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RESUMO

Rumo ao teletransporte entre átomos de rubídio e luz na banda C de telecomunicações

Nós desenvolvemos um sistema capaz de gerar emaranhamento bipartido, com resultados
promissores na geração de emaranhamento tripartido em campos eletromagneticos instensos uti-
lizando um Oscilador Paramétrico Óptico. Os campos gerados são ressonantes com a linha D2 do
rubídio, a 780 nm para o bombeio refletido, e com a banda-C de telecomunicações, a 1560 nm para
sinal e complementar. Nós verificamos que o ruído de fônons no cristal era responsável por introduzir
ruído de fase e que ao baixar a temperatura do sistema o ruído diminuiria, melhorando as possi-
bilidades de obter emaranhamento tripartido. Em um experimento distinto, nós construímos um
sistema de bombeio óptico no qual, junto com um escudo magnético e campos magnéticos gerados
por bobinas, fomos capazes de preparar e caracterizar um estado de polarização atômica com orien-
tação p = 0.9 e um ruído de polarização de 2.6 dB acima do shotnoise em uma frequencia central de
23.5 kHz e uma largura de linha de 70 Hz. Esses dois sistemas foram contruídos como os primeiros
passos para a implementação de um protocolo de teletransporte entre átomos e luz ressoantes em
comprimentos de onda distintos, estabelecendo as bases para a implementação de uma rede quântica
de comunicação.

Palavras-chave: Oscilador Paramétrico Óptico, Emaranhamento, Teletransporte, Polarização Atômica.
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ABSTRACT

Towards the teleportation between rubidium atoms and light in the telecom C-band

We developed a system capable of generating bipartite entanglement, and with promising
results towards the generation of tripartite entangled states of light, using an Optical Parametric
Oscillator. The generated fields are resonant with the Rubidium D2 transition line at 780 nm for the
reflected pump, and with the C-band of telecommunications channels at 1560 nm for signal and idler.
We verified that phonon noise in the crystal was responsible for introducing phase noise and that
lowering the temperature of the system would reduce the noise, improving the prospects of obtaining
tripartite entanglement. In a separate experiment, we built an optical pumping system in which,
along with a magnetic shield and magnetic fields generated by coils, we were able to prepare and
characterize an atomic polarization state with an orientation p = 0.9 and a polarization noise of 2.6 dB
above the shot noise limit at a central frequency of 23.5 kHz and a linewidth of 70 Hz. These two
systems were built as the first steps towards the implementation of a teleportation protocol between
atoms and light resonant at different wavelengths, setting the foundations for the implementation a
quantum network.

Keywords: Optical Parametric Oscillator, Entanglement, Teleportation, Atomic Polarization.



viii



ix

ACRONYMS AND ABBREVIATIONS

AC Alternating Current
AM Amplitude Modulation
BS Beamsplitter
DC Direct Current
DFB Distributed Feedback
DGCZ Duan, Giedke, Cirac, Zoller
DROPO Doubly Resonant Optical Parametric Oscillator
EOM Electro-Optical Modulator
EPR Einstein-Podolski-Rosen
FC Fiber Coupler
FR Faraday Rotator
FSR Free Spectral Range
GWD Gravitational-Wave Detector
HR High Reflectivity
LF Liot Filter
LIGO Laser Interferometer Gravitational-Wave Observatory
LMCAL Laboratory for Coherent Manipulation of Atoms and Light
MORS Magneto-Optical Resonance Signal
NBI Niels Bohr Institute
OPO Optical Parametric Oscillator
PBS Polarizing Beamsplitter
PD Photodetector / Photodiode
PID Proportional–Integral–Derivative
PM Phase Modulation
PPKTP Periodically Poled Potassium Titanyl Phosphate
PPT Positive Partial Transpose
PZT Lead Zirconate Titanate
QBA Quantum Back-Action
RF Radio Frequency
SFG Sum Frequency Generation
SN Shot-Noise
SNL Shot-Noise Limit
SNR Signal to Noise Ratio
SQL Standard Quantum Limit
SROPO Single Resonant Optical Parametric Oscillator
TROPO Triply Resonant Optical Parametric Oscillator



x



Part I

Introduction

1





3

1 OBJECTIVES

An important way to manipulate quantum systems is through the application of a resonant
optical field to read and prepare the quantum states of interest. The interaction between such systems
is essential to the development of quantum computation and quantum information science and it can
be done by using entangled light. Many quantum information protocols, such as quantum cryptogra-
phy (Ekert, 1991) and quantum teleportation(Furusawa et al., 1998), take advantage of entanglement
to establish communication between quantum systems. However, given the impossibility of copying a
quantum state, as stated in the no-cloning theorem (Wootters and Zurek, 1982), we can single out
quantum teleportation as an essential resource to transfer quantum information between such systems.

Entangled light can be generated by simple procedures, for instance, via beam splitter opera-
tions. In the single photon regime one can create a single photon Fock state |1⟩ and send it through one
port of a symmetric beamsplitter, while we consider vacuum |0⟩ as the input of the other. As consequence
one obtains a path entangled state (|0⟩A |1⟩B + |1⟩A |0⟩B)/

√
2, where if a photon is found in one path, it

is immediately known that there is no photon on the other. This is the minimal system in which entan-
glement can be obtained. However, often enough, quantum systems are resonant at different frequencies
requiring the generation of entangled light at different wavelengths. In continuous variables systems a
well known source of entangled light for such purposes is the Optical Parametric Oscillator (OPO).

The main purpose of this work is to start building the basis for the development of an experiment
capable of preparing a quantum state in an atomic cloud and interact it with wavelengths compatible
with optical transmission lines. Our lab has a long history in the development of entangled states of
light using OPOs (Villar et al., 2006; Coelho et al., 2009; Barbosa et al., 2018; Muñoz-Martínez
et al., 2018) that are a natural choice as a source of entanglement in our case. The know-how on the
preparation and characterization of atomic polarization states was obtained through an internship at the
Niels Bohr Institute (NBI) under the supervision of Professor Eugene Polzik.

The fact that rubidium cells are readily available in our lab and the fact that our Titanium
Sapphire lasers can be easily tuned to the wavelengths of their atomic transitions (780 nm and 795 nm),
made them a natural choice for the preparation of atomic polarization states. For this reason we decided
to use a triply resonant OPO to generate tripartite entanglement between the reflected pump at 780 nm
and the downconverted fields (signal and idler) at 1560 nm. The first is resonant with the rubidium D2
transition line and the last two propagate with low losses through the optical fibers already implemented
by the telecommunication’s infrastructure. This technique is interesting due to the possibility of integra-
tion of distinct parts of the quantum hardware. Atoms can play the role as memories (Specht et al.,
2011) while light is a natural information conveyor. The obtained entanglement is a fundamental part
for teleportation and information processing protocols.

The second part of the current work demonstrates one of the necessary steps for the imple-
mentation of a quantum protocol involving those distinct wavelengths, the manipulation of an atomic
polarization state. For that we use a bias magnetic field to define the quantization axis and the Larmor
precession frequency while the optical pumping drives as many atoms as possible to the desired polariza-
tion state. For the characterization of the prepared state, we use the Magneto-Optical Resonance Signal
(MORS) (Julsgaard et al., 2004). Given that the atomic state preparation was performed at the NBI,
the experiments were performed with cesium cells, which is the atomic species commonly used in their
experiments. However, the transition from cesium to rubidium is straightforward and the same technique
can be easily ported to prepare and characterize polarization states using the rubidium cells in our lab.

Ultimately, the long term goal is to prepare an atomic polarization state in the rubidium cells
in our lab and, using the entangled states generated in our OPO, implement a teleportation protocol
between atoms and light. Of course, given the duration of a master’s program, there is not enough
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available time to to build all these systems and make them work. That is why in this work, our intention
is to take the first steps in that direction. First by fine tuning a system to the point of generating
the entangled states of light necessary for the implementation of the teleportation protocol and then by
learning how prepare and characterize the atomic state involved in that protocol.

This Master’s thesis is divided in four parts. In part I we discuss our motivations and objectives
and introduce some of the theory necessary to the general understanding of experiments in quantum
optics. Part II has all the discussion regarding the generation of entangled states of light in our OPO. In
part III we present the preparation and characterization of atomic polarization states developed at the
NBI. Finally in part IV we discuss our accomplishments and talk about the next steps to be taken in
order to achieve our final goals.
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2 RELEVANT TOPICS IN QUANTUM OPTICS EXPERIMENTS

In this section we introduce the pertinent concepts to the general understanding of experiments
in quantum optics. We begin with a description of the density operator where we will preferentially follow
the work of Furusawa and van Loock (2011). Then we proceed to a brief introduction of optical cavities
as presented in Bachor and Ralph (2019). We conclude with a general detection theory followed by
the resonator detection technique for the measurement of phase fluctuations.

2.1 Density Operator Representation

Complex physical systems, such as a statistical mixture of quantum states, and their time
evolution, are better described by the introduction of the density operator representation (Scully and
Zubairy, 1997). Under this representation the state of the system is described by an operator instead
of a vector. For the quantized electromagnetic field, a convenient description can be done with the help
of a basis of Fock (number) states {|n⟩} as:

ρ =
∑

Cnm |n⟩ ⟨m| , (2.1)

where Cnm are complex coefficients.
However, in quantum optics, coherent states are better suited to describe the physical systems

involved. These are the states that are ideally produced by a laser source and in this sense are closer to
a classical description of the field. An important characteristic of coherent states is that they possess the
minimum uncertainty relations allowed by the Heisenberg uncertainty principle.

By definition, coherent states are eigenstates of the annihilation operator â:

â |α⟩ = α |α⟩ , (2.2)

where α are complex eigenvalues. They form an overcomplete set of states and can be used as a basis,
despite not being an orthogonal set. We can write a coherent state as a displaced vacuum state by
introducing the displacement operator D̂(α):

D̂(α) = exp
(
α â† − α∗ â

)
= exp (2ipα x̂− 2ixα p̂) , (2.3)

where we introduce a pair of quadrature operators x̂ and p̂ such that â = x̂+ ip̂ and α = xα+ ipα. Then,
we write the coherent state as:

|α⟩ = D(α) |0⟩ . (2.4)

Another important operation performed on the states generated in the laboratory is squeezing.
This operation reduces the fluctuations in one of the quadratures while increasing the uncertainty on
its conjugate. As a consequence, a coherent squeezed state is still bounded by Heisenberg’s uncertainty
principle, even if one quadrature is squeezed beyond its standard quantum limit. The squeezing operator
may be defined as

Ŝ(ζ) = exp
(
ζ∗

2
â2 − ζ

2
â†2
)
, (2.5)

where ζ ≡ r exp(iΘ), r is the squeezing parameter and Θ a phase.
There are many different mappings of the density operator in the basis of coherent states (Schle-

ich, 2001). One of the commonly used is the P-representation (or Glauber-Sudarshan representation):

ρ =

∫
P (α) |α⟩ ⟨α|d2α, (2.6)

where d2α = d(Re{α})d(Im{α}). In most cases we want to represent these quantum states in a way
that is more convenient to compute expectation values of phase space variables. The most popular
representation for that is the Wigner Function (Furusawa and van Loock, 2011).
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2.1.1 Wigner Function

One way to uniquely determine the density operator is through its characteristic function χ(η)
which in symmetric order is given by:

χ(η) = Tr
{
ρ eηa

†−η∗a
}
. (2.7)

The Wigner function may then be defined as the Fourier transform of the characteristic function:

W (α) =
1

π2

∫
e(η

∗α−η α∗) χ(η)d2η. (2.8)

This function always exists for a given state but is not necessarily positive, which is one of the reasons
the Wigner function can not be considered a real probability distribution and why it is often referred to
as a quasi-probability distribution.

There is an important aspect regarding the negativity of the Wigner function. States with
negative valued Wigner functions cannot be generated by classical means, being a strong example of
quantum states. Nevertheless, negativity is not a necessary condition for nonclassicality which means
that there are nonclassical states whose Wigner functions are non-negative, but it is a sufficient one.
Moreover, negativity of the Wigner function has been identified as a necessary ingredient for implementing
processes that cannot be simulated efficiently with classical resources and is therefore an essential resource
to achieve quantum advantage (Mari and Eisert, 2012; Albarelli et al., 2018).

2.1.2 Gaussian States and the Covariance Matrix

Gaussian states are the most common states available in the laboratory. Most states with a
positive Wigner function, including pure and entangled states, are often Gaussian states. They have that
name due to the fact that their Wigner function is Gaussian. One example is the Wigner function of a
single mode displaced position-squeezed vacuum state D(α)S(ζ) |0⟩:

W (x, p) =
2

π
exp

[
−2e+2r (x− xα)

2 − 2e−2r (p− pα)
2
]
. (2.9)

We may now rewrite it as:

W (x, p) =
2

π
exp

[
−1

2
(x− xα, p− pα)

(
4e+2r 0

0 4e−2r

)(
x− xα

p− pα

)]
. (2.10)

We may expand this notation to the general case of a multi-mode Gaussian state with N modes
and write

W (ξ) =
1

(2π)N
√

detV (N)
exp

{
−1

2
(ξ − ξ0)

[
V (N)

]−1

(ξ − ξ0)
T

}
, (2.11)

where in the case of equation 2.10: N = 1, ξ = (x, p), ξ0 = (xα, pα),

V (1) =
1

4

(
e−2r 0

0 e+2r

)
(2.12)

is the covariance matrix of the state and may be defined in terms of the quadrature operators as

V (1) =

(
⟨x̂2⟩ − ⟨x̂⟩2 1

2 ⟨x̂p̂+ p̂x̂⟩ − ⟨p̂⟩ ⟨x̂⟩
1
2 ⟨x̂p̂+ p̂x̂⟩ − ⟨p̂⟩ ⟨x̂⟩ ⟨p̂2⟩ − ⟨p̂⟩2

)
. (2.13)

For the more general case we write ξ = (x1, p1, x2, p2, . . . , xN , pN ) and ξ̂ = (x̂1, p̂1, x̂2, p̂2, . . . , x̂N , p̂N ),
such that the first moments are given by ξ0 = (⟨x̂1⟩ , ⟨p̂1⟩ , ⟨x̂2⟩ , ⟨p̂2⟩ , . . . , ⟨x̂N ⟩ , ⟨p̂N ⟩). We may now
express the general form of the covariance matrix as V (N)

ij = ⟨(ξ̂iξ̂j + ξ̂j ξ̂i)/2⟩ − ⟨ξ̂i⟩ ⟨ξ̂j⟩.
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However, most of the time we are interested in properties involving multiple modes, like en-
tanglement. These properties are often independent of the first moments, since these can be locally
adjusted with displacements in phase-space. This allows us to disregard the first moments and define the
correlation matrix as

Tr
[
ρ̂
(
∆ξ̂i ∆ξ̂j +∆ξ̂j ∆ξ̂i

)]
=

〈(
ξ̂iξ̂j + ξ̂j ξ̂i

)
/2
〉

=

∫
W (ξ) ξi ξj d2Nξ ≡ V N

ij , (2.14)

where ∆ξ̂i = ξ̂i − ⟨ξ̂i⟩ ≡ ξ̂i, for zero first moments, and we have used the so-called Weyl correspondence
to be able to calculate the expectation value of the operator S(x̂np̂m) in the classical way:

Tr[ρ̂S(x̂np̂m)] =

∫
W (x, p)xn pm dxdp. (2.15)

When considering Gaussian states with zero mean and in the form of equation 2.11, we may
say that the Wigner function of such states is completely determined by their second moment correlation
matrix. For physical states the correlation function must be real, symmetric and positive and must obey
the commutation relation [

ξ̂k, ξ̂l

]
=
i

2
Λkl, k, l = 1, 2, 3, . . . , 2N, (2.16)

where Λ is a block diagonal symplectic matrix that contains the J matrix as its diagonal entries such
that

Λ =

N⊕
k=1

J, J =

(
0 1

−1 0

)
. (2.17)

We then arrive at the N-mode uncertainty relation

V (N) +
i

4
Λ ≥ 0, (2.18)

which is a necessary condition on a physical state.

2.2 Optical Cavities

Optical cavities, or optical resonators, basically consist in an arrangement of mirrors that confine
light with interference (Siegman, 1986). These can be used for many different purposes such as build up
power in a gain medium providing feedback for lasers to oscillate; as a reference for the frequency of light,
since the resonance frequency mostly depends on the optical path for one round trip; as a way to select
spatial modes of light (mode cleaner); and many others. This is an essential device in many quantum
optics experiments and and specially true for our experiment, as it will become clear throughout the text.

a) b)

Figure 2.1: a) Linear cavity leading to a standing wave. b) Triangular cavity leading to a travelling wave.

For convenience in our description we divide optical cavities roughly in two types when con-
sidering near resonant light being injected: standing wave cavities and travelling wave cavities. In the
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standing wave cavity (figure 2.1.a) the field enters the cavity after being transmitted through the first
mirror and is reflected on the second mirror, propagating in the opposite direction. The two counter-
propagating beams interfere forming a standing wave inside the resonator. In the travelling wave cavity
(figure 2.1.b), the intracavity beam after one round trip will add up with the incoming beam, building
up after each interaction, forming a single beam propagating forward.

The resonance condition for the light entering a cavity is that its wavelength must be an integer
multiple of the perimeter of the cavity, disregarding the phase effects of the reflection on the mirrors. So
the resonance frequencies for a cavity with a fixed perimeter p is given by:

νcav =
j c

p
, j = integer (2.19)

and c is the speed of light. Resonance frequencies are evenly spaced and the difference between two
consecutive resonances is called Free Spectral Range or FSR for short. Another important property of
an optical resonator is its linewidth Γ. The resonance frequency is not the only frequency allowed through
the cavity, a range of nearby frequencies are also allowed to propagate, however with less intensity. The
linewidth of a cavity determines how wide is this range of frequencies and is associated with the time the
intracavity field takes to decay after the incident beam is turned off. Both the FSR and the linewidth
are depicted in figure 2.2.

FSR

�

Tr
an

sm
is

si
o

n

Frequency (��

Figure 2.2: FSR and the linewidth Γ when measuring the transmission from the cavity with fixed
perimeter and scanning the frequency of the incident beam.

