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Abstract
This dissertation started as a review of the relation between deformations of straight

Wilson lines in N = 4 super Yang-Mills theory and conformal field theory (CFT) cor-
relators of local operators inserted along that Wilson line, which can then be thought
of as a defect defining a defect CFT. These deformations/correlators capture interesting
physical content, such as the Bremsstrahlung function of the theory. The work evolved
subsequently to trying to extend this relation to the case of the ABJM theory in three
dimensions. I start by recalling all the necessary ingredients to understand this relation
and perform the corresponding calculations, from the basics of CFTs and CFTs with de-
fects/boundaries to the study of (supersymmetric) Wilson loops in the theories mentioned
above. With this groundwork in place, I set up the analysis of 2- and 3-point functions of
so-called displacement operators inserted along a 1/2 BPS Wilson line of ABJM theory.

Keywords:
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Resumo
Esta dissertação começou como uma revisão da relação entre deformações de linhas

de Wilson na teoria de N = 4 super Yang-Mills e funções de correlação de teoria de
campos conformes (CFT) feitas de inserções de operadores locais ao longo daquela linha
de Wilson, que pode então ser pensada como um defeito definindo uma CFT com defeito.
Estas deformações/funções de correlação capturam conteúdo f́ısico interessante, como por
exemplo a função Bremstrahlung da teoria. O trabalho evoluiu posteriormente a uma
tentativa de estender aquela relação para o caso da teoria ABJM em três dimensões. Eu
começo recordando todos os ingredientes necessários para entender essa relação e executar
os cálculos correspondentes, desde o básico de CFTs e CFTs com defeitos/barreiras até
o estudo de laços de Wilson (supersimétricos) nas teorias mencionadas acima. Com essas
bases colocadas, eu monto a análise das funções de 2- e 3- pontos dos chamados operadores
deslocamento inseridos ao longo da linha de Wilson 1/2 BPS da teoria ABJM.

Palavras-chave:
CFT, CFT com defeito, laços de Wilson deformados, operador deslocamento
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Introduction

Conformal field theories (CFT) play a central role in physics, from high energy physics and

string theory to condensed matter theory and the description of critical phenomena (see

[1–5] for an overview). Moreover, conformal symmetry was found to play a central role in

the duality between gauge theory and gravity, also known as the AdS/CFT correspondence

[6]. The theories relevant in this context also enjoy supersymmetry (see [7]) and are called

superconformal field theories (SCFT), see [8]. The prototypical examples of such theories

in 4 and 3 space-time dimensions are called N = 4 super Yang-Mills (SYM) [9, 10] and

N = 6 super Chern-Simons-matter, or ABJM (see [11]) theory, respectively.

An important class of non-local operator that can be studied in these SCFTs is given by

supersymmetric Wilson loops (see [12–17]). These are fundamental observables of a the-

ory, capturing its global features, and knowing as much as possible about them represents

something valuable and can provide powerful checks of the AdS/CFT correspondence. In

this work we are primarily interested in viewing Wilson loops as 1-dimensional defects,

defining a 1-dimensional CFT, along which local operators can be inserted. One can then

compute the CFT data of the inserted operators (anomalous dimensions and structure

constants) and extract from them physical information such as, for example, the radiated

energy and Bremsstrahlung functions [18–20]. An alternative way to study such operator

insertions along the defect is to consider deformations of the contour on which the Wilson

operator is defined (which from a straight line become ‘wavy’ or ‘wiggled’).

This point of view on Wilson lines as superconformal defects has been studied quite

extensively in recent years in N = 4 SYM (see for example [21] and [22] for an overview),

much less so for ABJM. So far, the only case that has been considered, to the best of our

knowledge, is the computation of 2-point functions ( [23] and [24]) of a certain operator

built out of the gauge field and scalars of the theory, called displacement operator [46].

The aim of this dissertation is to push forward this study to the case of 3- and 4- point

functions.

Outline This work is organized as follows. The first chapter is devoted to reviewing all

the necessary ingredients encountered in the study of conformal field theories and is based

mostly on [4, 5, 25–30, 56, 59]. It also contains a review of superconformal field theories

(SCFT) which are the central framework of subsequent chapters.

In the second chapter, the reader will find a formulation of defect conformal field

theories in the embedding formalism, a tool borrowed from General Relativity. Special

attention is given to the introduction of the displacement operator and of its supermulti-

plet. The relevant literature for this chapter includes [46–48,51].

Chapter 3 is then dedicated to the presentation, from the basics, of the extended

operators used in our applications, namely the Wilson loops. We follow mostly [28,62,63].
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We discuss their formulation, how to compute them, and their role in the AdS/CFT

correspondence.

Finally, chapter 4 applies all the knowledge developed in the preceding ones, showing

explicit calculations concerning the determination of structure constants of defect corre-

lators as well as computations of deformed Wilson lines. Part of the content here is a

review of [23], but new results for the ABJM theory are presented, following [24].

The reader might find some general comments about the Poincarè group and an

overview of useful tools provided by General Relativity in the appendices.

1 Conformal Field Theory

One of the main motivations for studying CFTs resides in the fact that they are the end-

points of the renormalization group (RG) flow of quantum field theories (QFT). In the

space of QFTs, as one varies the couplings, the CFTs are fixed points characterized by

couplings invariant under scale variations. Different microscopic theories may have similar

behaviour as they are rescaled to the macroscopic environment and become indistinguish-

able. This can be verified thermodynamically, by determining the set of coefficients that

describes the system behaviour, known as critical exponents. As an example, it is well

known that boiling water, uni-axial magnets (by means of the Ising Model) and the φ4

theory can be put in the same box of IR equivalent theories, or in more technical lan-

guage, in the same universality class, because the phase transitions involved are similar.

This example appeals to our intuition on such phenomena due to real life notions, but of

course we have other non-trivial examples in Nature.

Studying CFTs then allows us to map out the possible endpoints of RG flows in the

space of QFTs, therefore leading to an understanding of such space. The goal is then

to solve/determine fixed points, which means, as we will see, to compute the observ-

ables: operator dimensions and correlation functions. The existing methods to compute

them nowadays include Monte-Carlo simulations or high-temperature expansion for lat-

tice models, the so called ε-expansion for analytical results and also the most recently

developed Conformal Bootstrap.

This chapter intends to give a review of the essential topics in CFT, starting with the

basic notions on the quantum theory of fields, passing through generalities on conformal

symmetries and particularities encountered in CFTs, finishing with the inclusion of more

symmetries into the SCFT, of special importance in the subsequent chapters.

1.1 The essentials of QFT

We start by recapitulating some of the main ingredients of the quantum theory of fields,

since CFTs can be understood as nothing more than QFTs invariant under conformal

2



transformations. As we are going to see, the most important objects in our study are the

so called n-point functions (or correlators, or yet correlation functions), so let us start

defining them through the formulation of QFTs by path integrals.

1.1.1 Correlation Functions

The scheme to construct them always follows the same script: one defines the vacuum

persistence of the theory via a path integral, then external sources are linearly coupled to

the fields of the theory in a proper way, depending on the nature of each field, and finally

such functions are obtained from functional derivatives with respect to such sources.

The simplest case to illustrate this procedure is the single massive scalar field φ. The

action in this case is given by:

S[φ] ≡
∫
ddxL [φ, ∂µφ] =

∫
ddx

(
1

2
∂µφ∂

µφ− 1

2
m2φ2 − V (φ)

)
, (1)

where m stands for the mass of the field and V for any potential. The integral is taken

over all spacetime points. From this, the so called vacuum persistence is just the vacuum

(|0〉) normalization as given in path integral formulation:

Z0 ≡ 〈0|0〉 =

∫
DφeiS[φ] . (2)

The next step then is to couple an external source. In the case of a scalar field

such source is simply a spacetime function J(x). The notion of vacuum persistence then

becomes dependent of the source and we can write:

Z[J ] ≡ N
∫
DφeiS[φ]+i

∫
ddxJ(x)φ(x) (3)

in which N is a normalization we note to be equal to Z[0]/Z0, traditionally identified to

unity for a pre-normalized to unity vacuum, 〈0|0〉 = 1.

The n-point functions are just expectation values of n time-ordered1 operators inserted

into the vacuum. As in quantum mechanics, such insertions are verified to be equivalent

to insertions of the corresponding (space-time) position eigenvalues of those operators. In

the case being treated we have then:

〈0|T
(
φ̂(x1)...φ̂(xn)

)
|0〉 =

∫
Dφ φ(x1)...φ(xn) eiS[φ] , (4)

1From right to left, the operators are put in chronological increasing order.
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where the hats stand for operators. We easily verify then that:

〈0|T
(
φ̂(x1)...φ̂(xn)

)
|0〉 =

(−i)n

Z[0]

δnZ[J ]

δJ(x1)...δJ(xn)
. (5)

For this reason Z[J ] is known as the generating functional, it gives us a way of calculating

correlators between operators.

The construction we have just done can then be extended to general cases very simply:

in order to include more fields, obviously we need more external sources, one for each.

Naturally we will be interested in cases involving fermionic fields, in these situations

the source cannot be so simple, instead must obey the extra condition of behaving as a

grassmannian variable, as fermions do. It need to be emphasized that the introduction

of external sources are just a mathematical tool, even though it can be verified that the

sources are related to classical quantities.

1.1.2 Symmetries

As in any area of physics, symmetries play an important role here, then it is necessary to

review the basics involving them. The most important result, due to E. Noether,2 relates

conserved quantities to continuous symmetries of a system.

To see such relation, we consider the effect of an infinitesimal transformation in the

action of a given general field φ. The transformation can affect both the position and the

field:
x→ x′

φ(x)→ φ′(x′) = F(φ(x))
, (6)

and, in general, can be written as:

x′µ = xµ + ωa
δxµ

δωa

φ′(x′) = φ(x) + ωa
δF
δωa

(x)

, (7)

where ωa’s denote a set of parameters of the transformation.

The hyphotesis of invariance of the action S under these transformations allows us to

2Amalie Emmy Noether: German mathematician, gave fundamental contributions to theoretical
physics and abstract algebra, b03/23/1882 �04/14/1935.
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write:

S → S ′ =

∫
ddxL(φ′(x), ∂µφ

′(x))

=

∫
ddx′L(φ′(x′), ∂′µφ

′(x′))

=

∫
ddx

∣∣∣∣∂x′∂x

∣∣∣∣L(φ(x) + ωa
δF
δωa

(x),
∂xν

∂x′µ
∂ν(φ(x) + ωa

δF
δωa

(x))

) .

Note now that the Jacobian appearing above has the form (at first order):

∂x′µ

∂xν
= δµν + ∂ν

(
ωa
δxµ

δωa

)
∂xν

∂x′µ
= δνµ − ∂µ

(
ωa
δxν

δωa

) . (8)

Using the property det(1 + E) ∼ 1 + TrE, for E small, we can then write:

S ′ =

∫
ddx (1 + ∂µ(ωaδx

µ/δωa))

× L
(
φ(x) + ωa

δF
δωa

(x), (δνµ − ∂µ(ωaδx
ν/δωa))∂ν(φ(x) + ωa

δF
δωa

(x))

) . (9)

Now we just have to expand the Lagrangian density appearing inside the integral to be

able to see the variation caused by the infinitesimal transformation we did. With no

explicit x dependence in the Lagrangian or in F , we have:

L′ ≡ L
(
φ(x) + ωa

δF
δωa

(x), (δνµ − ∂µ(ωaδx
ν/δωa))∂ν(φ(x) + ωa

δF
δωa

(x))

)
= L(φ, ∂µφ) +

∂L
∂φ

ωa
δF
δωa

+
∂L

∂(∂µφ)

(
∂µ

(
ωa
δF
δωa

)
− ∂µωa

δxν

δωa
∂ν

(
φ(x) + ωa

δF
δωa

(x)

))
+O(ω2

a, ∂
2
µωa)

. (10)

Considering the unity in the expression of the Jacobian, the first term in the second line

above will cancel out the contribution coming from the original action for the variation δS,

while the second term in the second line will join with the first term (after distribution)

in the third line after integration by parts to vanish in virtue of the equations of motion;

the relevant contribution to the variation due to the trace term in the Jacobian expression

will come from its multiplication with the original Lagrangian only. The net result is:

δS ≡ S ′ − S = −
∫
ddxjµa∂µωa

with jµa ≡
{

∂L
∂(∂µφ)

∂νφ− δµνL
}
δxν

δωa
+

∂L
∂(∂µφ)

δF
δωa

. (11)
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Integration by parts then yields (noticing that the parameters vanish at the endpoints):

δS =

∫
ddx∂µj

µ
aωa . (12)

From this it is clear the relation we were looking for: null variation of the action implies

conservation of the canonical3 currents jµa , which has an associated conserved charge

Qa ≡
∫
dd−1xj0

a(x), where dd−1x stands for integration over the spatial part. It must be

emphasized that this holds at classical level, since only on-shell (read equations of motion

satisfied) configurations of the fields imply invariance of the action according to the action

principle; in other words, what we have just done tells nothing at the quantum level, but

we will see right below that it imposes constraints on the correlation functions. Moreover,

since the procedure above was made for infinitesimal parameters, it can be extended to

finite transformations through exponentiation as always, with the generators Ga given

through the definition:

φ′(x)− φ(x) ≡ −iωaGaφ(x) . (13)

Equations (7) then gives:

iGaφ =
δxµ

δωa
∂µφ−

δF
δωa

. (14)

1.1.3 Ward Identities

A first consequence about symmetry transformations in the quantum scenario4 can be

derived as follows. Consider the following n-point function:

〈φ(x′1)...φ(x′n)〉 =

∫
Dφ φ(x′1)...φ(x′n) eiS[φ] . (15)

Supposing the measure is invariant under such transformation of the field, if we rename

the dumb variable φ in the integrand to φ′ and perform a change of variable writing

φ′(x′) = F(φ(x)) ,

the assumption of invariant action gives:

〈φ(x′1)...φ(x′n)〉 =

∫
Dφ F(φ(x1))...F(φ(xn)) eiS[φ]

= 〈F(φ(x1))...F(φ(xn))〉
. (16)

3The so derived current carries the name canonical, but we can add the divergence of any antisymmetric
tensor to it, so the definition is somehow ambiguous.

4After all, nothing prevents us to assume we are dealing with quantum fields if we do not use classical
equations of motion.
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This result shows how simple correlators between operators at transformed spacetime

points are related to the correlation functions at the original spacetime points: we see

that only the functional form of the transformation affecting the fields is important; in

the case of spacetime translation, for example, the field is not affected (that is, F(φ) = φ)

and therefore only relative positions between operators are relevant in the computation

of correlators. From a more ample perspective, considering the Lorentz transformations

entirely, this result implies that the n-point function at the new coordinates is obtained

from the same at the original points simply from the nature of the fields involved: if one

has one vector field times one tensor field inside the brackets, for example, the resulting

correlator will be equal to (transformation rule for vector) × (transformation rule for

tensor) × (original correlation function).

Now, we have just seen that the main characters in the classical case about continuous

symmetries are the conserved currents and charges. How can we relate them to n-point

functions? This question has a well known answer and gives us the reflection of those

symmetries on quantum quantities: the Ward-Takahashi identities.

According to equation (13), an infinitesimal transformation on the field reads: φ′(x) =

φ(x)− iωaGaφ(x). Using this to change the functional integration variable on the defining

equation (4) for correlators, we have5

〈φ(x1)...φ(xn)〉 ≡
∫
Dφ φ(x1)...φ(xn) eiS[φ]

=

∫
Dφ′ φ′(x1)...φ′(xn) eiS[φ′]

=

∫
Dφ

n∏
i=1

(φ(xi)− iωaGaφ(xi)) e
iS[φ]+i

∫
ddy∂µj

µ
aωa

,

where (12) was used to get the last line. To first order in ωa, the product of fields inside

the integral can be written as:

n∏
i=1

(φ(xi)− iωaGaφ(xi)) = φ(x1)...φ(xn)− i
n∑

i=1

φ(x1)...Gaφ(xi)...φ(xn)ωa(xi) +O(ω2
a) .

On the other hand, the exponential can also be expanded to first order, resulting in:

eiS[φ(x)]+
∫
ddy∂µj

µ
aωa ' eiS[φ(x)] + i

∫
ddy∂µj

µ
a (y)eiS[φ(x)]ωa(y) ,

where dependences on the variables were emphasized and the partial derivatives are taken

with respect to y.

5Note that a time-ordering is already assumed here.
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Putting all together, still at first order, we get:∫
ddy∂µ〈jµa (y)φ(x1)...φ(xn)〉ωa(y) =

n∑
i=1

〈φ(x1)...Gaφ(xi)...φ(xn)ωa(xi)〉 ,

which gives us the desired result noticing that ωa(xi) can be written as

ωa(xi) =

∫
ddyδd(y − xi)ωa(y) ,

and also that it is an arbitrary function of y:

∂µ〈jµa (y)φ(x1)...φ(xn)〉 =
n∑

i=1

〈φ(x1)...Gaφ(xi)...φ(xn))〉δd(y − xi) . (17)

Finally, what about the charges? A result involving them can be obtained from these

identities as follows. Integrate the expression above over the entire (d− 1) spatial coordi-

nates and over a tiny time interval (t−, t+) around x0
1 (without lost of generality), in a way

that this hypervolume excludes all the points x2...xn. This particular ”surface” allows us

to make use of the Gauss theorem in the l.h.s of that equation, which in addition to a

trivial integral of a delta function in the r.h.s yields:

〈Qa(t
+)φ(x1)φ(x2)...φ(xn)〉 − 〈φ(x1)Qa(t

−)φ(x2)...φ(xn)〉 = 〈Gaφ(x1)φ(x2)...φ(xn)〉 ,

where it was used the definition of classical charge seen before.

In the limit where the time interval goes to zero, since the procedure is valid for any

set of fields φ(x2)...φ(xn), we get the following identity between operators:

[Qa, φ] = Gaφ , (18)

that is, in the formalism of operators, the supposedly conserved charge Qa generates

infinitesimal transformations.

1.1.4 The special current: Stress-Energy Tensor

With the conservation law well established, let us apply it to an important case. Sup-

pose our system has translation symmetry, that is, it is invariant under the following

transformations:
x′µ = xµ + aµ

φ′(x′) = φ(x)
, (19)
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for some four-vector aµ = ηµνaν . According to what we have just done, in view of the four

components of the (vectorial) parameter, the conserved current will be a rank-2 tensor:

jµνtranslation ≡ T µνc =

{
∂L

∂(∂µφ)
∂ρφ− δµρL

}
δxρ

δaν
+

∂L
∂(∂µφ)

δF
δaν

=
∂L

∂(∂µφ)
∂νφ− ηµνL

. (20)

The conserved charge is obtained from P µ ≡
∫
dd−1xT µ0

c (x) and in the case of µ = 0 for

example, we have:

P 0 =

∫
dd−1xT 00

c (x)

=

∫
dd−1x

(
∂L

∂(∂0φ)
∂0φ− L

)
=

∫
dd−1x

(
π(x)φ̇(x)− L

) ,

that is, it is equal to the energy (note the Legendre transform of the Lagrangian density).

We note those charges are already well known by us: from equations (18) and (14) we get

that [P µ, φ] = −i∂µφ, that is, the charges are nothing more than the momentum operator!

That is why the tensor T µνc is known as the (canonical) stress-energy tensor.

What is so special about this tensor? First of all it defines the energy and momentum

of the field. Secondly, as we will see when we talk about conformal symmetries, basically

it makes possible local relations between conformal correlation functions; also its trace

contains important informations. At this point, however, another nice fact involving it

is its use to axiomatic definition of local theories: we say a quantum field theory is local

when it has a conserved stress-energy tensor.6

Usually we will be interested in such tensor in its symmetrized form. Although in the

case illustrated above it is already symmetric in the canonical form, not always this will

be true. Fortunately, due to the freedom in the definition of currents stated before, we

can make it symmetric in general by means of Lorentz invariance asumption. Under this

condition, a clever extra term gives a new tensor physically equivalent to the first one, but

now satisfying the desired feature. Consider then the infinitesimal Lorentz transformation:

x′ρ = xρ + ωµνη
µρxν

F(φ) = LΛφ ' φ− 1

2
iωµνSµνφ

, (21)

where Sµν are hermitian matrices satisfying Lorentz algebra (see appendix A) and the

6Actually what is usually required is a continuous unitary representation of the translation group,
which englobes therefore the conservation law we are talking about; moreover, besides this, other axioms
are necessary to define local field theories properly, but it is not our focus here, so we refer the interested
reader to [74].
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omegas are well known to be antisymmetric (the condition to preserve line elements under

the transformation). We have then that:

δxρ

δωµν
=

1

2
(ηµρxν − ηνρxµ) ,

δF
δωµν

= − i
2
Sµνφ ,

the second of them gives us that Sµν = −Sνµ. The conserved current is obtained from

equation (11):

jσµν =

{
∂L

∂(∂σφ)
∂ρφ− δσρL

}
δxρ

δωµν
+

∂L
∂(∂σφ)

δF
δωµν

=
1

2
(T σµc xν − T σνc xµ)− i

2

∂L
∂(∂σφ)

Sµνφ
. (22)

The next step is to add the divergence of an antisymmetric (in the first two indices)

tensor Bσµν to the canonical stress-energy tensor to construct the symmetric one, T σµB .

We choose Bσµν in a manner that we can make use of the conservation law for Lorentz

current. At our disposal we have the following facts:

T µνB = T µνc + ∂σB
σµν

∂σT
σν
c = 0

∂σT
σν
B = 0

∂σj
σµν = 0

.

If we require then that jσµν = 1/2(T σµB xν − T σνB xµ), T µνB automatically will be sym-

metric and we get a way to look for it explicitly. Inserting this into equation (22), we

have:

T σµB xν − T σνB xµ = T σµc xν − T σνc xµ − i ∂L
∂(∂σφ)

Sµνφ .

Therefore, it just remains to find a tensor satisfying:

∂ρB
ρσµxν − ∂ρBρσνxµ = −i ∂L

∂(∂σφ)
Sµνφ ,

or, differentiating with respect to xσ:

∂ρ(B
ρνµ −Bρµν) = ∂ρ

(
−i ∂L
∂(∂ρφ)

Sµνφ
)
.

Thus, together with the condition of antisymmetry between the first two indices, this

last relation induces the following simplest choice for Bρµν :

Bρµν =
i

2

(
∂L

∂(∂νφ)
Sµρφ+

∂L
∂(∂ρφ)

Sµνφ+
∂L

∂(∂µφ)
Sνρφ

)
. (23)

We succeed in our mission, and the new stress-energy tensor carries the name of Belinfante
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energy-momentum tensor, as well known in the literature. From now on we are going to

assume we are always dealing with such a symmetric tensor (valid on shell, note) and the

notation for it will be simplified to T µν .

The symmetric form of such tensor also allows us to relate it directly to the energy-

momentum tensor obtained from the point of view in which we consider a transformation

on the metric of a system instead of on the positions and fields. In fact this is an alternative

definition for it, usually given in the literature concerning General Relativity, equivalent

to the one we have just given. In that context, the energy-momentum tensor is defined to

be the variation of the matter content of the action, SM , with respect to the metric gµν :

T µν ≡ −2√
−g

δSM
δgµν

,

where g stands for the determinant of the metric. Consequently, the variation of SM can

be written as:

δSM = −1

2

∫
ddxT µνδgµν . (24)

1.1.5 Feynman Diagrams and Renormalization Group

This last subsection closes the fundamentals of quantum field theory giving a more prac-

tical way for obtaining the correlators in a given theory and also making relevant consid-

erations about theories with interactions.

In a previous subsection we saw the definition of correlation functions in the path

integral formulation. Computing them consisted in performing functional derivatives of

the generating functional with respect to external sources, the choice of source with respect

to which one have to derive depending on the field insertions in the correlators.

The generating functional can be put in a more practical form by making use of

the 2-point correlators, called propagators. That is because they are Green functions of

quadratic operators7 appearing in Lagrangians defining non-interacting field theories and

can be used to manipulate them; for example, in (1), integrating by parts and assuming

fields vanish far from the origin, the Lagrangian can be put easily in the form:

S[φ] = −1

2

∫
ddxφ(x)

(
∂2 +m2

)
φ(x) ,

where the potential was set to zero also, after all it is a free theory, and ∂2 ≡ ∂µ∂
µ. The

propagator in this case is then:

D(x− y) =

∫
ddk

(2π)d
ie−ik·(x−y)

k2 −m2 + iε
, (25)

7We do not give a precise definition here, just appeal to the intuitive meaning.
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where we omit derivation because it is reproduced in any text book, including [28]. Ba-

sically it consists in finding the Green function in momentum space and then integrating

the result to take it back to spacetime.

Using such function, one can show that the generating functional in this case can be

put in the form:

Z[J ] = Z0 exp

(
−1

2

∫
ddxddyJ(x)D(x− y)J(y)

)
,

notice that an odd number of fields φ has vanishing correlation function in this case, since

J is always set to zero at the end.

Once the expression of a propagator is given, higher correlators can be found as prod-

ucts of them with combinatorial factors in front of them. This special result is just the

famous Wick’s theorem: in each case being computed, the result is the sum of all possible

contractions of the fields.8

For theories including more fields, for each field we are going to have a quadratic

operator associated and, therefore, a propagator; some of them can be not uniquely

defined, which is the case of gauge fields, therefore demanding a choice of gauge to have

it right. The point is that, once one has the propagators of a theory in hands, one should

be able to compute any correlator by multiplying them and, as we are about to see,

integrating the result when dealing with interacting theories.

A subtlety raises in interacting field theories. Basically the action now is going to have

two parts: one describing the free theory, say S0, and one containing interaction terms

of the involved fields, say Sint. Our propagators are defined only based in S0, so what to

do? How do we separate those terms, but at the same time include the interactions on

propagators? Well, usually interaction terms come up with a coupling constant in front

of them to tell us the magnitude of it. Assuming then that such couplings are small, we

can always expand that part of the exponential in powers of them up to the order desired.

For the first order we are going to drop the fields defining the interaction and an integral,

the second order drops the double of fields and two integrals, and so on. For example, a

theory of two massive real scalars A and B and an interaction like gABB, being g the

coupling constant, has the vacuum persistence to first order given by:

Z =

∫
D[A,B]eiS0[A,B]+ig

∫
ddxA(x)B(x)B(x)

=

∫
D[A,B]eiS0[A,B]

(
1 + ig

∫
ddxA(x)B(x)B(x) +O(g2)

) .

Computing any n-point function now will include the calculation of two terms, one from

the free theory and one from the first order perturbation correction due to the interaction,

8A contraction between to fields is defined to be their propagator.
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which at the end of the day means the integration of another (n+ 3)-point function. For

example:

〈A(x)〉 = ig

∫
ddy〈A(x)A(y)B(y)B(y)〉+O(g2) .

Generally speaking then, perturbative calculations can be performed once one knows

the propagators of the free theory and the dropped form of each interaction term. It

turns out this set of tools carries a name, the so called Feynman rules, due to Feynman.9

The last term, also called vertex, is usually represented diagramatically, together with

the propagators, to make computations intuitive, easier and fun. Those diagrams consist

in points from which different kind of lines comes out, depending on the kind of field

involved in the interaction. Traditionally, scalars are represented by straight lines, while

fermionic fields by dashed lines and gauge fields by wavy lines. For example, if one has

an interaction like the previous one, but with B fermionic, the diagram associated to the

dropping term would be like:

ig

∫
ddxABB → �

x

Figure 1: Example of a Feynman rule for one scalar (denoted by A, solid line) and two
fermionic fields (denoted by B, dashed lines).

Notice that the fields attached to vertices are evaluated at an internal point x, which

is integrated over.

All of that, however, only make sense provide the couplings are small. It is important

then, to consider the fact that such couplings generally can depend on the scale of energy

being considered, which is translated in the language of fields as predetermined cutoffs for

their momentum frequencies, infrared for low frequencies (low energies) and ultraviolet for

high frequencies (high energies). It turns out that the variation of the magnitude of those

couplings with respect to the energy scale is dictated by a well known relation, which is a

consequence of the so called Callan-Symanzik equation, a differential equation describing

the evolution of n-point functions under changes on the energy scale.

Technically, choosing an energy scale is equivalent to assuming cutoffs for a theory,

which can be interpreted also as a mass scale M or an inverse length scale 1/a for the

theory, since in natural units momenta, mass, length−1 and energy have the same dimen-

9Richard Philips Feynman: American theoretical physicist, gave exceptional contributions to quan-
tum electrodynamics and quantum physics, and to physics and mathematics in general, b05/11/1918
�02/15/1988.
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sion. Naturally then, correlators are going to depend on the energy scale and that is why

they vary accordingly. Commonly, divergences appear in their computation: for a given

limit of the cutoffs, the correlation function explodes. To avoid that complication, in or-

der to maintain physically relevant quantities finite, and therefore measurable quantities,

so-called counterterms are introduced in the action to cancel out the divergent part. This

is a standard procedure in QFTs and carries the name of Renormalization Group; the

theory that underwent such a process is said to be renormalized, in some renormalization

scheme (chosen scale in which the physical couplings are defined). Counterterms are tra-

ditionally represented by δ’s of the important quantities, like δm for the mass parameter,

for example.

