adequate

for the study of quantum phase transitions in quadratic systems.

Another interesting plot that could be analysed is the bi-invariant complexity

(4.175). For three qubits, the complexity as function of time is shown in Figure 4.6.

Indeed, the complexity saturates at some point, with the time required for the complexity

reaches the peak decreasing as h/J increases. This is evidence that at least the saturation

time is related to the conjugate time. On the other hand, the complexity does not present

a behavior that characterizes some sensibility to the phase transitions. Even the kinks are

not enough in this case, meaning that they probably are e↵ects of an irregular oscillation

due the small number of qubits.

1 2 3 4 5
t

0.5

1.0

1.5

2.0

2.5

3.0

Complexity

h/J = 0.02

h/J = 1.4

h/J = 2

h/J = 4

Figure 4.6: Complexity as function of time for di↵erent values of h/J .

Lastly, it could be pointed that the correspondence between tc and the magne-

tization is just because the small number of qubits. However, it was obtained a similar

result for five qubits, as it is shown in Figure 4.7. The di↵erence here is that are five

kinks instead of three, but still similar to which was obtained in the previous case. Even

so, these kinks are matching the magnetization change, presenting discontinuities on it

derivative.

The increasing of qubits number also improved the behavior of complexity as

function of time, which is shown in Figure 4.8. On this case, the saturation value for C
seems to be almost the same for di↵erent values of h/J . Also, the amplitude of oscillation

after the saturation becomes smaller in comparison to what we obtained for three qubits.

Apparently, increases the number of qubits tends to make the complexity after the satu-

78

-4 -2 2 4
h/J

-1.0

-0.5

0.5

1.0

Conjugate Time tc - 5 qubits

tc dtc/dt m

Figure 4.7: Comparison between conjugate time, its derivative and magnetization in the

XX-Model for five qubits.

ration less dependent of h/J . Saturation time keeps in accordance to the conjugate time

tc, like in the previous case.

0.5 1.0 1.5
t

0.5

1.0

1.5

2.0

Complexity

h/J = 0.5

h/J = 1.5

h/J = 2.5

h/J = 4

Figure 4.8: Saturation of the complexity for five qubits in the XX-Model.

The study of conjugate points related to quantum phase transitions generated

satisfactory results, specially for the bi-invariant case. In order to keep improving these

results, we could keep looking for strategies to increase the number of qubits. The dimen-

sion of matrices grows quite fast as the number of qubits increases, which is a problem that

could be suppressed using di↵erent computational methods or even other techniques to

obtain the spectra of H. Another possible path to improve results would be to consider

the analysis of conjugate points in momentum space, which perhaps is more adequate

since the spin chains in general are studied in momentum space.

79

Final remarks

Since the first works by Susskind [17, 18] about the CA conjecture, a significant

progress on the understanding of holographic complexity was made [23]. This quantity

now is being explored from di↵erent perspectives, specially in the context of quantum me-

chanics, which was one of our goals here. Additionally, it is possible to point more recent

new developments in the studies of complexity called Krylov complexity, which essentially

consists in measuring the spreading of a quantum state in the so-called Krylov basis [58].

Despite the fact that this new proposal to compute complexity is closer to complexity of

states than operators, there is at least one study where the Krylov complexity is used [59]

in the context of phase transitions.

From the holographic complexity point of view, we demonstrate how to apply

the CA conjecture to the MT Model for perturbative solutions of the model, up to order

a2. There is a possible extension of this analysis that would be to consider complexity of

the model at order a4. In this situation, the model presents conformal anomaly. So, the

question would be about e↵ects of the anomaly on the complexity. However, it will be

expected some computational di�culties to handle the model, specially to obtain solutions

for the equations of motion at order a4. Additionally, it will be important to evaluate

these solutions at the horizon and boundary of the AdS space-time, which are important

points in order to compute thermodynamic quantities of the model and complexity as well.

In any case, despite technical di�culties that could appear, computing the computational

complexity for the MT Model at order a4 would be an interesting research project.

The complexity, from the QFT side, seems to be an interesting quantity to study

certain properties of quantum systems. When we considered the complexity of the TFD

state for the charged scalar field theory, we obtained that the time derivative of the com-

plexity has an expression similar to the Lloyd’s bound for the charged AdS-Schwarzschild

black hole. This is an indicative that there is, at least in some level, a correspondence

between the holographic diagnostic for complexity and what was obtained for it using

only quantum mechanic tools.

For the free fermions in 1 + 1, the complexity of the Bogoliubov transformed

vacuum provided us with an overview about the basic techniques that are necessary to

compute complexity for quadratic Hamiltonian. The complexity for fermionic systems

was not explored as extensively as in comparison to bosonic systems. This provides some

80

perspectives about studying complexity for other fermionic systems. Also, the complex-

ity for supersymmetric systems is less explored field, as well as the case of interacting

theories [25].