To begin our description of an optical cavity we shall consider the simple example of a linear
cavity with input mirror M1 and output mirror M2 separated by a distance d12, such that the perimeter
is given by p = 2d12, as in figure 2.3. Call T1 and T2 the transmission coefficients of mirrors M1 and
M2 respectively and R1 and R2 their respective reflectivities. We also model any intracavity losses by
defining the coefficient β such that the intensity losses after one round trip are given by exp(−βp). So,
after each round trip the amplitude of the intracavity field is attenuated by

gm =
√
R1R2 exp(−βp), (2.20)

and the field also picks up a phase
δϕ = 2π(νL − νcav)

p

c
, (2.21)

where νL is the frequency of the incident light. We can then describe the total effect of the cavity after
one round trip by the complex number

g(ν) = gm exp (−iδϕ(ν)) . (2.22)
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M1 M2

d12

Pin Pout

Prefl

Figure 2.3: Linear cavity with perimeter p = 2d12. The mirrors M1 and M2 have transmissivities T1 and
T2 and reflectivities R1 and R2 respectively.

When the incoming field with amplitude αin hits the cavity it gets partially transmitted and
only the amount α0 =

√
T1αin is allowed through the mirror M1. After one round trip the intracavity

field will be α0 + α1, after two round trips α0 + α1 + α2, and so on, such that αcav =
∑

j αj . Given that
we can model αj+1 = g(ν)αj , and assuming j → ∞, we arrive at the following compact expression for
the amplitude of the intracavity field (Bachor and Ralph, 2019):

αcav =
α0

1− g(ν)
. (2.23)

The intracavity power is then, after some calculations, given by

Pcav ∝ |αcav|2 = Pmax
1

1 + (2F/π)2 sin2(δϕ/2)
, (2.24)

where Pmax refers to the maximum intracavity power, which occurs when the frequency of the incoming
beam is in resonance with the cavity, and is given by

Pmax =

(
α0

1− gm

)2

, (2.25)

and

F =
π
√
gm

(1− gm)
(2.26)

is an important property called Finesse, commonly used as a measure of the quality of a cavity. The
Finesse is usually defined as the free spectral range divided by the linewidth of the cavity (FSR/Γ) and
as it can be seen from equation 2.26, it can be fully determined by the resonator losses (gm).

We can have better insight about the effects of the cavity over the incoming field by looking at
the input and output relations for a given loss coefficient β:

α0 =
√
T1αin

αout =
√
T2 exp(−βd12 + iδϕ/2)αcav

αrefl = −
√
R1αin +

√
T1αcav (2.27)

where αout refers to the field exiting the cavity and takes into account the transmission on the second
mirror as well as the losses and the phase added in the last path d12. αrefl refers to field reflected from
the first mirror plus the field transmitted back from the cavity through the mirror M1. So the output,
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reflected and intracavity powers normalized by the incoming power are

Pout
Pin

= T1T2
exp(−2βd12)

|1− g(ν)|2

Prefl
Pin

=
|R1 − (R1 + T1)g(ν)|2

R1 |1− g(ν)|2

Pcav
Pin

=
T1

|1− g(ν)|2
. (2.28)

When considering losses inside a cavity, there is an interesting configuration where the trans-
mission T1 is made to balance these losses. In such configuration, the reflectivity R1 = R2 exp(−βp)
makes the reflected power of the input mirror exactly match the leakage of intracavity power from the
same mirror, such that both fields cancel each other out. This is known, much like in the electronic case,
as impedance matching, and in this case the transmission from the cavity is optimized. When this condi-
tion is obeyed the optical cavity is impedance matched. The other two scenarios are the under-coupled,
where R1 < R2 exp(−βp) and the over-coupled, where R1 > R2 exp(−βp). The last two cases lead to
some reflection and sub-optimal transmission.

The changes in the incoming field introduced by the cavity are not restricted to its amplitude.
Phase shifts will also be added with important consequences to the sidebands of the incoming beam. We
take advantage of this effect in our detection scheme through the resonator detection technique (Villar,
2008; Barbosa et al., 2013), which will be discussed in the following section. We shall leave the formal
treatment of the phase response of the cavity for then.

Another important characteristic for the resonance of the beam inside the cavity, and therefore
building up intracavity power, is the shape of the wavefront. Ideally, the curvature of the wavefront
of the spacial modes of the incoming light should match the curvature of the mirrors, but even when
this is not the case, it is possible to have resonance inside the cavity. For the simple case of the linear
cavity (Kogelnik and Li, 1966) in figure 2.3 let us say that mirrors M1 and M2 have focal lengths f1
and f2 respectively.

We now define their parameters

g1 = 1− d12
2f1

and g2 = 1− d12
2f2

. (2.29)

An optical resonator will build up a resonant wave when the condition

0 ≤ g1g2 ≤ 1 (2.30)

is obeyed. A cavity that obeys this condition is said to be stable and we usually call equation 2.30 the
cavity stability condition. Many configurations of mirrors form stable cavities. The allowed combinations
of g1 and g2 are represented by the blue area in figure 2.4, along with some of the more common types
of resonators.

But simply obeying the stability condition 2.30 is not enough. If the wavefront of the incoming
beam does not match the internal wavefront, the cavity will support not only a fundamental mode,
but a series of higher order modes. These can be seen as smaller transmission peaks by scanning the
frequency of the incoming beam around the cavity’s resonance frequency. Usually it is desirable that only
a fundamental mode propagates inside an optical resonator and we must, in this case, match the incoming
and the intracavity wavefronts. To do that, in practice, we shape the wavefront of the incoming beam
by using optical components, such as lenses, to match the intracavity wavefront. We call this laborious
task mode matching.



11

Figure 2.4: Combinations of g1 and g2. Stable resonators are represented by the blue area along with
with their values for some of the more common types of resonators. Reprinted from Wikipedia.

2.3 Detection Theory

Although we use photodetectors in the laboratory, we are not detecting and analyzing individual
photons. This is because in our experiments we work with intense beams (∼ 1016 photons/s), which means
an intense photon flux, and with current technology photodetectors are simply not fast enough to detect
them individually. Also, because our photodetectors convert the detected photon flux into an electric
signal and this is the signal we analyze.

Photon detection theory is the bridge that allows us to connect the statistics of the electric
signals we have available to analyze and the statistics of the photon flux in our beam. By characterizing
the statistics of the photons arriving at the detector we can obtain information about the nature of the
incoming beam. A coherent state of light (a good laser source) has a Poisson distribution, a natural
source of light (or a noisy laser) has a thermal distribution, non-classical states of light (squeezed light)
have sub-Poissonian distributions, and so on.

Photodetectors come in different flavors, but given that in our experiment our detectors consist
of photodiodes, we are interested in describing the ones that take advantage of the photoelectric effect
to generate a photocurrent. Since we are dealing with intense beams, the signal from the photodetector
is integrated for a time ∆t over a number of photoelectrons ne(t) and this number is proportional to the
power of the incoming beam P (t). Hence, the photocurrent i(t) generated can be expressed as (Bachor
and Ralph, 2019)

i(t) =
ne(t) e

∆t
=
P (t) e ηdet

hν
, (2.31)

where e is elementary charge and ηdet the efficiency of the detector. It is usual to describe the photocurrent
as an average current ⟨i(t)⟩ (DC current) with some fluctuations δi(t) around this value (AC current)
such that

i(t) = ⟨i(t)⟩+ δi(t). (2.32)
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We can analyze the fluctuations δi(t) of the photocurrent to obtain information about the noise
and the signal carried by the incident beam. The relevant quantity we are interested for a quantitative
description of these fluctuations is the variance

∆i(t)2 = ∆

(
ne(t) e

∆t

)2

=
∆(ne(t))

2 e2

∆t2
. (2.33)

For a detector with high quantum efficiency, the photoelectron statistics should mirror the
photon statistics of the incident beam. Given that the latter has a Poisson distribution, assuming a
sufficiently high quantum efficiency, we can say that the variance of photoelectron number is ∆(ne(t))

2 =

⟨ne(t)⟩ = ⟨i(t)⟩∆t/e. So the variance of the photocurrent is

∆i(t)2 =
⟨i(t)⟩ e
∆t

. (2.34)

This is usually referred to as the shotnoise limit and that is the lowest possible value for the variance
when considering classical sources light.

Going below the shotnoise limit requires sub-Poissonian photocurrent statistics, in other words
squeezed light. However, a detector with low quantum efficiency will randomly select a fraction of the
incoming light, bringing the photocurrent variance closer to the shotnoise limit then to the actual variance
of the light intensity. In laboratory experiments we can calibrate the quantum efficiency of our detector
and correct for it in our analysis, but ideally for better measurements high quantum efficiency detectors
are desirable.

2.3.1 Spectral Analysis

We have showed a direct relation between the photocurrent measured in a photodetector and the
number of incoming photons. Now we can, in the quantum description, associate a photocurrent operator
with the field operators to measure the quantum properties of the incident field. In the following we are
going to give an overview of how these relate and how the information obtained allows us to build the
covariance matrix of our system, and hence the Wigner function. For a detailed description refer to
original works of Villar (2008) and Barbosa et al. (2013), and also the review given in Andrade
(2018) who addresses this subject drawing attention to the steps taken in the experimental process.

From the canonical quantization (Mandel and Wolf, 1995) we may write the multimode
electric field as

Ê(r, t) =
∑
ω

εωâωei(k·r−ωt) + h.c., (2.35)

where [âω, â
†
ω′ ] = δωω′ , εω is the polarization of the frequency mode ω, k is the wave vector and r the

position. Then we define, in the reference frame of the photodetector (|r| = 0), respectively the positive
and negative frequency operators Ê+(t) and Ê−(t), such that Ê+(t) = (Ê−(t))†. In this formalism, the
mean value of the photocurrent operator is given by (Glauber, 1963)

⟨Î(t)⟩ = ⟨Ê−(t)Ê+(t)⟩. (2.36)

We can separate the state of the incoming beam in two parts: a carrier with a well defined
intense coherent mode |αω0

⟩, that can be seen as a classical mode, and a continuum of quantum modes
|ψ⟩ that can be singled out by demodulating at a specific analysis frequency Ω (sideband modes). The
mean value of the photocurrent operator in this framework can now be calculated:

⟨Î(t)⟩ = ⟨ψ| ⟨αω0
| Ê−(t)Ê+(t) |αω0

⟩ |ψ⟩

= |αω0
|2 + |αω0

| ⟨δÎθ(t)⟩ , αω0
= |αω0

|eiθ (2.37)
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such that the complex number αω0
is the eigenvalue of the annilation operator for the mode ω0 of the

carrier. We can see from equation 2.37 that much like in equation 2.32 we can separate the photocurrent
in a strong classical signal plus a fluctuation term.

It is interesting to note that the term ⟨δÎθ(t)⟩ in equation 2.37 is associated with the fluctuations
in the sidebands and that it is amplified by the amplitude of the carrier. The expression for the operator
δÎθ(t) is given by δÎθ(t) = e−iθâ(t) + eiθâ†(t) and we can write the annihilation and creation operators
as:

â(t) =

∫ ′∞

0

dω e−i(ω−ω0)t âω and â†(t) =

∫ ′∞

0

dω ei(ω−ω0)t â†ω, (2.38)

where the prime on the integral sign denotes that the integrals are performed over all frequency modes
with the exception of the carrier frequency (ω ̸= ω0).

The Fourier transform of the photocurrent fluctuation operator δÎθ(t) gives us information
about its components in the frequency domain

ÎΩ =

∫
δÎθ(t) eiΩt dt, (2.39)

where the limits of integration depend on the bandwidth of the detector. For any given analysis fre-
quency Ω this calculation results in spectral components at the frequencies ω0 +Ω and ω0 −Ω, regarding
respectively the bosonic operators of the upper and lower sidebands âu and âl, such that

ÎΩ = e−iθâu + eiθâ†l . (2.40)

Since this analysis of the photocurrent involves two different frequency modes, we need to implement a
detection system capable of detecting them separately.

The representation of the photocurrent operator as a complex quantity allows us to express it
as real and imaginary parts: ÎΩ = (Îcos + i Îsin)/

√
2. If we introduce a pair of quadrature operators p̂ω

and q̂ω such that [p̂ω, q̂ω′ ] = 2iδ(ω − ω′), writing âω = (p̂ω + i q̂ω)/2, â†ω = (p̂ω − i q̂ω)/2, and noting that
Î†Ω = Î−Ω, we may express those parts as

Îcos = cos θ p̂u + p̂l√
2

+ sin θ q̂u + q̂l√
2

, (2.41)

Îsin = cos θ q̂u − q̂l√
2

− sin θ p̂u − p̂l√
2

. (2.42)

We can simultaneously measure Îcos and Îsin by splitting the photocurrent in two and mixing each part
with electronic oscillators in quadrature as shown in figure 2.5.

We can now obtain the power spectral density S(Ω) for the photocurrent by taking into account
the Wiener-Kintchine theorem, that allows us to relate S(Ω) with the autocorrelation function for a
stationary process ⟨ÎΩÎ−Ω⟩. In this case, this implies in

S(Ω) = ⟨ÎΩÎ−Ω⟩ ,

⟨ÎΩÎΩ′⟩ = 0, ∀ Ω′ ̸= −Ω. (2.43)

When the photocurrent obeys equation 2.43 it is said to be in a stationary quantum state (Barbosa
et al., 2013). And its evaluation from the components of ÎΩ yields

S(Ω) =
1

2
⟨Î2cos⟩+

1

2
⟨Î2sin⟩ . (2.44)

Also, this condition allows us to extract information from our system, since:

⟨ÎΩÎΩ⟩ = 0 =⇒

{
∆2Îcos −∆2Îsin = 0,

⟨ÎcosÎsin⟩ = 0.
(2.45)
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Figure 2.5: Scheme for the simultaneous measurement of the real (Îcos) and imaginary (Îsin) parts of the
photocurrent operator. Reprinted from Barbosa et al. (2013).

2.3.2 Resonator detection: Rotation of the Noise Ellipse

Now, everything we mentioned so far involves how we draw information from the amplitude
of the field and this is intimately associated with the nature of our photodetectors. They cannot, in
principle, give information about the phase of the incoming light. However, to be able to characterize
our quantum system, we need that phase information. One clever way to work around these limitations
is to convert phase fluctuations into amplitude fluctuations, that can then be recorded by the photode-
tector (Galatola et al., 1991).

The most common technique used for this purpose is called homodyne detection, and it uses
an intense laser with a well defined phase, called local oscillator, that will interfere with the laser that we
want to analyse. By tuning the phase of the local oscillator it is possible to convert phase fluctuations into
amplitude fluctuations that can now be picked up by our photodetectors. This is a well known technique
and its description can be found in most quantum optics books (Scully and Zubairy, 1997; Bachor
and Ralph, 2019), and since we do not use it in our experiment we will not go into further detail about
it here.

However, we use a similar method that, as mentioned earlier, takes advantage of an empty
optical cavity to make the beam interfere with itself, and by changing the size of the cavity we can obtain
interchangeably amplitude and phase information. Since this technique makes the beam interfere with
itself, it is sometimes referred to as self-homodyne detection. We have seen a classical treatment for the
fields reflected and transmitted from an optical cavity in section 2.2 . The quantum treatment is similar
to that, but now we must take into account a vacuum input αv at mirror M2, as shown in figure 2.6. We
are interested in a quantum description of the reflected field αrefl.

Let us consider the bosonic operators âω for the incident field αin at mirror M1 and b̂ω for the
vacuum input αv at mirror M2. The cavity will transform the annihilation operator as:

âω −→ r(∆ω) âω + t(∆ω) b̂ω, (2.46)

where transmission t(∆ω) and reflection r(∆ω) coefficients are dependent on the detuning ∆ω = (ω−ωc)/Γ

between the cavity and the field mode (again Γ is the cavity linewidth). For frequencies close to the
resonance, the expression for r(∆ω) becomes:

r(∆ω) = −
√
d+ 2i∆ω

1− 2i∆ω
, (2.47)
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M1 M2
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Figure 2.6: Example of a linear cavity for the rotation of the noise ellipse. The incoming field αin gets
partially transmitted and partially reflected αrefl at mirror M1. The coupling with vacuum fluctuations
αv must be taken in to account at mirror M2.

where d is the impedance matching parameter, that is associated with the amount of power reflected
from the cavity at zero detuning. The value d = 0 indicates that the optical cavity is operating in the
impedance matched condition.

If we transform the bosonic operators for the upper and lower sidebands in equation 2.40
according to the relation 2.46, we obtain the following expression for the photocurrent operator (Barbosa
et al., 2013):

ÎΩ = R∗
Ω(∆) âu +R−Ω(∆) â†l + T ∗

Ω(∆) b̂u + T−Ω(∆) b̂†l , (2.48)

where

RΩ(∆) =
1√
2

r(∆)

|r(∆)|
r∗(∆ + Ω/Γ),

TΩ(∆) =
1√
2

r(∆)

|r(∆)|
t∗(∆ + Ω/Γ), (2.49)

and the phase eiθ is such that eiθ = 1√
2

r(∆)
|r(∆)| .

We may write the photocurrent operator in terms of the quadrature components Îcos and Îsin as
in ÎΩ = (Îcos + i Îsin)/

√
2 + Îvac by introducing the real functions of ∆: x± and y±, such that (Barbosa

et al., 2013)

x+ + i y+ = (RΩ +R∗
−Ω)/2 ≡ g+,

x− + i y− = i(RΩ −R∗
−Ω)/2 ≡ g−. (2.50)

Then, we have:

Îcos(∆) = x+ p̂u + y+ q̂u + x− p̂l − y− q̂l,

Îsin(∆) = y− p̂u + x− q̂u − y+ p̂l + x+ q̂l, (2.51)

where it is important to note that Îcos and Îsin commute, since they are independent observables. The
power spectral density of the photocurrent can now be obtained from equations 2.51 and 2.44, resulting
in

S(∆) =
1

2
∆2Îcos +

1

2
∆2Îsin +

1

2
∆2Îvac, (2.52)

where ∆2Îvac is the variance of vacuum fluctuations.
Ultimately, we are interested in reconstructing the covariance matrix of our system. So, if we

look at equations 2.41 and 2.42 as written in a basis of symmetric and antisymmetric combinations of
the sideband operators

p̂s(a) =
p̂u ± p̂l√

2
and q̂s(a) =

q̂u ± q̂l√
2

, (2.53)
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we may write

Îcos = cos θ p̂s + sin θ q̂s ≡ X̂θ
s , (2.54)

Îsin = cos θ q̂a − sin θ p̂a ≡ X̂
θ+π

2
a . (2.55)

and the stationarity condition 2.45 yields:

⟨ÎΩÎΩ⟩ = 0 =⇒

{
∆2X̂θ

s = ∆2X̂
θ+π

2
a ,

⟨∆2X̂θ
s ∆2X̂

θ+π
2

a ⟩ = 0.
(2.56)

which leads to the conclusion that, in the case of a stationary quantum state, the noise power corresponds
to the variance of a field quadrature (Barbosa et al., 2013).