The Callan-Symanzik equation is then expressed in terms of such counterterms, for a

given theory: [
M

∂

∂M
+ β(g)

∂

∂g
+ nγ(g)

]
G(n)

(
{xi};M, g

)
= 0 , (26)

where the theory was assumed to depend only on a coupling g. G(n) is the renormalized

n-point function. Two significant quantities were then defined: the beta-function and

the gamma-function. They describe the variations of the coupling and of the fields with

respect to the mass (or some equivalent parameter) scale, respectively:

β(g) ≡ δg

δ logM
, γ(g) ≡ − δη

δ logM
. (27)

We have g → g + δg and φ→ (1 + δη)φ, assuming we have only one scalar field φ in the

theory; if there are more fields, there are more gamma functions. The Callan-Symanzik

equation (26) follows directly from dG(n) = nδηG(n).

Once one knows the beta function for a given coupling of the theory, one also knows

how the coupling behaves in all scales of lengths. As we have just seen, the computation of

correlation functions is usually done perturbatively, such that we also know such quantity

perturbatively. Explicitly, that function is computed once the coupling counterterm δg

and the so called field-strength counterterm δZ is known:

β(g) = M
∂

∂M

(
−δg +

1

2
gδZ

)
.

In the case of more fields included in the theory, the second term between brackets is

turned into a sum over δZ ’s. That counterterm is defined to be the one balancing a

scale factor relating the renormalized field φ and the bare (non-renormalized) field φ0:

φ = Z1/2φ0.

Not only the appearance of the strength field counterterm, but also and mainly the

existence of gamma functions, shows a feature in the behaviour of fields: they feel changes
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of the length scale. In the next section we are going to define the so-called scaling dimen-

sion of the fields more precisely, the quantity behind all this, and study it more deeply.

Field scaling plays a very important role in what follows, as basically things are clas-

sified according to the sign of their scaling dimension: positive value indicates relevant

operators, negative value irrelevant operators and vanishing ones marginal operators.

At the end of the day, rescaling the theory is a procedure to study its behaviour in

infrared and ultraviolet limits. The scaling dimension then enters in the game to tell us

how operators behave in those limits too, some of them losing influence over the system,

while the others acquiring more influence. The name of what kind of operators plays each

role is suggestive, being given conventionally by their behaviour in the infrared limit, that

is, when the theory is rescaled from microscopic lengths to macroscopic lengths.

To finish the section, we point out that it is not always possible to renormalize a the-

ory. When an infinite number of counterterms are required to do so, we say the theory is

non-renormalizable. Of course, this is a very important problem, generally to have a phys-

ically meaningful theory we will need renormalizability, because it is what makes physical

quantities measurable. One of the steps in this process is called dimensional regularization

and consists in computing divergent integrals in shifted non-integer dimensions and then

expanding the result around the desired dimension.

1.2 Conformal Symmetry

All the essential ingredients from quantum field theory were reviewed above and we can

finally go to the case of interest: theories containing conformal symmetry. The first step

to study them is obviously to get familiarized with the conformal group and the structure

of the associated algebra. We start by looking at the so-called conformal transformations.

By definition, they are the ones which preserves angles, unlike Lorentz transformations,

which also preserves lengths. This is equivalent to say that such transformations leave the

metric tensor unaltered, up to a scaling factor, which can depend on the position. That

is, we can express their effect as:

gµν → Λ(x)gµν ,

where Λ(x) is some positive function, equaling to unity if lengths preservation is de-

manded. To see this more clearly, consider for example the definition of angles between

two vectors. If x and y are two vectors, the angle θ between them is defined by means of

the scalar product:

cos θ =
x · y
|x||y|

,

from which we see that, a scaling factor on the coordinates does not affect the left-hand

side. Fig. 2 below illustrates a generic modification on the geometry of the spacetime
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under conformal transformations:

Figure 2: Flat 2-dimensional space is conformally mapped onto a curved space, while
angles are preserved. Figure adapted from [30].

In the following we consider d-dimensional flat spaces with Lorentzian signature of the

metric tensor, that is, gµν ≡ ηµν . Under coordinate transformations like xµ → x′µ, the

metric tensor changes as g′ρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= gµν . Identifying then g′ ≡ Λ(x)g, which makes the

transformation conformal, we arrive at:

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ−1(x)ηµν . (28)

Consider now an infinitesimal transformation on the coordinates, parametrized by ερ

in the following way: x′ρ = xρ+ερ(x). Imposing then that the equation above be satisfied,

and noticing that εµ = ηµνε
ν , we have for the l.h.s.:

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= ηρσ

(
δρµ + ∂µε

ρ
)

(δσν + ∂νε
σ)

= (ηµσ + ∂µεσ) (δσν + ∂νε
σ)

= ηµν + (∂µεν + ∂νεµ) +O(ε2)

.

We see then that the condition to satisfy such equation is, to first order in ε:

∂µεν + ∂νεµ = F (x)ηµν ,

for some smooth function F (x), which can be determined by tracing this equation with

ηµν :

ηµν (∂µεν + ∂νεµ) = ηµνF (x)ηµν

2∂µεµ = F (x)d

∴ F (x) =
2

d
∂ · ε

,

where ∂ · ε ≡ ∂µεµ stands for the d-divergence of ε. Thus, we can read off the scale

factor Λ(x) as Λ(x) = 1− 2

d
∂ · ε+O(ε2), and the condition for the transformation to be

conformal is just:

∂µεν + ∂νεµ =
2

d
ηµν∂ · ε . (29)
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The next step then is to solve this equation for ε. Before doing so, we massage the

equation above to find more useful relations. Firstly, deriving it with respect to ∂ν and

summing over it, we have:

∂ν (∂µεν + ∂νεµ) =
2

d
ηµν∂

ν (∂ · ε)

�εµ +

(
1− 2

d

)
∂µ (∂ · ε) = 0

,

where the defintion � ≡ ∂µ∂µ was employed. Then, we take a derivative with respect to

xν to write:

∂ν�εµ +

(
1− 2

d

)
∂ν∂µ (∂ · ε) = 0

�∂νεµ +

(
1− 2

d

)
∂µ∂ν (∂ · ε) = 0

,

where it was used the fact that partial derivatives commute to write the second line. If

we now interchange the indices µ and ν in this last equation and sum both equations,

using the relation (29) we can write:

� (∂νεµ + ∂µεν) +

(
2− 4

d

)
∂µ∂ν (∂ · ε) = 0

2

d
ηµν� (∂ · ε) +

(
2− 4

d

)
∂µ∂ν (∂ · ε) = 0

[ηµν�+ (d− 2) ∂µ∂ν ] (∂ · ε) = 0

.

Finally, contracting this equation with ηµν , we get:

(d− 1)� (∂ · ε) = 0 . (30)

In this work we are interested in two particular cases of this equation: d ≥ 3 and

d = 1; the 2-dimensional case is of great importance in physics, and it has been widely

studied, but it will bring no applicable toolkit to what we are going to do here further. We

concentrate mostly on the first case in what follows. But before doing so, let us consider

the trivial case, in which equation (30) is automatically satisfied: d = 1.

1.2.1 Conformal group in d = 1

Since we do not have a notion of angle over a line, any invertible smooth mapping, say

f(x), is conformal in d = 1. The general form of such function can be understood by

analytically continuing f to the complex plane. In order for f to be invertible, it can have

no essential singularities nor branch points.

In the first case, any neighborhood of such singularity sweeps the whole plane (this

is the content of the Great Picard’s Theorem, see [31] for example) with at most a single
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exception. As a consequence, the points outside such neighborhood surely will have

coincident values with those ones, and the inverse cannot be defined. In the second case

the function is not uniquely defined. For example, taking z = reiθ, log z = log r + iθ, the

argument θ is ill-defined due to the fact we can add multiples of 2π to it and consequently

the logarithm is not uniquely defined.

Excluding this kind of functions, we are left with functions that can be expanded into

a Laurent series with finite principal part, consisting of linear combinations of polynomials

that can have poles. Therefore it must be a fraction of polynomials, without common

zeros. Moreover, each polynomial cannot have more than one zero and in the case of zero

of order greater than 1 we also have problems to define an inverse (remember, the inverse

of x2 is not uniquely defined). So, f must be a fraction of linear functions:

f(x) =
ax+ b

cx+ d
with ad− bc 6= 0 .

The condition between the coefficients guarantee the mapping is invertible; if ad− bc = 0,

then f is a constant. Without losing generality, selecting ad − bc = 1, we see that the

coefficients are freely determined as for the real matrices of order 2 with determinant

1. Such matrices, equipped with the group operations of matrix products and matrix

inversion, form the (Projective) Special Linear group of degree 2 over R, (P)SL(2,R).

It turns out that such group is closely related to the Lorentz group in 3 dimensions,

SO(2, 1). To see this, notice that a general element g of the group can be parameterized

as:

g =

[
1 + a b

c 1+bc
1+a

]
. (31)

If the parameters are infinitesimal, we have its infinitesimal form like:

g =

[
1 + a b

c 1− a

]
,

which allows us to read off the generators as being:

D ≡ i

2

[
1 0

0 −1

]
, P ≡ i

[
0 1

0 0

]
and K ≡ i

[
0 0

1 0

]
.

They generate the algebra:

[D,K] = −iK, [K,P ] = −2iD and [D,P ] = iP . (32)

We claim this algebra is equal to so(2, 1). To verify this, notice that the commutator
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between two generators Mµν of SO(2, 1) is in the algebra for the Poincarè group (201):

[Mµν ,Mρσ] = i (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ) ,

where µ, ν = 0, 1, 2 and ηµν = diag(−,+,+). It is just a question of redefinition of the

three independent generators (remember they are antisymmetric) then: −i(M01+M12) ≡
K, −i(M12 −M01) ≡ P and M02 ≡ D. In fact, from the algebra right above we have:

[D,K] = −i [M02,M01]− i [M02,M12]

= (−η00M21) + (−η22M01) = −iK

[D,P ] = −i [M02,M12] + i [M02,M01]

= (−η22M01) + (η00M21) = iP

[K,P ] = − [M01,M12] + [M12,M01]

= (−iη11M02) + (iη11M20) = −2iD

.

Finite transformations are found by exponentiating these generators D, P , and K.

Noticing that P 2 = K2 = 0 and considering the parametrization (31), exponentiation of

these generators gives the following functions of x:

e−iαD =

[
eα/2 0

0 e−α/2

]
→ f(x) = eαx

e−iβP = I +

[
0 β

0 0

]
→ f(x) = x+ β

e−iγK = I +

[
0 0

γ 0

]
→ f(x) =

x

γx+ 1

, (33)

where α, β and γ are real numbers. It is easy to see then that D, called dilation operator,

generates scales transformation while P generates translations, therefore being nothing

more than the momentum operator. The transformation generated by K is called Special

Conformal Transformation (SCT) and will be explored in the next section.

Now, since we are interested in theories containing fields, we need to consider field

representations of this group. Firstly, we note that fields can have spin, but since it is a

property independent on the position of the field, the operator Sµν associated commutes

with all the others above. Considering we are acting on fields with already labeled spin,

the following results are valid for each component also. Secondly, in order to do this, we

define the way a general field φ transform under a scaling transformation like x′ = λx on

the coordinates:

φ′(λx) = λ∆φ(x) , (34)

with λ = eα the dilatation factor. ∆ ∈ R defines the so called scaling dimension of the
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operator (field) φ.

Noting that translations, as in (19), do not affect fields and considering the equation

above, the use of (14) gives the following representations for D and P :

Dφ(x) =

(
−ix d

dx
+ i∆

)
φ(x), Pφ(x) = −i d

dx
φ(x) . (35)

The representation of K and K is found by translating its form at the origin to any value

of x using Baker-Campbell-Hausdorff formula for expanding products of exponentials of

operators with others operators: eYXe−Y = X + [X, Y ] + 1/2! [X, [X, Y ]] + ... . We have:

K(x)φ(x) = eixPK(0)e−ixPφ(x)

= K(0)φ(x) + [ixP ,K(0)]φ(x) + 1/2! [ixP , [ixP ,K(0)]]φ(x)

= −2ixD(0)φ(x)− ix2Pφ(x)

=

(
−2ix∆ + ix2 d

dx

)
φ(x)

. (36)

We are going to explore more about conformal invariance in field theories further, after

studying the symmetry group in the interesting case of dimensions greater than two. We

conclude this section with an intriguing comment, which will not be discussed here: if ones

take the dimension to be time-like, all we have done was conformal quantum mechanics!

See, for example, [32] for details.

1.2.2 Conformal Group in d ≥ 3

We start noticing that the equation (30), together with the equation preceding it, implies

that ∂ · ε is at most linear in xµ, thus εµ itself must be at most quadratic. We have then:

εµ = aµ + bµνx
ν + cµνρx

νxρ , (37)

with |aµ|, |bµν |, |cµνρ| � 1 and cµνρ symmetric in the last two indices in order to make

the divergence linear in xµ.

The equations worked out before do not depend on the position, so we can treat each

of the terms appearing in the expression of εµ separately. The coefficients aµ, bµν and cµνρ

are our set of transformation parameters (in the language of section 1.1.2) and what we

have to do next is to interpret them and to find the generators associated. Note, however,

that up to this moment we have not commented on the effect of conformal transformations

on the fields (that is, up to here φ′ ≡ F(φ) = φ), thereby the full form of the generators

of the conformal symmetry for a field theory cannot be stated yet.

Restricting the discussion to the level of spacetime coordinates, let us analyze the

meaning of those terms. The constant one in (37) has no constraint by the equations
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developed before and it is of easy interpretation: it consists of spacetime translation,

x′µ = xµ + aµ, with (partial) generator Pµ given by:

Pµ ≡ −i
δxν

δaµ
∂ν = −iδνµ∂ν = −i∂µ . (38)

The scale factor obviously is 1, as can be seen from the expression for it we got previously:

Λ(x) = 1− (2/d)∂ · ε+O(ε2).

Now we go for the second term in equation (37). Putting it into equation (29), we get:

bνµ + bµν =
2

d
bρρηµν ,

from which it can be seen that the components of bµν can be split into an antisymmetric

(and therefore traceless) part and a symmetric one proportional to ηµν . Let us take then

bµν ≡ mµν + αηµν , with mµν antisymmetric and α ≡ bρρ/d.

We see then that the symmetric term amounts to an infinitesimal scale transformation:

x′µ = (1 + α)xµ. As before, the spacetime part of the generator associated to invariance

of the system with respect to this transformation is (note the parameter here is α):

D ≡ −iδx
ν

δα
∂ν = −ixν∂ν . (39)

In this case, with our definitions, the scale factor reads Λ(x) = 1−2α+O(ε2). Analogously,

the (spacetime part of the) generator we find for mµν is:

Mµν ≡ −iηµρηνσ
δxγ

δmρσ

∂γ =
−i
2
ηµρηνσ (ηγρxσ − ηγσxρ) ∂γ =

i

2
(xµ∂ν − xν∂µ) , (40)

which we recognize as the generator of rotations in spacetime (see appendix A), despite of

a constant factor 1/2 in front of it that can be dropped; thereforeMµν = −i (xµ∂ν − xν∂µ)

from now on. Moreover, since mµν is traceless, the scale factor associated to this trans-

formation is 1, to first order in ε. After all, rigid rotations do not affect lengths.

Before continuing, let us explore a little bit more about scale transformations, which

play the most important role here. To consolidate our understanding about it, consider

the example of the action of a free scalar field (equation (1) without potential) with

scaling dimension ∆; under what condition is it invariant under scale transformation?

Considering the transformations above, we have (remember [m] = [x−1] in natural units):

S ′ ≡ 1

2

∫
ddx′∂′µφ

′∂′µφ′ = λd−2+2∆S ,

therefore, this action is scale invariant only if ∆ = 1− d/2. Notice that scaling invariance

makes the mass parameter of a theory dependent on the scale also, therefore with no

interpretation as a particle as usual. In fact, there is this mantra: there is only massless
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particles in conformal field theories10.

But why would we like a theory to be scale invariant? It turns out that in a large

class of physically relevant relativistic theories that are manifestly invariant under scale

transformation, it can be verified they are also conformally invariant. To have an idea of

the discussion, one can understand this in two steps: fields usually have virial11 described

by the divergence of a 2-rank tensor σµν ; this particularity makes possible the addition of

another divergenceless term to the energy-momentum tensor that makes its trace equals

to the divergence of the current associated to scale invariance. Therefore, once such

current jµD is conserved, T µν is traceless, and from this we have conformally invariance.

Calculations of the first pass are omitted here and we assume the energy-momentum

tensor is traceless in what follows, but we refer the reader to [4] and [33] for a more

detailed revision.

A consequence of T µµ = ∂µj
µ
D is that we can write jµD = T µνx

ν . Now, we know that the

action of our system can be written in terms of the energy-momentum tensor by means

of (24); under a general coordinate transformation xµ → xµ + εµ(x), the change in the

metric is:

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ

=
(
δαµ − ∂µεα

) (
δβν − ∂νεβ

)
gαβ

= gµν − (∂µεν + ∂νεµ)

.

If the transformation is conformal, then (30) tells us that δgµν = −2

d
ηµν∂ · ε. Conse-

quently, the variation on the action S is just:

δS =
1

d

∫
ddxT µµ∂ · ε , (41)

which holds for any conformal transformation described by ε. Therefore, it can be seen

that, provided the system is scale invariant and assumed that T µµ = ∂µj
µ
D holds, the

energy-momentum tensor is traceless and the system has conformal invariance.

Finally, the quadratic term appearing in (37) can be studied with the help of a relation

derived from (29). Differentiating it with ∂ρ and summing the three equations obtained

when permuting the indices µ, ν and ρ cyclically, we get:

∂µ∂νερ =
1

d
(−ηµν∂ρ + ηρµ∂ν + ηνρ∂µ) (∂ · ε) .

10Actually, this is true for flat space. if you have curvature you can turn on conformal masses.
11The virial of a field is defined by: V µ ≡ δL

δ(∂σφ) (ηµσ∆ + iSµσ)φ, which can be written as V µ = ∂ασ
αµ

usually.
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Inserting that term into this equation and using the following results:

∂µ∂νερ = cρσγ∂µ (δσνx
γ + δγνx

σ) = cρσγ
(
δσν δ

γ
µ + δγν δ

σ
µ

)
= 2cρµν

∂σ (∂ · ε) = cµνρ∂σ (ηµγ∂γ (xνxρ)) = cµνρη
µγ
(
δνγδ

ρ
σ + δργδ

ν
σ

)
= 2cµµσ

,

we find that:

cρµν =
1

d

(
−ηµνcγγρ + ηρµc

γ
γν + ηνρc

γ
γµ

)
∴ cµνρ = ηµνbρ − ηνρbµ + ηρµbν

,

where we employed the definition bµ ≡ cννµ/d to write the second line. The corresponding

infinitesimal transformation is:

x′µ = xµ + cµνρx
νxρ

= xµ + (ηµνbρ − ηνρbµ + ηρµbν)x
νxρ

= xµ + 2 (b · x)xµ − (x · x)bµ

. (42)

To interpret this transformation, note the following:

δ
(xµ
x2

)
=
δxµ
x2
− 2xµ

xµ · δxµ
x4

=
2 (b · x)xµ

x2
− bµ −

2 (b · x)xµ
x2

= −bµ

,

that is, under such infinitesimal transformation, the covector xµ/x
2 experiences just a

translation! The correspondent finite transformation then reads:

x′µ
x′2

=
xµ
x2
− bµ .

The map xµ → xµ/x2 is known as an inversion, and consists of a discrete transforma-

tion; however, notice that, at the end of the day, the effect of the transformation above

on xµ is equivalent to an inversion of xµ followed by a translation by −bµ and again an

inversion. Squaring this last equation we get:

1

x′2
=

1

x2
+ b2 − 2

b · x
x2

=
1− 2(b · x) + b2x2

x2
.

The finite transformation associated to the third term in (37) is given by:

x′µ =
xµ − x2bµ

1− 2(b · x) + b2x2
. (43)

This one is known as Special Conformal Transformation, as we have seen before in the

case d = 1, but now generalized for higher dimensions; its infinitesimal form is clearly
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given by (42), and the generator associated to it can be obtained from (14):

Kµ ≡ −i
δxν

δbµ
∂ν = −iηµρηνσ

δxσ
δbρ

∂ν = −iηµρηνσ
[
2xρxσ − x2δρσ

]
∂ν

= −i
[
2xµx

ν∂ν − x2∂µ
] . (44)

At last, we can also derive the scale factor associated to this transformation. Its finite form

follows from equation (28); using the result (43) and defining β(x) ≡ 1− 2(b · x) + b2x2:

Λ−1(x) =
ηµν

d
ηρσ

∂x′ρ

∂xµ
∂x′σ

∂xν

=
ηµν

d
ηρσ
[
β−1(x)

(
δρµ − 2xµb

ρ
)

+
(
xρ − x2bρ

)
β−2(x)

(
2bµ − 2b2xµ

)]
×
[
β−1(x) (δσν − 2xνb

σ) +
(
xσ − x2bσ

)
β−2(x)

(
2bν − 2b2xν

)] ,

which simplifies as:

Λ−1(x) =
1

d

[
β−1(x) (ηρν − 2xνbρ) +

(
xρ − x2bρ

)
β−2(x)

(
2bν − 2b2xν

)]
×
[
β−1(x) (ηρν − 2xνbρ) +

(
xρ − x2bρ

)
β−2(x)

(
2bν − 2b2xν

)]
=
β−2(x)

d

[
(ηρν − 2xνbρ) +

(
xρ − x2bρ

)
β−1(x)

(
2bν − 2b2xν

)]2
=
β−2(x)

d

{[
d− 4(b · x) + 4b2x2

]
+
[
4b2x2

]
+
[
4(b · x)− 8b2x2

]}
.

Therefore,

Λ(x) = β2(x) =
(
1− 2(b · x) + b2x2

)2
. (45)

We have been emphasizing that the generators (38), (39), (40) and (44) we got were

incomplete, and we will find their complete form when acting on fields very soon, but it

turns out they constitute the so called conformal algebra in dimensions d ≥ 3. Below

we compute two of the commutators involved and summarize the results right after.

The computations are straightforward to do, some of them are just reproduction of the

Poincarè algebra in appendix A.

[Pµ, Kν ] =
[
−i∂µ,−i

(
2xνx

ρ∂ρ − x2∂ν
)]

= − [∂µ, 2xνx
ρ∂ρ] +

[
∂µ, x

2∂ν
]

= −2(ηµνx
ρ∂ρ + xν∂µ) + (2xµ∂ν)

= −2i (Mµν + ηµνD)

,
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and also:

[Kρ,Mµν ] =
[
−i
(
2xρx

σ∂σ − x2∂ρ
)
,−i (xµ∂ν − xν∂µ)

]
= −

[
2xρx

σ∂σ − x2∂ρ, xµ∂ν
]

+ µ↔ ν

= −2 (−ηνρxµxσ∂σ) +
(
ηµρx

2∂ν − 2xµxν∂ρ
)

+ µ↔ ν

= −
(
−2ηνρxµx

σ∂σ − ηµρx2∂ν + 2xµxν∂ρ
)

+ µ↔ ν

= −iηµρKν + iηνρKµ

.

In summary

[D,Pµ] = iPµ

[Pρ,Mµν ] = −i (ηµρPν − ηνρPµ)

[Pµ, Kν ] = 2i (Mµν − ηµνD)

[D,Kµ] = −iKµ

[Kρ,Mµν ] = −i (ηρµKν − ηρνKµ)

[Mµν ,Mρσ] = i (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ)

[Mµν , D] = [Pµ, Pν ] = [Kµ, Kν ] = [D,D] = 0

, (46)

where we see that Pµ and Kµ behave as vectors under rotations, while D is scalar under

them.

The reason why we obtained “incomplete” generators is that because we were assuming

that the fields considered are invariant under such transformations, that is, they are in the

trivial representation of the conformal group. In fact the algebra obtained above is well

established and holds for more general fields, but that is the point: in our work we are

going to find such non trivial fields and, then, we have to fit the form of the generators to

them. This means that we need to consider non trivial representations of the conformal

group in d ≥ 3, that is, we seek matrices representation Tg such that a multicomponent

field φ transforms as:

φ′(x′) = (1− ωgTg)φ(x) .

Poincarè generators can be generalized just by noticing that fields are scalars under

translations and might have spinorial indices, which demands another generator of rota-

tions independent on x to suplementMµν , that turns out to be just the Sµν we have seen

before. Therefore, Pµ does not change, although from now on we refer to it as Pµ, and

Mµν goes to Jµν =Mµν + Sµν ; their action on fields are then:

Pµφ(x) = −∂µφ

Jµνφ(x) = −i (xµ∂ν − xν∂µ)φ+ Sµνφ
.
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The generalization of Kµ and D follows from considering the subalgebra formed by

these operators evaluated at the origin of spacetime, and then translating them to any

point x by means of Baker-Campbell-Hausdorff, similar but more complicatedly to what

was done at the end of the previous section. This is done for example in [4] and results

in the generalized operators Kµ and D that acts on fields according to:

Dφ(x) = (−ixµ∂µ + i∆)φ(x)

Kµφ(x) =
(
2xµ∆− xνSµν − 2ixµx

ν∂ν + ix2∂µ
)
φ(x)

, (47)

where ∆ stands for the scaling dimension of the operator(field) φ. Note that ∆ is nothing

more than the eigenvalue of D at x = 0 for the field φ.

To conclude this section, analogously to what we did at the end of the last section, we

show the isomorphism between the conformal group in dimension d ≥ 3 and the rotation

group in d+ 2 dimensions. To see this, define the following generators in addition to Jµν :

Jd+1,d+2 = D

Jd+1,µ =
1

2
(Pµ −Kµ)

Jd+2,µ =
1

2
(Pµ +Kµ)

. (48)

Using (46), we have then:

[Jd+1,d+2,Jd+1,µ] =

[
D, 1

2
(Pµ −Kµ)

]
=
i

2
(Pµ +Kµ) = iJ0,µ

[Jd+1,µ,Jd+2,ν ] =

[
1

2
(Pµ −Kµ) ,

1

2
(Pν +Kν)

]
=

1

4
([Pµ,Kν ]− [Kµ,Pν ])

= −iηµνD = −iηµνJd+2,d+1

[Jd+1,ρ,Jµν ] =

[
1

2
(Pρ −Kρ) ,Jµν

]
=

1

2
([Pρ,Jµν ]− [Kρ,Jµν ])

=
1

2
[i (ηµρPν − ηνρPµ)− i (ηρµKν − ηρνKµ)]

= i (ηρµJd+1,ν − ηρνJd+1,µ)

,

and similarly for other commutators. They obey the following algebra:

[Jab,Jcd] = i (ηbcJad + ηadJbc − ηacJbd − ηbdJac) , (49)

with a, b = 0, ..., d− 1, d + 1, d + 2 and ηab = diag(+, ...,+,−,+); remembering that Jµν
already satisfies such algebra.

The algebra of these new generators is the same as for the Lorentz group in d+ 2 di-

mensions. This and also the result we obtained at the end of the last section are the man-
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ifestation of a very useful tool at our disposal, the so called Embedding Space Formalism,

which relates a theory in d dimensions invariant under global conformal transformations

to another one in d + 2 dimensions invariant under rotations. Its usefullness is realized

when talking about defects in conformal field theories, the subject of the next chapter,

so there we come back to this with more detail. In the next sections of this chapter we

explore the consequences of what we have just done, aiming to establish the main aspects

of a field theory invariant under conformal transformations, including in the quantum

level, concluding with an extension of the conformal group, which has been demonstrated

of great significance in theoretical physics.

A last, but not least, point here is a parallel we can now establish with the renormal-

ization group idea developed at the end of the previous section. There we saw that beta

functions tell us how coupling constants of interaction terms in a theory behave under

scaling. In the present section we have seen that conformal field theories are invariants

under that same transformations, besides others. Therefore, CFTs are characterized as

field theories having vanishing beta functions. In that case, once considered the ”space“

of coupling constants, one can see a CFT as a fixed point there. So that quantum field

theories undergoing a scaling process will possibly end up in a CFT or, conversely, a QFT

can be seen as CFT perturbed by relevant operators.