From the complexity of operators perspective, it was developed an interesting

formalism with clear rules to compute the required quantities (complexity, conjugate

time, etc). However, the computation become di�cult to handle quite fast. Even the

general solutions of the Euler-Arnold equations are hard to obtain for two qubits. Part of

these di�culties come up with a suitable basis of easy and hard operators as the number

of qubits grows. Avoiding matrix representation for the generators as much as possible

might be also a valuable strategy in order to make the computations more suitable.

Computational di�culties directed us to the study of conjugate points, which

seems to be promising at least for the study of phase transitions. We also obtained the

complexity behavior as function of time, in special, its saturation at tc. At this stage, it

is fair to point out that great part of the computational di�culties appear because the

introduction of cost factor µ. Despite the fact that this parameter provides a separation

between easy and hard operators, it is still a parameters placed by hand that makes the

problem more complicated. Figure out what are the cases where turn on µ is relevant will

be a relevant question in future development. There is also a audacious approach which

consists in to consider di↵erent µ for any locality, making to use operators with higher

locality more and more expansive in term of complexity amount.

81

Bibliography

[1] G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308

(1993) 284–296, [gr-qc/9310026].

[2] L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377–6396,

[hep-th/9409089].

[3] J. M. Maldacena, The Large N limit of superconformal field theories and

supergravity, Adv. Theor. Math. Phys. 2 (1998) 231–252, [hep-th/9711200].

[4] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of

physical reality be considered complete?, Phys. Rev. 47 (May, 1935) 777–780.

[5] J. S. Bell, On the Problem of Hidden Variables in Quantum Mechanics, Rev. Mod.

Phys. 38 (1966) 447–452.

[6] P. Calabrese and J. L. Cardy, Entanglement entropy and quantum field theory, J.

Stat. Mech. 0406 (2004) P06002, [hep-th/0405152].

[7] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from

AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602, [hep-th/0603001].

[8] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08

(2006) 045, [hep-th/0605073].

[9] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch.

Phys. 61 (2013) 781–811, [arXiv:1306.0533].

[10] J. Watrous, Quantum Computational Complexity, arXiv e-prints (Apr., 2008)

arXiv:0804.3401, [arXiv:0804.3401].

[11] L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys.

64 (2016) 24–43, [arXiv:1403.5695]. [Addendum: Fortsch.Phys. 64, 44–48 (2016)].

[12] L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49–71,

[arXiv:1411.0690].

82

http://arxiv.org/abs/gr-qc/9310026
http://arxiv.org/abs/hep-th/9409089
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/0405152
http://arxiv.org/abs/hep-th/0603001
http://arxiv.org/abs/hep-th/0605073
http://arxiv.org/abs/1306.0533
http://arxiv.org/abs/0804.3401
http://arxiv.org/abs/1403.5695
http://arxiv.org/abs/1411.0690

[13] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, JHEP 08 (2016)

106, [arXiv:1503.01409].

[14] Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065,

[arXiv:0808.2096].

[15] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev.

D 90 (2014), no. 12 126007, [arXiv:1406.2678].

[16] L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49–71,

[arXiv:1411.0690].

[17] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle, and Y. Zhao, Holographic

Complexity Equals Bulk Action?, Phys. Rev. Lett. 116 (2016), no. 19 191301,

[arXiv:1509.07876].

[18] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle, and Y. Zhao, Complexity,

action, and black holes, Phys. Rev. D 93 (2016), no. 8 086006, [arXiv:1512.04993].

[19] M. A. Nielsen, A geometric approach to quantum circuit lower bounds, arXiv

e-prints (Feb., 2005) quant–ph/0502070, [quant-ph/0502070].

[20] M. A. Nielsen, M. R. Dowling, M. Gu, and A. C. Doherty, Quantum Computation

as Geometry, Science 311 (Feb., 2006) 1133–1135, [quant-ph/0603161].

[21] M. R. Dowling and M. A. Nielsen, The geometry of quantum computation, arXiv

e-prints (Dec., 2006) quant–ph/0701004, [quant-ph/0701004].

[22] S. Chapman, M. P. Heller, H. Marrochio, and F. Pastawski, Toward a Definition of

Complexity for Quantum Field Theory States, Phys. Rev. Lett. 120 (2018), no. 12

121602, [arXiv:1707.08582].

[23] D. Carmi, S. Chapman, H. Marrochio, R. C. Myers, and S. Sugishita, On the Time

Dependence of Holographic Complexity, JHEP 11 (2017) 188, [arXiv:1709.10184].