The covariance matrix represented in the basis of symmetric and antisymmetric modes 2.53,
and considering condition 2.56, assumes the symmetric form

V(s/a) =


α γ δ 0

γ β 0 δ

δ 0 β −γ
0 δ −γ α

 ≡

(
Vs C(s/a)

(C(s/a))
T Va

)
, (2.57)

where we define X⃗s(a) = (p̂s(a) q̂s(a))
T to obtain the covariance matrices Vs(a) = ⟨X⃗s(a) · X⃗T

s(a)⟩ and the
correlation matrix C(s/a) = ⟨X⃗s · X⃗T

a ⟩.

Figure 2.7: Individual plot for the coefficients in equation 2.58 as a function of the cavity detuning ∆ for
the arbitrary parameters d = 0.9 and Ω = 5.

We now finally write the spectral quantum noise for the resonator detection 2.52 in terms of
the elements of the covariance matrix 2.57 as (Barbosa et al., 2013):

SRD(∆) = cα α+ cβ β + cγ γ + cδ δ + cv, (2.58)

where we express the coefficients in terms of the functions of ∆ in equations 2.50 as: cα = |g+|2, cβ = |g−|2,
cγ+i cδ = 2g∗+ g− and cv = 1−cα−cβ . As stated earlier in section 2.1.2, this information reveals the second
moment correlation matrix, allowing us to reconstruct our Gaussian state. The individual behaviour of
the coefficients in equation 2.58 as a function of the cavity detuning ∆ are displayed in figure 2.7. The
phase rotation of the noise ellipse obtained from equation 2.58 is shown in figure 2.8.
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Figure 2.8: Example of the rotation of the noise ellipse in phase space as described by equation 2.58.

We can now take a closer look at the correspondence of the detected signal as a function of
the cavity detuning and the rotation of the noise ellipse in phase space. Suppose the incoming beam is
squeezed in the amplitude quadrature. If the detuning is large, frame 1 of figure 2.9 shows that the cavity
has no effect and we measure amplitude noise. As the relative detuning of the first sideband gets closer
to resonance, the noise ellipse rotates until a full π/2 rotation in frame 3 and conversion of amplitude
to phase fluctuation is observed. Between frames 6 and 12, the carrier gets close to resonance and
experiences two complete conversions between quadratures. As the carrier moves away from resonance
and the second sideband gets closer to it the noise ellipse rotates again converting amplitude to phase
and back to amplitude again between frames 13 and 17.

Figure 2.9: Rotation of the noise ellipse in phase space and its correspondence with the amplitude signal
as a function of the detuning ∆. Reprinted from Villar (2008).

The tools developed in this chapter for the investigation of optical fields pave the basis for the



18

understanding of the techniques presented throughout this thesis. For instance, optical cavities are widely
used in our experiments, from the laser cavities, to frequency stabilization and detection schemes. Also,
the resonator detection technique allows us to build the correlation matrix for the fields being detected.
Given the correspondence between the Wigner function and the correlation matrix this result is essentially
a tomography of the quantum system, providing us with an important tool for the characterization of
the quantum states generated in the OPO. In the following parts of this work we will often refer to the
formalism introduced in this section.

In the next part we describe the OPO and its importance in the generation of the entangled
fields we are interested in. We also provide an experimental description of the scheme we use to generate
and characterize these fields and discuss our measurements of their quadratures and correlations.



Part II

Generation of Entangled States of Light
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3 INTRODUCTION

Here we present the information regarding the generation of tripartite entanglement in our
optical parametric oscillator (OPO). The experiment portrayed here was performed at the Laboratory
for Coherent Manipulation of Atoms and Light (LMCAL) at the Physics Intitute of the University of São
Paulo as part, and as consequence, of the work by Andrade (2018).

Entanglement is an essential resource for the transmission of information between different
components of a system. This shared information allows the implementation of computational processes
based on the manipulation of quantum information, improving the efficiency of some systems when
compared to a process based on the classical binary logic (Nielsen and Chuang, 2010). The idea
behind the experiment is to use an OPO to generate entangled light at different wavelengths. Then use
this entanglement to implement quantum information protocols between systems that would not interact
with each other under normal circumstances because they have different natural frequencies. Ultimately,
we would like to establish the basis for a quantum network (Kimble, 2008).

The output of the OPO presented here consists of three beams: the reflected pump with a
wavelength resonant with the Rubidium D2 transition line, at around 780 nm, and a pair of twin beams
called signal and idler with wavelengths at around 1560 nm, compatible with the C-band of telecommu-
nication’s channels. As stated earlier, the key property of interest to us, shared by the three beams, is
entanglement. However, as we will see in the following chapters, entanglement is very sensitive to per-
turbations in the system and, when these perturbations are not properly controlled, it can be degraded
to the point where quantum information protocols, such as teleportation, cannot be implemented with
an efficiency that is better that their classical equivalent.

We realized that the main source of noise, responsible for degrading the entanglement between
the three beams in our system, is the extra phase noise added due to the coupling of the fields with
thermal vibrations (phonons) in the crystal lattice. For this reason we put a lot of work in controlling
the crystal temperature and lowering it to acceptable levels.

This part of the thesis is structured as follows: We begin with the classical and quantum
descriptions of the OPO in Chapter 4, followed by a model that includes the coupling with phonon
noise in the quantum treatment. The chapter proceeds with the theory of quantum correlations such as
squeezing and entanglement and ends an overview of the teleportation protocol. In chapter 5 we explain
our experiment starting with the pump laser, followed by the OPO and the detection system. Chapter
6 contains the results from our measurements. In chapter 7 we discuss our results and comment on the
next steps.
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4 THEORETICAL DESCRIPTION

In this chapter we introduce the theory behind the parametric process that generates the
output fields from the OPO and how this process creates non-classical correlations between them. These
correlations, together with the possibility of having them on fields with distinct wavelengths, allow this
system to be used in many quantum information protocols and, consequently, present it as a promising
technology for the development of quantum networks.

4.1 Optical Parametric Oscillator

We will divide our description of the OPO in two parts. First we will give a classical treatment
for the fields inside an optical cavity that contains a non-linear crystal as described by Debuisschert
et al. (1993), which gives relevant insight on the oscillation conditions for the OPO and the populated
modes for the electromagnetic fields. Then we proceed to the quantum description which will allow us
to describe the squeezing (Fabre et al., 1990) and the quantum correlations between the output field
modes (Martinelli et al., 2001).

4.1.1 Classical Description

In this work we will focus only on the discussion of a type-II phase matching OPO since
this is the type of phase matching present in our crystal. In this case, the polarization modes for the
downconverted fields, signal and idler, are orthogonal. For information on type-I phase matching OPOs
we recomend the work of Eckardt et al. (1991).

As hinted earlier, an OPO consists of an optical cavity with a non-linear medium inside it that
is responsible for converting a photon of an incoming field mode with frequency ω0, that we call pump,
into a pair of photons of frequencies ω1 and ω2, that we call signal and idler. Since this is a parametric
process, energy conservation is obeyed and ω0 = ω1+ω2. As a consequence of the annihilation of a pump
photon and the simultaneous creation of photons in the signal and idler modes, we expect correlations in
intensity between the three modes. We also expect phase correlations, given that the sum of the phases
of signal and idler is locked to the phase of the pump for the same reason.

We can take into account three different regimes of operation for OPOs that differ with respect
to the number of resonant fields inside the cavity. When only the signal is resonant we call it a single
resonant OPO (SROPO). When signal and idler are resonant we have a doubly resonant OPO. When the
three fields are resonant we have a triply resonant OPO (TROPO), which has the advantage of a lower
oscillation threshold since the pump intensity on the crystal will increase due to the multiple round trips
of the pump. The latter is the configuration of our OPO and the one that will be considered throughout
this work.

For simplicity, let us consider an OPO formed by a triangular traveling wave cavity and a
nonlinear crystal of length l as depicted in figure 4.1. We define the total length of the cavity as Lcav =

L+ l, where L is the length of the empty part of the cavity. The mirrors that form this cavity are taken
to be perfectly reflective (R = 1), with the exception of the coupling mirror, which is the only one that
allows partial transmission t0, t1 and t2 of the fields α0, α1 and α2 and has reflection coefficients r0, r1
and r2 for each of them. We shall consider that the transmission coefficients are small such that

rj = e−γj ≃ 1− γj ,

tj =
√

2γj , (4.1)

where j = 0, 1, 2 and γj ≪ 1 was used for the first order approximation.
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Figure 4.1: Example of a traveling wave cavity OPO.

The propagation equations for the electromagnetic field inside the cavity considering the slow
varying envelope method (Debuisschert et al., 1993) allow us to obtain an expression for the change
of the fields along the optical axis z:

dα0

dz
= −2χ∗

eff α2(z)α1(z) e−i∆k z,

dα1

dz
= 2χeff α0(z)α

∗
2(z) ei∆k z, (4.2)

dα2

dz
= 2χeff α0(z)α

∗
1(z) ei∆k z,

where ∆k = k0−k1−k2 is the mismatch between the wave vectors k0, k1 and k2 of the fields. χeff depends
on the beam waist for each field inside the crystal and on the second order susceptibility coefficient χ(2).

The behavior of the fields depends on the total losses γ′j inside the cavity. These losses are
split in basically in two types, losses associated with the transmission through the coupling mirror γj and
spurious losses µj , that may occur due to scattering in optical surfaces or absorption in the crystal, such
that the total losses are γ′j = γj + µj . Oscillation occurs when the gain overcomes the total losses.

Taking φj to be the accumulated phase in a round trip, we define the normalized detuning as
∆j = δφj/γ

′
j , where δφj is the detuning of the field j from the cavity resonance. Considering the steady

state condition, we obtain the amplitude of the fields in a round trip inside the cavity close to resonance
(δφj ≪ 2π) by integrating equations 4.2:

α0 γ
′
0 (1− i∆0) = −2χ∗α1 α2 +

√
2γ0 α

in
0 ,

α1 γ
′
1 (1− i∆1) = 2χα0 α

∗
2, (4.3)

α2 γ
′
2 (1− i∆2) = 2χα0 α

∗
1,

where
χ = χeff l

sin(∆k l/2)
∆k l/2

e−i∆k l/2. (4.4)

We can draw conclusions about the operation of the OPO from equations 4.3. If we look at
the trivial solution α1 = α2 = 0, we find that its stability holds until a specific value for the incident
pump amplitude αin

0 is reached, after that the OPO oscillates and α1 and α2 are no longer zero. Through
some manipulation of the second and third equations we find that the detunings for signal and idler
must be the same (∆1 = ∆2 = ∆) for the steady state operation (Debuisschert et al., 1993). Given
this condition the intracavity power necessary for oscillation depends on the total losses for those modes,
on their detunings and on the coupling coefficient χ, which in turn is a function of the phase mismatch
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(equation 4.4), such that:

|α0|2 =
γ′1γ

′
2(1 + ∆2)

4|χ|2
. (4.5)

Now if we look at the first of equations 4.3 and at equation 4.5 we find the threshold value with
respect to the incoming power

|αin
0 |2th =

γ′0
2
γ′1γ

′
2(1 + ∆2)(1 + ∆2

0)

8|χ|2γ0
. (4.6)

With equation 4.4 in mind, it is easy to see that the effect of phase mismatch is to increase the threshold.
The minimum value of equation 4.6 is obtained for zero detuning (∆ = ∆0 = 0), this is the on resonance
threshold power (|αin

0 |2res). We use this minimum value to define the incoming power normalized by the
resonance power at zero detuning:

σ =
|αin

0 |2

|αin
0 |2res

. (4.7)

The OPO output power may be obtained from equations 4.3 and 4.6 (Martinelli et al., 2001).
After some calculations we can write the following expression for the normalized pump power (equation
4.7):

σ =

(
1−∆∆0 +

4|χ|2|α1|2

γ′2γ
′
0

)2

+ (∆+∆0)
2. (4.8)

The non-zero stable solution for the output power through the coupling mirror for the triply resonant
condition and ∆∆0 ≤ 1 is:

|αout
j |2 =

γjγ
′
kγ

′
0

2|χ|2
(
√
σ − 1), (4.9)

with j, k = 1, 2 and j ̸= k. This solution becomes unstable and the OPO enters a self pulsing chaotic
operation for high values of the pump and the detunings.

The efficiency of the OPO can be obtained considering the total output power Pout, which is
the sum of the output powers of the signal and idler beams. Assuming, as we may in our case, that all
the losses and the frequencies for both beams are the same we get

Pout = h̄ω0

[
γγ′γ′0
2|χ|2

(
√
σ − 1)

]
= 4ηmax(

√
P · Pth − Pth), (4.10)

where P is the input power, Pth = |αin
0 |2th, γ = γ1 = γ2 and the same goes for the total losses γ′. The

maximum efficiency is defined as
ηmax =

γ

γ′
γ0
γ′0

= ξξ0, (4.11)

where ξj = γj/γ
′
j .

Although this discussion gives us important insight on the oscillation conditions for the OPO
and the output powers for signal and idler, it is not enough for us to draw conclusions about the corre-
lations between the three fields, which ultimately is our goal. For that we need a quantum treatment of
this system.

4.1.2 Quantum Description

In the quantum description of the OPO, we need to use a set tools capable of dealing with the
time evolution of our quantum system in the presence of losses. For that we use the master equation
formalism, which considers the coupling of the system of interest to a heat bath (or a reservoir). A detailed
derivation of this equation for the density operator can be found in Walls and Milburn (2008), and
considering the three fields in our OPO and their losses we may write it as:

d

dt
ρ = − i

h̄
[Hf +Hi +Hext , ρ] + (Λ0 + Λ1 + Λ2)ρ. (4.12)
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The Hamiltonian for the free fields propagating inside the cavity Hf is

Hf = −h̄∆0
γ′0
τ
a†0a0 − h̄∆1

γ′1
τ
a†1a1 − h̄∆2

γ′2
τ
a†2a2, (4.13)

where we have dropped the hat in our notation for the annihilation (creation) operator aj (a†j), and τ is
the intracavity round-trip time.

The the effective interaction Hamiltonian for the three fields Hi describes the parametric down-
conversion process in the nonlinear crystal:

Hi = ih̄
2χ

τ
(a†1a

†
2a0 − a1a2a

†
0). (4.14)

Finally, the injection of the pump field ε in the cavity is given by

Hext = ih̄
γ0
τ
ε(a†0 − a0). (4.15)

The last term inside the parenthesis in the master equation 4.12 refers to the intracavity losses
for each mode j:

Λj ρ =
γ′j
τ
(2ajρa

†
j − a†jajρ− ρa†jaj). (4.16)

We now use the Wigner function quasi-probability representation introduced in section 2.1.1
to convert the operator master equation 4.12 into a c-number Fokker-Plank equation. This operation
results in the following expression:

∂

∂t
W ({αj}) =

3∑
j=1

γ′j
τ

[
i∆j

(
∂

∂α∗
j

α∗
j −

∂

∂αj
αj

)
+

(
∂

∂α∗
j

α∗
j +

∂

∂αj
αj

)]
W ({αj})

+
2χ

τ

(
α1α2

∂

∂α∗
0

+ α∗
1α

∗
2

∂

∂α0
− α0α

∗
1

∂

∂α2
− α∗

0α1
∂

∂α∗
2

− α0α
∗
2

∂

∂α1
− α∗

0α2
∂

∂α∗
1

)
W ({αj})

−

γ0
τ
ε

(
∂

∂α∗
0

+
∂

∂α0

)
−

3∑
j=1

γ′j
τ

∂2

∂αj∂α∗
j

W ({αj})−
χ

2τ

∂3

∂α∗
0∂α

∗
1∂α

∗
2

W ({αj}), (4.17)

where {αj} = (α0, α
∗
0, α1, α

∗
1, α2, α

∗
2). The triple partial derivative in the last term can be neglected for

Gaussian states and we can write the Fokker-Plank equation 4.17 in a more compact notation:

∂

∂t
W ({αj}) = −

∑
j

∂

∂αj
Aj W ({αj}) +

1

2

∑
j,k

∂

∂αj

∂

∂αk
[BBT ]jk W ({αj}), (4.18)

where Aj is an element of the drift vector A and BBT is called the diffusion matrix.
Using the notation introduced in equation 4.18 we may promptly write the Fokker-Plank equa-

tion as a set of stochastic differential equations known as Langevin equations:

d

dt
αj = Aj + [Bσ(t)]j , (4.19)

where σ(t) is a vector of stochastic variables with the property that

⟨σi(t)σj(t′)⟩ = δijδ(t− t′). (4.20)

It is convenient to introduce an approximation taking the fields as having a mean value with
fluctuations around it, such that

αj = ᾱj + δαj . (4.21)

Under this approximation, by taking
d

dt
ᾱj = ⟨Aj⟩ (4.22)
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in the steady state condition, we recover equations 4.3, which we already had from the classical description.
The extra information we obtain from the quantum mechanical treatment of the OPO comes from the
fluctuations δαj . For the treatment of these fluctuations, specifically regarding our experiment, we follow
the work of Andrade (2018).