1.3 Primary and Descendant Operators

Since we are interested in theories invariant under rescaling, a natural starting point is

to consider the operators which diagonalize the dilatation operator D at the origin. For

each operator (field) O(x), with correspondent scaling dimension ∆, we have:

[D,O(0)] = DO(0) = i∆O(0)

[D,O(x)] = DO(x) = (−ixµ∂µ + i∆)O(x)
,

where it was made use of the result (18), relating charges to operators, which allows

us to see the scaling dimensions as being just charges associated to each local operator

O(x). The set of these dimensions and respective operators form the spectrum of local

operators. Conformal dimensions together with the structure constants appearing in 3-

point functions specify the CFT data of a conformal field theory.

Consider the algebra (46). At the origin we can write:

DKµO(0) = ([D,Kµ] +KµD)O(0) = i (∆− 1)KµO(0)

DPµO(0) = ([D,Pµ] + PµD)O(0) = i (∆ + 1)PµO(0)
,

that is, Kµ and Pµ act like lowering and raising operators, respectively, for the scaling

dimension. This suggests a way for constructing irreducible representations of the con-
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formal group, resembling the analogous method used in quantum mechanics for angular

momentum.

Acting with Pµ on O(x) is equivalent to differentiating with respect to xµ. A priori

there is no limit to its successive applications, that is, there is no upper bound limit to

scaling dimensions. However, as it is going to be shown at the end of this section, we do

have a lower limit to ∆ for unitary CFTs. Assuming this is true, there must exist some

operators annihilated by the action of Kµ:

[Kµ,O(0)] = KµO(0) = 0 .

These operators are called primary operators. Other operators are obtained from

them by taking derivatives directly (that is, acting with Pµ successively) or by taking

linear combinations of derivatives with appropriate factors of xµ. Operators that are not

primaries are called descendants. Summarizing, for O(0) primary: We call PµO(0) a first

operator scaling dimension
. .
. .
. .

PνPµO(0) ∆ + 2
PµO(0) ∆ + 1
O(0) ∆

Table 1: n aplications of Pµ give an operator of dimension ∆ + n.

level descendant, PνPµO(0) a second level descendent, and so on.

Now, remember (see (46)) that dilation and rotation generators commute. We can

then construct a field representation of the conformal algebra using eigenvalues of D and

Mµν to label the operators. Starting with a primary of scaling dimension ∆ and spin

l, by acting with momentum operators successively we move over operators of higher

dimensions; this is analogous to the construction of irreducible representations of SU(2)

in quantum mechanics, in our case procceding from a lowest-weight “state” to higher-

weight ones. Moreover, notice that first level descendants carry another Lorentz index,

second level descendants two more and so on. Therefore descendants live in a different

space from their respective primaries, given by a simple tensor product between the vector

representation and the irreducible representation of the primary. In unitary CFTs any

local operator is a linear combination of primaries and descendants (as we are going to

see at the end of the section).

It is customary to refer to primaries far from the origin, for example as O(x). This

must be understood as translated primaries. In fact, the formalism above shows D has

eigenstates only at the origin. However, translated primaries still carry information from

the ones at the origin by rigorous definition: as we are about to see, the scaling dimen-
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sion and the spin are taken into account on transformations of them. Looking at the

infinitesimal Jacobian of a conformal transformation, we have (at first order in epsilon):

∂x′ν

∂xµ
= δνµ + ∂µε

ν '
(
δνµ + ∂µε

ν
)(

1− 1

d
∂ · ε

)(
1 +

1

d
∂ · ε

)
'
[
δνµ +

1

2
(∂µε

ν − ∂νεµ)

](
1 +

1

d
∂ · ε

) ,

that is, it is equivalent to a rotation followed by a scaling operation (or vice-versa, re-

membering such operations commute), both dependents on the position. Exponentiating

the expression for the Jacobian above, we expect then:

∂x′ν

∂xµ
= Λ−1/2(x)M ν

µ ,

where Λ(x) and M ν
µ stand for a finite position-dependent scaling and a finite Lorentz

rotation, respectively.

Therefore, the transformation rule of a primary operator φ(x) with intrinsic spin should

depend on the rotation matrix M ν
µ . Without proof, we claim here that such operator,

supposedly in a irreducible representation R of SO(d), will transform as:

φ(x)→ λ∆(x)R
[
M ν

µ

]
φ(x) , (50)

where we defined λ(x) ≡ Λ−1/2(x) and, as always, ∆ stands for the scaling dimension of

the field. For example, if φ(x) is a vector field, then R
[
M ν

µ

]
= M ν

µ . So, if Vν(x) is a

spin-one field, it will transform like:

V̂µ(x′) = λ∆(x)M ν
µ Vν(x) . (51)

Transformation rules for a given descendant can then be derived from the one above. It

is not so simple as for primaries, in view of the non-commutativeness between rotations

and translations, as well as between dilations and translations. But, reinforcing what was

already stated, a priori we just need to worry about primaries behaviour.

1.4 Radial quantization

To finish this section, we talk now about some important topics which will provide some

groundwork to what is about to be developed in the following sections and chapters. Ba-

sically, the aim is to close the understanding on primaries and to emphasize particularities

of unitary theories.

The starting point in this way is to adopt a different, but more powerful quantization.

Typically, in view of time translation invariance, one chooses to deal with states living in
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Hilbert spaces supported on slices of the time direction. Then time evolution connects

these slices and all the usual treatment can be applied. The quantizantion adopted thus

is motivated from a given symmetry respected by the theory. For scaling invariant ones, a

possibility is to foliate the spacetime with spherical shells centered at the origin, which is

known as radial quantization. Hilbert spaces are defined on the surface of these spheres and

they are connected via action of the dilation operator; therefore, we can act on this space

of states by inserting operators on the surface of those spheres, for example with charges

integrated all over the sphere, see Fig. 1.4. The arrow indicates scaling evolution through

|ψ〉
|ψ′〉

Q(Sd−1)

O

Figure 3: Radial slices of spacetime. Charge operator Q(Sd−1) surrounding the sphere.

eiD∆τ , with ∆τ standing for the diference between the logarithms of the largest radius

and the smallest one. In fact, making use of the logarithm of the radius characterizes a

cylinder perspective of the quantization, in which the exponential changing in distances

due to scaling is translated into simple translations of the logarithm of these distances,

resembling the usual time slices:

r2 = eαr1 and τ ≡ log r ⇒ ∆τ = log r2 − log r1 = α ,

in this case α is greater than zero, note, without losing generality.

We create states on a sphere by inserting operators inside it. The idea behind this

is the following: the vacuum (on that given sphere, or space of states) is given by the

path integral over the interior of the sphere, thus a general state is just the same path

integral with the insertion of the operator (then said to create it) in the sphere and,

therefore, inside the path integral expression. As one might already be imagining, we

have an analogy of future and past here also: states in the “past” are on the sphere of

null radius (or equivalently, minus infinity cylinder time τ), while states in the “future”

are over the sphere of infinity radius.

The overlap of states on that Hilbert space is then equal to correlation functions of

operators which create such states inserted inside the sphere. In this case, a different

ordering is required than the usual time ordering in n-point functions, namely a radially

ordered product of operators. The farthest from the origin come on the left; the ones at
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the same radius but different angles commute. For example, the configuration below is

related to the two point function 〈O(y)O(x)〉 on the sphere:

O(x)

O(y)

Figure 4: The overlap between O(x)|0〉 and O(y)|0〉 is just the two point function between
the operators.

In this construction, notice, primary operators are going to create states that are

automatically eigenstates of dilation. In fact, this is part of the so called state-operator

correspondence: as it is clear, given a primary operator O(0), O(0)|0〉 is automatically

eigenstate of D, in view of (47); conversely, given an eigenstate of D that is annihilated by

Kµ, say |O〉, then a primary O can be constructed by means of the correlation functions

with other fields:

〈0|φ1φ2...O|0〉 ≡ 〈0|φ1φ2...|O〉 , (52)

that is because, from the right-hand side, applying rotation and dilation operators we can

infer the spin and the scaling dimension of the operator O, which defines a primary.

The state-operator correspondence tells us that all states in a conformal field theory

can be created by operators which act locally at the origin (or in a small neighborhood

of the origin, in the cylinder point of view). Which means that the entire Hilbert space

of a CFT lives in a single point. The key is that such states evolve radially outward in a

unitary way.

About the unitarity, it allows us to establish conjugation of the operators. Having

the cylinder interpretation in mind and working in the euclidian time tE ≡ iτ , notice

that conjugation in this case means to reflect the time tE in view of the hermicity of D,

which in turn means an inversion of the radius. Thus, unitarity in cylinder is translated

to inversion in radial quantization. This operation of inversion, denoted by R from now

on, already appeared before, when deriving special conformal transformations (see (43));

then we saw that such transformations actually were equivalent to an inversion followed

by a translation and followed by another inversion. In terms of operators, this means:

Kµ = RPµR . (53)

So, in radial quantization, Kµ and Pµ are hermitian conjugate of each other! Consequently,
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hermitian conjugate of descendant states are easy to write down:

(Pµ|O〉)† = 〈O|Kµ , (54)

where O is assumed to be a primary or a descendant.

This property then enables us to derive what is known as unitarity bounds. Basically

they are restrictions on the spectrum of the theory. Imposing unitarity we get the allowed

values of scaling dimensions. In terms of states, unitarity means their norm must be

non-negative. From this, supposing O is a scalar primary of dimension ∆, we have for

example:

〈O|K0P0|O〉 ≥ 0⇔ 2∆〈O|O〉 ≥ 0⇒ ∆ ≥ 0 , (55)

where it was used (46). Suppose we consider the norm of a second level descendant

obtained from the action of PµPµ on |O〉. We have:

〈O|KνKνPµPµ|O〉 = 〈O|Kν ([Kν ,Pµ] + PµKν)Pµ|O〉

= 〈O|Kν ([[Kν ,Pµ] ,Pµ] + Pµ [Kν ,Pµ]) |O〉

+ 〈O| [Kν ,Pµ]KνPµ|O〉

,

and therefore:

〈O|KνKνPµPµ|O〉 = 〈O| [Kν , [[Kν ,Pµ] ,Pµ]] |O〉

+ 〈O| [Kν ,Pµ] [Kν ,Pµ] |O〉+ 〈O| [Kν ,Pµ] [Kν ,Pµ] |O〉

=
[
8d∆2 − 4 (d− 2) d∆

]
〈O|O〉

,

where from the second line on we used the fact that primaries are annihilated by Kµ. To

write the last line we just apply (46) again. From this we see that a stronger constraint

on the values of ∆ in this case due to imposition of unitarity is given by:

∆ = 0 or ∆ ≥ d− 2

2
. (56)

The same exercise for a primary Oa of dimension ∆ in a nontrivial irreducible repre-

sentation RO of the SO(d), where a stands for spin (which we assume to equals l here)

indices, leads to (using (46) again):

〈Ob|Oa〉 ≡ δab ⇒ 〈Ob|KµPν |Oa〉 ≥ 0⇔ δµνδ
a
b∆− (Sµν)ab ≥ 0 .

Our state lives in the space V × RO, where V is the vector representation. However,

the inequality in the last step must be understood as a requirement of positive-definition

of the matrix depending only on S acting on the representation space of primaries itself.

Positiveness in this case is equivalent to demand the greatest eigenvalue of (Sµν)ba to be
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minor or equal than ∆. To obtain such eigenvalue, define
(
Lαβ

)
µν
≡ δαµδ

β
ν − δαν δβµ , and

notice that (Sµν)ba can then be written as:

1

2

(
Lαβ

)
µν

(Sαβ)ba =
1

2

(
δαµδ

β
ν − δαν δβµ

)
(Sαβ)ba =

1

2

[
(Sµν)ba − (Sνµ)ba

]
= (Sµν)ba ,

where the antisymmetry of rotation matrices were used in the last step.

Not coincidently, Lαβ satisfies Lorentz algebra and, in fact, is the traditional vector

representation of the group (notice it acts on the greek indices), while Sµν acts on the

roman indices. We have then a kind of inner product between L and S, which recalls

spin-orbit interaction from quantum mechanics problems. That actually is how we are

going to obtain such eigenvalue. We know that:

L · S =
1

2

[
(L+ S)2 − L2 − S2

]
.

Moreover, the operators appearing on the right-hand side of this expression are Casimir

operators, used to label primaries. So the eigenvalue of the one on the left-hand side

when apllied to a primary is easy to obtain, noting that the orbital angular momentum

has defined value equals 1 (after all it refers to a vector representation). Besides, the

eigenvalue of the quadratic Casimir operator of the group SO(d) when applied to a primary

of spin l is known (see [57]) to be given by l(l+d−2) (result valid for symmetric traceless

representations of the group, which is the case for primaries, we are commenting more

about it further). The maximum eigenvalue is then the one minimizing the positive term

in that expression,12 that is, the one related to the l − 1 subspace:

max. eigenvalue[(Sµν)ab ] =
1

4
[−(l − 1)(l − 1 + d− 2) + 1(1 + d− 2) + l(l + d− 2)]

=
l + d− 2

2

.

So, we arrived in the following bound for the scaling dimension of primaries depending

on their spin:

∆ ≥ l + d− 2

2
, (57)

which, together with (56), is known to be the best constraints we can have for general

conformal field theories.

Requiring unitarity of the theory then brings up two imediate consequences: first,

it tells us that primaries have scaling dimensions bounded from below, and second, the

emergence of the state-operator correspondence guarantees that any operator of the theory

can be written as a linear combination of primaries and descendants.

12The quadratic Casimir in this case carries a minus sign in view of the fact that the generators are
antihermitian, that is why we minimize such term instead of maximizing it.
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Formally, a linear combination stands for a finite summation, so that mathematically,

the claim above is proved as follows: assume the partition function of the theory is finite,

which means that the probability of being in a given subspace spanned by eigenvectors of

D with the same also given eigenvalue is finite too. Notice that the subspace associated

to each eigenvalue is finite too, in view of unitarity bounds. Under these assumptions,

consider for simplicity a generic state which is eigenstate of D. Now, subtract from such

state its projection onto the given subspace and all other subspaces with associated eigen-

values less than that one. The resulting state can then only be zero, because, otherwise,

by succesive application of Kµ we would encounter a primary which should be in one

of those subspaces, a contradiction. The finiteness of those subspaces allows us then to

assume the existence of the linear combination of primaries and descendants.

A last comment on the unitarity bounds. Notice that, according to the procedure for

obtaining such bounds, for a non-trivial scalar fieldO(x) that saturates the condition, that

is, a scalar field with dimension ∆ = (d− 2)/2, there is a state with null norm13, namely

P2|O〉, which in operator language means that O(x) satisfies the Klein-Gordon equation

∂2O(x) = 0, which in turn means that such field is free and therefore decouples from the

others. Analogously, for a spin-l primary, sayOµµ2...µl(x), with dimension ∆ = (d+l−2)/2,

a state with norm equals to zero is given by Pµ|Oµµ2...µl〉 14; again, in terms of operators,

this is equivalent to the conservation equation ∂µOµµ2...µl(x) = 0. The inverse implication

also works once one relates ∂µ to Pµ. We conclude then that a given spin-l operator is a

conserved current if and only if its dimension equals ∆ = (d+ l− 2)/2. For example, the

stress tensor in a CFT has l = 2 and ∆ = d.

1.5 Conformal Correlators

Besides determining primaries, we also need to know how their dynamics works, that is,

how they interact with each other. This is established once we know their correlators.

Conformal symmetry brings up some particularities. Since there is more symmetry than

in Poincarè group we are going to have more contraints and, in fact, as we will see,

correlators in CFTs are well determined, except for some constants. This makes the

determination of a CFT be simply given by the CFT data.

Let us start with one-point functions. Obviously it is a function of one variable, say

x. In view of invariance under translations due to conformal symmetry, it must be a

constant. However, in order to be compatible with scale transformation, this constant

must be zero! Otherwise it would not be scaling invariant. Therefore:

〈O(x)〉 = 0 , (58)

13Usually called in the literature as null states.
14Remember we saw that the saturation occurs for the l−1 subspace, that is why Pµ appears contracted.

34



where O(x) is a primary different from identity (in this case such correlator would be just

the vacuum norm).

Two-point functions are more interesting. For simplicity, take two scalar primaries

O1(x1) and O2(x2), with respective scaling dimensions ∆1 and ∆2. Invariance under

translations and rotations says then that this function, f , depends only on the absolute

value of the difference between both positions:

〈O1(x1)O2(x2)〉 = f(|x1 − x2|) .

Requiring covariance of the correlator (remember: a correlation function transforms

as in (16)) with respect to the scaling transformation (34), we get that the only possibility

for its form is:

〈O1(x1)O2(x2)〉 =
C

|x1 − x2|∆1+∆2
.

Finally, to have a function consistent with the special conformal transformations,

which tells us that distances transform under them like (one can show it using (43)

directly on the left-hand side of the equation below):

|x′i − x′j| = β−1/2(xi)β
−1/2(xj)|xi − xj| , (59)

we impose, in view of (45) and from the fact that λ(x) = β(x) in this case:

C

|x1 − x2|∆1+∆2
= λ(x1)−∆1λ(x2)−∆2

C (λ(x1)λ(x2))(∆1+∆2)/2

|x1 − x2|∆1+∆2
⇔ ∆1 = ∆2 .

Therefore,

〈O1(x1)O2(x2)〉 =


C

|x1 − x2|2∆
, if ∆1 = ∆2 = ∆

0 , otherwise

, (60)

that is, 2-point functions are zero for operators with different scaling dimensions and are

fixed up to a normalization constant C, which is usually taken to be equals to 1.

3-point functions are also fixed by conformal symmetry. Considering another scalar

primary O3(x3) with scaling dimension ∆3, the previous arguments lead us to conclude

that this correlator will depend on x12 ≡ |x1 − x2|, x13 ≡ |x1 − x3| and x23 ≡ |x2 − x3| in

a similar way. All this quantities should appear in the same term, to be consistent with

(34) again. Matching the powers with the scaling dimensions through (59), we see there

is only one possibility too:

〈O1(x1)O2(x2)O3(x3)〉 =
λ123

x12
∆1+∆2−∆3x13

∆1+∆3−∆2x23
∆2+∆3−∆1

, (61)
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where λ123 is a constant.

Now, naturally we want to see the implications of conformal invariance on 4-point

functions or higher. Well, these symmetries do not fix them, but restrict their dependence

very nicely. The discussion above taught us that a given correlator will depend only on the

quantities xij, the distances between the points, and also that scaling dimensions should

appear in the power degree of them. Moreover, (59) tells us that conformally invariant

quantities can not be constructed with only two or three points15. Four-point functions

and higher then will be basically functions of these invariant quantities multiplied by

factors of xij with determined powers.

For example, four points x1, x2, x3 and x4 can be arranged in a way to build two

invariants:

u ≡ |x1 − x2||x3 − x4|
|x1 − x3||x2 − x4|

and v ≡ |x1 − x2||x3 − x4|
|x1 − x4||x2 − x3|

.

Noticing then that each xi appear in three of the xij, and inspired on the result for the

three-points correlator obtained before, we conclude that 4-point function between scalar

primaries has the form:

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = g(u, v)
4∏
i<j

x
∆/3−∆i−∆j

ij , (62)

where ∆ ≡
∑4

i=1 ∆i and g an arbitrary function of u and v.

We could go on and find generic expressions for correlators with more than four points,

but actually it is not necessary. Moreover it would be a more difficult work due to the

presence of more cross-ratios. That is because, as we are going to see below, conformal

invariance in unitary theories allows us to obtain such correlation functions in a recursive

way, so that they can be expressed, at the end of the day, in terms of 2-point functions

only, which are fixed. To close this subject we are also expliciting what are the Ward

identities satisfied by those correlators, which could be used as check of validity for any

n-point function one could come across.

1.5.1 Conformal Ward Identities

Before exploring the technology which allows the obtention of general correlators in terms

of two point functions, let us quickly present how conformal symmetry reflects on a generic

quantum quantity like those. As we have seen, these restrictions from the symmetries are

dictated by the so called Ward identities. So, basically, what we are going to do here is

to explicit them by just applying (17) to each generator we have in the group.

15Notice: in the case of two and three-point functions, they are covariant quantities with respect to
conformal tranformations, and not invariant!
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Starting with translations, the generator and the conserved quantity is well known:

Pν = −i∂ν → T µν ,

where the energy-momentum tensor is symmetric, remember. In this case, the Ward

identity associated is obtained directly:

∂µ〈T µν(y)X〉 = −i
n∑

i=1

δd(y − xi)
∂

∂xνi
〈X 〉 , (63)

where X stands for O1(x1)...On(xn), the product of local operators.

Consider now Lorentz rotations. Once T µν above is symmetrized, (22) tells us that

the current associated to the generator Jµν(x) = −i(xµ∂ν − xν∂µ) + Sµν of rotations is

given by:

jσµν =
1

2
(T σµxν − T σνxµ) .

Consequently, the identity we get come from:

1

2
∂σ〈(T σµ(y)yν − T σν(y)yµ)X〉 = −i

n∑
i=1

δd(y − xi)

(
xµi

∂

∂xiν

− xνi
∂

∂xiµ

+ iSi
µν

)
〈X 〉 .

Using conservation of the energy-momentum tensor, the left-hand side of the equation

above simpliflies. Notice, however, that the right-hand side can also be simplified by

making use of (63) to keep only the spin part. Therefore:

1

2
〈(T νµ(y)− T µν(y))X〉 =

n∑
i=1

δd(y − xi)Sµνi 〈X 〉 , (64)

that is, within a correlator, the energy-momentum tensor is symmetric only at points not

coincident to any of the ones at which the local operators are.

Now, moving our attention to dilations, according to section 1.2.2 we do not need to

derive the explicit form of the current jµD associated to scaling invariance here, instead we

can use its relation to the energy-momentum tensor due to invariance under the entire

group of conformal symmetry, that is, the relation jµD = T µνx
ν we have seen there. The

generator of dilations is D = −ixµ∂µ + i∆, so the Ward identity in this case reads, after

similar manipulations:

〈T µµ(y)X〉 = i

n∑
i=1

δd(y − xi)∆i〈X 〉 , (65)

as we can see, within a correlator, the energy-momentum tensor is traceless only at points
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different from those of the local operators.

This completes the set of Conformal Ward identities. Special conformal transformation

brings up nothing new, the resulting Ward identity is dependent on those ones (see for

example [58]) .

1.5.2 Operator Product Expansion

The last important point concerning conformal field theories has to do with singularities.

As might be clear at this point, correlation functions are of great importance in physics,

specially in particle physics, after all they are closely related to scattering problems and so

on. Briefly speaking, correlators are the building blocks for quantities with physical mean-

ing and consequently their behaviour under some limits reflects directly in the physics. In

particular, from operators very close to each other we can infer the high energy panorama

of a given interacting theory.

Understand this problem is not a recent worry, instead it started long ago. By that

time, Wilson16 hypothesized that the singular part of the product between two operators,

say φ(x) and ψ(y), when x → y, is given by a sum of other local (here considered

renormalized) operators O like in:

φ(x)ψ(y) =
∑
O

F φψ
O (x− y)O(y) ,

where F φψ
O (x− y) stand for singular functions.

This hypothesis is supported by the fact that, by dimensional analysis, the function

F φψ
O (x−y) behaves for x→ y like the power ∆O−∆φ−∆ψ of the difference x−y. So, since

the addition of more fields and/or more derivatives to O increases its complexity, therefore

raising ∆O, as we consider more complicated fields in the expansion, their contribution

will be less important, because they will also become less singular.

In fact, it was proved (see [59] for example) that such expansion is valid asymptotically,

where the operators O appearing in there are local ones within a region supposed to

surround φ(x) and ψ(y) apart from other fields. We ommit the proof here for pedagogical

reasons, but we do not forget to emphasize a powerful detail: it is a relation valid between

operators and, therefore, need not to be inside correlation functions to be used.

Here is the point where conformal symmetry enters. As we have seen, in a unitary

theory any operator can be written as linear combination of primaries and descendants.

Moreover, we know that descendants are obtained from primaries by applications of the

momentum operator. So, we conclude that any operator in a unitary theory can be written

actually as a linear combination of only primaries, once the coefficients of the expansion

are considered to depend on partial derivatives too.

16Kenneth Geddes Wilson: american theoretical physicist, gave great contributions to the understand-
ing of critical phenomena, b06/08/1936 �06/15/2013.
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In the present discussion, the last paragraph says then that, in conformal field theories,

the product between two operators can be expanded exactly as the sum over primaries.

The coefficients in the expansion will depend on the positions and also on derivatives with

respect to the position of these primaries. That is because the resulting operator from

the product of the two operators creates a state at the boundary of the surrounding area,

which can be written as combination of primary and descendant states on the inside,

in view of the state-operator correspondence. Therefore, in CFTs the previous result is

exact! Moreover, it holds for any distance the operators involved be apart from each

other, provided there is no other field within the surrounding region traced. This exact

result carries a special name, we call it Operator Product Expansion (OPE from now on):

Oi(x1)Oj(x2) =
∑
k

Cijk(x12, ∂x2)Ok(x2) , (66)

where was adopted the notation from [5] and k stands for primary labels, such that the

contribution of each multiplet on the expansion is packaged into the function Cijk(x12, ∂x2),

in accordance to what we just said.

There is no need to primaries appearing on the right-hand side of the equation above

to be in the same position as one of the operators in the product. That is because radial

quantization can be performed around another origin. The consequence of this freedom

is that we can also write the equation above like:

Oi(x1)Oj(x2) =
∑
k

Cijk(x13, x23, ∂x3)Ok(x3) ,

that is, just adopting a different point of reference.

Another important particularity we need to stress is again the fact that it is an operator

relation, therefore it can be manipulated freely even within correlators. Consider for

example the product between three ordered scalars φ1(x1)φ2(x2)φ3(x3). We could expand

their product firstly surrounding φ2 and φ3, and secondly taking the operators inside the

resulting sum and surrounding them together with φ1, producing a final expansion with

double sum; alternatively, we could do the same process beginning with φ1 and φ2, an the

result would be the same! After all we have an equality in (66). This is a special feature

in CFTs called crossing symmetry17, intuitively represented in the figure below.

Conformal invariance fixes 2- and 3-point functions, as we have seen. Now, using

OPE we can reduce any n-point function to the sum of only 2-point functions, which

are fixed! Therefore, the knowledge of all two and three point correlators automatically

allows one to express any other correlator. Of course it is necessary to know the coefficients

C(x, ∂x) of the expansion. It turns out it is also fixed in view of conformal invariance

17This name makes sense if one imagines the operators inserted in a correlation function, which allows
particle process interpretation and etc.
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φ3(x3)

φ2(x2)

φ1(x1)

≡

φ3(x3)

φ2(x2)

φ1(x1)

Figure 5: Crossing symmetry: associativeness of the expansions involving products of
more than two operators.

of the correlation functions; they can be determined using a simple way: considering for

example three scalar primaries, the fact that correlators of two and three points are fixed

allows us to write:

〈Oi(x1)Oj(x2)Ok(x3)〉 =
∑
k′

Cijk′(x12, ∂x2)〈Ok′(x2)Ok(x3)〉 .

Using then (60) and (61), and normalizing 〈Ok′(x2)Ok(x3)〉 = δkk′x
−2∆k
23 , we have:

λijk
x12

∆i+∆j−∆kx13
∆i+∆k−∆jx23

∆j+∆k−∆i
= Cijk(x12, ∂x2)

(
1

x2∆k
23

)
, (67)

which tells us that the coefficient can be found by matching an expansion on x12/x23 on

both sides, being just a differential operator proportional to λijk.

So, once one has the scaling dimensions of the fields and also the so called structure

constants λijk (and similar for spinful operators), one is able to compute any correlator

in the theory. These informations together with anomalous dimensions compose what we

cited as CFT data before and are the aim of several studies nowadays, specially Conformal

Bootstrap (particularly stimulated after the seminal work by Riccardo Rattazzi [60] in

2008), and also the review being presented here.

We finish this section studying the nature of the primaries appearing within the OPE

(66). We want to prove that they must be in traceless symmetric tensor representations

of SO(d). The proof goes as follows: consider the product between two identical scalar

primaries, for simplicity, say φ, then we have:

φ(x1)φ(x2) =
∑
O

λφφOCa(x2, ∂x2)Oa(x2) ,

where a stands for spin indices and λφφO is the proportionality constant we encountered

previously, being actually the three-point structure constant.

Now, we know that (see for example [61] and [75]) any tensor of a given representation

of SO(d) can be decomposed onto a part of non-null trace components and another
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orthogonal traceless part. Therefore, any irreducible representation (“irreps”) of SO(d)

must be traceless. Among these tensor irrep of SO(d) we can still separate it onto parts

according to the symmetries of the rotation indices, that is, we have a totally symmetric

block, partially symmetric ones, and of course totally antisymmetric too. This occurs

because rotations do not mix them, specially totally symmetric tensor with others.

