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de uma vida toda propiciado pela minha mãe, Luiza; à minha namorada, que se tornou
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Abstract

We present a study of anionic states of halocamphor molecules, in which we character-
ize mechanisms that should produce electron circular dichroism by chiral molecules. We
evaluate the electronic cross section for elastic scattering for the 3-bromocamphor, the
3-iodocamphor and the 10-iodocamphor. The results show resonances that give rise to
well known spin polarized electron transmission and dissociation asymmetries, which have
been observed experimentally but not fully understood. We also presented a developed
model for the electron scattering problem accounting for the spin-orbit interaction. We
predicted the transmission and dissociation asymmetries for the halocamphor molecules,
obtaining clarifying results. We show that the resonance energy, the lifetime, the occupied
orbital character, and the potential energy surface topology are fundamental ingredients
in the halocamphor chiral sensitivity. This study is an important contribution towards
understanding the chiral selectivity in the biomolecules, an interesting problem for the
scientific community.

Keywords: halocamphor – electron scattering – spin-polarization – chirality – chiral
sensitivity – dissociation - asymmetry
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Resumo

Nesta dissertação apresentamos um estudo dos estados aniônicos de halocânforas, no
qual caracterizamos mecanismos capazes de produzir dicróısmo de elétrons circularmente
polarizados por moléculas quirais. Nós calculamos as seções de choque eletrônicas para es-
palhamento elástico produzidas por 3-bromocânfora, 3-iodocânfora e 10-iodocânfora. Os
resultados indicam ressonâncias, as quais devem gerar conhecidas assimetrias de trans-
missão eletrônica e de dissociação, obtidas experimentalmente, mas não totalmente ex-
plicadas. Também apresentamos um modelo desenvolvido para contabilizar a interação
de spin-órbita no problema de espalhamento eletrônico, bem como a predição das assime-
trias de transmissão e de dissociação. Nós mostramos que as caracteŕısticas f́ısicas das
ressonâncias, como energia de formação, tempo de vida t́ıpico, caráter do orbital ocupado
e topologia da superf́ıcie de energia potencial são elementos fundamentais na produção de
sensibilidade quiral das halocânforas. Este estudo é uma importante contribuição para a
compreensão do problema de seletividade quiral em biomoléculas, alvo de interesse por
décadas pela comunidade cient́ıfica.

Palavras-chave: halocânforas – espalhamento de elétrons – polarização – quiralidade
– dissociação – sensibilidade quiral - assimetria
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Chapter 1

Introduction

In all known forms of life on Earth, the chiral molecules have only one definite handedness.

For example, amino acids are only found in L enantiomer form, while sugars are only found

as D enantiomers [2]. In biomolecules, amino acids are not found in the D enantiomer

form, or sugars found as L enantiomers. Even the stable DNA structure itself is chiral

and exists as a single enantiomer, where its helix only rotates in one sense. Explaining the

causes of chiral selectivity in the biomolecules is a challenge for the science community.

One theory that attempts to explain this biological homochirality is the Vester-

Ulbricht (VU) hypothesis. Vester and Ulbricht proposed that a connection could be

established between asymmetry at the level of elementary particles and at the molecular

level, which could have destroyed the initial balance between left-handed and right-handed

molecules in the early stages of life on Earth [3]. Negative β particles (electrons) have a

longitudinal spin polarization in the opposite direction of their motion. For the z compo-

nent of spin (σz = ±h̄/2) defined along their wave vector ~k, they have σ·~k < 0, and they

are called left-handed particles. Similarly, the longitudinal spin polarization of positive

β particles (positrons) along their direction of motion is positive (σ·~k > 0), and they are

called right-handed particles [4]. There are many more electrons than positrons in the

Universe. As a consequence, the particles emerging from β-decay of radioactive nuclei

are predominantly left-handed. According to the VU hypotesis, electrons are related by

mirror-image symmetry which is, in principle, the same as that which gives rise to op-

tical activity in chemical compounds. Electrons might thus selectively destroy a given

enantiomer of chiral biomolecules. Fig. 1.1 illustrates the process proposed by the VU

hypothesis. Several experiments have attempted to verify the VU conjecture, but they
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have often been inconclusive [5]. The observation of chirally dependent electron-molecule

interactions remained an open challenge for many years.

(a) (b) (c)

Figure 1.1: Scheme of the Vester-Ulbricht hypothesis. (1.1a): β-decay of radioactive nuclei
producing electron with left-handed spin polarization. (1.1b): L and D enantiomers of a
chiral species. (1.1c): The D enantiomer destroyed by the interaction with the left-handed
electron, for example.

The first observation of spin-dependent electron scattering from optically active molecules

was reported by Cambell and Farago in Nature, in 1985. The measurements indicate that

spin-polarized electrons can distinguish right- and left-handed isomers, a phenomenon

analogous to optical circular dichroism [6]. The latter study was followed by the gas-

phase electron scattering experiments performed by the Münster group [7, 1]. In these

experiments, an electron beam with low energy (< 10 eV) passes through a vapor of enan-

tiomerically pure molecules. The electron beam is set up with an initial spin polarization

P defined by

P =
N+ −N−

N+ +N−
, (1.0.1)

where N+(−) is the number of right(left)-handed electrons. The incident beam has a non-

zero polarization (P ∼ 30%) and intensity I0. The transmitted current I(P ) is collected,

and its attenuation is measured, where the total cross section can be obtained from

the Beer-Lambert Law. The experiment is then repeated with the reverse polarization

(−P ), and the transmitted current I(−P ) is collected. This process is performed for each

enantiomer, and the transmitted current asymmetry is defined as

aD(L) =

[
I(P )− I(−P )

I(P ) + I(−P )

]
D(L)

, (1.0.2)

where the D and L subscripts denote the molecular handedness. Fig. 1.2 shows an scheme

of the process described above.

The preferential scattering of electrons with a given handedness by chirally pure sam-
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Figure 1.2: Scheme of the transmission experiment (reproduced from [1]). The incident
electron beam I0 has a spin polarization P ∼ 30%. The transmitted attenuated current
I(P ) is collected after the gas cell. Then, the experiment is repeated with the inverse
polarization (−P ), and the correspondent transmitted current I(−P ) is collected.

ples was named electron circular dichroism (ECD), in analogy with the preferential

absorption of circularly polarized light (optical circular dichroism). The experiments of

the Münster group also point out two important things: (i) the transmitted current

asymmetry has the same magnitude for L or D target molecules although with opposite

signal, i.e., aD = −aL; (ii) the magnitude of the scattering asymmetry is enhanced by the

formation of transient negative ions (resonances). It is well-known that the temporary

capture of the incident electron gives rise to peaks (ideally Lorentzians) in the scatter-

ing cross sections [8], which are also evident in electrons transmission spectroscopy

(ETS) measurements. The observed chiral asymmetries also show structures at the same

energies where ETS measurements point out the formation of resonances, as illustrated

in Fig. 1.3.

3



Figure 1.3: Asymmetry and electron transmission measured for 3-bromocamphor
(adapted from [1]). Upper panel: scattering asymmetry A measured for D-bromocamphor
(•) and L-bromocamphor (◦). The error bars give the statistical uncertainties. Bottom
panel: derivative (dI/dE) of the transmitted current (ETS measurements). The reso-
nance energies are indicated by the arrows. The resonances observed in ETS correlate
with the structures in the asymmetry measurements.

4



The possible mechanisms underlying ECD were discussed by Farago [9, 10]. Chirally

sensitive electron scattering arises from the spin-orbit interaction and comprise three

effects:

• The spin-orbit coupling of the continuum electron interacting with a heavy atom

is called Mott scattering. This mechanism would involve a Coulombic scattering

from a light atom, and simultaneously, the Mott-scattering from a heaviest atom

(Fig. 1.4). The first scattering is spin-independent, therefore the Coulomb inter-

action produces an electron deflection, whereas the spin remains the same. That

turns the incident longitudinally spin polarized electron into a transverse one. The

Mott scattering from the target’s heaviest atom leads to asymmetric scattering of

the two possible spin directions. A precise calculation of this effect for polyatomic

molecules is a challenging collision problem. Its order of magnitude, however, can

be estimated as ∝ Z2 [11], where Z is the atomic number of the heaviest atom in

the target molecule.

Figure 1.4: Scheme of Mott scattering (reproduced from [12]). Heavy and light arrows
indicate electronic momenta and spins, respectively. Incident electrons arrives from the
upper left, and it interacts with a light atom through the Coulomb interaction. The
electron trajectory changes, but the spin remains the same. Thereafter, the electron
interacts with a heaviest atom (with atomic number Z) through the Mott scattering,
with a predominant resulting spin.

• In the scattering process, the incident spin polarized electron and the target molecule

are subjected to the exchange interaction, mediated by the target helicity density.

The helicity density is produced by the spin-orbit coupling of the target electrons

and the target nuclei. The description of spin-orbit effect concerns a linear combi-

nation of triplet and the singlet states, which gives rise to the exchange interaction.

The helicity operator is defined as ~ki·σi, where ~ki is the i-th electron momentum

vector, and σi is the i-th electron spin. Thus, the helicity density corresponds to

5



the expectation value of the helicity operator over all the targets electrons,

∑
i

〈Φ0|~ki ·σi |Φ0〉, (1.0.3)

where Φ0 is the target ground state. For the helicity density to be nonzero, the

spin-orbit coupling must be included and the electronic states must not be parity

eigenstates. Therefore, for optically inactive molecules, the helicity density is zero,

but for a chiral species, this measurement is non-zero. In addition, the helicity

density is a pseudoscalar under space inversion operator, which implies that its

value for a given enantiomer has the opposite sign of the other. Since this effect

depends of the target chirality, different enantiomes brings different contributions

for the spin-dependent scattering (see Fig. 1.5). Once helicity density depends of

the nuclei, as well as the molecular geometry, its size effect have dependence on

higher Z2 as closely as is the heaviest atom from the chiral center of molecule [13].

Figure 1.5: Schematic diagram of the helicity density process (reproduced from [12]).
Heavy and light arrows indicate electronic momenta and spins, respectively. Incident
electron arrives from the upper left, and it interacts with a target molecule (green elipse),
with nonzero helicity density. An electron with a given spin projection is preferentially
transmitted.

• The spin-orbit coupling between the incident electron and the target electrons is

called spin-other-orbit. This effect may produce ECD, similar to the way it causes

the optical activity and photonic circular dichroism [14]. The electromagnetic field

from the incident electron induces a helical current in the target, producing a mag-

netic dipole moment. The spin of this incident electron would interact differently

with this dipole, depending on whether it is forward or backward (see Fig. 1.6).

Although this coupling would have no explicit Z dependence, it may tend to be

related with the total atomic weight of the molecule [15].
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Figure 1.6: Schematic diagram of spin-other-orbit (obtained from [12]). The incident
electrons induce a magnetic dipole current in target, and it interacts with an electron
with a preferential spin.

More recently, a second generation of experiments was performed and reported by

Dreiling and Gay [12]. A low-energy incident electron beam (≤ 0.6 eV) could interact with

halocamphor targets in the gas phase, producing dissociative electron attachment

(DEA). Once an electron is attached to a molecule, giving rise to a resonance, one

of the possible decay channels is the dissociation of the anion species. DEA generally

refers to electron-induced dissociation [16], and the reactions observed in the experiments

performed by the Gay group can be represented as

CX + e− −→ CX− −→ C• + X−, (1.0.4)

where C• is the camphor radical and X = Br, I, is an halogen atom. The yeld of anion

fragments (X−) was measured as function of the spin polarization of the incident electrons,

and the dissociation asymmetry was defined as

A = aL − aD =

[
I ↑ −I ↓
I ↑ +I ↓

]
L

−
[
I ↑ −I ↓
I ↑ +I ↓

]
D

, (1.0.5)

where, in this case, I ↑ (I ↓) is the current of anion fragments produced by incident spin-

forward (spin-backward) electrons. The DEA asymmetry is analogous to the scattering

asymmetry defined above (eq. 1.0.2), but concerns the current of anion fragments, as

opposed to the current of quasi-elastically scattered electrons. The observed chirally se-

lective degradation (dissociation) of molecules is consistent with the principle underlying

the VU hypothesis, and was highlighted as an Editor’s Choice in the Physical Review Let-

ters. Subsequent experiments explored the DEA asymmetry of 3-bromocamphor (3BrC),

3-iodocamphor (3IC) and 10-iodocamphor (10IC) [12], and the results were puzzling. As

7



shown in Fig. 1.7, there is a significant difference in magnitude between the asymmetry

of 3IC and 10IC, which is inconsistent with the Z2 dependence expected from the ECD

mechanisms described above.

Figure 1.7: The DEA asymmetry as a function of the electron incident energy (adapted
from [12]). Squares and circles represent opposite initial polarizations (P and −P ), which
should give rise to asymmetry measurements of opposite signs. The triangles indicate
data taken with a racemic mixture of bromocamphor. The 10IC maximum asymmetry is
4 times greater than the 3IC maximum asymmetry.

The maximum asymmetry in 10IC (A10IC) is about 100% greater than the maxi-

mum obtained in 3IC (A3IC), and about 300% greater than the maximum asym-

metry obtained in 3BrC (A3BrC). Since this result contradicts all theoretical predic-

tions, it was called “Anomalously Large” [12]. The expected results from the ECD are

discussed below:

• Since Z2
I /Z

2
Br ∼ 2, it was expected A3IC ≈ 2 ·A3BrC, when considering the Mott and

helicity density mechanisms as the main cause of these asymmetries.

• A10IC was expected to be less, or at least equal to A3IC. Both target molecules have

the same heavy atom, but in 10IC the halogen is separated by two bonds from the

8



nearest chiral center, whereas in 3IC the halogen is immediately bound to a chiral

carbon.

• The helicity density of the three molecules was calculated in Ref. [12] and shows a

negligible value for 10IC, which indicate this mechanism is not the main cause

of the asymmetry either.

The current lack of understanding about chirally sensitive dissociation is perharps best

illustrated by the following remark by Dreiling et al. [12]:

“This work thus points out the need for the development of fundamental quantum-

dynamic calculations to provide a first, rudimentary understanding of the magni-

tudes and energy dependence of the asymmetries we observe. Even a qualitative

theoretical picture of such effects would significantly improve our understanding of

other, related areas such as low-energy electron-induced damage of biomolecules.”

Very little is known about the dynamics of electron-halocamphor collisions, in par-

ticular the resonance spectra of those systems. In general, shape resonances, i.e., those

formed by electron attachment to the ground state of the target molecule, are named π∗

or σ∗ in reference to the character of the virtual orbitals chiefly involved in the attach-

ment. Those resonances are known to trigger DEA processes in biomolecules [16], such

that a better understanding about the transient anion states of the halocamphors and

the expected dissociation pathways would be crucial to interpret the experimental data

of the Nebraska group. In addition, despite the basic knowledge on ECD mechanisms

[9, 11, 13] and fundamental symmetry properties underlying the scattering asymmetries

[10, 17], there is no available theory for the DEA asymmetries.

Describing collisions is a significant numerical challenge. Thus, an efficient method-

ology capable of performing scattering calculations quantum mechanically is essential.

The parallel version of the Schwinger Multichannel method implemented with

pseudopotentials (SMCPP) is a particularly suitable tool for this purpose. Our

group has investigated the temporary electron occupation by elastic scattering calcula-

tions using the SMCPP. We have applied this method to infer dissociation mechanisms

[18], which is broadly discussed in several studies involving halogenated DNA and RNA

bases [19, 20, 21, 22]. We present in this work the integral cross sections of electron scat-

tering with energies below 6 eV for the three halocamhor molecules. The anionic spectra
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is analyzed and their resonances are characterized, from which we infer the molecular

dissociative mechanisms due to electron attachment. In addition, a model for the spin-

dependent electron scattering problem under the influence of a low energy resonance is

proposed. Having understood the halocamphor dissociation mechanisms, this model ex-

plains the asymmetries in DEA current, in which the Feshbach projection operator

(FPO) formalism is applied [23]. The FPO is a powerful method for the description of

resonant scattering and reactions, based on the introduction of operators which project

the scattering states onto the discrete states of the system and the continuous spectrum.

Since the asymptotic scattering states are ruled by resonances, one can derive the vibra-

tional excitations and the dissociation cross sections [24]. We focus on aspects of the

collision dynamics, in which the most relevant novel aspect is the description of vibra-

tionally inelastic scattering channels under influence of the Coulomb and the spin-orbit

potentials. Having characterized the halocamphor low-lying states and proposed this

model, we present estimates for the transmission and DEA asymmetries. We show the

resonance lifetime, as well as the relaxation along the C-X pathway, have an important

role in the asymmetry production.

The text is organized as follows. In the next chapter, we treat the scattering theories

considered in this work, as well as the main formulation for quantum mechanics calcula-

tions. We discuss the basics of spinless scattering, and we present the SMCPP method

for electronically elastic scattering. A review of spin-dependent electron scattering is pre-

sented, with the formulation of a scattering matrix and its symmetry properties. Then, we

present a brief discussion about spin-dependent DEA and vibrational excitation, based on

the FPO approach. The subsequent chapter presents the characterization of the anionic

states, obtained so far for elastic electron scattering from the halocamphor molecules, as

well as adjunct calculations, and the respective discussion. We then present results for

the estimated transmission asymmetry and the DEA asymmetry. Finally, a concluding

chapter summarizes our main points and challenges concerning this investigation.
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Chapter 2

Theory and Methods

We present in this chapter a description of the scattering theories considered in this

project. The first section is a brief discussion of the non relativistic scattering theory. We

also present a short discussion about the optical theorem, the concept of resonance, and

the frames of reference in which the scattering is described.

In the second section, we outline the Schwinger Multichannel Method (SMCPP) and

its numerical aspects, such as the computational details and the inclusion of pseudopo-

tentials. In the third section, we discuss the spin-dependent electron scattering theory

formulated by Blum and Thompson [17]. The fourth section is dedicated to the dynam-

ical aspects involving spin-polarized electron scattering from chiral molecules. In that

section, we generalize the theory presented by Frandeyer, Thompson and Blum [25] for

vibrationally inelastic scattering channels, especially the reactive dissociation electron at-

tachment (DEA) channel. The fifth section concerns the Feshbach Projection Operator

(FPO) and its approach to spin dependent scattering. There, we present a brief outline

of the spin-independent FPO formalism and then we generalize it for the inclusion of the

spin-orbit interaction.
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2.1 Basics of scattering theory

We approach in this section the quantum electron scattering from a target molecule. The

idea consists rewriting the Schrödinger equation in an integral form that incorporates

the appropriate boundary condition, which is known as the Lippmann-Schwinger equa-

tion. It is the first step for the Schwinger Multichannel Method, as well as the Feshbach

Projection Operator, which we treat later. The potential-scattering formulation can be

found in quantum mechanics handbooks, such as Sakurai’s Modern Quantum Mechanics

[26]. However, at this level, we consider the target molecule in a many-body picture, with

the electrons treated explicitly, and the molecular atoms within the Born-Oppenheimer

approximation. We consider only the electronic degrees of freedom keeping the nuclei

fixed.