We are interested in describing the field fluctuations in terms of its quadratures in phase space
and we can arbitrarily make α real by a local phase rotation. In this case the quadratures can be
associated to the amplitude and phase fluctuations for the intense fields involved, as δqj = i(δα∗

j − δαj)

and δpj = δα∗
j + δαj . Equation 4.19, for the fluctuations in terms of these new quadratures, becomes

d

dt
δχ = M δχ+ T δβ + T′ δϵ, (4.23)

where δχ = (δp0, δq0, δp1, δq1, δp2, δq2)
T is a vector that holds the fluctuations in both the phase and

amplitude quadratures for each field, δβ = (δpin
0 , δq

in
0 , δup1

, δuq1 , δup2
, δuq2)

T a vector for the vacuum
fluctuations from the coupling through the input mirror and δϵ = (δvp0

, δvq0 , δvp1
, δvq1 , δvp2

, δvq2)
T a

vector for vacuum fluctuations introduced due to spurious losses inside the cavity.
The matrix T = diag(

√
2γ0,

√
2γ0,

√
2γ1,

√
2γ1,

√
2γ2,

√
2γ2) contains the transmission coeffi-

cients through the coupling mirror and T′ = diag(
√
2µ0,

√
2µ0,

√
2µ1,

√
2µ1,

√
2µ2,

√
2µ2) the spurious

losses coefficients. The matrix M that holds the coefficients for the drift vector in this representation is
given by

M =



−γ′0 γ′0∆0 −η η∆ −η η∆

γ0∆0 −γ′0 −η∆ −η −η∆ −η
η η∆ −γ′ γ′∆ γ′ −γ′∆

−η∆ η −γ′∆ −γ′ −γ′∆ −γ′

η η∆ −γ′ −γ′∆ −γ′ γ∆

−η∆ η −γ′∆ −γ′ −γ′∆ −γ′


, (4.24)

where we write
η =

2χ|α|√
1 + ∆2

. (4.25)

The solution of equation 4.23 can be performed in the frequency domain, for that we can take
its Fourier transform to obtain

δχ(Ω) = − 1

M + 2iγ′Ω
[T δβ(Ω) + T′ δϵ(Ω)]. (4.26)

From this solution we can obtain the spectral matrix for the fluctuations, much like in equation 2.43,
such that

S(Ω) 2πδ(Ω− Ω′) = ⟨δχ(Ω)δχ(−Ω′)⟩ . (4.27)

By performing this operation we arrive at:

S =



Sp0 0 CR
p0p1 + iCI

p0p1 0 CR
p0p2 + iCI

p0p2 0

0 Sq0 0 CR
q0q1 + iCI

q0q1 0 CR
q0q2 + iCI

q0q2

CR
p1p0 + iCI

p1p0 0 Sp1 0 CR
p1p2 + iCI

p1p2 0

0 CR
q1q0 + iCI

q1q0 0 Sq1 0 CR
q1q2 + iCI

q1q2

CR
p2p0 + iCI

p2p0 0 CR
p2p1 + iCI

p2p1 0 Sp2 0

0 CR
q2q0 + iCI

q2q0 0 CR
q2q1 + iCI

q2q1 0 Sq2


.

(4.28)
The diagonal elements in the matrix S(Ω) represent the noise spectrum for the phase and amplitude
quadratures for each field. The off-diagonal elements represent the two by two correlations between the
three fields.
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4.2 Phonon Noise

There is another element we must take into account when looking at the the noise spectrum of
an OPO. When taking noise measurements on their system, Villar et al. (2007) observed excess noise
that was independent of the parametric process. This led to the development of an ad hoc model that
considers fluctuations in the refractive index of the crystal as a consequence of local changes on its density
due to thermal vibrations in the crystal lattice. This phonon noise is also present in our system and we
must, therefore, introduce the model used for its treatment.

To account for the extra noise in the system, we add a vector of stochastic forces for the phase
of each of the three fields (César et al., 2009)

δQ = (0, δqex
0 , 0, δq

ex
1 , 0, δq

ex
2 )T (4.29)

to equation 4.26, which describes the OPO intracavity quadrature noise, such that

δχ(Ω) = − 1

M + 2iγ′Ω
[T δβ(Ω) + T′ δϵ(Ω) + δQ]. (4.30)

We then obtain the noise spectrum from equation 4.27 just like in the previous case.
Since, as mentioned before, this noise is assumed to be independent of the parametric process,

we expect the variance of the excess noise to be proportional to the power Pj of the associated field:

∆2δqex
j = ηjPj , (4.31)

ηj is simply a proportionality constant. This dependence with the power is also extended to the coupling
between two fields, whose correlations are proportional to their individual amplitudes

⟨δqex
i (Ω)δqex

j (−Ω)⟩ = ηij
√
PiPj , (4.32)

such that ηij is a coupling constant that depends on the crystal length l and on the effective Rayleigh
length for the cavity (Coelho, 2009).

Given the assumption that the excess noise described so far is a consequence of phonons due
to vibrations in the crystal lattice, we can assume that it is proportional not only to the power, but
to the average number of phonons ⟨n⟩. Since the average number of phonons in a solid depends on
the temperature Tc we can say, to a first order approximation, that the excess phase noise Sq is also
proportional to the temperature:

Sq ∝ P × Tc. (4.33)

This indicates that lowering the temperature of the crystal can be an effective course of action into
reducing the excess phase noise in our system and improving the correlations between the three fields.

According to Villar et al. (2004), extra noise in the pump can degrade the entanglement. This
is true because the noise term in equation 4.29 can be seen as spurious losses that are responsible for
reducing the level of squeezing in the phase quadratures. Since squeezing and entanglement are intimately
related the system will experience a reduction on its level of entanglement. Mathematically, as we will
see in the following sections, less squeezing in the quadratures of interest implies in higher values for
their variances, eventually preventing the violation of the inequalities that are used to demonstrate the
separability of the system.

4.3 Quantum Correlations

Now that we are able to build a matrix that contains the correlations between pump, signal and
idler and are able to consider the effects of thermal noise in our OPO, we are interested in investigating
what information can be extracted from these correlations under such experimental conditions.
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4.3.1 Squeezing

We have seen from the quantum description of the parametric downconversion inside the OPO
that correlations between the three fields are inherent to the process. However, we are interested in
checking whether these correlations are stronger than the allowed by classical processes. For that we
define new quadratures through the linear transformation:

δp± =
δp1 ± δp2√

2
,

δq± =
δq1 ± δq2√

2
, (4.34)

and calculate their noise spectrum from the Langevin Equations, like we did for the the phase and
amplitude quadratures in equation 4.23. The pump quadratures remain the same.

In this space, the quadrature subtraction of the amplitudes δp− and the quadrature subtraction
of the phases δq− are completely decoupled from the other quadratures. The calculation of their noise
spectra results in (Fabre et al., 1990):

Sp− = 1− γ/γ′

1 + Ω′2
,

Sq− = 1 +
γ/γ′

Ω′2
. (4.35)

We can see from figure 4.2, which plots both noise spectra, that the parametric process introduces
squeezing in the subtraction of the amplitudes given that its spectrum lies entirely below the shot noise
limit. We can also see excess noise in the subtraction of the phases, which is expected since Heisenberg’s
uncertainty principle must be respected. The presence of squeezing indicates that quantum resources
were used in the generation of these states.

Figure 4.2: Noise spectrum for the subtraction of amplitudes Sp− and subtraction of phases Sq− at zero
detuning. Sp− presents noise compression below the shotnoise limit indicating squeezing while Sq− ’s noise
is always greater than the shotnoise limit and assintotically tends to it as Ω increases.

4.3.2 Bipartite Entanglement

As we have shown for the spectra of the subtraction quadratures 4.35, when we calculate the
noise spectrum for the sum of the phases Sq+ and amplitudes Sp+

, we find that Sq+ is squeezed while
Sp+ has excess noise (Andrade, 2018). The existence of squeezing in the sum of the phases and in the
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subtraction of the amplitudes of signal and idler indicates strong correlations between these quadratures.
In fact they can be seen as a pair of EPR like operators and according to Duan et al. (2000) we can define
an inseparability criterion based on their variances that provides a necessary and sufficient condition for
entanglement between Gaussian states.

A quantum system is said to be entangled when its inseparable, meaning that it cannot be
factored as a product of states of its local constituents. Duan et al. (2000) found that there is a lower
bound to the total variance of separable states, which means that states that violate this lower bound
are entangled. For the quadratures as defined in equation 4.34 this lower bound is given by

∆2

(
p1 − p2√

2

)
+∆2

(
q1 + q2√

2

)
≥ 2. (4.36)

In fact, for the case of the signal and idler fields generated in an OPO we find that the inequality 4.36 is
violated, demonstrating bipartite entanglement between them (Andrade, 2018; Coelho, 2009).

4.3.3 Tripartite Entanglement

Up to this point we have shown that signal and idler are expected to be entangled. Now we
need to see how adding the pump to the problem influences the entanglement between the three fields.
We have seen in the description of the OPO that the parametric process introduces phase correlations
due to conservation of energy and amplitude correlations by the annihilation of a pump photon and the
creation of signal and idler photons, we now need a way to characterize these correlations like we did for
the bipartite scenario.

A demonstration of entanglement between pump signal and idler in above threshold OPO was
first proposed in our group by Villar et al. (2006) and demonstrated by Coelho et al. (2009). As
stated in these works, we can verify entanglement between the three fields by extending the bipartite
separability criterion introduced by Duan et al. (2000) to account for the three subsystems as proposed
by van Loock and Furusawa (2003). This results in a set of three inequalities that when violated are
enough to determine genuine tripartite entanglement:

V0 = ∆2

(
p1 − p2√

2

)
+∆2

(
q1 + q2 − g0q0√

2

)
≥ 2,

V1 = ∆2

(
p0 + p2√

2

)
+∆2

(
g1q1 + q2 − q0√

2

)
≥ 2,

V2 = ∆2

(
p0 + p1√

2

)
+∆2

(
q1 + g2q2 − q0√

2

)
≥ 2, (4.37)

where gj are parameters that minimize the left hand side of equations 4.37. These parameters can be
calculated by differentiating each of the equations with respect to the relevant gj and setting the result
to equal zero. We then obtain:

g0 =
CR

q0q1 + CR
q0q2

∆2q0
, g1 =

CR
q0q1 − CR

q1q2

∆2q1
, g2 =

CR
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q1q2

∆2q2
. (4.38)

Substituting them in equations 4.37 we obtain
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2
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)
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)
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)
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)
− β2 ≥ 2, (4.39)

where
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2

2∆2q2
. (4.40)
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Relations 4.39, like equation 4.36, depend on the sum and subtraction of the bipartitions of the system
with an added correlation with the third field given by βj . Violation of two of the inequalities 4.39 is
enough to determine that the three fields are entangled. Also from the same equations we see that phase
noise added to the quadratures due to coupling with phonon noise will increase the variance of the sum
and subtraction of the phases, making it more difficult to violate these inequalities.

4.4 Quantum Teleportation

In this section we will discuss the teleportation of quantum modes of light as presented by
Furusawa and van Loock (2011). This was performed in an unconditional fashion for the first time
by Furusawa et al. (1998) showing a fidelity in the teleportation larger than the classical limit of 0.5 for
Gaussian states. Similar propositions for our system, where we use an above threshold OPO, were given by
Andrade (2018), where she discusses for instance how to implement generalized quantum teleportation
with two receivers, a type of quantum telecloning using the entanglement between the pump and the
downconverted fields to perform teleportation between different wavelengths.

A continuous variable teleportation can be performed as displayed in figure 4.3. A pair of EPR
beams (x̂A, p̂A) and (x̂B, p̂B) is generated by an OPO and each of them is sent to a different station, Alice
(A) and Bob (B), respectively. A generic Gaussian state (x̂in, p̂in) is prepared in a station called Victor
and sent to Alice. Alice then performs a Bell state measurement by mixing her part of the EPR pair
with Victor’s state and measuring x̂u and p̂v such that:

x̂u =
x̂in − x̂A√

2
, p̂v =

p̂in + p̂A√
2

, (4.41)

where

x̂A =
e+r x̂

(0)
i + e−r x̂

(0)
ii√

2
, p̂A =

e−r p̂
(0)
i + e+r p̂

(0)
ii√

2
,

x̂B =
e+r x̂

(0)
i − e−r x̂

(0)
ii√

2
, p̂B =

e−r p̂
(0)
i − e+r p̂

(0)
ii√

2
. (4.42)

Here (x̂(0)i , p̂
(0)
i ) and (x̂(0)ii , p̂

(0)
ii ) are vacuum modes and r is the squeezing parameter. Depending on the

efficiency η of the homodyne measurements performed by Alice, x̂u and p̂v will fluctuate due to the
addition of vacuum noise.

Alice electronically sends the results xu and pv of her homodyne measurements to Bob. These
are now classical variables, therefore the hat notation has been dropped in this situation. Bob after
receiving this information uses it to modulate the phase and amplitude of a coherent beam with an
overall gain g. By interfering this beam with his branch of the EPR pair in a high reflectivity mirror he
creates the teleported output state

x̂tel = x̂B + g
√
2xu,

p̂tel = p̂B + g
√
2 pv. (4.43)

The entangled state share between Alice and Bob allows us to use equations 4.41 and 4.42 to
write Bob’s part of the EPR pair as

x̂B = x̂in −
√
2 e−r x̂

(0)
ii −

√
2 x̂u,

p̂B = p̂in +
√
2 e−r p̂

(0)
i −

√
2 p̂v. (4.44)

Using this result and considering a system with high detection efficiency (η ≈ 1) and unit gain (g = 1)
the teleported state becomes:

x̂tel = x̂in −
√
2 e−r x̂

(0)
ii ,

p̂tel = p̂in +
√
2 e−r p̂

(0)
i . (4.45)
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Figure 4.3: Schematic representation of a teleportation protocol. Reprinted from Furusawa and van
Loock (2011).

We see that for the ideal case of infinite squeezing (r → ∞) we completely recover the initial state
prepared by Victor.

So, the quality of the teleported state depends not only on the level of squeezing generated by
the OPO but also on the detection efficiency η and on the gain (g), which can be determined operationally
and made very close to unity. Also recent detectors allow for very high detection efficiencies making the
quality of the squeezing the most determinant parameter in the teleportation fidelity.

4.4.1 Teleportation Fidelity

The usual way to quantify the quality of the teleported state is through the fidelity. It uses the
overlap between the original state and the output state to determine their degree of similarity. This can
be expressed by

F ≡ ⟨ψin| ρ̂out |ψin⟩ , (4.46)

where |ψin⟩ is the initial pure state and ρ̂out the density operator for the output state. Without a shared
entangled state, the best possible value for fidelity in the teleportation of a coherent state is 0.5.

The general expression for the fidelity in the teleportation of a coherent state can given by (Fu-
rusawa and van Loock, 2011)

F =
1

2
√
σx
Q σ

p
Q

exp
[
−(1− g)2

(
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2σx

Q

+
p2in
2σp

Q

)]
, (4.47)

where the variances σx
Q and σp

Q are calculated as follows
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(
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η2
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)
, (4.48)

where rx,p refers to the squeezing parameters for each quadrature, ξA,B the efficiency with which the
EPR beams propagate (in the presence of losses ξA,B < 1).

Phonon noise degrades squeezing and since higher fidelity requires more squeezing, we see
from equations 4.47 and 4.48 that high levels of phonon noise can make it very unlikely to perform a
teleportation protocol with fidelity higher than the classical limit.
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5 EXPERIMENTAL IMPLEMENTATION AND METHODS

In this chapter we describe the experiment for the generation of tripartite entanglement. We
begin by introducing a Titanium Sapphire (Ti:Sapph) laser and the saturated absorption scheme we use
to lock its frequency to the D2 transition of the Rubidium (Rb) atom. Then we proceed to the OPO
description and the different configurations proposed to reduce the influence of phonon noise. Finally
we conclude with a description of the photodetectors and the analysis cavities used to rotate the noise
ellipse and convert phase noise into amplitude noise, as described in section 2.3.2.

5.1 Pump Laser: Ti:Sapph

The pump laser for our OPO is a homemade tunable Titanium Sapphire (Ti:Sapph) laser built
by Moraes (2013) as part of his Master’s thesis. The advantages of using Ti:Sapph lasers is that besides
their high tunability, typically allowing for operating wavelengths between 650 nm and 1100 nm, they are
able to produce extremely narrow linewidth coherent Gaussian beams. The linewidth of our laser is less
than 0.2 MHz and, as showed by Andrade (2018), can be considered coherent for analysis frequencies
above 9 MHz.

As shown in figure 5.1, the laser itself consists of a Ti:Sapph crystal inside a bow tie propagating
wave cavity pumped by a Lighthouse Sprout-D 532 nm diode‐pumped solid‐state laser. The pump laser
goes through the coupling lens L1 to match the cavity’s modes and enters it through the coupling mirror
M1. The Lyot filter LF is used as narrow optical pass-band filter to reduce the frequency modes allowed
in the cavity and the etalon reduces even further the frequency modes, allowing our laser to operate in
the single mode regime.

LF

M3

PZT
Etalon

M1
M2

M4

Ti:SapphL1

Sprout D-532nm

Op�cal Diode

780nm~

Figure 5.1: Schematic representation of the homemade Titatnium Sapphire laser used in our experiment.
L1 is the coupling lens, M1 is the input mirror, mirror M3 has a PZT attached to control cavity length,
M4 is the output mirror and LF is a Lyot Filter.

Essentially, by tuning the Lyot filter we select a range of frequencies for our laser to operate
and by adjusting the etalon angle we select a specific frequency mode. The PZT attached to mirror
M3 uses the piezoelectric effect to change its size and on doing so changing the size of the cavity and
consequently its resonance frequency. This allows us to precisely select a frequency of operation for our
laser. The optical diode is used to prevent light from propagating in the opposite direction, increasing
the laser efficiency.

Because we are interested in using this system to interact with Rubidium atoms and also to
provide a stable frequency reference to lock the laser, we decided to use a saturated absorption scheme
to frequency lock the laser at the Rb D2 atomic transition, yielding an operation wavelength of roughly
780 nm. This is done by generating an error signal from the saturated absorption spectrum and using it
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to lock the size of the cavity using the PZT at mirror M3. Upon doing so we are making sure that the
peak of the transmitted mode matches the selected hyperfine atomic transition.

5.1.1 Frequency Locking: Saturated absorption of Rubidium

The experimental setup used to obtain the saturated absorption spectrum of Rb is depicted
in figure 5.2. The incoming beam gets partially transmitted and partially reflected at the first interface
of a thick glass slab. The transmitted beam then gets partial transmission (solid line) and reflection
(dashed line) at the second interface. The path represented by the dashed line passes the Rb cell in a
single direction and is picked-up by photodetector PD2. The path represented by the solid line passes
the Rb cell in both directions and is picked-up at detector PD1, the reflected beam is called probe and
the transmitted is called pump.

Rb Cell

PD1
PD2

Thick glass

M

M

PBS

/2

Figure 5.2: Schematic representation of the experimental setup used to obtain the saturated absorption
spectrum of Rb. The mirrors are represented by M , λ/2 is a half waveplate and PD1 and PD2 are
photodetectors 1 and 2 for the detection of the Doppler free and Doppler broadened spectra respectively.

