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Abstract

In this dissertation we study some aspects of the fluid/gravity correspondence applied

to flat space in ingoing Rindler coordinates. Our main goal is to study the effect of Ehlers

transformations and symmetries of the Einstein equations in the context of fluid/gravity

correspondence.

To do so, we review the main aspects of General Relativity and Hydrodynamics which

will be employed throughout the text. We devote significant attention to a method that

allows us to find solutions to the Einstein equations that by performing a derivative ex-

pansion, which will be utilized afterwards to generate our seed solution, upon which we

later apply the Ehlers transformations.

We show that the metric of flat spacetime in ingoing Rindler coordinates is related to a

Taub spacetime by an Ehlers transformation and we utilize an approach in which we solve

the Killing equation perturbatively in the ε-expansion. The results obtained by using this

approach are not entirely conclusive, and further investigation is still required.
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Resumo

Nesta dissertação estudamos alguns aspectos da correspondência fluido/gravitação

aplicada ao espaço plano em coordenadas de Rindler ingoing. Nosso principal objetivo

é estudar o efeito de transformações de Ehlers e simetrias das equações de Einstein no

contexto da correspondência fluido/gravitação.

Para isso, fazemos uma revisão dos aspectos principais da Relatividade Geral e da

Hidrodinâmica, os quais serão empregados ao longo do texto. Damos bastante atenção ao

desenvolvimento de um método que permite encontrar soluções da equações de Einstein

por meio de uma expansão em derivadas, o qual sera utilizado posteriormente para gerar

uma solução-base sobre a qual aplicaremos transformações de Ehlers.

Nós mostramos que a métrica de um espaçotempo plano em coordenadas de Rindler

ingoing está relacionada a um espaçotempo de Taub por meio de uma transformação de

Ehlers e nós utilizamos um método em que nós resolvemos a equação de Killing pertur-

bativamente na expansão no parâmetro ε. Os resultados obtidos com este método não são

inteiramente conclusivos, de modo que faz-se necessária uma futura investigação.
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Notation and Conventions

Unfortunately, there is no universal consensus about what notation to use in General

Relativity, either when it comes to metric signature or what alphabet to use index labeling.

Still, we have tried to adopt a mostly self-consistent notation. Any deviations from our

standard notations will be explicitly stated.

• The metric signature for flat spacetime is (−,+,+,+).

• Greek indices (µ,ν, . . .) represent temporal and spatial coordinates, while latin in-

dices (a,b, i, j,k, . . .) represent only spatial coordinates.

• Partial derivatives will be written either as ∂µ or ∂

∂xµ . Covariant derivatives are

denoted by ∇µ. The “comma and semicolon” notation is not used.

• Unless otherwise stated, we set c = h̄ = k = G = 1.

• Throughout this dissertation we made extensive use of the Mathematica RGTC

package available at http://www.inp.demokritos.gr/~sbonano/RGTC/.

ix
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Figure 1: Also valid for notation conventions in Physics. Source: https://xkcd.com/927/

.

https://xkcd.com/927/


Introduction

The Einstein equations of General Relativity, which describe gravity as a result of the

interaction between matter, energy and spacetime, and the Navier-Stokes equation of fluid

dynamics, which describes the motion of viscous fluids, have been since their discovery

a source of continuous research and interest, not only because they can be applied to a

broad set of physical phenomena and to many problems in engineering (turbulence, the

Big Bang, black holes, weather modelling, GPS, gravitational lensing, aerodynamics and

many others), but also because they possess a very rich, yet not fully understood, non-

linear structure, which makes it difficult to find exact solutions to these equations and has

attracted interest in itself from a purely mathematical point of view, especially in the case

of the Navier-Stokes equation.

Surprisingly, there are hints suggesting that these two equations are not totally un-

related. It was shown by Damour [1] that the dynamics of the fluctuations around the

event horizon of a black hole is very similar to that of a viscous fluid, explained by a

2-dimensional Navier-Stokes like equation for the event horizon (known as the Damour-

Navier-Stokes equation [2]). The use of fluid dynamics to describe the black hole hori-

zon, including the works by Damour, eventually led to the membrane paradigm [4], an

approach in which the 4-dimensional black hole horizon is treated as a 2-dimensional

membrane in a 3-dimensional space.

Shortly before the work of Damour, there appeared other indications from black hole

thermodynamics that would become the basis of what would later be known as the holo-

graphic principle. When studying the notion of black hole entropy, Bekenstein sug-

gested [5–7] that the black hole entropy is proportional to its area. This was confirmed

by Hawking [8, 9], who showed that SBH = ABH
4 , where SBH and ABH are the black hole

entropy and area, respectively. It was also shown by Damour that the ratio between the

viscosity and the entropy is given by η

s = 1
4π

. These works by Bekenstein and Hawk-

ing were done in the much larger context of black hole information. In particular, there

1



2 CONTENTS

was (and there still is) a great interest in understanding what happens to the information

of something that falls inside a black hole. Nevertheless, as we said earlier, these ideas

would later resurface as an inspiration for the holographic principle.

Indeed, motivated in part by these works on black hole thermodynamics, ’t Hooft

proposed in 1993 [10] that the information contained within some region of spacetime

could be regarded as a hologram, that is, it could be entirely described by a theory living

on the boundary of this region, i.e. if this region of spacetime contains d +1 dimensions,

it could be described by a theory living on its d-dimensional boundary. This proposal was

later expanded by Susskind [11], who formulated the holographic principle in the context

of string theory. For a review on the holographic principle, including the motivations

arising from black hole thermodynamics in the works of Bekenstein and Hawking cited

above, see [12].

This idea of gravitational theories in d +1 dimensions being equivalent to field theo-

ries in one dimension less, living on the boundary of this higher dimensional spacetime,

gained a substantial boost in activity after Maldacena proposed the AdS/CFT correspon-

dence [13], which may be thought as an implementation of holography, in the sense that

it relates quantum gravity (as in string theory) living in anti-de Sitter space to conformal

field theories living at the boundary of AdS. The most famous example of AdS/CFT cor-

respondence relates string theory on AdS5× S5 to a N = 4 supersymmetric Yang-Mills

theory living on the four-dimensional boundary of AdS5× S5. For reviews of AdS/CFT

correspondence, see [14, 15].

Working in the context of AdS/CFT correspondence, Policastro, Starinets and Son

[16,17] found that a black hole dissipating in AdS space behaves just like a viscous fluid,

that it, its behavior may be explained using hydrodynamics. Moreover, they found that

the ratio between entropy and shear viscosity is a constant, namely η

s = 1
4π

, which is

precisely the same value obtained decades earlier by Damour. It should be pointed out

that the calculation by Policastro, Son and Starinets is done at spatial infinity, unlike that

of Damour, which is performed at the black hole horizon. However, there is a relation

between these results.

Also within the context of AdS/CFT correspondence, Bhattacharyya et al. [18] (see

also [19–21] for reviews and the references therein for developments of the original idea

of Bhattacharyya et al.) found a relation between fluid dynamics in d dimensions and

General Relativity with negative cosmological constant in d +1 dimensions, in the sense
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that for an arbitrary solution in fluid dynamics, they constructed an asymptotically AdS

black hole spacetime where the evolution of the horizon is the same as that of a fluid flow.

Up to this point, the works on fluid/gravity correspondence were done with Malda-

cena’s conjecture in mind, but a question that arises is whether it is possible to do a

fluid/gravity correspondence in other spacetimes, that is, can we move away from anti-de

Sitter spaces? It turns out that it is indeed possible to move away from AdS spaces. This

was first addressed in [23]. Upon introduction of a cutoff surface Σc at a fixed radius

r = rc outside the horizon of a metric given by ds2 = −h(r)dτ2 + 2dτdr + e2t(r)dxidxi,

they imposed boundary conditions to fix the induced metric on Σc, but these conditions

do not specify a solution. By taking the cutoff to the horizon rh, the authors of [23] found

that the geometry is Rindler space, and they also found that η

s = 1
4π

. All of this was done

without assuming an asymptotically AdS region.

Building up on [23], it was later shown [24] that it is possible to map solutions of the

incompressible Navier-Stokes equation into solutions of the Einstein equation, which was

achieved by considering gravitational fluctuations around a background solution ds2 =

−rdt2 + 2dtdr + dxidxi, with a dual fluid living on a cutoff surface Σc, constrained to

be flat. It was found that the deformed geometry at the cutoff surface does satisfy the

Einstein equations. As in the previous case [23], the authors of [24] did not assume an

asymptotically AdS spacetime.

The dual metric of [24] was later extended to arbitrarily high orders of a class of

Ricci-flat metrics by Compère et al. [25], by means of a procedure similar to the one

previously employed in [18], although in [18] it was done in the context of AdS/CFT

correspondence. Nevertheless, the algorithm developed in [25] allowed one not only to

adopt a systematic approach to this and similar problems (see below), but also showed that

the incompressibility condition and the Navier-Stokes equation must receive corrections

at higher orders so that the metric remains Ricci-flat.

Further developments of this fluid/gravity correspondence include a procedure sim-

ilar to the one developed in [25], that applies the reasoning of ε-expansion in the rel-

ativistic case [26–28], the discussion of Petrov types [29], the possibility of a similar

correspondence for magnetohydrodynamics [30, 31], as well as the AdS/Ricci-flat corre-

spondence [32, 33], which relates a class of asymptotically anti-de Sitter spacetimes with

another class of Ricci-flat spacetimes and therefore may provide a bridge between the

AdS cases and the Rindler ones.
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Finally, as we said in the beginning, the Einstein and Navier-Stokes equations are

of great interest from a mathematical point of view. They have long been studied with

focus on their properties, such as exact solutions of the Einstein equations [34], as well

as the problem of existence and smoothness of solutions of the Navier-Stokes equations.

The mathematical interest in these equations has led to noticeable developments, such as

transformation groups mapping exact solutions of the Einstein equations into other exact

solutions. One such example is known as the Ehlers group [35–39], which has first been

applied in the context of fluid/gravity correspondence in 2012 [40]. On the other hand,

there is a known symmetry group of solutions of the Navier-Stokes equations [41], which

might also be of interest whenever someone mentions a duality between gravitational and

fluid dynamical systems.

Our focus in this dissertation will be on fluid/gravity correspondence in flat (Rindler)

spacetimes and the possibility of using Ehlers transformations to generate new solutions

to which the correspondence may be applied.
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Outline of this dissertation

We have tried to keep this dissertation didactic and as self-contained as possible. In

some cases, a full treatment of a certain topic would require many prior developments

well outside the scope of this dissertation. In such cases, we only give a short review of

said topic, focusing on its direct usefulness and applications to this dissertation, and refer

the reader to the references containing the full details.

• Chapter 1 contains a brief review of the main aspects of General Relativity that will

be used thoroughly throughout this text, such as a discussion on the Einstein equa-

tions as well as the concepts of hypersurfaces, Killing vectors and Lie derivatives.

• Chapter 2 discusses general aspects of relativistic fluid dynamics, its status as a

long-wavelength limit of quantum field theories and the Navier-Stokes equation as

a non-relativistic limit of the equations of motion for a relativistic fluid at first order

in the ε-expansion which we discuss in the text.

• Chapter 3 applies the ideas of fluid/gravity correspondence to the case of a flat

spacetime. We review an algorithmic procedure developed in [25], which allows us

to solve the Einstein equations for the flat spacetime in Rindler coordinates order by

order, and explicitly solve the equations at third order, a result which will be used

afterwards.

• Chapter 4 contains a discussion on the Ehlers transformations, which allows us

to find solutions of the Einstein equations based on existing solutions. Following

the ideas of [40], we employ a similar reasoning to the flat metric discussed in

chapter 3, which is done by solving the Killing equations perturbatively in the ε-

expansion. We also found that Ehlers transformations may relate the Rindler and

Taub spacetimes.

• Chapter 5 contains our conclusions and possible future developments.
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Chapter 1

General Relativity

In order to make this work as self-contained as possible, we have chosen to dedicate

this first chapter to aspects of General Relativity. Given the immense breadth [42, 43] of

this subject, however, a full treatment is completely out of hand, which already indicates

somewhat of a failure in making this work properly self-contained, but the content we

provide here should be enough to understand the aspects of General Relativity that will

appear in the following chapters. Some of the main references for a more in-depth cov-

erage of General Relativity should be, among many others, [42–45], with the latter being

particularly useful for some technical details.

1.1 Spacetime and the Einstein equations

General Relativity is the theory that describes space, time and gravity, as well as how

these things intertwine, especially in the presence of very massive bodies. Formulated by

Einstein in 1915, it is built upon Special Relativity, proposed by Einstein ten years earlier,

which redefines our notions of space and time by treating them as two sides of the same

coin and introducing the concept of spacetime.

Einstein’s general theory of relativity can be regarded as a generalization of Newton’s

theory of gravitation, by describing gravity as a geometric property of spacetime. Indeed,

quoting [44], we may say that “spacetime is a manifold M on which there is defined a

Lorentz metric gµν. The curvature of gµν is related to the matter distribution in spacetime

7



8 CHAPTER 1. GENERAL RELATIVITY

by Einstein’s equation”. In mathematical terms, this means that1

Rµν−
1
2

Rgµν = Tµν, (1.1)

where the left-hand side represents curvature and the right-hand side represents the matter

content. Before explaining the Einstein equations eq. (1.1) in more detail we should

digress a little bit into the metric tensor.

The metric tensor (or simply “the metric”) is what defines the geometry of spacetime.

It is essential in the definitions of spatial concepts such as distance, curvature and angles,

as well as the causal structure of spacetime. In other words, the metric is also responsible

for the notions of past and future in a given spacetime.

The simplest case of a spacetime is the Minkowski space, also known as flat space.

In this case, we denote the metric by ηµν, with the indices representing the spacetime

coordinates. For more general spacetimes, we use the notation gµν for the metric. For

our 4-dimensional flat spacetime, the indices are time and the three spatial coordinates:

(t,x,y,z). The interval defined by this metric is

ds2 = ηµνdxµdxν =−dt2 +dx2 +dy2 +dz2, (1.2)

where ηtt =−ηxx =−ηyy =−ηzz =−1, all the other ηµν being zero. In the above equa-

tion we have introduced the Einstein summation convention: repeated indices (one upper,

one lower) are summed. It should be noted that eq. (1.2) is not the only way in which we

can write the interval for a flat space.

We may, for example, use the following metric

ds2 =−rdτ
2 +2dτdr+dxidxi (1.3)

to describe flat space in the so-called ingoing Rindler coordinates. Indeed, if we set

τ = 2log(x+ t) and 4r = x2− t2, we recover ds2 = −dt2 + dx2. The metric described

in eq. (1.3) will be used thoroughly in the rest of this work.

If we perform a coordinate transformation x→ x′, then the metric will transform ac-

cording to

g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x), (1.4)

which is simply a more generalized transformation law for vectors.

1In this work, we ignore the presence of an additional term Λgµν representing the cosmological constant

on the left-hand side of the Einstein equations.
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As two final comments on the metric tensor, we first note that it is symmetric upon

the interchange between µ and ν, that is, gµν = gνµ. Also, we note that the metric admits

the tensor gµν, which is called the inverse metric and is such that

gµρgρν = δ
ν
µ, (1.5)

with δν
µ being the Kronecker delta, equating 1 if µ = ν or zero if µ 6= ν.