Let us consider an incident electron traveling with the wave vector k. The electron

collides with a molecule composed of M nuclei and N electrons. We denote by V the

Coulomb potential between the incident particle and the target, such that, the scattering

Hamiltonian is given by

H = TN+1 +HN + V, (2.1.1)

where TN+1 is the kinetic energy of the incident electron and HN is the Hamiltonian of

the N -electron target. The electron-molecule scattering potential is given by the electron-

electron and electron-nucleus interactions,

V =
M∑
A=1

−ZA
|rN+1 −RA|

+
N∑
j=1

1

|rN+1 − rj|
, (2.1.2)

where the RA are the nuclear vector coordinates, rj the electronic vector coordinates, and

ZA the electronic charge of A-th nuclei. We use atomic units in the entire formulation

(h̄ = m = e = 1).

In an electron-molecule collisions, different phenomena can occur, such as elastic scat-

tering, ionization, dissociation, electronic or vibrational excitation, etc. Each possible

process is called a channel. We denote the entrance channel by the index Γ, which

represents a complete set of quantum numbers defining the initial state of the system. On

the other hand, the scattering channel is denoted by the index Γ′, which represents a com-

plete set of quantum numbers defining the final state of the system. The viability of each
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phenomenon to occur depends, naturally, on the conditions of the scattering process. For

example, for an incident electron energy below the electronic excitation threshold of the

molecule target, any electonic excitation channel is not allowed. Commonly, the allowed

channels are called open channels.

The energy conservation principle imposes the initial and final system energies to be

the same:

E =
k2

Γ

2
+ εΓ =

k2
Γ′

2
+ εΓ′ , (2.1.3)

where kΓ(kΓ′) is the initial (final) incident electron momentum, and εΓ(ε′Γ) is the initial

(final) energy of the target-molecule state ΦΓ.

Considering the Hamiltonian given by eq. (2.1.1), the Schrödinger equation of the

scattering problem is given by

HΨkΓ
(r1, ..., rN+1) = EΨkΓ

(r1, ..., rN+1), (2.1.4)

where ΨkΓ
(r1, ..., rN+1) is the scattering wave function, which depends on the coordinates

of (N + 1) electrons (spin states are omitted for simplicity). The asymptotic boundary

condition requires that the scattering wave function, in the rN+1 → ∞ limit, behaves

as a superposition of the non interacting wave function and a perturbed electron wave

function,

Ψ
(±)
kΓ

(r1, ..., rN+1)
rN+1→∞−−−−−→ SΓ +

open∑
Γ′

fΓ′,Γ
exp(ikΓ′rN+1)

rN+1

, (2.1.5)

where SΓ is a solution of the non interacting problem (H0 = TN+1 + HN). The spherical

wave function
exp(ikΓ′rN+1)

rN+1
is modulated by the scattering amplitude fΓ′,Γ, and the sum is

over all the open channels. The (±) index refers to the boundary condition: (+) is related

to a divergent spherical wave in the asymptotic limit, while (−) is related to a convergent

spherical wave. The non interacting solution is given by the product of a plane wave with

the molecular target wave function

SΓ = ΦΓ ⊗ exp(ikΓ · rN+1). (2.1.6)

The scattering amplitude fΓ′,Γ is the probability amplitude of the transition from
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the Γ channel to the Γ′ channel. This function contains all the information about the

electron scattering, and therefore, it is the object of interest. The scattering amplitude

can be formally defined [26] by

fΓ′,Γ = − 1

2π
〈SΓ′|V |Ψ(+)

Γ 〉, (2.1.7)

and is associated with the electronic differential cross section

dσ

dΩ
(kΓ′ ,kΓ) =

kΓ′

kΓ

|fΓ′,Γ(kΓ′ ,kΓ)|2, (2.1.8)

which is related to probability of a scattered electron in a solid angle dΩ in the direction

of kΓ′ . Figure 2.1 illustrates the electron scattering from a target molecule. It is worth

mentioning that the integral cross section can be obtained from

σ(kΓ′ , kΓ) =

∫
dk̂Γ′

dσ

dΩ
(kΓ′ ,kΓ)

=

∫
dk̂Γ′

kΓ′

kΓ

|fΓ′,Γ(kΓ′ ,kΓ)|2,
(2.1.9)

where
∫
dk̂Γ′ is the 2-dimensional integral over all directions of kΓ′ .

Figure 2.1: Scheme of electron scattering from a molecule target (adapted from [27]). The
incident electron is represented by a plane wave with a wave vector kΓ. The scattered
electron can be detected in the direction of kΓ′ and within the solid angle dΩ.

2.1.1 The Lippmann-Schwinger Equation

The scattering Hamiltonian (2.1.1) can be decomposed in two parts, corresponding to the

interaction-free Hamiltonian (H0) and the scattering potential V ,
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H = H0 + V, (2.1.10)

H0 = TN+1 +HN . (2.1.11)

The eigenstates and eigenvalues H0 are assumed to be known:

H0|SΓ〉 =

(
εΓ +

k2
Γ

2

)
|SΓ〉. (2.1.12)

The separated Hamiltonian allows us to rewrite the Schrödinger equation as a non-

homogeneous equation,

(E −H0)|ΨkΓ
〉 = V |ΨkΓ

〉, (2.1.13)

where the general solution can be obtained from the superposition of SΓ with a particular

solution of (2.1.13) obtained from the Green’s function method [8],

|Ψ(±)
Γ 〉P = G

(±)
0 V |Ψ(±)

Γ 〉P . (2.1.14)

The Green’s operator associated to H0 can be formally written as

G
(±)
0 = lim

ε→0

IH0

E −H0 ± iε
, (2.1.15)

where the identity operator IH0 is given by product

IH0 = IN ⊗ Ik. (2.1.16)

Here, IN is the identity operator in the space generated by the molecular eigenstates

and Ik is the identity operator in the continuum energy space of the incident electron.

The identity operator can be written in the basis of the eigenstates of the H0 operator

(|Φlk〉〈Φlk|) and consequently, the Green’s operator can be represented in the same basis,

G
(±)
0 = lim

ε→0

∫∑
l

∫
d3k
|Φlk〉〈Φlk|
k2
l

2
− k2

2
± iε

, (2.1.17)

where the symbol

∫∑
l; means the sum over the l discrete target spectrum and integra-
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tion over the continuum spectrum. In the above expression, we made the substitutions

H0|Φlk〉 = (El +
k2

2
)|Φlk〉, and E = El +

k2
l

2
with aid of the energy conservation principle,

as in eq. (2.1.3).

The formal solution of the scattering problem is obtained through an integral equa-

tion which incorporates the asymptotic boundary conditions, and is called Lippmann-

Schwinger equation,

|Ψ(±)
Γ 〉 = |SΓ〉+G

(±)
0 V |Ψ(±)

Γ 〉. (2.1.18)

The divergent solution (Ψ
(+)
kΓ

) has a physical meaning in the collision process, whereas the

convergent solution (Ψ
(−)
kΓ

) does not correspond to an expected behavior in the electron

scattering. However, both solutions are mathematically possible and will be employed in

the Schwinger Variational Principle in the next section.

2.1.2 The transition operator and the optical theorem

Now, we discuss two important elements in scattering theory that will be useful. The first

one is the transition operator (T ) or the transition matrix, which is defined by

V |Ψ(±)〉 = T |SΓ〉. (2.1.19)

We multiply from the left the Lippmann-Schwinger equation (2.1.18) by the interaction

operator V ,

V |Ψ(±)
Γ 〉 = V |SΓ〉+ V G

(±)
0 V |Ψ(±)

Γ 〉, (2.1.20)

and using (2.1.19), we obtain

T = V + V
IH0

E −H0 ± iε
V. (2.1.21)

We replace V |Ψ(±)〉 by T |SΓ〉 in the scattering amplitude defined in (2.1.7), and using

the expression for T developed above, we obtain the scattering amplitude in terms of the

transition operator,

fΓ′,Γ = − 1

2π
〈SΓ′ |T |SΓ〉. (2.1.22)

The transition operator carries all the information about the scattering
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process, and its matrix elements correspond to the scattering amplitude. From the eq.

(2.1.22), we can derive the optical theorem, which relates the imaginary part of the

forward scattering amplitude to the total cross section.

Forward scattering consists of the elastically scattered electron in the incident direc-

tion, kΓ = k′Γ. Therefore, the forward scattering amplitude is given by

fΓ,Γ(kΓ,kΓ) = − 1

2π
〈SΓ|T |SΓ〉. (2.1.23)

We next evaluate Im〈SΓ|T |SΓ〉 using (2.1.19), (2.1.18), and the hermiticity of V ,

Im〈SΓ|T |SΓ〉 = Im〈SΓ|T |Ψ(+)〉

= Im
[(
〈Ψ(+)| − 〈Ψ(+)|V IH0

E −H0 − iε

)
V |Ψ(+)〉

]
.

(2.1.24)

Now we use the well-known relation [26]

IH0

E −H0 − iε
= P

( IH0

E −H0

)
+ iπδ(E −H0), (2.1.25)

where P is the Cauchy principal value, to reduce the right-hand side of (2.1.24) to the

form

Im(〈Ψ(+)|V |Ψ(+)〉)−

− Im〈Ψ(+)|VP
( IH0

E −H0

)
V |Ψ(+)〉−

− Im(〈Ψ(+)|V iπδ(E −H0)V |Ψ(+)〉.

(2.1.26)

The first two terms of (2.1.26) vanish because V and VP
(

IH0

E−H0

)
V are hermitian and

demand that these terms must be real. Hence, the expression reduces to

− π〈Ψ(+)|V δ(E −H0)V |Ψ(+)〉. (2.1.27)

Again, we can recast (2.1.27) using (2.1.19) as

Im〈SΓ|T |SΓ〉 = −π〈SΓ|T †δ(E −H0)T |SΓ〉. (2.1.28)

To insert the identity operator of the H0 space, we made the substitutions H0|SΓ′〉 =

(E ′l +
k2

Γ′
2

)|SΓ′〉, and E = El +
k2
l

2
, to obtain
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Im〈SΓ|T |SΓ〉 = −π
∫∑
l′

∫
dk̂Γ′〈SΓ|T †δ(E −H0)|SΓ′〉〈SΓ′ |T |SΓ〉

= −π
∫∑
l′

∫
dk̂Γ′〈SΓ|T †|SΓ′〉δ

(k2
l

2
− k2

l′

2

)
〈SΓ′|T |SΓ〉

= −πkΓ

∫
dk̂Γ′

kΓ′

kΓ

|〈SΓ′ |T |SΓ〉|2.

(2.1.29)

We recognize the last term as the integral cross section defined in eq. (2.1.9), and

rewriting the left-hand side using (2.1.23), we finally obtain

Im fΓ,Γ(kΓ,kΓ) =
kΓ

4π
σ(kΓ). (2.1.30)

The above derivation of the optical theorem which we discuss is restricted to elastic

scattering. However, the optical theorem can be shown to be more general. It can be

applied even in case inelastic channels are present, by replacing the integral cross section

by the total cross section, σ → σtot, where the latter comprises a sum over the energy-

allowed collision channels. We will use that relationship in the next sections, to discuss

the spin-dependent scattering and the reactive channels.

2.1.3 The Molecular frame and the Lab frame of reference

We have discussed the scattering amplitude to study the electron-molecule scattering.

However, we did not define any frame of reference. We can define the molecular reference

frame (MF), where it is usual to solve the electronic structure of the target molecule (HN).

On the other hand, for comparison with experimental results, it is necessary to consider

the laboratory frame of reference (LF), with the z axis defined along the incident electron

beam direction, and the target molecule in a defined orientation.

To transform from the MF to the LF, we first expand the outgoing angular dependence

of the MF scattering amplitude in a linear combination of spherical harmonics,

f(kΓ′ ,kΓ) =
lmax∑
l=0

+l∑
m=−l

f̃
l,m

(kΓ′ ,kΓ)Y m
l (k̂Γ′), (2.1.31)

where the inverse transform is defined by

f̃
l,m

(kΓ′ ,kΓ) =

∫
dk̂Γ′Y

m∗
l (k̂Γ′)f(kΓ′ ,kΓ). (2.1.32)
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In the laboratory frame, with the coordinates (x′, y′, z′), we assume the incident beam

direction k̂
′
Γ is parallel to z′ axis. The molecular frame (x, y, z) can be rotated to the

laboratory frame to using the Wigner matrix D
(l)
m,m′(ϕ, θ, γ) [28], where ϕ, θ and φ are

the Euler angles associated to rotation (x, y, z)→ (x′, y′, z′). The spherical harmonics, as

functions of k̂
′
Γ′ , are rotated from the laboratory frame to the molecular frame by

Y m
l (k̂Γ′) =

∑
m′

D
∗(l)
m′,m(ϕ, θ, γ)Y m′

l (k̂
′
Γ′), (2.1.33)

where k̂
′
Γ′ is the electron scattered wave vector in the laboratory frame (note the “prime”

over k), and D
∗(l)
m,m′(ϕ, θ, 0) is the reverse rotation (x′, y′, z′) → (x, y, z). We use (2.1.33)

in (2.1.31) to obtain the scattering amplitude in the laboratory frame:

f (lab)(k′Γ′ ,kΓ) =
∑
l,m,m′

f̃
l,m

(kΓ′ ,kΓ)D
∗(l)
m,m′(ϕ, θ, 0)Y m′

l (k̂
′
Γ′). (2.1.34)

The differential cross section in the laboratory frame can be obtained from the expres-

sion above using the eq. (2.1.8),

dσ

dΩ

(lab)

(kΓ,k
′
Γ′) =

kΓ′

kΓ

∫
dk̂Γ|f (lab)(k′Γ′ ,kΓ)|2. (2.1.35)

In electron collision experiments, the molecular sample is usually in the gas phase,

where the molecules are randomly oriented. Therefore, the integral over dk̂Γ represents

the average over the molecular orientations in the LF, or equivalently, the average

over all incidence directions of the beam, in the MF. The integral cross section, σ(kΓ, kΓ′),

can be obtained using (2.1.9), where it is already considered the average over the molecular

orientations.

2.1.4 Resonances

At low collision energies, the incident electron may attach to the target molecule. Electron

attachment produces a transient state with energy higher than the isolated target. This

process generates a metastable state that lasts while the electron is attached, and it is

called a resonance. A resonance has a signature in the integral cross section [8], and

ideally it appears as a Lorentzian peak of the form
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σ ∼ (Γ/2)2

(E − Eres)2 + (Γ/2)2
, (2.1.36)

where Eres is the resonance energy, which is the most probable attachment energy, and Γ

is the resonance width, which is also related to the resonance lifetime (τ ∼ h̄
Γ
) by the time-

energy uncertainty relation. Typically, the lower the resonance energy is, the sharper will

be its signature in the integral cross section, and the longer will be its lifetime. Commonly,

the integral cross section presents a background, which may shift the resonance structure

to higher energy, or even superimpose it. However, we limit this qualitative discussion

to an ideal resonance model. Figure 2.2 presents an integral cross section for a model

resonance.

0 0.5 1 1.5 2 2.5 3
Energy (eV)

0

50

100

150

200

250

300

In
te

g
ra

l 
cr

o
ss

 s
ec

ti
o

n

Figure 2.2: Integral cross section for a model resonance. The peak ideally Lorentzian is
centred in 1.6 eV and has width of 0.2 eV.

From the molecular electronic structure perspective, a resonance occurs when the

incident electron populates a vacant orbital in the target molecule. Qualitatively, it can

also be understood from the temporary capture of the electron in a potential well. For

illustrative purposes, let us consider a target interacting with an incident electron through

a square potential well U(r) with length a. The electron has an angular momentum l that

produces a centrifugal barrier l(l + 1)/r2 which adds to U(r), to produce the effective

potential Ueff . Figure 2.3 presents an illustration of this model. If the electron energy is

greater than the barrier, as E1 in the figure, there is no electron attachment. However,

when the energy is less than the barrier height, as E2 in the same figure, the electron can
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be trapped by tunneling across the barrier into the well. After a certain time, which can

be understood as the resonance lifetime, the electron escapes by tunneling back out.

Figure 2.3: Illustration of the electron attachment. The square potential well adds to
a centrifugal barrier, due to the electron angular momentum l, to produce the effective
potential. E1 represents a non-attachment process, whereas E2 represents an energy lower
then the barrier in Ueff , able to give rise to the electron attachment.
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2.2 The Schwinger Multichannel Method

In the last section, we defined the basics of the electron scattering problem and presented

the Lippmann-Schwinger equation. In this section we derive the Schwinger Multichan-

nel Method (SMC). It is a variational approach to the scattering amplitude based on

the Lippmann-Schwinger equation. The method was originally designed to account for

the electronic excitation channels in electron-molecule collisions, and can be viewed as

an alternative derivation of the Schwinger Variational Principle suitable for numerical

implementation.

The Schwinger Variational Principle (SVP) develops the scattering amplitude as a

functional of the scattering states Ψ
(±)
Γ , and expands these states in a set of trial basis

functions [29]. In the first step, the Lippmann-Schwinger equation (2.1.18) is multiplied

by the potential V and rewritten as

A(±)|Ψ(±)
Γ 〉 = V |SΓ〉, (2.2.1)

where the A(±) operator is given by

A(±) = V − V G(±)
0 V. (2.2.2)

The scattering amplitude was formally defined above, in eq. (2.1.7). In fact, it can be

formally defined from the two possible boundary conditions (±) [8], where the second is

given by

fΓ′,Γ = − 1

2π
〈Ψ(−)

Γ′ |V |SΓ〉. (2.2.3)

Using eq. (2.2.1) in (2.2.3), the scattering amplitude can also be written as

fΓ′,Γ = − 1

2π
〈Ψ(−)

Γ′ |A
(+)|Ψ(+)

Γ 〉. (2.2.4)

From the three expressions given in eqs. (2.1.7), (2.2.3) and (2.2.4), the scattering

amplitude can be written in the following exact form,

[fΓ′,Γ] = − 1

2π

[
〈SΓ′ |V |Ψ(+)

Γ 〉+ 〈Ψ(−)
Γ′ |V |SΓ〉 − 〈Ψ(−)

Γ′ |A
(+)|Ψ(+)

Γ 〉
]
, (2.2.5)
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which is a functional of the scattering states. The functional above must be stable (δ[f ] =

0) under first-order variations,

〈Ψ(−)
Γ′ | → 〈Ψ

(−)
Γ′ |+ 〈δΨ

(−)
Γ′ | (2.2.6)

and

|Ψ(+)
Γ 〉 → |Ψ

(+)
Γ 〉+ |δΨ(+)

Γ 〉, (2.2.7)

which results in the condition

A(+)† = A(−). (2.2.8)

Let us now assume that the scattering state can be expanded in some arbitrary trial

basis |χµ〉, such that

|Ψ(+)〉 =
∑
µ

a(+)
µ |χµ〉, (2.2.9)

and

〈Ψ(−)| =
∑
ν

a∗(−)
ν 〈χν |. (2.2.10)

To obtain the coefficients a
(+)
µ and a

(−)
ν we use the variational method,

∂[f ]

∂a
(+)
µ

=
∂[f ]

∂a
∗(+)
ν

= 0. (2.2.11)

The analytical expressions for the variational coefficients a
(+)
µ and a

(−)
ν can be readily

obtained. Substitution of these expressions back into eq. (2.2.5) leads to a representation

of the scattering amplitude in the trial basis,

f(kΓ′ ,kΓ) = − 1

2π

∑
µ,ν

〈SΓ′|V |χµ〉(d−1)µν〈χν |V |SΓ′〉, (2.2.12)

with

dµν = 〈χµ|A(+)|χν〉. (2.2.13)

At this point, we complete the Schwinger Variational Principle. It is important to

emphasize some aspects of this expression:

• The asymptotic condition (2.1.5) is respected, even if the trial functions themselves

do not comply. They are multiplied by the potential V , which goes to zero when the
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rN+1 →∞ limit is taken, so the functions do not have to satisfy that condition. The

Green’s operator already carries such the boundary condition, independent of the

behavior of those functions. Therefore, we can choose a square-integrable function

set that facilitates the computation of the matrix elements.