By sending a voltage ramp to the PZT attached to mirror M3 in the Ti:Sapph cavity (figure
5.1), we set the laser to scanning mode, varying its frequency around the Rb D2 transition. Upon doing
so, the signal observed by photodetector PD2 generated by the single pass path (dashed line in figure
5.2) cannot resolve the hyperfine transitions due to the Doppler broadening. This signal is depicted by
the red curve in figure 5.3.

However, the double pass path (solid line) can resolve the hyperfine lines. This is because, near
resonance, the pump beam and the probe beam address the same atoms, those with velocities orthogonal
to the direction of laser propagation. This means that the strong pump saturates the atomic transitions
reducing the absorption of the probe for those atoms and resolving the blue peaks in figure 5.3.

Now that we have the setup to generate the generate signals that can resolve peaks at the
hyperfine transitions, we use a lock-in amplifier to generate the error signal. The lock-in amplifier sends
a dither (sine wave) signal to the PZT inside the Ti:Sapph cavity scanning the laser frequency. The
dithered Doppler free saturated absorption spectrum is picked up at detector PD1 and sent back as an
input to the lock-in amplifier. Both signals are then electronically mixed forming a beat signal and higher
frequency components are removed by built-in low pass filters. The error signal obtained is displayed in
figure 5.4 (b) and each error signal is matched to its respective hyperfine peak in figure 5.4 (a).
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Figure 5.3: Absorption spectrum of rubidium atoms around the D2 transition line. The red line represents
the direct transmission and the blue line the Doppler free transmission.

The error signal of figure 5.4 (b) is then fed to a PID1 controller that is responsible for adjusting
the PZT voltage to keep the size of the cavity such that the sharp slope signal intercepts zero. We see
from the dashed line in the figure that the peaks in part (a) exactly match the zero intercepts in part
(b). If the laser frequency drifts away from the frequency of the atomic reference, the error signal is no
longer zero and the cavity size is increased or decreased to correct the drift.

Figure 5.4: (a) Doppler free saturated absorption spectrum of Rb. (b) Error signal obtained through
the dither locking technique. The sharp slope in the error signal intercepts zero exactly at the central
frequency of its corresponding hyperfine peak.

1proportional–integral–derivative.
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5.2 The OPO Cavity

Our OPO consists essentially in a linear cavity with a periodically poled potassium titanyl
phosphate (PPKTP) crystal as the gain medium responsible for the parametric downconversion and a
peltier module to provide temperature control and stability, as depicted in figure 5.5a. The coupling
mirror M1 is partially transmissible for the pump (T1 = 29.6(4)% at 780 nm) and has high reflectivity
for signal and idler (HR at 1560 nm). Mirror M2 on the other hand has high reflectivity for the pump
(HR at 780 nm) and partial tranmissivity for signal and idler (T2 = 3.84(4)% at 1560 nm). Both mirrors
have the same radius of curvature Rc = 25 mm and were manufactured by ATFilms.

The cavity has its finesse F calculated based on the transmissivity of the mirrors and has values
F = 18 at 780 nm and F = 160 at 1560 nm. Mirrors M1 and M2 are separated by 56 mm, forming a
near concentric cavity, to obtain the optimum value of 19 µm for the beam waist in the center of the
crystal (Andrade, 2018). A set of lenses are used to match the waist of the pump coming from the
Ti:Sapph cavity and the waist inside the OPO cavity, making sure that near optimal mode matching is
achieved for the best OPO performance. This configuration yields a bandwidth of roughly 15 MHz for
the OPO. The actual OPO cavity is shown in figure 5.5b.

PPKTP

Water Cooling

Peltier Peltier

M1 M2

(a) (b)

Figure 5.5: (a) Schematic representation of our OPO. The PPKTP crystal is placed inside the cavity
and cooled by a peltier module whose bottom face is in contact with a water cooling system at 15 ◦C.
(b) Actual picture of the OPO inside the vacuum chamber. The crystal is held by a copper casing and
clamped on top of the peltier module, a copper fork is attached to another peltier and held close to the
crystal surface to function as a cold trap.

The PPKTP crystal itself is held by a copper casing and clamped on top of a Peltier module. It
has type-II phase matching, 15 mm of length, degeneracy temperature between −25 ◦C and −75 ◦C and
anti-reflective coatings for both 780 nm and 1560 nm. The need for stability requires active control of the
temperature of the crystal to avoid drifts in the cavity size due to thermal expansion. This is performed
via a temperature control circuit that stabilizes the crystal temperature by controlling the electric current
being fed to the peltier. The peltier is a ceramic module that uses the Peltier effect to generate a gradient
of temperature between the upper and lower surfaces given an electric current. The bottom surface is
attached to a water cooling system controlled by a chiller that keeps the water temperature at 15 ◦C, the
upper surface is in contact with the crystal’s copper casing.

Our initial attempts to measure tripartite entanglement were performed at room temperature.
Although we were able to measure entanglement between signal and idler under these conditions, entan-
glement with the pump was being degraded due to phase noise introduced by the coupling with thermal
fluctuations in the crystal (César et al., 2009). This led us to pursue lower temperatures of operation.
However, we found, as we will show in chapter 6, that the optimal temperature of operation is below
0 ◦C, which means that lowering the temperature to the optimal limit will introduce condensation in the
crystal and significantly increase cavity losses due to scattered light, again degrading correlations.
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5.2.1 Different OPO Configurations

The initial attempt to reduce losses introduced by condensation was to simply work at a low
pressure environment. However, even at pressures lower than 10−3 Torr (lowest possible value for our
pressure gauge) we realized that there was condensation in the crystal as the temperature becomes
negative. We then decided to rework the cooling system.

This new attempt at a design for cooling the crystal without condensation is shown in figure
5.6. The idea behind this scheme is that by lowering the temperature on the surface of peltier 2 as much
as possible, the copper mask between peltiers 1 and 2 would function as a large cold trap for humidity,
while peltier 1 would keep the crystal at slightly higher temperatures, but still negative. We hypothesized
that this large cold surface area, combined with the low pressure environment, would be enough to keep
the crystal at lower temperatures with no significant condensation for a period long enough for a full set
of measurements.

Figure 5.6: Schematic representation of an alternative cooling scheme to improve the OPO operation.

Once we had the new structure manufactured, we reassembled the OPO and started trying
to lower the temperature of the upper surface of peltier 2 as much as possible. However, the copper
mask would not achieve negative values in a low pressure environment, while it would at standard room
pressures. This indicated that the peltier was losing efficiency at lower pressure levels.

To investigate the peltier efficiency we cleaned the vacuum chamber and removed all the extra
load from it, as seen in figure 5.7, leaving only the water cooling system at 15 ◦C at the lower surface
and measuring the upper surface temperature with a thermocouple connected to a multimeter. We then
applied a safe current of 2 A (higher values would risk damaging the module due to thermal effects)
and measured a difference in temperature of 26 ◦C between the upper and lower surfaces, way below the
optimum performance of 80 ◦C under ideal conditions specified in the manufacturer’s datasheet.

Our tests indicate that at low pressures the module operates as if it had an extra load of 3 W,
rendering its use irrelevant for our purposes under these conditions. For this reason we decided to fall
back to the original cooling configuration in figure 5.5a and stop working at lower pressures. Instead
we decided to work with synthetic air composed of 21 % oxygen, 79 % nitrogen and very low levels of
humidity. The adopted procedure was to pump the atmospheric air off the vacuum chamber for a couple
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Figure 5.7: Peltier inside an empty vacuum chamber for performance testing with both synthetic air and
low pressures.

of hours and then fill it with synthetic air. This substantially increased the peltier efficiency. To avoid
any remaining condensation we added the fork displayed in figure 5.5b which was attached to another
peltier keeping it at negative temperatures to function as a cold trap for humidity.

With this configuration we were able to reach the temperature of −21 ◦C with no visible degra-
dation of the cavity finesse, or the oscillation threshold, for a period of time long enough to perform our
measurements. We then decided to proceed to realign the system and verify if this temperature would
be enough to reduce the phonon noise to acceptable levels to measure tripartite entanglement.

5.2.2 OPO Locking

With the pump beam frequency locked at the Rb D2 line and with the crystal’s temperature
stabilized at the desired levels, we need to lock the OPO cavity to maximize the output intensity of the
downconverted fields and minimize amplitude fluctuations. This is done, as in the frequency locking of
the Ti:Sapph, by using a dither signal to vary the cavity size to generate the output signal seen as the
blue line of figure 5.8(a).

Figure 5.8: (a) Blue line: OPO output signal for the pump beam (780 nm) with the cavity in scanning
mode. Yellow line: error signal. (b) Blue line: output signal for a locked OPO cavity. Yellow line: PID
feedback signal sent to the PZT for locking. Reprinted from Andrade (2018).

To generate the error signal, instead of using a lock-in amplifier, we use homemade electronics
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and a function generator that together generate the error signal pictured in yellow in figure 5.8(a), using
the same principle explained for the error signal generated with the lock-in amplifier. In figure 5.8(b) the
OPO is locked and we can see from the blue line that the output amplitude is stabilized at the maximum
value of the blue peak in figure 5.8(a). The yellow line in 5.8(b) is the feedback signal sent by the PID
to the PZT to lock the cavity.

5.3 Detection System

The last link in the experimental setup is the detection system. This is a critical step, responsible
for conveying the information from the beam quadratures into electric signals we can analyze. The theory
behind how the field quadratures relate to the photocurrent was explained in section 2.3. For the balanced
detection scheme we use one pair of FND-100 photodiodes with measured detection efficiency of 70 % at
780 nm, these are used in the measurement of the reflected pump. For signal and idler we use two pairs
of ETX-500 photodiodes with measured detection efficiency of 95 % at 1560 nm.

The photocurrent is split in two components by built in electronic circuits. The low frequency
component, called DC component, is related to the intensity of the carrier. The high frequency com-
ponent, called HF, carries the information contained in the sidebands of the detected field. The signal
then carries on to a demodulation chain where we select a specific analysis frequency, typically between
7 MHz and 9 MHz in our system. After demodulation we send it to acquisition boards that are controlled
by a National Instruments Labview program where we can visualize and store the measured data. More
information about the data acquisition chain can be found in Andrade (2018).

However, as discussed earlier, photodiodes can only detect the amplitude of the electromagnetic
field. To obtain phase information we use three triangular analysis cavities, one for each beam. Each of
them is responsible for the rotation of the noise ellipse in phase space to convert phase fluctuations into
amplitude fluctuations as described by the self homodyne detection explained in section 2.3.2.

5.3.1 Triangular Cavities: Reflected Pump, Signal and Idler

We have three triangular travelling wave cavities in our experiment, each of them function as
an analysis cavity for a specific beam (pump, signal and idler) and their configuration can be seen in
figure 5.9. All of them have the same length L = 400 mm for a round trip. M1 is a plane mirror with
transmissivity of roughly 4 %, M2 is a high reflectivity plane mirror and M3 a high reflectivity curved
mirror with a radius of curvature of 200 mm.

The cavity for the pump has an estimated finesse F = 160 and bandwidth Γ = 4.3 MHz. The
signal and idler cavities are identical, their finesse is F = 200 and bandwidth Γ = 4 MHz. The PZT
attached to mirror M3 is used to either hold the cavity size in place or set it to scanning mode to perform
the rotation of the noise ellipse.

5.4 The Setup

When the elements described in the previous sections are put together, we arrive at our ex-
perimental setup for the generation and measurement of tripartite entanglement in an above threshold
optical parametric oscillator, depicted in figure 5.10. The polarization of the pump beam leaving the
Ti:Sapph laser is set such that it is completely transmitted through the first PBS and reaches the OPO.
The reflected pump has its polarization rotated in the Faraday Rotator (FR) and is completely transmit-
ted by the PBS into Analysis Cavity 0. Given that the OPO crystal is built with type-II phase matching,
signal and idler leave the OPO cavity following the same optical path but with orthogonal polarization.
They are then separated by polarization and each sent to a different analysis cavity.
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Figure 5.9: Analysis cavity for pump signal and idler. The cavity length is L = 400 mm, mirror M1 has
a transmissivity of 4 % and mirrors M2 and M3 are HR. Mirror M3 has a radius of curvature of 200 mm
and a PZT attached to scan and control cavity length.

Figure 5.10: Schematic representation of our experimental setup for the generation and measurement of
tripartite entanglement. Reprinted from Andrade (2018).

Each set of measurements consist of 4 synchronous slow sweeps of the analysis cavities through
resonance for a complete noise ellipse rotation. In the first set of measurements we sweep the three
cavities to obtain amplitude and phase correlations between the three fields. In the last three sets we
hold one cavity detuned for amplitude fluctuations and sweep the other two. This allows us to obtain the
cross correlation terms between phase and amplitude of each cavity. With the full set of measurements
we have a complete tomography of our system.
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6 RESULTS AND MEASUREMENTS

In this chapter we will present the measurements performed and discuss the results obtained.
We will split this chapter in essentially two parts. The first part refers to our early OPO measurements,
prior to the disassembly of the cavity for the attempts to reduce the crystal temperature. The second
part refers to the preliminary measurements at room temperature performed in the system after the
configuration that allowed us to achieve −21 ◦C with a stable OPO.

6.1 Early Results

Our first measurements were taken as part of the work of Andrade (2018). We started by
measuring the squeezing in the amplitude difference between signal and idler ∆2p− and then looking for
bipartite entanglement between this quadrature and the sum of the phases ∆2q+. Afterwards we inves-
tigated the tripartite correlations. We verified that excess phase noise was preventing the achievement
of tripartite entanglement and, after a measurement of the coupling coefficient between the pump and
phonon noise, determined the optimal temperature for it to work.

6.1.1 Squeezing

The measurement of amplitude squeezing is pretty straight forward in our system. We simply
look at the fluctuations of the subtraction of the photocurrents of signal and idler and compare with
the shotnoise. This is what is shown in figure 6.1. There, the variance ∆2p− is measured for different
transmission values of a variable optical filter. This filter’s function in this setup is to introduce losses for
us to see the linear degradation of the squeezing towards the shotnoise level. These measurements were
taken at an analysis frequency of 7 MHz where we verified 2.4 dB of squeezing.

Figure 6.1: Measurement of 2.4 dB of squeezing for the quadrature subtraction of the amplitudes of signal
and idler at an analysis frequency of 7 MHz. The variance ∆2p− is plotted against different transmission
coefficients simulating losses. The smaller the transmission coefficient the closer the variance gets to
shotnoise, a clear indication of how squeezing is degraded by losses.

6.1.2 Duan Violation: Entanglement between the quadratures of the twin beams

We are now interested in verifying the entanglement between signal and idler. For that we
need to define a pair of EPR like operators where we can apply the criterion developed by Duan et al.
(2000). That is why we look at the variances ∆2p− and ∆2q+ as explained in section 4.3.2. To obtain
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the variances for these quadratures we rotate the noise ellipse for signal and idler and look at their sum
and subtraction.

Figure 6.2: Noise ellipse rotation for the sum (red dots) and subtraction (green dots) of signal and idler.
The fitting curves give us the parameters to build the covariance matrix. ∆2p−+∆2q+ = 1.87(2) indicates
entanglement between signal and idler.

In the plot in figure 6.2 the green dots refer to the rotation of the noise ellipse for the difference
between signal and idler and the red dots to the rotation of the noise ellipse for their sum. We can also
see the squeezing for the subtraction of the amplitudes, represented by the fact the the tails of the green
plot are below the shotnoise level. Although the sum of the phases (in the red plot) never drops below
shotnoise, indicating excess noise for ∆2q+, we verify a violation of the inequality 4.36 with the value
∆2p− +∆2q+ = 1.87(2), indicating that there is in fact bipartite entanglement between signal and idler.

6.1.3 Tripartite results

These early tripartite measurements we have are thoroughly discussed as the main results
in Andrade (2018). There, she analyses the symmetric and antisymmetric correlations between the
quadratures of the three fields in our experiment. These measurements were performed for different
pump powers, at an analysis frequency of 7 MHz and two different crystal temperatures, T = 18 ◦C and
T = 0 ◦C. With that, the spectral matrix of the system was built for each set of measurements.

To study the entanglement of the system, the Positive Partial Transpose (PPT) criterion was
employed as proposed in Simon (2000). This method consists in taking the partial transposition of a
subsystem of the covariance matrix. By looking at the eigenvalues of the associated symplectic matrix
it can be determined if the quantum system is separable or not. The criterion states that the symplectic
eigenvalues must satisfy νk ≥ 1 for the system to be considered separable. The minimum symplectic
eigenvalues for the partial transposition of the pump, signal and idler are plotted in figure 6.3 as a
function of the pump power. The dashed lines represent the theoretical predictions for each bipartition
given the estimated losses and the dots the experimental data. In figure 6.3 (a) we have the measurements
at T = 18 ◦C and in figure 6.3 (b) at T = 0 ◦C.

These results show a clear improvement in the entanglement for the signal and idler beams,
represented by ν1 and ν2, at T = 0 ◦C. At this temperature we see that the PPT criterion is violated for
values of the pump power as high as 1.2σ, while at T = 18 ◦C we expect no entanglement for values of the
pump higher than 1.1σ. We also see a reduction in the symplectic eigenvalues ν0 at lower temperatures
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Figure 6.3: Minimum symplectic eigenvalues for the partial transposition of the pump (v0), signal and
idler (v1 and v2) as a function of the normalized pumping power σ. The dashed lines represent the
theoretical predictions for each bipartition given the estimated losses and the dots the experimental data.
The measurements were taken at (a) T=18 ◦C and (b) T=0 ◦C. Reprinted from Andrade (2018).

for the partial transposition of the pump, but no violation of the criterion in either case. Although we
were not able to measure tripartite entanglement, these results hint that lowering the crystal temperature
is the way to go to improve the system and achieve this goal.

6.1.3.1 No tripartite entanglement due to phonon noise

The justification for pursuing lower temperatures of operation in our OPO lies on the hypothesis
that the coupling with the thermal vibration modes in the crystal can be seen as an extra source of spurious
losses that affect the phase quadrature of the three fields, as explained in section 4.2. We then decided
to look for the optimal operation temperature for our system. As explained by Andrade (2018), we
measure the coupling coefficient η00 as a function of the temperature in the crystal, the result is shown in
the plot in figure 6.4. This measurement is performed by measuring the variance of the phase quadrature
of the pump beam δq̂0 and the pump power P0 and plugging into equation 4.32 to obtain the coefficient
η00 for different values of temperature.

