• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.43.2013.tde-24092014-134946
Documento
Autor
Nombre completo
Nelson Javier Buitrago Aza
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2013
Director
Tribunal
Teotonio Sobrinho, Paulo (Presidente)
Lyra, Jorge Lacerda de
Mendes, Tereza Cristina da Rocha
 
Título en portugués
Limites topológicos do modelo Gauge-Higgs com simetria Z(2) em uma rede bidimensional
Palabras clave en portugués
Álgebras de Hopf
Grupos abelianos.
Limites topológicos
Modelo de Gauge-Higgs
Teoria de Gauge na rede
Resumen en portugués
Nesta dissertação estudamos as teorias de gauge acoplada com campos de matéria em variedades bidimensionais. Para isso, descrevemos primeiro um formalismo em duas e três dimensões o qual é baseado na ideia de Kuperberg de definir um invariante topológico em três dimensões usando álgebras de Hopf e diagramas de Heegaard. O uso do formalismo é útil para este trabalho pois é fácil a identificação de limites topológicos sem resolver o modelo. Também escrevemos o modelo de gauge com campos de matéria usando uma fixação de gauge chamada de gauge unitário. Trabalhamos com o grupo abeliano $\mathbb_$ e explicamos com detalhe o caso $\mathbb_$. Calculamos as funções de partição e loops de Wilson para este grupo nos diferentes limites topológicos. Mostramos que existem casos nos quais os resultados dependem da triangulação mas de maneira trivial, estes casos foram chamados de quase-topológicos.
 
Título en inglés
Topological Limits in the Gauge-Higgs Model with Z(2) Symmetry in a Bidimensional Lattice
Palabras clave en inglés
Abelian Groups
Gauge-Higgs Model
Hopf Algebras
Lattice Gauge Theory
Topological Limits
Resumen en inglés
In this thesis we study gauge theories coupled with matter fields in two-dimensional manifolds. In order to proceed we first describe a formalism in two and three dimensions which is based on the idea of Kuperberg of defining a topological invariant in three dimensions using Hopf algebras and Heegaard diagrams. The use of this formalism is useful here because it is easy to identify topological limits without solving the model. Furthermore, we write the gauge model with matter fields choosing the unitary gauge. We work with abelians groups Z(n) and explain the Z(2) case in detail. We calculate partition functions and Wilson loops for this group in the different topological limits. We show that, there were cases in which the results depended on the triangulation but in a trivial way, these cases are called quasi-topological.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
DiserJavier.pdf (3.76 Mbytes)
Fecha de Publicación
2014-10-10
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Tesis y Disertaciones de la USP.