• The integral over the target continuum states in the matrix elements 〈χµ|V G(±)
0 V |χν〉

makes the calculation not feasible. The Green’s operator carries the sum over the

discrete target spectrum (electronic bound states) and integration over the contin-

uum spectrum (ionization states). The inclusion of the whole spectrum is essential

from the formal point of view, since the continuum states ensure the antisymme-

try on the right-side of eq (2.1.18) [30]. However, the numerical description of the

complete spectrum would obviously be impractical.

To make the SVP suitable for numerical implementation, we define a projection oper-

ator, which plays a central role in the SMC method as it defines the electronic channels

Φl that will be included in the calculation [31]. The projection operator is given by

P ≡
open∑
l

|Φl(r1, ..., rN+1)〉〈Φl(r1, ..., rN+1)|, (2.2.14)

and if we project the Lippmann-Schwinger equation on the P space,

P |Ψ(±)
Γ 〉 = |SΓ〉+G

(±)
P V |Ψ(±)

Γ 〉, (2.2.15)

where P |SΓ〉 = |SΓ〉 and G
(±)
P = PG

(±)
0 . Following the same steps that lead to eq. (2.2.5),

the SVP will be obtained with the operator A(±) = PV − V G
(±)
P V . However, since

PV 6= V P , the latter will not satisfy the variational stability condition in eq. (2.2.8).

The central point in the development of the SMC approach is obtaining the A(±)

operator in a form that incorporates the projected Green’s operator without violating the

stability condition. To this end, the scattering Schrödinger equation can be written in

the following form [31],

(E −H)[aP + (1− aP )]|Ψ(+)
Γ 〉 = 0, (2.2.16)

which is exact for any value of the real arbitrary parameter a, as the (1 − aP ) term

recovers the information on the closed channels projected out by aP . We obtain, after
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some manipulation of eq. (2.2.16), the alternative form

A
(±)
P |Ψ

(±)
Γ 〉 = V |SΓ〉, (2.2.17)

with

A
(±)
P =

1

2
(PV + V P )− V G(±)

P V +
1

a

[
Ĥ − a

2
(ĤP + PĤ)

]
, (2.2.18)

and Ĥ = E−H. This expression is equivalent to the Lippmann-Schwinger equation mul-

tiplied by V , although now the A(±) operator conveniently incorporates the symmetrized

potential (PV + V P ) and the projected Green’s operator,

G
(±)
P = lim

ε→0

open∑
l

∫
d3k
|Φlk〉〈Φlk|
k2
l

2
− k2

2
± iε

, (2.2.19)

whithout the continuum eigenstates of the molecule.

Let us now consider the representation of the A
(±)
P operator in the trial basis, as pro-

posed in eq. (2.2.10). The variational stability condition, eq. (2.2.8), will be immediately

satisfied for the 〈χν |(PV + V P )|χµ〉 matrix elements, since the interaction operator has

been properly symmetrized. Likewise, since the Green’s operator satisfiesG
†(+)
0 = G

(−)
0 [8],

it may be easily realized that the 〈χν |(V G(±)
P V )|χµ〉 matrix elements are also compatible

with the stability condition. The third term on the right-hand side of eq. (2.2.18) would

be a little more complicated because Ĥ contains the TN+1 kinetic energy operator that

would give rise to surface terms in the continuum-continuum matrix elements. Recalling

that eqs. (2.2.16) to (2.2.18) are exact for any value of the arbitrary parameter, it is possi-

ble to verify that a = (N + 1) zeroes out the contribution from the continuum-continuum

matrix elements, such that a working expression for the SMC scattering amplitude is

given by eqs. (2.2.12) and (2.2.18), with a = (N + 1).

2.2.1 Computational aspects

We discussed the construction of the SMC method, starting from the SVP to the projec-

tion operator which restricts the open channels to discrete electronic states of the target.

The final expression for the scattering amplitude in this approximation,

25



f(kΓ′ ,kΓ) = − 1

2π

∑
µ,ν

〈SΓ′ |V |χµ〉(d−1)µν〈χν |V |SΓ′〉, (2.2.20)

with

dµν = 〈χµ|A(+)
P |χν〉, (2.2.21)

is the same as eq. (2.2.12), but the operator A
(+)
P is given by

A
(±)
P =

1

2
(PV + V P )− V G(±)

P V +
1

N + 1

[
Ĥ − N + 1

2
(ĤP + PĤ)

]
. (2.2.22)

In what follows, we discuss the computational details to evaluate the scattering am-

plitude in terms of the |χν〉 and the 〈χµ|A(+)
P |χν〉 matrix elements.

Elastic channel and ground state at the Hartree-Fock level

The electron scattering problem proposed in this work consists in the characterization of

the metastable anionic states of halocamphor molecules. The low-lying anionic states are

produced with incident electrons with energies lower than 3 eV, which may be below the

electronic excitation threshold of the target molecules. Therefore, only the elastic chan-

nel is relevant, and the projection operator we may consider is given by P = |Φ0〉〈Φ0|.

We emphasize that we are not considering vibrational excitations in this argument, but

only the electronic excitations.

In principle, we would be inclined to use highly sophisticated methods to describe

the ground state of the target. However, care must be taken to compromise accuracy

with numerical effort, as the scattering states are more computationally demanding than

bound states. An accurate calculation thus requires a balanced description of electronic

correlation in the (N + 1)- and in the N -electron states. In the case when a high-level

method is employed to describe the isolated target, a similar description might not be

possible for the scattering state, due to computational limitations. As a result, the energy

of the anion states would be overestimated, as well as their widths. Otherwise, these

resonance parameters would likewise be underestimated in the case when the anion state

was overcorrelated with respect to the target state. In this sense, it is convenient to

describe the target molecule at the Hartree-Fock (HF) level, in view of its low cost.
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Configuration states functions for the static-exchange and static-exchange plus

polarization approximations

Configuration state function (CSF) is a spin-adapted linear combination of Slater determi-

nants. CSFs are employed as trial basis functions (χµ) that the scattering wave function is

expanded. Concerning the description of the anion state, the CSFs represent the possible

electronic occupations in the anion states. A first approximation to the scattering state

is given by

|χµ〉 = A|Φ0〉|φµ〉, (2.2.23)

where the operator A imposes the antisymmetrization among the (N + 1) electrons and

|φµ〉 is a scattering orbital.

We refer to eq. (2.2.23) as the static-exchange (SE) approximation, since the

target is frozen in the ground state, implying no dynamical response to the incident

electron. To improve the description of the scattering state, we take into account virtual

excitations of the target by promoting a single electron from a hole orbital to a particle

orbital. Denoting this singly-excited virtual state by Φj, we obtain a second approximation

called the static-exchange plus polarization (SEP) approximation,

|χµ〉 = A|Φj〉|φµ〉. (2.2.24)

As discussed above, a balanced description among the anionic states and the target

molecule is desired. Once the CSFs in the SEP approximation include dynamic correlation

effects in the scattering calculation, it stabilizes the anionic states energies. On the other

hand, the target is described in the Hartree-Fock level, therefore the difference between

anionic state energies and the neutral ground state energy can be underestimated if the

number of configurations is excessively large [32]. The CSF space is obtained from the

energy criterion proposed by Kossoski and Bettega [33]. The target excitations with

the singlet and triplet spin coupling were chosen according to ∆ ≥ εpart − εhole + εscat,

where εscat, εpart, and εhole are the energies of the scattering, particle, and hole orbitals,

respectively, and ∆ is an energy threshold.

We applyed the HF orbitals obtained from the target description as hole, particle and

scattering orbitals. The last two are modified virtual orbitals, which are generated from
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a cation electric field for the same target molecule [34]. These orbitals are concentrated

in a limited region of the molecule, and improve the convergence of the scattering state

in the CFS expansion.

Matrix elements computation

The SMC method allows us to employ square-integrable functions, as discussed above.

Even though the scattering orbitals would be more diffuse than those representing the

bound electrons, they do not necessarily need to include continuum states. In practice, the

bound and scattering orbitals are obtained from the HF calculation, being both expanded

in Cartesian Gaussian basis sets, since these are often employed in electronic structure

calculations.

The matrix elements of the projected Green’s operator are computationally demand-

ing. Formally, 〈χν |V G(+)
p V |χµ〉 can be evaluated by employing the residue theorem, to

obtain

G
(+)
P = GPr

P +GR
P , (2.2.25)

with GPr
P the Cauchy principal value,

GPr
P = P

∫ ∞
0

dk′
k′2

k2

2
− k′2

2

∫
dk̂
′|Φ0k

′〉〈Φ0k
′|, (2.2.26)

and GR
P the residue of G

(+)
P ,

GR
P = iπk

∫
dk̂|Φ0k〉〈Φ0k|. (2.2.27)

As a result, the matrix element can be separated into a real part and an imaginary

part,

〈χµ|V G(+)
P V |χν〉 = 〈χµ|V GPr

P V |χν〉+ 〈χµ|V GR
PV |χν〉. (2.2.28)

The first term on the right-hand side of eq. (2.2.28), which is off-the-energy-shell,

is given by
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〈χµ|V GPr
P V |χν〉 = P

∫ ∞
0

dk′
k′2

k2

2
− k′2

2

gµν(k
′), (2.2.29)

with

gµν(k) =

∫
dk̂〈χµ|Φ0k〉〈Φ0k|χν〉, (2.2.30)

and can be evaluated by the Gauss-Legendre or Gauss-Laguerre numerical methods. The

radial k-space is discretized on the quadrature points {kj}, where the gµν(kj) matrix

elements are calculated, and angular quadrature points {k̂i} are also employed to obtain

gµν , according to eq. (2.2.30). In general, for each quadrature point in the radial k-

space we perform angular integrations (2.2.30) typically with 2048 points. Considering

64 points in the radial quadrature, also a typical choise, we have more than 130,000

quadrature points for each matrix element, which is clearly computationally demanding.

The second term on the right-hand side of eq. (2.2.28) is on-the-energy-shell and

is given by

〈χµ|V GR
PV |χν〉 = iπkgµν(k), (2.2.31)

which depends on the momentum of the incident electron k, and is evaluated by Gauss-

Legendre or Lebedev-Laikov numerical methods.

Apart from the Green’s operator matrix elements, all integrals in the denominator

of eq. (2.2.13) can be computed with standard quantum chemistry techniques. The

numerator involves the matrix elements 〈Φ0k|V |χµ〉 that can be reduced to one- and

two-electron integrals involving Cartesian Gaussian functions and plane waves. The two-

electron integrals are given by

(αβ|γk) =

∫
dr1

∫
dr2α(r1)β(r1)

1

|r1 − r2|
γ(r2)eik·r1 , (2.2.32)

where α, β and γ denote Cartesian Gaussian functions. The computational effort scales

as ∼ N3
α, where Nα is the dimension of the basis, and should be calculated for every

incident (ki) and outgoing (kf ) wave vector.
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Use of pseudopotentials

To reduce the computational effort required by these and other integrals, the use of the

analytical norm-conserving pseudopotentials of Bachelet, Hamann and Schlüter [35] in the

SMC framework was proposed [36]. In this version of the SMCPP method, the nuclei and

core electrons are replaced by the pseudopotentials, such that only the valence electrons

are explicitly described. This may lead to a significant reduction of the numerical effort,

especially if heavy atoms are present, for instance in the halogenated species. The efficient

use of pseudopotentials in the SMCPP framework requires the optimization of Gaussian

basis sets, following the procedure of Bettega et al. [36]. Even if pseudopotentials are

employed, the description of polarization effects, according to eq. (2.2.24), can make the

computations very demanding. The SMCPP method allows for efficient parallelization

codes based on OpenMP directives [37].
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2.3 The spin-dependent electron scattering theory

We present in this section a review of the spin-dependent electron scattering theory for-

mulated by Blum and Thompson [17]. The theory incorporates the transition matrix

generalized in terms of Pauli matrices and the construction of its components under sym-

metry operators. The spin-dependent scattering amplitude is derived from these terms,

which results in a scattering asymmetry when the molecular target chiral states are con-

sidered.

2.3.1 The spin scattering matrix M

Let us consider the T -matrix as expressed in eq. (2.1.19). For a generalized expression,

the transition from a state |ΨΓ;m0〉 with initial spin m0 to a states |ΨΓ′ ;m1〉 with final

spin m1 is expressed by

〈ΨΓ;m0|T |ΨΓ′ ;m1〉. (2.3.1)

We will treat explicitly the spin-dependence in the scattering problem, then it is

convenient to express the matrix element only in terms of the spin m0 and m1. Therefore,

we define an operator M in the spin space1 by the condition that its matrix elements give

the corresponding amplitude

〈m1|M |m0〉 = f(m1,m0). (2.3.2)

We are going to derive an expression for M for elastic forward scattering from

spinless molecules, which in our problems are all closed shell. The total system is

composed of the target molecule and the incident electron, hence its total spin is 1/2. Once

the operator lies in the spin space, we can expand M in terms of the 2× 2 Pauli matrices

σ = (σx, σy, σz). The spin scattering matrix is usually assumed to depend linearly on the

Pauli matrices [17],

M = g01 + u·σ, (2.3.3)

where g0 is the spinless transition matrix element, 1 is the identity matrix in the spin

1The M operator is the transition matrix for the spin-dependent problem, that acts only on the spin
states.
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state and u is the vector to be determined.

In order to proceed we use symmetry arguments. The electron-molecule interaction

is invariant under rotations, spatial inversion and time reversal of the system, where we

neglect the small parity violating terms due to weak neutral currents2. It follows that M

must transform as a proper scalar operator, i.e, it must be invariant under the three

operations mentioned above.

From the well-known symmetry properties of the Pauli matrices [17] (see Tab. 2.1),

the invariance of the M matrix requires that u transforms according to:

• (i) u should be even under space inversion,

• (ii) u must be odd under time reversal.

We can construct an expression for u, without loss of generality, by defining the unit

vectors ê1, ê2, ê3, which form an orthogonal coordinate system in the molecular frame,

and the wave vector k of the incident electron (k ≡ ki).

Table 2.1: Transformation properties of the relevant vectors. The plus (minus) sign
denotes even (odd) behaviour of the vectors under a given operation.

Space inversion Time reversal

k − −
σ + −
êi − +
k× êi + −

Using the transformation properties shown in Table 2.1, it follows that the three

vectors k× êi have the required symmetry properties (i) and (ii). These vectors lie in the

plane orthogonal to k, therefore it is necessary to include one more vectors to construct

a linearly independent set to using as a basis set for u. This additional vector must, of

course, satisfy the properties (i) and (ii). A choice that satisfies these properties is the

product of the pseudoscalar ((ê1 × ê2) · ê3) with k [17]. Then, we can express u by the

following form:

u =
3∑
i=1

gi(k× êi) + g4((ê1 × ê2) · ê3)k. (2.3.4)

2Weak neutral current are subatomic particles interactions by means of the weak force, which is the
only fundamental interaction that breaks parity-symmetry [26].
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Substitution of (2.3.4) into (2.3.3) yields a general expression for the spin scattering

matrix M :

M = g01 +
3∑
i=1

gi(k× êi) ·σ +g4((ê1 × ê2) · ê3)k·σ, (2.3.5)

where the parameters gi = gi(ê1, ê2, ê3,k) are required to transform as proper scalars and

are functions of any proper scalar which can be constructed from the set {êi} and k. All

information on the scattering is contained in the functions g0, g1, g2, g3 and g4.

For a chiral molecule, the pseudoscalar term ((ê1 × ê2) · ê3) defines which enan-

tiomer the target is. As an illustrative example, let us consider a “model molecule” of

the type AH3, shown in Fig. 2.4, which will have a chiral structure if all bond lengths

are different. The chirality is defined by the left-handed (anticlockwise) or right-handed

(clockwise) sequence of the groups H1A and H2A when viewed in the direction of H3A.

The sequence defines an axial vector ê1 × ê2 and when multiplied with the vector ê3,

gives the scalar triple product ((ê1 × ê2) · ê3). The inversion operation defined by

(ê1, ê2, ê3) → (−ê1,−ê2,−ê3) transforms a right-handed system into a left-handed one.

As a consequence, the triple product changes sign under parity transformations.

ê2

ê3

ê1

A H2

H3

H1

Figure 2.4: Model molecule for the illustration.

We note that (2.3.4) and (2.3.5) are overdetermined. The three vectors k × êi are

contained in the plane perpendicular to k. Once two linearly independent vectors are

sufficient to span this plane, one of the three terms gi (i = 1, 2, 3) can therefore always

be eliminated. It follows that M is completely determined by four independent
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ê2

ê3

ê1

k

θ

φ

Figure 2.5: The vector k projected in the molecular frame.

parameters for any value of k and any orientation of the molecule. For a reduced

expression of eq. (2.3.5), we consider the projection of k onto the coordinates êi. We

denote the azimuth angle between k and ê3 by θ and the polar angle between ê1 and the

projection of k into the ê2-ê3 plane by φ, as shown in Fig. 2.5. The decomposition of k

can be written in the form

k = ê1 sin θ cosφ+ ê2 sin θ sinφ+ ê3 cos θ. (2.3.6)

For the vector k× ê3, we obtain, after some algebra,

k× ê3 = −(k× ê1) tan θ cosφ− (k× ê2) tan θ sinφ, (2.3.7)

for θ 6= 900, that is, if k is not contained in the ê2-ê3 plane. We insert (2.3.7) in (2.3.5)

and obtain

M = g01 + g′1(k× ê1) ·σ +g′2(k× ê2) ·σ +g4((ê1 × ê2) · ê3)k·σ, (2.3.8)

with

g′1 = g1 − g3 tan θ cosφ g′2 = g2 − g3 tan θ sinφ. (2.3.9)

A similar expression can also be obtained if k is contained in the ê1-ê2 plane. However,

in general discussions it is more convenient to use (2.3.5) [17].