Figure 6.4: Coupling coefficient η00 as a function of the temperature T . For the linear regression we
assume that the coupling coefficient remains linear at lower temperatures.

We then admit that the coupling coefficient varies linearly with the temperature and by linear
regression we find that η00 = 0.002059T − 0.477953. This means that η00 is practically zero at around
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−40 ◦C, rendering this the optimal temperature to measure tripartite entanglement in our system.

6.2 Recent results

As a consequence of the previous measurements we decided to rework the cooling system of
the OPO to be able to stabilize it at negative temperatures. The description of how this was achieved
is detailed in chapter 5. After the alignment of the system was complete we started some preliminary
measurements that were performed to check if the laser, the OPO, the analysis cavities, the detection
system and the demodulation and acquisition chains were all functioning properly and simultaneously.

Figure 6.5: Raw data for the DC signal of the field transmitted by each of the tree analysis cavities:
CAV0 (for the pump), CAV1 and CAV2 (for signal and idler).

For the measurements presented in this section we had all our systems locked. The Ti:Sapph
was frequency locked at the Rb D2 line, the OPO had a 95 mW threshold and was locked at a pumping
power of σ ≈ 1.16. Because these were preliminary measurements for a system test, they were taken at
the room temperature of 19 ◦C. Figure 6.5 displays the raw data for the DC signal of the field transmitted
by each of the tree analysis cavities as they are scanned through resonance.

Figure 6.6: The dots in the plot show the measured value of DC in terms of the measurement time for
the fields reflected by each of the analysis cavities: blue for the pump (DC0), orange and green for signal
and idler (DC1 and DC2). The solid lines are the lorentzian fit to each data set.

We can clearly see from the data shown in figure 6.5 that the three signals are extremely noisy,
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with many peaks even when looking far from resonance. This indicates an excessive intensity noise in the
pump that can be corrected with fine tuning of the Ti:Sapph parameters of by the introduction of a noise
eater to stabilize it. In figure 6.6 we have the DC signal of the beams reflected from the analysis cavities.
The Lorentzian fit indicates that the cavities are slightly out of sync, a consequence of the excessive
amplitude noise that makes it harder to synchronize the three peaks. Out of sync measurements will
result in wrong values for the phase and amplitude correlations.

Even though the pump was too noisy for any type of correlation analysis, we could verify that
the detection system and the demodulation and data acquisition chains were functioning properly. Even
with a low signal to noise ratio (SNR) we were able to see the rotation of the noise ellipse in our cavities,
as shown in figure 6.7 for the pump, which would allow us to obtain information about the fluctuations
of the phase and amplitude quadratures.

Figure 6.7: Noise ellipse rotation for the pump (analysis cavity 0).

Essentially we need to carefully control our system to reduce any sources of noise that may
interfere with the correlations between the three fields, such as thermal noise in the crystal, amplitude
fluctuations in the pump and spurious losses due to scattering in optical elements. With the results
presented in this section we would proceed to fine tune the system, stabilize the intensity of the pump
beam and drop the OPO temperature to −21 ◦C for better data.
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7 CONCLUSION

In this first part of our work, we set out to build an optical parametric oscillator to be used
as a source of entangled states of light in the implementation of quantum information protocols. We
realized that, although this system is capable of generating entanglement between signal and idler, the
subtraction of the amplitudes is the only squeezed quadrature, since ∆2p− < 1. The sum of the phases,
although close to the shotnoise limit, still present excess noise with ∆2q+ > 1, indicating that phase
correlations are being degraded and with good indication that the reason are thermal vibrations in the
crystal lattice.

The analysis of the tripartite correlations indicated that indeed an improvement is obtained
by lowering the crystal temperature and investigations of the coupling of the pump with phonon noise
indicated that an optimal temperature of operation for our OPO is around −40 ◦C. These results led
us to drive our efforts into improving the cooling system. Several attempts were made until we finally
arrived at a configuration that used synthetic air, with very low levels of humidity, and a cooled copper
fork that is used as cold trap for the particles approaching the crystal surface. This solution allowed us
to have a stable OPO at −21 ◦C.

With the cooling system working we prepared the rest of the system and took some preliminary
measurements that were presented in the last chapter. Those measurements were supposed to function
simply as a sanity test for the system, to check if all of its components were functioning properly after
the long idle period and after the continuous reassembly of the OPO cavity. Those results were not very
good, but they showed us that the system was ready for taking measurements. They also showed us that
we needed to work on the amplitude stabilization of the pump beam, either by improving the parameters
of the Ti:Sapph laser or by introducing a noise eater. These were supposed to be our next steps, and
after that, taking measurements at negative temperatures.

For the next part of this work will focus on the coupling between light and an atomic ensemble.
There we describe how we can use light in the preparation and characterization of an atomic polariza-
tion state that can be used in quantum information protocols. All the experiments and measurements
regarding part III were performed at the Niels Bohr Institute in Denmark.
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Part III

Preparing and Characterizing an Atomic
Polarization State
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8 INTRODUCTION

We wanted to get an understanding on how to prepare and measure an atomic polarization state
so that we would be able to interact the entangled fields generated in our OPO with an atomic cloud at
room temperature. The final goal would be the implementation of quantum information protocols, such
as teleportation, between systems that interact with light at different wavelengths.

To achieve this purpose, we took part on a project to develop an atomic system to be used as a
negative mass reference frame in an experiment to overcome the standard quantum limit in gravitational
wave detectors through backaction cancellation (Khalili and Polzik, 2018; Zeuthen et al., 2019). This
project was implemented at the Niels Bohr Institute under the supervision of professor Eugene Polzik.

In this chapter we begin by creating context in explaining the importance of gravitational-
wave astronomy to physics and especially to cosmology. We then proceed to point out the relevance of
increasing the detection efficiency of these waves and how it is becoming limited by quantum effects. We
then introduce the proposal to overcome this limit presented in Khalili and Polzik (2018), which sets
the main motivation for the project.

8.1 Motivation

The detection of gravitational waves by the LIGO and Virgo observatories opened a new range
of research possibilities in the areas of astrophysics and cosmology (The LIGO Scientific Collabo-
ration and the Virgo Collaboration, 2016). The measurements performed by these observatories
made possible to detect the collisions between two black holes and two neutron stars and realize that
these phenomena are not as rare as imagined.

The sensitivity required to detect gravitational waves was only achieved by exploiting the fact
that interferometric processes are extremely sensitive to small variations in the lengths of the interferom-
eter arms. When a gravitational wave passes, one arm stretches and the other arm contracts because of
the space-time fluctuations caused by its passage. This change in arm length results in a small change in
the signal strength at the interferometer output.

The sensitivity of these detectors is limited by the noise of a variety of sources. Mechanical
noise, such as seismic noise, and thermal noise, are circumvented by extremely advanced stabilization
systems. Thus, these detectors are limited by quantum effects and shot noise becomes relevant.

The effect of shot noise on the detected photocurrent decreases with the increase in laser power
(Pitkin et al., 2011). However, increasing laser power means increasing the noise due to radiation
pressure, also called Quantum Backaction (QBA). This noise arises because of the uncertainty on the
amplitude quadrature of the field inside the interferometer and is propagated to the mirror due to the
transfer of momentum between the laser and the mirror.

There is an optimal laser power that minimizes the effect of these two uncorrelated sources
of noise. This limit of sensitivity is known as the Standard Quantum Limit and is analogous to the
Heisenberg Uncertainty Principle for the phase and amplitude quadratures of the field.

The measurement sensitivity of the motion of a free mass in a quantum reference system with
negative effective mass is not limited by the noise introduced by the QBA. This is so because in such a
reference frame it is possible to perform the measurement in terms of two commuting quadratures, the
relative position (q̂ − q̂0) and the sum of momenta (p̂ + p̂0). To do so, it is possible to use an atomic
ensemble with their spin prepared in a way to simulate a harmonic oscillator with negative mass and
then carry out the desired measurement with respect to that reference frame (Møller, 2018).

With that in mind, Khalili and Polzik (2018) propose a measurement capable of overcoming
the effects of QBA on the mirrors of gravitational wave detectors. According to them, the mirrors of
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these detectors have technical parameters that allow them to be considered free masses in the analysis
frequencies of interest. They suggest the use of a Cesium cell with well-defined global spin to be used as
reference frame in the measurement of the motion of the mirrors of the gravitational wave detectors.

In order to achieve this objective, the proposed system will use frequency sum generation and
parametric down conversion in an optical parametric oscillator (OPO) to generate entangled fields that
will be used to interact an atomic ensemble and the mirror of the gravitational wave detector. The
entanglement between the two fields, and an adjustment in the frequency of these oscillators, allows the
cancellation of the shot noise and QBA terms in the joint measurement. In this way the detector can
reach sensitivities beyond the standard quantum limit.

Next we will give a brief overview of some of the concepts in Khalili and Polzik (2018) that,
we understand, motivate the current project.

8.1.1 Negative mass reference frame

It has been shown that that negative mass oscillators can be used in noise cancellation schemes
that allow measurements with precision beyond the standard quantum limit (Tsang and Caves, 2010,
2012). In a negative mass oscillator, creating a quantum of energy involves the extraction of energy by
an amount h̄ω. Essentially, it works the same way as a positive mass oscillator, but the ladder of energy
levels runs down instead of up.

To understand why to use these oscillators as a reference frame, let us start by considering a
harmonic oscillator with frequency ω:

q̂(t) = q̂(0) cosωt+ p̂(0)
1

mω
sinωt, (8.1)

where q̂(t) is the position of the mass m in an arbitrary time t and q̂(0) and p̂(0) its initial position
and momentum respectively. Since the operators q̂(0) and p̂(0) do not commute, it is not possible to
accurately describe the position of the mass in an arbitrary time.

We can, however, work around this problem by considering a second quantum oscillator with
mass m0, position q̂0(t) and momentum p̂0(t), with the same natural frequency ω. In the case where we
consider a negative mass, as exotic as it can be, we may arrive at an interesting condition:

q̂(t)− q̂0(t) = [q̂(0)− q̂0(0)] cosωt+ [p̂(0) + p̂0(0)]
1

mω
sinωt. (8.2)

Since the quadratures q̂(0)−q̂0(0) and p̂(0)+p̂0(0) commute, the precision of a simultaneous measurement
in that reference frame is not limited by the uncertainty principle, and therefore the relative measurement
of these quantities can be as precise as desired. These two quadratures form a typical EPR pair, which
already gives a glimpse that to avoid QBA one can use two entangled oscillators.

Now that we know why to use a negative mass oscillator as a reference frame, we go back to
the question about how an atomic spin system can be used for such purposes.

8.1.2 Atomic spin as negative mass reference frame

Consider an atomic ensemble in the presence of optical pumping and a magnetic field. An
atomic spin state in the presence of a magnetic field undergoes the separation of its energy levels due to
the Zeeman effect, and in the present case, the optical pumping has the role of keeping the system at
highest Zeeman sub-level. The system is prepared in such a way that the total spin is polarized in the
negative x direction, while the magnetic field B is oriented in the positive x direction (Figure 8.1(a)).

Another effect that rises from the interaction of the total spin with the magnetic field is the
Larmor precession. In this configuration the Hamiltonian of the system is given by (Khalili and Polzik,
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Figure 8.1: Macroscopic spin oscillator. (a) Total spin of an atomic ensemble in a magnetic field repre-
sented as a vector in the Bloch sphere. (b) Normalized spin components orthogonal to the mean direction
and equivalent to canonical operators. (c) For the geometry presented in (a), the first excited state of a
spin oscillator has lower energy than the non-excited state, corresponding to a negative mass oscillator.
(d) Spectrum of a mechanical oscillator. Reprinted from Khalili and Polzik (2018).

2018):
ĤS = h̄ΩSJx − h̄ΩS

2

(
X̂2

S + P̂ 2
S

)
, (8.3)

where ΩS is the Larmor frequency associated with the precession of the total spin around the x direction,
Jx = |⟨ĴX⟩|/h̄≫ 1 is the average projection of that spin in the same direction, and X̂S = Ĵz/h̄

√
JX and

P̂S = −Ĵy/h̄
√
JX canonical variables written in terms of the other two projections (Figure 8.1(b)), such

that [X̂S , P̂S ] = i.
We can see that the second term of the Hamiltonian in Equation (8.3) is equivalent to a

mechanical oscillator with negative effective mass, since the first excited state of the spin oscillator would
correspond to an energy smaller than the energy of the non-excited state (Figure 8.1(c)). Under these
conditions an atomic spin can be considered an oscillator with negative mass.

8.1.3 Avoiding the effects of QBA

We will now see how in this reference frame one can make the effects of QBA and shot noise
cancel out in the combined measurement. Consider a lossless system such that the frequency Ω is
much smaller than the bandwidth of the interferometer ΓI = 2κI

1. The phase quadrature b̂sI of the
interferometer’s output field, measured in the homodyne detector DI (blue arm in Figure 8.2), is given
by (Khalili and Polzik, 2018):

b̂sI = âsI +
2Θχ

κI
âcI +

√
2Θ

κI
χ
FS + FT√

h̄m
, (8.4)

where âsI and âcI represent the phase and amplitude quadratures, respectively, of the field operator in
the interferometer, Θ the normalized optical power2, χ the mechanical susceptibility of the mirrors of
the gravitational wave detector, FS the gravitational wave signal strength, and FT the sum of the other
sources of noise (thermal, seismic, etc.). Note that in Equation 8.4, the second term is proportional to

1For the Advanced LIGO inteferometer: κI = 2π × 500 Hz (Khalili and Polzik, 2018).
2Θ = 8ω0Ic/mcL, where Ic is the optical power circulating in each of the arms of the interferometer, L the arm length

and c the speed of light.
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the optical power Θ, which means that an increase in light intensity translates into an increase in noise
associated with the amplitude of the field in the interferometer, in other words QBA.

Figure 8.2: Schematic representation of the setup. Sum-Frequency Generation (SFG) and Parametric
Down Conversion (PDC) are responsible for entangling the fields âS and âI that will interact respectively
with the atomic ensemble and the mirror of the gravitational-wave detector. Reprinted from Khalili
and Polzik (2018).

However, the phase quadrature of the field coming from the interaction between light and spin
and measured in homodyne detection DS (red arm of Figure 8.2) can be described as:

b̂sS = âsS + 2ΩSΓSχS â
c
S +

√
2ΩSΓSχS f̂S , (8.5)

where âsS and âcS represent, respectively, the phase and amplitude quadratures of the light modes after
interacting with the atomic spin, ΓS the spin oscillator readout rate, χS its effective susceptibility, and
f̂S the normalized thermal force acting on the spin.

The second term of Equation 8.5 can be adjusted by controlling the intensity of the magnetic
field B, since the value of ΩS depends on the amplitude of that field. This ability to adjust the Larmor
frequency along with the entanglement between the fields is what allows to overcome the Standard
Quantum Limit.

Consider the case where the fields are perfectly entangled, âsI = −âsS and âcI = âcS . If the
response of the spin system with negative effective mass equals the interferometer response

Θχ

κI
= −ΩSΓSχS , (8.6)

the effects of shot noise and QBA on the joint measurement (b̂sI + b̂sS) cancel out, resulting in a response
that is no longer limited by these quantum sources of noises. This can only be achieved because, as
already mentioned, it is possible to adjust the Larmor frequency by tuning the amplitude of the magnetic
field.

The example presented above is ideal, since it disregards losses and considers that the fields are
perfectly entangled. Under realistic conditions the proposed system should be capable of improving the
sensitivity of gravitational wave detectors by 6 dB within the frequency spectrum of interest (Khalili
and Polzik, 2018).
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9 THEORETICAL DESCRIPTION

In this chapter we describe how we can use lasers to optically pump an atomic ensemble in
order to prepare an atomic spin polarization state. We begin it with a brief review of the level structure
of Cesium 133, to set a starting point for the theory of optical pumping. The chapter ends with the
theory of the Magneto-Optical Resonance Signal (MORS), the technique used to characterize an atomic
polarization state.

9.1 Atomic Structure of Cs 133

The choice of Cesium 133 (133Cs) as our atomic ensemble is for the most part a practical one.
Cesium has the advantage of having a single stable isotope while rubidium has two (85Rb and 87Rb). Also,
a high atomic density combined with the quality of the anti-reflective coatings at the relevant wavelengths
and paraffin coatings to preserve spin polarization allow the fabrication of high quality cesium cells.
Narrow band diode lasers compatible with D1 and D2 transitions of Cs have been readily available for
a while now and the group at the NBI has a long history of working with Cs atoms (Julsgaard et al.,
2001, 2004; Krauter et al., 2011, 2013).

Before we take a closer look at the Cesium atom we are going to present a brief theoretical
review. We have no intention, however, to be comprehensive in this review. The idea is to introduce the
formalism and some key concepts to better understand the discussions that follow (for a more in depth
description we recommend Cohen-Tannoudji et al. (1991)).

We begin by considering the observables Lx, Ly and Lz, components of the angular momentum
L which satisfy the following commutation relations:

[Lx, Ly] = ih̄Lz,

[Ly, Lz] = ih̄Lx, (9.1)

[Lz, Lx] = ih̄Ly,

and the observable L2 = L2
x + L2

y + L2
z, such that:[

L2, Li

]
= 0, i = {x, y, z}. (9.2)

We are interested in writing a basis formed by simultaneous eigenkets of L2 and Lz. It can be shown
that the set {|l,ml⟩} can be found to be such a basis. Let us consider how L2 and Lz operate on the
elements of this set:

L2 |l,ml⟩ = h̄2 l(l + 1) |l,ml⟩ ,

Lz |l,ml⟩ = h̄ml |l,ml⟩ , (9.3)

where l can only be positive integers, half-integers or zero; and for a given value of l the allowed values of
ml are the 2l+1 numbers such that −l ≤ ml ≤ l and ml varies in increments of 1 (−l,−l+1, . . . , l−1, l).
Since the kets {|l,ml⟩} span the entire spectrum of the observables L2 and Lz and since they obey the
orthogonality and closure relations:

⟨l,ml|l′,m′
l⟩ = δll′δmlm′

l
(9.4)∑

l

l∑
ml=−l

|l,ml⟩ ⟨l,ml| = 1 (9.5)

we can say that {|l,ml⟩} form a basis for the state space.
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However, in physics, and specially in atomic physics, we usually need to consider the effect of
more than one angular momentum at the same time. This is what happens for instance when we want to
consider simultaneously the effect of the orbital angular momentum and the electron spin in the atomic
energy levels.