Consider then the matrix element between the primaries in the OPE and the operator

being expanded, that is 〈Oa(x2)φ(x1)φ(x2)〉. The most general form for this function can

be constructed by using the vectors xµ1 and xν2 and also the metric ηµν that we have at

our disposal, like:

〈Oa(x2)φ(x1)φ(x2)〉 = f1(|x1 − x2|)xµ11 x
µ2
1 ...x

µl
1 + f2(|x1 − x2|)xµ11 x

µ2
2 ...x

µl
1

+ f3(|x1 − x2|)ηµ1µ2xµ31 ...x
µl
2 + ...

,

from which its clear that a = µ1µ2...µl. Notice that derivatives of a function depending on

the absolute value |x1− x2| with respect to any of the variables still have the form of one

of those terms above. Note also that ηµν is the unique tensor invariant under rotations we

have, and that contractions between it and the vectors are also included in those terms.

In this way, clearly irrep of SO(d) can not contain terms proportional to the metric,

since it has non-vanishing trace. Therefore the matrix element in question can only have

symmetric traceless terms, because positions commute.

Moreover, notice that once 〈Oa(x2)φ(x1)φ(x2)〉 = 0, all the descendants have vanishing

matrix element with φ(x1)φ(x2)|0〉 too:

〈Oa(x2)|Kµ1 ...Kµnφ(x1)φ(x2)〉 = 〈Oa(x2)|Kµ1 ...Kµ(n−1)φ(x1)Kµn|φ(x2)〉

= 0
,

where was used (54) and the fact that |φ〉 ≡ φ|0〉 is primary.

Therefore in OPE only primaries in symmetric traceless tensor representatios of the

group of rotations appear. The indices of more complicated fields on the left hand-side of

(66) are incorporated into the coefficient indices, not entering into the primaries labels,

and for this reason not affecting the argument above.

The rest of this chapter is devoted to conformal field theories containing extra sym-

metries, the so called supersymmetries. There are also such theories of physical interest,

in fact we focus on some of them in the present work, and at the end of the chapter we

present two examples, which are going to be explored later.

1.6 Superconformal Field Theory

Up to now we have been talking only about transformations composing a Lie Group

of symmetries in a system. The main characteristic of this kind of group is that the
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bilinear operation appearing in its defining algebra is the commutator. In appendix A we

explored the Poincarè group and above we extended it to the Conformal group. Both of

them describes spacetime symmetries.

It turns out, however, that is the most we can do considering Lie Groups of trans-

formations in spacetime. In fact, there is a theorem concerning it, the so called No-go18

Coleman-Mandula theorem; it says that any QFT under the three reasonable assumptions

below can only present a Lie Group of symmetry consisting in the direct product between

the Poincarè group at most and an internal group (usually direct products of U(1)) if the

theory has massive particles (see for example [34]). Therefore, can not have symmetries

mixing different spins.

• For any given mass M , there are only a finite number of particle types with mass

less than it;

•• Any two-particles state undergoes some reaction at almost all energies (except per-

haps an isolated set);

• • • The amplitudes for elastic two body scattering are analytic functions of the scatter-

ing angle at almost all energies and angles,

as in the last reference.19 In that reference also, one can find that if there is no mass gap

in the theory, the result holds for the Conformal group at most, which is an extension of

the Poincarè as we said.

Such theorem is from 1967 and, after then, ways to bypass it have emerged. Specially

motivated by the idea of having bigger multiplets of symmetry groups containing particles

of different spins. The most successful alternative is the systematic study of Supersym-

metry, traditionally taken to have started with the work [35] by Wess and Zumino. The

main idea for its construction is to put bosons and fermions at the same level, in the sense

that one can be carried onto the other by means of a symmetry transformation.

1.6.1 Supersymmetry

Bosons and fermions are the building blocks of theoretical particle physics. Their basic

difference is statistics: fermions are subjected to the Pauli exclusion priciple and can not

be encountered in arbitrary number at a given state of energy, bosons can. The Spin-

Statistics theorem then connects that to statistical behaviour: bosons have integer spins

and fermions semi-integers. In more technical terms, bosonic operators (the ones that cre-

ate bosons) obey commutation relations, while fermionic operators obey anticommutation

relations, represented as always by {, }.
18In Physics, a no-go theorem stands for a statement that a particular situation is not physically

possible.
19There are some peculiarities in gauge theories and we really encourage the interest reader to see [34].
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Supersymmetry (SUSY) then enters with the intention of introducing one or more

charges Q′s that are responsible to perform transformations of boson type states into

fermionic ones and vice-versa; and since spins are connected to spatial rotations behaviour,

supersymmetry then is in some sense a spacetime transformation. Here we are going to

present some general ideas without going into too much details, keeping only the necessary

to make the reader able to understand with some comfort the structure of the theories

that are going to be explored in this work. Their construction are not the focus here.

The brief discussion to be presented in this section is mainly based in [7], a very good

reference for the interested reader, with some support from [37].

Therefore, the way supersymmetry comes to circumvent the limitations of the no-go

Coleman-Mandula theorem is by bringing up fermionic charges to the group of symmetry.

In fact, that theorem was generalized in this way by Haag,  Lopuszański and Sohnius

in [36]; they found spacetime and internal symmetries could be related only through

fermionic operators of spin 1/2. Besides that kind of relation, the possibility of having in

the same multiplet states of different statistics showed up, in accordance with the basic

premise.

In this last paragraph the main feature of a supersymmetric charge was already put:

it must be a fermionic operator of spin 1/2, that is, a spinorial charge. To have an idea,

notice that such a charge, say Q, performs the following transformation:

Q|boson〉 = |fermion〉 and Q|fermion〉 = |boson〉 ,

which depdends on the model been studied, including how many Q′s there are, the number

of which is usually refered to as N .

Now, under an unitary transformation U representing a spatial rotation by 2π around

some axis we have:

UQ|boson〉 = UQU †U |boson〉 = U |fermion〉

UQ|fermion〉 = UQU †U |fermion〉 = U |boson〉
.

Remembering that fermion states pick up a sign under such a rotation, while bosons do

not, that is:

U |boson〉 = |boson〉 and U |fermion〉 = −|fermion〉 .

We conclude that:

UQU † = −Q , (68)

therefore, Q picks up a sign under a 2π spatial rotation, like spinorial operators do. Of

course the above argument is not a proof that the operator has spin 1/2, the original paper

should contain a more detailed analysis and we refer the reader to it. The important point

here is to have in mind, from now on, that supersymmetric charges appear in pairs (after
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all we have left and right handed spinors) and with spinorial indices: Qα and Q̄α̇. So, for

example, in four dimensions, a theory with one supersymmetric charge (therefore N = 1,

or simple SUSY) is going to have four fermionic operators, since we have two Weyl spinors

of two entries each.

Technically, these new operators relate to other bosonic symmetries of the system

through the commutation rules between them. The new set of commutation and anti-

commutation relations of the (super) symmetry group of transformations will then form

the superalgebra of operators to be explored in the subsequent construction of multiplets.

More precisely, instead of having a Lie algebra, we are going to have what is called

graded Lie algebra. Let Oa and Ob be two operators of the algebra; we associate to them

grades ηa and ηb, respectively, 0 if it refers to a bosonic operator and 1 if to a fermionic

one. The algebra then is generically expressed in terms of structure constants Ce
ab as:

[Oa,Ob} ≡ OaOb − (−1)ηaηbObOa = iCe
abOe , (69)

which is an anticommutation relation only for two fermionic insertions, notice. And also

with a graded Jacobi identity:

[[Oa,Ob},Oc}+ [[Ob,Oc},Oa}+ [[Oc,Oa},Ob} = 0 . (70)

Let us work out the case in which we have relativistic theory with only one supersy-

metric charge. We start by rewriting the known Poincarè algebra:

[J µν ,J ρσ] = i (ηνρJ µσ + ηµσJ νρ − ηµρJ νσ − ηνσJ µρ)

[Pρ,J µν ] = −i (ηµρPν − ηνρPµ)

[Pµ,Pν ] = 0

.

The inclusion of one poincarè supercharge Qα (and Q̄α̇ of course), the additional rela-

tions we have to find are:

[Qα,J µν ] , [Qα,Pµ] ,
{
Qα, Q

β
}

,
{
Qα, Q̄

α̇
}

,

together with commutation relations with some internal symmetry generators T i (in the

case they are present), that is, [Qα, T
i]. Similarly for the adjoint Q̄β̇.

The first of them just reflects the fact that it is a spinor, and since a left-handed

(right-handed) one transforms with σµν (σ̄µν), we have:

[Qα,J µν ] = (σµν) β
α Qβ and

[
Q̄α̇,J µν

]
= (σ̄µν)α̇

β̇
Q̄β̇ ,

valid for 2-dimensional spinors, left (right)-handed spinors in higher dimensions transforms
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according to generalizations of Dirac gamma matrices, so that we must change σµ → γµ,

and similarly for “bar” quantities. We keep the 2-dimensional notation until the end of

this section to avoid confusion.

The second of the list is a consequence of the Jacobi identity for Pµ, Pν and Qα.

Noticing that Qα is in (1/2, 0) representation of the Lorentz group, while the momenta is

in (1/2, 1/2), the vectorial one, a product of them can only be in (0, 1/2) or (1, 1/2), and

since none element of the algebra is in this last representation, we must have [Qα,Pµ] =

c(σµ)αα̇Q̄
α̇ (and also [Q̄α̇,Pµ] = c∗(σ̄µ)α̇αQα), for some constant c. Consequently:

[Pµ, [Pν , Qα]] + [Pν , [Qα,Pµ]] + [Qα, [Pµ,Pν ]] = 0

−c(σν)αα̇
[
Pµ, Q̄α̇

]
+ c(σµ)αα̇

[
Pν , Q̄α̇

]
= 0

|c|2(σν)αα̇(σ̄µ)α̇βQβ − |c|2(σµ)αα̇(σ̄ν)α̇βQβ = 0

−4i|c|2(σνµ)βαQβ = 0

∴ c = 0

,

where was used the Poincarè algebra for writing the second line and the definitions from

appendix A to write the last result. We see then that the supercharge commutes with the

momenta.

Index structure allows only the following candidate for the third commutator in the

list: [
Qα, Q

β
]

= k(σµν)βαJµν ,

for some constant k. This must be zero because the left-hand side of the equation above

commutes with Pµ, while the right-hand side does not.

For the last case, appealing again to representation arguments, QαQ̄
α̇ must be in

(1/2, 1/2), so that the anticommutator is proportional to the only compatible generator

of the algebra, Pµ: {
Qα, Q̄

α̇
}

= 2(σµ) α̇
α Pµ ,

where the factor 2 is adopted by convention. Notice index structure also implies such

form.

Lastly, internal symmetries usually commutes with supercharges, except for automor-

phisms of the supersymmetry charges, known as R symmetry. For N = 1 case, notice the

set of relations above is not altered under the following transformations:

Qα → eiλQα , Q̄α̇ → e−iλQ̄α̇ ,

for any real λ.
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So let R be a U(1) generator, then we have:

[Qα, R] = Qα and
[
Q̄α̇, R

]
= −Q̄α̇ .

Putting all together, the superalgebra of generators of aN = 1 supersymmetric relativistic

theory is given by:

[J µν ,J ρσ] = i (ηνρJ µσ + ηµσJ νρ − ηµρJ νσ − ηνσJ µρ)

[Pρ,J µν ] = −i (ηµρPν − ηνρPµ)

[Pµ,Pν ] = 0

[Qα,J µν ] = (σµν) β
α Qβ ,

[
Q̄α̇,J µν

]
= (σ̄µν)α̇

β̇
Q̄β̇

[Qα,Pµ] = 0 ,
[
Q̄α̇,Pµ

]
= 0{

Qα, Q̄
α̇
}

= 2(σµ) α̇
α Pµ , [Qα, R] = Qα and

[
Q̄α̇, R

]
= −Q̄α̇

. (71)

Specialising the fourth line to µν = 12 (that is, to the spin projection onto z direction,

or the helicity), we have that σ12 = 1
2
σ3 and σ̄12 = −1

2
σ3, consequently [Qα,J 12] =

1
2
(σ3) β

α Qβ and
[
Q̄α̇,J 12

]
= −1

2
(σ3)α̇

β̇
Q̄β̇. We see then that while Q1 and Q̄2̇ lower the

helicity by 1/2, Q2 and Q̄1̇ raise it. The commutation relation with the momenta tells us

that it does not matter what operation one takes first: supercharge or translation, and

in addition, the anticommutation relation of the supercharges Q and Q̄ says that if one

tries to recover the original state by changing its spin twice, what one gets is in fact the

same state, but translated in spacetime.

To extend that superalgebra to the case of more supersymmetries is easy. One just has

to notice that the anticommutation relation between two Q′s might not be trivial, that

is, there can be a central charge, say Z, a quantity commuting with all other elements of

the algebra. Despite of this detail, it is just a matter of inserting kronecker deltas in the

other relations as below: {
QA
α , Q̄

Bα̇
}

= 2δ B
A (σµ) α̇

α Pµ{
QA
α , Q

B
β

}
= εαβZ

AB
, (72)

where εαβ stands for the totally antisymmetric symbol in two dimensions, which makes

ZAB also antisymmetric, note. A and B go from 1 to N , the number of supersymmetries.

In this case we say we have an extended supersymmetry.

One could be wondering if there is a maximum value for N for a given theory. It

turns out there is, and it depends on the dimension and on the renormalizability of the

Lagrangian terms. Without going into too much details, for example in four dimensions,

theories without gravity (flat spacetime) are limitied to contain only fields with at most

spin 1; since each application of supercharge raises (or lower) the helicity by 1/2, from -1

we can apply four different charges to reach 1, therefore the maximal value of N for those
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theories is 4. In the case we have gravity (non-flat spacetime), as another mere example, it

is known that it is not possible to accomodate spin 5/2 or greater in the theory, therefore

limiting the helicity λ to the range −2 ≤ λ ≤ 2, and consequently N = 8.

In the following section we include the other symmetries Kµ and D to complete the

conformal superalgebra. This is in fact the algebra we are interested in and which we

are going to explore in the rest of this chapter to understand a little bit more about the

contruction of supersymmetric conformal field theories.

1.6.2 Conformal Field Theories with Supersymmetry

The intention of this section is to finally close the generalities of supersymmetry applied

to conformal field theories. Basically we want now to expose the so called superconformal

algebra and go into its field representions. Again, rigorous and detailed mathematical

treatment is not the focus here and we refer the reader to [7] for deeper investigation.

It is not necessary an entire reconstruction of the previous argument in order to include

conformal generators into the algebra of supersymmetric relativistic theories. Actually,

and following [38], notice that we have to include only Kµ and D. It turns out, however,

to do that, we are going to need more supercharges to have a closed algebra. The new

supercharges SAα and S̄Aα̇ are defined by means of commutation relations of Q’s with the

special conformal transformation generator:

[
QA
α ,Kµ

]
= γµS

A
α ,

[
Q̄Aα̇,Kµ

]
= γ̄µS̄

Aα̇ , (73)

notice now the presence of γµ’s instead of σµ’s.

With this definition, all the commutators and anticommutators of the superconformal

algebra can then be determined once the Poincarè superalgebra and the conformal algebra

are given, using also the Jacobi identities. Considering for simplicity N = 1, we are led

then to the following (considering non-vanishing relations only):

[Qα,Jµν ] = σµνQα [Sα,Jµν ] = σµνSα

[Qα,D] = −1

2
iQα [Sα,D] =

1

2
iSα

[Qα,Pµ] = 0 [Sα,Pµ] = γµQα

[Qα,Kµ] = γµSα [Sα,Kµ] = 0

[Qα,R] = iγ(d+1)Qα [Sα,R] = −iγ(d+1)Sα{
Qα, Q̄

α̇
}

= 2γµPµ
{
Sα, S̄

α̇
}

= 2γµKµ{
Sα, Q̄

α̇
}

= 2iD + σµνJµν + 3iγ(d+1)R

, (74)

where the last of these equations can be seen as the one defining R, the internal symmetry

between supercharges. The S’s therefore play a role with the Kµ similar to the Q’s
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with Pµ. A very interesting relation appears, note: supercharges also raise and lower

dilation eigenvalues! γ(d+1) of course is γ5 for d = 4, being just a generalization for higher

dimensions.

It is traditional also to organize conformal spinors differently, instead of keeping Qα

and Sα separate, one adopts the following object [39]:

Σ ≡

[
Qα

S̄α̇

]
, (75)

the conformal spinor. That is because it simplifies the superconformal algebra in a way

to involve only a higher dimensional rotation group plus supersymmetric charges and

R-symmetry. There is no need to explicit this massaged algebra here, we just point out

that the trick behind it is the embedding space formalism, to be talked about in the next

chapter.

To finish this section we finally go for field representations of that superconformal

algebra, which at the end of the day is what we are really interested in to comprehend

the theories composing our framework in this thesis. The main ideas are explored for

simplicity for a single supersymmetric charge, that is, N = 1.

A proper construction of field representations of superalgebras involves the definitions

of superspaces and superfields and etc., however we keep the discussion as simple as possible

here, therefore avoiding that complicated terminology, but, again, the interested reader

is refered to [7].

Usually, a field representation of the superconformal algebra (74) is built up following

two steps basically: defining fields via the algebra relations (imposing some conditions)

and then defining their infinitesimal supersymmetric variations by means of the so called

anticommuting spinor parameters ζα (for Qα) and ξα (for Sα); they are defined to anti-

commute with every fermionic quantity and to commute with every bosonic quantity.

The simplest case, for example, is obtained when one starts assuming the ground state

to be a scalar field A(x) and to satisfy the so called chirality condition:

[
A, Q̄α̇

]
= 0 .

From this, the Jacobi identity involving A, Q and Q̄ then gives:

{
[A,Q] , Q̄

}
+
{[
A, Q̄

]
, Q
}

=
[
A,
{
Q, Q̄

}]
= 2iγµ∂µA ,

which tells us that A(x) must be complex in order to not be constant.

Other fields ψα(x), Fαβ(x) and Xαβ̇(x) can then be defined to explicit the commutation
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between A and Q:

[A,Qα] ≡ 2iψα , {ψα, Qβ} ≡ −iFαβ ,
{
ψα, Q̄β̇

}
≡ Xαβ̇ . (76)

Enforcing the algebra on A and ψ we finish the construction. Firstly with A, the

previous Jacobi identity gives:

2iγµ∂µA = 2i
{
ψα, Q̄β̇

}
= 2iXαβ̇ .

A similar identity involving A, Q and another Q gives:

Fαβ = εαβF ,

for a complex scalar field F (x). Analogously, from the Jacobi identities involving ψ, Q,

Q̄ and ψ, Q, Q, the restrictions we arrive enforcing the algebra on ψ are:

−iεαβχ̄β̇ + 2i(γµ)αβ̇∂µψβ = 2i(γµ)ββ̇∂µψα , εαβλγ + εαγλβ = 0 ,

where λα ≡ [F,Qα] and χ̄α̇ ≡
[
F, Q̄α̇

]
. The solution follows from contraction with εαβ:

χ̄α̇ = 2∂µψ
β(γµ)βα̇ , λα = 0 . (77)

The remaining relations can also be verified:

[
ψ,
{
Q̄, Q̄

}]
= [F, {Q,Q}] =

[
F,
{
Q̄, Q̄

}]
= 0 ,

[
F,
{
Q, Q̄

}]
= 2iγµ∂µF .

We constructed then a field representation of the N = 1 superalgebra on a multiplet

φ ≡ (A;ψ;F ) of fields in terms of the commutators and anticommutators. We have

four bosonic degrees of freedom from the real and imaginary parts of the complex scalar

fields A(x) and F (x) and four fermionic degrees of freedom composed also by the real

and imaginary parts of the two complex spinor components of ψα. This representation is

usually called chiral; by starting with the condition [A,Q] = 0 instead of
[
A, Q̄

]
= 0 we

get the anti-chiral multiplet φ̄ ≡ (A†, ψ̄, F †). Their supersymmetric variations are defined

in view of equation (18):

δφ ≡ −i
[
φ, ζQ+ Q̄ζ̄

]
⇒


δA = 2ζψ

δψ = −ζF − i∂µAγµζ̄

δF = −2i∂µψγ
µζ̄

, (78)

which has an important consequence valid for any supersymmetric field theory, to be

commented at the end of this section.
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That simple example therefore contains the essential technology behind the construc-

tion of any field representation of a superalgebra. Assuming a more complicated ground

state (like a vector or something else) would lead us to an also more complicated multi-

plet, as well as taking a condition different from the chirality; it is expected, however, to

get reducible representations in that first case, in analogy to the construction of general

representantions of the Lorentz group via tensor products of spinors.

Relaxing the condition over the ground state, actually imposing none, leads us to a

general form of that multiplet. Definitions of fields would then have to be more embrac-

ing and generic and the algebra enforcements too. Technically, the reproduction of the

procedure to this case here would brings nothing new, so we omit it. It is important,

nevertheless, to have in mind the whole appearance of such a general multiplet. Let us

call it V , we would have then:

V = (C;χ;M ;N ;Aµ;λ;D) , (79)

where C, N and D are complex pseudoscalars, M is a complex scalar and Aµ a com-

plex vector, while λ and χ are Dirac spinors, therefore 8 + 8 field components. Their

transformation rules are:

δC = ζ̄γd+1χ

δχ = (M + γd+1N) ζ − iγµ (Aµ + γd+1∂µC) ζ

δM = ζ̄
(
λ− i/∂χ

)
δN = ζ̄γd+1

(
λ− i/∂χ

)
δAµ = iζ̄γµλ+ ζ̄∂µχ

δλ = −iσµνζ∂µAν − γd+1ζD

δD = −iζ̄ /∂γd+1λ

. (80)

With the general multiplet in hands one could then impose conditions over it, in

contrast to the original example, where the condition is a starting point. For example,

imposing the reality condition V = V † would give the so called real general multiplet, in

which all components are real or Majorana.

It is important to remember that, up to now, we have been considering only the

Poincarè superalgebra. However, we are interested in the superconformal algebra, so we

must know how to include conformal generators and also S-supercharges in the procedure

above. It turns out that it is sufficient to assume transformation rules for C (now allowed
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to have Lorentz indices) under dilations, Lorentz and R-transformations:

[C,D] = ix · ∂C + i∆C

[C, Jµν ] = i(xµ∂ν − xν∂µ)C + SµνC

[C,R] = nC

,

where ∆ is the scaling dimension of C, Sµν the spin matrix acting on C and n is the R

quantum number of C.

A detailed analysis then shows that the general multiplet will be the same with only

different transformation rules for a combined variation δV = −i
[
V, ζ̄Q+ ξ̄S

]
:

δC = η̄γd+1χ

δχ = (M + γd+1N) η − iγµ (Aµ + γd+1∂µC) η + 2X̊+γd+1ξC

δM = η̄
(
λ− i/∂χ

)
+ ξ̄X̊−χ− 2ξ̄χ

δN = η̄γd+1

(
λ− i/∂χ

)
− ξ̄γd+1X̊

−χ+ 2ξ̄γd+1χ

δAµ = iη̄γµλ+ ∂µ (η̄χ) + iξ̄X̊−γµχ

δλ = −iσµνη∂µAν − γd+1ηD − X̊+ (M − γd+1N) ξ + iγµX̊+ (Aµ + γd+1∂µC) ξ

δD = −iη̄ /∂γd+1λ+ 2x̄iγd+1X̊
−
(
λ− 1

2
i/∂χ

)
, (81)

where we made use of two definitions: η ≡ ζ − ixµγµξ and X̊± ≡ ∆− 3in

2
γd+1 ±

1

2
σµνSµν .

Building field representations of the superconformal algebra then is resumed in finding

fields that transform between under all supersymmetry transformations of the algebra by

means of the algebra itself; that is, we put in the same box all fields that are related to

each other via application of supercharges. From another point of view, given an operator

of the theory, we know that it is going to transform in combinations of the other operators

composing the multiplet under any application of supercharges. The other charges of the

algebra then will be responsible to connect those different multiplets!

Fields will then be organized accordingly to the quadratic Casimir operators of the

algebra and the set of commuting operators formed from them, as always. The conformal

algebra (46) tells us that D and Jµν commutes, therefore being very nice candidates for

labeling operators, in fact this is done when performing radial quantisation as we have

seen before. Naturally then J 2 will be a quadratic Casimir, so that we can use it together

with its projection in some direction, say J12 (we choose this because in three dimensions

it corresponds to z direction), and the dilation operator D to organize our operators; the

corresponding labels will be j, l and ∆, respectively. The special conformal generator

and the momentum generator lowers and raises, respectively, the scaling dimension of the

operator by 1, as well as they change the Lorentz structure of a given operator, thereby

altering also the vector space in which the operator lives, so the spin. On the other hand,
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as we have just seen, supercharges also promote movements of the operators inside the

superconformal multiplet they belongs. Moreover, notice R also gives a good labeling.

Let us now take a closer look on the effect of other generators of the algebra and how

multiplets are connected. A given field will carry labels of spin projection and scaling

dimension only, like Ol;∆, that is because j will be implicit and the R quantum number is

associated to internal symmetry. We have then, for any local operator constructed from

the conformal theory:

[D,Ol;∆(0)] = i∆Ol;∆(0) , [J12,Ol;∆(0)] = lOl;∆(0) . (82)

Following the direction given by radial quantisation, there will be special operators

from which we can derive others. These operators are called superconformal primary

operators and are defined to be the ones satisfying:

[Sα,Ol;∆} = 0 , [S̄α̇,Ol;∆} = 0 , (83)

where the brackets depend on the nature of the operator Ol;∆. This conditions are con-

sidered in view of the fact that S’s as well as S̄’s lower the scaling dimension of a given

operator by 1/2, see (74). So, these superconformal primaries are the operators of lowest

scaling dimension on a superconformal multiplet. Moreover, note that, since
{
S, S̄

}
∼ K,

those operators are also conformal primaries, the inverse although is not truth.

Consequently, descendants can be obtained from them. There are two ways of doing

so, however. The first one is by applying momentum operators, in which case we yield a

new operator of conformal dimension increased by 1, that is, just conformal descendants

as befor; an infinite number of them, therefore. The second type of descendants are

superdescendants obtained from succesive applications of Q’s or Q̄’s, after all they also

increase scaling dimensions according to (74); this time, notice, that eigenvalue is increased

by 1/2 for each application, moreover, the number of successive applications can be limited

due to the fact that two Q’s anticommute as well as two Q̄’s.

Superdescendants are special because they are conformal primaries. They are defined

by:

O′ ≡ [Q,O} . (84)

The Jacobi identity involving Kµ, Q and O together with [Qα,Kµ] = γµSα shows that:

[Kµ, [Q,O}}+ [Q, [Kµ,O]}+ [O, [Kµ, Q]} = 0

[Kµ,O′} = γµ[O, S}

∴ [Kµ,O′} = 0

,

where in the second line we used the fact that O is a superconformal primary.
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We saw then that every operator of the theory can be constructed from the special

ones, in particular that each superdescendant of them generates a conformal multiplet.

The supercharges then not only surround operators organizing them onto superconformal

multiplets, but also are very useful in the radial quantisation procedure in superconformal

field theories.

To finish this subsection, we make some important comments. If one consider a theory

with more supersymmetries, that is, an extended one, what changes we would have in the

development above? The algebra of course would change, specially because of the presence

of kronecker’s deltas, central charges and also a more complicated internal symmetry. In

consequence of that, the construction of superconformal multiplets would also be more

complicated, leading then of course to different supersymmetric transformations inside

a general multiplet. However, despite of transformations and representations, the role

of each operator would not change and therefore quantisation can be done in the same

way; the novelty is that each supercharge Sa (and also S̄a), a = 1, ...,N , would also

be used to define superconformal primaries, while Qa and Q̄a would expand the number

of superdescendants. From now on then, we have enough intuition to comprehend the

construction of multiplets of a superconformal field theory as well as the organization of

the fields in a given theory. So we make considerations for any N .

An important kind of operator also emerges in what was done previously. In the

case Qa does not create a superdescendant, that is, [Q,Ol∆} = 0, we have one more

supersymmetry preserved (after all they commute/anticommute) by the operator, this

time a Poincarè supercharge. These operators satisfying such conditions carry a special

name depending on the number of Poincarè supercharges preserved, they are called chi-

ral primaries or also 1/2k BPS operators, where k ∈ {1, ...,N} is the number of those

preserved charges. More generally, it is customary to extend the terminology for any

operator that commutes/preserves those Qa and, actually, as we will see, such operators

play an important role in the context of the correspondence AdS/CFT. The name BPS

stands for Bogomolnyi–Prasad–Sommerfield, due to their contribution into the 1-state

representations of the superconformal algebra, see [38].

Chiral primaries are very special because, in view of the Jacobi identity involving Q,

S̄ and O, their scaling dimension are protected from quantum corrections, after all they

will be given in terms of spin and R-symmetry eigenvalues:

[{S̄, Q},Ol;∆(0)] = 0⇒ [−2iD + σ̄µνJµν − 3iγd+1R,Ol;∆(0)] = 0 , (85)

where the superconformal algebra was used.