With the above considerations we may proceed to the other terms appearing in the left-

hand side of the Einstein equations eq. (1.1). To do this, we first consider free particles

on a flat spacetime. The paths describing their movement can be parametrized by λ and

may be written as xµ(λ), and they obey the following equation:

d2xµ

dλ2 = 0. (1.6)

This is simply a straight line, which means that free particles on a flat spacetime move

along straight lines. However, if we consider other spacetimes, now displaying some kind

of curvature, the free particles will no longer move along straight lines. Instead, they will

move along the “straightest possible lines”, which are called geodesics, and eq. (1.6) must

be replaced by the geodesic equation

d2xµ

dλ2 +Γ
µ
ρσ

dxρ

dλ

dxσ

dλ
= 0. (1.7)

The Γ
µ
ρσ are known as Christoffel symbols2 and arise out of the fact that partial deriva-

tives do not remain the same if we change our system of coordinates; we would like a

more general derivative operator, one that follows the transformation law for tensors, that

is, one which is independent of the coordinates. For a vector V µ, the expression

∇µV ν = ∂µV ν +Γ
ν
µσV σ (1.8)

satisfies our needs, and this is the definition of the covariant derivative for a contravariant

vector. For a covariant vector, it is simply

∇µVν = ∂µVν−Γ
λ
µνVλ. (1.9)

2To be rigorous, we should use either the term “connection coefficients” or “affine connection”. This

is because the Christoffel symbols are a special case of a more general derivative operator ∇µV ν =

∇̃µV ν +Cν
µσV σ, which arises out of the discussion on the uniqueness of derivative operators, as two dif-

ferent derivative operators ∇µ and ∇̃µ do not necessarily act on vectors and tensors in exactly the same

way. See Section 3.1 of [44] for a more rigorous discussion. If ∇̃µ = ∂µ, that is, the usual partial derivative

operator, then we write the Cµ
ρσ as Γ

µ
ρσ and call them Christoffel symbols. Since, in our case ∇̃µ = ∂µ, we

are not making an abuse of nomenclature by adopting the name Christoffel symbols from the start.
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It can be shown (see references cited above) that the Christoffel symbols may be

calculated directly from the metric by3

Γ
ρ

µν =
1
2

gρλ(∂µgλν +∂νgλµ−∂λgµν). (1.10)

The Christoffel symbols are symmetric4 under µ↔ ν. With them we may calculate the

Riemann curvature tensor (“Riemann tensor” for short) Rρ

σµν:

Rρ

σµν = ∂µΓ
ρ

νσ−∂νΓ
ρ

µσ +Γ
ρ

µλ
Γ

λ
νσ−Γ

ρ

νλ
Γ

λ
µσ. (1.11)

By lowering ρ in the above equation, one may show that the Riemann tensor satisfies the

Bianchi identities

∇λRρσµν +∇σRλρµν +∇ρRσλµν = 0. (1.12)

A useful quantity derived from the Riemann tensor is the Kretschmann scalar

K = RµνρσRµνρσ. (1.13)

The Kretschmann scalar is a curvature invariant, and is useful to identify singularities

of the metric. From the Riemann tensor, we may get the Ricci tensor Rµν upon index

contraction:

Rµν = Rσ
µσν. (1.14)

The Ricci tensor too is symmetric under µ↔ ν. Also, a metric is said to be Ricci flat if

Rµν = 0. Finally, if we contract the Ricci tensor with the metric, we arrive at the Ricci

scalar

R = gµνRµν. (1.15)

We see from eqs. (1.10), (1.11), (1.14) and (1.15) that the entire left side of eq. (1.1) can

be given once the metric is known.

The Tµν on the right-hand side of eq. (1.1) is called the energy-momentum tensor and

represents the matter content within a region characterized by the metric gµν. In many

cases, we would like that Tµν takes the form of a perfect fluid, with energy density ρ and

3Despite the look of this equation, the Christoffel symbols are not tensors, as they do not transform

according to a equation like eq. (1.4). Instead, it is the covariant derivative that follows such a transformation

law.
4The affine connection is only symmetric upon this interchange if it is torsion free, which is the case in

General Relativity. Again, see [44] for a more general discussion.
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pressure p:

Tµν =


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 (1.16)

In chapter 2 we describe fluid dynamics in some detail.

1.2 Symmetries, Killing vectors and the Lie derivative

1.2.1 Symmetries of manifolds

A manifold M is said to be symmetric if its geometry is invariant under some kind

of transformation (diffeomorphism) mapping M to itself. In the case of a metric, such

diffeomorphism is called an isometry5. In component notation, an isometry is such that it

satisfies the following equation:

gµν(x) =
∂x′α

∂xµ
∂x′β

∂xν
gαβ(x

′). (1.17)

In other words, an isometry preserves the metric. Bringing this discussion to spacetime,

we may naturally ask ourselves if we can find such isometries for a given spacetime and,

in case this is true, we may also ask ourselves how many isometries we may find for

a given metric. In order to answer these questions, we must first introduce the idea of

Killing vectors. To do this, we consider the transformation

xµ→ x′µ = xµ + εξµ, |ε| � 1. (1.18)

The term εξµ represents an infinitesimal displacement. If this transformation is an isome-

try, then we may put eq. (1.18) in eq. (1.17). If we expand this to first order in ε and lower

the ξµ coordinates that will appear, then eq. (1.17) may be rewritten as

∇µξν +∇νξµ = 0. (1.19)

This equation is known as the Killing equation, and a vector ξµ that satisfies the Killing

equation is known as a Killing vector. Therefore, if we want to find the isometries of

a given spacetime, we must find its Killing vectors. We should point out that a linear

5See [44] or [46] for more complete discussions.
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combination of Killing vectors is itself a Killing vector, which follows from the linearity

of the covariant derivative.

As a last comment on Killing vectors and isometries, it can be shown that a d-

dimensional Minkowski spacetime (d ≥ 2) there are d(d+1)
2 Killing vectors, which gen-

erate translations, boosts and space rotations. The spacetimes admitting d(d+1)
2 Killing

vectors are called maximally symmetric spaces.

1.2.2 Lie derivative

The Lie derivative measures how a tensor varies along a certain vector field. For a

general tensor T µ1µ2...µk
ν1ν2...νl the Lie derivative along V may be written as

LV T µ1µ2...µk
ν1ν2...νl =V σ

∇σT µ1µ2...µk
ν1ν2...νl

− (∇λV µ1)T λµ2...µk
ν1ν2...νl − (∇λV µ2)T µ2λ...µk

ν1ν2...νl − . . .

+(∇ν1V
λ)T µ1µ2...µk

λν2...νl
+(∇ν2V

λ)T µ1µ2...µk
ν1λ...νl

+ . . . (1.20)

For the metric gµν, the above equation becomes

LV gµν =V σ
∇σgµν +(∇µV λ)gλν +(∇νV λ)gµλ

= ∇µVν +∇νVµ, (1.21)

upon lowering the indices. In particular, if Vµ is a Killing vector, the Killing equa-

tion eq. (1.19) tells us that

LV gµν = 0. (1.22)

Hence, we may say that a vector V µ is a Killing vector if the Lie derivative of the metric

in the direction of V µ is zero.

1.3 Hypersurfaces and spacetime foliations

1.3.1 Hypersurfaces

So far, we have been talking about manifolds, but we have said nothing about what

happens when we take a subset of a given manifold, namely a submanifold, and study it.

The ideas presented here are going to be very useful in what follows, since in the rest of

this work we will be studying fluids living on the boundary of given spacetimes, that is,

fluids living on a submanifold of a spacetime manifold.
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We are particularly interested in a class of submanifolds called hypersurfaces. For a

d-dimensional manifold, a hypersurface Σ is a (d−1)-dimensional submanifold (we say

that Σ is of codimension 1).

So, let Σ be a hypersurface of a larger manifold M . If M is described by the coor-

dinates xα and Σ is equipped with the coordinates ya, we may describe the hypersurface

by means of an embedding Φ : xα = xα(ya), which are simply parametric equations. The

Jacobian of this embedding is given by

Eα
a =

∂xα

∂ya , (1.23)

and we may define the normal vectors to Σ by noting that they obey the following equa-

tion:

Eα
a ξα = 0, (1.24)

where ξα are the normal vectors to Σ. According to the norm of ξα, the hypersurface may

be defined as either spacelike, timelike or null, as follows:

Σ is called


spacelike if ξ

α
ξα < 0,

timelike if ξ
α

ξα > 0,

null if ξ
α

ξα = 0.

(1.25)

If Σ is not a null hypersurface, then we may define the normalized normal vector nα

as

nα =
ξα√
|ξαξα|

, (1.26)

so that

nαnα = ε =

 −1 if Σ is spacelike,

+1 if Σ is timelike.
(1.27)

We may also define the induced metric hab on Σ, which is the metric induced on Σ by

the metric gαβ on M :

ds2|Σ = gαβdxαdxβ|Σ

= gαβ

∂xα

∂ya
∂xβ

∂yb dyadyb

≡ habdyadyb, (1.28)

where

hab ≡ gαβEα
a Eβ

b (1.29)
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is the induced metric on Σ. At this point we introduce the notation a,b for the coordinates

of Σ, while keeping α,β for the coordinates on the larger spacetime.

Finally, we may define the extrinsic curvature of a hypersurface Σ with a metric hab

and vector n normal to Σ by

Kab ≡
1
2

Lnhab. (1.30)

The extrinsic curvature describes how the space is embedded in some larger space. In this

case, it describes how the hypersurface Σ is embedded in the manifold M , that is, how it

bends in M . Considering that M is not embedded in any larger manifold, it obviously

only makes sense to speak of an extrinsic curvature on Σ. The intrinsic curvature, on

the other hand, is measured by the Riemann tensor, and it describes how the space is

curved. Both M and Σ have their own intrisic properties, and it is possible to relate these

quantities via the Gauss-Codazzi equations (see, for example, [44]).

1.3.2 Spacetime foliations

It is possible to foliate a given spacetime (M ,g) into a family of nonintersecting

spacelike surfaces, each denoted by Σt , one for each “instant of time”. We may parametrize

the Σt by a scalar field t(xα), which is a completely arbitrary single-valued function of the

gαβ coordinates xα, sometimes called the “global time”, or “time function”. One re-

quirement to t(xα) is that the unit normal to Σt , which we denote by nα as before, be a

future-oriented timelike vector field.

We would like to work on a coordinate system defined by xα = xα(t,ya) so that we

may define

tα =

(
∂xα

∂t

)
ya
, (1.31a)

Eα
a =

(
∂xα

∂ya

)
t
. (1.31b)

At first, it is not possible to assume that tα is orthogonal to Σt . To see this, suppose a

curve γ connecting points at different hypersurfaces (for example P1 at Σt1 and P2 at Σt2)

such that these points have the same spatial coordinates: ya(P1) = ya(P2). This curve then

provides the notion of “time evolution” from Σt1 to Σt2 , but they are not necessarily normal

to the Σt hypersurfaces because these are not necessarily parallel to each other; we only

require the Σt to be nonintersecting to each other. Thus, there is no requirement that these
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curves enter the Σt orthogonally. Therefore, we must decompose tα into its normal and

tangent components

tα = Nnα +NaEα
a , (1.32)

where N is called the lapse function, which measures how the proper time of a co-moving

observer differs from the coordinate time, that is, it measures the rate of flow of proper

time with respect to t. We define N by

N =−tαnα. (1.33)

The term Na in eq. (1.32) is the shift vector, which may be defined as

Na = ha
btb. (1.34)

It measures the movement parallel to Σt . In summary, the lapse function and the shift

vector measure the non-orthogonality of t with respect to Σt .

We can now use the coordinate transformation xα(t,ya) along with eqs. (1.31a), (1.31b)

and (1.32) to rewrite the line element ds2 = gαβdxαdxβ. By noting that

dxα =
∂xα

∂t
dt +

∂xα

∂ya dya = tαdt +Eα
a dya = (Nnα +NaEα

a )dt +Eα
a dya

= (Ndt)nα +(dya +Nadt)Eα
a , (1.35)

we may write the line element as

ds2 = gαβdxαdxβ =−N2dt2 +hab(dya +Nadt)(dyb +Nbdt), (1.36)

where we used the relations gαβnαnβ =−1 and nβEβ

b = 0 and where, as usual,

hab = gαβ

∂xα

∂ya
∂xβ

∂yb (1.37)

is the induced metric on Σt .

Using eq. (1.21) and then eq. (1.32), the extrinsic curvature may be rewritten in terms
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of these variables as6

Kab =
1
2

Lnhab =
1
2
[nc

∇chab +hac∇bnc +hbc∇anc]

=
1

2N
[Nnc

∇chab +hac∇b(Nnc)+hbc∇a(Nnc)]

=
1

2N
[(tc−Nc)∇chab +hac∇b(tc−Nc)+hbc∇a(tc−Nc)]

=
1

2N
(Lthab−LNhab). (1.38)

In the above example, we foliated spacetime according to the time coordinate, but in

principle we may do an analogous procedure to other coordinates as well.

1.3.3 The Brown-York tensor

In the Hamiltonian formulation of Classical Mechanics, we have the Hamiltonian

function

H(p,q) = pq̇−L, (1.39)

where p is the canonical momentum, q the generalized coordinates and L the Lagrangian

function. By writing L = pq̇−H, we may write the action S as

S =
∫ t2

t1
Ldt =

∫ t2

t1
(pq̇−H)dt, (1.40)

Upon varying the action, while requiring that δq = 0 at the endpoints t1 and t2, we are

eventually led to the Hamilton equations and, further along, to the momentum and the

Hamilton-Jacobi equations

p =
∂S
∂x

, (1.41a)

H =−∂S
∂t

. (1.41b)

Now, we would like to consider a region of spacetime foliated by two spacelike sur-

faces Σt1 and Σt2 , at the “bottom” and “top”, respectively, with time flowing upwards,

both bounded by closed two-surfaces St , and we denote the union of St by B . The idea

originally proposed by Brown and York [47] is to apply an analogous procedure to the

6To be rigorous, we should have followed [45] and done this for the general case in α coordinates, and

then projected the result onto the hypersurface, but here we are assuming from start that we are already on

Σt .
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one described for the Classical Mechanical case, but this time for an action given by7

S =
∫

M
d4x
√
−gR

+2
∫

Σt2

d3x
√

hK−2
∫

Σt1

d3x
√

hK−2
∫

B
d3x
√
−γΘ

+Sm, (1.42)

where the term in the first line is the usual Einstein-Hilbert action term, K is the extrinsic

curvature scalar in the hypersurfaces Σt , h is the metric in Σt , Θ and γ are, respectively,

the extrinsic curvature scalar and the metric in B . The reason why we have a minus

sign before the second integral in the second line is that the normal vectors at Σt1 and Σt2

point at opposite directions (the normal to Σt1 must be future-directed, and therefore must

point inward). The term in the third line corresponds to the contribution of matter terms.

Collectively, the terms in the second line are the boundary terms, and they are known as

the Gibbons-Hawking-York term [48–50].

Upon varying eq. (1.42), it can be shown [45, 47] that

δS = (equations of motion)+δSm

+
∫

Σt2

d3xPi j
δhi j−

∫
Σt1

d3xPi j
δhi j +

∫
B

d3xπ
i j

δγi j. (1.43)

The equations of motion are just the Einstein equations given as the Euler-Lagrange equa-

tions. In eq. (1.43) we have defined the conjugated momenta to hi j and γi j, respectively,

as

Pi j =
√

h(Khi j−Ki j), (1.44a)

π
i j =−

√
−γ(Θγ

i j−Θ
i j). (1.44b)

From eqs. (1.44a) and (1.44b) we may define in analogy to the Classical Mechanical case

the momentum

Pi j =
δS

δhi j
. (1.45)

Now, for the analogous of the Hamilton-Jacobi equation, the notion of energy will be

generalized to a stress-energy tensor, namely,

T i j
BY ≡

2√
−γ

δS
δγi j

, (1.46)

7In units where 1
16πG = 1.
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known as the Brown-York tensor8 [47].

We must note here that the Brown-York tensor appears exclusively on the boundary

of our system. It is useful to note this now, as we are later going to apply the so-called

fluid/gravity duality to a metric at the bulk so as to study the fluids appearing on the

boundary. The stress-energy tensor for these fluids will be a Brown-York tensor.

8We may add or subtract terms to the action and still leave the dynamics of the system unaltered. This

“ambiguity” is resolved in [47] by adding a term S0 to the action. This new term will then generate a

“momentum” π
i j
0 . Therefore, the action S in eq. (1.46) should be δS

δγi j
= πi j−π

i j
0 . For simplicity, we are

setting S0 = π
i j
0 = 0.



Chapter 2

Hydrodynamics

In this chapter we will introduce some features and basic results of relativistic hy-

drodynamics. We also dedicate a small section to the non-relativistic limit, where we

follow [51] to show that the Navier-Stokes equations appear naturally as a non-relativistic

limit of the relativistic hydrodynamical equations at first order in the ε expansion.

