• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.43.2003.tde-25022014-120411
Documento
Autor
Nome completo
Sarah Isabel Pinto Monteiro do Nascimento Alves
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2003
Orientador
Banca examinadora
Figueiredo Neto, Antonio Martins (Presidente)
Miranda Neto, José Américo de
Rechenberg, Hercilio Rodolfo
Tourinho, Francisco Augusto
Zilio, Sérgio Carlos
 
Título em português
Termodifusão em colóides magnéticos: o efeito Soret
Palavras-chave em português
Cristais líquidos
Física do estado líquido
Óptica
Termodinâmica
Resumo em português
Este trabalho investiga a termodifusão em coloides magnéticos através da técnica de varredura Z. O ponto de partida é a generalização do modelo de lente térmica, supondo o surgimento de um gradiente de concentração dos grãos magnéticos devido ao gradiente de temperatura causado pelo feixe de laser sobre a amostra. A partir do uso da técnica de varredura Z foi possível o estudo do coeficiente Soret (S IND.T) em ferrofluidos iônicos, surfactados e citrados, em amostras com baixa concentração de grãos (fração volumétrica de Fe, ø, menor que 1%). Na generalização do modelo de lente térmica que efetuamos, consideramos que a variação no índice de refração da amostra, em uma experiência de varredura Z, depende da variação da intensidade do feixe laser (I), da variação da temperatura (T) e da variação da concentração de grãos magnéticos (ø), onde C IND.N, C IND.T e C IND.S são seus respectivos parâmetros adimensionais no modelo. Uma vez que o tempo característico da termodifusão é da ordem de segundos, uma varredura Z com pulsos da ordem de 20ms é utilizada para a determinação de C IND.N. C IND.T é obtido independentemente por meio de métodos de óptica linear.Após a determinação de C IND.N e C IND.T, uma varredura Z com duração de pulso da ordem de 1 segundo é feita para determinar C IND.S e, posteriormente, o coeficiente Soret. A partir do comportamento da curva de evolução temporal da tranmitância com pulsos de 1 segundo pode-se determinar o sinal do coeficiente Soret. O sinal está relacionado com a tendência dos grãos de migrarem para a região mais fria (termofóbico, S IND.T>0) ou mais quente (termofílico, S IND.T<0) da amostra, dependendo de suas características físico-químicas. Mostramos que o módulo de S IND.T é proporcional a ø, em concordância com resultados obtidos para soluções mais concentradas (ø1) através da técnica de Espalhamento Rayleigh Forçado. Uma possível origem física para os comportamentos termofóbico e termofílico dos fluidos magnéticos poderia estar relacionada a mudanças na intensidade das forças que mantêm o equilíbrio coloidal, por ação da temperatura.
 
Título em inglês
Thermodiffusion in magnetic colloids: the Soret effect.
Palavras-chave em inglês
Liquid crystals
Liquid state physics
Optics
Thermodynamics
Resumo em inglês
This work explores the thermodiffusion in magnetic colloids through the Z-Scan technique. The starting point is the generalization of the thermal lens model based on the assumption that the concentration gradient of the magnetic grains emerges due to the temperature gradient caused by the laser beam on the sample. By using the Z-Scan technique it was possible to study the Soret coefficient (ST) for ionic, surfacted and citrated ferrofluids in samples with low concentration of grains (Fe volumetric percentage, ø, less than 1%). In this thermal lens model generalization, we have considered that the refraction índex variation in a Z-Scan experiment depends on the laser beam intensity (I), the temperature variation (T) and the variation of the magnetic grains concentration (ø), where CN, CT and CS are their respective dimensionless parameters in the model. As characteristic time of thermodiffusion is of the order of seconds, a Z-Scan with pulses around 20 ms is used in order to determine CN. CT is obtained independently by using lenear optics methods. After the determination of CN and CT, a Z-Scan with pulses around 1 second is made in order to determine CS and, Consequently, the Soret coefficient. Through the behavior of the time dependent transmittance with 1-second pulses we were able to determine the sign of the Soret coefficient. The sign is related to the tendency of the grains to migrate to the colder region (thermophobic, ST>0) or to the warmer region (thermophilic, ST<0) of the sample, depending on its physical-chemical characteristics. We have showed that the ST module is proportional to ø, in agreement with the results for higher concentration solutions (ø1%) obtained through Forced Rayleigh Scattering. A possible physical originfor the thermophobic and thermophilic behavior of magnetic fluids could berelated to changes in the intensity of the forces that keep the colloidal balance, by means of temperature.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
RE41931Alves.pdf (5.27 Mbytes)
Data de Publicação
2014-02-25
 