In this last subsection, we finish the chapter with important examples. The useful-

ness of these will be clear along this work and their construction are not explored here.

Nonetheless, as a glimpse, one should have in mind, as can be seen more easily from (78)
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(take two variations, [δ1, δ2]), that invariant quantities under supersymmetric transforma-

tions can only be constants, demanding then the Lagrangian densisty of a given theory

to be at most a divergent.

1.6.3 N = 4 SYM and ABJM

We present here the field content of two of very important SCFTs in the context of

gauge/gravity duality. Generally speaking, the so called AdS/CFT correspondence, dis-

covered by Maldacena in [8], relates conformal field theories to gravity theories on asym-

potically Anti-de-Sitter spacetimes. Having two such different theories physically equiv-

alent is a powerful way of making them computationally tractable and also clearer in

concepts, which is the reason of that be one of the most exciting discoveries in the last

two decades.

The most important example is the widely explored maximally supersymmetric Yang-

Mills theory in 4d, the N = 4 Super Yang-Mills (SYM) (see for example [9]) with gauge

group20 U(N) and Yang-Mills coupling constant gYM , dynamically equivalent to a type

IIB superstring theory with string length ls =
√
α′ and coupling constant gs on AdS5×S5

with radius of curvature L and N units of F(5) flux on S5, by means of:

g2
YM = 2πgs and 2g2

YMN = L4/α′
2
. (86)

A very usual formulation of that SCFT is by making use of a technique called dimen-

sional reduction, which we do not explore here, but basically gives the desired theory from

a N = 1 SYM theory in ten dimensions. For this reason, it is traditional and simpler

to organize the fields into 10-dimensional pieces, which also makes things concise and

practical; we refer the reader to [38] as guideline. As in [40], the action for it reads:

SN=4SYM
=

1

gYM

∫
d4xTr

[
−1

2
F 2
µν + (DµΦI)

2 +
1

2
[ΦI ,ΦJ ]2 + iΨ̄γµDµΨ + Ψ̄γI [ΦI ,Ψ]

]
,

(87)

where we have four gauge potentials Aµ, six scalars ΦI , I = 1, ..., 6 indices of R-symmetry,

and four Majorana fermions ΨαA, α = 1, 2 spinor indices and A = 1, 2, 3, 4 R-symmetry

indices, all in the adjoint representation of the gauge group; Dµ stands for covariant

derivatives, to be explained in the last chapter. The scalars are in the vector representation

of the SO(6) R-symmetry group, while the fermions in the spinor representation of that

group. The Dirac matrices ΓM = (γµ, γI) form the Clifford algebra in ten dimensions and

fermions satisfy the conditions: γ11Ψ = Ψ and Ψ̄ = ΨTC, with the chirality matrix γ11 and

the charge-conjugation matrix C in ten dimensions; it is possible to choose γI = γ5ΓI ,

where ΓI are the Dirac matrices in six dimensions. The gauge fields and the scalars

20We are going to talk more about this in the last chapter, for now it is sufficient to see it as possible
extra symmetry in a theory.
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combine into a ten dimensional vector potential and the fermions into a single Majorana-

Weyl spinor in 10d.

Besides the conformal symmetry group in 4d and the gauge group U(N) we have also

the SO(6) R-symmetry group in the theory, and of course the supersymmetries. Together,

conformal and R-symmetry groups form the supergroup of symmetries PSU(2, 2|4) of the

theory; since dilations and rotations can be splitted, operators are labelled according to

the cartesian product SO(3, 1)× U(1)× SO(6)R, with the respective quantum numbers:

spin s, scaling dimension ∆ and the set of those ones associated to R, known by Dynkin

labels21.

The supersymmetry transformations under which such action is invariant are:

δQΨ =
i

2
FMNΓMNξ , δQAM = −iξ̄ΓMΨ , ΓMN ≡

i

2
(ΓMΓN − ΓNΓM) , (88)

for the Poincarè supercharges, where ξ is a constant spinor. And

δSΨ =
i

2
FMNΓMNx

µγµη , δSAM = −iη̄xµγµΓMΨ , (89)

for the superconformal charges, where again η is a constant spinor.

Another important SCFT goes by the name of N = 6 ABJM in three dimensions, with

gauge groups U(N)×U(N) and Chern-Simons levels k and −k (see [41] and [42]). Here it

plays the role of the dual or correspondent of a gravity theory: M-theory on AdS4×S7/Zk
with four-form flux F (4) ∼ N through AdS4. Couplings are connected depending on some

limits of treatment, we are going to talk more about this in the last chapter.

The field content now is: four matter scalars (CI)
i
î
, I = 1, 2, 3, 4 R-symmetry indices

and the others are gauge indices, and correspondent fermions (Weyl-spinors) (ψ̄I)j
ĵ

in the

bifundamental representation of the gauge groups and in the fundamental representation

of the R-symmetry group, and conjugate fields (C̄I)î
i and (ψI)

ĵ
j, respectively, in the an-

tibifundamental; two Chern-Simons gauge fields Aµ and Âµ for the two gauge groups. As

in [43], using also [44], the euclidian action22 for it reads:

S
ABJM

= SCS + Smatter + Sgf ,

21They are just labels for high or lowest weight states in a given representation, similar to quantum
mechanics too.

22For future purposes we present it in euclidian space;
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where:

SCS = −i k
4π

∫
d3xεµνρ

[
Tr(Aµ∂νAρ +

2

3
iAµAνAρ)− Tr(Âµ∂νÂρ +

2

3
iÂµÂνÂρ)

]
Sgf =

k

4π

∫
d3xTr

[
1/ξ (∂µAµ)2 + ∂µc̄D

µc− 1/ξ
(
∂µÂ

µ
)2

− ∂µ¯̂cDµĉ

]
Smatter =

∫
d3xTr

[
DµC̄ID

µCI + iψ̄IγµDµψI
]

+ λ4(ψ̄ψ)(C̄C) + λ′4(ψ̄C)(C̄ψ) + λ′′4
[
(ψ̄C)(ψ̄C) + (C̄ψ)(C̄ψ)

]
+ λ6(C̄C)3

,

(90)

with Sgf the action of auxiliary fields c and c̄ for quantisation, the so called ghosts, to

be understood in the last section, although they will not play an important role in this

work. The couplings λ4, λ′4, λ′′4 and λ6 control the interaction terms and depend on the

Chern-Simons level k. ξ is a parameter to fix the gauge.

In this case the group of symmetry besides the gauges U(N)k × U(N)−k is formed

by the conformal group in three dimensions, SO(4, 1), the R-symmetry group SO(6) and

the supersymmetries. The global symmetry composed by the cartesian product of the

conformal and R-symmetry groups is denoted by OSp(6|4)23 and, again, we know it is

possible to split the conformal part onto dilation and rotation pieces, so that the global

group can be written as SO(3)×U(1)×SO(6)R, and operators are labelled in accordance.

Finally, supersymmetry transformations for this theory read (see [45]):

δCI = −θIJ ψ̄J

δC̄I = −θ̄IJψJ

δψαI = −2θβIJ(γµ) α
β DµC̄

J +
4π

k
θαIJ
(
C̄JCKC̄

K − C̄KCKC̄
J
)

+
8π

k
θαKLC̄

KCIC̄
L

δψ̄Iα = −2θ̄IJβ(γµ)βαDµCJ +
4π

k
θ̄IJα
(
CKC̄

KCJ − CJC̄KCK
)

+
8π

k
θ̄KLα CLC̄

ICK

δAµ = −2πi

k

(
θ̄IJγµCIψJ + θIJγµψ̄

IC̄J
)

δÂµ = −2πi

k

(
θ̄IJγµψJCI + θIJγµC̄

J ψ̄I
)

, (91)

where θαIJ and its conjugate is the (spinor) parameter associated to the supercharge QIJ
α ,

whose application is obtained trough:

QIJ
α =

∂

∂θαIJ
,

and we have the reality condition: θ̄IJ = 1/2εIJKLθKL, with ε1234 = 1.

The transformations are similar for superconformal charges, which we do not expose

here, except for the spinor parameter xµγµηIJ .

23This is the orthosymplectic group, it is not necessary going into details of it here;
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2 CFT with defects/boundaries

Restrictions imposed by conformal invariance were already explored in the previous sec-

tions; correlators in this case have closed form, and they are entirely determined via

OPE once we know the CFT data. Moreover, in spite of CFTs be more symmetric (and

weaker, one would expect) theories, we also saw that the machinery of renormalization

group makes them very strong. Breaking some of those symmetries, however, has been

shown of great usefulness in describing phenomenological and theoretical situations in

Physics. More specifically, the so called conformal defects are the objects that can be

used for causing such a break. They should be viewed as structures preserving some of

the original conformal symmetries and possibly dividing our theory onto different regions.

The approach for this adopted here is a consequence of the fact that generators of

special conformal transformations act non-linearly on the fields. The way we ”linearize”

such generators is by relating them to Lorentz group generators, using for this the so

called Embedding Space formalism; remember our previous treatment of the conformal

group in d = 1 and d ≥ 3. The conformal defects will come then as objects preserving

part of the starting group of rotations, possibly breaking it into the direct sum of two

smaller groups of rotations.

Given the necessary toolbox for analyzing a generic Defect CFT, we work on the

particular example of spherical defects, preparing the reader to the next chapters. There

we explore the very special case of inserting Wilson loops in 3D and 4D (super) conformal

field theories.

2.1 Embedding Space Formalism

Firstly, let us understand the big idea due to Dirac behind this formalism: the natural

habitat of the conformal group in d dimensions is the embedding space Md+2 of linear

isometries, which can be realized as the usual Minkowski Rd+1,1 spacetime if we restrict

to proper and orthocronus transformations. We refer the conformal group then to the

SO(d + 1, 1) group. Therefore, somehow the original d dimensional spacetime is put

within the d+ 2 dimensional spacetime.

Technically speaking, the original spacetime is lifted into a higher dimensional one,

via the push-forward apparatus from general relativity (see appendix B). The former ends

up in a section of a null-cone of the latter. Light-cone coordinates turn out to be very

usefull to understand this.

Using capital letters to denote coordinates on the embedding space, like XA with

A = 1, 2, ..., d + 2, we define then two new coordinates: X+ ≡ Xd+1 + Xd+2 and X− ≡
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Xd+1 −Xd+2, so that the line element dS2 is just:

dS2 = ηABdX
AdXB =

d∑
n=1

dXndXn − dX−dX+ ,

where ηAB is the mostly plus minkowskian signature (timelike coordinate being Xd+1) and

the light-cone coordinates are then just XA = (X+, X−, Xa), with a = 1, ..., d. The d-uple

labeled with a refers to the coordinates of the d-dimensional spacetime if we Wick-rotate

Xd and identify x0 = iXd.

Now we reduce the dimension of the manifold in two in order to obtain the physical

spacetime. To do this we impose two constraints on the coordinates of the embedding

space. Making the embedded space be on the null-cone X2 (note it is invariant under

Lorentz transformations) and identifying points on it up to a rescaling: X ∼ ΩX, Ω ∈ R+,

we only need to choose a section of the cone to get Rd−1,1; this means that to each physical

point xµ corresponds a line on the light-cone (see Figure 6). We select the so called

Poincarè section, namely X+(xµ) = 1. For future interests, notice that our section is

parametrized as XM
x = (1, x2, xµ).

Figure 6: Embedding into the null-cone. Figure adapted from [25].

Speaking in terms of vectors, acting with elements of the SO(d+1, 1) group on a given

point of the section must reflect as the action of a conformal transformation on xµ. This

means that the induced metric from Rd+1,1 in Rd−1,1 (or simply Rd) is conformal. We

investigate this studying infinitesimal changes at points X(xµ) and X ′ = Ω(xµ)ΛX(xµ)

on the section under rotations, where Λ stands for the rotation of X while Ω(xµ) brings

the rotated point back into the section rescaling it. If the initial claim is true, the induced

metric should transform like ds′2 = c(x)ds2, for positive c(x). In fact:

ds′2 ≡ dS ′2
∣∣
X′+=1,X′−=x′2/X′2

=
[
d (Ω(x)ΛX)

∣∣
X+=1,X−=x2/X2

]2
.
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So,

ds′2 =

[
Ω(x)d (ΛX)

∣∣
X+=1,X−=x2/X2 + ΛX (∇Ω · dX)

∣∣
X+=1,X−=x2/X2

]2

= Ω2(x)
(
dΛX

∣∣
X+=1,X−=x2/X2

)2

= Ω2(x)(dX)2
∣∣
X+=1,X−=x2/X2 = Ω2(x)ds2

,

where to write the second equality it was used the fact that on the null-cone we have

X2 = 0 and therefore X · dX = 0, while the invariance of the line element under rotation

was used to identify the last line.

We see then that c(x) = Ω2(x) and therefore the conformal group in d dimensions is in

fact embedded into minkowskian spacetime in d + 2 dimensions, thus conformal calcula-

tions can be translated into the language of linear transformations in higher dimensions,

making easier and simpler all computations.

As before, the conformal generators can be easily identified. Compare with equation

(48):

Jµν =Mµν , Jµ+ = Pµ
Jµ− = Kµ , J+− = D

, (92)

where µ, ν = 0, ..., d− 1 and antisymmetry under µ↔ ν is implicit.

2.1.1 Tensors and their encoding by polynomials

Naturally we are interested in extending the formalism above to fields, that is, in formal-

izing how fields defined in the physical spacetime are embedded. This is a straightforward

procedure and goes as follows. Let FA1,A2,...,Al(X) be a field on Rd+1,1, therefore a tensor

of SO(d+ 1, 1), with the following properties:

i. It is defined on the cone X2 = 0;

ii. Homogeneous of degree −∆: FA1,A2,...,Al(λX) = λ−∆FA1,A2,...,Al(X), λ > 0;

iii. Transverse in all indices: (X · F )A1,...,Ak−1,Ak+1,...,Al ≡ XAkFA1,...,Ak,...,Al = 0, k =

1, ..., l.

The first condition is obvious, since we want a well defined physical theory. The

requirement of homogeneity guarantees the field is known on the entire light-cone once

it is known on the Poincarè section; by means of a pull-back of the tensor field (see

appendix B), we project it onto the section, defining a field on Rd−1,1:

fa1,...,al(x) ≡ ∂XA1

∂xa1
...
∂XAl

∂xal
FA1,A2,...,Al(Xx) , (93)
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this new operator is identified to the physical one. Note that tensors differing by an

amount proportional to any of the XA project onto the same physical operator. This is a

gauge freedom; fields proportional to XA project to zero, we refer to them as pure gauge.

For a scalar field ∆ is easily interpreted as the scaling dimension, explaining the re-

quirement; note that in this case f(x) is just the restriction of F (X) to the section. This

interpretation holds for more complicated fields, it will become clearer below when we de-

rive the transformation rule for the embedded field fa1,...,al(x). In this way, transversality

condition iii. ensures such transformation coincides with general conformal transforma-

tion rules for primary tensors. In fact, for a coordinate transformation like X ′A = ΛA
BX

B
x ,

we have:

fa1,...,al(x)→ f̂a1,...,al(x
′) =

∂XA1(X ′)

∂xa1
...
∂XAl(X ′)

∂xal
ΛB1

A1
...ΛBl

Al
FB1,...,Bl(X

′) .

Noticing then that, in view of X ′BdX ′B = 0 on the cone:

∂X ′B

∂xa
dX ′B = ΛB

A

∂XA

∂xa
dX ′B ⇒

∂X ′B

∂xa
− ΛB

A

∂XA

∂xa
∝ X ′B .

Transversality condition allows us to write:

f̂a1,...,al(x
′) =

∂X ′B1(X ′)

∂xa1
...
∂X ′Bl(X ′)

∂xal
FB1,...,Bl(X

′) ,

which is just a massaged form for the starting expression for f̂a1,...al .

Remember now that a second step in embedding space formalism is the scaling of the

points back to the Poincarè section, which contains the physical information. In other

words, the transformation above carries the original field to a point not necessarily on the

physical section of the null-cone, we need then to project the result on it. This is done

by means of the addition of a position dependent scaling factor λ(Yy) into the mapping,

where Yy is the final point at the section again, thus understanding X ′ as related to Yy

by X ′ = λ(y)Yy.

In virtue of the homogeneity satisfied by FA1,...,Al , when projected it is going to yield

an overall factor of λ−∆(y) (as if it was calculated in λ(y)Yy). The partial derivatives, on

the other hand, can be manipulated as below:

∂X ′B

∂xa
=
∂x′b

∂xa
∂X ′B

∂x′b

=
∂x′b

∂xa

[
∂Y B

y

∂yb
+ Y B

y λ
′(y)

] ,
the second term above vanishes when contracted with F...,B,... in view of transversality.

Therefore, as expected (see (50)), fa1,...,al transforms as a primary tensor field under a
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general conformal transformation denoted by x→ y:

fa1,...,al(x)→ f̂a1,...,al(y) = λ−∆(y)
∂x′b1

∂xa1
...
∂x′bl

∂xal
fb1,...,bl(y)

= λ−∆(y)M b1
a1
...M bl

al
fb1,...,bl(y)

, (94)

from which it is clear the meaning of ∆ as stated before.

Moreover, condition iii. has other important consequences: traceless and symmetry

nature in the indices of embedding operators are carried over to the physical spacetime.

The second correspondence is obvious, the first deserves some lines of calculations:

ηa1a2fa1,a2,...,al(x) = ηa1a2
∂XA1

∂xa1
∂XA2

∂xa2
...
∂XAl

∂xal
FA1,A2,...,Al(Xx)

=
(
ηA1A2 +XA1

x KA2 +XA2
x KA1

) ∂XA3

∂xa3
...
∂XAl

∂xal
FA1,A2,...,Al(Xx)

=
∂XA3

∂xa3
...
∂XAl

∂xal
ηA1A2FA1,A2,...,Al(Xx)

,

where it was chosen the first two entries without loss of generality. To write the second

line we used KA ≡ (0, 2, 0)A in light-cone coordinates and the identity:

ηa1a2
∂XA1

∂xa1
∂XA2

∂xa2
(Xx) = ηA1A2 +XA1

x KA2 +XA2
x KA1 ,

that can be checked explicitly without difficulty. Last line is a consequence of transver-

sality.

So, d+2 tensors in irreducible representations of SO(d+1, 1) correspond to irreducible

ones of SO(d − 1, 1), since in such representations generators of rotations are traceless.

Moreover, remember that traceless energy-momentum tensor guarantees conformal in-

variance of the system. The most pleasant consequence, however, is that any conformally

invariant quantity in Rd−1,1 is lifted to a SO(d + 1, 1)-invariant in the embedding space,

in particular the correlation functions. This makes kinematics of conformal field theo-

ries as simples as kinematics of Lorentz-invariant field theories. We can do computations

with tensor fields in Rd+1,1 and project the result to the physical spacetime, conformal

invariance then will be automatic.

Before exploring correlators and defects, a last tool turns out to be very useful in that

study, with which we end this subsection. It is basically a clever glimpse of the fact that

primary operators are represented by symmetric traceless tensor, as stated in the previous

section. We use this fact to compile the tensor into a polynomial, making computations

even simpler. Detailed mathematical discussion is not of our interest here, so we refer the

reader to [46] and [48] for a guidance in that direction.
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The basic idea is that a symmetric traceless tensor fµ1...µl(x) can be encoded into a

polynomial f(x, z) restricted to the manifold z2 = 0 by using an auxiliary vector zµ:

fµ1...µl(x)→ fl(x, z) ≡ zµ1 ...zµlfµ1...µl(x), z2 = 0 , (95)

the condition in the end is to enforce tracelessness.

The correspondence is one to one, this can be seen directly by expanding f(x, z) on z,

the initial tensor is recovered as the coefficient of one of those terms in the expansion. On

the other hand, a more pratical way of recovering the index structure is via the Todorov

differential operator [49]:

Dµ =

(
d− 2

2
+ z · ∂

∂z

)
∂

∂zµ
− 1

2
zµ

∂2

∂z · ∂z
. (96)

For example, one index is made free by applying the equation above once:

fµ1µ2...µlz
µ2 ...zµl =

Dµ1fl(x, z)

l (d/2 + l − 2)
.

And of course, all of them are released by applying such operator l times:

fµ1...µl =
Dµ1 ...Dµlfl(x, z)

l!
(
d−2

2

)
l

,

where (a)l = Γ(a+ l)/Γ(a) is the Pochhammer symbol.

This is a way of encoding primary fields, therefore embedded ones. Remembering

symmetry structure is preserved in projections, the embedding fields FA1...Al(X) from which

the primaries come can be encoded into Fl(X) in the same way presented above, except

for the extra condition concerning their need of being transverse, namely Z ·X = 0.

A close relation between both encodings should be expected then, and in fact we have

it. Using the explicit form of ∂Xx/∂x, the encoding procedure agrees with (93) through:

fl(x, z) = Fl (Xx, Zz,x) , (97)

where Zz,x ≡ (0, 2x · z, z) is a consequence of contracting the partial derivatives with the

auxiliary vectors, with the already expected properties Zz,x · Xx = 0 and Z2
z,x = z2. In

resume, diagramatically we have:

Fa1...al(X) Fl(X,Z)

fa1...al(x) fl(x, z)

,

where dashed lines indicate projections, and the others, encoding.
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2.1.2 Correlation Functions

In this section we are going to explore technical consequences of the powerful formalism

developed previously. We saw the conformal group in d dimensions is equivalent to SO(d+

1, 1), which means invariant quantities under the former are taken to invariant quantities

of the later.

We are going to show then how conformal correlators can be obtained by projecting

Lorentz-invariant equivalent quantities from the embedding space. The standard proce-

dure will be to start from the most general form possible for these quantities and pull-back

it; a given embedding correlation function will depend on a set of spacetime points XN

and a set of auxiliary vectors ZN that equals to (0, 2xn · zn, zµn) when projected, if one

chooses to deal with polynomlials. In order to do so, we derive the most useful rules for

projecting it down to physical space:

−2XN ·XM = −2xn · xm + 2Xd+1
n Xd+1

m − 2Xd+2
n Xd+2

m

→ −2xn · xm + x2
n + x2

m = (xn − ym)2

ZN · ZM = zn · zm − Zd+1
n Zd+1

m + Zd+2
n Zd+2

m → zn · zm
XN · ZM = xn · zm −Xd+1

n Zd+1
m +Xd+2

n Zd+2
m → xn · zm − xm · zm = (xn − xm) · zm

.

Summarizing:

−2XN ·XM = x2
nm , ZN · ZM = zn · zm , XN · ZM = xnm · zm , (98)

where it was defined xµnm ≡ (xn − xm)µ.

we are ready now to get physical correlators from embedding ones. Some of the results

can be checked in [50]. Working with polynomials instead of tensors turns out to be

worthful when considering spinning correlators. We are going to start simple, considering

a 2-point function between two scalar fields φ(X) and φ(Y ).

At our disposal, the only Lorentz invariant we have is X · Y . By inspection, one can

verify that the only structure possible to this starting 2-point function then is:

〈φ(X)φ(Y )〉 =
c

(X · Y )∆
,

where c is some constant and ∆ is the common degree of the scalars. Notice this is in

agreement with homogeneity condition, and also that quadratic or higher power terms on

X or Y are not allowed in view of the cone condition. Moreover, from our construction,

this expression is already conformally invariant and refers to 2-point function between

primaries in the physical spacetime.
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Using (98) then, we arrive at the known result directly:

〈φ(x)φ(y)〉 =
1

(x− y)2∆
,

where the overall factor was taken to be 1.

To fix ideas, let us also obtain 3-point functions between scalars φ1(X1), φ2(X2) and

φ3(X3), with respective scaling dimensions (more precisely, homogeneity degree): ∆1, ∆2

and ∆3. This time we have three Lorentz invariants obviously: X1 · X2, X2 · X3 and

X1 · X3. Inspired from the previous case, we found that the most general form for this

correlator is24:

〈φ1(X1)φ2(X2)φ3(X3)〉 =
c123

(X1 ·X2)α123(X1 ·X3)α132(X2 ·X3)α231
, (99)

where α123, α132 and α231 are constants that must satisfy:

α123 + α132 = ∆1

α123 + α231 = ∆2

α132 + α231 = ∆3

.

Solving it, we get:

αijk =
∆i + ∆j −∆k

2
.

Projecting it, we have:

〈φ1(x1)φ2(x2)φ3(x3)〉 =
λ123

|x12|2α123|x13|2α132|x23|2α231
.

Now an example following the same reasoning, but with more complicated fields.

Consider the 2-point function between two vector operators VM(X) and VN(Y ). We have

only one Lorentz invariant X ·Y to infer a homogeneous quantity, but besides we now have

to worry about transversality. Non-linear terms on X and Y are prohibited as before.

Linear terms on XM or YN are pure gauge and need not to be considered. In this way,

one checks that the resulting possibility is:

〈VM(X)VN(Y )〉 =
c

(X · Y )∆

(
ηMN + α

YMXN

X · Y

)
, (100)

where, again, c is an overall constant and ∆ stands for the degree of the operator.

Tranversality condition then enforces α = −1. Projecting the result and taking again

24We reproduce some steps from [25]
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the overall constant to be equal to 1, we have:

〈vµ(x)vν(y)〉 =
Iµν(x− y)

(x− y)2∆
, with Iµν(x) = ηµν −

2xµxν
x2

. (101)

At this point, we should make use of the tensorial encoding developed previously.

We are going to apply it with the same purpose, but it works in a little bit different

way. The encoding absorbs the indices from the tensor, so the approach goes in the

way of starting with a polynomial which carries the desired conditions for the field, then

projecting it using the rules involving auxiliary vectors and finally obtaining a physical

field via Todorov operator if necessary.

We saw that tranversality of the embedding fields guarantees they are projected onto

primaries, besides homogeneity of course. Tranversality is going to play the most impor-

tant role now, so we begin reaffirming it in the encoding language. Suppose Fl(X,Z) is a

polynomial encoding such a field, then looking at (95), the condition is translated to:

X · ∂Fl(X,Z)

∂Z
= 0 ≡ Fl(X,Z + αX) = Fl(X,Z) , ∀α . (102)

In general, a transverse field F (x) may contain pure gauge terms, such that X ·F = 0

is valid only once X2 = 0 is considered (they are referred to as tensors transverse modulo

X2). It turns out we can simplify and actually make the condition stronger, without

using X2 = 0. For this, we define the so called identically transverse tensors, which are

tensors that are transverse in each index, but not only in the cone, that is, X · F = 0

is satisfied identically. These tensors are easier to characterize, and as seen before they

project onto the same field, because differ by pure gauge terms only. We are going to

use their encoding as building blocks for the encoded correlators, exploring all possible

contractions.

Usually we are going to work with fields constructed from metrics and components of

Md+1,1 vectors. For such tensors there is a “canonical rule” for obtaining the identically

transverse encoding polynomials: dropping Z · X and Z2 terms, the pure gauge ones.

This is a consequence of the following fact: given a tensor FA1...Al(X) like those that is also

transverse modulo X2, dropping any terms within it proportional to X2, ηAiAj or XAi
,

the resultant tensor will be identically transverse. The proof is clarifying: separate F in

two parts F̂ and F̃ , the first one containing all terms to be dropped, so that X · F̂ contain

only terms proportional to XAi
and/or X2. Then X · F̃ is going to contain only terms

proportional to the other possible vectors QBi
, with coefficients proportional to Q ·X or

QBi
·Qj (if more than one extra vector); those terms will not mix up, and, therefore, will

not be possible to cancel them out, so if X · F is to vanish when X2 = 0, then X · F̃
must vanish identically, and of course F̃ is the identically transverse tensor. Notice also

that F̃l(X,Z) satisfies (102) identically, and so we extend the definition and refer to it as
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identically tranverse polynomial.

All the discussion in the last paragraphs finally provides the recipe for obtaining en-

coded correlators from embedding space. The whole problem resides now in constructing

the most general polynomial that encodes the n-point function between identically trans-

verse tensors. However, this is not a difficult task, and this suffices because we know such

polynomial is going to produce the right projection. Let us then convince ourselves that

a polynomial F̃l(X,Z) is identically transverse if and only if the variable ZA appears in

it only by means of the tensor:

CAB = ZAXB − ZBXA . (103)

On one hand, if ZA appear on it only through this expression, clearly (102) is identically

satisfied. On the other hand, if we have such an identically transverse polynomial, it

can only have terms linear on ZA, but no terms like Z · X. That is, it should appear

contracted with different X’s or Z’s coming from encoding other tensors. Therefore ZA

must appear besides XB only, but in a way that (102) is satisfied identically, this is done

antisymmetrizing the indices with (103).