We start with an overview of some of the most fundamental aspects of the theory,

such as its status as a long-wavelength limit of interacting quantum field theories, the

equations of motion for hydrodynamics in covariant form and the Landau frame. Then,

we discuss the perfect fluid and use it as a starting point for a discussion on the derivative

expansion. We end this chapter by remarking on the non-relativistic limit. The main

standard reference for the basics of fluid dynamics should be [52]. Parts of this chapter

will follow closely [20]. Other useful references are [53–55], as well as the references

cited along the text.

2.1 Overview of hydrodynamics

2.1.1 Hydrodynamics as a long-wavelength limit of QFTs

When we speak of quantum field theories (QFTs), we are particularly interested in

their action, from which we may get the stress-energy tensor Tµν and the conserved cur-

rents Jµ. Another useful feature of a QFT is its mean free path, or correlation length `corr.

This is the length scale at which the interactions of this QFT occur. In order to treat hydro-

dynamics as a long-wavelength limit of QFTs, we must first of all explain what we mean

by this and how this is related to what we just said. To do this, we shift for a moment to

19
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the statistical description of fluid dynamics, which is intrinsical to it, since we are dealing

with a very large number of microscopic constituents.

Following [20], let us consider a system initially in global thermal equilibrium with

conserved currents. Then, we must describe it statistically in terms of the grand canonical

ensemble, whose chemical potentials will be associated with the currents. If we choose

to perturb this system so that it moves away from equilibrium as the thermodynamic

variables fluctuate, it is possible to do this in such a way that these fluctuations will be

so slow that, locally, the thermodynamic quantities such as temperature, pressure and

chemical potential will not change. This is possible to achieve if the scales L at which

these fluctuations occur are much larger than the scales of the interactions between the

constituents of the system, that is, if L� `corr.

Now, fluid dynamics is used exactly to describe the systems in which these fluctuations

occur at long wavelengths when compared to the scale set by `corr. This is why we may

regard hydrodynamics as the long-wavelength limit of an interacting field theory at a finite

temperature. We express this assertion mathematically by defining the Knudsen number

Kn =
`corr

L
, (2.1)

Therefore, when we speak of a long-wavelength limit, we speak of a small Knudsen

number. This is what we call the hydrodynamic limit.

2.1.2 Equations of motion

Generally, ideal fluids are described by the Euler and the continuity equations [52]

∂~v
∂t

+(~v ·∇)~v =−∇p
ρ

, (2.2a)

∂ρ

∂t
+∇ · (ρ~v) = 0, (2.2b)

where v is the fluid velocity, ρ the energy density and p the fluid pressure. The Euler

equation comes from Newton’s law and describes the fluid flow, while the continuity

equation states that the rates at which mass enters and leaves the system are the same.

If the fluid is viscous, then it is generally described by the incompressible Navier-Stokes

equations

∂~v
∂t

+(~v ·∇)~v =−∇p
ρ

+ν∇
2~v, (2.3a)

~∇ ·~v = 0, (2.3b)
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where ν is fluid viscosity.

However, in our case it is far more useful to write the equations of motion for fluids in

a covariant manner, such that the characteristics of the fluid will now be contained in the

stress-energy tensor Tµν. By doing so, the equations we have shown above are reduced to

∇
µTµν = 0. (2.4)

In the above equation, T00 is the energy density, also denoted by ρ, Tii is the pressure in the

xi direction, T0i the momentum density and Ti j the shear stress parallel to the i j surface.

The non-diagonal terms appearing on the general stress-energy tensor Tµν defined

above are related to the dissipation of the fluid, that is, to derivatives of the fluid velocity,

which we now denote by uµ. The dissipative corrections to the stress-energy tensor may

be constructed in a derivative expansion (also called the hydrodynamic expansion) of the

velocity field and the thermodynamic variables.

2.2 The hydrodynamic expansion

The main goal of this section is to arrive at the scaling limit that shows that we can

obtain the non-relativistic Navier-Stokes equations from the first-order relativistic equa-

tions of motion for a fluid. With this in mind, and also in order to make this presentation

somewhat didactic, we need in first place to discuss the perfect fluid as well as dissipative

terms added to the equations of ideal fluids, upon which we will develop the hydrody-

namic expansion that will eventually lead to our desired scaling limit.

The basic assumption that allows us to perform the hydrodynamic expansion is that

the velocity field uµ(xν) varies slowly. This means that we may expand the derivatives of

uµ and solve our equations perturbatively. To do so, we must rescale our coordinates by

multiplying them by factors of our scale parameter ε. It is possible to apply a hydrody-

namic expansion to both relativistic and non-relativistic fluids, according to scalings we

show below. However, our focus in this work will be on the non-relativistic case. In the

relativistic case, we have τ∼ xi. Therefore, we may write [26]

u(τ,~x)→ u(ετ,ε~x) (2.5)

and leave the equations of motion invariant under this scaling. In the non-relativistic

regime the velocity is much smaller, so τ ∼ xi no longer applies. Instead, the rescaling
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should be [51]

ui(τ,~x) = εui(ε
2
τ,ε~x) and (2.6a)

P(τ,~x) = ε
2P(ε2

τ,ε~x) (2.6b)

(we use the notation ui for the non-relativistic fluid velocity at the spatial xi coordinate),

as we are going to see below. In any case, this is the prescription for the hydrodynamic

expansion. With this in mind, we proceed to talk about the perfect fluid, whose stress-

energy tensor will be the basis for the hydrodynamic expansion in the relativistic case.

2.2.1 The perfect fluid

The simplest case of a fluid is that of the perfect (or ideal) fluid. The stress-energy

tensor for this fluid does not contain dissipative terms, that is, its non-diagonal terms

are zero. Therefore, it is not necessary to perform the derivative expansion in this case.

However, as we stated above, the expansion will be built upon the stress-energy tensor for

the perfect fluid, thus it is only natural that we discuss this simplest case now.

The stress-energy tensor for a perfect fluid is given by

T µν = (ρ+ p)uµuν + pgµν. (2.7)

It is customary and often useful to express the stress-energy tensor above in terms of

Pµν = gµν +uµuν, (2.8)

which is a projector onto spatial directions perpendicular to uµ. It is immediate to verify

that Pµνuµ = 0. Using eq. (2.8), we can rewrite eq. (2.7) as

T µν = ρuµuν + pPµν. (2.9)

Another feature of a perfect fluid is that the conserved currents Jµ
I , where I indicates

the corresponding conserved charge, may be expressed in the local rest frame as

Jµ
I = qIuµ, (2.10)

where qI are the conserved charges. Since the perfect fluid lacks derivatives of the fluid

velocity, the dynamical equation for the current is

∇µJµ
I = 0. (2.11)
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One such current is the entropy current Jµ
s , which measures how the local entropy

density varies in the fluid. For the perfect fluid entropy density in we have

(Jµ
s )(0) = suµ, (2.12a)

∇µ(Jµ
s )(0) = 0. (2.12b)

The second equation means that the fluid flow involves no entropy production.

2.2.2 Landau and Eckart frames

Before we proceed, there is a subtlety that might remain unnoticed if we do not think

carefully about how to define the velocity field. This subtlety arises essentially from the

fact that, in the relativistic regime, the distinction between mass and energy becomes

somewhat shady.

In the case of a non-relativistic fluid, the energy current and the particle current are the

same1, and it is possible to define the velocity in terms of the mass flux density without

further complications. However, if we try to apply a similar definition to a relativistic

fluid, it makes no sense.

The current and momentum densities do not necessarily have to coincide with each

other, and the mass-energy equivalence does not help in making this easy. In fact, the

notion of “rest frame” becomes ambiguous, because in a rest frame ui = 0, yet we don’t

know in principle if we are going to define the velocity according to current or momentum

flow.

To fix this, we choose the velocity field so that in the local rest frame of a fluid ele-

ment the stress-energy tensor components which are longitudinal to the velocity will give

the local energy density of the fluid. That is, uµ is chosen to represent the energy flux

(momentum density). A key point here is that we wish the same choice to be applied to

the dissipative terms. In other words, we wish the dissipative terms to be orthogonal to

the fluid velocity, that is

Π
µνuµ = 0, (2.13a)

ϒ
µuµ = 0. (2.13b)

1Rigorously, the four-velocity defining the rest-mass density current is also an eigenvector of T µν. See

the discussion in [55] for more details.
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This choice in which the fluid velocity is defined as going along the energy current is

known as the Landau frame [52] (also known as the energy frame).

It is also possible to work on the Eckart frame [56] (also known as the particle frame),

in which the local rest frame is that of the particle current, so that the fluid velocity is

related to the charge transport: the velocity field is set to be proportional to the charge

current. In this frame, there is no charge flow (particle diffusion) in the rest frame.

Throughout this dissertation, we will work on the Landau frame.

2.2.3 Dissipative terms

If the fluid dissipates, eqs. (2.7) and (2.9) are no longer valid. In order to take into

account the dissipative terms, we should have

T µν = T µν

(0)+Π
µν, (2.14)

where T µν

(0) is the stress-energy tensor for the perfect fluid eqs. (2.7) and (2.9) and Πµν

represents the dissipative terms at all orders

Π
µν = Π

µν

(1)+Π
µν

(2)+ · · · , (2.15)

where the subscripts indicate the order of our corrections. To make this clearer, we do as

follows: by inspecting the zeroth order terms (perfect fluid), we notice that they do not

contain derivatives of the fluid variables. Therefore, it is reasonable to assume that the

dissipative terms appearing in Πµν will be described in terms of higher-order derivatives

of the fluid variables. In fact, we will be working with higher order derivatives of uµ.

Thus, the order at the subscripts of the Π
µν

(n) is just the order of the derivatives in uµ.

The discussion above leads us to the conclusion that to study the dissipative terms, we

must analyze the different combinations of derivatives of the velocity field. In order to

achieve this goal, we decompose the fluid velocity derivatives into different terms. More-

over, we can give these different terms an actual physical meaning. A spacetime tensor

can be covariantly split (see, for example, [53]) as a sum of a vector, a nonzero trace part

and two traceless parts, one symmetric and one antisymmetric. This irreducible represen-

tation decomposes the tensor into components that are either parallel or orthogonal to the

vector. We may apply this to the derivatives of the fluid velocity and write

∇
µuν =−aµuν +σ

µν +ω
µν +

1
d−1

θPµν, (2.16)
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where we define, respectively, the divergence θ, the acceleration aµ, shear σµν and the

vorticity ωµν as

θ = ∇µuµ = Pµν
∇µuν, (2.17a)

aµ = uν
∇νuµ, (2.17b)

σ
µν = ∇

(µuν)+u(µaν)− 1
d−1

θPµν = PµαPνβ
∇(αuβ)−

1
d−1

θPµν, (2.17c)

ω
µν = ∇

[µuν]+u[µaν]. (2.17d)

The usefulness of this decomposition is that it will directly allow us to write the dissipative

parts of the stress tensor in the derivative expansion. We thus investigate some properties

of the elements defined above and take into account the Landau frame condition, which

states that the dissipative contributions must be orthogonal to the fluid velocity:

uµΠ
µν = 0. (2.18)

This already indicates that the acceleration must not contribute to Π
µν

(1), since the acceler-

ation term is parallel with uµ. Other properties of these elements are

σ
µνuµ = 0 ω

µνuµ = 0 σ
µρPρν = σ

µ
ν ω

µρPρν = ω
µ
ν

σ
µ
µ = 0 ω

µ
µ = 0 aµuµ = 0.

The other useful property that will lead us to the form of Π
µν

(1) is the fact that we

want Πµν to remain symmetric. This means that the vorticity ωµν does not contribute.

Therefore, we may write

Π
µν

(1) =−2ησ
µν−ζθPµν, (2.20)

where the parameters η and ζ are, respectively, the shear viscosity and the bulk viscosity.

The currents must also be modified to include the terms ϒ
µ
I . In the Landau frame,

these dissipative contributions must be orthogonal to the fluid velocity, which for the

current means

ϒ
µ
I uµ = 0. (2.21)
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2.2.4 Scaling limit

With the discussion on dissipative terms in the previous section, we may write the

equations of relativistic hydrodynamics at first order as

∇µT µν = 0, (2.22a)

T µν = ρuµuν +PPµν−2ησ
µν−ζθPµν, (2.22b)

Pµν = gµν +uµuν, (2.22c)

σ
µν = PµαPνβ

(
∇αuβ +∇βuα

)
− 1

d−1
θPµν, (2.22d)

θ = ∇
βuβ. (2.22e)

These are the equations for a fluid propagating on a space with metric gµν. Now, following

[51], we wish to study the motion of a fluid propagating in a space with metric given by

Gµν = gµν +Hµν, where the background metric has the form

gµνdxµdxν =−dt2 +gi jdxidx j, (2.23)

and Hµν is an arbitrary small fluctuation. The goal of this section is to show that the

perturbations Hµν will be related to forcing terms in fluid dynamics. Moreover, we are

going to show that the equation ∇µT µν = 0 will be reduced to the Navier-Stokes equation

on gµν, while the contributions from Hµν will be related to a function Ai(t,xi) which will

later be identified as the electromagnetic potential, so that the forcing terms will be the

force applied on a charged fluid by this background electromagnetic potential. Therefore,

when we write Gµν = gµν +Hµν, we wish to see the fluid flow on Gµν as a forced flow on

the space gµν.

We denote by ũµν the fluid velocity in Gµν, while uµ refers to the fluid velocity referred

to gµν. We assume that

ũµ =
1√
V 2

(1,~V ) =
1√

GαβV αV β

(1,~V ), (2.24)

in which V α has components (1,~V ) in d dimensions, while V has components V i in d−1

dimensions. Now, we expand ũµ to first order in Hαβ

ũµ = uµ +δuµ =
1√

1−gi jV iV j
(1,~V )−uµ uαuβHαβ

2

= uµ

(
1−

uαuβHαβ

2

)
, (2.25)
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where

uµ =
1√

1−gi jV iV j
(1,~V ), (2.26)

δuµ =−uµ uαuβHαβ

2
. (2.27)

We now wish to treat fluctuations about the uniform fluid at rest, with pressure P0 and

energy density ρ0, by setting

Htt = ε
2htt(ε

2t,ε~x), (2.28a)

Hti = εAi(ε
2t,ε~x), (2.28b)

Hi j = ε
2hi j(ε

2t,ε~x), (2.28c)

V i = εvi(ε2t,ε~x), (2.28d)
P−P0

ρ0 +P0
= ε

2 p(ε2t,ε~x), (2.28e)

where ρe ≡ ρ0 +P0 was chosen for further convenience. Also, ε is taken to be arbitrarily

small. With the rescaling defined above, we look at the equations of motion ∇µT µν = 0

under the scaling we have just described. In particular, we want to calculate ∇µT µt and

∇µT µi.

To do this, we use eq. (2.25) in eqs. (2.22a) to (2.22e), then apply the rescalings

defined in eqs. (2.28a) to (2.28e) and collect the terms order by order in ε. This calculation

is straightforward, but very long and tedious, and we just quote the results here,

∇µT µt = ε
2[ρe(∇ivi)]+O(ε4), (2.29)

where ρe = ρ0 +P0. Analogously, for T µi we have

∇µT µi = ε
3

[
ρe∇

i p+ρe∇µ(vivµ)−2η∇ j

(
∇iv j +∇ jvi

2
−gi j

~∇ ·~v
d−1

)
−ζ∇i~∇ ·~v− f i

]
+O(ε5), (2.30)

where

f i = ρe

(
∂ihtt

2
−∂tAi−

∂ j(
√

gAiv j)
√

g
+ v j(∂iA j)

)
. (2.31)

Equation (2.29) reduces to ∇ivi = 0 for small ε, while eq. (2.30) can be simplified by

using the well-known relation (see, for example, [44])

∇ivi =
∂i(
√

gvi)
√

g
= 0, (2.32)
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so that
∂ j(
√

gAiv j)
√

g
= Ai

[
∂i(
√

gvi)
√

g

]
+ v j(∂iA j) = v j(∂iA j) (2.33)

and

f i = ρe

(
∂ihtt

2
−∂tAi + v j(∂iA j−∂ jAi)

)
. (2.34)

It can be shown [51] that eq. (2.30) with eq. (2.34) may be written as

∂tvi +(~v ·∇)vi−ν(∇2vi +Ri
jv

j)+∇
i p =

∂ihtt

2
−∂tAi +F i

j v
j. (2.35)

To proceed, we make some redefinitions of our variables. First, we write

Ai = ai +∇iχ, (2.36)

where χ is chosen so as to have ∇iai = 0. Now, we define the “effective” pressure as

pe = p− 1
2

htt + χ̇. (2.37)

With these redefinitions, eq. (2.35) becomes

∂tvi +(~v ·∇)vi−ν(∇2vi +Ri jv j)+∇i pe =−∂tai− v jFji, (2.38)

which are the Navier-Stokes equations with forcing terms which are generated by an

electromagnetic field (on the right-hand side) as well as the curvature term given by the

Ricci tensor. We note that in the absence of these terms, eq. (2.38) reduces to

∂tvi +(v j
∂ j)vi−ν∂

2vi +∂i pe = 0, (2.39)

which is the “usual” Navier-Stokes equation and the one we are going to use through-

out this work. This equation, together with eq. (2.29), shows that the scalings eqs. (2.28a)

to (2.28e) allow us to treat the incompressible Navier-Stokes equations as a non-relativistic

limit of the relativistic fluid equations of motion at first order when considering dissipative

terms in the stress-energy tensor.