Summarizing, the scattering operator M expressed in eq. (2.3.5) can be used to
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describe spin-dependent effects in elastic forward scattering of electrons from oriented

spinless molecules. The functions gi must contain all the information on the scattering

process, which underlie the asymmetries observed in the experiments [6, 1, 12].

2.3.2 Relation to scattering amplitudes

We have discussed that, in general, the spin scattering matrix M is characterized by

four parameters gi. This number is related to the number of possible spin-dependent

processes, two non-flip ones with ±1
2
→ ±1

2
and two spin-flip processes ±1

2
→ ∓1

2
. The

corresponding four scattering amplitudes f(m1,m0) are related to M by eq. (2.3.2). For a

specific target orientation, we can discuss which terms of M correspond to these processes.

If we choose the direction of k as the z axis of a laboratory frame, we have k·σ ∼ σz,

and we define the k direction as the quantization axis of the spin operator. The terms

gi(k× êi)·σ are combinations of σx and σy. We can obtain the spin-preserving scattering

amplitudes

f(±,±) = 〈±|M |±〉, (2.3.10)

where +(−) denotes spin up (down).

In eq. (2.3.5), the first term accounts for spin-preserving scattering because it pertains

to spinless scattering (g01 is diagonal in the spin space). The second term, which concerns

gi(k × êi)·σ, vanishes because the matrix elements are non-diagonal in the spin space.

The last term, g4((ê1 × ê2) · ê3)k·σ is diagonal in the σz space representation, with

eigenvalues ± for the |±〉 eigenstates. We have, therefore,

f(+,+) = g0 + g4((ê1 × ê2) · ê3) (2.3.11)

and

f(−,−) = g0 − g4((ê1 × ê2) · ê3). (2.3.12)

The spin-flip amplitudes are related to g1, g2 and g3. We can derive the corresponding

relation for the case of the model molecule introduced above, and illustrated in Fig. 2.4.

Assuming that k is parallel to ê3, we obtain from (2.3.5):

f(+,−) = −ig1 − g2 (2.3.13)
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and

f(−,+) = ig1 − g2, (2.3.14)

since the vector product k × ê3 vanishes, and by using σx = 1
2
(σ+ + σ−) and σy =

1
2i

(σ+ − σ−).

Scattering from chiral molecules

Equations (2.3.11), (2.3.12), (2.3.13) and (2.3.14) show that electrons with spin up and

spin down are scattered with different amplitudes if g4 is different from zero. To define

k parallel to z axis in the laboratory frame, electrons with spin projection parallel or

antiparallel to k have a definite handedness. The right-handed character derives from

the relation k·σ > 0, while the left-handed character is given by the antiparallel relation

k·σ < 0. In order for both handednesses of electrons to be scattered with different

amplitudes, the molecules must be able to distinguish between electrons with different

spin projections.

Let us assume that (2.3.5) gives the M matrix for a give enantiomer. We can de-

rive the corresponding matrix M (oppos) for the other enantiomer. The application of the

space inversion operator to an asymmetric molecule transforms it into its mirror-image

isomer. Under this operation, the basis vectors êi reverse their sign, êi → −êi, and,

correspondingly

gi(ê1, ê2, ê3,k)→ g
(oppos)
i = gi(−ê1,−ê2,−ê3,k), (2.3.15)

for i = 1, . . . , 43. The isomer is described in terms of the left-handed frame (−ê1,−ê2,−ê3)

and the corresponding M matrix is obtained from equation (2.3.5) by the transformation

êi → −êi and gi → g
(oppos)
i . We also can obtain the set g

(oppos)
i in terms of gi by space

inversion followed by time reversal operation on the scattering system (see Tab. 2.1), such

that the combined operation preserves the direction of k but reverses the sign of the vec-

tors êi. Since the functions gi are proper scalar functions with regard to transformations

of the total system, they must remain invariant under the combined operation discussed.

That is, we have the condition

3Note that this transformation acts on the coordinate system, only
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gi(ê1, ê2, ê3,k) = gi(−ê1,−ê2,−ê3,k). (2.3.16)

We conclude that electron scattering from chiral molecules is therefore characterized by

the same set of functions gi, and the corresponding spin scattering matrix M (oppos) can

be written in the form

M (oppos) = g01−
3∑
i=1

gi(k× êi) ·σ −g4((ê1 × ê2) · ê3)k ·σ . (2.3.17)

In practice, the difference between M and M (oppos) is obtained only for a chiral target,

because chiral states are not eigenstates of space inversion. The operator applied to the

total system implies the substitution of a given enantiomer for the opposite one. For

a non-chiral target molecule, their states are parity eigenstates. In this case, the space

inversion operator applied to the system results in the same target molecule, but with

an inverse coordinate system. In this case, it requires that M = M (oppos) and gi must be

zero.

The probability of transmission by chiral molecules for right- and left-handed projec-

tiles is proportional to the expressions

|f(+,+)|2 = |g0 + g4|2 (2.3.18)

and

|f(−,−)|2 = |g0 − g4|2, (2.3.19)

respectively, as follows from (2.3.11) and (2.3.12) for molecules with ((ê1× ê2)· ê3) = 1. If

we assume that Re(g0g
∗
4) > 0, we have that the right-handed electrons are predominantly

scattered (|f(+,+)| > |f(−,−)|). For collisions with the other enantiomer ((ê1 × ê2) ·

ê3) = −1, it follows from (2.3.11) and (2.3.12) that left-handed electrons have a larger

transmission probability:

|f(+,+)|2 = |g0 − g4|2 (2.3.20)

and

|f(−,−)|2 = |g0 + g4|2. (2.3.21)
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If Re(g0g
∗
4) < 0 then the opposite results hold. In any case, the chiral molecules act

as spin filters.

We might also say that the molecular pseudoscalar ((ê1 × ê2) · ê3) imposes a preferred

relation between the momentum k and the axial spin vector σ of the incident electron:

if under a given molecular transformation, the quantity ((ê1 × ê2) · ê3) changes sign,

the pseudoscalar k·σ, characterizing the helicity of the electron, changes its sign too.

It implies that scattering of an electron with a given handedness by an enantiomer is

preferred over the other electron handedness, and also the other enantiomer, which will

generally gives rise to a transmission asymmetry. It can also be useful, with help of

(2.3.11) and (2.3.12), to express g4 by the relation

g4 =
1

2
[f(+,+)− f(+,+)(oppos)], (2.3.22)

which implies that g4 can be considered as a measure of the amount by which longitudi-

nally polarized electrons can distinguish between the two enantiomers.

2.3.3 Spin polarization of the scattered electrons

We now consider the spin polarization of electrons scattered from an ensemble of unori-

ented chiral molecules. Let us consider the forward scattering of an initially unpo-

larized electron beam. The spin polarization P of the scattered electrons is given by

the trace [17]

IP =
1

2
Tr[MM †σ], (2.3.23)

with I being the unpolarized differential cross section. It is convenient to consider the

two relations

(σ ·A)(σ ·B) = A ·B + iσ(A×B)

and

Tr[(A · σ) σ] = 2A,

(2.3.24)

where A and B are two arbitrary vectors. Using (2.3.5) in (2.3.23) and applying (2.3.24)

yields, after some algebra, a general expression for the spin polarization vector
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IP =
3∑
i=1

(g0g
∗
i + g∗0gi)(k× êi) + i

3∑
i=1

(g4g
∗
i − g∗4gi)[(ê1 × ê2) · ê3][k× (k× êi)]

+ (g0g
∗
4 + g∗0g4)[(ê1 × ê2) · ê3]k + i

3∑
i=j=1
i>j

(g1g
∗
j − g∗i gj)[(êi × êj) · k]k.

(2.3.25)

The expression above contains the spin polarization for the forward transmitted elec-

tron beam, in terms of the four terms gi, i = 1, . . . , 4. The total transverse polarization

is given by the first two sums of (2.3.25). The terms ∼ k × êi contain a contribution

of transverse polarization, since they are orthogonal to k. Also, they are independent of

g4 and, recalling our discussions in subsection 2.3.2, these components are produced by

spin-flip processes only. The terms ∼ k× (k× êi) lie in the k-êi plane, therefore they

also carry a contribution of transverse polarization.

The third and fourth terms in (2.3.25) account for the longitudinal polarization com-

ponent P ‖, since they have a contribution parallel to k. The third term depends on g0

and g4 and can only be produced by non-flip processes, which implies that left- and right-

handed electrons must be scattered differently. On the other hand, the terms ∼ g1g
∗
j−g∗i gj

contain the contributions of the spin-flip processes to P ‖.

Finally, we consider the forward scattering of an initially spin unpolarized electron

beam by an ensemble of unoriented molecules. Firstly, we note that the total

system of incident electrons and unoriented molecules is axially symmetric with respect

to k. Consequently, no transverse polarization can be obtained, and the first two terms

of (2.3.25) must vanish after an average over all molecular orientations.

Secondly, when we consider the collisions with chiral molecules, we can conclude

that no spin-flip processes can contribute to P ‖. For a given orientation of a molecu-

lar subensemble with (êi × êj) · k > 0, we can always find contributions from molecules

where (êi× êj) ·k cancels out the first contribution. This can be obtained by rotating the

molecular subsystem around k, followed by a time reversal operation, which transforms

(êi × êj) · k → −(êi × êj) · k. Since the gi functions are invariant, it is always possible

to transform the given subensemble into another one where (êi × êj) · k has the same

magnitude but the opposite sign. Hence, all contributions of the fourth term of (2.3.25)

vanish.
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The spin polarization of transmitted electron beam averaged over all orientations is

given by

IP = g[(ê1 × ê2) · ê3]k, (2.3.26)

where we denote by g the integral of g0g
∗
4 + g∗0g4 over all orientations of the molecules.

The sign of (ê1 × ê2) · ê3 changes with the handedness of the molecule while gi remain

the same, as discussed in the previous subsection. We can, therefore, conclude that: (i)

the spin polarization vector has the opposite sign if the handedness of the molecules is

reversed, (ii) P vanishes for a racemic mixture, and (iii) the electron circular dichorism

observed [6, 1] cannot be produced by a spin-flip process.
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2.4 The transmission asymmetry and the dissocia-

tion asymmetry

In this section, we discuss the electronic transmission from the standpoint of spin-dependent

electron scattering, discussed in section 2.3. We present a review of the transmission asym-

metry formulated by Fandreyer, Thompson and Blum [25], as well as, for the first time,

the inclusion of a reactive DEA channel and vibrational excitation channels.

It is well known that in the experiments of interest [6, 1, 12], the incident electron beam

has a spin-polarization along the incident wave vector direction k̂i = ẑ in the laboratory

frame, given by

P0 =
N+

0 −N−0
N+

0 +N−0
≡ ∆N0

N0

, (2.4.1)

where N±0 is the number of right- (+) and left-handed (−) electrons entering the collision

chamber at z = 0.

Let us first consider the electronically elastic scattering channel4. Along the path into

the gas sample, the number of right-handed (spin-up) electrons in the solid angle ∆Ω

around ẑ will vary according to three spin mechanisms [25]:

• (i) scattering of spin-up electrons out of the solid angle ∆Ω;

• (ii) spin-flip (+1
2
→ −1

2
) processes into all directions;

• (iii) spin-flip processes (−1
2
→ +1

2
) into the solid angle ∆Ω;

The number of right-handed electrons collected after the collision follows the Beer-

Lambert Law [25],

dN+

dz
= −ρQ+N+(z) =⇒ N+(d) = N+

0 e
−Q+ρd, (2.4.2)

where ρ is the sample density and d is the sample thickness. The total cross section, Q+

for the scattering of spin-up electrons5 is obtained by the integral of the spin-up cross

section over the solid angle Ω,

4In fact, the vibrational excitation channel could be included in this formulation. However, we will
do this in sec. 2.4.1, when we include explicitly the reactive channel.

5The total cross section could also incorporate the vibrationally-resolved one, but we consider the
electronic elastic scattering for now.
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Q+ =

∫
Ω

dΩ σ+, (2.4.3)

where σ+ = σ++ + σ−+ is sum of the spin-preserving σ++ cross section and spin-flip σ−+

cross section for spin-down incident electrons. Analogously, the number of left-handed

electrons N− is given by

N−(d) = N−0 e
−Q−ρd. (2.4.4)

Combining both equations (2.4.2) and (2.4.4) and using N = N+ +N−, we obtain

N = N+ +N− = N+
0 e
−Q+ρd +N−0 e

−Q−ρd. (2.4.5)

By using eq. (2.4.1) and transforming to current intensities

I(d)

I0

=
N(d)

N0

, (2.4.6)

we obtain the transmitted current intensity I(d) for an initial longitudinal polarization

P0, after some algebra:

I(d) = I0e
− 1

2
(Q++Q−)ρd×

{
cosh

(
1

2
(Q+ −Q−)ρd

)
−P0 sinh

(
1

2
(Q+ −Q−)ρd

)}
, (2.4.7)

where I0 is the initial current intensity.

The total cross section for a given initial spin of the incident electron can be obtained

from the optical theorem

Q± =
4π

ki
Im f(±,±), (2.4.8)

with the forward-direction elastic scattering amplitude given by eqs. (2.3.11) and (2.3.12).

For randomly oriented molecules, we obtain the transmitted intensity by making the

substitution for the average over the molecular orientations, denoted as

Q± → 〈Q±〉. (2.4.9)

For a chiral target, the difference 〈Q+〉−〈Q−〉 changes sign if the handedness of molecular

sample is reversed, as we discussed in section 2.3.
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It should be noted that the intensity I(d) is also a function of the initial polarization.

If I(d, P0) is the value of I(d) in equation (2.4.1) for polarization +P0 and I(d,−P0) the

value for polarization −P0, we can introduce the transmission asymmetry a(P0) which was

measured by Campbell and Farago [6], and by Kessler et al [1], for camphor compounds,

a(P0) =
I(d, P0)− I(d,−P0)

I(d, P0) + I(d,−P0)
. (2.4.10)

Using eq. (2.4.7), the transmission asymmetry can be written in the form

a(P0) = −P0 tanh

[
1

2
(Q+ −Q−)ρd

]
. (2.4.11)

We can rewrite the argument of the hyperbolic function in terms of the total cross section,

and apply the optical theorem to obtain

Q = Q+ +Q− = 2
4π

ki
Im g0. (2.4.12)

In terms of the quantity

x = ((e1 × e2)·e3)
Im g4

Im g0

, (2.4.13)

the transmission asymmetry can be written as

a(P0) = −P0 tanh

[
1

2
Qxρd

]
. (2.4.14)

The equation above allows us to infer a “dichroism ability” by the estimate of x.

Considering randomly oriented molecules, we have to substitute the averages 〈Q〉 and 〈x〉

for Q and x. For electron scattering energy around 5 eV, Campbell and Farago obtained

〈x〉 > 2× 10−3 [25].

2.4.1 The DEA asymmetry

We now consider the inclusion of the reactive DEA and vibrational excitation channels,

i.e,

e− + AB

e− + AB∗

A− +B•

, (2.4.15)
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where AB denotes the target molecule that might dissociate into the A− fragment and the

B• radical (DEA channel), while AB∗ indicates the possibility of vibrational excitation

in the electron scattering channel. The electronically elastic scattering is still assumed,

with the target molecule in its ground state. We also consider the reactive DEA channel

for spin-up electrons, in addition to the three spin mechanisms proposed above on page

41. The total cross section is now given by

Q+ → Q+
tot = Q+

vib +Q+
DEA = σ−+

vib + σ++
vib + σ−+

DEA + σ++
DEA, (2.4.16)

where σ−+
vib and σ++

vib are the spin-flip and spin-preserving vibrational-excitation cross sec-

tions, and σ−+
DEA and σ++

DEA are the spin-flip and spin-preserving DEA cross sections, re-

spectively, also for spin-up electrons. In our notation, the total cross sections are already

convoluted over the solid angle dΩ and averaged over the molecular orientations, as in

equations (2.4.12) and (2.4.9). Analogously, for a spin-down incident electron,

Q− → Q−tot = Q−vib +Q−DEA = σ+−
vib + σ−−vib + σ+−

DEA + σ−−DEA. (2.4.17)

The electron transmission asymmetry, as given in equations (2.4.10) and (2.4.11), has

the same form, but now includes the vibrational and DEA channels,

avib(P0) =
I(d, P0)− I(d,−P0)

I(d, P0) + I(d,−P0)
= −P0 tanh

(
1

2
(Q+

tot −Q−tot)ρd
)
. (2.4.18)

Let us now focus on the formation of spin-up and spin-down fragments in reactive

scattering. Denoting the number of these fragments by η±, with right-handed (+) or

left-handed (−) superscripts, we have, for the right-handed (spin-up) species,

dη+

dz
= ρσ++

DEAN
+(z) + ρσ+−

DEAN
−(z). (2.4.19)

Using equations (2.4.2) and (2.4.4), we obtain

η+(d) = N+
0

σ++
DEA

Q+
tot

(1− e−Q
+
totρd) +N−0

σ+−
DEA

Q−tot
(1− e−Q

−
totρd), (2.4.20)

and analogously, the formation of spin-down fragments is given by

η−(d) = N−0
σ−−DEA
Q−tot

(
1− e−Q

−
totρd

)
+N+

0

σ−+
DEA

Q+
tot

(
1− e−Q

+
totρd

)
. (2.4.21)
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The quantities η±(d) as well as N±(d) defined above depend on the spin polarization

of the incident electron beam through N±0 = N0

2
(1 ± P0), where we have employed the

notation of equation (2.4.1). The total number of right- and left-handed fragments for a

given polarization P0 is, therefore, written as

η(d, P0) = η+(d) + η−(d) = η+
∞(P0)

[
1− e−Q

+
totρd

]
+ η−∞(P0)

[
1− e−Q

−
totρd

]
, (2.4.22)

where

η±∞(P0) = N±0
Q±DEA
Q±tot

=
N0

2
(1± P0)

Q±DEA
Q±tot

. (2.4.23)

Equation (2.4.22) can also be written with hyperbolic functions, as in equation (2.4.11),

after some algebra, in the form

η(d, P0) = η∞(P0)
{

1− e−
1
2

(Q+
tot+Q

−
tot)ρd

[
cosh

(1

2
(Q+

tot +Q−tot)ρd
)
−

−Π(P0) sinh
(1

2
(Q+

tot +Q−tot)ρd
)]}

,
(2.4.24)

with

η∞(P0) = η+
∞(P0) + η−∞(P0) and Π(P0) =

η+
∞(P0)− η−∞(P0)

η∞(P0)
. (2.4.25)

We define the DEA asymmetry in terms of the initial electron polarization,

ADEA(P0) =
η(d, P0)− η(d,−P0)

η(d, P0) + η(d,−P0)
. (2.4.26)

Introducing the dissociation probability asymmetry,

αDEA =
(Q+

DEA/Q
+
tot)− (Q−DEA/Q

−
tot)

(Q+
DEA/Q

+
tot) + (Q−DEA/Q

−
tot)

, (2.4.27)

and the auxiliary function

t(Q+
tot, Q

−
DEA, ρd) =

e−
1
2

(Q+
tot+Q

−
tot)ρd sinh

(
1
2
(Q+

tot −Q−tot)ρd
)

1− e− 1
2

(Q+
tot+Q

−
tot)ρd cosh

(
1
2
(Q+

tot −Q−tot)ρd
) , (2.4.28)

we obtain the DEA asymmetry in terms of the gas density and thickness, the total cross

sections and the initial electron polarization, for a given molecule,

45



ADEA(P0) = P0

[
αDEA + t(Q+

tot, Q
−
tot, ρd)

1 + αDEAt(Q
+
tot, Q

−
tot, ρd)

]
. (2.4.29)

In the experiments performed by Dreiling et al [12], the electron beam is attenuated

to about 50%. According to eqs. (2.4.2) and (2.4.4), this condition can be expressed

as Q+
totρd ≈ Q−totρd ≈ ln 2. This approximation implies that αDEAt � αDEA + t, once

Q+
tot −Q−tot is a small quantity. The hyperbolic functions in eq. (2.4.28) can be expanded

to a first-order Taylor series and the DEA asymmetry for an attenuation of about 50%

can be obtained as

ADEA = 0.3 [αDEA + 0.35atot]. (2.4.30)

The final asymmetry is obtained by using the expression above for DEA asymmetry,

for each L- and D- enantiomer,

A = ADEA(P0)L − ADEA(P0)D, (2.4.31)

and represents the asymmetry measured by Dreiling et al [12].
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2.5 Feshbach Projection Operator

We present in this section a brief outline of the theory based on the Feshbach projection

operator (FPO) approach to reactive electron scattering, and then we discuss the inclusion

of the spin-orbit (SO) interaction. The latter formulation was derived by professor Marcio

Varella.