This recipe should be consistent with what was done before, so we start using it to

recalculate the correlator between two vector fields. We have in this case two spacetime

points X1 and X2, and two auxiliary vectors Z1 and Z2, respectively, each of which appears

only once since vectors are (1, 0) tensors. So two C’s appear:

C1AB = Z1AX1B − Z1BX1A

C2CD = Z2CX2D − Z2DX2C

.

One verifies we have only one possible non-vanishing contraction:

C1ABC2
AB = 2 [(X1 ·X2)(Z1 · Z2)− (X1 · Z2)(X2 · Z1)] .

That is because CAB is traceless and also because a string made of alternating C’s reduces

to powers of C1 · C2 multiplying one of the C’s, so that the most general solution is a

function of C1 · C2:

C1
B
A C2

C
B C1CD = (Z1AX1

B − Z1
BX1A)(Z2BX2

C − Z2
CX2B)(Z1CX1D − Z1DX1C)

= [Z1A(X1 · Z2)X2
C − Z1A(X1 ·X2)Z2

C

−X1A(Z1 · Z2)X2
C +X1A(Z1 ·X2)Z2

C ](Z1CX1D − Z1DX1C)

= −1

2
(C1 · C2)C1AD

.

In order to the 2-point function G(X1, X2;Z1, Z2) obtained using the contractions be

homogeneous of degree ∆, we multiply each possible term by a power of X1 ·X2 consistent
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with homogeneity condition; notice these powers do not affect the transversality of the

polynomial and also that it is made of a Lorentz-invariant quantity linear on the positions.

In this case, we just have to divide by (X1 ·X2)∆+1 and get:

G(X1, X2;Z1, Z2) = 2
(X1 ·X2)(Z1 · Z2)− (X1 · Z2)(X2 · Z1)

(X1 ·X2)∆+1
. (104)

Projecting it onto the physical space using (98), we get the following encoded corre-

lator:

g(x1, x2; z1, z2) = 2
−1

2
x2

12(z1 · z2)− (z2 · x12)(z1 · x21)(
−1

2
x12

2
)∆+1

=
1

x12
2∆

[
z1 · z2 − 2

(z1 · x12)(z2 · x12)

x12
2

] , (105)

where an overall constant was taken to be 1 in the last line.

The indices can be recovered using Todorov operators, that is, deriving the expression

above with respect to z1 and/or z2, but it is clearly in agreement with (101).

Notice this result can be easily generalized to 2-point function between operators with

any spin. Firstly, it is clear the operators must have the same scaling dimension, ∆ say.

Secondly, they must be tensors of same rank, say l indices each; this is not so trivial but

it can be seen from the fact that two equal C’s contracted are not allowed since it yields

pure gauge terms. Therefore, the resultant 2-point function Gl(X1, X2;Z1, Z2) between

two primary tensor fields of rank l (therefore with nontrivial spin) is quickly read to be:

Gl(X1, X2;Z1, Z2) = const.
[(X1 ·X2)(Z1 · Z2)− (X1 · Z2)(X2 · Z1)]l

(X1 ·X2)∆+l
. (106)

We could keep following the recipe to obtain other correlators, but we are going to

do it as we need (if so) along this work. Nevertheless, for completeness, we finish this

section sketching the general prescription one should follows to get 3-point functions

between arbitrary operators. Adopting the short notation χ ≡ [l,∆] for referring to the

set of eigenvalues labelling a given operator (traceless, symetric and transverse, of course),

the generalized encoded 3-point function Gχ1χ2χ3(Xi;Zi) should have the form below, in

comparison with (99) and according to our discussion just above:

Gχ1χ2χ3(Xi;Zi) =
Qχ1χ2χ3(Xi;Zi)

(X1 ·X2)
τ1+τ2−τ3

2 (X1 ·X3)
τ1+τ3−τ2

2 (X2 ·X3)
τ2+τ3−τ1

2

, (107)

where we have defined τi ≡ ∆i + li and Qχ1χ2χ3(Xi;Zi) is responsible for carrying the

tranversality information, that is, it is an identically transverse polynomial of degree li in

each Zi, with coefficients dependent on Xi, and also homogeneous of degree li in each Xi.
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So that the whole function is homogeneous of degree ∆. Thus:

Qχ1χ2χ3(λiXi;αiZi + βiXi) = Qχ1χ2χ3(Xi;Zi)
∏
i

(λiαi)
li . (108)

Moreover, generically, identically transverse polynomials must be built from contrac-

tions of the tensors CiAB, as we have seen. But not all contractions are useful, notice

Ci · Ci, Ci · Xi and Ci · Zi produce terms proportional to Z2
i and Zi · Xi. Therefore,

nontrivial building blocks are going to be given by contractions using different points, as

in C1 · C2. In fact, besides Ci · Cj there is just one more possible contraction given by

Xj · Ci ·Xk and adjusted by dividing it by Xj ·Xk, explicitly:

Hij ≡ Ci · Cj = 2 [(Xi ·Xj)(Zi · Zj)− (Xi · Zj)(Xj · Zi)]

Vi,jk ≡
Xj · Ci ·Xk

Xj ·Xk

=
(Zi ·Xj)(Xi ·Xk)− (Zi ·Xk)(Xi ·Xj)

(Xj ·Xk)

, (109)

where Hij satisfies the scaling condition li = lj = 1 and lk = 0 and Vi,jk satisfies the

conditions li = 1, lj = lk = 0.

At the end of the day, note, this null-cone formalism is just another way, sometimes

simpler, to compute conformal constraints. In fact it should be used together with the

point of view of the physical space. Encoding technology enhances the power of such

formalism and also makes the calculations more elegant.

Along the rest of this chapter we are going to use the fundamentals developed up to

here to understand particular theories that do not manifest conformal invariance entirely

due to the introduction of the so called defects on it. It is going to be of our interest

to charaterize correlation functions in those theories as well as studying how physics is

modified on them.

2.2 Defects

In this section our aim is to present all the essential for analyzing a generic Defect CFT,

and then explore some specific cases that are known to be very useful nowadays. In

fact these defects appear in several situations, in both phenomenological and theoretical

problems.

An ordinary CFT has the vacuum invariant under general conformal transforma-

tions.An interesting way of breaking such symmetries is by introducing interfaces or

non-trivial boundaries on it, that is, defects in the spacetime. If we do so such that

we preserve part of the conformal symmetry, then we get new theories that we could

study just adapting the formalism we developed previously, that is why we refer to them

as Defect CFTs.

As we will see, the breaking pattern is not the only thing characterizing a defect CFT,
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besides we need the CFT data. But now the spacetime has different regions, namely the

bulk and the defect, and, therefore, new ways of fusing operators appear. Consequently,

new difficulties and particularities arise in the computation of correlation functions.

2.2.1 Types of defects

Technically we are going to understand such defects as non-local operators parallel to

its characterizing geometric object. In this sense, the presence of it is felt computing

correlators with the insertion of these extended operators within them. Notice we also use

the term defect to refer to the world-volume of the object itself.

As mentioned, we want to introduce structures that preserves a subgroup of the con-

formal symmetry of the homogeneous vacuum. Since rotations are part of the confor-

mal transformations, intuitively the most obvious objects we could choose are spheres.

However, we know that planes and spheres are connected via stereographic projections,

therefore, we are going to study defects consisting of extended operators on spheres or

planes.

If the original spacetime has dimension d, our defect placed in Rd−1,1 is going to have

dimension p ∈ {1, .., d− 1}, or, alternatively, codimension q, such that p+ q = d. As just

said, a sphere Sp can be mapped into a hyperplane. SO(p + 1, 1) then is the group of

conformal symmetry preserved by this hyperplane. Besides, SO(q) composes the possible

rotations around such plane. Thus the subgroup of symmetries preserved in the presence

of those defects is just SO(p+ 1, 1)× SO(q), varying according to the values of p and q.

Defects of codimension 1 carry the special name of boundaries, as one should expect.

It is widely studied and a large set of applications can be encountered, see for example [52]

to get into it and [53] for a review and also for future perspectives concerning boundary

conformal field theories (BCFTs). An interesting application is its involvement with the

Heisenberg spinchain, as reviewed in [54]. Here we are not going to be so interested in

CFTs with domain containing boundaries.

For p between 1 and d−1 one should interpret the surface of the defect as an interface

between two regions (maybe more) of the domain, therefore possibly diving the original

theory between two connected CFTs for example. That is, like domain walls. Through

this interface some physical modes can propagate while others can not. In this sense, it

is even possible to talk about in optics terms, reflection and transmission coefficients for

the defect, as in [55].

The last possibility, and actually the most important in what follows, is the case in

which p equals 1. It does not carry a special name, but it is very special when treating

superconformal field theories, as we will see. In this category we will have the so called

Wilson loops, non-local observables in the presence of which we are going measure our

correlation functions.
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2.2.2 Correlation functions in a Defect CFT

In this section we establish the rules to play the game and explore them to point out

the most important features in such teories. We are going to follow the approach by

polynomial encoding and the aim of this part is to make us able to deal with correlators

in defect CFTs, including OPE applications.

Now we have two kind of operators: bulk ones, which depend on the entire set of

coordinates x and defect ones, which are functions only of coordinates related to the

defect itself, from now on xa. These two kinds of operators bring new possibilities of

combinations and, thus, new information. In the following, bulk operators are going to

be represented as usual, while defect fields will have a hat over them; generically, O∆,l for

bulk ones and Ô∆̂,j,s for defect ones. Correlation functions between them will be measured

in the presence of the defect OD properly saying, which has its expectation value in the

vacuum of the original CFT divided out; for n bulk insertions and m defect insertions,

we have:

〈〈O1(x1)...On(xn)Ô1(xa1)...Ôm(xam)〉〉 ≡ 1

〈OD〉
〈O1(x1)...On(xn)Ô1(xa1)...Ôm(xam)OD〉 ,

(110)

where eigenvalues were omitted.

Bulk operators are encoded according to the formalism developed on section 2.1.1

previously. Defect ones have something different: since they are in a representation of

the subgroup SO(p+ 1, 1)× SO(q), they are going to have quantum numbers refering to

both SO(p) and SO(q), j and s, respectively; we call them parallel and transverse spin,

respectively. To encode such operators two auxiliary variables are required, za and ωi,

the first for parallel indices and the second for transverse spin indices.

As before, we are going to work with primary fields only, so that the requirement of

symmetric and traceless representations of SO(p) and SO(q) holds, therefore imposing

ωiωi = 0 and zaza = 0. This said, if necessary to recover indices from polynomials of

course two different Todorov operators are going to be needed:

Da =

(
p− 2

2
+ zb

∂

∂zb

)
∂

∂za
− 1

2
za

∂2

∂zb∂zb

Di =

(
q − 2

2
+ ωj

∂

∂ωj

)
∂

∂ωi
− 1

2
ωi

∂2

∂ωj∂ωj

.

From the point of view of the defect, transverse spins are kind of charges under some

internal symmetry, but they also come from the same original symmetry structure. So at

the end of the day, tensor structures coupling both transverse and parallel spin to bulk

indices indeed occur.

In the embedding space we also split the coordinates into two sets: letters from the

beginning of the alphabet (like A,B, ...) refer to parallel directions while letters from the
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middle (as I, J, ...) correspond to transverse ones. Bulk quantities are still constrained by

the condtions X2 = 0, Z2 = 0 and Z ·X = 0, consequently, since symmetry realization in

the embedding space is still linear, scalar quantities are going to be built from two scalar

products instead of one, but only a subset of scalar products are independent:

X • Y ≡ XAηABY
B , X ◦ Y ≡ XIδIJY

J , (111)

where ηAB is the remanescent minkowskian metric on the defect and δIJ the euclidian

metric related to the other coordinates. And using the conditions for bulk quantities:

X •X = −X ◦X , X • Z = −X ◦ Z , Z • Z = −Z ◦ Z . (112)

Remember we have used the building block tensor (103) to construct the correlation

functions in this approach. With such splitting on the coordinates, it is also expected that

tensor to break into different pieces. In fact, notice we can have three parts: CAB, CAI and

CIJ . It turns out, however, that only the second of them is necessary when considering

bulk quantities. That is because the others can be written as linear combinations of it,

see below.

CABQ
ARB = (X •Q)(Z •R)(X •R)(Z •Q)− (X •Q)(Z •R)

÷(X ◦G)→ = −(X •Q)

(X ◦G)
(Z •R)(X ◦G) +

(X •R)

(X ◦G)
(Z •Q)(X ◦G)

= −(X •Q)

(X ◦G)

[
(X •R)(Z ◦G)− CAIRAGI

]
+

(X •R)

(X ◦G)

[
(X •Q)(Z ◦G)− CAIQAGI

]
=

(
−(X •R)

(X ◦G)
QA +

(X •Q)

(X ◦G)
RA

)
GICAI

,

where Q, R and G are generic vectors (in particular, note, we can take G = X). To write

the third line it was used the following identity: CAIR
AGI = −(X • R)(Z ◦ G) + (X ◦

G)(Z •R). Analogously,

CIJQ
IRJ = −(X ◦Q)(Z ◦R) + (X ◦R)(Z ◦Q)

= −(X ◦Q)

(X •G)
(Z ◦R)(X •G) +

(X ◦R)

(X •G)
(Z ◦Q)(X •G)

= −(X ◦Q)

(X •G)

[
(X ◦R)(Z •G) + CAIG

ARI
]

+
(X ◦R)

(X •G)

[
(X ◦Q)(Z •G) + CAIG

AQI
]

=

(
−(X ◦Q)

(X •G)
RI +

(X ◦R)

(X •G)
QI

)
GACAI

.
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Moreover, the fact that more than two C’s concatenated is unnecessary still holds. Ob-

serve:

CAICBIC
BJ =

[
(X ◦X)ZAZB + (Z ◦ Z)XAXB − (X ◦ Z)(XAZB +XBZ

A)
]
CBJ ,

which opens to:

CAICBIC
BJ = −(X ◦X)ZA

[
(X • Z)ZJ − (Z • Z)XJ

]
− (Z ◦ Z)XA

[
(X •X)ZJ − (X • Z)XJ

]
+ (X ◦ Z)[XA(X • Z)ZJ − (Z • Z)XAXJ

− ZA(X •X)ZJ − ZA(X • Z)XJ ]

= [(X •X)(Z ◦ Z)− (X ◦ Z)(X • Z)]CAJ

=
1

2
(CBICBI)C

AJ

.

Defects live in a (p+ 1)-dimensional light-cone section inside the total ambient space.

Primaries whithin it clearly will be lifted to fields under null-cone, homogeneity and

transversality conditions like before. In this way, embedding operators are going to be

encoded by means of two auxiliary variables ZA and W I , the first a p-vector and the

second a q-vector. Translation of those conditions in this language is straightforward.

Before computing some correlators, a last point to understand is the projection of ex-

pressions containing both scalar products onto physical space, besides the rules expressed

in (98). In order to do this, we assume our extended defect lays on a flat sub-manifold D,

which is embedded into the Poincarè section as:

XM
x ∈ D : XA = (1, x2, xa) , XI = 0 . (113)

Demanding similar consistency condition as in (97), we see that Z’s and W ’s, for a

given XM , must be of the form: ZA = (0, 2xaza, z
a) and W I = ωi. Projection rules

then are easy to obtain. Orthogonal scalar products projections are trivial, the metric is

euclidian and the components assumed to be spacelike only. However, for generic vectors

XM , XN and their respective auxiliaries ZM and ZN , we have:

−2(XM •XN) = −2 [(XM ·XN)− (XM ◦XN)]

= −2

[
xm · xn −

(
1 + x2

m

2

)(
1 + x2

n

2

)
+

(
1− x2

m

2

)(
1− x2

n

2

)
− xi

mxni

]
= x2

m + x2
n − 2xamxna = (xamn)2 + (xi

m)2 + (xi
n)2

,
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and

(XM • Zn) = (XM · ZN)− (XM ◦ ZN)

= xm · zn −
(

1 + x2
m

2

)
(xn · zn) +

(
1− x2

m

2

)
(−xn · zn)− xi

mzni

= xamzna − xn · zn
= xamnzna − xi

nzni

.

That is, two more practical rules are necessary in a defect theory:

−2(XM •XN) = (xamn)2 + (xi
m)2 + (xi

n)2 , and (XM • ZN) = xamnzna − xi
nzni . (114)

With this in hands, we are now able to construct correlation functions. We restrict

ourselves to correlators fixed up to numerical coefficients, OPE then takes care of the rest.

Firstly, notice that if only defect insertions are used, the n-point functions are constrained

by ordinary CFT in p dimensions, having conformal group as global symmetry. As an

example, take the 2-point function between scalar primaries:

〈〈Ô∆̂,0,s(X1,W1)Ô∆̂,0,s(X2,W2)〉〉 =
(W1 ◦W2)s

(X1 •X2)∆̂
, (115)

where an overall constant was taken to be 1. Notice terms contracting W ’s with X’s

automatically vanish in view of (113).

Consider then 2-point functions between a defect and a bulk operator, which is one of

the particularities in such theories. These correlators will depend basically on 5 variables:

〈〈O∆,J(X1, Z1)Ô∆̂,j,s(X2, Z2,W2)〉〉 .

The auxiliary ZA
2 is subject to the same conditions as Z’s in ordinary CFT and,

therefore, should appear in correlations only through the equivalent of (103), that is, by

means of the tensor:

CAB
2 = XB

2 Z
A
2 −XA

2 Z
B
2 .

Moreover, W2 should appear only contracted to Z1 or X1, since it is by definition

orthogonal to X2 and it is also subjected to null-cone condition. Summed to this we have

the fact commented previously that, when considering bulk insertions, only the tensor

CAI
1 is suficient for contractions. Let us explore the possibilities and construct the more

general form for such functions then.

Contraction between C2’s produce pure gauge terms only, remember. So factors con-
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taining Z2 can appear only in one way:

Q0
b-d ≡

CAB
1 C2AB

2(X1 •X2)
=

[(X1 •X2)(Z1 • Z2)− (X1 • Z2)(X2 • Z1)]

(X1 •X2)
, (116)

where the denominator was chosen conveniently. Notice that degree j in Z2 enforces this

term to appear with the power of j in the final form.

The more general structure then comes from multiplying the expression above by

terms constructed from contractions between C1, W2, X1 and X2. Below we present a

set of independent ones, the derivation is straightforward by performing the proposed

contractions. The idea to form them is simple: we can have two C1’s contracted between

themselves, or only a single CAI
1 contracted with either X2AX1I , X1AW2I or X2AW2I , or

yet none C1.

Q1
b−d ≡

CAI
1 C1AI

2(X1 ◦X1)
=

[(X1 •X1)(Z1 ◦ Z1)− (X1 • Z1)(X1 ◦ Z1)]

(X1 ◦X1)

Q2
b−d ≡

CAI
1 X2AX1I

(X1 ◦X1)1/2(X1 •X2)
=

[(X1 ◦X1)(X2 • Z1)− (X1 •X2)(X1 ◦ Z1)]

(X1 ◦X1)1/2(X1 •X2)

Q3
b−d ≡

CAI
1 X1AW2I

(X1 •X1)
=

[(X1 ◦W2)(X1 • Z1)]

(X1 •X1)
− (Z1 ◦W2)

Q4
b−d ≡

X1 ◦W2

(X1 ◦X1)1/2

, (117)

the term formed by CAI
1 X2AW2I was omitted because, although not obvious, it is depen-

dent on the others above, explicitly it equals Q3
b−d +Q2

b−dQ
4
b−d.

Taking into account homogeneity in Z1, Z2 and W2, a generic bulk-to-defect 2-point

function is thus given by:

〈〈O∆,J(X1, Z1)Ô∆̂,j,s(X2, Z2,W2)〉〉 =
(
Q0

b-d

)j∑
{ni}

bn1,...,n4

∏4
k=1(Qk

b−d)
nk

(X1 •X2)∆̂(X1 ◦X1)(∆−∆̂)/2
,

(118)

where the sum is over values of {ni} such that 2n1 + n2 + n3 = J − j and n3 + n4 = s.

In particular, if one takes the defect operator to be the identity, which means to

exclude defect quantities from the expression above, only Q1 is relevant to construct the

correlator and we have:

〈〈O∆,J(X1, Z1)〉〉 =
aO

(X1 ◦X1)∆/2

[
(Z1 ◦ Z1)− (X1 ◦ Z1)2

(X1 ◦X1)

]J
(119)

where aO is some constant to be given, being actually part of the CFT data.

This should be interpreted as a non-vanishing 1-point function of bulk insertions and

it is in fact other distinguishing feature of defect field theories; notice 1-point function
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of defect insertions still vanishes. Some symmetries were broken and the consequence is

that the remaining ones are not enough to constrain correlators as usual.

We have seen then that correlation functions of defect insertions are just like in ordi-

nary CFT, the conformal data related to this part of the theory is thus well known. The

non-vanishing aspect of 1-point functions with bulk insertions demands the addition of

more data to establish the theory. It turns out those data are all we need, that is because,

as we are about to see, even 2-point functions involving only bulk insertions depend on

cross-ratios, bringing up the OPE topic again, which completes the necessary toolkit to

be able to compute any n-point function.

2.2.3 OPE and 2-point Functions of Bulk Primaries

Above we arrived at the conclusion that inside the defect we have a conformal field theory.

In view of that, invoking the state-operator correspondence again, it can be said that any

state created at a surface not necessarily entirely contained in the defect can be written

as a sum of states of defect primaries and descendants. Consequently, any bulk operator

associated to a state created from such a surface can be written as an expansion over

primaries centered at a point in the defect, that is, we are going to have OPE of bulk

primaries in terms of defect primaries. For a bulk primary O∆(x), for example, it would

be like:

O∆(x) =
∑
k

bOÔk
|xi|∆−∆̂

CÔk(|x
i|, ∂a)Ôk(xa) , (120)

where was chosen the centering to be the part of x in the defect, and the partial derivatives

are with respect to that coordinates also, after all they are associated to descendants of

the defect primaries Ôk located on it. Therefore the expansions can depend only on

coordinates out of the defect, that is why |xi|, which should be understood here as the

distance of the operator from the center, bOÔk is a constant isolated for convenience.

On the other hand, it is also possible to take a surface that does not contain the defect

at all. In this case, it is like there was no defect, and therefore OPE would work as in

(66). We call this the OPE bulk channel in contrast to the defect channel just above.

In analogy to the theory developed in subsection 1.4.2, the way for determining the

coefficients CÔk is by appealing to the fixed point functions we have. In the previous

subsection we saw that not only two-point functions of defect primaries are fixed, but also

bulk-to-defect two-point functions too. In this simple case of bulk scalars we would have:

〈O∆(x)Ô∆̂,j,s(y)〉 =
∑
k

bOÔk
|xi|∆−∆̂

CÔk(|x
i|, ∂a)〈Ôk(xa)Ô∆̂,j,s(y)〉 .

Then by means of (118) on the left hand side and of (60) on the right hand side, those

coefficients should be found by matching expansions too.

To finish this short subsection, we present another subtlety of defect CFTs that is
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nothing more than a contextualization of those OPE prescriptions. In comparison to

ordinary CFTs, conformal blocks appear already in two-point functions involving bulk

primaries. To have that clear, notice that, given two bulk operators localized at X1 and

X2, there are two cross-ratios invariants under the remaining symmetries:

ξ ≡ −2X1 ·X2

(X1 ◦X1)1/2 (X2 ◦X2)1/2
, cosφ ≡ X1 ◦X2

(X1 ◦X1)1/2 (X2 ◦X2)1/2
(121)

where the normalization on the first of them is chosen in view of (98). Moreover, notice

that φ is the angle between the projections of the operators onto the orthogonal space to

the defect; in fact it involves only the ◦ type of scalar product.

The two point-function of bulk primaries will then be constructed from functions of

those cross-ratios multiplying allowed structures for the correlator itself, obtained similarly

to what was done to get (116) and (117) before. In the present case we have to contract

CAI
1 and CAI

2 with X1 and X2 in all possible forms, the resulting building blocks are thus

easy to obtain:

Q1
b−b =

CAI
1 X1AX2I

(X1 ◦X1) (X2 ◦X2)1/2
, Q2

b−b =
CAI

1 X2AX2I

(X2 ◦X2) (X1 ◦X1)1/2

Q3
b−b =

CAI
2 X1AX2I

(X2 ◦X2) (X1 ◦X1)1/2
, Q4

b−b =
CAI

2 X1AX1I

(X2 ◦X2)1/2 (X1 ◦X1)

Q5
b−b =

CAI
1 CBI

2 X1AX2B

(X2 ◦X2) (X1 ◦X1)
, Q6

b−b =
CAI

1 CAJ
2 X2IX2J

(X2 ◦X2)3/2 (X1 ◦X1)1/2

Q7
b−b =

CAI
1 C1AI

2X1 ◦X1

, Q8
b−b =

CAI
2 C2AI

2X2 ◦X2

. (122)

And finally the bulk-to-bulk correlator reads:

〈O∆1;J1(X1, Z1)O∆2;J2(X2, Z2)〉 =
∑
{ni}

∏8
k=1

(
Qk
b−b
)nk fn1,...,n8(ξ, φ)

(X1 ◦X1)∆1/2 (X2 ◦X2)∆2/2
, (123)

in analogy to (118). fn1,...,n8(ξ, φ) are the functions of the cross-ratios.

Of course the OPE can be used to determine this correlation function too. The

interesting fact is that it can be done in two ways as we saw above, such that structure

constants present in the theory with no defect are connected to structure constants of the

conformal field theory in the defect.

This subsection thus completes the technical ingredients for dealing with these kind of

theories. In resume, we started looking for the preserved symmetries due to presence of a

conformal defect, then we saw how correlation functions can be obtained by means of the

embedding space formalism and the encoding of the correlator by polynomials. Finally we

established an algorithm to obtain any correlation function in a Defect CFT using OPE
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and ended up finding that structure constants of non-defectual and defectual theories are

connected.

Next and last subsection, actually ending the chpater too, is devoted to the pre-

sentation of a very important operator to the work to be developed at the end of this

dissertation. It is an operator that emerges in Defect CFTs and is closely related to the

conservation of the stress-energy tensor.

2.2.4 Displacement Operator and Conservation

It should be clear at this point that the introduction of a defect within a theory translates

in a changing of the spacetime structure itself, because the defect is present in part of

it only. Particular choices of them still keep part of the conformal symmetries, more

specifically, we chose to work with defects conformally invariant.

As pointed out in the beginning, we will focus on flat defects of dimension p = 1, that

is, lines in the following chapters. The conformal group in d = 1 was studied in a previous

subsection of section 1.2, and we saw that only one translation symmetry was present,

the one along the extended operator introduced.

Going a little bit more in the past, remembers that invariance under translations was

connected to the stress-tensor. More specifically, once translation in the xν direction was

preserved, we had:

∂µT
µν(x) = 0 .

In the present case then, this equation should hold only along the line over which the

operator is supported. Somehow the equation above should also adapt to carry the infor-

mation of broken translation symmetries on orthogonal directions. We can easily write

these ideas by introducing a new operator D as following:

∂µTµν(x) = δd−1(x⊥)Dν(x‖) ,

where x‖ denotes the direction of the defect and x⊥ orthogonal directions to it. This new

operator is called displacement operator and has non-vanishing components for xν 6= x‖

only. The reason of the name will be clear in the last chapter.

The equation above can be seen as a Ward Identity in Defect CFT and has a very

important consequence, which we are going to explore in the last chapter too. For now,

notice that it gives us the amount of energy necessary to move outward the defect.

In what follows we will be interested in applying this Ward Identity to two specific

cases: the 4d N = 4 SYM and the 3d N = 6 ABJM superconformal field theories. In

the first case, we will use the usual notation xµ = (x0, xi), i=1,2,3, for four dimension

spacetime coordinates, while in the last, we adopt xµ = (x1, xm), m=2,3, because we

work in euclidian space for simplicity, x0 and x1 are the directions of the defect, respec-
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tively. Moreover, traditionally the displacement operator in the theory mentioned firstly

is denoted by Fi, so that its defining equation reads:

∂µTµi = δ3(x⊥)Fi(x
0) , (124)

while for the ABJM:

∂µTµm = δ2(x⊥)Dm(x1) . (125)

Notice, however, that the explicit form of such operators has not been given. In

fact, a generic treatment of this for any defect with arbitrary dimension can be found

in [46], to which we refer the interested reader. There, by making use of general relativity

environment, it is derived the Ward Identity itself and the general form of the displacement

operator in terms of characteristic quantities of the spacetime coupled to a metric, like

the curvature tensor and etc. Here we choose to use a different approach for obtaining

their form.

By assuming the validity of the Ward Identity, we will see that the displacement

operator can be determined directly from the explicit form of the defect. For this reason,

their complete forms are postponed to be presented in the last chapter. Actually, there

is a connection between the quantities defining the defect and some quantities in the

general theory of Differential Geometry and, therefore, General Relativity too. We avoid

the entire derivation in view of unnecessary complications, which would demand content

out of the scope of this work.
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3 Wilson loops

Until the last chapter we have been worried in describing conformal field theories and, in

particular, those theories containing what we called defects. We saw what novelties the

introduction of such objects brings up and also developed all the necessary toolkit to deal

with those new difficulties.