2.2.5 Non-relativistic hydrodynamics

In the rest of this dissertation, we intend to work on the non-relativistic limit, and

we are not going to consider the forcing terms on the right-hand side of the “full” Navier-

Stokes equation eq. (2.38). For convenience, we rewrite the incompressible Navier-Stokes
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equations below,

∂tvi + v j
∂ jvi−η∂

2vi +∂i p = 0, (2.40a)

∂ivi = 0. (2.40b)

Now, we apply to eqs. (2.40a) and (2.40b) the very same scaling which we used to derive

the Navier-Stokes equation as a non-relativistic limit of the hydrodynamical equations.

Namely, we write

v(ε)i (t,~x) = εvi(ε
2t,ε~x) and (2.41a)

p(ε)(t,~x) = ε
2 p(ε2t,ε~x), (2.41b)

so that

∂tv
(ε)
i = ε∂tvi(ε

2t,ε~x) = ε
3
∂tvi,

∂iv
(ε)
i = ε∂ivi(ε

2t,ε~x) = ε
2
∂ivi,

v j(ε)
∂ jv

(ε)
i = εv j(ε2t,ε~x)ε2

∂ jvi = ε
3v j

∂ jvi,

∂
2v(ε)i = ∂i[ε∂ivi(ε

2t,ε~x)] = ε
3
∂

2vi,

∂i p(ε) = ε
2
∂i p(ε2t,ε~x) = ε

3
∂i p.

These, when inserted in eqs. (2.40a) and (2.40b), result in

ε
3(∂tvi + v j

∂ jvi−η∂
2vi +∂i p) = 0, (2.42a)

ε
2(∂ivi) = 0. (2.42b)

What this means is that the scaling operation shown in the previous section is also a

symmetry of the unforced incompressible Navier-Stokes equations. A fluid obeying these

equations and the derivative expansion in ε will be an integral part of our discussion of

fluid/gravity correspondence in the context of a Rindler spacetime, starting in chapter 3.
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Chapter 3

Fluid/gravity Correspondence on a Flat

Spacetime

In [24], the authors found a relation between incompressible non-relativistic fluids in

d + 1 dimensions satisfying the Navier-Stokes equations and Ricci-flat metrics in d + 2

dimensions. Working on flat space, they found that a Ricci-flat metric exists if the Brown-

York tensor on a hypersurface Σc at the boundary of this space satisfies the equations for

an incompressible Navier-Stokes fluid. This relation was found by studying the effect

of perturbations of the extrinsic curvature of Σc and analyzing them in a hydrodynamic

limit, which enabled them to construct the metric up to third order in the hydrodynamic

expansion.

Instead of reviewing this work, we opt to follow closely [25], which develops an

algorithmic procedure that generalizes the result of [24] and calculates the solutions order

by order in the ε-expansion. As discussed in [25], in order for this procedure to be valid

for all orders in the expansion, it will be necessary to add corrections to the Navier-Stokes

at higher orders. However, since we will focus on the expansion up to order ε3, these

corrections will not be necessary.

One of the main merits of the works of [24, 25], is that they provide us with an ex-

tension of a procedure which was initially done within the context of the AdS/CFT corre-

spondence. This hopefully sheds light on the possibility of new insights about holography.

31



32 CHAPTER 3. FLUID/GRAVITY CORRESPONDENCE ON A FLAT SPACETIME

3.1 Algorithmic procedure

We start with the metric of flat space written in ingoing Rindler coordinates (see chap-

ter 1), which we rewrite here for convenience:

ds2 = gµνdxµdxν =−rdτ
2 +2dτdr+dxidxi. (3.1)

We recall that the ingoing Rindler coordinates xµ = (τ,r,xi) are related to the Cartesian

chart (t,z,xi) by z2− t2 = 4r and z+ t = eτ/2. This metric satisfies three features:

1. They admit a hypersurface Σc defined by a constant r = rc, where r is the coordinate

into the bulk. The induced metric at Σc is given by

γabdxadxb =−rcdτ
2 +dxidxi, (3.2)

where xa = (τ,xi) and
√

rc is the speed of light;

2. The Brown-York tensor [47] (see also chapter 1) on Σc is that of a perfect fluid

Tab = 2(Kγab−Kab), (3.3)

where Kab is the extrinsic curvature of Σc and K = γabKab;

3. Diffeomorphisms applied to eq. (3.1) return metrics which are stationary in τ and

homogeneous in the xi directions.

As shown in the appendix B of [25], the set of diffeomorphisms that can be applied

to eq. (3.1) while preserving the three features described above is a boost, followed by a

shift and a rescaling of the coordinates.

The boost is given by

√
rcτ→ γ

√
rcτ− γβixi, (3.4a)

xi→ xi− γβ
i√rcτ+(γ−1)

βiβ j

β2 x j, (3.4b)

where γ = (1−β2)−1/2 and βi = r−1/2
c vi. Note that βi is constant. The second transfor-

mation corresponds to a translation in r and a subsequent rescaling in τ:

r→ r− rh, (3.5a)

τ→ τ√
1− rh/rc

, (3.5b)
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which shifts the horizon from r = 0 to r = rh. Since these are linear transformations, it is

possible to apply them to eq. (3.1) in any order. Applying the eqs. (3.5a) and (3.5b), we

have

ds2 =
1

1− v2

rc

(
v2− r− rh

1− rh
rc

)
dτ

2 +
2γ√
1− rh

rc

dτdr− 2γvi

rc

√
1− rh

rc

dxidr

+
2vi

1− v2

rc

(
r− rc

rc− rh

)
dxidτ+

δi j−
viv j

r2
c

(
1− v2

rc

) ( r− rc

1− rh
rc

)dxidx j. (3.6)

This equation is just the eq. (3.1) written in a more complicated way. Indeed, the Brown-

York tensor has the perfect fluid form with the identifications

ρ = 0, p =
1√

rc− rh
, ua =

1√
rc− v2

(1,vi). (3.7)

Before proceeding, we note that if we apply the Hamiltonian constraint [44] Rµνnµnν =

0, where Rµν is the Ricci tensor on the bulk and nµ is the vector normal to the hypersurface

Σc, we have1

dTabT ab = T 2. (3.8)

This is done by writing [44]

Gµνnµnν =
1
2
(R −KabKab +K2) = 0, (3.9)

where R is the Ricci scalar on Σc. Since we want Σc to be flat, R vanishes and we arrive

at eq. (3.8). Inserting the perfect fluid form eq. (3.3) into eq. (3.8), we get

ρ = 0, (3.10a)

ρ =
−2d
d−1

p. (3.10b)

The first is the case we have been working so far, while the second is associated with the

Taub geometry [27, 57],

ds2 =− A
rd−1 dt2 +2dtdr+ r2dxidxi. (3.11)

We will show in the next chapter that these two results are actually related by an Ehlers

transformation.

Now, going back to our previous discussion, we wish to investigate the hydrodynamic

system which is dual to the metric given by eq. (3.6). We want to do this in the context of
1The d here refers to dimension. It is not a differential operator.
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the ε-expansions, that is, we need to consider the metric perturbations within the hydro-

dynamic limit. This will be achieved by promoting the velocity vi and the pressure p to

functions depending on space and time. We write [51]

v(ε)i (τ,~x) = εvi(ε
2
τ,ε~x), P(ε)(τ,~x) = ε

2P(ε2
τ,ε~x), (3.12)

where P is the non-relativistical pressure, which is related to rh by rh = 2P(ε)+O(ε4). Re-

call from chapter 2 that the scalings defined above are such that the Navier-Stokes equa-

tions still hold for vi and P. Also, note that we are scaling to larger times and distances

while scaling down the amplitudes, so that eq. (3.12) corresponds to small perturbations

in the hydrodynamic limit, as discussed before. Finally, by promoting the parameters to

functions depending on the coordinates, we may no longer guarantee that our results will

satisfy the Einstein equations.

If we treat vi = v(ε)i and p = r−1/2
c + r−3/2

c P(ε), where v(ε)i and P(ε) are described by

the scaling above, as small fluctuations, upon expansion we obtain

ds2 =−rdτ
2 +2dτdr+dxidxi

−2
(

1− r
rc

)
v(ε)i dxidτ−

2v(ε)i
rc

dxidr

+

(
1− r

rc

)(v2(ε)+2P(ε))dτ
2 +

v(ε)i v(ε)j

rc
dxidx j

+(v2(ε)+2P(ε)

rc

)
dτdr

+O(ε3), (3.13)

where each line corresponds to an order in the ε expansion, with the first line being at

order zero. This metric eq. (3.13) preserves the γab induced in Σc. To see this, it is

only necessary to do r = rc and dr = 0 in the above equation. This is the seed metric

obtained in [24], which does satisfy the Einstein equations. The Brown-York tensor on Σc

constructed from this metric is2, up to order ε2,

Tabdxadxb =
d~x2
√

rc
− 2vi√

rc
dxidτ+

v2
√

rc
dτ

2 + r−3/2
c [Pδi j + viv j− rc∂iv j]dxidx j +O(ε3).

(3.14)

If we now attempt to apply this procedure and expand the velocity and pressure to

orders > 2, we will not be able to arrive at a Ricci flat solution. Indeed, at order ε3, the

terms R(3)
τi and R(3)

ri will not vanish, as we would expect. Thus, if we wish to construct a

2We note that our result does not have the factor of 2 multiplying rc∂iv j in the spatial term.
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general procedure to find metrics that satisfy the Einstein equations at any order, we need

to add corrections to our results, so that these corrections will cancel out the extra terms.

3.1.1 Higher-order corrections

To fix the problem discussed above and guarantee that the Einstein equations will

be satisfied at orders larger than 2 in ε, it is necessary to add corrections to the seed

metric eq. (3.13), which is accomplished with an algorithmic procedure developed in [25].

We begin by assuming that the bulk metric is known at order εn−1, so that the first

nonzero terms of the Ricci tensor appear at order εn. Next, we add new terms g(n)µν to the

metric at order εn, so that the Ricci tensor at order εn will be written as

R(n)
µν = R̂(n)

µν +δR(n)
µν , (3.15)

where R̂(n)
µν are the contributions at order εn arising from the metric up to order εn−1 and

δR(n)
µν are the contributions from the corrections to the metric g(n)µν . The idea is that, in

order for the Einstein equations to be satisfied, we must have

R(n)
µν = R̂(n)

µν +δR(n)
µν = 0. (3.16)

Before proceeding, we note that since

∂r ∼ ε
0

∂i ∼ ε
1

∂τ ∼ ε
2,

only derivatives of g(n)µν in r will appear on δR(n)
µν , since g(n)µν is of order εn by construction.

We add n-th order terms g(n)µν to the original metric, these new terms will produce the

following corrections to the Ricci tensor:

δR(n)
rr =−1

2
∂

2
r g(n)ii (3.17a)

δR(n)
i j =−1

2
∂r(r∂rg

(n)
i j ) (3.17b)

δR(n)
τi =−rδR(n)

ri =− r
2

∂
2
r g(n)

τi (3.17c)

δR(n)
ττ =−rδR(n)

ττ =− r
4
[∂r(rg(n)rr )+2∂rg

(n)
ττ −∂rg

(n)
ii +2∂

2
r g(n)ττ ] (3.17d)
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A particular solution g̃(n)µν that satisfies R(n)
µν = R̂(n)

µν +δR(n)
µν = 0 is

g̃(n)rµ = 0, (3.18a)

g̃(n)ττ = β
(n)
1 (τ,~x)+(1− r/rc)β

(n)
2 (τ,~x)

+
∫ rc

r
dr′

∫ rc

r′
dr′′(R̂(n)

ii − rR̂(n)
rr −2R̂(n)

rτ ), (3.18b)

g̃(n)
τi = β

(n)
3i (τ,~x)+(1− r/rc)β

(n)
4i (τ,~x)−2

∫ rc

r
dr′

∫ rc

r′
dr′′R̂(n)

ri , (3.18c)

g̃(n)i j = β
(n)
5i j(τ,~x)+ ln(r/rc)β

(n)
6i j(τ,~x)−2

∫ rc

r
dr′

1
r′

∫ rc

r
dr′′R̂(n)

i j . (3.18d)

The above solution is not unique. Recalling that g(n)µν → g(n)µν +∇µξ
(n)
ν +∇νξ

(n)
µ , we

may allow for gauge transformations ξ(n)µ(r,τ,~x) at order εn, while keeping our result

unchanged, that is, while still allowing our results to satisfy eq. (3.16).

As an example,

g(n)ri = g̃(n)ri +∂rξ
(n)
i +∂iξ

(n)
r −2Γ

λ
riξ

(n)
λ

= ∂rξ
(n)
i . (3.19)

The first term vanishes because g̃(n)rµ = 0, the third because the derivative in xi raises the

order in ε and the last term vanishes because the only non-vanishing Christoffel symbols

are Γτ
ττ =

1
2 ,Γ

r
ττ =

r
2 and Γr

τr = Γr
rτ =−1

2 .

We must also take into account field redefinitions δv(n)i (τ,~x) and δP(n)(τ,~x) of velocity

and pressure at order εn. These terms are obtained by looking how vi and P appear linearly

in the seed solution, and we must guarantee that they indeed remain of order εn. For our

example eq. (3.19), we will have

g(n)ri = ∂rξ
(n)
i −

1
rc

δv(n)i . (3.20)

With these considerations, we may apply this reasoning to the remaining g(n)µν . The

result is

g(n)rr = 2∂rξ
(n)τ, (3.21a)

g(n)rτ =−r∂rξ
(n)τ +∂rξ

(n)r +
1
rc

δP(n), (3.21b)

g(n)ri = ∂rξ
(n)
i −

1
rc

δv(n)i , (3.21c)

g(n)ττ = g̃(n)ττ −ξ
(n)r +(1− r/rc)2δP(n), (3.21d)

g(n)
τi = g̃(n)

τi − (1− r/rc)δv(n)i , (3.21e)

g(n)i j = g̃(n)i j . (3.21f)
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Since our redefinitions δv(n)i and δP(n) and gauge transformations do not contribute to

δR(n)
µν , the g(n)µν above still solve the Einstein equations.