Firstly, we consider the spin-independent scattering problem. There is a vast literature

regarding the FPO formalism [38, 39]. Its application to electron-molecule scattering and

DEA is discussed at length in a review paper by Domcke [40]. In the FPO formalism,

the space spanned by the scattering states is decomposed with orthogonal projection

operators, QP = PQ = 0, that complement each other, (P + Q = 1). The definition of

the Q projector is

Q = |φd〉〈φd|, (2.5.1)

where |φd〉 is a localized (square integrable) state describing electron attachment to the

target molecule, and accounts for resonance formation. The P -space comprises a contin-

uum of delocalized states that should be orthogonal to |φd〉 to impose the QP = PQ = 0

condition. The expression of the P -projection operator can be written in the form

P =

∫
dk|φk〉〈φk|. (2.5.2)

In the expression above, |φk〉 = |Φ0〉|k〉, where |Φ0〉 is the target ground state and |k〉 is

a plane wave, so that 〈φd|φk〉 = 0.

The localized state |φd〉, often referred to as the discrete component (in reference to

its discrete energy), is parametrically dependent on the nuclear coordinate R in the sense

of the Born-Oppenheimer (BO) approximation, 〈rR|φd〉 = φd(r;R), and likewise for the

continuum states, 〈rR|φk〉 = φk(r;R), where r denotes all the electronic coordinates and

the semicolon indicates the parametric dependence on R. For simplicity, the dissociation

process is described in a pseudo-diatomic model, such that a single vibrational coordinate

describing the relative motion of the fragments will suffice.

Let us consider the vibrational excitation and DEA channels. The outgoing asymptotic

states in P -space represent the direct scattering, and are given by
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Pψ
(+)
kiνi

rN+1→∞−−−−−→ φkνi +

open∑
νi

Tkfνf ,kiνiΦ0νf

(
1

rN+1

eikf rN+1

)
, (2.5.3)

where νi(f) denotes the initial (final) vibrational state, ki(f) is the initial (final) wave

vector, and Tkfνf ,kiνi is the T -matrix element for the vibrational excitation.

The reactive scattering is represented in Q-space, with the outgoing asymptotic con-

dition

Qψ
(+)
kiνi

R→∞−−−→
∫ open

dK TDEAK,kiνi
ΦA−ΦB eiKR, (2.5.4)

where TDEAK,kiνi
is the T -matrix element for DEA. The electronic states ΦA− and ΦB represent

the molecular fragments, K is a plane wave accounting for the relative free motion of

the fragments, and R is the pseudo-diatomic coordinate that describes the dissociation

process in the model. In eq. (2.5.4), the plane wave eiKR follows from the assumption of

one-dimensional motion.

The Hamiltonian describing Coulomb scattering is denoted as

HC = Tnuc +Hfree + VC ≡ Tnuc +Hele, (2.5.5)

where Tnuc is the nuclear kinetic operator, Hfree is the interaction-free electronic Hamil-

tonian, given by the sum of the projectile kinetic energy (TN+1) and the electronic Hamil-

tonian of the N -electron target molecule (HN), and VC is the Coulomb interaction.

Since the description is in the BO approximation, we have [Tnuc, P ] = [Tnuc, Q] = 0,

and the Hamiltonian projected onto Q+ P is given by

HC = (Q+ P )HC(Q+ P ) =

(PHCP +QHCQ) + (QHeleP + PHeleQ) ≡ Hfree +Hrea,
(2.5.6)

whereHfree = PHCP+QHCQ accounts the direct reaction, andHrea = QHeleP+PHeleQ

accounts the reactive scattering. The corresponding Lippmann-Schwinger equation is

|ψ(±)
kiνi
〉 = |φki

〉|νi〉+ G(±)
freeHrea|ψ(±)

kiνi
〉, (2.5.7)

with G(±)
free = [E −Hfree ± iε]−1. The projection of eq. (2.5.7) onto the Q- and P -spaces
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leads to a system of coupled equations for the projected states, P |ψ(±)
kiνi
〉 ≡ |ψ(±)

P,i 〉 and

Q|ψ(±)
kiνi
〉 ≡ |ψ(±)

Q,i 〉, having well-known solutions [24],

|ψ(±)
P,i 〉 = |φki

〉|νi〉+ G(±)
PPH

ele
PQ|ψ

(±)
Q,i 〉, (2.5.8)

with

|ψ(±)
Q,i 〉 ≡ |φd〉|ξ

(±)
d 〉 = |φd〉

1

E − Tnuc − V ±opt
Uki
|νi〉. (2.5.9)

In the equations above, G(±)
PP = [E − PHCP ± iε]−1 and Hele

PQ = PHeleQ, while |ξ(±)
d 〉 =

〈φd|ψ(±)
kiνi
〉 is the Q-component vibrational state (with integration over electronic coordi-

nates implied), and

Uki
= 〈φd|Hele

QP |φki
〉 (2.5.10)

is the entry amplitude describing electron attachment (P → Q), while U∗k is the exit

amplitude accounting for auto-ionization (Q→ P ). The optical potential Vopt is a complex

and energy dependent potential surface wherein the nuclear dynamics of the resonance

state takes place. It is given in the form [24]

V
(±)
opt = V0(R) + εd(R) + ∆(R,E −H0)∓ i

2
Γ(R,E −H0), (2.5.11)

where V0(R) is the BO potential energy surface of the target electronic ground state and

εd(R) = 〈φd|Hele
QQ|φki

〉 is a correction to V0 arising from electron attachment [24]. The

coupling of φd to the continuum gives rise to the complex potential ∆ ∓ i
2
Γ, which is in

turn dependent on the vibrational Hamiltonian of the target, H0 = Tnuc + V0(R). Here,

∆(R,E −H0) and Γ(R,E −H0) are defined by

∆(R,E −H0) =
1

2π
P

∫ ∞
0

dE ′
Γ(R,E ′)

E − E ′
, (2.5.12)

and

Γ(R,E −H0) = 2π

∫
Ω

dk̂i|Uki
|2, (2.5.13)

where P indicates the Cauchy principal value in eq. (2.5.12), and Ω in the integral in eq.

(2.5.13) indicates it is performed over all directions. Since both are non-local functions,
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in the sense that these operators depend on the energy of the system in regions beyond

that defined by R, evaluating these terms can be complicated. Therefore it is common to

use the local approximation

Vopt(R) ≈ V0(R) + (εd(R) + ∆)∓ i

2
Γ, (2.5.14)

where (εd+∆) would be the resonance position and Γ the corresponding width. According

to eq. (2.5.4), the DEA transmission amplitude can be obtained as [24]

TDEAK,kiνi
=

(
µ

K

)1/2

lim
R→∞

e−iKRξ
(+)
d (R), (2.5.15)

where µ is the reduced mass for pseudo-diatomic model. The vibrational wave function

ξ
(+)
d (R) is obtained by using eq. (2.5.9) and is given by

ξ
(+)
d (R) = 〈R| 1

E − Tnuc − V (+)
opt

Uki
|νi〉. (2.5.16)

In practice, we can evaluate the DEA cross section for a pseudo-diatomic model run-

ning a quantum dynamical simulation. We would then obtain the quantity corresponding

to eq. (2.5.15) in the local approximation for the optical potential, given by (2.5.14).

Analogously, the T -matrix elements for vibrational excitation is obtained by using eq.

(2.5.8) and the asymptotic condition (2.5.4),

Tkfνf ,kiνi = T bgkfνf ,kiνi
+ 〈νf |U∗kf

1

E − Tnuc − V (+)
opt

Uki
|νi〉, (2.5.17)

where T bgkfνf ,kiνi
is the background contribution.

2.5.1 Inclusion of the spin-orbit interaction

We now comment on the reactive scattering from the full potential, V = VC + VSO. The

latter is the spin-orbit potential, which is written in terms of the Pauli matrices σ:

VSO = Λ · σ = Λxσx + Λyσy + Λzσz, (2.5.18)

where Λ · σ represents the spin-orbit coupling, Λ = ~E×~p, and ~E and ~p are the molecular

electric field and electron momentum, respectively. The scattering states must be repre-
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sented with the inclusion of spin states, so that |ψ(±)
kiνi
〉 → |ψ(±)

kiνims
〉, where ms denotes the

spin projection on the ki direction in the laboratory-fixed frame (ms = ±1
2
).

The projection of the SO operator onto (P +Q) gives

(P +Q)VSO(P +Q) ≡ (V SO
PP + V SO

QQ ) + (V SO
PQ + V SO

QP ) ≡ Wfree +Wrea, (2.5.19)

whereWfree accounts for non reactive collisions (“direct” P → P and Q→ Q scattering),

while Wrea accounts for reactive scattering (Q-P coupling). This way, we can generalize

eq. (2.5.6) for HC + VSO and obtain the Lippmann-Schwinger equation with inclusion of

the spin-orbit interaction.

The T -matrix decomposition with the SO interaction is similar, but more complicated

than the one discussed above, so we skip to the final expressions for the T -matrix elements.

Some convenient approximations are made for simplicity. We neglect second- and higher-

order terms in the interaction, denoted as O(VCVSO), O(VCV
2
SO) and O(V 2

CVSO), as well as

spin-orbit interactions in the direct P -channel, V SO
PP . The vibrational excitation T -matrix

elements are given by

Tkfνfmf ,kiνimi
= 〈νfmf |

{[
T bgkfνf ,kiνi

+ U∗kf

1

E − Tnuc − V (+)
opt

Uki

]
+[

W 0∗
kf
σz

1

E − Tnuc − V (+)
opt

Uki
+ U∗kf

1

E − Tnuc − V (+)
opt

W 0
ki
σz

]
+[

W−∗
kf
σ∗−

1

E − Tnuc − V (+)
opt

Uki
+ U∗kf

1

E − Tnuc − V (+)
opt

W−
ki
σ−

]
+[

W+∗
kf
σ∗+

1

E − Tnuc − V (+)
opt

Uki
+ U∗kf

1

E − Tnuc − V (+)
opt

W+
ki
σ+

]}
|νimi〉,

(2.5.20)

where we use σx = 1
2
(σ+ + σ−) and σy = 1

2i
(σ+ − σ−), and we define the amplitudes that

account for the SO effects

W 0
ki

= 〈φd|QΛzP |φki
〉 and W±

kf
〈φd|Q(Λx ± iΛy)P |φki

〉. (2.5.21)

Due to the above mentioned approximations, the first-order terms in VSO are kept
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only in the numerators of eq. (2.5.20). Therefore, the model accounts for spin-dependent

scattering through the amplitudes W 0,±
kf

, but not through the complex potential Vopt. As

a concrete example let us consider spin-flip processes in the vibrational excitation T -

matrix. The SO amplitudes can describe spin-flips in the P -Q and Q-P transitions, i.e.,

as the electron attaches (W±
ki

) to the target molecule forming a resonance, and also as

it subsequently detaches (W±∗
kf

). However, the vibration dynamics on the Vopt complex

potential will be governed by the Coulomb potential.

It is clear that the terms in the first square brackets correspond to the T -matrix element

for spinless scattering, given in eq. (2.5.17). The terms in the second square brackets

account for spin-preserving matrix elements, analogously to g4 discussed in section 2.3,

while the terms in the third and fourth square brackets account for the spin-flip matrix

elements, analogously to gi, i = 1, 2, 3, discussed in the same section.

The chiral asymmetry in forward electron scattering by a sample of randomly oriented

molecules would arise from the spin-preserving T -matrix elements [17], so hereafter we

disregard the spin-flip matrix elements. The expression of interest is

T±± =

(
T bgkfνf ,kiνi

+ 〈νf |U∗kf

1

E − Tnuc − V (+)
opt

Uki
|νi〉

)
±(

〈νf |W 0∗
kf

1

E − Tnuc − V (+)
opt

Uki
|νi〉+ 〈νf |U∗kf

1

E − Tnuc − V (+)
opt

W 0
ki
|νi〉

)
≡ T0 ± T1,

(2.5.22)

where, for simplicity, T±± = Tkfνf=± 1
2
,kiνi=± 1

2
.

We use the convention for the normalization of the free states as in Ref. [24], k1/2(2π)−3/2|k〉,

where |k〉 is a plane wave, so the relation between scattering amplitudes and T -matrix

elements is given by

f±± =
(2π)2√
kikf

T±± =
(2π)2√
kikf

(T0 ± T1) ≡ f0 ± f1. (2.5.23)

We recall the total cross section for an initial spin of the incident electron can be obtained

from the optical theorem, expressed in eq. (2.4.8). Also, for randomly oriented molecules,

we make the average over the molecular orientations, as in eq. (2.4.9). The total cross

section for incident electrons with ± spin projection averaged over the target orientation
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is given by

〈Q±tot〉 =
4π

ki

1

4π

∫
dΩ

(2π)2√
kikf

Im[T±±(ν0,ki ← ν0,ki)] =
4π

ki

[
〈Im(f0)〉 ± 〈Im(f1)〉

]
,

(2.5.24)

where forward scattering in the vibrationally elastic channel has been indicated in the

T -matrix by T±±(ν0,ki ← ν0,ki). From eq. (2.5.24), we obtain the asymmetry quantity

for a given enantiomer,

〈Q+
tot〉 − 〈Q−tot〉 =

8π

ki
〈Im(f1)〉. (2.5.25)

Using the expression above, we obtain the transmission asymmetry, as it was expressed

in eq. (2.4.10),

a(P0) = −P0

[
tanh

(
4π

ki
〈Im(f1)〉ρd

)]
≈ 4πP0

ki
〈Im(f1)〉ρd, (2.5.26)

where we made the approximation tanh(z) ≈ z for z � 1, since the asymmetry effects

are of the order of 10−5-10−3 [13, 25].

The above expression provides a theoretical basis to understand the experimental

signature of resonances in the scattering asymmetries. This signature would arise from

the inverse of the [E − Tnuc − Vopt] operator, and the simplest possible approximation

to illustrate this fact would be: (i) neglecting the dependence of Vopt on the collision

energy, (ii) neglecting the nonlocal dependence of Vopt on the vibrational coordinates and

also the dependence of the amplitudes Uk and Wk on these coordinates (in this case,

only vibrationally elastic scattering can be accounted for), and (iii) making a fixed-nuclei

approximation to the vibrationally elastic cross section. In this perhaps oversimplified

collision picture, the complex potential can be written as Vopt ≈ Eres − i
2
Γres , where the

resonance position Eres and width Γres are no longer operators, such that

T1 ≈ W 0∗
kf

1

E − Eres − i
2
Γres

Uki
+ U∗kf

1

E − Eres − i
2
Γres

W 0
ki

=
2 Re[W 0∗

kf
Uki

]

E − Eres − i
2
Γres

,

(2.5.27)

and hence
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a(P0) ≈ −ρdP0
(2π)3

E
〈Re[W 0∗

kf
Uki

]〉 Γres
(E − Eres)2 + (1

2
Γres)2

. (2.5.28)

The expression above has a Lorentzian profile directly related to those found in the

elastic cross section, which represent the resonance characterization. In chapter 4, we

will present a linear fit analysis employing eq. (2.5.28) over for the Münster experimental

data. We obtain a feasible value for Wk and discuss the scattering asymmetry behaviour

for energies below 1 eV.

Analogously to the transmission asymmetry, the DEA asymmetry for a randomly

oriented gas would only arise from the spin-preserving processes, as does the scattering

asymmetry. In this case,

TDEA±± ≈
(
µ

K

)1/2

lim
R→∞

e−iKR
[
〈R| 1

E − Tnuc − V (+)
opt

Uki
|νi〉±

〈R| 1

E − Tnuc − V (+)
opt

W 0
ki
|νi〉
]
≡ TDEA0 ± TDEA1 .

(2.5.29)

We do not obtain simple expressions for the DEA channel, as in (2.5.27) and (2.5.28).

Even so, it is possible to estimate the DEA T -matrix if an adequate approximation for

Vopt is applied. In chapter 4, we evaluate TDEA0 and TDEA1 using three approximations for

the complex potential and discuss the relation between the dissociation amplitude and

the dissociation asymmetry.
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Chapter 3

Anionic states of halocamphor

molecules

We present in this chapter the integral cross sections (ICSs) for the halocamphors 3BrC,

3IC and 10IC. The resonances are characterized from these calculations and the dissoci-

ation mechanisms are inferred. We also discuss the asymmetry measuremens of Dreiling

and Gay [12], as well as the transmission asymmetry measured by Mayer et al. [1], in light

of the present results. Our results and discussion were reported in the journal Physical

Chemistry Chemical Physics in 2021 [41].