[24] A. Bernamonti, F. Galli, J. Hernandez, R. C. Myers, S.-M. Ruan, and J. Simón,

Aspects of The First Law of Complexity, J. Phys. A 53 (2020) 29,

[arXiv:2002.05779].

[25] A. Bhattacharyya, A. Shekar, and A. Sinha, Circuit complexity in interacting QFTs

and RG flows, JHEP 10 (2018) 140, [arXiv:1808.03105].

[26] R. Khan, C. Krishnan, and S. Sharma, Circuit Complexity in Fermionic Field

Theory, Phys. Rev. D 98 (2018), no. 12 126001, [arXiv:1801.07620].

83

http://arxiv.org/abs/1503.01409
http://arxiv.org/abs/0808.2096
http://arxiv.org/abs/1406.2678
http://arxiv.org/abs/1411.0690
http://arxiv.org/abs/1509.07876
http://arxiv.org/abs/1512.04993
http://arxiv.org/abs/quant-ph/0502070
http://arxiv.org/abs/quant-ph/0603161
http://arxiv.org/abs/quant-ph/0701004
http://arxiv.org/abs/1707.08582
http://arxiv.org/abs/1709.10184
http://arxiv.org/abs/2002.05779
http://arxiv.org/abs/1808.03105
http://arxiv.org/abs/1801.07620

[27] L. Fortnow and S. Homer, A short history of computational complexity, Bulletin of

the EATCS 80 (01, 2003) 95–133.

[28] A. M. Turing et al., On computable numbers, with an application to the

entscheidungsproblem, J. of Math 58 (1936), no. 345-363 5.

[29] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information: 10th

Anniversary Edition. Cambridge University Press, 2010.

[30] L. Trevisan, Lecture notes on computational complexity, Notes written in Fall

(2002).

[31] E. D. Demaine, S. Hohenberger, and D. Liben-Nowell, Tetris is Hard, Even to

Approximate, arXiv e-prints (Oct., 2002) cs/0210020, [cs/0210020].

[32] R. M. Karp, Reducibility among combinatorial problems, in Complexity of computer

computations, pp. 85–103. Springer, 1972.

[33] J. M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021,

[hep-th/0106112].

[34] A. R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev. D 97

(2018), no. 8 086015, [arXiv:1701.01107].

[35] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev.

D 90 (2014), no. 12 126007, [arXiv:1406.2678].

[36] S. Lloyd, Ultimate physical limits to computation, Nature 406 (Aug., 2000)

1047–1054, [quant-ph/9908043].

[37] D. Mateos and D. Trancanelli, The anisotropic N=4 super Yang-Mills plasma and

its instabilities, Phys. Rev. Lett. 107 (2011) 101601, [arXiv:1105.3472].

[38] D. Mateos and D. Trancanelli, Thermodynamics and Instabilities of a Strongly

Coupled Anisotropic Plasma, JHEP 07 (2011) 054, [arXiv:1106.1637].

[39] S. A. Hosseini Mansoori, V. Jahnke, M. M. Qaemmaqami, and Y. D. Olivas,

Holographic complexity of anisotropic black branes, Phys. Rev. D 100 (2019), no. 4

046014, [arXiv:1808.00067].

[40] L. Lehner, R. C. Myers, E. Poisson, and R. D. Sorkin, Gravitational action with

null boundaries, Phys. Rev. D 94 (2016), no. 8 084046, [arXiv:1609.00207].

[41] R. Cheng, Quantum Geometric Tensor (Fubini-Study Metric) in Simple Quantum

System: A pedagogical Introduction, arXiv e-prints (Dec., 2010) arXiv:1012.1337,

[arXiv:1012.1337].

84

http://arxiv.org/abs/cs/0210020
http://arxiv.org/abs/hep-th/0106112
http://arxiv.org/abs/1701.01107
http://arxiv.org/abs/1406.2678
http://arxiv.org/abs/quant-ph/9908043
http://arxiv.org/abs/1105.3472
http://arxiv.org/abs/1106.1637
http://arxiv.org/abs/1808.00067
http://arxiv.org/abs/1609.00207
http://arxiv.org/abs/1012.1337

[42] F. Liu, S. Whitsitt, J. B. Curtis, R. Lundgren, P. Titum, Z.-C. Yang, J. R.

Garrison, and A. V. Gorshkov, Circuit complexity across a topological phase

transition, Phys. Rev. Res. 2 (2020), no. 1 013323, [arXiv:1902.10720].

[43] Z. Xiong, D.-X. Yao, and Z. Yan, Nonanalyticity of circuit complexity across

topological phase transitions, Phys. Rev. B 101 (2020), no. 17 174305,

[arXiv:1906.11279].