We can now choose a gauge in which g(n)rµ = 0 for all n > 2, which is a useful choice

because we don’t have boundary conditions at Σc for g(n)rµ . This choice implies that the

only non-vanishing grµ of the full metric are those already known from our seed metric,

namely

grr = 0, grτ = 1+
v2

2rc
+

P
rc
, gri =−

vi

rc
. (3.22)

For the above gauge to be valid, we are forced to fix

ξ
(n)r = (1− r/rc)δP(n)+ ξ̃

(n)r(τ,~x), (3.23a)

ξ
(n)τ = ξ̃

(n)τ(τ,~x), (3.23b)

ξ
(n)
i =−(1− r/rc)δv(n)i + ξ̃

(n)
i (τ,~x). (3.23c)

Our solution then becomes

g(n)rµ = 0, (3.24a)

g(n)ττ = β
(n)
1 (τ,~x)− ξ̃

(n)r +(1− r/rc)(β
(n)
2 (τ,~x)+δP(n))

+
∫ rc

r
dr′

∫ rc

r′
dr′′(R̂(n)

ii − rR̂(n)
rr −2R̂(n)

rτ ), (3.24b)

g(n)
τi = β

(n)
3i (τ,~x)+(1− r/rc)(β

(n)
4i (τ,~x)−2δv(n)i )−2

∫ rc

r
dr′

∫ rc

r′
dr′′R̂(n)

ri , (3.24c)

g(n)i j = β
(n)
5i j(τ,~x)+ ln(r/rc)β

(n)
6i j(τ,~x)−2

∫ rc

r
dr′

1
r′

∫ rc

r∗
dr′′R̂(n)

i j . (3.24d)

To treat the remaining β functions, we need to impose the boundary condition g(n)ab = 0,

so that the induced metric on Σc remains fixed. This implies that

β
(n)
1 (τ,~x) = ξ̃

(n)r, β
(n)
3i (τ,~x) = β

(n)
5i j(τ,~x) = 0. (3.25)

In order to fix the term β
(n)
6i j(τ,~x), we first note that it is useful to choose the lower limit

in the R̂(n)
i j integral to be zero, because R̂(n)

i j is a polynomial in r, and this choice guarantees

that no other logarithmic term other than the one associated with β
(n)
6i j will appear when

we do the 1/r′ integral. However, the presence of this logarithmic term is problematic,

because we wish the metric to remain regular, at least order by order, at r = 0. Therefore,

if we want to satisfy these conditions, we must set

β
(n)
6i j(τ,~x) = 0. (3.26)
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We note that if R̂(n)
µν is regular at r = 0, then g(n)µν will itself be regular at r = 0, as it depends

on R̂(n)
µν . Now, since R̂(n+1)

µν arises from g(n)µν , we may guarantee that g(n)µν will be regular at

every n, because, as we will show below, R̂(3)
µν is regular.

Now that the β(n)(τ,~x) have been fixed, we may finally write the general solution for

the new part of the bulk metric at order n as

g(n)rµ = 0, (3.27a)

g(n)ττ = (1− r/rc)F
(n)
τ (τ,~x)+

∫ rc

r
dr′

∫ rc

r′
dr′′(R̂(n)

ii − rR̂(n)
rr −2R̂(n)

rτ ), (3.27b)

g(n)
τi = (1− r/rc)F

(n)
i (τ,~x)−2

∫ rc

r
dr′

∫ rc

r′
dr′′R̂(n)

ri , (3.27c)

g(n)i j =−2
∫ rc

r
dr′

1
r′

∫ rc

r
dr′′R̂(n)

i j , (3.27d)

with

F(n)
τ (τ,~x) = β

(n)
2 (τ,~x)+δP(n)(τ,~x), F(n)

i (τ,~x) = β
(n)
4i (τ,~x)−2δv(n)i (τ,~x). (3.28)

At this point it is extremely useful to note an interesting feature of this procedure,

which greatly simplifies our future calculations. First of all, we recall that

vi ∼ ε, P∼ ε
2, ∂r ∼ ε

0, ∂i ∼ ε, ∂τ ∼ ε
2, (3.29)

which in turn means that

∂τP∼ ε
4, ∂τvi ∼ ε

3, ∂iP∼ ε
3, ∂ivi ∼ ε

2, ∂rP∼ ε
2, ∂rvi ∼ ε. (3.30)

From eq. (3.30) it is not difficult to convince ourselves that any vector (∂τvi, ∂iP, ∂rvi

and so on) constructed from P, vi and their derivatives will necessarily be of odd order ε,

while any scalar or rank-two tensor (∂τP, ∂ivi, ∂rP and so on) constructed from them will

be of even order in ε. In turn, this implies that, at orders εn for odd n, the components

R̂(n)
rr , R̂(n)

ττ and R̂(n)
i j of the Ricci tensor must be zero, just like the arbitrary function F(n)

τ ,

because these terms are either scalar or tensors. Therefore, only g(n)
τi will survive the

integration scheme at odd orders in the ε expansion (see eqs. (3.27a) to (3.27d)). This

same reasoning tells us that at even orders in εn, R̂(n)
τi and F(n)

i will be zero, since they

are vectors and only scalars and rank-two tensors survive at even orders. Thus, the only

nonzero metric components at even orders will be g(n)ττ and g(n)i j .

Now, it only remains to give a precise meaning to the functions F(n)
τ (τ,~x) and F(n)

i (τ,~x).

In order to do so, we first need to discuss the changes to the Brown-York tensor.
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We proceed exactly as in the Ricci tensor case, that is, we wish to write the Brown-

York tensor at order εn as

T (n)
ab = T̂ (n)

ab +δT (n)
ab , (3.31)

where T̂ (n)
ab are the contributions at order εn arising from the metric at order εn−1 and δT (n)

ab

the contributions due to the correction terms g(n)µν . The former are assumed to be known,

whereas the latter may be calculated from the change in the extrinsic curvature of Σc due

to g(n)µν :

δK(n)
ab =

1
2

LNg(n)ab =
1
2

Nr
∂rg

(n)
ab =

1
2
√

rc∂rg
(n)
ab |Σc , (3.32)

so that

δK(n)
ττ =−F(n)

τ (τ,~x)
2
√

rc
, (3.33a)

δK(n)
τi =−

F(n)
i (τ,~x)
2
√

rc
, (3.33b)

δK(n)
i j =

1
√

rc

∫ rc

0
dr′R̂(n)

i j . (3.33c)

The δT (n)
ab terms due to corrections g(n)µν will then be

δT (n)
ττ =−2

√
rc

∫ rc

0
dr′R̂(n)

i j , (3.34a)

δT (n)
τi =

F(n)
i (τ,~x)
√

rc
, (3.34b)

δT (n)
i j =

F(n)
τ (τ,~x)

r3/2
c

δi j +
2
√

rc

∫ rc

0
dr′(δi jR̂

(n)
kk − R̂(n)

i j ), (3.34c)

so that the full Brown-York tensor on Σc at order εn will be given by eq. (3.31).

By inspecting eq. (3.28), we note that the arbitrary F(n)
i (τ,~x) are related to redefini-

tions of the velocity field. We may fix the arbitrariness by defining the fluid velocity as

the boost from the local frame to the lab frame, obeying

0 = hb
aTbcuc, hb

a = δ
b
a +ubua. (3.35)

Working on the above equation yields (noting that scalar and rank-two tensors vanish at

even orders while vectors vanish at odd orders)

0 = T (n)
iτ +T (n−1)

i j v j +ρ
(n−1)vi, (3.36)
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where ρ = Tabuaub is the energy density in the local rest frame. Using eq. (3.34b), we

arrive at

F(n)
i (τ,~x)
√

rc
+ T̂ (n)

iτ +T (n−1)
i j v j +ρ

(n−1)vi = 0, (3.37)

which allows us to calculate F(n)
i in terms of previously known quantities.

To fix F(n)
τ (τ,~x), which is related to our redefinition of the pressure fluctuation, we

define the pressure fluctuation P in such a way that the isotropic part of the stress-energy

tensor Ti j is fixed to be

T isotropic
i j =

(
1
√

rc
+

P

r3/2
c

)
δi j. (3.38)

In [25] it has been shown that it is possible to make other gauge choices and therefore

define the pressure in a different way. However, this discussion is not very important in

our case, because we are going to work at third order in ε, which means that, according

to our discussion surrounding eq. (3.30), F(3)
τ = 0.

3.1.2 Example: third-order calculations

We are going to apply the procedure developed above to the metric at third order in ε.

By adding g(3)µν to our seed metric eq. (3.13), the Ricci tensor R(3)
µν will now be

R(3)
ττ =− r

4
∂r(rg

(3)
rr −2g(3)τr +2∂rg

(3)
ττ +g(3)xx +g(3)yy +g(3)zz ), (3.39a)

R(3)
τr =

1
4

∂r(rg
(3)
rr −2g(3)τr +2∂rg

(3)
ττ +g(3)xx +g(3)yy +g(3)zz ), (3.39b)

R(3)
τi =− 1

2rc
{(~v ·~∇)vi + vi(~∇ ·~v)+∂iP+∂τvi

+(r− rc)[∂
2
yvx +∂

2
z vx−∂x(∂yvy +∂zvz)]}−

r
2

∂
2
r g(3)

τi , (3.39c)

R(3)
rr =−1

2
∂

2
r (g

(3)
xx +g(3)yy +g(3)zz ), (3.39d)

R(3)
ri =

1
2

∂
2
r g(3)

τi , (3.39e)

R(3)
i j =−1

2
∂r(r∂rg

(3)
i j ). (3.39f)



3.1. ALGORITHMIC PROCEDURE 41

Upon comparison with eqs. (3.17a) to (3.17d) and recalling that R(3)
µν = R̂(3)

µν + δR(3)
µν , we

immediately see that the only surviving R̂(3)
µν is

R̂(3)
τi =− 1

2rc
{(~v ·~∇)vi + vi(~∇ ·~v)+∂iP+∂τvi +(r− rc)[∂

2
yvx +∂

2
z vx−∂x(∂yvy +∂zvz)]}

=− 1
2rc
{(~v ·~∇)vi + vi(~∇ ·~v)+∂iP+∂τvi +(r− rc)[∂

2
yvx +∂

2
z vx−∂x(~∇ ·~v−∂xvi)]}

=− 1
2rc

[∂τvi +(~v ·~∇)vi +(r− rc)∇
2vi +∂iP], (3.40)

where we used the incompressibility condition ~∇ ·~v = 0 when going from the second

to the third line. We note that this is very similar to the i-th component of a Navier-

Stokes equation with viscosity r− rc. However, it doesn’t make much sense to speak of

a viscosity involving the coordinate r, but as we are going to see below, this term will

be canceled out. All the other terms in eqs. (3.39a) to (3.39f) are the contributions from

δR(3)
µν . These results greatly simplify eqs. (3.27a) to (3.27d) to

g(3)rµ = 0, (3.41a)

g(3)ττ = (1− r/rc)F
(3)
τ (τ,~x), (3.41b)

g(3)
τi = (1− r/rc)F

(3)
i (τ,~x), (3.41c)

g(3)i j = 0, (3.41d)

so we only need to focus our attention on F(3)
τ and F(3)

i . Now, since we are working at

order ε3, that is, at an odd order in ε, our discussion in section 3.1.1 implies that F(3)
τ must

be set to zero. Therefore, it only remains to find the F(3)
i and, as stated in section 3.1.1,

only g(3)
τi survives.

To calculate the F(3)
i , we need the Brown-York tensor at second and third orders. At

second order, the nonzero components of the full Brown-York tensor are

T (2)
ττ = r−1/2

c [v2−2rc~∇ ·~v], (3.42a)

T (2)
xx = r−3/2

c [P+ v2
x +2rc(∂yvy +∂zvz)], (3.42b)

T (2)
yy = r−3/2

c [P+ v2
y +2rc(∂xvx +∂zvz)], (3.42c)

T (2)
zz = r−3/2

c [P+ v2
z +2rc(∂yvx +∂zvy)], (3.42d)

T (2)
i j = r−3/2

c [viv j− rc(∂iv j +∂ jvi)] (i 6= j), (3.42e)

where we note that ~∇ ·~v = 0. At third order, the full non-vanishing components of the full

Brown-York tensor are

T (3)
τi =

1

r3/2
c

rcF(3)
i +Pvi + rc(∂iP+ vx∂ivx + vy∂ivy + vz∂ivz−∂τvi). (3.43)
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We must then put eqs. (3.42a) to (3.42e) and (3.43) into eq. (3.37) to find F(3)
i and put the

result into eq. (3.41c). The correction to the metric at order ε3, g(3)
τi , is found to be

g(3)
τi =

(r− rc)

2rc

[
(v2 +2P)

2vi

rc
+4∂iP− (r+ rc)∂

2vi

]
, (3.44)

so that the full metric at order ε3 becomes

ds2 =−rdτ
2 +2dτdr+dxidxi

−2
(

1− r
rc

)
v(ε)i dxidτ−

2v(ε)i
rc

dxidr

+

(
1− r

rc

)(v2(ε)+2P(ε))dτ
2 +

v(ε)i v(ε)j

rc
dxidx j

+(v2(ε)+2P(ε)

rc

)
dτdr

+
(r− rc)

2rc

[
(v2 +2P)

2vi

rc
+4∂iP− (r+ rc)∂

2vi

]
dτdxi

+O(ε4), (3.45)

Now, going back to eq. (3.39c), we must take the r-derivative of eq. (3.44) twice,

which gives

∂
2
r g(3)

τi =−∂2vi

rc
. (3.46)

Putting together eqs. (3.39c), (3.40) and (3.46), we can finally arrive at the only remaining

term of the Ricci tensor at order ε3:

R(3)
ri =− 1

2rc
[∂τvi +(v j

∂ j)vi− rc∂
2vi +∂iP], (3.47)

with all the other components being zero at this order. We immediately notice that the

terms inside the square brackets in eq. (3.47) are precisely the Navier-Stokes equations,

which should vanish according to eq. (2.42a). What eq. (3.47) then implies is that the

Ricci tensor for the metric eq. (3.45) vanishes, that is, the metric at order ε3 is Ricci-flat,

as required.

Proceeding with our calculations, the Brown-York tensor at order ε3 gets corrected by

T (3)
ab dxadxb = 2r−3/2

c [rcσikvk− (v2 +P)vi]dxidτ, (3.48)

where

σi j ≡ ∂iv j +∂ jvi (3.49)

is the shear. It is clear then, that at orders εn for n > 2, the Brown-York tensor no longer

satisfies our previous requirement that it should take the form of a perfect fluid.



3.1. ALGORITHMIC PROCEDURE 43

3.1.3 Comments on the expansion at higher orders

Reference [25] uses this algorithmic procedure to calculate the metric and Brown-

York corrections up to order O(ε6). Up to order ε3, as we have just seen, we only need

to add corrections to the metric in order to have a vanishing Ricci tensor. However, once

one goes to orders higher than ε3, it becomes necessary to add corrections to either the

Navier-Stokes equation or the incompressibility condition. In particular, at even orders of

εn, the incompressibility condition ∂ivi = 0 gets corrected, while at odd orders, it is the

Navier-Stokes equations that must be modified so that the Ricci tensor vanishes.

These results at higher orders are not relevant to our work, since we will go no further

than third order in our expansion.
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Chapter 4

Solution-generating Symmetries

Despite their power and usefulness in describing some properties of spacetime, the

Einstein equations remain a difficult subject of study even a century after their discovery,

in particular because finding their exact solutions is by no means an easy task. Therefore,

it is only natural that one starts to look for alternative methods to find exact solutions to the

Einstein equations. One such way of achieving this was developed by Geroch [38], in a

work that generalizes the previous works of Ehlers [35], Buchdahl [36] and Harrison [37].

In short, this method generates explicit, exact and source-free solutions of the Einstein

equations by associating to an exact solution which contains a Killing vector a family of

new solutions, each with a Killing vector.

The method developed by Geroch, sometimes called the projection formalism, is very

useful when applied in strictly stationary spacetimes, i.e., spacetimes admitting an every-

where timelike Killing vector, as well as when applied in spacetimes in which the Killing

vector is everywhere spacelike. In the context of this projection formalism, the Ehlers

group was discovered as a set of group transformations that maps solutions of the Ein-

stein vacuum field equations for stationary spacetimes into other solutions of stationary

spacetimes.