This chapter is devoted to the introduction of Wilson loops, potential defects. We

focus on building these extended operators and on understanding their physical relevance.

The final chapter of this dissertation will explore their usefulness in the context of defect

CFTs.

3.1 Wilson loops in gauge theory

Remember the well-known Aharonov-Bohm effect in electromagnetism: a charged par-

ticle acquires a phase factor eiα(x) when moving over a (closed) path in a background

electromagnetic field (α(x) is a function which depends on the path); this is a conse-

quence of the coupling between that wavefunction and the electromagnetic potential Aµ.

This phase is essentially the holonomy of the background gauge field and the definition of

Wilson loop. Before giving more details, let us take a step back and review briefly gauge

transformations and gauge invariance.

Once we identify (or, conversely, impose) invariance of the theory under a gauge

transformation, we need to know how to construct gauge invariant quantities, which are

the physical relevant objects, once they are independent on the “frame” of description.

Mathematically, a finite local phase transformation of a complex valued field ψ(x) is given

by eiω(x)ψ(x); its conjugate ψ∗(x) then transforms like e−iω(x)ψ∗(x). Clearly then, gauge

invariants can be constructed from prodcuts of ψ∗ and ψ, in which exponentials cancel out.

However, we know for example that propagators come from derivatives in the Lagrangian,

so in order to be able to build all kind of invariants, we should treat these possibilities

too.

It turns out a simple partial derivative of a field does not behave appropriately under

a gauge transformation. Instead, one has to consider the so called covariant derivative.

It is constructed from the comparator of the theory, a scalar quantity U(y, x) defined to

compensates for the difference in phase transformations between the two points y and x.

Assumed to be a pure phase U(y, x) = eiφ(y,x) in general, transforming like:

U(y, x)→ eiω(y)U(y, x)e−iω(x) , (126)

which makes ψ(y) and U(y, x)ψ(x) transform similarly. The covariant derivative Dµ then

is obtained once one assumes continuity of the comparator and considers its infinitesimal
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form:

U(x+ εη, x) = 1− ieεηµAµ(x) +O(ε2) , (127)

where e is a constant extracted for convenience, ε is an infinitesimal parameter and ηµ

is the unitary vector dictating the direction of variation from the point xµ to the point

yµ ≡ xµ + εηµ; Aµ(x) are the variations. It comes from:

ηµDµψ(x) = lim
ε→0

1

ε
[ψ(x+ εη)− U(x+ εη, x)ψ(x)]

= ηµ (∂µ + ieAµψ)ψ(x)

∴ Dµ ≡ ∂µ + ieAµ

, (128)

We see then that the gauge field arises naturally as a vector in the definition of the

covariant derivative, and that covariant derivatives of fields naturally yield interactions

between them and gauge fields.

From equation (127) inserted in the transformation law for the comparator, one con-

cludes that the gauge field Aµ(x) transforms like:

Aµ(x)→ Aµ(x)− 1

e
∂µω(x) , (129)

and that, consequently:

Dµψ(x)→ eiω(x)Dµψ(x) . (130)

Gauge invariant Lagrangians can be constructed from combinations of fields and covariant

derivatives of the fields. Moreover, we can also consider covariant derivatives of covariant

derivatives. In fact, considering the commutator between them, we have that:

[Dµ, Dν ]ψ(x)→ eiω(x) [Dµ, Dν ]ψ(x) .

Since ψ(x) carries all the resulting transformation law by itself, the commutator must be

a gauge invariant, and we have the well known strength tensor Fµν :

[Dµ, Dν ] ≡ ieFµν = ie(∂µAν − ∂νAµ) . (131)

In this way, we build gauge invariant Lagrangians from ψ, Dµψ, Fµν and its derivatives,

keeping up all renormalizable terms that also respect other symmetries of the system one

wants to impose, like parity, translation and charge conjugation, discrete ones.

A natural study in this context then comes up from the particular role played by the

comparator. Firstly, it is not uniquely defined. In fact, given two points z and y, from

the transformation rule for the gauge field (129) we see that the expression below is in
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accordance with (127) and (126):

UP (z, y) = exp

(
−ie
∫
P

dxµAµ(x)

)
, (132)

where P denotes any path from y to z. This is called the Wilson line. Taking a path that

is closed, that is, starting and finishing at the same point y, we have natural nonlocal

operators that are gauge invariants by construction, the so called Wilson loops:

UC(y, y) = exp

(
−ie

∮
C

dxµAµ(x)

)
. (133)

The fact that different paths give different Wilson loops, which are nontrivial functions

of the gauge fields, supports the claim that any locally gauge invariant can be constructed

from combinations of them, considering particular paths. This is a result derived in

differential geometry. Its proof is not the focus here, however, the basic idea behind it is

that the gauge connection is defined from its holonomies, in this case the Wilson loops.

They can be seen, by means of the application of Stokes theorem, as a function of the

strength tensor Fµν , which plays similar role as curvature tensors in that context. The

interested reader can find more about this for example in [64].

A last point we need to talk about gauge theory is concerning its quantisation. In the

path integral formulation of quantum field theory, a pure gauge theory would be quantised

by means of a functional integral as always:∫
DA eiS[A] .

Nonetheless, as we have just seen, gauge fields transform under gauge transformation with

the addition of a term which keeps the measure DA unaltered, since it is a derivative that

vanishes when integrated (once ω(x) is assumed to go to zero at the infinity). The action

is assumed to be gauge invariant, such that the transformation rule for the gauge field

makes the functional integral to contain redundancy, that is, integrations over physically

equivalent configurations of the gauge fields. A well defined quantisation is thus one that

removes such redundancy.

Non-redundant configurations are selected using the Faddeev-Popov procedure. As it

is well known on QFT literature (see [28] for example), this is done by inserting a delta

function of the linear gauge-fixing function G(A), that is δ (G(A)), together with the

determinant of the functional derivative δG(Aω/δω), for a gauge transformation function

ω(x), into the path integral, through the identity:

1 =

∫
Dω(x)δ (G(A)) det

(
δG(Aω)

δω

)
.
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The delta function ensures no redundancy. The extra determinant factor has a simple

form if G(A) is linear in A, that is because in this case, as we can see in (129), the

functional derivative will be independent on ω(x). So the integral over ω(x) then add

just a negligible normalization factor. The determinant will then, as always, be expressed

as a path integral for non-physical fields called ghosts. To clarify, consider fo example

the generalized Lorentz gauge condition G(A) = ∂µAµ − σ(x), sigma a gaussian weight.

A particular choice of σ(x) then fixes the gauge and the determinant can be expressed

through the well known result (see [28] for example):

det

(
−1

e
∂µ∂µ

)
=

∫
DcDc̄ exp

[
i

∫
ddxc̄ (∂µ∂µ) c

]
, (134)

where c and c̄ are anticommuting fields, that is fermionic fields. The constant e were

absorbed in their definition. The resulting consistent path integral for pure gauge theory

then englobes also the ghost fields. Generically it will have the form:∫
DADcDc̄ eiS[A,c,c̄] , (135)

the Faddeev-Popov path integral.

Feynman rules will depend on the theory considered of course, specially on the inter-

actions. However, as usual we can already establish the notation for gauge and ghosts legs

and propagators. Traditionally, gauge propagators are represented by wavy lines, while

ghost ones are represented by dotted lines, as in the figure below:

� � � �

a) b)

Figure 7: Notation for gauge fields and ghosts in Feynman diagrams, respectively.

3.2 Non-Abelian extension

In the previous reasoning, implicitly we chose to work on the simplest case of gauge

transformation, consisting in a unitary transformation acting on spinless operators and,

therefore, simply complex valued functions; in that case then we were dealing with the

U(1) gauge group. However, we are able to generalize that procedure in two ways: con-

sidering spinfull operators and after that allowing non-commuting gauge transformations.

Firtsly, once we allow ψ(x) to have more than one entry, like a column vector, gauge

transformations must act on them like matrices. With this simple changing, one must

now interpret the gauge transformation appearing before as being proportional to the
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identity matrix, that is:

eiω(x)I ,

and of course conjugate fields will transform with the hermitian conjugate of this matrix.

Notice in this case we would have a reducible representation of U(1).

Suppose now we put different ω′s at each site of the identity matrix. Clearly, in that

case we would have independent U(1) transformations parameterized for each ω, in other

words, an irreducible representation of U(1)×U(1)× ...U(1), as many U(1) as entries on

ψ(x).

To generalize that, since identity matrices clearly commute between themselves, we

consider gauge transformations not proportional to identity matrices, but instead being

generated by possibly non-commuting matrices. In this case we say we have a non-abelian

gauge theory, and the group of transformations are said to be a non-abelian gauge group,

in contrast to the abelian previous case.

Usually, a finite gauge transformation will have the form:

V (x) = eiω
a(x)ta , V †(x) = e−iω

a(x)ta ,

where the ta are the generators of the group of transformations considered, assumed to be

hermitian for convention. The group algebra is specified through the structure constants

fabc as below:25

[ta, tb] = ifabctc . (136)

With that in place, we now generalize the procedure done before in order to be able

to construct gauge invariant quantities and all that. We must then define a covariant

derivative and encounter the strength tensor of the theory. To do that, we first notice

that the comparator must now be a matrix transforming like:

U(y, x)→ V (y)U(y, x)V †(x) . (137)

Assuming continuity, the comparator will have the following infinitesimal form:

U(x+ εη, x) = 1 + igεηµAaµ(x)ta +O(ε2) , (138)

the constant g extracted for convenience as usual. Notice now we have a gauge field for

each group generator ta. It follows then that the covariant derivative is given by:

Dµ = ∂µ − igAaµta , (139)

note the representation in which the gauge group is will depend on the field its act. The

25Do not confuse with structure constants of 3-point correlation functions in CFT.
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generators will be square matrices. The transformation law for the gauge fields follows

from insertion of (138) into (137) and using the fact that

V (x+ εη)V †(x) = 1 + εηµV (x)
(
−∂µV †(x)

)
+O(ε2) .

We have:

1 + igεηµAaµ(x)ta +O(ε2)→ V (x+ εη)
(
1 + igεηµAaµ(x)ta +O(ε2)

)
V †(x)

= 1 + igεηµV (x)

(
Aaµta +

i

g
∂µ

)
V †(x) +O(ε2)

∴ Aaµta → V (x)

(
Aaµta +

i

g
∂µ

)
V †(x)

. (140)

Assuming the transformation is small and using (136), this last result acquires the

infinitesimal familiar form:

Aaµta → Aaµta +
1

g
∂µω

ata + iωbAcµ [tb, tc]

= Aaµta +
1

g
∂µω

ata + ifabcω
bAcµta

. (141)

From the definition of the covariant derivative (128) and the transformation rule for the

field ψ(x): ψ(x)→ V (x)ψ(x) and for the comparator (137) we show that:

ηµDµψ(x)→ lim
ε→0

1

ε

[
V (x+ εη)ψ(x+ εη)− V (x+ εη)U(x+ εη, x)V †(x)V (x)ψ(x)

]
= lim

ε→0

1

ε
V (x+ εη) [ψ(x+ εη)− U(x+ εη, x)ψ(x)]

= ηµV (x)Dµψ(x)

,

(142)

that is, the covariant derivative of a field in fact transform like the field itself, even for

finite transformations.

Finally, as before we can define the strength tensor, it will be given by:

F a
µνta =

i

g
[Dµ, Dν ] =

(
∂µA

a
ν − ∂νAaµ

)
ta − igAbµAcν [tb, tc]

=
(
∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν

)
ta

. (143)

Notice however that this time it is not gauge invariant. In fact, its transformation law

now follows from the previous result and we have:

F a
µνta → V (x)F a

µνtaV
†(x) .
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Instead, its trace will be a gauge invariant:

Tr
(
F a
µνta

)
→ Tr

(
F a
µνta

)
.

We now generalize the Wilson loop to non-Abelian gauge groups. Remember the

Wilson Line (132). A reasonable candidate to the non-abelian case should consider the fact

that we have non-commuting matrices; we suppose the Wilson Line to be then the Taylor

series expansion of the one in the abelian case with the substitution Aµ → Aaµta, such that,

in each term of the expansion, matrices localized at higher values of the parameter s of the

curve are placed on the left; this is called path-ordering prescription, and is represented

by P{}. Therefore our candidate is:

UP (z, y) = P
{

exp

(
ig

∫
P

ds
dxµ

ds
Aaµ(x(s))ta

)}
. (144)

It is not hard to see that it satisfies the following equation:

d

ds
UP (x(s), y) =

(
ig
dxµ

ds
Aaµ(x(s))ta

)
UP (x(s), y) ,

which has unique solution under the condition UP = 1 for degenerate curve26 and can be

put easily in the form:
dxµ

ds
DµUP (x(s), y) = 0 .

We have to show it transforms correctly to be our comparator between any two points,

that is, we need to prove that:

UP (z, y, AV ) = V (z)UP (z, y, A)V †(y) ,

where AV indicates transformed gauge fields. In equation (142) we proved the relation

Dµ(AV )V = V Dµ(A). So, once UP (z, y) is defined to be the solution of the first-order

differential equation above with fixed boundary condition, the proof is straighforward:

dzµ

ds
Dµ(AV )UP (z, y, AV ) =

dzµ

ds
Dµ(AV )V (z)UP (z, y, A)V †(y)

= V (z)
dzµ

ds
Dµ(A)UP (z, y, A)V †(y)

= 0

.

Therefore we succeed in finding a non-abelian generalization of the Wilson line. It

turns out, however, that simply taking a closed curve C does not yield a gauge invariant

26The initial and final parameter values of the curve are equal.
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object, instead, as we saw it will transform like:

UC(y, y)→ V (y)UC(y, y)V †(y) .

But as for the strength tensor, a well defined Wilson loop comes then from the trace of

it:

Tr (UC(y, y)) = Tr

(
P
{

exp

(
ig

∫
C

ds
dxµ

ds
Aaµ(x(s))ta

)})
. (145)

Usually the non-Abelian gauge groups involved in applications are O(N) (group of

orthogonal transformations of N -dimensional vectors), SO(N) (group of rotations on N -

dimensional vectors), Sp(N) (symplectic group), SU(N) (special unitary transformations

on N -dimensional vectors) and U(N) (unitary transformations on N -dimensional vectors).

Here we will be working on the last one only.

3.3 Supersymmetric Wilson loops

In this section we introduce the main objects of study for the following chapter. We want

to generalize the construction of Wilson loops to theories containing more spacetime

symmetries, as supersymmetries and conformal symmetries.

They are going to depend on the closed path chosen, as before. In fact, choosing

paths now will be of crucial importance, because particular paths are going to preserve

desired spacetime symmetries. This is important in view of the AdS/CFT correspondence

mentioned at the end of the first chapter: some SCFTs are dual to some gravity theories

and, therefore, matching quantities between both theories allows then check the validity

of such correspondence principle.

In particular, it is known that 1/2 BPS operators, that is, operators preserving half

of the supersymmetries (and superconformal symmetries), play a central role in this way.

The study of 1/2 BPS Wilson loops can be viewed then as an aspect of that duality.

We are going to work over two SCFTs, those cited in the first chapter: N = 4 SYM

in four dimensions and N = 6 ABJM in three dimensions. Basically, by taking an ansatz

we check its validity finding preserved supersymmetries.

Starting with N = 4 SYM, the well established ( [65]) WL is defined by:

W
N=4SYM

(C,n) =
1

N
Tr

(
P
{

exp

[∮
C

ds(iẋµAµ + |ẋ|nIΦI)

]})
, (146)

where nI is a six-dimensional unitary vector controlling the coupling with the scalar fields

and the trace is taken with respect to the fundamental representation of the gauge group.

The WL is characterized by the contour C = {xµ(s)|s ∈ (0, 2π)} and is clearly gauge

invariant, once it is just the non-abelian WL (145) with an extra term whose trace is
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gauge invariant:

ΦI → UΦIU
† .

The 1/2 BPS WL’s come from varying the above expression with respect to the su-

persymmetries transformations (88). One has:

δξW =
1

N
Tr

(
P
{∮

C

dsξ̄
(
ẋµγµ − i|ẋ|γ5nIΓI

)
Ψ exp

[∮
C

ds(iẋµAµ + |ẋ|nIΦI)

]})
,

where γ5 = iγ0γ1γ2γ3 is the fifth Dirac matrix in four dimensions and ΓI ’s are six-

dimensional Dirac matrices. In order to be invariant we must then have:

ξ̄
(
ẋµγµ − i|ẋ|γ5nIΓI

)
Ψ = 0 .

This equation can also be written in terms of the projectors

P± = 1± i ẋ
µ

|ẋ|
γµγ

5nIΓI ,

giving:

ξ̄P−ẋµγµΨ = 0 .

A particular solution for this equation is found by taking the infinite straight line as

path, that is, xµ = (s, 0, 0, 0) for example. In this case the parameter ξ must be a constant

spinor orthogonal to P−γ0Ψ, for any Ψ, that is, we must use parameters orthogonal to

half the projections of such spinor. In other words, ξ need to be a 10d spinor with half

of the degrees of freedom only, therefore preserving half of the Poincarè supercharges. A

similar procedure shows that we are going to have also half of the superconformal charges

preserved, resulting then in a 1/2 BPS operator.

For simplicity, usually it is fixed nI = (1, 0, 0, 0, 0, 0). This definition then gives our

desired object, the 1/2 BPS infinite straight Wilson Line:

W1/2
N=4SYM

=
1

N
Tr

(
P
{

exp

[∫ ∞
−∞

ds(iA0(s) + Φ1(s))

]})
. (147)

More recently, we had the discover of 1/2 BPS Wilson loops in ABJM too. The initial

efforts in this way considered only bosonic fields appearing in the connection defining the

operator, resulting in at most 1/6 BPS operators (see for example [66]), but the successful

approach was given in [67], in which Drukker and Trancanelli introduced a supermatrix

model for the connection of a Wilson loop, that is, a super-connection. A supermatrix M
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consists in a matrix with well defined entries:

M =

[
A Θ

η B

]
,

where A and B are Grassmann even and Θ and η are Grassmann odd. A simple practical

way of having a matrix respecting those conditions is by putting bosonic quantities in

the diagonal and fermionic quantities in the off-diagonal. Two very important properties

arise:
STrM = TrA− TrB

TrM = TrA+ TrB
, (148)

where was defined the trace and the supertrace, STr, of a supermatrix, Tr is just the

ordinary trace with respect to some representation of the objects.

In that paper, the authors proposed embed the natural U(N)×U(N) gauge connection

into a supergroup U(N |N)27, therefore augmenting the previous connection to (as in [24]):

L ≡

Aµẋµ − 2πi
k
M I

JCIC̄
J −i

√
2π
k
|ẋ|ηαI ψ̄Iα√

2π
k
|ẋ|ψαI η̄Iα Âµẋ

µ − 2πi
k
M̂ I

J C̄
JCI

 , (149)

where M I
J , M̂ I

J and ηαI are free parameters and xµ parameterizes the curve supporting the

loop.

The ansatz for the Wilson loop then will be defined with the help of another super-

matrix T , responsible for closing the loop after a supersymmetry transformation. The

presence of such quantity is necessary because contours now must satisfy a weaker condi-

tion for the super-connection under a supersymmetry transformation, namely:

δsusyL = DτG = ∂τG + i[L,G] ,

where G is a supermatrix of U(N |N) with some periodicity τ0 and the super-covariant

derivative D is taken with respect to the argument τ parameterizing the curve xµ(τ), in

contrast to δsusyL = 0. That requeriment is in order to not have only trivial solutions,

see [68] for more details. The equation defining T then is:

T G(τ0) = G(0)T . (150)

The point is that if its possible to find G such that the condition above for the vari-

ation of the super-connection is obeyed and in accordance with (91), thus we have a

solution, that is, a Wilson loop that is not only gauge invariant (by construction), but

27Actually that work is more general, dealing with ABJ theories, for which we have different gauge
groups U(N)× U(M);
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also supersymmetric.

We do not show the derivation, just present the well known choice of parameters that

gives the 1/2 BPS infinite straight Wilson Line version for ABJM. Taking the parameter-

ization xµ = (s, 0, 0) for the line, the particular choice of MJ
I , M̂J

I and ηαI that results in

that operator is (from [24]):

MJ
I = M̂J

I =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , ηαI =


1

0

0

0


I

[
1 0

]α
, η̄Iα =

[
1 0 0 0

]I [1

0

]
α

. (151)

The super-connection for it then reads:

L1/2
ABJM

=

A1 − 2πi
k
M I

JCIC̄
J −i

√
2π
k
ψ̄1

1√
2π
k
ψ1

1 Â1 − 2πi
k
M̂ I

J C̄
JCI

 . (152)

Finally, the infinite straight Wilson Line in this case will be given by inserting this ex-

pression into the exponent, as always. A subtlety, nevertheless, arises now: the condition

for invariance of it under supersymmetric transformations depend on the periodicity of

the curve; basically, we can have G(τ0) = −G(0) or G(τ0) = G(0) in (150) and, depending

on these conditions, the appropriate requirement for building the operator can be taking

the trace or the supertrace. For the case in question, as can be checked in the original

paper [67], we must have the trace, and therefore:

W1/2
ABJM

=
1

2N
Tr

P
exp

−i ∫ ∞
∞

ds

A1 − 2πi
k
M I

JCIC̄
J −i

√
2π
k
ψ̄1

1√
2π
k
ψ1

1 Â1 − 2πi
k
M̂ I

J C̄
JCI


 ,

(153)

where the dependence on s is on the fields.

3.4 ’t Hooft Limit

Along this chapter it has been repeated the importance of knowing as many Wilson loops

in a theory as possible. Computing their vacuum expectation values (VEV) is not an easy

job in general, unfortunately. However, within a specific limit, the so called t’Hooft limit,

it is possible to find them perturbatively.

This tool was introduced by Gerard t’Hooft in [69] to simplify non-abelian gauge

theories with large N (the gauge group label). Roughly speaking, he proposed to consider

the theory in the limit N → ∞ keeping λ ≡ g2
YMN , the t’Hooft parameter, fixed, where

gYM is the coupling constant of the Yang-Mills theory. In this situation feynman diagrams
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simplify a lot, that is, only some of them survives28.

Not only there is such simplification, but also it was shown that, by rearranging the

remanscent diagrams, the theory would correspond to a string theory (in its proper limit

to). This was the first step in what culminates in the establishment of AdS/CFT corre-

spondence. Moreover, this was extended to superconformal field theories by Maldacena

in his seminal paper : [6], which embasis the dualities mentioned here. In the case of

N = 4 SYM the connection is more evident through (86), but in ABJM we need some

more words.

Firstly, as pointed out in the first chapter, both theories (ABJM and its dual) depend

on only two parameters: the Chern-Simons level k and also N . Secondly, in ABJM, the

first of these works as a coupling constant and fields can be rescaled such that interactions

are supressed by powers of 1/k, which for large k means weak coupling. So, the t’Hooft

limit in this case is then taken in the following way:

k,N →∞ , λ ≡ N

k
= const. , (154)

with λ the t’Hooft parameter. On the gravity side, the string coupling constant is given

by:

gs ∼
(
N

k5

)1/4

.

Moreover, in this limit the couplings appearing in the interaction term of the ABJM

action (90) reads: λ4 ∼ 1/k, λ′4 ∼ 1/k, λ′′4 ∼ 1/k and λ6 ∼ 1/k2; see [44].

In the t’Hooft limit then, both theories are weakly coupled. In fact, see for example

[11], in the planar limit N = 6 ABJM is dual to a string theory in AdS4 × CP 3, a type

IIA superstring to be more specific. The lesson here is thus that under such limit, the

general duality between ABJM and the M-theory mentioned before specializes.

Finally, it remains to see how the computation of VEV of Wilson loops is possible

within the limit. The idea actually is simple. Remembering that path ordering organizes

the integrals appearing in the expansion of the exponential defining the WL, taking ex-

pectation values of the Wilson loops itself resumes to sum up integrals of expectation

values of each of the integrands we have along the expansion, that is:

〈W〉 =
TrR

dim(R)

(
I +

∫
C

dτ1〈L(τ1)〉+
1

2!

∫
C

dτ1dτ2〈L(τ1)L(τ2)〉+ ...

)
,

and so on, where I stands for the identity matrix in the representation R, while dim(R)

is the relative dimension of it. We chose a generic Wilson loop W with connection L,

which can be a super-connection.

28The surviving diagrams have the common particularity of being able to be drawn on a plane without
crossing legs, in the language of the area, for this reason called planar diagrams, which is also the reason
of such limit be sometimes called Planar limit;
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So, computing VEV of Wilson loops involves VEV of connection insertions, which in

turn means expectation values of fields in the theory, as gauges, bosons and fermions.

Therefore, by making use of feynman rules one can compute the desired quantity. More-

over, those rules will depend on the parameters of the theory, such that their expecation

values in the limit above can also be expressed in terms of powers of the t’Hooft parameter

λ. Assuming it is small, all we have to do then is consider diagrams contributing to the

calculation up to the order required, which can be easily seen from the rules; order λ

results are referred to as 1-loop calculation, λ2 as 2-loop calculation and so on.

On the other hand, as one should be wondering, it should be possible also having

information about correlation functions of the theory by knowing the VEV of Wilson

loops. In fact, both point of views are the topic of the final chapter in this work, in which

such relation is well explained in the context of theories with defects.
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4 Wilson loop Defect CFT

We saw then that operators over lines preserve the conformal group in d = 1, namely

PSL(2,R). At this point it should be clear that straight Wilson Lines are operators like

those, after all there is exactly an infinite line supporting its definition. Since along the

line the conformal symmetry holds, operators inserted on it and measured in the presence

of the WL are expected to give rise to a CFT.

This chapter is devoted to the exploration of such emergent CFTs. In one hand we

have Wilson loops, whose determination is of great importance, on the other hand we

have a CFT, whose data carries very significance also. It would be fantastic then if we

could join both of them. In fact, this link is done by the Ward identity we saw in the end

of section 2.

4.1 Defect Correlators and Deformed Wilson loops

The displacement operator was introduced previously by means of the Ward Identity:

∂µTµν(x) = δd−1(x⊥)Dν(x‖) , (155)

valid within any correlation function.

The approach to relate it to Wilson loops is to consider Deformed Wilson loops, that

is, WL supported on curves slightly deviated from known ones. Generically, we can write

a deformed WLW [C] defined over a curve C given by xµ(s)+δxµ(s), with s the parameter

and δxµ(s) the profile of the small deformation introduced, as below:

W [C] =W [C0] +
∞∑
n=1

1

n!
δnW [C0] , (156)

where C0 indicates the undeformed loop and we wrote a functional Taylor expansion for

W [C].

Now, remembers from (14) that charges acting on a given operator is equivalent to the

variation on such operator due to them. Consider then (155) with the insertion of W [C0]

integrated over the whole volume with currents projected onto the deformation δxµ:∫
ddx〈∂µTµν(x)δxνW [C0]〉 =

∫
ddx〈δd−1(x⊥)Dν(x‖)W [C0]δxν〉 .

The right-hand side of this equation is easily computed due to the delta function, giving:∫
ddx〈∂µTµν(x)δxνW [C0]〉 =

∫
dx‖〈Dν(x‖)W [C0]δxν(x‖)〉 .
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The left-hand side, noticing that δxν = 0 for the parallel coordinate, conventionally taken

to be the time direction for minkowskian spacetimes and x1 for euclidian spaces, gives

the expectation value of charges projected along the deformation acting on W [C0], which

means the first order variation of W [C0] along it. We have then:

〈δW [C0]〉 =

∫
dx‖〈Dν(x‖)W [C0]〉δxν(x‖) . (157)

Notice also that the procedure also applies to any insertion X (not localized at x)

besides W [C0]. So the equation above holds more generically as:

〈XδW [C0]〉 =

∫
dx‖〈XDν(x‖)W [C0]〉δxν(x‖) . (158)

Repeating the procedure now inserting δW [C0] instead of W [C0], it follows that:

〈δ2W [C0]〉 =

∫
dx‖〈Dµ(x‖)δW [C0]〉δxµ(x‖) ,

so using the previous result we get:

〈δ2W [C0]〉 =

∫
dx‖dx

′
‖〈Dµ(x‖)Dν(x

′
‖)W [C0]〉δxµ(x‖)δx

ν(x′‖) ,

and so on for any term on (156).

The expectation value of W [C] can then be written as:

〈W [C]〉 = 〈W [C0]〉+
∞∑
n=1

1

n!

∫
dx

(1)
‖ ...dx

(n)
‖ 〈Dµ1(x

(1)
‖ )...Dµn(x

(n)
‖ )W [C0]〉δxµ1 ...δxµn .