[44] N. Jaiswal, M. Gautam, and T. Sarkar, Complexity and information geometry in the

transverse XY model, Phys. Rev. E 104 (2021), no. 2 024127, [arXiv:2005.03532].

[45] J. Preskill, Lecture notes for physics 229: Quantum information and computation,

California Institute of Technology 16 (1998).

[46] S. Chapman, H. Marrochio, and R. C. Myers, Complexity of Formation in

Holography, JHEP 01 (2017) 062, [arXiv:1610.08063].

[47] W. K. Wootters, Statistical Distance and Hilbert Space, Phys. Rev. D 23 (1981)

357–362.

[48] M. Sinamuli and R. B. Mann, Holographic Complexity and Charged Scalar Fields,

Phys. Rev. D 99 (2019), no. 10 106013, [arXiv:1902.01912].

[49] A. B. Klimov and S. M. Chumakov, A group-theoretical approach to quantum

optics: models of atom-field interactions. John Wiley & Sons, 2009.

[50] K. Goto, H. Marrochio, R. C. Myers, L. Queimada, and B. Yoshida, Holographic

Complexity Equals Which Action?, JHEP 02 (2019) 160, [arXiv:1901.00014].

[51] V. Balasubramanian, M. Decross, A. Kar, and O. Parrikar, Quantum Complexity of

Time Evolution with Chaotic Hamiltonians, JHEP 01 (2020) 134,

[arXiv:1905.05765].

[52] V. Balasubramanian, M. DeCross, A. Kar, Y. C. Li, and O. Parrikar, Complexity

growth in integrable and chaotic models, JHEP 07 (2021) 011, [arXiv:2101.02209].

[53] V. Balasubramanian, M. Decross, A. Kar, and O. Parrikar, Quantum Complexity of

Time Evolution with Chaotic Hamiltonians, JHEP 01 (2020) 134,

[arXiv:1905.05765].

[54] A. R. Brown, L. Susskind, and Y. Zhao, Quantum Complexity and Negative

Curvature, Phys. Rev. D 95 (2017), no. 4 045010, [arXiv:1608.02612].

[55] V. Balasubramanian, M. DeCross, A. Kar, Y. C. Li, and O. Parrikar, Complexity

growth in integrable and chaotic models, JHEP 07 (2021) 011, [arXiv:2101.02209].

85

http://arxiv.org/abs/1902.10720
http://arxiv.org/abs/1906.11279
http://arxiv.org/abs/2005.03532
http://arxiv.org/abs/1610.08063
http://arxiv.org/abs/1902.01912
http://arxiv.org/abs/1901.00014
http://arxiv.org/abs/1905.05765
http://arxiv.org/abs/2101.02209
http://arxiv.org/abs/1905.05765
http://arxiv.org/abs/1608.02612
http://arxiv.org/abs/2101.02209

[56] H. A. Gersch and G. C. Knollman, Quantum cell model for bosons, Phys. Rev. 129

(Jan, 1963) 959–967.

[57] E. Altman and A. Auerbach, Oscillating Superfluidity of Bosons in Optical Lattices,

prl 89 (Dec., 2002) 250404, [cond-mat/0206157].

[58] V. Balasubramanian, P. Caputa, J. M. Magan, and Q. Wu, Quantum chaos and the

complexity of spread of states, Phys. Rev. D 106 (2022), no. 4 046007,

[arXiv:2202.06957].

[59] P. Caputa and S. Liu, Quantum complexity and topological phases of matter, Phys.

Rev. B 106 (2022), no. 19 195125, [arXiv:2205.05688].

86

http://arxiv.org/abs/cond-mat/0206157
http://arxiv.org/abs/2202.06957
http://arxiv.org/abs/2205.05688

	Introduction
	Complexity in computer science
	Types of computational problems
	Computational resources
	Computational complexity
	Decision problems: P vs NP

	Holographic complexity
	Complexity = Action conjecture
	MT model
	Solution order a2
	Late time behaviour

	Complexity in quantum many-body systems
	Complexity of states
	General properties for complexity of states

	Complexity: Fubini-Study metric
	TFD state for scalar field theory
	The operator space
	Computing the complexity

	Nielsen's approach
	Free fermions in 1+1
	Coupled fermionic oscillators

	Complexity of operators
	Complexity and geodesics on the operator space
	Analytical case for one qubit
	The linear geodesic

	Conjugate Points
	Solution of the Jacobi equations
	Conjugate time
	Bi-invariant case
	Perturbative case

	Complexity of operators and Phase Transitions
	XX-Model
	Numerical analysis

	Final remarks