One of the main caveats of this projection formalism is that stationary spacetimes

may develop ergospheres and horizons, at which the Killing vectors become null, which

in turn means that the projection formalism is no longer applicable. Since the Ehlers group

is developed within this formalism, it becomes necessary to adopt a different approach to

this problem, or at least define the Ehlers group in such a way that they include the case

of null Killing vectors. As stated on [39], there were examples suggesting that it would

be possible to extend the Ehlers group to encompass null Killing vectors, and it is shown

45
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in [39] that this is indeed possible, if one no longer works in the projection formalism

and instead works in a spacetime setting, i.e., using only spacetime objects. Moreover,

it is shown that the Ehlers group can be included within an infinite-dimensional group

of transformations mapping Lorentzian metrics into Lorentzian metrics. In their most

general form, these transformations are given by

gµν→ hµν(ξ,W,g) = Ω
2gµν−ξµWν−ξνWµ−

λ

Ω2WµWν, (4.1)

where ξ = ξµ∂µ is a vector field (particularly for our case, a Killing vector field) and W =

Wµdxµ a one-form, both defined on a manifold M with a metric gµν. Here, λ =−ξµξµ and

Wµ is constrained to satisfy Ω2 ≡ 1+ξµWµ > 0. We are soon going to describe eq. (4.1) in

somewhat more detail, but the full treatment in which they are developed lies well outside

the scope of our work, so we refer the reader to [39] for all details.

For convenience, we are going to adopt the nomenclature used in [39, 40]: we shall

refer to the general transformations described by eq. (4.1) as the generalized Ehlers group,

while their subset which specifically maps vacuum solutions into vacuum solutions shall

be called the spacetime Ehlers group. This group in particular will be very useful for our

work, since the solutions they map include the metric of flat spacetime in ingoing Rindler

coordinates which we have studied in the previous chapter.

In a certain sense, we are going to build upon the work of [40], in that we will apply the

Ehlers transformations in the context of the fluid/gravity duality. Their idea was to apply

the Ehlers group to the Rindler metric at order ε3 in the derivative expansion we described

in the previous chapter. That is, they imposed a Killing symmetry in a spacetime admit-

ting a metric ansatz corresponding to the Navier-Stokes equation, applied the generalized

Ehlers transformations preserving the ansatz and determined the induced transformation

of the dual fluid’s parameters, such as velocity, pressure and viscosity. In doing so, the

authors of [40] applied some constraints on the new metrics as well as the isometries. An

interesting result of [40] is that they found that the transformations they find are not part

of the spacetime Ehlers group, but still produce solution-generating transformations for

the dual fluid’s fields. Here, we would like to do a similar approach, but without a priori

constraining the isometries or making assumptions about what the new metric should look

like.

As a final remark, we note that the Ehlers transformations only apply to spacetimes of

(3+1) dimensions. Therefore, when we treat the Rindler spacetime, our coordinates will

be xµ = (τ,r,x,y).
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4.1 Ehlers transformations

Following [39], we will start with some definitions of objects that will be used through-

out this text. As stated before, a full treatment lies outside the scope of this work, so we

are only going to list the tools which are necessary for further development. Details can

be found in [39, 46].

We denote our spacetime by (M ,g), and we assume it admits a Killing vector field~ξ.

We define the norm λ and the twist ωα of~ξ respectively as

λ =−ξ
α

ξα, (4.2)

ωα = ηαβγδξ
β
∇

γ
ξ

δ, (4.3)

where ηαβγδ is the metric volume form of (M ,g). Following the notation of [39], we de-

note p-forms in boldface characters, while their components are denoted by non-boldface

characters. We define the 2-form

Fαβ ≡ ∇αξβ (4.4)

and its self-dual associate

Fαβ = Fαβ + iF?
αβ
, (4.5)

where F?
αβ

is the Hodge-dual of Fαβ and is given by

F?
αβ

=

√
det g
2 ∑

µ,ν
Fµν

εµναβ (4.6)

In the above, εµναβ = +1 if µναβ is an even permutation of the coordinates, while it is

−1 if µναβ is an odd permutation of the coordinates, and zero otherwise.

We call the 2-form F ≡ 1
2Fαβdxα∧dxβ the Killing form. It may be written as Fαβ =

Fαβ + iF?
αβ

. Also, we define the Ernst 1-form σ = σµdxµ associated with~ξ by

σµ ≡ 2ξ
αFαµ = ∇µλ− iωµ. (4.7)

The action of the Ehlers group was worked out by Geroch [38] and is defined by

transforming σ according to a Möbius map1

σ
′ =

ασ+ iβ
iγσ+δ

, (4.8)

1Geroch’s work extends the results of Ehlers in that it shows that the set of transformations discovered

by Ehlers is an element of SL(2,R), that is, the Ehlers group is isomorphic to SL(2,R).
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(we use the notation of [39], where α,β,γ and δ are real constants satisfying αδ+βγ = 1)

and the general form of the transformations, proposed in [39], is given by eq. (4.1)

T (ξ,W,g)µν = Ω
2gµν−ξµWν−ξνWµ−

λ

Ω2WµWν, (4.9)

which is shown to be smooth and Lorentzian in [39]. The specific case of maps of vacuum

metrics into vacuum metrics is covered by the following theorem, which presents two

necessary conditions for an Ehlers transformation (the subgroup of eq. (4.9) called the

“spacetime Ehlers transformation”) to generate a vacuum metric:

Theorem 1. Let (M ,g) be a smooth spacetime admitting a Killing vector~ξ and satisfying

the Einstein vacuum field equations. Let δ, γ ∈ R satisfy δ2 + γ2 6= 0. Define λ, F and σσσ

as the squared norm, the Killing form and the Ernst one-form associated to~ξ. If the two

following conditions are satisfied

1. The Ernst one-form is exact, i.e. there exists a complex smooth function σ≡ λ− iω

such that σσσ = dσ;

2. The closed two-form ℜ(−4γ(γσ̄+iδ)F) is exact and the equation dddWWW =ℜ(−4γ(γσ̄+

iδ)F) admits a solution satisfying Wαξα +1 = (iγσ+δ)(−iγσ̄+δ)≡Ω2;

then the symmetric tensor T
~ξ
W (g) ≡ Ω2g− ξξξ⊗WWW −WWW ⊗ ξξξ− λ

Ω2WWW ⊗WWW defines a smooth

vacuum metric on the spacetime M̃ = {p ∈M ;λ|p 6= 0 or (γω+δ) 6= 0}.

The proof of this theorem can be found in [39]. To be concise, then, there are two

conditions that W must satisfy for the new metric to be a vacuum metric, namely

∇[µWν] =−2γℜ[(γσ+ iδ)Fµν]⇒ ∇µWν−∇νWµ =−4γℜ[(γσ̄+ iδ)Fµν], (4.10a)

Ω
2 ≡ ξ

µWµ +1 = (iγσ+δ)(−iγσ̄+δ), (4.10b)

and the new metric hµν will be given by eq. (4.9).

4.2 Ehlers transformations in a Rindler fluid/gravity sce-

nario

The authors of [40] employed the formalism of Ehlers transformation to the “seed

metric” plus corrections at order ε3 (see eq. (3.45)), which we rewrite here for conve-
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nience:

ds2 =−rdτ
2 +2dτdr+dxidxi

−2
(

1− r
rc

)
v(ε)i dxidτ−

2v(ε)i
rc

dxidr

+

(
1− r

rc

)(v2(ε)+2P(ε))dτ
2 +

v(ε)i v(ε)j

rc
dxidx j

+(v2(ε)+2P(ε)

rc

)
dτdr

+
(r− rc)

2rc

[
(v2 +2P)

2vi

rc
+4∂iP− (r+ rc)∂

2vi

]
dτdxi. (4.11)

However, when doing this they forced the transformed metrics h(ξ,W,g) to preserve the

functional form of g, which is not the most general case. By making this assumption, they

defined the transformed parameters ṽi, P̃ and r̃c, so that the transformed metric will yield

the incompressible Navier-Stokes for these parameters, that is,

∂τṽi +∂iP̃+ ṽk∂kṽi− r̃c∂
2ṽi = 0, (4.12a)

∂iṽi = 0. (4.12b)

Therefore, these new parameters are such that they will represent a new set of solutions.

By imposing that the new metric preserves the form of the old metric, we have

gµν(rc,vi,P)→ hµν(ξ,W,g) = g̃µν = gµν(r̃c, ṽi, P̃), (4.13)

where

g̃τr = 1+
ṽ(xa)2 +2P̃(xa)

2r̃c
, (4.14a)

g̃ir =−
ṽi(xa)

r̃c
, (4.14b)

g̃rr = 0, (4.14c)

g̃ab|r̃c = γ̃ab, (4.14d)

γ̃ττ =−r̃c, (4.14e)

γ̃ai = γai. (4.14f)

From these, it is immediate to find, upon using eq. (4.9),

Wr =−2αξr
Ω2

λ
, (4.15)
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where α = 0,1. Also, upon contracting eq. (4.9) with boundary indices a,b, . . . of the

Killing vector, we have

Wa =
Ω2ξr

(
gar +

ξaξr
λ

)
+ξbg̃ab

λ

Ω2 +(1−2α)ξrξr
−ξa

Ω2

λ
. (4.16)

To illustrate, it can be shown that we may write [40]

g̃ar = gar−2ξr

(
ξbγab−ξrgar

ξcξdγcd−ξrξr

)
. (4.17)

With these, it can be shown [40] that with ξ = ck∂k (ck being constants obeying Σkc2
k = 1),

the isometries ck∂kvi = ck∂kP = 0 imply that

ṽi = vi−2cickvk, (4.18a)

P̃ = P. (4.18b)

As we are going to explain in section 4.4, we are going to use a different procedure to

search for symmetries of eq. (4.11), in which we will not assume a priori constraints on

the form of the new metric.

4.3 Example: Rindler metric at order zero

Before we apply the Ehlers transformations to the Rindler metric at order ε3, we em-

ploy the same reasoning for a simpler case, namely the Rindler metric at order zero, in

four dimensions (d = 2), with xµ = (τ,r,x,y),

gµνdxµdxν =−rdτ
2 +2dτdr+dxidxi, (4.19)

whose inverse, in matrix form, is

gµν =


0 1 0 0

1 r 0 0

0 0 1 0

0 0 0 1

 . (4.20)

For this metric, we may obtain the Killing vectors by solving the Killing equation

eq. (1.19). We note that, since this is flat space, it is maximally symmetric, which means
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that, according to our discussion immediately after eq. (1.19), there must be 10 linearly

independent Killing vectors ξ
(0)µ
A . They are found to be

ξ
(0)µ
1 (t,r,x,y) = (1,0,0,0), (4.21a)

ξ
(0)µ
2 (t,r,x,y) = (0,0,1,0), (4.21b)

ξ
(0)µ
3 (t,r,x,y) = (0,0,0,1), (4.21c)

ξ
(0)µ
4 (t,r,x,y) = (0,et/2,0,0), (4.21d)

ξ
(0)µ
5 (t,r,x,y) = (0,0,y,−x), (4.21e)

ξ
(0)µ
6 (t,r,x,y) = (2e−t/2,re−t/2,0,0), (4.21f)

ξ
(0)µ
7 (t,r,x,y) = (0,xet/2,−2et/2,0), (4.21g)

ξ
(0)µ
8 (t,r,x,y) = (0,yet/2,0,−2et/2), (4.21h)

ξ
(0)µ
9 (t,r,x,y) = (2xe−t/2,xre−t/2,−2re−t/2,0), (4.21i)

ξ
(0)µ
10 (t,r,x,y) = (2ye−t/2,yre−t/2,0,−2re−t/2), (4.21j)

where, in anticipation of a future development, we use the superscript (0) to denote the

Killing vectors at order ε0, while the subscript A labels the different Killing vectors. In

section 4.4 we are going to explain how to find the Killing vectors order by order.

4.3.1 Temporal translation

In particular, we are going to work with the vector representing the temporal transla-

tion

ξµ = (−r,1,0,0), (4.22)

that is, ξτ =−r and ξr = 1, such that ξτ = gτµξµ = 1 and ξr = grµξµ = 0.

For eqs. (4.19) and (4.20), the only non-zero Christoffel symbols are

Γ
τ
ττ =

1
2
, Γ

r
ττ =

r
2
, Γ

r
τr = Γ

r
rτ =−

1
2
. (4.23)

Using Fαβ = ∇αξβ, the only non-vanishing components turn out to be

Fτr =−Frτ =
1
2
. (4.24)
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Hence, we may write the Fαβ matrix for this Killing vector:

Fαβ =


0 1

2 0 0

−1
2 0 0 0

0 0 0 0

0 0 0 0

 . (4.25)

The Hodge dual F?
αβ

of the above is

F?
αβ

=


0 0 0 0

0 0 0 0

0 0 0 −1
2

0 0 1
2 0

 , (4.26)

so that Fαβ = Fαβ + iF?
αβ

is

Fαβ =
1
2


0 1 0 0

−1 0 0 0

0 0 0 −i

0 0 i 0

 . (4.27)

With Fαβ we may calculate σµ = 2ξαFαµ. The only non-vanishing term is

σr = 2ξ
αFαr = 2ξ

τFτr = 2
1
2
= 1. (4.28)

Thus,

σµ = (0,1,0,0)⇒ σ = r. (4.29)

With the results obtained so far we can calculate the 1-forms Wµ using the conditions

given by eqs. (4.10a) and (4.10b).

∇[µWν] =−2γℜ[(σγ+ iδ)Fµν]

=−2γℜ

(rγ+ iδ)
1
2


0 1 0 0

−1 0 0 0

0 0 0 −i

0 0 i 0





=−γℜ


0 rγ+ iδ 0 0

−(rγ+ iδ) 0 0 0

0 0 0 δ− irγ

0 0 −δ+ irγ 0


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=


0 −rγ2 0 0

rγ2 0 0 0

0 0 0 −δγ

0 0 δγ 0

 (4.30)

In component notation, this is

(τ,r) : ∇τWr−∇rWτ =−2rγ
2, (4.31a)

(x,y) : ∇xWy−∇yWx =−2δγ, (4.31b)

(τ,x) : ∇τWx−∇xWτ = 0, (4.31c)

(τ,y) : ∇τWy−∇yWτ = 0, (4.31d)

(r,x) : ∇rWx−∇xWr = 0, (4.31e)

(r,y) : ∇rWy−∇yWr = 0. (4.31f)

Before proceeding, we note that since the only surviving ξµ is ξτ, we may easily get

an expression for Wτ:

ξ
αWα +1 = γ

2r2 +δ
2⇒Wτ = γ

2r2 +δ
2−1. (4.32)

Plugging this in the previous equations we may get the remaining Wµ:

Wτ = γ
2r2 +δ

2−1 (4.33a)

Wr = 0 (4.33b)

Wx = γδ(x− y) (4.33c)

Wy = γδ(x− y). (4.33d)

Note that these are not the only possible solutions. In particular, we wish to maintain a

symmetry in the Wx and Wy functions, which in principle is not necessary.

Finally, we note that λ = −ξαξα = r. We may then find the metric generated by the

Ehlers transformation for the Killing vector representing a translation in τ. Putting the

results derived in this section into eq. (4.9), we arrive at the most general form of the new

metric hµν:

hµν =


− r

γ2r2+δ2 1 r(x−y)γδ

γ2r2+δ2
r(x−y)γδ

γ2r2+δ2

1 0 −(x− y)γδ −(x− y)γδ

r(x−y)γδ

γ2r2+δ2 −(x− y)γδ γ2r2 +δ2− r(x−y)2γ2δ2

γ2r2+δ2 − r(x−y)2γ2δ2

γ2r2+δ2

r(x−y)γδ

γ2r2+δ2 −(x− y)γδ − r(x−y)2γ2δ2

γ2r2+δ2 γ2r2 +δ2− r(x−y)2γ2δ2

γ2r2+δ2

 (4.34)
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This metric is Ricci-flat2, but in its most general form it does not seem to admit a foliation

in flat space. This might be due to an intrinsic property of the metric, but it may be

possible to avoid this by choosing a suitable coordinate transformation.

Working on eq. (4.9), if we set γ = 0 while leaving δ untouched, we’ll have

hµν =


− r

δ2 1 0 0

1 0 0 0

0 0 δ2 0

0 0 0 δ2

 . (4.35)

Note that setting δ = 1 in this case gives a Rindler metric, so we conclude that the Ehlers

transformation in this case simply maps a Rindler spacetime into another Rindler space-

time.