3.1 Computational Procedures

The molecular geometries were optimized using density functional theory (DFT), as im-

plemented in the Gaussian09 [42] package, with the B3LYP functional and aug-cc-pVDZ

basis set. For iodocamphor molecules, a pseudopotential also was applied for the iodine

atom with a 9s7p7d/5s4p3d basis set [43]. The target electronic structure calculations

were performed with the GAMESS package [44]. In both the bound-state and scattering

calculations, the nuclei and core electrons were replaced with the norm-conserving pseu-

dopotentials of Bachelet, Hamann and Schüter (BHS) [35]. The target electronic ground

state was described at the restricted Hartree-Fock (HF) level, with a set of Cartesian

Gaussian basis sets generated as described by Bettega et al [36]. We employed a 5s5p2d

basis set for the carbon and oxygen atoms, 6s5p2d for the halogen atoms, and the 4s/3s

basis set reported by Dunning [45] for the hydrogen atoms, resulting in a total of 430 basis
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functions and 406 molecular orbitals (MOs), after dropping the 24 spherical contaminants.

As we discussed in Section 2.2, the scattering wave function is expanded in a basis

formed by spin-adapted (N + 1)-electron Slater determinants, named configuration state

functions (CFSs). These configurations are given by products of target states and single-

particle functions (scattering orbitals) and were considered in the static-exchange (SE)

and the static-exchange plus polarization (SEP) approximations.

Modified virtual orbitals (MVOs) [34] were used as both particle and scattering or-

bitals. The MVOs were generated from positively charged Fock operators, giving rise

to more compact virtual orbitals which can be compared with those calculated with the

6-31G(d) basis sets, which helps the assignment of resonance characters. Following this

strategy, the MVOs for 3BrC were generated with charge +8, while the 3IC and 10IC

MVOs were generated with charge +12.

The CSF spaces were obtained from the energy criterion proposed by Kossoski and

Bettega [33]. Single electron excitations of the target with the triplet spin coupling were

chosen according to ∆ ≥ εpart− εhole + εscat, where εscat, εpart, and εhole are the energies of

the scattering, particle, and hole orbitals, respectively, and ∆ is an energy threshold. The

energy cutoffs were adjusted until we were able to reproduce some previously obtained

results, such as the resonances observed by Scheer and Gay [15] in the case of 3BrC.

For iodocamphors, we evaluated the energy difference between the anionic and neutral

states (vertical energy) using DFT calculations. For 3BrC, the threshold was set to

∆ = −2.000 hartree, which generated 15,142 CFSs. For 3IC, we obtained 10,897 CFSs

with ∆ = −3.5880 hartree, and 28,310 configurations with ∆ = −1.6514 hartree, for

10IC.

The resonance characters were inferred from two procedures: The inspection of pseudo

eigenstates obtained from the diagonalization of the scattering Hamiltonian represented in

the CSF basis, and the analysis of virtual orbitals calculated with the compact 6-31G(d)

basis set.
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3.2 Results

First of all, we would like to mention some preliminary results using the DFT method.

We investigated the existence of valence bound states employing the M06-2X functional

and the aug-cc-pVDZ basis set, following the benchmark in [46]. Only 3IC indicates a

bound-state with the not so significant energy of 0.05 eV. The anion forms of the three

compounds show a negative dissociation threshold for the halide elimination reaction,

evaluated by the energy difference between isolated fragments and neutral species. The

target molecules have dipole moment magnitudes around 4.42 D (3BrC), 4.22 D (3IC),

and 3.38 D (10IC). Since the target molecules have supercritical dipole moments, we

investigated the dipole bound states (DBSs) employing the strategy proposed by Skurski

et al. [47]. The aug-cc-pVDZ basis set was augmented with 6s6p diffuse functions placed

at the hydrogen lying the closest to the positive site of the dipole moment vector. We

performed MP2 and CCSD calculations, for the neutral and anion species, in the same

geometries employed in the scattering study. The results indicate the formation of weakly

bound DBSs for the three halocamphor molecules. The CCSD method provides larger

VBEs than MP2, around 7 meV for 10IC, and 16 meV for both 3BrC and 3IC, indicating

that shorter-ranged correlation interactions play an important role in binding the extra

electron. Fig. 3.1 shows the dipole orbitals that represent the formation of DBS.

Figure 3.1: Singly occupied orbitals of the dipole bound states of 3-bromocamphor (left),
3-iodocamphor (center), and 10-iodocamphor (right), for the isovalues 0.0020, 0.0020, and
0.0013, respectively.
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Figure 3.2: Integral cross section for 3BrC in the SE (red-dashed line) and SEP (black-full
line) approximations.

Figure 3.3: Lowest-lying virtual orbitals obtained with the 6-31G(d) compact basis set
(left panel) along with the MVOs obtained with the charge +8 (right panel), for 3BrC.
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The calculated ICS for 3BrC in the SE and SEP approximations are presented in Fig. 3.2.

The compact virtual orbitals obtained from the HF/6-31Gd, as well as the correspondent

MVOs are presented in Fig. 3.3. The ICS in the SE approximation displays two broad

structures around 3.0 eV and 5.1 eV. As expected, the inclusion of correlation-polarization

effects in the SEP approximation shifts the resonances to lower energies, namely 0.29 eV

(width of 0.126 eV) and 2.53 eV (width of 0.37 eV). The resonance characters can be

inferred from the virtual orbitals. As shown in Fig. 3.3, the LUMO and LUMO+1 have

an antibonding amplitude on the C=O bond, as well as on the C-Br bond, thus having

mixed π∗/σ∗ character. In spite of the π∗ admixture, the resonances will be labelled σ∗1

and σ∗2 in order of increasing energy.
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Figure 3.4: Integral cross section for 3IC in the SE (red-dashed line) and SEP (black-full
line) approximations.

Fig. 3.4 presents the calculated ICS for 3IC in the SE and SEP approximations. As in the

case of 3BrC, the ICS in the SE approximation has two broad structures around 2.2 eV

and 4.5 eV. In the SEP approximation, the lower lying anion state becomes bound by 0.10

eV, as indicated by the diagonalization of the scattering Hamiltonian represented in the

CSF basis. The second resonance is shifted to 2.00 eV and shows a more clear signature
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than in the SE level, having a width of 0.50 eV. We also analyzed the lowest lying VOs,

as shown in Fig. 3.5. The 3IC LUMO has a predominant σ∗ character, although with

some admixture of π∗ character, while the 3IC LUMO+1 has π∗ character. Following

these orbital characters, the anion states will be labelled σ∗ for the bound state and π∗

for the resonance.

Figure 3.5: Lowest-lying virtual orbitals obtained with the 6-31G(d) compact basis set
(left panel) along with the MVOs obtained with the charge+12 (right panel), for 3IC.

10-iodocamphor

The calculated ICS for the 10IC in the SE and SEP approximations are presented in

Fig. 3.6. The ICS in the SE approximation has two broad structures, as well as in the

3IC and 3BrC results, around 2.4 eV and 5.5 eV. In the SEP approximation, the first

resonance is shifted to 0.23 eV and has a width of 0.037, the sharpest resonance identified

in both molecules. The second resonance is shifted to 1.77 eV, having a width of 0.194

eV. In accord to lowest lying VOs, as shown in Fig. 3.7, the first anionic state is a σ∗

resonance, analogue that σ∗ bound state in 3IC. The second resonance is a π∗ temporary

state, similarly to that obtained in 3IC.
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Figure 3.6: The integral cross section calculated for 10IC. The black-full line is the SEP
level, while the red-dashed line is the SE level.

Figure 3.7: The two lowest-lying compact virtual orbitals with HF/6-31Gd and the cor-
respondent MVOs for the 10IC.
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3.3 Discussion

Table 3.1 summarizes the SMCPP results in the SEP level, along with the ETS data

for 3BrC [15] and the estimated energies of the lowest-lying anion states obtained with

M06-2X/aug-cc-pVDZ level. We also show vertical attachment energies (VAEs) obtained

from empirical corrections of the compact virtual orbital energies (VOEs), according to

Staley and Strnad [48] for π∗ resonances and Chen and Gallup [49] for σ∗ resonances. The

latter is expected to be less accurate, as learned from experience.

Table 3.1: Energies of anionic states and widths (in parenthesis), in eV, obtained with
the SMCPP method. States are labeled according to orbital character. Other results are
shown for comparison.

3-bromocamphor σ∗1 σ∗2

SMCPP 0.29 (0.126) 2.53 (0.37)

ETS data [15] 0.53 1.94

Scaled VOEs 0.03 1.71

M06-2X/aug-cc-pVDZ 0.36

3-iodocamphor σ∗ π∗

SMCPP -0.10 2.00 (0.50)

Scaled VOEs -0.23 1.09

M06-2X/aug-cc-pVDZ -0.05

10-iodocamphor σ∗ π∗

SMCPP 0.23 (0.037) 1.77 (0.19)

Scaled VOEs 0.26 1.10

M06-2X/aug-cc-pVDZ 0.429

In general, our calculations are in good agreement with previous results, as shown in

Table 3.1. The resonance positions obtained from the SMCPP method typically agree

within 0.3 eV with the ETS data. The estimated VAEs obtained from scaled VOEs are

close to the present scattering results. Considering the energy precision in our calculations,

the nature of the 3IC σ∗ state must be better understood. It is possible its energy

corresponds to a positive value, which implies in a resonance close to 0 eV. This aspect

is discussed later.

We can conclude that the polarization levels proposed are adequate, and that the
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calculated halocamphors anionic spectra are consistently described. Having said this, we

should discuss the resonances lifetimes estimated from the widths of the peaks in the

calculated ICSs. During the vibration of the anion states, the electronic ejection (auto-

ionization) and dissociation channels compete, where larger lifetimes (smaller widths)

favor the latter channel. Energies and widths of resonances should vary as a function of

the molecular geometry, particularly, the stretch of carbon-halogen bonds, although the

vertical widths provide important information on the lifetimes. The 3BrC σ∗1 and 10IC σ∗

resonances have the largest lifetimes, and they may allow for longer vibrational relaxation

times. The 10IC σ∗ lifetime (vertically ∼ 18 fs) is about 4 times larger than that of 3BrC

σ∗1 (∼ 5 fs), which could be expected to significantly enhance the dissociation rates of the

former molecule with respect to the latter. We bring to light one point concerning

the larger DEA asymmetry measured by Dreiling et al. [12]. Because 10IC has

a longer lifetime, it should have a larger DEA cross section, and therefore a larger DEA

asymmetry. The higher lying resonances (3BrC σ∗2, 3IC π∗ and 10IC π∗) have widths

around 0.5 eV, corresponding to small lifetimes (∼ 1 fs) that disfavor dissociation. The

shorter the lifetime, the greater the electron detachment probability, which eliminates the

dissociative process. In addition, those resonances lie above 1 eV, above the energy range

addressed in the DEA asymmetry experiments [12], although they give rise to broad peaks

in the transmission asymmetry measurements [1, 50].

3.3.1 Molecular dynamics

The investigation of other physical aspects of the molecule can help us to have a better

understanding about the experimental data. The elastic scattering calculations were

performed in the fixed-nuclei approximation using the optimal ground-state structures of

the target molecules. However, in a thermal gas the population of excited vibrational

states is significant, which can result in a different energy (and width) of the resonances.

The 3I bound state does not produce, in principle, resonances in vibrational excited

states that would trigger the dissociation through the C-I stretch. Nevertheless, because

the vertical bound energy is small in view of the thermical energy scale (see Table 3.1),

it is possible that the bound state becomes a resonance in slightly different geometries.

A molecular dynamics study was carried out to obtain a conformational sampling of

the possible geometries of the molecules. We performed a Born-Oppenheimer Molecular
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Dynamics (BOMD) study for the electronic ground states of the isolated iodocamphor

compounds at 353K. This simulation uses a classical molecular dynamics for the nuclei,

where the energy and the electron density are computed from quantum mechanical elec-

tronic structure methods [51]. The simulations reproduced the gas of molecules at the

same temperature used in the experiments of Dreiling et al. [12].

We employed the DFT method to describe the ground state using the PBE energy

functional with the pseudopotential GTH-PBE, a DZVP basis set (for C, O and H), and

a DZVP-MOLOPT-SR basis set for iodine, as implemented in the CP2K package [52].

The simulations used 70,000 steps with ∆t = 0.25 fs, after 10,000 thermalization steps.

The transient regime was identified analyzing the potential energy (Fig. 3.8a), although

temperature and kinetic energy reach a stationary regime well before that. We obtained

the auto-correlation function (C(t)) for potential energy (Fig. 3.8b). A total of 100

configurations equally spaced in time were obtained from the last 15 ps of the simulation,

from which we evaluated the VBEs and scaled VO energies.

The configurations from the 3IC BOMD simulation indicate an oscillation around the

equilibrium geometry. We considered the ensemble with 100 configurations to estimate

the vertical energy for each geometry using M062X/aug-cc-pVDZ, as shown in Fig. 3.9a.

About 24% of them have positive vertical energies, corresponding to a reso-

nance rather than a bound σ∗ state. This indicates that a significant population of

molecules in the experiment may attach electrons around 0 eV, forming a σ∗ resonance.

This state would have a low energy (with a correspondingly narrow width), which could

trigger dissociation and account for the DEA asymmetry observed experimentally. More-

over, VAE estimates for the π∗ resonance shows this state remains in the same energy

region, so that it does not contribute to asymmetry measurements.

The simulation for 10IC shows two representative configurations related to the dihe-

dral angle of the CCCI moiety (see Fig. 3.9b), where the first one is the chiral carbon

bonded to the oxygen. The dihedral angle has two typical values, which correspond to

an iodine position nearest to the oxygen atom, and a distant position, similar to the op-

timal neutral ground state (Fig. 3.9b). We estimate about 33% of the total population

in the first geometry. Despite the similar σ∗ VAE in these two equilibrium geometries,

the π∗ resonance in the first configuration is more stable. Using the scaled VOE, its

resonance energy decreases to 0.99 eV when compared to the previous value of 1.10 eV.
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Figure 3.8: 3.8a: Potential energies (in atomic units), for 10IC (black) and 3IC (red).
The blue dashed line represents the transient limit. 3.8b: The auto-correlation function
for 10IC and 3IC. The blue dashed line shows a 20% auto-correlation.
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Despite the stabilization of the π∗ resonance, it may not significantly contribute to the

DEA asymmetry below 0.6 eV [12].

With this investigation, we conclude that the 3IC σ∗ anion state should trigger the dis-

sociation process, but the situation is a little more complicated in this case. The formation

of the vibrational bound state by electron attachment should be accompanied by unlikely

vibrational transitions from eigenstates of the neutral molecule to the continuum of the

anion, therefore suppressing the elastic cross section. Nonetheless, electron attachment

can be considered a fast (vertical) process on the time scale of molecular vibrations, such

that the formation of the σ∗ resonance is possible for 3IC in principle, for short enough

carbon-iodine bond lengths. Once formed, the σ∗ state should undergo fast dissociation,

since the potential energy surface is strongly repulsive along the reaction coordinate at

the favorable attachment geometries; and the autoionization width is expected to be fairly

small, since the most likely energies of the σ∗ resonance are 0.1 eV.

Having established that, at the low energies of interest, DEA to the halocamphors

should essentially arise from the σ∗ resonances we can consider some aspects related

to the dissociation dynamics. In view of the anti-bonding character of the σ∗ states,

the expected anion fragments would be X− or [M−X]−, where X = Br, I, and [M−X]

indicates the abstraction of the neutral halogen atom from the halocamphor molecule,

such that M = 3BrC, 3IC, 10IC. While the experiments could not distinguish the anion

fragments[53, 12], the carbon-halogen bonds can be viewed as the reaction coordinates.

Here we addressed whether the main dissociation channel would produce X− or [M−X]−,

by computing zero-temperature energy thresholds for each reaction. We employed the

G4(MP2)[54] composite method for the case of 3BrC, which showed that the DEA signal

observed below 0.6 eV should stem from the Br− fragment (exothermic by −0.90 eV) but

not from [M−Br]− (endothermic by 0.96 eV). Since the standard basis sets employed in the

G4(MP2) protocol are not available for the iodine atom, for 3IC and 10IC we employed the

DFT/B3LYP/aug-cc-pVDZ method to optimize the structures and DFT/M06-2X/aug-

cc-pVDZ to evaluate the thresholds. The results indicate that the observed DEA signals

also arise from I− fragments (exothermic by −1.03 eV for 3IC and −0.71 eV for 10IC)

rather than [M−I]− (endothermic by 1.49 eV for 3IC and 2.03 for 10IC).
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Figure 3.9: 3.9a: 3IC VAE non normalized histogram. 3.9b: CCCI dihedral angle his-
togram for 10IC.
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Chapter 4

Transmission and DEA asymmetries

This chapter brings our results and discussion about the transmission and DEA asymme-

tries, obtained from applying the ECD theory formulated in Chapter 2 and the results

from scattering calculations presented in Chapter 3. It is divided in two sections, where

the first one concerns the transmission asymmetry. There, we obtain an estimated value

for the spin-orbit coupling for 3BrC from the experimental data, and reproduce the trans-

mission asymmetries for the iodocamphor species. In the subsequent section, we present

the DEA asymmetry for 3BrC and 10IC considering two different approximations, and

obtain a consistent relation of magnitude between them.

4.1 The transmission asymmetry

In this section, we discuss the evaluation of the transmission asymmetries for the halo-

camphor molecules. We applied the ECD formalism developed in Section 2.4, where we

derive the expression (2.5.28) from the Feshbach operator formalism including the spin-

orbit coupling. The transmission asymmetry is then expressed in the form

atrs(P0) ≈ −ρdP0
(2π)3

E
〈Re[W 0∗

ki
Uki

]〉 Γres
(E − Eres)2 + (1

2
Γres)2

,

where P0 is the spin polarization; ρ is the sample density and d is the sample thickness; E

is the incident electron energy, Eres and Γres are the vertical resonance energy and width,

respectively; Uki
is the entry amplitude matrix element and W 0∗

ki
is the spin-preserving

component of the spin-orbit coupling amplitude. The expression above was derived under

the following assumptions: (i) the fixed nuclei approximation; (ii) the operators W 0∗
ki

and
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Uki
do not depend on energy and vibrational coordinates; (iii) the local approximation for

the optical potential, that is, Vopt ≈ Eres − i
2
Γres; (iv) each structure in the transmission

asymmetry arises from only one resonance, without any interference among resonance

states. Our objective here is to present the results concerning the least-squares fit of

eq. (2.5.28) to the 3BrC electron transmission data (figure 4.1), reported by Mayer and

Kessler [1], and compare it with similar data obtained by Dreiling and Gay [50].

Figure 4.1: 3BrC transmission asymmetry data for the L- and D- species [1].