AVISO: O material descrito abaixo refere-se a trabalhos decorrentes desta tese ou dissertação. O conteúdo desses trabalhos é de inteira responsabilidade do autor da tese ou dissertação.
  • ALVES, S, CUPPO, F. L. S., and Neto, A.M.F. Determination of the nonlinear refractive index of lyotropic mixtures with and without ferrofluid doping: a time-resolved Z-scan experiment in millisecond time scales [doi:10.1364/JOSAB.23.000067]. Journal of the Optical Society of America. B, Optical physics [online], 2006, vol. 23, p. 67-74.

  • ALVES, S., et al. Investigation of the sign of the Soret coefficient in different ionic and surfacted magnetic colloids using forced Rayleigh scattering and single-beam Z-scan techniques [doi:10.1080/0141861031000107962]. Philosophical Magazine [online], 2003, vol. 83, p. 2059-2066.

  • ALVES, S., et al. The effect of hydrophobic and hydrophilic fumed silica on the rheology of magnetorheological suspensions [doi:10.1122/1.3086870]. Journal of Rheology (New York) [online], 2009, vol. 53, p. 651-662.

  • ALVES, S., et al. Thermal-lens effect of native and oxidized lipoprotein solutions investigated by the Z-Scan technique [doi:10.1080/14645180600912093]. The International Journal of Atherosclerosis [online], 2008, vol. 3, p. 33-38.

  • ALVES, S., et al. Thermodiffusion of magnetite nanoparticles in ferrofluid-doped micellar systems and in ferrofluids investigated by using the single-beam Z-scan technique [doi:10.1364/JOSAB.23.002328]. Journal of the Optical Society of America. B, Optical physics [online], 2006, vol. 23, p. 2328-2335.

  • ALVES, S., BOURDON, Alain, and Neto, A.M.F. Generalization of the thermal lens model formalism to account for thermodiffusion in a single beam Z-Scan experiment: determination of the Soret coefficient [doi:10.1364/JOSAB.20.000713]. Journal of the Optical Society of America. B, Optical physics [online], 2003, vol. 20, p. 713-718.

  • DEPEYROT, J., et al. Static magneto optical birefringence of new electric double layered magnetic fluids [doi:10.1590/S0103-97332001000300008]. Brazilian Journal of Physics [online], 2001, vol. 31, p. 390-397.

  • ELIAS, R. M., et al. Oxidative Stress and Modification of Renal Vascular Permeability are Associated with Acute Kidney Injury During P. berghei Anka Infection [doi:10.1371/journal.pone.0044004]. Plos One [online], 2012, vol. 7, p. 44004-44004.

  • ESPINOSA, D. H. G., et al. Investigation of the optical absorption of a magnetic colloid from the thermal to the electronic time-scale regime: measurement of the free-carrier absorption cross-section [doi:10.1364/JOSAB.29.000280]. Journal of the Optical Society of America. B, Optical physics [online], 2012, vol. 29, p. 280-285.

  • ESPINOSA, D., et al. Influence of nanoparticle size on the nonlinear optical properties of magnetite ferrofluids [doi:10.1103/PhysRevE.88.032302]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics [online], 2013, vol. 88, p. 032302.

  • GOMEZ, S. L., et al. Cu and Fe metallic ions-mediated oxidation of low-density lipoproteins studied by NMR, TEM and Z-scan Technique [doi:10.1016/j.chemphyslip.2010.03.008]. Chemistry and Physics of Lipids [online], 2010, vol. 163, p. 545-551.

  • L. F. Gamarra, et al. Characterization of the biocompatible magnetic colloid on the basis of Fe3O4 nanoparticles coated with dextran, used as contrast agent in magnetic resonance imaging [doi:10.1166/jnn.2010.2200]. Journal of Nanoscience and Nanotechnology [online], 2010, vol. 10, p. 4145-4153.