If we instead set δ = 0, the metric takes the following form:

hµν =


− 1

γ2r 1 0 0

1 0 0 0

0 0 γ2r2 0

0 0 0 γ2r2

 . (4.36)

Setting γ = 1, we see that the metric will be precisely the one discovered by Taub [27,57]

(see eq. (3.11)), with A = 1. The Taub metric describes a vacuum solution exterior to an

infinite plane-symmetric object with uniform mass density. It should be noted [27] that

the energy density computed from Brown-York tensor always negative.

Hence, it is possible to use an Ehlers transformation to map a metric of flat spacetime

in ingoing Rindler coordinates into the Taub metric, which also satisfies the equation of

state

dTabT ab = T 2 (4.37)

(see eq. (3.8) in the previous chapter) for a perfect fluid whose energy density is given by

ρ =− 2d
d−1

p. (4.38)

4.4 Solving the Killing equation perturbatively

In the previous section we applied the Ehlers transformation to a very simple case, the

flat spacetime in Rindler coordinates, and we showed that there is a relation between the
2Verified using Mathematica.
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two possible solutions for the equation

dTabT ab = T 2,

namely the Rindler spacetime and the Taub spacetime. In this section, we would like to

do a similar analysis, but this time considering the expanded metric up to order ε3. In

other words, we would like to apply the Ehlers transformation to our “seed metric” plus

corrections at order ε3 (see eq. (4.11)).

As we said in section 4.2, a similar procedure was employed by [40], but they forced

the new metric to have the same “form” as the initial one. Also, they forced some sym-

metries to appear, both because they wanted to preserve the form of the metric and also

because it is not immediately clear that the Killing vectors for eq. (4.11) can be easily

found.

Our idea here is to find approximate isometries of eq. (4.11), that is, we would like to

solve the Killing equation

∇µξν +∇νξµ = 0 (4.39)

perturbatively in the ε expansion up to order ε3, by expanding the Killing vectors ξµ as

ξ
µ = ξ

(0)µ +ξ
(1)µ +ξ

(2)µ +ξ
(3)µ + · · · , (4.40)

so that each term at order n is proportional to εn.

The ten Killing vectors ξ(0)µ at order ε0 have been found previously in eqs. (4.21a)

to (4.21j), and since any linear combination of them is itself a Killing vector, we may

write the ten Killing vectors at order ε0 in a general form as

ξ
(0)(t,r,x,y) =

10

∑
A=1

cAξ
(0)µ
A (t,r,x,y), (4.41)

where the cA’s are constant coefficients. Equation (4.41) is also a solution of the Killing

equation at order ε0.

The method used to solve the Killing equations at order ε0 as well as in higher orders

is explained in more detail in Appendix B.

4.4.1 Order ε1

Now we solve the Killing equation at order ε1, that is

∂µξ
(1)
ν +∂νξ

(1)
µ −Γ

(0)ρ
µνξ

(1)
ρ −Γ

(1)ρ
µνξ

(0)
ρ = 0, (4.42)
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where ξ
(0)
µ is obtained from eq. (4.41). The form of eq. (4.42) indicates the general pro-

cedure which will be employed in future orders: at higher orders, we will have products

of the form Γ
(m)ρ

µνξ
(n)
ρ , where the sum m+ n will be of the desired order; in this case,

m + n = 1, hence the products Γ
(0)ρ

µνξ
(1)
ρ and Γ

(1)ρ
µνξ

(0)
ρ . Therefore, the procedure is

merely iterative: once we have the Killing vectors at order ε0, we may calculate ξ(1)µ,

and with these, we may proceed to order ε2 and so on.

The nonvanishing Christoffel symbols at order ε1 are

Γ
(1)t

ti =−
vi

2rc
, (4.43a)

Γ
(1)r

ti =−
rvi

2rc
, (4.43b)

Γ
(1)r

ri =
vi

2rc
, (4.43c)

Γ
(1)i

tt =
vi

2
. (4.43d)

The Killing vectors at order ε1 are then

ξ
(1)µ
1 (t,r,x,y) = (1,0,0,0), (4.44a)

ξ
(1)µ
2 (t,r,x,y) = (0,0,1,0), (4.44b)

ξ
(1)µ
3 (t,r,x,y) = (0,0,0,1), (4.44c)

ξ
(1)µ
4 (t,r,x,y) = (F(1)

t (t,x,y),0,0,0), (4.44d)

ξ
(1)µ
5 (t,r,x,y) = (0,0,F(1)

x (t,x,y),0), (4.44e)

ξ
(1)µ
6 (t,r,x,y) = (0,0,0,F(1)

y (t,x,y)), (4.44f)

where the F(1)
I (t,x,y) are arbitrary functions of t,x and y at order ε1. The general form of

these Killing vectors is

ξ
(1)(t,r,x,y) =

6

∑
A=1

cAξ
(1)µ
A (t,r,x,y), (4.45)

where the cA’s are arbitrary constants.

Recalling that

vi ∼ ε, P∼ ε
2, ∂t ∼ ε

2, ∂i ∼ ε,

we see that the F(i)
I above will be of the form

F(1)
t (t,x,y) = aivi(t,x,y), (4.46)

where the aI are arbitrary constants. F(1)
x and F(1)

y are entirely analogous.
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Before proceeding to order ε2, we must point out that, when compared to the Killing

vectors at order ε0, the translations in t,x and y still remain, that is, they are symmetries

also at order ε1. To see why this happens, suppose we have infinitesimal transformations.

In particular, suppose we have an infinitesimal translation in x. Then, we may write

P(t,x+δx,y) = P(t,x,y)+δx∂xP(t,x,y)+ · · ·= P(t,x,y)+O(ε3),

vi(t,x+δx,y) = vi(t,x,y)+δx∂xvi(t,x,y)+ · · ·= vi(t,x,y)+O(ε2).

The term ∂xP is of order ε3 and ∂xvi of order ε2. Hence they can be left out of the

expansion at this order. The same reasoning is valid for t and y. Indeed, using this

reasoning, we can see that the spatial translations will no longer be a symmetry at order

ε2.

4.4.2 Order ε2

Now we apply our iterative process to

∂µξ
(2)
ν +∂νξ

(2)
µ −Γ

(0)ρ
µνξ

(2)
ρ −Γ

(2)ρ
µνξ

(0)
ρ −2Γ

(1)ρ
µνξ

(1)
ρ = 0. (4.48)

The Christoffel symbols at order ε2 that do not immediately vanish are

Γ
(2)t

tt =
1

2rc

(
P+

3
2

v2
)
, (4.49a)

Γ
(2)t

i j =
1

2rc

[
viv j− rc(∂iv j +∂ jvi)

]
, (4.49b)

Γ
(2)r

tt =
1

2rc

[
2(r− rc)P+ rv2] , (4.49c)

Γ
(2)r

tr =
1

4rc

(
2P+ v2) , (4.49d)

Γ
(2)r

i j =
rviv j

2r2
c
− 1

2
(∂iv j +∂ jvi), (4.49e)

Γ
(2)i

t j =−
1

2rc

[
viv j +(r− rc)(∂iv j−∂ jvi)

]
, (4.49f)

Γ
(2)i

r j =−
1

2rc

(
∂iv j−∂ jvi

)
. (4.49g)

Using the procedure described earlier, we find that the Killing vectors at order ε2 are
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given by

ξ
(2)µ
1 (t,r,x,y) = (1,0,0,0), (4.50a)

ξ
(2)µ
2 (t,r,x,y) = (G(2)

t (t,x,y),0,0,0), (4.50b)

ξ
(2)µ
3 (t,r,x,y) = (0,0,G(2)

x (t,x,y),0), (4.50c)

ξ
(2)µ
4 (t,r,x,y) = (0,0,0,G(2)

y (t,x,y)), (4.50d)

where the functions G(2)
I (t,x,y) are functions of order ε2 entirely analogous to the F(1)

I in

the previous case. We note that terms of order ε2 can be constructed from P, viv j and ∂iv j,

so that the most general form of the G(2)
I is (similar for G(2)

x and G(2)
y )

G(2)
t (t,x,y) = aP(t,x,y)+bi jvi(t,x,y)v j(t,x,y)+ ci j∂iv j(t,x,y), (4.51)

where a, bi j and ci j are arbitrary constants.

As predicted before, the spatial translations are no longer symmetries at order ε2. Still,

the temporal translation remains a symmetry because upon an infinitesimal transformation

in t we have

P(t +δt,x,y) = P(t,x,y)+δt∂tP(t,x,y)+ · · ·= P(t,x,y)+O(ε4),

vi(t +δt,x,y) = vi(t,x,y)+δt∂tvi(t,x,y)+ · · ·= vi(t,x,y)+O(ε3).

This already indicates that, at order ε3, the temporal translation will no longer be a sym-

metry.

4.4.3 Order ε3

At order ε3, the Killing equation becomes

∂µξ
(3)
ν +∂νξ

(3)
µ −Γ

(0)ρ
µνξ

(3)
ρ −Γ

(3)ρ
µνξ

(0)
ρ −Γ

(1)ρ
µνξ

(2)
ρ −Γ

(2)ρ
µνξ

(1)
ρ = 0. (4.53)

The nonvanishing Christoffel symbols are too numerous and their expressions are large,

so we refer the reader to the Appendix for them.

The Killing vectors at order ε3 are

ξ
(3)µ
1 (t,r,x,y) = (H(3)

t (t,x,y),0,0,0), (4.54a)

ξ
(3)µ
2 (t,r,x,y) = (0,0,H(3)

x (t,x,y),0), (4.54b)

ξ
(3)µ
3 (t,r,x,y) = (0,0,0,H(3)

y (t,x,y)), (4.54c)
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where, as before, the H(3)
I (t,x,y) are just like the F(1)

I and G(2)
I in lower orders. The

general form of H(3)
I is found by noting that the only objects at order ε3 that can be

constructed from P, vi and their derivatives are ∂iP, Pvi, viv jvk, vi∂ jvk and ∂tvi. Hence,

H(3)
t (t,x,y) = ai∂iP(t,x,y)+biP(t,x,y)vi(t,x,y)+ ci jkvi(t,x,y)v j(t,x,y)vk(t,x,y)

+di jkvi(t,x,y)∂ jvk(t,x,y)+ ei∂tvi(t,x,y), (4.55)

with arbitraty constants ai, bi, ci jk, di jk and ei, and similarly for H(3)
x and H(3)

y .

We now wish to apply the Ehlers transformation to eq. (4.55).

4.5 Ehlers transformation on the ε3 Killing vector

We write a general Killing vector at order ε3 as

ξ
(3)µ = (H(3)

t (t,x,y),0,H(3)
x (t,x,y),H(3)

y (t,x,y)), (4.56)

where the Hi are the general functions given above. To lower the indices, we use only the

metric terms at order ε0, because we wish to remain at order ε3. We arrive at

ξ
(3)
µ = (−rHt ,Ht ,Hx,Hy). (4.57)

From eqs. (4.56) and (4.57) we see that

λ =−ξ
(3)α

ξ
(3)
α = O(ε6), (4.58)

which already simplifies the general form of the Ehlers transformation eq. (4.9) to

hµν = Ω
2gµν−ξ

(3)
µ Wν−ξ

(3)
ν Wµ. (4.59)

This, in turn, suggests that the Wµ should be either constants or depend only on r.

Now, ∇αξ
(3)
β

= ∂αξ
(3)
β
−Γ

(0)µ
αβ

ξ
(3)
µ gives the only non-zero terms

Fτr =−Frτ =
Ht(t,x,y)

2
. (4.60)

We note from this equation that the Hx and Hy terms no longer appear, which was already

expected by looking at the equation ∇αξ
(3)
β

= ∂αξ
(3)
β
−Γ

(0)µ
αβ

ξ
(3)
µ and noting that the par-

tial derivatives would all vanish since they would either be a derivative with respect to r

(upon which Hx and Hy do not depend) or would increase the order of our terms. Also,

none of the Christoffel symbols at order ε0 contain the coordinates x or y.
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The Hodge dual of eq. (4.60) is

F?
xy =−F?

yx =−
Ht

2
, (4.61)

so that

Fαβ =
1
2


0 Ht 0 0

−Ht 0 0 0

0 0 0 −iHt

0 0 iHt 0

 . (4.62)

This implies that

σµ = (0,O(ε6),O(ε6),O(ε6)). (4.63)

Thus, σ is either a constant or a function f (3)(t,x,y). We treat these two cases separately.

4.5.1 Constant σ

If σ is a constant (for simplicity, we assume σ is real), then we find

∇[µWν] =


0 −Htσγ2 0 0

Htσγ2 0 0 0

0 0 0 Htγδ

0 0 Htγδ 0

 . (4.64)

The equation Ω2 = ξ(3)µWµ +1 = γ2σ2 +δ2 becomes

H(3)
t Wt +H(3)

x Wx +H(3)
y Wy +1 = γ

2
σ

2 +δ
2, (4.65)

implying that Wt , Wx and Wy should be constant, otherwise we would go to even higher

orders. It is easier to separate eq. (4.65) order by order,

H(3)
t Wt +H(3)

x Wx +H(3)
y Wy = 0, (4.66)

γ
2
σ

2 +δ
2 = 1. (4.67)

It is also important to notice that the left-hand side of eq. (4.64) is of order ε0, while the

right-hand side is of order ε3, so they must vanish separately. This means that there are

now two cases to be solved, namely one in which γ= 0 while H(3)
t ,σ,δ are left untouched,

and another in which H(3)
t = 0 with γ,σ,δ arbitrary real constants.

If γ = 0 then eq. (4.67) tells us that δ2 = Ω2 = 1 (recall the definition of Ω2 from

eq. (4.10b)). Now, we wouldn’t like to make a priori assumptions on the nature and form
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of the Wt ,Wx,Wy terms, that is, we wouldn’t like to impose any a priori symmetries on (for

example) Wx and Wy, although we note that the redefinitions t → ε2t, xi→ εxi imply that

the Wµ must not depend on t,x,y if they are to remain at order zero. We also wouldn’t like

to make a priori assumptions on the H(3) terms, apart from their general form eq. (4.55).

Therefore, we must set Wt =Wx =Wy = 0 to validate eq. (4.66). With the simplifications

described above, we are then led to conclude upon inspection of eq. (4.64) that Wr depends

only on the r coordinate, that is, Wr =Wr(r).

In this case, the metric generated by eq. (4.59) will be

hµν = g(3)µν +2rWr(r)H
(3)
t dtdr−2Wr(r)H

(3)
t dr2−2Wr(r)H

(3)
x drdx−2Wr(r)H

(3)
y drdy,

(4.68)

where g(3)µν is given by eq. (4.11) (with τ→ t). We will discuss this result after covering

the case where H(3)
t = 0 below.

The second case, where H(3)
t = 0, implies that if we do not want to make a priori

assumptions on the nature and form of Wx and Wy, we must set them to zero. We note

here that this is due to the fact that H(3)
t = 0 implies that eq. (4.66) becomes H(3)

x Wx +

H(3)
y Wy = 0. Therefore, only the terms Wt(r) and Wr(r) remain to be found (recall from

our discussion above that they do not depend on t,x,y.) Now, one of the equations we get

from eq. (4.64) is ∇tWr−∇rWt = 0, which implies that ∇rWt = 0. Hence, we conclude

that Wt is a constant.

By applying eq. (4.59) in this case, we arrive at a metric given by

hµν = Ω
2g(3)µν −WtH

(3)
x dtdx−WtH

(3)
y dtdy−Wr(r)H

(3)
x drdx−Wr(r)H

(3)
y drdy. (4.69)

Upon comparing eqs. (4.68) and (4.69) with our initial metric eq. (4.11), we note

that the application of Ehlers transformations to our “general” Killing vector at order ε3

eq. (4.55) resulted in new metrics which differ from the old metric by means of additional

terms that not necessarily cancel any of the “old” terms. These new terms, however

have a very general form (perhaps too general), so it would be interesting to check some

particular cases of the H(3)
i functions in order to give a proper physical meaning to them.

This is currently being done.

We recall that we still have a nontrivial Killing vector at second order, but we can’t

recover the Navier-Stokes equations at that order, only the incompressibility condition.