It should be clear that W 0
ki

is the object of interest, the matrix element that gives

the order of magnitude for the asymmetry. Estimating a value for this amplitude is

challenging and it is not feasible for us in this study. Nevertheless, we can obtain the

quantity 〈Re[W 0∗
ki
Uki

]〉 from the fit rather than W 0
ki

. The quantity of interest can be

written as

〈Re[W 0∗
ki
Uki

]〉 =
1

4π

∫
Ω

dΩki
|W 0∗

ki
||Uki
| cos δ(ki), (4.1.1)

where δ(ki) is the phase difference between W 0
ki

and Uki
. In the expression above, the

average over target orientations in the laboratory-fixed frame (indicated by the brackets)

is equivalent to an average over incident electron direction in the molecule-fixed frame.

We consider the relation between Γ and Uki
defined in eq. (2.5.13),

Γ(R,E) = 2π

∫
Ω

dk̂i|Uki
|2.

In view of eq. (2.5.13), we expect that 〈Re[W 0∗
ki
Uki

]〉 scales with Γ
1
2 , and can then estimate

70



the magnitude W of the spin-orbit coupling to evaluate

W ≡
〈Re[W 0∗

ki
Uki

]〉
Γ

1
2

. (4.1.2)

Since we assume that Γres is expressed in the local approximation, 〈Re[W 0∗
ki
Uki

]〉 can be

taken as only one optimized parameter in the fitting. Additionally, Γres and Eres are

adjusted to represent the width and energy position of the structure in the transmission

asymmetry. This construction allows us to obtain the spin-orbit term apart from the

Coulomb term, although it includes the relative phase between the spin-orbit and Coulomb

terms. In this construction, we neglect the phase dependence on the energy, considering

a fixed phase.

We must also take into account the experimental parameters, which are fundamental

to comprehend the magnitude of the asymmetry. The electron beam employed in the

Kessler transmission experiment had a 40% spin polarization asymmetry [1]. As we do

not have detailed information about ρd, it is replaced for log
(
I
I0

)
/Qtot using the Beer-

Lambert Law. The fraction I
I0

is the transmitted/incident current ratio, which would be

around 10%. The total cross section Qtot, which, at the low energy of interest, can be

reasonably approximated by the elastic integral cross section computed with the SMCPP

method and the Born Closure approach [18].

Finally, the expression to be applied in the non-linear fit is given by

atrs(E) =
log
(
I
I0

)
Qtot

P0
(2π)3

E

[∑
res

W Γ
3
2
res

(E − Eres)2 + (1
2
Γres)2

]
, (4.1.3)

where the sum is over the resonant states, although neglecting any interference among

them (sum over isolated resonances). We fit this expression for the total asymmetry

data, that is, Atot = aL − aD, and statistical uncertainties were obtained from σAtot =√
σ2
aL

+ σ2
aD

, as usual in uncertainty propagation.

4.1.1 Transmission asymmetry fit

We considered, to perform the fit, the energy region between 1.0 eV and 2.6 eV, where a

structure is found around 1.4 eV in the transmission asymmetry data. Here, we assumed

this structure arises from the σ∗2 transient state, without any contribution from other res-
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onances. The data below 1 eV is less accurate due to instrumental uncertainties [1], while

above 2.6 eV the data suggests a structure with no clear correspondence to resonances

in our calculations. The fitted curve for 3-bromocamphor Atot in this region is presented

in Figure 4.2. We obtained WBr = (5.0 ± 0.6) × 10−4 (eV)1/2. We notice that W
2

Br is

about 10−7 eV, which is consistent with the preliminar assumption O(V 2
SO)� O(V 2

C) ∼ Γ

considered in the formulation of the Feshbach formalism with spin-orbit coupling. The

least-square fit fails to reproduce the experimental data when the energy is between 1.0

eV and 1.1 eV, in which the data goes to zero rapidly as close as the energy is 1 eV.

The discrepancy between fitted curve and the data comes from the lower lying resonance

contribution, which produces a well, rather than a peak, in the asymmetry data. since we

are neglecting any contribution from other resonances, the expression is not designed to

predict the data behaviour (we discuss more about it below). In spite of this, the fitted

curve describes reasonably well the asymmetry above 1.1 eV.

Figure 4.2: Least-squares fit of the model in eq. (4.1.3) to the transmission asymmetry
data [1] for the 3BrC. The R2 coefficient and the value of the W model parameter are
shown on the top of the panel.

We assumed a proportionality between W I and WBr based on the expected dependence

of the Mott-scattering asymmetry on the atomic numbers [11], i.e, W I = (Z2
I /Z

2
Br)WBr.

As a result, we obtained (11.5 ± 1.4) × 10−4 (eV)1/2 for W I. We used the result of the

least-squares fit to estimate the transmission asymmetries for the iodocamphor isomers

and the scaling of the SO interaction with respect to the atomic number. A comparison

between asymmetries for the halocamphors is presented in Fig. 4.3. We also compared
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our results with those obtained by the Nebraska group [50]. Their data were taken with a

different set up from the Münster group, including different spin polarization (30%), elec-

tron beam attenuation (70%) and electron beam energy resolution (0.3 eV). We therefore

standardized the 3BrC data in order to compare them. The Münster results were rescaled

according to the polarization and attenuation employed by the Nebraska group applying

Astdtot = Atot

(
0.3

0.4

)(
log(0.3)

log(0.1)

)
, (4.1.4)

where the first and second parenthetical terms account for the corrections in polariza-

tion and attenuation, respectively. Finally, the results were convoluted, employing the

expression

Aconv
tot (E) =

∫ ∞
0

dE ′f(E ′ − E)Astdtot (E) (4.1.5)

to account for differences from the electron-beam energy resolution. In the expression

above, f(E ′ − E) is the energy distribution of the electron beam, which has typically

a Gaussian profile. It is worth to mentioning that the 3BrC data obtained by the Ne-

braska group is consistent with those obtained by the Münster group, which only differ in

magnitude due to these different experimental parameters [55]. The calculated transmis-

sion asymmetries for 3BrC, 3IC and 10IC were also rescaled and convoluted according to

eqs. (4.1.4) and (4.1.5), in order to be compared with the experimental data obtained by

Dreiling et al [50].
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Figure 4.3: Convoluted transmission asymmetries calculated for 3-bromocamphor (top
panel) and 3IC (central panel) and 10IC (bottom panel). The shaded areas indicates their
standard deviation. Experimental data by the Nebraska group [50] are represented as blue
circles, and the grey circles in the center panel represent similar data with reversed sign.
The 3-bromocamphor data by the Münster group [1] are represented as orange squares.

The rescaled and convoluted asymmetries obtained for the halocamphor molecules are

in qualitative agreement with the experimental data. The agreement between the

magnitude of the calculated asymmetries and the experimental data indicates our model,

although simplified, is able to predict reasonably well the chiral sensitivity, since the

elastic integral cross section and the resonance parameters are sufficiently well described.

As one can notice in the top panel of Fig. 4.3, the calculated asymmetry for 3BrC is

74



overestimated in relation to both data sets. This difference comes from the convolution

process, in which the original calculated transmission asymmetry is overestimated close

to 1 eV (see Fig. 4.2). The overlap between the overestimated asymmetry and the

energy distribution f(E ′ − E) in this energy region is significant and its contribution

is systematically summed along the convolution integral. Similar behavior can occur

for the calculated 10IC asymmetry, in which the result is overestimated compared to

experimental data. On the other hand, the small amount of data reported for 3IC and

10IC in the resonance energy region, as well as the energy resolution (about 0.3 eV) close

to the resonance widths, restrict us to a qualitative discussion concerning the iodocamphor

transmission asymmetries. The ratio of the maximum calculated asymmetry for 10IC and

3BrC (estimated at 3.6) is also consistent with the experimental one (between 1.8 and 4.2),

therefore the overestimated calculated asymmetries do not compromise our investigation.

When we inspect the data by Munster group, it is clear that the asymmetry changes

sign below 1 eV. This could occur due to a different phase δ(k) in the energy region of

the σ∗1 resonance, providing a structure with a well profile at around 0.7 eV. Similarly,

a sign change is also noted in the DEA asymmetry for 3BrC, but with energy below 0.5

eV (see Fig. 1.7). The energy dependent phase factor between W 0
ki

and Uki
, given in eq.

(4.1.1), could account for the change in sign. More generally, the phase difference between

the resonant and the background terms can affect the cross section (and therefore, the

asymmetry) dependence on the energy, producing peaks or wells. As a first approximation,

we could consider a fixed phase for energies above 1 eV that corresponds to a positive W ,

while the phase for energies below 1 eV corresponds to −W . From this simple model, we

estimate the transmission asymmetry for energies below 1 eV, presented in Figure 4.4.

We evaluated eq. (4.1.3) with the obtained W for the iodine and bromine atoms, as well

as the energy and width of the first resonance for both 3BrC and 10IC, given in Table

3.1. The asymmetries were obtained with the same experimental parameters employed

by the Nebraska group, and were convoluted as described above. We estimate the 10IC

maximum asymmetry is about twice the 3BrC maximum asymmetry, which indicates the

magnitude of asymmetry should depend not only on the spin-orbit coupling, but also on

the resonance position and width. The experimental data are significantly less accurate

below 1 eV, so any interpretation about the results would be just a conjecture, without

experimental data to support the arguments. Even so, our results are useful for the DEA
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asymmetry calculation, discussed in the next section.

Figure 4.4: Calculated transmission asymmetry for 3-bromocamphor and 10-
iodocamphor, for energies below 1 eV.

4.2 DEA asymmetry

As discussed in Section 2.4, the ECD formalism also allows us to derive the expression

for the DEA asymmetry in eq. (2.4.30), reproduced below:

ADEA = 0.3 [αDEA + 0.69atot]. (4.2.1)

The expression above was obtained from the spin polarization (∼ 30%) and beam atten-

uation (∼ 50%) used in the experiments of the Nebraska group [53, 12]. In the expression

above, atot is the total scattering asymmetry,

atot =
Q+
tot −Q−tot

Q+
tot +Q−tot

≡ ∆Qtot

Qtot

, (4.2.2)

which can be associated with the transmission asymmetry discussed in the previous sec-

tion,

atrs = P0ρd∆Qtot ⇒
∆Qtot

Qtot

=
atrs

P0 log
(
I
I0

) , (4.2.3)
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by using the Beer-Lambert Law. The other term in eq. (4.2.1) is the dissociation proba-

bility asymmetry, αDEA, which can be approximated as

αDEA =
(Q+

DEA/Q
+
tot)− (Q−DEA/Q

−
tot)

(Q+
DEA/Q

+
tot) + (Q−DEA/Q

−
tot)
≈ Q+

DEA −Q
−
DEA

Q+
DEA +Q−DEA

≡ aDEA, (4.2.4)

since Q+
tot/Q

−
tot ≈ 1. We remember that Q±DEA is the dissociation cross section, and ±

indicate the longitudinal projections of the incident electron spin. We assume the total

cross sections to be averaged over the molecular orientations, therefore it does not depend

on k̂i. The spin-dependent DEA cross section Q±DEA can be obtained from the Feshbach

formalism, as shown in Section 2.5. It is expressed as

Q±DEA =
2π3

E
|T±DEA|

2, (4.2.5)

where T±DEA is the DEA scattering amplitude with the spin-orbit coupling included.

Therefore, estimating the DEA scattering amplitude is required to compute the DEA

asymmetry.

Let us consider the pseudo-diatomic model, as proposed earlier, where all vibrational

coordinates but the reactive coordinate C–X bond are kept fixed. In this case, the T-

matrix element for the C–X bond breaking DEA reaction can be expressed as

T±DEA ≈
(
µ

K

)1/2

lim
R→∞

eiKR
[
〈R| 1

E − Tnuc − V (+)
opt

Uki
|νi〉

± 〈R| 1

E − Tnuc − V (+)
opt

W 0
ki
|νi〉
]
≡ T0 ± T1,

(4.2.6)

where µ, R, K are the reduced mass of the products, the reaction coordinate and its

linear moment, respectively, and Tnuc is the nuclear kinetic energy operator. The above

expression combined with eq. (4.2.5) gives

aDEA =
2 Re(T ∗1 T0)

|T0|2 + |T1|2
. (4.2.7)

The two ADEA components aDEA and atrs come from the fragment and electron cur-

rents, respectively, where the first should be the largest one. We expect aDEA about 10−3

for a DEA asymmetry around 10−4, while atrs is about 10−4 according to the experimen-

tal data. In the following, we evaluate aDEA for 3-bromocamphor and 10-iodocamphor
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in two different ways. The first one employs the Condon approximation, which could be

viewed as questionable, but provides qualitatively correct information on the asymme-

try ratio for 3BrC and 10IC from inexpensive calculations. The second one is based on

more elaborate DEA simulations, along the lines of studies reported by W. Domcke and

coworkers [40, 56]. We do not present results for 3-iodocamphor since the fact that the σ∗

resonance is vertically bound for 3IC makes the DEA models more complicated for this

system (see below). We believe our main conclusions can be drawn from the comparison

between 3BrC and 10IC.

4.2.1 Condon approximation

We propose a simple approximation to obtain a first estimate for the DEA scattering am-

plitude. We invoke the Condon approximation, in the sense of the electronic transitions,

and therefore the operators W 0
ki

and U0
ki

are assumed vertical, and thus independent of

nuclear positions. This means that W 0
ki

and U0
ki

are just complex numbers, denoted as

U and W , and do not depend on the energy or the reaction coordinate. This way, T±DEA

becomes

T
±(Condon)
DEA =

(
µ

K

)1/2

lim
R→∞

eiKR
[
U〈R| 1

E − Tnuc − V (+)
opt

|νi〉 ±W 〈R|
1

E − Tnuc − V (+)
opt

|νi〉
]

=

(
µ

K

)1/2

(U ±W ) lim
R→∞

eiKR
[
〈R| 1

E − Tnuc − V (+)
opt

|νi〉
]
,

(4.2.8)

such that eq. (4.2.7) simplifies to

a
(Condon)
DEA =

2 Re(W ∗U)

|U |2 + |W |2
. (4.2.9)

In the expression above, the numerator is identified as the quantity 〈Re[W 0∗
ki
Uki

]〉 which

could be obtained from the transmission asymmetry fit and associated to eq. (4.1.2), as

discussed in the last section. In the denominator, the term |U |2 is related to Γ as expressed

in equation (2.5.13). Therefore, the resonance width is predominant in the denominator

as it is significantly larger than |W |2. The quantity aDEA in the Condon approximation

becomes
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a
(Condon)
DEA = 4πWΓ−

1
2 , (4.2.10)

which does not depend on the collision energy, since Γ and W are described in the local

approximation. As a consequence, the approximation does not describe the energy de-

pendence of the dissociation asymmetries, but it can provide crude upper bounds values

for aDEA and, consequently, for the DEA asymmetry ADEA.

Table 4.1 presents the values for W and Γ, as well as a
(Condon)
DEA obtained with eq.

(4.2.10) for 3-bromocamphor and 10-iodocamphor. We employed the widths of the first

resonances (σ∗1 for 3BrC and the σ∗ for 10IC) obtained from the SMCPP calculations. The

DEA asymmetry in the Condon approximation was obtained employing eq. (4.2.1). We

used the maximum values of atot from eq. (4.2.3) and from the transmission asymmetries

calculated in the previous section (Fig. 4.4). Table 4.2 presents the components a
(Condon)
DEA

and atot, and compares the values of A
(Condon)
DEA with the maximum DEA asymmetries

experimentally observed [12].

Table 4.1: Values for W , the σ∗ resonances widths Γ (in eV), and aDEA obtained in the
Condon approximation.

W (10−4) Γ a
(Condon)
DEA (×10−4)

3-bromocamphor 5.0 0.126 177

10-iodocamphor 11.5 0.037 749

Table 4.2: Values for ADEA and its components in the Condon approximation (multiplied
by 104). Observed maximum DEA asymmetries [12] are also shown for comparison.

a
(Condon)
DEA a

(max)
tot A

(Condon)
DEA A

(exp)
DEA (×104)

3-bromocamphor 177 2.8 54 4
10-iodocamphor 749 5.5 226 16

Firstly, we would like to discuss the DEA asymmetry ratio between 3-bromocamphor

and 10-iodocamphor. We note in Table 4.1 that the ratio for our calculations is consistent

with those noted by Drailing and Gay. The agreement can be understood since W I is

about twice WBr while the resonance width for 3BrC is about three times the one

for 10IC. When these values are combined as it is shown in eq. (4.2.10) and (4.2.3), the

10IC/3BrC asymmetry ratio is evaluated as 4.2, in good agreement with those obtained
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experimentally. The calculated DEA asymmetries are overestimated with respect to the

experimental data by one order of magnitude. The discrepancy in the absolute ADEA

values arises from the many approximations underlying the results in Table 4.1: (i) the

parameter W obtained from the fit is overestimated, as discussed in the previous section

and noted in Fig. 4.3; (ii) the relative phase between W 0
ki

and U0
ki

for the σ∗ resonances

was neglected. As we do not have any information to check this quantity, the term

〈Re[W 0∗
ki
Uki

]〉 could be significantly smaller.

As already pointed out, the Condon approximation only provides a rough estimate for

ADEA. To obtain more accurate values it is necessary to consider dissociative dynamics

accounting for a potential energy curve along the reaction coordinate for the anion states,

along with the geometry dependence of the resonance width as the vibrational wave packet

evolves in time.

4.2.2 Dissociative dynamics of the transient anion

We propose a time-dependent approach to describe the dissociative electron attachment

dynamics. The methodology is based on by studies developed by Domcke and co-workers

[24, 40, 56, 57], in which the time-dependent wavefunction description contains the com-

plete information on all resonant scattering amplitudes. Our contribution in this study is

the inclusion of the spin-orbit coupling in the dynamics to obtain the energy-dependent

scattering amplitude matrices T0 and T1.

Theoretical Background

The TNI time-dependent wave package (WP) evolves according to the projected equation

of motion (EOM) onto the diabatic discrete space Q. The WP propagation is evaluated

employing the local approximation (see eq. (2.5.14)), and the EOM is written as [57]

i
∂

∂t
ξ

(+)
d (R, t) =

[
TN + Vr(R) + ∆L(R)− i

2
ΓL(R)

]
ξ

(+)
d (R, t), (4.2.11)

where ξ
(+)
d (R, t) is the anionic state projected on Q in the R−space, as presented in eq.

(2.5.16). In this case, ξ
(+)
d depends on the reaction coordinate R since the pseudo-diatomic

model is employed. The optical potential in the local approximation has the real com-

ponent Vr(R) represented by the anionic potential energy curve (PEC), responsible for
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the WP propagation. The imaginary component is given by Vi = ΓL(R)
2

, accounting for

the autoionization. Ideally, the description of ΓL(R) requires several solutions for the

scattering problem, mapping the autoionization in different reaction coordinate values.

Performing several scattering calculations for the halocamphors is computationally de-

manding. Rather than do this, we employed an alternative fashion to account for the

spatial dependence of the autoionization [58], given by

ΓL(R) = [Vr(R)− V0(R)]
Γ0

E0

, (4.2.12)

where V0(R) is the neutral ground state PEC, Γ0 is the vertical resonance width and E0

is the vertical resonance energy.