  • Monteiro, Andréa M., et al. Cardiovascular Disease Parameters in Periodontitis [doi:10.1902/jop.2009.080431]. Journal of Periodontology [online], 2009, vol. 80, p. 378-388.

  • Monteiro, Andrea M., et al. Measurement of the nonlinear optical response of low-density lipoprotein solutions from patients with periodontitis before and after periodontal treatment: evaluation of cardiovascular risk markers [doi:10.1117/1.JBO.17.11.115004]. Journal of Biomedical Optics [online], 2012, vol. 17(11), p. 1 / 115004-7.

  • SOGA, Diogo, et al. Nonlinear optical properties of ionic magnetic colloids in the femto and milliseconds time scales: change from convergent-to-divergent lens-type behaviors [doi:10.1364/JOSAB.24.000049]. Journal of the Optical Society of America. B, Optical physics [online], 2007, vol. 24, p. 49-55.

  • ALVES, C. R., et al. Investigações experimentais e modelo de langevin da birrefringência magneto-óptica de fluidos magnéticos do tipo EDL. In XXV Encontro Nacional de Física da Matéria Condensada, Caxambu, MG, 2002. Resumos São Paulo, 2002., 2002. Resumo.

  • ALVES, S I, BOURDON, A., and Neto, A.M.F. Investigation of the Soret coefficient in magnetic fluids using the Z-scan technique. In ICMF10 -International Conference on Magnetic Fluids, Guarujá, 2005. Journal of Magnetism and Magnetic Materials., 2005.

  • ALVES, S, et al. Determination of Soret coefficient by Z-Scan technique. In XXVII Encontro Nacional de Física da Matéria Condensada, Poços de Caldas, 2004. Resumos São Paulo: SBF, 2004., 2004. Abstract.

  • ALVES, S, et al. Investigation of the sign of the Soret coefficient in different ionic and surfacted magnetic colloids using the forced Rayleigh scattering and single-bean Z-Scan techniques. In 5th International Meeting on Thermodiffusion, Lyngby, 2002. Lyngby: IVCSEPT, 2002., 2002. Abstract.

  • ALVES, S, et al. Single beam Z-Scan experiments used to evaluate the Soret coefficient of ionic ferrofluids. In 9th International Conference on Magnetic Fluids, Bremen, 2001. Book of Abstracs 2001., 2001. Abstract.

  • ALVES, S, et al. Thermodiffussion of magnetite nanoparticles in ferrofluid-doped micellar systems and in ferrofluids. In 7th International Meeting on Thermodiffusion (IMT7), San Sebastian, 2006. IMT7 Thermodiffusion., 2006. Abstract.

  • ALVES, S, BOURDON, A, and Neto, A.M.F. Soret effect evidenced and measured by Z-Scan experiments on magnetic colloids. In 5th International Meeting on Thermodiffusion, Lyngby, 2002. Lyngby : IVCSEPT, 2002., 2002. Abstract.

  • ALVES, S. I. P. N., et al. Investigation of the sign of the soret coefficient in ionic and surfacted ferrofluids subjected no temperature gradients: the thermophobic and thermophilic effects. In XXV Encontro Nacional de Física da Matéria Condensada, Caxambu, 2002. Resumos São Paulo, 2002., 2002. Abstract.

  • ALVES, S. I. P. N., et al. Z-Scan measerements of the Soret thermodiffusion mass coefficient in ferrofluids. In XXV Encontro Nacional de Física da Matéria Condensada, Caxambu, 2002. Resumos São Paulo, 2002., 2002. Abstract.

  • Neto, A.M.F., et al. Determination of the soret coefficient in ferrofluids. In International Workshop on Recent Advances in Nanotechnology of Magnetic Fluids, New Delhi, 2003. Abstracts, New Delhi, National Physical Laboratory, 2003., 2003. Abstract.

  • Neto, A.M.F., et al. Optical investigation of the sign and behavior of the Soret coefficient in magnetic colloids. In 9th International Conference on Electrorheological Fluids and Magneto-rheological Suspensions, Beijing, 2004. Abstracts Beijing: The Institute of Physics, 2004., 2004. Abstract.

Todos os direitos da tese/dissertação são de seus autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Teses e Dissertações da USP.