However, we have verified that eqs. (4.68) and (4.69) do produce a Navier-Stokes equation

in the Einstein tensor, at third order, just like eq. (4.11) did.
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4.5.2 σ = f (3)(t,x,y)

If σ is a function of the form f (3)(t,x,y), then we find

∇[µWν] =


0 0 0 0

0 0 0 0

0 0 0 Htγδ

0 0 Htγδ 0

 . (4.70)

The equation Ω2 = ξ(3)µWµ +1 = γ2σ2 +δ2 becomes

H(3)
t Wt +H(3)

x Wx +H(3)
y Wy +1 = γ

2( f (3))2 +δ
2, (4.71)

implying that Wt , Wx and Wy should be not only constant but zero. We also note that the

( f (3))2 will be of sixth order, so we must set it to zero. The only difference between this

case and the one where σ is a constant is that, here, δ2 = 1 always. By dividing in two

cases (γ= 0 or H(3)
t = 0), as before, we arrive at the same metrics as eqs. (4.68) and (4.69),

with Ω2 = 1 in eq. (4.69). Thus, the discussion on the new metrics remains valid for this

case as well.

4.5.3 Discussion and interpretation of results

The functions F(1)
i , G(2)

i and H(3)
i that appeared in our expansion process to determine

the Killing vectors order by order require some explanation as to what they actually mean.

We recall that they appeared as general functions of order ε1, ε2 and ε3, respectively, in the

sense that they are combinations of all possible terms at their order. However, this implies

that any combination of vi, P and their derivatives is a symmetry of the metric at a certain

order, which does not make sense. In fact, if we apply this same reasoning to increasingly

higher orders, the metric will have even more symmetries. This strongly suggests that the

functions F(1)
i , G(2)

i and H(3)
i (as well as higher order analogues) should be set to zero,

that is, the constants multiplying the parameters and their derivatives should all be zero.

However, it still remains to see why our method produces these functions.

What we may conclude from the above discussion is that, with the functions F(1)
i , G(2)

i

and H(3)
i being zero, the metric will have less symmetries as we go to higher orders in the

perturbation, until order ε2, where only the temporal translation remains. From order ε3

and beyond, the metric no longer has any symmetry.



Chapter 5

Conclusions

In this work we have studied the fluid/gravity correspondence in a flat (ingoing Rindler)

spacetime. To do so, we started with a review of some of the main topics necessary to un-

derstand the aspects of both gravitational and fluid dynamical sides of this correspondence

and also reviewed in detail an algorithmic procedure to expand our metric order by order

so that at each order the metric would satisfy the Einstein equations. Particular attention

was given to the case at order ε3, which serves as our starting point to a discussion on

the application of Ehlers transformations in the context of fluid/gravity correspondence,

particularly in the case of a flat spacetime in ingoing Rindler coordinates.

We have shown in chapter 4 that the metric of a flat spacetime in ingoing Rindler

coordinates is related to that of a Taub spacetime by an Ehlers transformation, which

suggests it is useful to apply the Ehlers transformations to other Killing vectors.

We have also solved the Killing equation perturbatively in the ε-expansion, hoping to

find symmetries of our seed metric at third order. With the fluid/gravity correspondence

in flat spacetimes in mind, the questions we set out to study and hopefully find an answer

were related to the solutions of the Einstein and Navier-Stokes equations. Given the

relations between solutions of these equations, especially those that have been found since

2008 [18], it is only natural to ask ourselves whether some properties and symmetries of

their solutions may tell us something about this correspondence. Obviously, the literature

in these two subjects is extremely vast, such that many choices have to be made in order

to do a first approach to these questions. It is open to discussion which choices are to be

made in order to do an optimal approach.

It is nevertheless interesting to see what the solutions and symmetries of either the

Einstein equations or Navier-Stokes equation may tell us in the context of fluid/gravity
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correspondence, as these might be useful to help us test the limits of this correspondence

and hopefully provide us with useful hints as to what questions to make when studying

these dual systems, with the correspondence then providing a bridge to facilitate our cal-

culations and/or to help us make the right questions. It should be noted that Ehlers trans-

formations are just a small part of a broad range of transformations relating solutions of

the Einstein equations [34], so although our approach still requires further developments,

there might be other interesting and perhaps more suitable approaches in order to extend

the relations between Fluid Dynamics and General Relativity. It might still be useful to

investigate the transformations produced by the Killing vectors at lower orders, and see

whether they give us interesting results that might be treated in the context of fluid/gravity

correspondence. Our focus on the third order case was due to the direct relation between

our seed metric eq. (4.11) and the Navier-Stokes equation (see also the discussion on the

Navier-Stokes equation appearing at third order in the expansion in ε in chapter 2), and

we have indeed verified that the Navier-Stokes equations appear at third order, but as our

previous result for one of the Killing vectors at order zero suggests, it is still possible that

we arrive at interesting results when considering the other Killing vectors.

A possible caveat in the approach employed in this work is that the Ehlers transfor-

mations do not work at dimensions higher than four. Given the fact that fluid/gravity

correspondence has its roots in AdS/CFT correspondence and string theory, where higher

dimensions are required, it could perhaps be useful to find analogous or extensions of

these transformations to higher dimensional spacetimes, in order to study this subject in a

larger context.

Another possibility is to study the symmetries of the Einstein tensor in this context,

hoping to find a relation between these and the symmetries of the Navier-Stokes equation.



Appendix A

Christoffel Symbols at Third Order

The Christoffel symbols for eq. (4.11) at order ε3 are given by

Γ
(3)t

tx =
1

4r2
c
{−vx(6P+5v2)+2rvy(∂xvy−∂yvx)+2rc[(vx∂x + vy∂y)vx +∂xP−∂tvx]},

Γ
(3)t

ty =
1

4r2
c
{−vy(6P+5v2)+2rvx(∂yvx−∂xvy)+2rc[(vy∂y + vx∂x)vy +∂yP−∂tvy]},

Γ
(3)t

rx =
vy(∂yvx−∂xvy)

2r2
c

,

Γ
(3)t

ry =
vx(∂xvy−∂yvx)

2r2
c

,

Γ
(3)r

tx =
1

2r2
c
,

Γ
(3)r

ty =
1

2r2
c
,

Γ
(3)r

rx =
1

4r2
c
{3vx(2P+ v2)+2rc[(vx∂x + vy∂y)vx +∂xP+∂tvx]},

Γ
(3)r

ry =
1

4r2
c
{3vy(2P+ v2)+2rc[(vx∂x + vy∂y)vy +∂yP+∂tvy]},

Γ
(3)x

tt =
1

4r2
c
{vx[(2P+ v2)(−2r+3rc)+2rcv2]+4rc(r− rc)(vy∂xvy + vx∂xvx +∂xP+∂tvx)},

Γ
(3)x

tr =
1

2rc
[vx(2P+ v2)− rc(vx∂xvx + vy∂xvy +∂xP+∂tvx)],

Γ
(3)x

xx =
v3

x−2rcvx∂xvx

2r2
c

,

Γ
(3)x

xy =
vx[vxvy + r(∂xvy−∂yvx)−2rc∂xvy]

2r2
c

,

Γ
(3)x

yy =
vx(v2

y−2rc∂yvy)−2(r− rc)vy(∂yvx−∂xvy)

2r2
c

,

Γ
(3)y

tt =
1

4r2
c
{vy[(2P+ v2)(−2r+3rc)+2rcv2]+4rc(r− rc)(vx∂yvx + vy∂yvy +∂yP+∂tvy)},
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Γ
(3)y

tr =
1

2rc
[vy(2P+ v2)− rc(vy∂yvy + vx∂yvx +∂yP+∂tvy)],

Γ
(3)y

xx =
vy(v2

x−2rc∂xvx)−2(r− rc)vx(∂xvy−∂yvx)

2r2
c

,

Γ
(3)y

xy =
vy[vxvy + r(∂yvx−∂xvy)−2rc∂yvx]

2r2
c

,

Γ
(3)y

yy =
v3

y−2rcvy∂yvy

2r2
c

.



Appendix B

Details of Perturbative Solutions of the

Killing Equation

Here we sketch the main steps of our method to solve the Killing equation order by

order. It is possible to solve the order ε0 equations without help from numerical methods,

but the equations become very complicated at higher orders, so the calculations we present

here were done using the Mathematica RGTC package.

B.1 Order ε0

We write the general form of our Killing vectors as

ξ
µ(t,r,x,y) = (ξt(t,r,x,y),ξr(t,r,x,y),ξx(t,r,x,y),ξy(t,r,x,y)). (B.1)

Using RGTC, we find that the Killing equations at order ε0 can be written in a general

form as

∂yξ
y(t,r,x,y) = 0 (B.2a)

∂xξ
x(t,r,x,y) = 0 (B.2b)

∂yξ
x(t,r,x,y)+∂xξ

y(t,r,x,y) = 0 (B.2c)

∂rξ
t(t,r,x,y) = 0 (B.2d)

∂xξ
t(t,r,x,y)+∂rξ

x(t,r,x,y) = 0 (B.2e)

∂yξ
t(t,r,x,y)+∂rξ

y(t,r,x,y) = 0 (B.2f)

−r∂rξ
t(t,r,x,y)+∂rξ

r(t,r,x,y)+∂tξ
t(t,r,x,y) = 0 (B.2g)
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−ξ
t(t,r,x,y)−2r∂tξ

t(t,r,x,y)+2∂tξ
r(t,r,x,y) = 0 (B.2h)

−r∂xξ
t(t,r,x,y)+∂xξ

r(t,r,x,y)+∂tξ
x(t,r,x,y) = 0 (B.2i)

−r∂yξ
t(t,r,x,y)+∂yξ

r(t,r,x,y)+∂tξ
y(t,r,x,y) = 0. (B.2j)

We see from eqs. (B.2a), (B.2b) and (B.2d) that we can easily integrate out the y, x,

and r dependences, respectively, meaning that these components do not depend on these

variables. Hence,

∂yξ
x(t,r,y)+∂xξ

y(t,r,x) = 0 (B.3a)

∂xξ
t(t,x,y)+∂rξ

x(t,r,y) = 0 (B.3b)

∂yξ
t(t,x,y)+∂rξ

y(t,r,x) = 0 (B.3c)

−r∂yξ
t(t,x,y)+∂tξ

y(t,r,x)+∂yξ
r(t,r,x,y) = 0 (B.3d)

−r∂xξ
t(t,x,y)+∂tξ

x(t,r,y)+∂xξ
r(t,r,x,y) = 0 (B.3e)

∂tξ
t(t,x,y)+∂rξ

r(t,r,x,y) = 0 (B.3f)

−rξ
r(t,r,x,y)−2r∂tξ

t(t,x,y)+2∂tξ
r(t,r,x,y) = 0. (B.3g)

We may further simplify our system by noting that eqs. (B.3b), (B.3c) and (B.3f) relate

derivatives of ξt to derivatives of the other ξi. The same is valid for eq. (B.3a), relating ξx

and ξy. By using eq. (B.3f) into eq. (B.3g), we arrive at

−ξ
r(t,r,x,y)+2r∂rξ

r(t,r,x,y)+2∂tξ
r(t,r,x,y) = 0, (B.4)

which can be solved to give

ξ
r(t,r,x,y) = et/2C(x,y,re−t), (B.5)

where C(x,y,re−t) is an arbitrary function of x,y,re−t . For convenience, we use the no-

tation ∂∗ to refer to derivatives of re−t . Putting this into our system of equations, along

with the substitutions we mentioned above, we have

∂xξ
t(t,x,y)+∂rξ

x(t,r,y) = 0 (B.6a)

∂yξ
t(t,x,y)+∂rξ

y(t,r,x) = 0 (B.6b)

e−t/2
∂∗C(x,y,re−t)+∂tξ

t(t,x,y) = 0 (B.6c)

∂yξ
x(t,r,y)+∂xξ

y(t,r,x) = 0 (B.6d)

r∂rξ
y(t,r,x)+∂tξ

y(t,r,x)+ et/2
∂yC(x,y,re−t) = 0 (B.6e)

r∂rξ
x(t,x,y)+∂tξ

x(t,r,y)+ et/2
∂xC(x,y,re−t) = 0. (B.6f)



B.2. ORDERS ε1, ε2 AND ε3 69

At this point, we can’t find further simplifications, so we introduce the ansatz

ξ
t(t,x,y) = f1(t)x+ f2(t)y+ f3(t)xy+ f4(t), (B.7a)

ξ
x(t,r,y) = f5(t)x+ f6(t)y+ f7(t)xy+ f8(t), (B.7b)

ξ
y(t,r,x) = f9(t)x+ f10(t)y+ f11(t)xy+ f12(t), (B.7c)

where the fi(t) are arbitrary functions of t. We plug this ansatz into eqs. (B.6a) to (B.6f)

and get, after a lengthy calculation similar to the one employed up to this point,

ξ
t(t,x,y) = 2e−t/2(g1x+g2y+g3)+g4, (B.8a)

ξ
r(t,r,x,y) = re−t/2(g1x+g2y+g3)+ et/2(h1x+h2y+h3), (B.8b)

ξ
x(t,r,y) =−2g1re−t/2−2et/2h1 +h4y+h5, (B.8c)

ξ
y(t,r,x) =−2g2re−t/2−2et/2h2−h4x+h6, (B.8d)

where the gi and hi are constants that appear as we integrate and separate variables when

solving our system with the ansatz eqs. (B.7a) to (B.7c). By setting all except one of these

10 constants to zero, we get the 10 Killing vectors eqs. (4.21a) to (4.21j). For example, if

only h6 is non-zero, we get the y-translation eq. (4.21c).

We have verified that a linear combination of eqs. (4.21a) to (4.21j) does satisfy the

Killing equation, as expected.

B.2 Orders ε1, ε2 and ε3

At order ε1, we start by writing the Killing vectors as ξµ = ξ(0)µ + ξ(1)µ, where ξ(0)µ

is the general Killing vector at order ε0, which is simply the sum of the 10 independent

Killing vectors found before.

We employ a procedure entirely analogous to the previous case. Namely, we use

RGTC to generate the Killing equations and solve the order ε1 equations. As previously

stated, the equations at order ε1 and higher are too lengthy, so we will list the main steps in

our calculation and to illustrate we will give only some of the equations we have obtained.

One of the equations that are generated is

1
rc

e−t/2(2c9vx +2c10vy + et/2rc∂rξ
t(t,r,x,y)) = 0, (B.9)

and it is immediate to verify that the r-dependence can be integrated out, which gives an
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arbitrary term of order ε1, which we call f1(t,x,y),

ξ
t(t,r,x,y) =−e−t/2

rc
2(c9vx + c10vy)r+ f1(t,x,y). (B.10)

The ci come from the ε0 general Killing vector. Recalling that the only ε1 term we may

have is of the form vi(t,x,y), we must then write f1(t,x,y) = a1vx(t,x,y)+ b1vy(t,x,y),

where a1 and b1 are constants. This procedure can be used to reduce our initial system

of 10 equations to 6 equations, with the functions f2(t,x,y), f3(t,x,y), f4(t,x,y) all being

analogous to f1(t,x,y) above, that is, they are linear combinations of the velocity compo-

nents.

In this remaining set of equations, all of whom must vanish, it is possible to note that

the remaining dependence on r is polynomial, that is, it may be written as g(t,x,y) +

h(t,x,y)r. Since these equations must vanish, we must have g(t,x,y) = h(t,x,y) = 0. For

example, one of the equations we have is

1
rc

e−t/2[(−2c7etvx +2c9rcvx−2c8etvy +2c10rcvy)r

+(2c7etvx− et/2a2vx +2c8etvy− et/2b2vy)rc] = 0, (B.11)

where the ai and bi were explained above. It is easy to note the g(t,x,y)+h(t,x,y)r form

of this equation. So, if the g(t,x,y) and h(t,x,y) are to vanish, it is possible to show by

inspecting all the remaining equations that we must set a2 = b2 = c4 = c5 = c6 = c7 =

c8 = c9 = c10 = 0. We could also have imposed constraints on vx and vy, so that not all of

the above coefficients would be set to zero (it could a priori be possible that, upon certain

constraints on the velocities, none of these coefficients are zero).

Proceeding with this calculation, we are led to conclude that the general form of the

Killing vectors at order ε1 is the one given by eqs. (4.44a) to (4.44f).

The procedure to solve the Killing equations at orders ε2 and ε3 is entirely analogous

to the one at order ε1.
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