For our proposes, the initial condition of the WP is the formation of the TNI state,

when the neutral vibrational ground state |νi = 0〉 couples with the continuum of the in-

cident electron. Usually, electron attachment and detachment are mediated only through

Uk, but in our model it also occurs mediated through W 0
ki

. Thus, the electron attachment

forms two anionic states simultaneously,

ξ
(0)
d (R, t = 0) = Uki

ν0(R) (4.2.13)

and

ξ
(1)
d (R, t = 0) = W 0

ki
ν0(R), (4.2.14)

where ν0(R) = 〈R|νi = 0〉. As it was employed for the WP propagation, we can use

the local width to account for the probability of attachment and autodetachment. In

this approximation, which is called local-complex-potential (LCP) approximation [59],

eq. (2.5.13) becomes

ΓL(R) = Γ(R,E(R)) = 2π

∫
dΩki
|Uki
|2. (4.2.15)

The initial condition is then given by

ξ
(0)
d (R, 0) =

[
ΓL(R)

2π

] 1
2

ν0(R) (4.2.16)
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and

ξ
(1)
d (R, 0) = Wν0(R), (4.2.17)

where the average over target orientation in the laboratory-fixed frame (or over incident

electron direction in the fixed-molecule frame) is assumed. In the same sense, W is em-

ployed rather than the spin-orbit term W 0
ki

, according to eq. (4.1.2). The DEA scattering

amplitude in the LCP approximation is then written as

T
(LCP)
DEA =

(
K

2πµ

) 1
2

lim
R→∞

e−iKR

[∫ ∞
0

dt ξ
(0)
d (R, t)e−iEt

+

∫ ∞
0

dt ξ
(1)
d (R, t)e−iEt

]
,

(4.2.18)

where the WP has evolved sufficiently in time (t → ∞), and the reaction products are

sufficiently separated (R → ∞). LCP produces adequate results to calculate DEA and

inelastic vibrational cross sections, similar to those obtained with full nonlocal descrip-

tions, as long as the resonance width is sharp and the resonance position is sufficiently far

from the collision threshold. Nevertheless, LCP tends to overestimate the cross sections

when the resonance width overlaps the collision threshold [60]. One can improve the de-

scription of the WP dynamics using a semi-local approximation [40, 57], which preserves

the energy-dependence of the resonance width Γ(R,E) in the attachment and autode-

tachment probabilities. In the semi-LCP approximation, the separability of the energy

and R dependence of Γ it is assumed:

Γ(R,E) = γ(E)ΓL(R), (4.2.19)

where γ(E) accounts for the continuum N + 1 electron and the discrete neutral state

coupling.

The Coulomb and spin-orbit potentials are not dependent on the collision energy,

which is only accounted for in the continuum component of WP. Since the spin-orbit po-

tential is significantly smaller than the Coulombic one, this component should be essen-

tially the same for ξ
(0)
d (R, t) and ξ

(1)
d (R, t), and accounted for γ(E). We define a modified

WP ξ̃(R, t) with an energy-independent initial condition to be propagated, while the WP

on an instant t carries the energy-dependent autoionization probability [57]. Thus, the
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spin-orbit independent component of WP is written as

ξ̃d
(0)

(R, t) =

[
γ(E)

2π

]− 1
2

ξ
(0)
d (R, t). (4.2.20)

with the initial condition

ξ̃d
(0)

(R, 0) = g(R)ξ
(0)
d (R, t). (4.2.21)

In the same sense, we modify the spin-orbit term to account for the energy-dependent

autodetachment probability,

W̃ (E) = W
γ(E)

γ(E0)
, (4.2.22)

which becomes to W when the electron attachment is the vertical energy E0, restoring

those employed in the previous results.

For low-energy resonances, and specially the shape-type, the energy dependence of Γ

is strongly governed by Wigner’s threshold law [61]. We parametrize γ(E) in accordance

with the threshold law [57] as

Γ(E) = A(E/B)l+
1
2 exp(−E/B), (4.2.23)

where l represents the lowest partial wave into which the resonance can decay, which we

consider to be s-wave. The parameters A and B were obtained from least-squared fits of

Breit-Wigner profiles δsum(E) = δres(E) + δbg(E) to the eigenphase sums, calculated with

SMCPP methodology. We employ the parameterisation δres = −atan[γ(E)/2(E −Eres)],

and second-degree polynomials to model the background components δbg(E). The DEA

scattering amplitude in the semi-LCP approximation is obtained as

T
(semi-LCP)
DEA =

[
γ(E)K

4π2µ

] 1
2

lim
R→∞

e−iKR

[∫ ∞
0

dt ξ̃d
(0)

(R, t)e−iEt

+

∫ ∞
0

dt ξ̃d
(1)

(R, t)e−iEt

]
.

(4.2.24)

Once T
(LCP)
DEA and T

(semi-LCP)
DEA are evaluated, we are able to obtain the DEA cross section

QDEA, as well as aDEA, in both LCP and semi-LCP approximations, through the equations

(4.2.5) and (4.2.7), respectively.

Below we present the model for the potential energy curves, the the disosciative dy-
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namics results, the comparison of DEA cross sections in the two approximations and,

finally, the convoluted DEA asymmetry for 3-bromocamphor and 10-iodocamphor.

Dynamics Calculation

A harmonic potential was employed for the neutral PECs V0(R) and a single-exponential

dissociative curve for the anion PECs. We performed subsequent bond state calculations

for different C-X bond lengths (rigid scan), which for each bond stretching we employed

the DFT/M06-2X method with the aug-cc-pVDZ basis set. The curve parameters were

obtained employing least-square fits to the rigid scan results. PECs were constructed

with 16,384 points in the spatial grid and a 0.002 Angstrom step. The fitted curves and

results from quantum calculations are shown in Fig. 4.5 for both molecules.

(a) (b)

Figure 4.5: PECs obtained from least-square fit to energies of neutral and anion states.
Circles represent the energy states (in eV) obtained employing M06-2X/aug-cc-pVDZ
methodology. The left panel contains the results for 3BrC, while the right panel shows
the results for 10IC.

The WP was propagated employing a split-operator algorithm with a Fast Fourier

Transform (FFT) algorithm with 32,768 discrete points in the time grid, and a time-step of

0.6 fs. The exponential curves obtained for the anion states represent the real component

of the optical potential in the LCP approximation, while the imaginary component is

obtained by eq. (4.2.12). The real and imaginary components of the optical potential

are shown in Fig. 4.6, as well as the neutral PEC, for both molecules, along with the

region representing a bound state regime. For bond lengths larger than a specific value,

the neutral PECs have energy above their correspondings real components, characterizing

anionic bound states. When the state becomes stable, the imaginary component vanishes,
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and the molecule dissociates.

Analyzing real and imaginary components allows us to predict a larger DEA cross

section for 10IC, compared with 3BrC, since the dissociative process concerns the com-

petition between the autoionization (WP population decay) and energy stability of the

fragmented molecule state. The real component shows how fast the WP tends to move

towards dissociation the dissociation process, where more steep curves imply more repul-

sive potentials. Thus, comparing the real components of the two molecules, it is expected

that 10IC dissociates faster than 3BrC. In turn, since the imaginary component is re-

sponsible for the WP population decay, the smaller its magnitude is, the larger the WP

survival probability, therefore 10IC WP has a higher probability to survive during the

WP propagation until it becomes stable.

(a) (b)

Figure 4.6: Real and imaginary components of the optical potential in the local approxi-
mation, and the neutral PEC for comparison. The shaded area indicates the region where
the anion state is bound. Left panel contains the curves for 3BrC, while the right panel
presents the curves for 10IC.

Fig. 4.8 presents the results of the dynamics calculations for both molecules. Fig.

4.7a and 4.7b show the evolution of the squared modulus of WP during the first 40 fs.

We observe that the magnitude of the 10IC WP is consistently larger than the 3BrC

WP in all time instants, which confirms the WP survival probability is larger for 10IC.

Fig 4.8a shows a comparison between the expectation value of the reaction coordinates

〈ξ(+)
d (R, t)|R|ξ(+)

d (R, t)〉. Our results show that 3BrC dissociates after about 20 fs, while

10IC presents a faster process, at about 15 fs. Fig 4.8b presents the DEA cross section

obtained in both LCP and semi-LCP approximations. The DEA cross sections obtained

in LCP approximation are five times larger than the cross sections obtained with the
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semi-LCP approximation, indicating the overlaps between resonance width and energy

resonance threshold is significant. Even so, 10IC DEA cross section magnitudes are

about three times higher than the 3BrC DEA cross sections, in both LCP and semi-LCP

approximation, confirming that 10IC produces more ion fragments than 3BrC.

(a) (b)

Figure 4.7: Evolution of probabilities (squared modulus of the WPs) in the first 40 fs. The
shaded areas indicates the anionic bound state region. The left panel shows the curves
for 3BrC, while the right panel presents the curves for 10IC.

(a) (b)

Figure 4.8: Results of the dynamics calculation for 3-bromocamphor and 10-iodocamphor.
Top panels show the evolution of probabilities (squared modulus of WP) for the first 40 fs.
Top-left panel shows the curves for 3BrC, while the top-right panel presents the curves for
10IC. The shaded region indicates the anionic bound state region. Bottom panels show the
results obtained employing the LCP and semi-LCP approximations. Bottom-left panel:
Averaged trajectory of WP in time for 3BrC and 10IC. The blue and gray segmented
lines(3BrC and 10IC, respectively) represent the threshold for the bound states. Bottom-
right panel: DEA cross sections in the LCP approximation rescaled by 0.2 (segmented
lines) compared with the semi-LCP approximation (full lines).
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Dissociation asymmetry

The inclusion of the SO coupling in the dynamics allows us to calculate aDEA energy

dependence, as well as the DEA asymmetry according to eq. (4.2.7). Calculated aDEA

obtained with LCP and semi-LCP approximations are presented in Fig 4.9, for both

molecules. The results obtained with LCP consistently present smaller magnitudes, since

|T0| in the denominator is systematically larger in this approximation than in the semi-

LCP approximation, as shown in Fig 4.8b. The quantity aDEA represents to be major

component in the DEA asymmetry and is estimated, in the LCP approximation, from 10

to 100 times larger than the transmission electron component atrs. The results for 10IC are

systematically larger than those for 3BrC (three to four times), which is consistent with

the ratio observed in the experimental results [12]. However they are systematically above

the expected magnitude. Based on the maximum magnitudes observed experimentally,

4× 10−4 for 3BrC and 16× 10−4 for 10IC, and the spin polarization employed (30%), we

would be expect aDEA up to 13 × 10−4 and 53 × 10−4 for 3BrC and 10IC, respectively.

The magnitude of the calculated results are 5 times larger in LCP and 10 times larger

in semi-LCP. The calculated aDEA has a maximum magnitude at 0 eV, decreasing as the

collision energy increases. The calculated aDEA is minimal near the threshold energy of

the indirect dissociation process (TNI formation in the π∗ and internal combination to

σ∗). Close to this energy (about 0.7 eV, see Chapter 3) the DEA cross section goes to

zero (T0 and T1 ∼ 0), and the unlikely fragment production implies small asymmetry.

For energies close to 0 eV the DEA scattering amplitude T0 tends to zero, as we observe

the calculated DEA cross section in Fig. 4.8b. However, the DEA scattering amplitude

T1 tends to zero less dramatically than T0, resulting in a non-zero asymmetry for nearly-

zero energy of electron impact. Small variations in the denominator (essentially |T0|2)

produce spurious structures in the curves, mainly in 10IC. These structures come from

numerical instabilities during the WP propagation due to the time step size and spatial

grid. More refined time and space grids were tested to obtain smoother curves, but

the computational cost increases exponentially since FFT requires grids proportional to a

power of 2. Although the improvement of the numerical model would significantly increase

the computational effort, it would not be expected to modify our conclusions.

87



Figure 4.9: aDEA asymmetry calculated in the LCP (segmented lines) and semi-LCP (full
lines) approximations, for 3BrC (blue lines) and 10IC (black lines).

We convoluted the aDEA obtained with LCP using the same experimental parameters

applied in section 4.1. The convolutedADEA is obtained from the summed components atrs

and aDEA according to eq. (4.2.1) and compared with the experimental results reported by

Dreiling and Gay in Fig 4.10. Although the present results are overestimated compared to

the experimental data, the ratio of the maximum calculated asymmetry for 10IC and 3BrC

is 4.0, in good agreement with the reported by Dreiling and Gay. We conclude that

the TNI lifetime, the energy of attachment and the typical dissociation times,

characteristics of the electron attachment and the dissociation dynamics, are

preponderant on the DEA asymmetry, and not only the spin-orbit coupling

strength, which scales as Z2. Our main contribution in this study is hopefully helping

to answer “why the DEA asymmetry for 10IC is anomalously larger than for 3BrC”.

10IC has a higher electron attachment probability, forms a TNI with longer lifetime and

dissociates faster, besides the fact that it has a heavier halogen substituent than 3BrC.
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Figure 4.10: Convoluted DEA asymmetry calculated with the LCP approximation for
10IC (dark line) and 3BrC (blue line). Black and blue circles represent, respectively, the
10IC and 3BrC experimental values [12].

The calculated DEA asymmetries are about overestimated by a factor of three when

compared with the experimental data. With the improved calculation using semi-LCP

approximation, our results present magnitudes even larger, indicating how challenging

it is obtaining accurate asymmetries. Besides that, the fragment current purity in the

experiments should impact the magnitude of the data. The experimental setup employed

by Dreiling and Gay does not perfectly distinguish anion fragments and electrons in the

current asymmetry, where an electronic transmitted current could compose up to 20%

of the total collected current [53]. In addition, the experimental setup would account

for a current composed by the negative molecule species (parent anion), which could be

present according to our calculations [41] (see Chapter 3). These two currents compose a

background in the DEA asymmetry measurements and may result in a magnitude smaller

than data obtained from a purely ion fragment current. Since we do not account for these

background currents in our calculations, our calculations result in an overestimated aDEA,

and consequently an overestimated DEA asymmetry.

The convoluted 10IC ADEA presents a decreasing curve as the energy increases, with

maximum values between 0.0 eV and 0.1 eV, which is consistent with the experimental

data. The calculated 3BrC asymmetry presents a similar pattern that does not agree
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with experimental results. The sign change in the data has an unclear nature, remaining

an unanswered question about the DEA asymmetry observed by Dreiling and Gay. An

investigation concerning the spin-orbit coupling would be an important contribution to

clarify this aspect, better describing the relative phase between Uk and Wk.
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Chapter 5

Conclusions

We presented a study showing that the characteristics of the transient negative ion species

formed by the electron attachment has a fundamental role in the chiral sensitivity in halo-

camphor molecules. Our investigation is based on experimental results reported by Mayer

and Kessler [1], as well as Dreiling and Gay [12]. The second experiment produced in-

triguing results for the dissociative electron attachment asymmetry for 3-bromocamphor,

3-iodocamphor and 10-iodocamphor, demanding a description of the electron attachment

and dissociation process.

Our work consisted of a three step investigation. The first step was the most compu-

tationally expensive, in which we characterize the anionic states of the three halocamphor

molecules. We performed electron scattering calculations, combined molecular dynamics

and bond state calculations, as well as employed composed quantum chemistry meth-

ods, in order to characterize the dissociation mechanisms of interest for the halocamphor

species. We show that the dissociation is triggered by electron attachment in the low-

lying σ∗ resonances, in the energy range considered in the experiments performed by

Dreiling and Gay [12]. We understand that only these low-lying states should give rise to

direct dissociation mechanisms (σ∗ resonance formation followed by C-X stretch, where

X = Br−, I−). The scattering calculations indicate resonance widths compatible with

the related magnitudes of 3BrC and 10IC DEA asymmetries, and the more efficient dis-

sociation explains the fourfold difference between the maximum DEA chiral asymmetries.

However, our calculations indicating the dissociation for 3IC is a more complicated pro-

cess. The σ∗ state only has a resonance character for short bond lengths, suggesting the

vibrational suppression of the attachment cross section for this molecule. The twofold
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difference between the DEA asymmetries of the iodocamphor isomers could be related to

the partial suppression of the cross section for electron attachment to 3IC, compared to

10IC.

For a more enlightening understanding of the asymmetries nature, an investigation of

the dissociation process was required, allowing us to quantify and compare the anionic

fragment production between the halocamphor compounds. The inclusion of spin-orbit

coupling in the electron scattering problem is fundamental to reproduce the transmission

and DEA asymmetries. The second step of our investigation was the formulation of a

model for the spin-dependent electron scattering problem. Describing the dissociative

electron attachment process is challenging, mainly for not-so-simple molecular structures

like the halocamphors. We employed the well-known Feshbach formalism for the electron

attachment process, using a simplified model assuming a pseudo-diatomic approximation

and the local dependence of the resonance width in a single vibrational coordinate (C-X

stretch) [40]. The novelty we bring is the spin-orbit coupling inclusion, and the formula-

tion of the spin-dependent scattering and DEA matrix amplitudes. We also designed a

model to account for the transmission and DEA asymmetries based on the formulation

of the transmission asymmetry. We therefore have all the ingredients to understand the

observed transmission and DEA asymmetries [1, 12, 50] and the relation of the magnitude

asymmetries for the halocamphors.

The third step of the investigation was employing the developed model for the trans-

mission asymmetry and estimating a feasible value for the spin-orbit coupling. Above 1

eV, resonances with a π∗ character are found in the iodocamphor molecules, as well as a

mixed σ∗/π∗ resonance in 3BrC. They give rise to the transmission asymmetry peaks ex-

perimentally observed [1, 50]. We reproduced the transmission asymmetries and obtained

good agreement with the experimental data. In the following, we performed simula-

tions for the anionic states, where the dissociation mechanism of 3BrC and 10IC could

be explored considering only the stretch of the halogen bond. We investigated how the

molecules dissociate and how fast each compound evolves to the halide elimination. The

dependence of the width of a resonance on the geometry of the molecule can be decisive

when determining the DEA and electron scattering cross sections. As the vibrational re-

laxation takes place, the anionic state energy stabilizes and the width narrows down. This

is directly related to the derivatives of the potential curve of the resonance as a function
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of the stretching of the reaction coordinate. As the absolute values of the derivatives in-

crease, the rate at which the resonance widths go to zero also increases, resulting in larger

DEA cross sections. Finally, we reproduce the DEA asymmetry for 3BrC and 10IC. We

obtained results from three different approximations employed, with different levels of

accuracy. Our results are overestimated in comparison with the experimental data, point-

ing out how challenging the phenomenon of chiral sensitivity on the degradation species

is. Nevertheless, we systematically obtained a 10IC DEA asymmetry from three to four

times larger than the 3BrC, confirming that the character of the resonance, as well as the

lifetime and topology of the TNI are deeply important in the DEA asymmetry. Our main

contribution helpfully provides an understanding of the anomalously large asymmetry for

10IC.
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