9.1.1 Addition of angular momentum

We now consider two angular momenta J1 and J2 such that

Ji
2 |ji,mi⟩ = h̄2 ji(ji + 1) |ji,mi⟩ , i = {1, 2} (9.6)

Jiz |ji,mi⟩ = h̄mi |ji,mi⟩ , i = {1, 2}, (9.7)

give the eigenvalues of each individual observable.
A global basis for the system is obtained from the tensor product between the basis kets of each

individual subsystem
|j1,m1, j2,m2⟩ = |j1,m1⟩ ⊗ |j2,m2⟩ . (9.8)

This is usually referred to as the uncoupled basis, since it is an eigenbasis of the individual observables
J1

2, J1z, J2
2, J2z. But we can also write what is known as the coupled basis, by defining the operator

J = J1 + J2:
|J,M⟩ ≡ |j1, j2, J,M⟩ , (9.9)

which is an eigenbasis of the coupled observables J1
2, J2

2, J2, Jz, where J2 = J1
2 + J2

2 + 2J1 · J2 and
Jz = J1z + J2z.

In the coupled basis the spectra of J2 and Jz are:

J2 |J,M⟩ = h̄2J(J + 1) |J,M⟩ , (9.10)

Jz |J,M⟩ = h̄M |J,M⟩ , (9.11)

where M ∈ {−J,−J +1, . . . , J − 1, J} and the total angular momentum quantum number J must satisfy

|j1 − j2| ≤ J ≤ j1 + j2. (9.12)

This new basis is convenient for the description of systems where there is coupling between the angular
momenta J1 and J2 in the Hamiltonian, which is the case of atomic systems.

9.1.2 Clebsch-Gordan Coefficients

Now let us consider how to represent elements of the coupled basis in the uncoupled basis. To
do that we start with the elementary statement that the operation of the identity on a ket results in the
ket itself:

|J,M⟩ = 1 |J,M⟩ . (9.13)

Since the eigenkets in equation 9.8 form a basis for the state space it must also have a closure relation
similar to the one in equation 9.5. Hence, we find that

|J,M⟩ =
j1∑

m1=−j1

j2∑
m2=−j2

|j1,m1, j2,m2⟩ ⟨j1,m1, j2,m2|J,M⟩ . (9.14)

The matrix elements ⟨j1,m1, j2,m2|J,M⟩ are called Clebsch-Gordan Coefficients and they are non-zero
only if the triangular relation 9.12 is satisfied and

M = m1 +m2. (9.15)

These are going to be relevant because we will be able to establish selection rules when we discuss the
dipole interaction and atomic transitions.
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9.1.3 Selection rules and allowed transitions

We want to describe the dipole transition from the ground state to the excited state F → F ′,
where we define the primed notation to refer to the exited state. Let us consider specifically the matrix
elements that couple the energy levels, in the basis of total angular momentum, through the dipole
interaction: ⟨F,mF |ϵ · r|F ′,mF ′⟩, where ϵ is the polarization of the incident light and r the dipole moment
of the atom Seltzer (2008).

Using the Wigner-Eckart theorem (Cohen-Tannoudji et al., 1991) we can write these matrix
elements as a product of a reduced matrix element (which is independent of the angular momentum
orientation mF ) and a Clebsch-Gordan coefficient:

⟨F,mF |ϵ rq|F ′,mF ′⟩ = ⟨F ||ϵ · r||F ′⟩ ⟨F,mF |F ′,mF ′ , 1, q⟩ , (9.16)

where ϵ rq designates the q-th component of the operator ϵ · r. If the Clebsch-Gordan coefficients do
not satisfy the triangular relation 9.12 and equation 9.15, their value is zero. This implies the following
selection rules for the dipole transition in equation 9.16:F − F ′ = {−1, 0,+1},

q = mF −mF ′ .
(9.17)

With these selection rules we can easily determine the allowed dipole transitions when we consider the
optical pumping of our atomic sample.

9.1.4 Fine structure and hyperfine structure of Cesium 133

Now we have the fundamental tools required to describe the atomic structure of Cs 133. Being
an alkali atom, Cs has a single electron in the valence band and its ground state is represented in the
spectroscopic notation as 6 2S1/2. When considering only the fine structure (J = L+ S) for the ground
state, the coupling between the orbital angular momentum L = 0 and the electron spin S = 1/2 results
in a total angular momentum J = 1/2 . The fine structure of the excited state 6P (L = 1) leads to two
possibilities, the first 6 2P1/2 is associated with the D1 transition from the ground state and the second
6 2P3/2 with the D2 transition, as shown in figure 9.1.

Figure 9.1: Fine structure and hyperfine structure of Cesium 133. The D1 line indicates the 6S1/2 −→
6P1/2 transition and the D2 line indicates the 6S1/2 −→ 6P3/2 transition. Adapted from Seltzer (2008).
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The hyperfine structure (F = I+J) comes into play when we in addition consider the coupling
with the nuclear spin (I = 7/2 for Cs 133), giving rise to the hyperfine splitting of the energy levels both
in the exited state and in the ground state. For the ground state 6 2S1/2, the energy levels split into
F = {3, 4} and for the exited state, 6 2P1/2 splits into F ′ = {3, 4} and 6 2P3/2 splits into F ′ = {2, 3, 4, 5}.
The hyperfine structure of Cs is also presented in figure 9.1.

As already stated in section 8.1.2, the presence of a magnetic field B will break the degeneracy
of the mF sublevels and split the energy levels even further along the quantization axis due to the Zeeman
effect. The energy of the splitting is proportional to the magnetic field and since the contribution of B
to the Hamiltonian can be written to be h̄ΩsJx, we find that the energy splitting is proportional to the
Larmor frequency Ωs. The sign of the splitting depends on the hyperfine level, the Zeeman sublevel and
also on the strength of the magnetic field. This behavior is depicted for the ground state of Cesium
(I = 7/2) in figure 9.2, where we can see the splitting of the Zeeman sublevels as a function of the
magnetic field intensity.

Figure 9.2: Zeeman splitting of the mF sublevels for the ground state of Cesium 133 as a function of the
intensity of the magnetic field. Reprinted from Steck (2019).

9.2 Preparing an Atomic Polarization State: Optical Pumping

In this section we will not focus on the theory of optical pumping but rather briefly explain its
consequences in our system and what we hope to achieve with it. A review on the subject can be found
in Happer and Van Wijngaarden (1987) and in more detail in HAPPER (1972).

For the reasons given in section 8.1, we want to prepare a polarization state such that almost
all the population lies in a specific Zeeman level, and optical pumping is the tool for the job. The idea
behind it is to use resonant scattering of photons to transfer some order to an atomic sample, in our case,
to make sure almost all atoms are in the |F = 4,mF = 4⟩ state.

The pumping method used in our system is called depopulation pumping and it consists on re-
ducing the population of one or more sublevels through selective excitation. Circularly polarized photons
(σ+), for instance in the D1 line, propagating along the ẑ axis have angular momentum +1 in units of
the electro-spin angular momentum h̄. If an atom in the ms = −1/2 sublevel of the 2S1/2 ground state
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absorbs one of these photons, conservation of angular momentum will require the atom to absorb the
photon’s angular momentum exiting it to the ms = +1/2 sublevel of the 2P1/2 state. Nonetheless, if the
atom in the ms = +1/2 of the ground state, it is forbidden to absorb the photon because there is no level
with an additional unit of angular momentum in the excited state (ms = +3/2).

In our case we want to completely deplete the F = 3 state and all the mF sublevels in F = 4,
with the exception of mF = 4. To do that we use a pump laser with σ+ polarization tuned at the
D1 transition. This laser will excite the atom from |F = 4,mF ⟩ to |F ′ = 4,mF ′ + 1⟩. Once it decays,
selection rules only allow decay to mF sublevels such that mF ′ −mF = 0,±1. Therefore it can decay at
worst back to |F = 4,mF ⟩ but most of the time it will decay to mF +1 or mF +2, making it more likely
to transition to higher levels. Once the atom is at |F = 4,mF = 4⟩ it does not move further, since this is
a dark state, as shown in the D1 line (left part) of figure 9.3.

The repump is used to deplete the F = 3 hyperfine level. It does it by exciting the atoms from
F = 3 to, for example, F ′ = 4 and upon decaying the atom can go back to F = 3 or it can go to F = 4

where it gets under the effect of the pump. If it goes back to F = 3 it is re-excited, even if it as at
the highest level |F = 3,mF = 3⟩, since this is not a dark state and can transition to |F ′ = 4,mF ′ = 4⟩,
through a σ+ excitation, as seen in the D2 line (right part) of figure 9.3. Using a σ+ polarization in the
repump also increases the probabilities of preparing |F = 4,mF = 4⟩ by the same mechanism described
for the pump.

Figure 9.3: Transitions from the ground state to the exited state for a laser with σ+ polarization. Selection
rules only allow decay to mF sublevels such that mF ′ −mF = 0,±1. Since mF = 4 is a dark state the
pump laser makes sure the atoms stay in this state. The repump laser uses the D2 transition to transfer
atoms from F = 3 to F = 4. Pump @ 894 nm (left) and repump @ 852 nm (right).

9.3 Spin Characterization

9.3.1 The Magneto-Optical Resonance Signal: MORS

An atomic ensemble in a constant magnetic field (Bbias) will have the degeneracy of the mF

Zeeman sublevels broken by a factor that is proportional to the Larmor precession frequency (to first
order). It is possible to obtain information about spin orientation, coherence time and number of atoms in
the ensemble, by inducing weak transitions among the Zeeman sublevels using a radio frequency magnetic
field (BRF ). The technique used to do that is called the magneto-optical resonance signal or MORS and
our description of it will follow Julsgaard (2003).

The contribution to the Hamiltonian of the system introduced by the coupling of the magnetic
field (B) with the atomic total angular momentum (F) is given by:

Ĥ = gF µB F · B +O(B2), (9.18)
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where gF is the total angular momentum g-factor, µB is the Bohr magneton and we have added a second
order correction in the magnetic field due to the quadratic Zeeman Effect (Julsgaard, 2003) that will
be taken into account further ahead.

We can describe the spin state of the k-th Cesium atom in the ground state F by the density
operator σ̂(k) whose matrix elements are given by:

σ̂
(k)
ij = |i⟩k ⟨j|k , (9.19)

where i, j = {−F,−F + 1, . . . , F − 1, F}. For the atomic ensemble we sum over the N atoms:

σ̂ij =
1

N

∑
k

σ̂
(k)
ij =

1

N

N∑
k=1

|i⟩k ⟨j|k . (9.20)

Choosing the x-axis as the quantization axis (as in fig 8.1), the components of the angular momentum
operator can be written in terms of the density operator as:

F̂x = N

F∑
m=−F

mσ̂m,m, (9.21)

F̂y = N

F−1∑
m=−F

C(F,m)

2
{σ̂m+1,m + σ̂m,m+1} , (9.22)

F̂z = N

F−1∑
m=−F

C(F,m)

2i
{σ̂m+1,m − σ̂m,m+1} , (9.23)

where we define m ≡ mF to simplify the notation and C(F,m) =
√
F (F + 1)−m(m+ 1).

If we consider, as in figure 9.4, the bias magnetic field Bbias in the x direction and the radio
frequency magnetic field BRF in the y direction with frequency ω, the contribution of both fields to
Hamiltonian 9.18 is given by:

Ĥ = gF µB F̂xBbias +O(B2
bias) + gF µB F̂y |BRF | cos (ωt+ ϕ). (9.24)

Substituting the components of angular momentum in equations 9.21 to 9.23, and using the rotating
wave approximation, we may write the Hamiltonian entirely in terms of the density operator:

Ĥ =

F∑
m=−F

h̄ωmσ̂m,m +
gFµB

4

F−1∑
m=−F

C(F,m)
{
BRF e−iωt σ̂m+1,m +B∗

RF eiωt σ̂m,m+1

}
, (9.25)

where h̄ωm = gFµB mBbias indicates the contribution of the bias magnetic field since, by distinguishing
the energy of each sublevel, we are taking into account the second order correction responsible for making
the separation of the Zeeman sublevels unequal. The separation between two adjacent lines νQZ caused
by the quadratic Zeeman effect is given by (Julsgaard et al., 2004):

νQZ =
2ν2L
νhfs

, (9.26)

where νL is the first order correction given by

hνL ≡ −µJ/J

2I + 1
(9.27)

such that µJ is the magnetic moment of the electron, J is the angular momentum of the outer most
electron, I is the nuclear spin. Also, the hyperfine splitting νhfs is related to the strength of the magnetic
dipole interaction between the electronic and nuclear spin (a) as hνhfs = (ha/2)(2I + 1).
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Figure 9.4: Schematic representation of the setup for the experiments with a 5mm cubic Cs cell inside
the magnetic shield.

With the Hamiltonian 9.25 we can calculate the time evolution of the of the matrix elements
of the density operator:

∂

∂t
σ̂ij =

1

ih̄

[
σ̂ij , Ĥ

]
+ decay terms. (9.28)

Assuming the difference between the populations σ̂i,i, and σ̂i+1,i+1 to be approximately constant in time
and decay processes in the populations to be compensated by external pumping, we can allow for the
transient solutions to vanish. With these assumptions we can find the steady state solution and write the
the angular momentum components F̂y and F̂z not in terms of the coherences as in equations 9.22 and 9.23
but in terms of the differences of the populations between two consecutive Zeeman levels (Julsgaard
et al., 2004):

F̂y = Re
{
igFµBBRFN

4h̄

F−1∑
m=−F

[F (F + 1)−m(m+ 1)] eiωt

i (ωm+1,m − ω)− Γm+1,m/2
[σ̂m+1,m+1 − σ̂m,m]

}
, (9.29)

F̂z = Im
{
igFµBBRFN

4h̄

F−1∑
m=−F

[F (F + 1)−m(m+ 1)] eiωt

i (ωm+1,m − ω)− Γm+1,m/2
[σ̂m+1,m+1 − σ̂m,m]

}
, (9.30)

where Γm+1,m is the linewidth of the Lorentzian response of the two-level system composed by the two
adjacent Zeeman sublevels m and m+ 1.

The probe laser is linearly polarized along the z-direction and will undergo polarization rotation
proportional to the spin F̂y along the y-axis. By using a half waveplate and a PBS we can balance the two
photodetectors such that their difference signal is proportional to the polarization rotation. The mean
value of the atomic spins F̂y will be zero, and no polarization rotation in the probe laser will be measured,
unless an RF magnetic field is applied transversely to the static magnetic field. In our experiment we
get the MORS signal from the photocurrent by using a lock-in amplifier to decompose it in its sine and
cosine components and making the sum of their squared amplitudes to give i(t) = const · |A(ω)|2, where
A(ω) is the mean value of the curly brackets in equation 9.30. We then obtain the information about the
populations by fitting

MORS(ω) = const ·
∣∣∣∣∣N

F−1∑
m=−F

[F (F + 1)−m(m+ 1)]

i (ωm+1,m − ω)− Γm+1,m/2
⟨σ̂m+1,m+1 − σ̂m,m⟩

∣∣∣∣∣
2

(9.31)

to the experimental data. We see from equation 9.31 that the MORS signal is a sum of the complex
amplitudes of Lorentzian functions, which is why the characteristic MORS signal has many peaks, as we
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shall see in chapter 11. We can calculate the spin orientation (p) through

p =
1

F

F∑
−F

m · ⟨σ̂m,m⟩ . (9.32)

The MORS technique described in this section can be used as a tool to measure the atomic
populations of the Zeeman sublevels. By using this information in equation 9.32 we can calculate the spin
orientation which provides a characterization of the collective spin system. The quality of the prepared
spin is essential for the backaction cancellation in gravitational-waves. This scheme is extremely sensitive
to noise, especially at low frequencies and the closer the orientation is to one (p = 1) the closer the spin
system is to a coherent state. A coherent spin state would provide the smallest average projection of Jx
into the Jy and Jz components as seen in figure 8.1(b).



63

10 EXPERIMENTAL IMPLEMENTATION AND METHODS

This chapter begins with the description of our experimental implementation for the optical
pumping. Afterwards we talk about saturated absorption spectroscopy and polarization spectroscopy,
the tools we use to lock our lasers at a frequency that will preferentially induce the desired transitions.
We then proceed to the MORS setup, for the characterization of the prepared polarization state.

10.1 Optical Pumping Setup

We start by describing our experimental setup for the optical pumping and explain how we
generate the signal to lock them at the desired atomic transitions.

10.1.1 Setup

For the experimental implementation of the optical pumping we use two diode lasers placed on
a breadboad for portability. The bottom one in figure 10.1, acting as the pump, is a Toptica DFB1 diode
laser and it is locked to the Cesium D1 line (@894 nm). The top laser is a Toptica DL Pro diode laser and
is locked to the D2 line acting as the repump in our setup (@852 nm). Both of them have their beams
with an elliptical profile and are sent though a pair of anamorphic prisms to correct for their respective
ellipticities.
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Figure 10.1: Schematic of the experimental setup for the optical pumping. The pump is an 894 nm
Toptica DFB diode laser and the probe an 852 nm Toptica DL Pro diode laser. Both of which are
frequency locked at a defined atomic transition using the polarization spectroscopy technique. The inset
inside the dashed rectangle is a representation of the intensity stabilization scheme.

1Distributed feedback.
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Their beams are then split at a polarizing beamsplitter (PBS) and a small part is tapped off
and sent to a polarization spectroscopy (Pearman et al., 2002) scheme to generate the signal for locking
the laser. The remaining portion of the light is sent via a fiber (FC) to be sent to the atomic sample for
the optical pumping.

In order to prepare a polarization state and measure polarization noise we have our atomic
sample in a magnetic shield to have a homogeneous low noise magnetic field acting on the atoms. Then
we could perform a Magneto Optical Resonance Signal (MORS) measurement to obtain the Larmor
frequency, calculate the spin polarization and measure the projection noise. We will discuss these mea-
surements in the next chapter where we introduce the results. Given the access restrictions to the lab
due to the pandemic, we were not able test the final atomic sample and see how the optical pumping
affects the polarization noise in it. Figure 10.2 is an actual picture of our optical pumping setup.

Figure 10.2: Picture of the optical pumping setup. The red and orange lines represent the optical path
as the beam leaves the laser. The small setup in the bottom right is the intensity stabilization scheme.

10.1.2 Polarization Spectroscopy

As introduced in section 9.2, we want the pump to excite transitions from F = 4 to F ′ = 4 in
the D1 line and the repump from F = 3 to F ′ = 4 in the D2 line. Hence, we need our lasers to have their
central frequencies locked at these specific lines so that they will have the highest probabilities to excite
the desired transitions. These transitions are depicted in figure 10.3 for the hyperfine levels of Cesium
133. The probe beam should be slightly detuned from the atomic transitions to avoid absorption.

Saturated absorption and polarization spectroscopy are important tools with many interesting
applications in physics. We will not go through them in detail at this time. Much like we did with the
optical pumping, we will briefly explain some core concepts necessary to understand how we can use
them to lock our laser frequencies to an atomic transition. For more detailed description on saturated
absorption and polarization spectroscopy we recommend the works of Schmidt et al. (1994); Pearman
et al. (2002); Ratnapala et al. (2004); Harris et al. (2006).

As already discussed in previous sections, when near resonant light interacts with an atomic
sample, part of it is scattered by an amount that mostly depends on the photon absorption cross section.
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Figure 10.3: Atomic transitions in which pump and repump are locked to prepare the spin state. The
pump is locked in the F = 4 −→ F ′ = 4 transition for the D1 line and the repump in the F = 3 −→ F ′ = 4
for the D2 line. The probe is ∆-detuned from the transition resonances.

Typically this cross section is determined by the lifetime of the excited state, by pressure broadening due
to atomic collisions and Doppler Broadening due to thermal motion.

The combined effect of these phenomena results in an absorption lineshape that is a convolu-
tion of the Gaussian profile, given by the Maxwellian distribution due to Doppler broadening, and the
Lorentzian profile due to the other two effects. This profile can be picked up by setting the laser to scan-
ning mode around the resonance frequency and placing a photodetector on the probe beam (figure 10.4).
The linewidth of the Doppler broadening is typically much larger than the linewidth of the hyperfine
transitions, preventing us from resolving the hyperfine levels.

By sending a counter propagating beam (called pump in figure 10.4), much stronger than the
probe, we can saturate the an atomic transition. This saturation essentially means that the pump induces
such fast transitions (in both directions) between the populations of the ground and excited states, that
the populations are balanced and absorption is reduced for this transition. This effect is responsible for
the small peaks in the middle of the dips in figure 10.5a and in the red lines in figure 10.6, and is called
Saturated Absorption Spectroscopy (Schmidt et al., 1994).

Figure 10.4: Schematic representation of the setup used for the polarization spectroscopy.

To obtain the signal we need to lock the lasers at an atomic transition we use a technique
called Polarization Spectroscopy (Pearman et al., 2002). It is closely related to the saturation absorption
spectroscopy, but takes into account the birefringence induced in the atomic sample by circularly polarized
light to generate a spectrum with a natural zero crossing at the transition resonance. It is then sent to
a PID controled by a Redpitaya to feedback the current to the laser and stabilize it. The signal in figure
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(a)
(b)

Figure 10.5: Saturated absorption spectrum (a) and polarization spectroscopy signal (b) for the pump @
894 nm, D1 transition of 133Cs.

10.5b and the green signal in figure 10.6 are the actual polarization spectroscopy signals we use to lock
our pump and repump lasers, respectively. The ramp at the transition provides a good feedback signal
for the laser stabilization. Frequency is swept by changing the current in the laser diodes.

Figure 10.6: Saturated absorption spectrum (red lines) and polarization spectroscopy signal (green lines)
for the repump @ 852 nm, D2 transition of 133Cs.

10.2 The MORS Setup

The experiments with the cell inside the magnetic shield were performed in two distinct loca-
tions. The MORS and polarization noise measurements took place in the Cell Lab at the NBI, while the
degaussing and free induction decay experiments were made in the GWD2 lab, also at the NBI. In the
configuration shown in figure 9.4, a cubic 5 mm Cesium cell is placed in the center of the magnetic shield.
The pump and repump beams are σ+ polarized in the x-direction to prepare the polarization state. A
constant magnetic field (Bbias), also in the x-direction, breaks the degeneracy of the Zeeman sublevels
and is responsible for the Larmor precession of the atomic spin. A radio frequency magnetic field (BRF )

2Gravitational-wave detector.
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in the y-direction induces weak transitions between two adjacent Zeeman sublevels and this is picked up
as polarization rotations of the linearly polarized probe using a balanced detection scheme. There are
small variations to this setup depending on the information we want from the experiment and those will
be made clear when explaining each individual result.

In the next chapter we present the atomic polarization results obtained using the optical pump-
ing described here and measured using the MORS signal. We also introduce and discuss the results of a
technique used to improve the shielding of magnetic shields called degaussing.
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11 RESULTS AND MEASUREMENTS

In this chapter we will present the preliminary measurements we made with a Cesium cell inside
a magnetic shield.

11.1 MORS measurement

The MORS measurements presented below were performed to get an experimental understand-
ing of the technique. We used a 5 mm cesium cell placed in the center of the magnetic shield. This cell
is usually used to map the magnetic field inside the shield and that is why is much smaller than the
8 cm cell that we planned to use in the final measurements. A larger cell would provide a higher optical
depth that is essential for an efficient implementation of the backaction cancellation scheme (Khalili
and Polzik, 2018).

The measurements were performed under the same conditions introduced in section 10.2, differ-
ing only by the presence or absence of the pump and repump beams. A bias magnetic field with a Larmor
frequency of 514.7 kHz was applied in the x-direction and a weak oscillating field in the y-direction as
shown in figure 9.4. The oscillating field was provided by an oscillating current generated by a lock-in
amplifier that also demodulates the signal measured by the balanced detection. The sampling results
were exported to a data file and are presented in figure 11.1.
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Figure 11.1: Plots comparing the amplitude of the MORS signal between three different spin orientations:
p = 0.02 with no optical pumping (red lines), p = 0.76 with a weak pump (gree lines) and p = 0.88 with
pump and repump (blue lines). The linear plot allows the visualization of how relevant spin orientation
is to the amplitude of the MORS signal. The logarithmic plot makes it easier to perceive the differences
in the populations between the Zeeman sublevels.

In the fist measurement depicted in the red curve in figure 11.1a we allowed only the probe
beam through the cell, with no optical pumping (no pump), and obtained a spin orientation of p = 0.02

(equation 9.32). For the second measurement in the green curve we added a 2.5 µW pump beam and the
spin orientation increased to p = 0.76. Finally, for the third measurement in the blue curve, with the
2.5 µW pump and a weak repump (around 1 mW) we measured a spin orientation of p = 0.88. Keeping
these results in mind when looking at figure 11.1, we can see that the amplitude of the signal increases
with a higher spin orientation.

There are two main reasons for the amplitude of the signal to increase with the spin orientation
and both are related to equation 9.31. One is the fact that the signal depends on the mean value of the
differences in the populations between two adjacent Zeeman levels squared |⟨σ̂m+1,m+1 − σ̂m,m⟩|2. For a
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sample at room temperature, such as ours, and no optical pumping, this means that the populations are
evenly distributed and the differences are close to zero. When the polarization increases, the populations
tend to concentrate in the higher mF Zeeman levels (for a σ+ polarized pump) generating an imbalance
in the populations and increasing the amplitude of the signal. The other reason is that resonances
add up coherently. When the optical pumping sends the populations to the higher mF levels (again
for σ+ polarization), the Lorentzians representing each response for adjacent Zeeman levels interfere
constructively, further increasing the amplitude of the MORS signal (as seen in equation 9.31).

We then performed another experiment to study the polarization noise. In figure 11.2a we
prepared the spin state with a 1 mW repump and no pump to obtain a spin orientation of p = 0.68.
Then, adding a 5 µW pump we can now observe a single peak in figure 11.2b. The orientation in this
situation increased to p = 0.90.
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Figure 11.2: Preparation of a spin state to measure the polarization noise. With a 1 mW Repump the
spin orientation is p = 0.68 (a). Adding the pump it increases to p = 0.90 (b).

11.2 Polarization Noise measurement

Initially we prepared the states in figure 11.2 with a Larmor frequency of 515.4 kHz and then
we reduced the amplitude of the bias field, while keeping everything else the same, to measure the
polarization noise at lower frequencies. The spectrum in figure 11.3a shows the power spectral density
after the balanced detection. The blue spectrum encompasses the electronic noise, shotnoise and atomic
noise. It has a peak at 23.5 kHz which is associated with the atomic noise, while the base line represents
the probe shotnoise. On figure 11.3b we fit a Lorentzian to the data points in that peak and obtain a
linewidth of 70 Hz for the polarization noise at 23.5 kHz.

For the backaction cancellation in gravitational-wave detectors, we are interested in the smallest
possible value for the spin linewidth. This, according to Khalili and Polzik (2018), would make the
system linewidth dominated by the readout rate ΓS (the spin oscillator readout rate was introduced in
equation 8.5), making it easier to achieve the required parameters for the experimental implementation
of this scheme.

11.2.1 Degaussing

Our last set of measurements is related to the characterization of the magnetic shield after it
was moved to our lab. The ability of a magnetic shield to minimize the field inside a region may be
reduced by its displacement to another location with different sources of magnetic field. The process of
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Figure 11.3: (a) Power spectral density after balanced detection. (b) Fitting of the polarization noise
spectrum indicates a linewidth of 70 Hz at 23.5 kHz.

bringing the internal field back to a minimum is called degaussing and is done, in our case, by applying a
strong oscillating current to a large coil wrapped around the shield to have a strong oscillating magnetic
field acting on it. Then, by slowly bring the current down to zero, the amplitude of the oscillating field
will be slowly reduced and the magnetic moments inside the shield will align as to cancel each other out,
leaving little to none remnant field inside.

To make sure that the degaussing worked we estimate the Larmor frequency of the atomic
sample inside the shield before and after the process for comparison. The method we used for this
measurement is called free induction decay, and it consists in applying a pulsing signal in the coils to
generate a pulse of an oscillating magnetic field close to the Larmor frequency of the atomic sample. The
polarized spin in the atomic sample will behave like a driven harmonic oscillator with the spin precessing
with the frequency of the external pulse for as long as it lasts. When the pulse stops, the system falls
back to a damped oscillator. Since the frequency of a damped oscillator is the resonance frequency for
the system, by measuring the decay frequency we can measure the Larmor frequency of the remnant field
inside the shield.
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Figure 11.4: (a) Free induction decay before degaussing indicates a Larmor frequency of 36 Hz. (b) After
degaussing the free induction decay indicates that the Larmor frequency was reduced to 15 Hz.

We use the pump beam to obtain a higher spin orientation and increase the interaction with
the magnetic field, and have the probe detuned from the atomic transitions to avoid absorption. In figure
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11.4a we have the free induction decay before degaussing as the orange line. The blue line indicates
the driving signal. We can see that, as expected, for the duration of the pulse, the free induction decay
has roughly the same frequency as the driving signal. We calculate the Larmor frequency from the
free induction decay after the pulse stops and find it to be around 36 Hz. In figure 11.4b we have the
free induction decay after degaussing. Using the same procedure we find a Larmor frequency of 15 Hz,
indicating that the degaussing of the magnetic shield was successful.

Given that the free induction decay is a coarse measurement, specially given that after de-
gaussing the damping of the oscillation happens really fast, we decided to compare it with a ‘MORS-like’
measurement at this frequency. Basically we use a weak pump to have a better polarization of the atomic
sample but no bias magnetic field. Then, we set the sweep range of the oscillating magnetic field BRF

between 3 Hz and 100 Hz and recorded the signal obtained from the atomic response. Given that there is
no bias magnetic field provided by the coils in the experiment, the central frequency obtained from the
MORS model would give the background magnetic field inside the shield. The procedure is very similar
to the actual MORS measurement, but instead of fitting the MORS model we fit a single Lorentzian to
the experimental data as shown in figure 11.5. The fitting resulted in a value of 10 Hz for the Larmor
frequency.
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Figure 11.5: Lorentzian fit for the measured data indicates a Larmor frequency of 10Hz.

We can conclude by comparing the free induction decay with this last measurement that the
Larmor frequency of the shield after degaussing should be roughly around 10 Hz, a value low enough that
it can be overlooked in measurements at higher frequencies, for instance, larger than 1 kHz. The next
step would be to add the new coils, developed in the NBI group in a parallel project, and use them to
try to compensate even further the effects of the residual field. These new coils would provide a more
stable magnetic field and also allow for the implementation of a gradient field to compensate for the
contamination of any background magnetic field that manages to get through the shield.
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12 CONCLUSION

Initially we wanted to characterize one of the candidate cells (8cm long) for the GWD setup
by preparing a polarization state, using the pump and repump described in chapter 10.1, and measuring
it along with its polarization noise. However, the quarantine took effect after we finished moving the
magnetic shield to our laboratory and were about to start characterizing the magnetic field inside it.

Nevertheless, we were able to build system capable of preparing an atomic spin with the inten-
tion of using it as a negative mass reference frame in a back-action cancellation scheme. We began by
building an optical pumping system and by using polarization spectroscopy to frequency lock the pump
and repump lasers to specific atomic transitions between two desired hyperfine levels. They are then used
to prepare the atomic spin state, which will be measured using the MORS technique.

With the pump and repump built we started taking measurements with a small cell inside the
magnetic shield at its original location, the Cell Lab. We began by using the MORS technique to measure
the spin orientation of an atomic sample as a way of better understanding the MORS. In a subsequent
measurement we prepared a polarization state an measured the polarization noise associated with it.
These measurements will be important in the future, when we set out to characterize the atomic cells we
want to use in the back-action cancellation system.

Lastly, we moved the magnetic shield to the GWD Lab, performed a degaussing of the shield
to improve its shielding at the new location and measured the Larmor frequency inside it to be around
10 Hz. We then decided to proceed with the next step, which would be to add the new coils and map the
magnetic field along the longitudinal axis of the shield using the field generated by the coils to cancel, as
best as possible, any residual field. This implementation was performed after my return to Brazil with
the resuming operations in the lab. The techniques learned in this experience will set the basis for the
atomic implementation in our lab targeting the development of quantum information protocols between
atoms and light.
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13 GENERAL CONCLUSION

In this thesis we wanted to build a system capable of generating entangled states of light in an
OPO and also to prepare at an atomic polarization state. The future goal would be the implementation
of a teleportation protocol between atoms and light resonant at different wavelengths.

For that we built an optical parametric oscillator capable of generating entanglement between
signal and idler as shown by the violation of the DGCZ separability criterion. However, despite the
squeezing of 2.4 dB in the amplitude subtraction quadrature, the sum of the phases presented excess
noise. The tripartite analysis indicated that phonon noise was degrading the correlations due to the
introduction of phase noise and that lowering the crystal temperature would be the best course of action
towards improving the entanglement between the three beams. After reworking the cooling system of
the OPO we were able to achieve the temperature of −21 ◦C. We realigned the system e took some
test measurements to check its operation conditions, but our works had to be interrupted because of the
beginning of the internship at the Niels Bohr Institute for the realization of the second part of this work.

At the NBI we built an optical pumping system from scratch to be used in the preparation of an
atomic polarization state. Using this pumping system, a magnetic shield and magnetic fields generated by
coils, we were able to prepare and characterize an atomic polarization state with 90 % of the ensemble with
the desired orientation and with a polarization noise of 2.6 dB above the shotnoise limit with a linewidth
of 70 Hz and a central frequency of 23.5 kHz. These were supposed to be preliminary measurements and
while we were in the middle of adding the final cell and new coils to improve the cell illumination and
reduce the magnetic field noise the quarantine took effect in Denmark and we were not allowed in the
lab. This was early March and we could not return until after I came back to Brazil in May.

Upon my return to Brazil, quarantine restrictions here prevented us from resuming our work
with the OPO to improve the tripartite measurements and hopefully achieve better results. However,
we are confident that the system is capable of achieving better results after some effort in improving the
stability of the pump, essentially by reducing intensity fluctuations in the Ti:Sapph laser.

Once the OPO reaches its final goal of generating tripartite entanglement, with violation of
the van Loock Furusawa inequalities, the preparation of an atomic polarization state with rubidium cells
would be considered. With these two systems working properly the final step would be preparing the
system for the implementation of quantum information protocols, such as teleportation. This would be
an important step towards the development of quantum networks in our lab.

13.1 Teleportation protocol

A proposal of a teleportation protocol between atoms and light can be seen in figure 13.1.
There, a triply resonant OPO generates entanglement between the reflected pump, signal and idler. A
small sample is picked off the pump by the first beam splitter and sent to the Victor station to probe the
atomic polarization state. The polarization state is prepared by the magnetic field Bbias, the pump and
the repump in a coherent spin state by pumping the atoms to one of the extreme Zeeman levels of the
ground state of rubidium. After interacting with the atomic sample the probe beam is mixed with the
reflected pump at the Alice station, where a Bell measurement is performed.

The resulting signal is then sent through a classical channel to the Bob station, where the first
electro-optical modulator (EOM) modulates the amplitude quadrature (AM) of one of the twin beams
while the second EOM modulates the phase quadrature (PM) after having the noise ellipse rotated by the
cavity to have phase converted to amplitude. The gain G in each channel is adjusted as to maximize the
fidelity of the teleported state. The resulting state is measured at Victor and is then compared with the
initial state prepared at the first Victor station to obtain the fidelity. Essentially, as introduced in section



78

Alice

EPR
Station

Victor

Victor

Bbias
x

y

z

Bob

 
 

 

Cav
DET

AM

 

 
 

 

 
 

 

 
 

 

PBS

BS

DET P

Cav

DET Q

E
O

M
 

EOM
AC

BS

DET

DET

TROPO

G

G

 

PM

 

e

e

  

 

Cav
DET

BS

DET

DET

FR

BS BS

Pump

Repump Rb cell

Figure 13.1: Proposal of the teleportation protocol of an atomic polarization state prepared in a rubidium
cell and light.

8.1.2, the teleported quadratures will be the projection of the spin in the z direction X̂S = Ĵz/h̄
√
Jx and

the projection of the spin in the y direction P̂S = Ĵy/h̄
√
Jx, where Jx = | ⟨Ĵx⟩ |/h̄≫ 1.

Since this configuration only uses the reflected pump and one of the twin beams, the fidelity
is limited and may not overcome the non-cloning limit. For more information on why this is true in our
system, and on similar scheme where the other twin beam can be used to improve the fidelity, refer to
Andrade (2018).
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