Dividing this expression by 〈W [C0]〉 and adopting the shorthand notation:

1

n!

∫
dx

(1)
‖ ...dx

(n)
‖ ≡

∫
dx

(1)
‖ > dx

(2)
‖ > ... > dx

(n)
‖ ,

we can also write:

〈δ logW〉 =
∞∑
n=1

∫
dx

(1)
‖ > dx

(2)
‖ > ... > dx

(n)
‖ 〈〈Dµ1(x

(1)
‖ )...Dµn(x

(n)
‖ )〉〉δxµ1 ...δxµn ,

where, in accordance with (110), the double notation stands for correlation functions in

the presence of the defect W [C0].

But we are considering conformal defects only, so correlation functions in the presence

of it obey the usual constrictions, in particular one-point functions vanish, so the sum
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above should start from 2 and therefore:

〈δ logW〉 =
∞∑
n=2

∫
dx

(1)
‖ > dx

(2)
‖ > ... > dx

(n)
‖ 〈〈Dµ1(x

(1)
‖ )...Dµn(x

(n)
‖ )〉〉δxµ1 ...δxµn .

(159)

The displacement operator then is responsible to displace the Wilson loop out of its

defining direction, justifying the name. Its explicit form then is not unique, and each one

deforms a given Wilson loop. The point is that, once the WL is given, the explicit form

of the displacement can be obtained from the steps above through:

Dµ(s) =
δ logW [C0]

δxµ
(s) ∝ δL(x)

δxµ(s)
, (160)

where L(x) stands for the connection or super-connection in the definition of W [C0].

The previous equation then connects correlators on the defect with variations of the

deformed Wilson loop. Thus once one knows some information at some level about one

side, one also knows at the same level informations about the other side; more specifically,

the t’Hooft parameter will be the level we are referring to here and the connected infor-

mations will be structure constants of two and three-points functions on the defects and

VEV of Deformed Wilson loops. The two last sections work on both of these implications

by making use of the Wilson loops constructed previously.

4.2 Structure Constants from Wavy Line in N = 4 SYM

This section is reserved to the review of some of the calculations found in [23], the paper

which motivated this writing. By considering known expressions for a wavy wilson line in

N = 4 SYM at order λ and λ2, the authors found structure constants for two and three

insertions of displacement operators onto the Straight Wilson Line (147).

Before going into the computations, we start adapting the discussion above to this

case. The Straight Wilson line is described by xµ(s) = (s, 0, 0, 0), so that x‖ = x0 = s;

coordinates perpendicular to it will be indexed by i. We will have then:

δxµ(s) =
(
0, εi(s)

)
,

with i = 1, 2, 3, ε = |ε| � 1 serves as our expansion parameter, and it is also made

the assumption
dnε(s)

dsn
∼ ε(s), that is, higher order variations of the parameter should be

considered in the computations as well.

Moreover, the displacement operator can be obtained directly from (146) and (147)

according to the last section:

Fi(s) = iFi0 +DiΦ1(s) , (161)
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where the stress-tensor above appears from manipulations of the variation of the gauge

field term in the connection. Notice also that the displacement can not be written as the

derivative of a field, so it is a conformal primary.

Equation (159) then tells us that to second order variations of the curve, the expecta-

tion value of the wavy line reads:

〈δ logW〉 =

∫
ds1 > ds2〈〈Fi0(s1)Fj0(s2)〉〉εi(s1)εj(s2) +O(ε3) .

This expression simplifies a little bit more using the fact that the VEV of the Straight

Wilson Line is equal to 1, according to [70], so:

〈δW〉 =

∫
ds1 > ds2〈〈Fi0(s1)Fj0(s2)〉〉εi(s1)εj(s2) +O(ε3) .

The correlation function appearing in the integrand has fixed form due to conformal

symmetry. Its form can be obtained using the formalism developed in the second chapter,

but can also be guessed from the index structure to be:

〈〈Fi0(s1)Fj0(s2)〉〉 =
aF(λ)δij

(s1 − s2)2∆F
, (162)

where the dependence of aF on the t’Hooft parameter λ was made clear and ∆F is the

scaling dimension of the displacement.

Clearly then, the structure constant appearing above can be read off once known the

left-hand side of the previous relation. It is needed then the expression of δW for the

wavy line to ε2 order. As given in [23], we have at 1-loop:

〈W〉(1-loop) = − λ

16π2

∫
ds1ds2

ẋ1 · ẋ2 + |ẋ1||ẋ2|
x2

12

, (163)

where xi, i = 1, 2, stands for x(si), and xij = xi − xj. The two integrals indicate that

at 1-loop the VEV of the wavy line is sensible exactly to two insertions of displacements

only; to match the desired constant with the expression above we will have to massage

the integral.

The wavy line is parameterized by xµ = (s, εi(s)). Inserting this into the expression

above, we get:

〈W〉(1-loop) = − λ

32π2

∫
ds1ds2

(ε̇(s1)− ε̇(s2))2

(s1 − s2)2 +O(ε3) .
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Opening the integrand, we will have three contributing terms:

〈W〉(1-loop) = − λ

32π2

[ ∫
ds1ds2

ε̇2(s1)

(s1 − s2)2 +

∫
ds1ds2

ε̇2(s2)

(s1 − s2)2

− 2

∫
ds1ds2

ε̇i(s1)ε̇i(s2)

(s1 − s2)2

] .

Their contributions will be found once a regularization procedure is followed in order to

computed the integrals, that is because separatedly they diverge. A cutoff µ is introduced

in order to keep the range of integration controlled by s1 − µ > s2, however, this brings

up terms not relevant here, that is, regularizationn dependent terms with no physical

meaning. Hopefully, such terms appear in single integrals only, which can be neglected

since we want those terms with double integrals. Moreover, the λ0 order contribution

to the expectation value of the wavy line is carried with those terms, after all is just a

normalization taken to be equal to 1.

So, the first and second terms in the equation above clearly do not give relevant

contributions, because they can be easily integrated in s2 and s1 (exchange s1 ↔ s2 to

see), respectively. The third term can be integrated by parts twice, giving:∫
ds1ds2

ε̇i(s1)ε̇i(s2)

(s1 − s2)2 = −2

∫ ∞
−∞

ds1ε̇
i(s1)

∫ s1−µ

∞
ds2

εi(s2)

(s1 − s2)3 + (single integral term)

= −6

∫ ∞
−∞

ds1

∫ s1−µ

−∞
ds2

εi(s1)εi(s2)

(s1 − s2)4 + (single integral terms)

,

where to write the second line we used the Leibniz’s rule for derivation under the integral

sign.

The variation of the wavy line at λ order then reads:

〈δW〉(1-loop) = − 3λ

4π2

∫
ds1 > ds2

εi(s1)εj(s2)δij

(s1 − s2)4 , (164)

from which we see that, at order λ we also have:

aF(λ) = − 3λ

4π2
, ∆F = 2 , (165)

which, as mentioned in [23], is in accordance with the literature, see for example results of

[71]. As a imediate check, however, notice that the scaling dimnension of the displacement

is the same of the stress-tensor, which in turn is equal to the mass dimension of the gauge

fields minus one; from the action we see gauge fields have classical scaling dimension 1

and, therefore, (classical) ∆F = 2.

The same procedure could be done using higher orders in λ for the VEV of the wavy

line, and this is done in [23] to λ2 actually. Similar calculations are going to appear, the
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regularization scheme will require more detail and more cutoffs, possibly new difficulties

arise, but the script is the same as above.

On the other hand, one could also try a different path and go onto higher order

variations of W , that is, consider terms with ε3 and so on. This now instead of giving

information about the correlation function of two displacement insertions, would give in-

formation about the structure constant of the three-point function of displacements, also

fixed by conformal symmetry. Notice, however, that such operators are composed by

bosonic fields only, so that they commmute between themselves; the three-point function

would then have three indices totally symmetric. The contribution given by such quantity

to the third variation of the wavy line would then be found once such indices were con-

tracted with a tensor, which turns out to be the totally antisymmetric Levi-Civita tensor,

the only one at our disposition, resulting, therefore, in zero.

4.3 Deformed WL from Fixed Defect Correlators in ABJM

Conversely to the procedure above, as shown previously, the computation of deformed

Wilson loops from defect correlators is also a imminent consequence of the relation (159).

Working on this side of the relation then encloses our topic and, therefore, this last section

is dedicated to it.

Nonetheless, we choose a different background now, the N = 6 ABJM superconformal

field theory. In this case, as we saw before, the 1/2 BPS Straight Wilson Line is given

by (153). We must look then to correlation functions of insertions of displacements into

this line. To compute such correlators, we go to their definition, given by (110), which

adapted to this case reads:

〈〈Dm1(s1)...Dmi
(si)〉〉 =

1
2N
〈Tr P{Dm1(s1)...Dmi

(si)W1/2
ABJM
}〉

〈W1/2
ABJM〉

, (166)

where we introduced the necessary normalization factor 1/2N and P stands for path-

ordering, so that the numerator on the right-hand side is to be understood as:

〈 1

2N
Tr P{Dm1(s1)...Dmi

(si)W1/2
ABJM
}〉 =

1

2N
〈Tr W(∞, s1)Dm1(s1)W(s1, s2)...

×W(si−1, si)Dmi
(si)W(si,−∞)〉

, (167)

for s1 > s2 > ... > si, supposedly. Note that in the expression above it was used a new

definition, the partial wilson line in ABJM:

W(s1, s2) = P{exp

(
−i
∫ s2

s1

dτ L1/2
ABJM

(τ)

)
} .

The explicit form of the displacement operator in this case can be derived using again
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the relation (160) in the expression above. Splitting the super-connection as:

L1/2
ABJM

= A+ LB + LF , (168)

with:

A =

[
A1 0

0 Â1

]
, LB =

2πi

k

[
CC̄ 0

0 C̄C

]
, LF =

√
2π

k

[
0 −iψ̄+

ψ+ 0

]
, (169)

we have:

Dm = Fm1 +Dm (LB + LF ) , (170)

where:

DmO = ∂mO+i [Am,O] , Fm1 = ∂mA1−∂1Am+i [Am,A1] , Aµ =

[
Aµ 0

0 Âµ

]
, (171)

and remember: m = 2, 3, the straight line is along x1, the space is euclidian. Moreover,

in the definition of LF above we already set the Dirac matrices to be γµ = (σ3, σ2,−σ1),

σ’s the Pauli matrices, so that ψ1
1 in (152) stands for the positive eigenstate of γ1, namely

ψ+.

Equation (167) tells us that displacements are linked to partial wilson lines. To com-

pute correlators as in (166) we will have then to expand those partial lines up to the

necessary order, resulting in VEV values of the trace of terms coming from the product

between localized displacements and super-connections dropped together with integrals

when expanding the exponentials. Moreover, the VEV of the 1/2 BPS WL is taken to be

equal to 1 (see [43]).

For example, let us see the defect 2-point function of displacements:

〈〈Dm(s1)Dn(s2)〉〉 =
1

2N
〈Tr P W(∞, s1)Dm(s1)W(s1, s2)Dn(s2)W(s2,−∞)〉 , (172)

where s1 > s2 supposedly.

We stop the expansion of the partial lines at the term for which the resulting diagrams

will be of the the desired order in power of the t’Hooft parameter (154). In order to get

such correlator with structure constant at first order in λ, for example, we consider partial

lines only as:

W(s1, s2) ' 1− i
∫ s1

s2

dτL(τ) .
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Inserting this into the previous equation we get:

〈〈Dm(s1)Dn(s2)〉〉 ' 1

2N

〈
Tr

[(
1− i

∫ ∞
s1

dτL(τ)

)
Dm(s1)

(
1− i

∫ s1

s2

dτL(τ)

)
× Dn(s2)

(
1− i

∫ s2

−∞
dτL(τ)

)]〉 , (173)

which, keeping only terms with at most one integral, resumes to:

〈〈Dm(s1)Dn(s2)〉〉 ' 1

2N
〈Tr [Dm(s1)Dn(s2)]〉

− i

2N

(∫ ∞
s1

dτ〈Tr [L(τ)Dm(s1)Dn(s2)]〉

+

∫ s1

s2

dτ〈Tr [Dm(s1)L(τ)Dn(s2)]〉

+

∫ s2

−∞
dτ〈Tr [Dm(s1)Dn(s2)L(τ)]〉

)
. (174)

Basically then, we have two structures to study:

1) 〈Tr [Dm(s1)Dn(s2)]〉

2) 〈Tr [L(τ)Dm(s1)Dn(s2)]〉

the second of them is common to all terms between parenthesis.

In this study we will need then the feynman rules of the theory. Below we summarize

them, following [43]. Covariant derivatives act on the fields like:

DµCI = ∂µCI + iAµCI − iCIÂµ
DµC̄

I = ∂µC̄
I − iC̄IAµ + iÂµC̄

I

Dµψ̄
I = ∂µψ̄

I + iAµψ̄
I − iψ̄IÂµ

DµψI = ∂µψI − iψIAµ + iÂµψI

. (175)

Propagators at three-level reads:

〈Aaµ(x)Abν(y)〉(0) = δab
(

2πi

k

)
Γ
(

3
2
− ε
)

2π
3
2
−ε

εµνρ
(x− y)ρ

|x− y|3−2ε

〈Âaµ(x)Âbν(y)〉(0) = −δab
(

2πi

k

)
Γ
(

3
2
− ε
)

2π
3
2
−ε

εµνρ
(x− y)ρ

|x− y|3−2ε

〈(CI)ĵi (x)
(
C̄J
)l
k̂

(y)〉(0) = δJI δ
l
iδ
ĵ

k̂

Γ
(

1
2
− ε
)

4π
3
2
−ε

1

|x− y|1−2ε

〈(ψαI )j
î
(x)
(
ψ̄Jβ
)l̂
k

(y)〉(0) = −iδJI δ l̂îδ
j
k

Γ
(

3
2
− ε
)

2π
3
2
−ε

(γµ)αβ (x− y)µ
|x− y|3−2ε

, (176)

where we have them already regularized by means of ε.
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And the interaction vertices are:

gauge cubic → −i k
12π

εµνρ
∫
d3xfabcAaµA

b
νA

c
ρ

gauge-fermion cubic → −
∫
d3xTr

[
ψ̄IγµψIAµ − ψ̄IγµÂµψI

] . (177)

Moreover, our colour conventions are:

Tr(T aT b) = δab , Tr(T̂ âT̂ b̂) = δâb̂

N2∑
a=1

(T a)ij(T
a)kl = δilδjk ,

N2∑
â=1

(T̂ â)ij(T̂
â)kl = δilδjk

fabcfabc = 2N3 , f âb̂ĉf âb̂ĉ = 2N3

, (178)

which need extra conventions for generators of bifundamental fields like fermions and

scalars:

T aâ =
i√
2
T a × T â , (179)

where we have a cartesian product, and the presence of i on the right-hand side is due

to the fact that the generators T a and T â are hermitian, in this way we have consistency

with non-real matter fields.

To work on that two structures, we explicit the product between two displacements,

we have:

DmDn = Fm1Fn1 + Fm1DnLB +DmLBFn1 +DmLBDnLB +DmLFDnLF →≡ Xmn

+ Fm1DnLF +DmLFFn1 +DmBFDnLF +DmLFDnLB →≡ Ymn
,

(180)

that is, the first line was defined as Xmn while the second line as Ymn. Note, Xmn

contains terms having nonvanishing components only in the diagonal, while Ymn contains

off diagonal non-vanishing terms only.

Count the associated power in λ for each diagram is equivalent to count powers of 1/k

factors in front of them. In order to do this then we make some important comments,

valid generically:

- Gauge propagators contribute with 1/k factors;

- Scalar and fermion propagators contribute with k0;

- Whenever a gauge-cubic vertex is necessary, if we do not want an internal divergent

bubble, we need three gauge propagators, one for each gauge in the vertex, which,

together with the factor of k in front of it, gives a contribution of 1/k2 for such

vertex;

- Gauge-fermion cubic vertex contributes with a factor of 1/k for the same reason;
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- Gauge-scalar vertices will contribute with 1/k or 1/k2;

- Scalar-fermion interaction terms have couplings dependent inversely on k, see [44];

- LB carries a 1/k factor and LF carries a 1/
√
k factor.

Starting with the diagrams contributing from 1), we have:

〈Tr [Dm(s1)Dn(s2)]〉 = 〈Tr Xmn(s1, s2)〉

= 〈Tr Fm1Fn1〉+ 〈Tr Fm1DnLB〉+ 〈Tr DmLBFn1〉

+ 〈Tr DmLBDnLB〉+ 〈Tr DmLFDnLF 〉

.

We see that only the first and the last of these terms can give 1/k contributions; the second

and third have at least one gauge and a factor of 1/k from LB, therefore starting from

1/k2, while the fourth has a factor 1/k2 coming from the LB’s. The relevant expectation

values and associated diagrams are thus:

i 〈Tr (∂mA1 − ∂1Am) (∂nA1 − ∂1An)〉 , 1/k contribution;

ii 〈Tr
(
∂mÂ1 − ∂1Âm

)(
∂nÂ1 − ∂1Ân

)
〉 , 1/k contribution;

iii 〈Tr ∂mψ+∂nψ̄
+〉 , k0 contribution, but there is an overall 1/k factor from LF ’s;

iv 〈Tr ∂mψ̄
+∂nψ+〉 , k0 contribution, but there is an overall 1/k factor from LF ’s.

� �

s1 s2
� �

s1 s2

the left one refering to i and ii and the right one to iii and iv. Just propagators.

Now the contributions from 2). This case is a little bit more complicated because

involves products of three matrices. However we can use the previous result (180) together

with (169) to keep directly nonvanishing terms from the trace procedure:

〈Tr [L(τ)Dm(s1)Dn(s2)]〉 = 〈Tr A(τ)×Xmn(s1, s2)〉

+ 〈Tr LB(τ)×Xmn(s1, s2)〉

+ 〈Tr LF (τ)× Ymn(s1, s2)〉

, (181)

notice, however, that we already have a 1/k factor coming from LB in the second term

and also a 1/
√
k factor from LF in the third term above. Counting relevant diagrams

then will be simpler than it seems. Focusing on the first of these terms, expliciting it we

have:

〈Tr A(τ)×Xmn(s1, s2)〉 = 〈Tr A(τ)Fm1Fn1〉+ 〈Tr A(τ)Fm1DnLB〉

+ 〈Tr A(τ)DmLBFn1〉+ 〈Tr A(τ)DmLBDnLB〉

+ 〈Tr A(τ)DmLFDnLF 〉

. (182)
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All of them has at least one gauge field, for this reason at least a 1/k contribution.

The ones containing LB’s and/or LF ’s get another factor from the definitions of those

quantities, so they can be dispensed. The first of the terms appearing above has at least

three gauge fields within it, making impossible to construct diagrams proportional to 1/k

without considering bubbles. Therefore the overall contribution to λ1 is zero.

The second term in (181) has the same problems. The contribution coming from the

double F ’s term in Xmn despites of having one less gauge-field, has an extra 1/k from

LB which makes everything proportional to 1/k2. Finally the last term in (181). Let us

explicit it:

〈Tr LF (τ)× Ymn(s1, s2)〉 = 〈Tr LF (τ)Fm1DnLF 〉+ 〈Tr LF (τ)DmLFFn1〉

+ 〈Tr LF (τ)DmLBDnLF 〉+ 〈Tr LF (τ)DmLFDnLB〉
. (183)

Clearly the last two of them does not give λ1 contributions. The ones on the first line at

leading order will be the result of considering gauge-fermion interaction, giving 1/k from

1 propagator and 1/k from the two LF , therefore a 1/k2 contribution.

So, in the case of two insertions of displacement operators in the line, only the prop-

agators drawn before will contribute to λ1. Considering more terms on wilson loops

expansions in (174) will give more LB’s and LF ’s, raising the order of the result. Com-

puting the expectation values of i and ii will not be necessary, actually, because they

differ by a minus sign and the trace of the supermatrix makes them sum up to zero. The

relevant quantities here will be then iii and iv, we have:

〈Tr DmLFDnLF 〉 = −2πi

k

〈
Tr

[
∂mψ̄+∂nψ

+ 0

0 ∂mψ
+∂nψ̄+

]〉
= −2πi

k

(
〈Tr ∂mψ̄+∂nψ

+〉+ 〈Tr ∂mψ
+∂nψ̄+〉

)
= −4πi

k
〈Tr ∂mψ

+∂nψ̄+〉

,

where to write the last line we used the fact that fermions anticommute and that ex-

changing arguments of ψ and ψ̄ also gives a minus sign.

Using (176) and (178), we can write:

〈Tr DmLFDnLF 〉 = −4πi

k

−1

2
Tr(T aT b × T âT b̂) ∂2

∂xm∂yn
〈(ψ+)

a

â(x)(ψ̄+)
b̂

b(y)〉
∣∣∣∣
points

=
2πi

k
Tr(T aT b × T âT b̂) ∂2

∂xm∂yn
〈(ψ+)

a

â(x)(ψ̄+)
b̂

b(y)〉
∣∣∣∣
points

=
2πi

k
Tr(T aT b × T âT b̂)

(
−iδabδâb̂

Γ(3/2− ε)
2π3/2−ε

)
∂2

∂xm∂yn
(x− y)1

|x− y|3−2ε

∣∣∣∣
points

, where “points” stands for x = (s1, 0, 0) and y = (s2, 0, 0).
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Summing up traces and calculating the derivatives, noticing that δaa = δââ = N2, we

get:

〈Tr DmLFDnLF 〉 = 3
N2

k
δmn

1

(s1 − s2)4
,

and, therefore, now returning to (172):

〈〈Dm(s1)Dn(s2)〉〉 = δmn

3
2
λ

(s1 − s2)4
+O(λ2) , (184)

that is, the structure constant of two-point function of displacements at first order in λ

is equal to 3
2
λ.

In order to compare this result with the Wilson loop side of the relation (159), instead

of integrating it we use a more clever approach: the second variation of a deformed Wilson

loop is well known in those theories and is proportional to a quantity that goes by the name

of Bremstrahlung function, see [45] for more details. In consequence of this, such function

for a derformed wilson line is directly related to the correlator between two displacements

inserted on the line. More precisely, we have the universal relation (see [24]):

CD = 12B
1/2
ABJM(λ) , (185)

where CD is the structure constant in question and B
1/2
ABJM(λ) the Bremstrahlung function.

As found in equation 6.19 of [45] for example, up to λ5 we have:

B
1/2
ABJM(λ) =

λ

8
− π2λ3

48
+O(λ5) , (186)

which comproves the result (184).

A little new contribution in this way we give with this work is to use the same reasoning

above to compute also the structure constant of three insertions of displacements in the

1/2 BPS Infinite Straight Wilson Line and study its consequence to the evaluation of

third order variations of deformed lines. The quantity we are interested in now is:

〈Dm(s1)Dn(s2)Dp(s3)〉W = 〈Tr P W(∞, s1)Dm(s1)W(s1, s2)

× Dn(s2)W(s2, s3)Dp(s3)W(s3,−∞)〉
, (187)

where s1 > s2 > s3 supposedly.
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Expanding the W ’s and keeping only terms with one integral at most we get:

〈Dm(s1)Dn(s2)Dp(s3)〉W ' 〈Tr Dm(s1)Dn(s2)Dp(s3)〉

− i
[ ∫ ∞

s1

dτ〈Tr L(τ)Dm(s1)Dn(s2)Dp(s3)〉

+

∫ s1

s2

dτ〈Tr Dm(s1)L(τ)Dn(s2)Dp(s3)〉

+

∫ s2

s3

dτ〈Tr Dm(s1)Dn(s2)L(τ)Dp(s3)〉

+

∫ s3

−∞
dτ〈Tr Dm(s1)Dn(s2)Dp(s3)L(τ)〉

]
.

And again we have two important structures to study only:

1’) 〈Tr [Dm(s1)Dn(s2)Dp(s3)]〉;

2’) 〈Tr [L(τ)Dm(s1)Dn(s2)Dp(s3)]〉,

which we explore below at different orders.

4.3.1 Three-point of displacements to λ

Using the notation from two-insertions calculation, 1’) above can be splitted onto three

parts:

〈Tr [Dm(s1)Dn(s2)Dp(s3)]〉 = 〈Tr Fm1(s1)Xnp(s2, s3)〉+ 〈Tr DmLB(s1)Xnp(s2, s3)〉

+ 〈Tr DmLF (s1)Ynp(s2, s3)〉
.

(188)

Let us treat each one separatedly. The first opens to:

〈Tr Fm1(s1)Xnp(s2, s3)〉 = 〈Tr Fm1Fn1Fp1〉+ 〈Tr Fm1Fn1DpLB〉

+ 〈Tr Fm1DnLBFp1〉+ 〈Tr Fm1DnLBDpLB〉

+ 〈Tr Fm1DnLFDpLF 〉

. (189)

The first term gives no contribution at order 1/k because involves at least two gauge

propagators. The second and third ones do not contribute also because involve at least

one gauge propagator and a 1/k from LB. The fourth is also irrelevant because of two

1/k factors from LB’s. The last one involves at least one gauge propagator and a 1/k

from the two LF ’s, therefore not contributing too.

The second term in (188) is similar to the previous one, except for the overall 1/k

factor from LB, making leading order be 1/k2.
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The last term in (188) is a litte bit different:

〈Tr DmLF (s1)Ynp(s2, s3) = 〈Tr DmLFFn1DpLF 〉+ 〈Tr DmLFDnLFFp1〉

+ 〈Tr DmLFDnLBDpLF 〉+ 〈Tr DmLFDnLFDpLB〉
, (190)

but again gives no relevant contribution: the last two have 1/k2 factors coming from the

LB’s and LF ’s; the first two, in spite of having only one 1/k factor coming from the LF ’s,

still have at least one gauge propagator, and therefore 1/k2 net result.

Contributions from 2’) are more interesting, but as one could expect due to the pres-

ence of more fields inside the expectation values, will not give relevant diagrams at first

order in λ. We choose to see in detail here those terms though, for pedagogical reasons.

Before exploring them, however, we define useful quantities in order to keep calculations

organized; considering the product between three displacement operators and using (180),

we have:
DmDnDp = (Fm1 +DmLB +DmLF ) (Xnp + Ynp)

= (Fm1 +DmLB)Xnp +DmLFYnp →≡ Xmnp

+ (Fm1 +DmLB)Ynp +DmLFXnp →≡ Ymnp

, (191)

where again Xmnp contains non-vanishing components in the principal diagonal only, while

Ymnp in the secondary diagonal.

Taking into account the presence of the trace, the surviving terms contributing in 2’)

are then:

〈Tr [L(τ)Dm(s1)Dn(s2)Dp(s3)]〉 = 〈Tr A(τ)Xmnp(s1, s2, s3)〉 → a

+ 〈Tr LB(τ)Xmnp(s1, s2, s3)〉 → b

+ 〈Tr LF (τ)Ymnp(s1, s2, s3)〉 → c

. (192)

Expliciting a, we have:

〈Tr A(τ)Xmnp(s1, s2, s3)〉 = 〈Tr A(τ)Fm1Fn1Fp1〉+ 〈Tr A(τ)Fm1Fn1DpLB〉

+〈Tr A(τ)Fm1DnLBFp1〉+ 〈Tr A(τ)Fm1DnLBDpLB〉

+〈Tr A(τ)Fm1DnLFDpLF 〉+ 〈Tr A(τ)DmLBFn1Fp1〉

+〈Tr A(τ)DmLBFn1DpLB〉+ 〈Tr A(τ)DmLBDnLBFp1〉

〈Tr A(τ)DmLBDnLBDpLB〉+ 〈Tr A(τ)DmLBDnLFDpLF 〉

+〈Tr A(τ)DmLFFn1DpLF 〉+ 〈Tr A(τ)DmLFDnLFFp1〉

+〈Tr A(τ)DmLFDnLBDpLF 〉

+〈Tr A(τ)DmLFDnLFDpLB〉
(193)

from which we see we are not having first order contributions: the first red term contains

at least two gauge propagators, the second and third red terms have at least a gauge
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propagator and another factor of 1/k from LB, the fourth contains two factos of 1/k from

the two LB’s and the last red term has at least a gauge propagator and a 1/k factor

resulting from the LF ’s; the blue terms clearly do not contribute to first order because

they have at least one factor of 1/k from LB and one gauge propagator; similarly, green

terms do not contribute because of factors from at least two LF ’s besides at least one

gauge propagator.

The case b is similar to the one above changing A(τ) by LB everywhere. The starting

extra 1/k factor from LB in all terms makes every contribution be at least of second

order, because at least another gauge propagator would be needed, as it is clear from the

expression (193).

Expression c is a little bit diffrent:

〈Tr LF (τ)Ymnp(s1, s2, s3)〉 = 〈Tr LF (τ)Fm1Fn1DpLF 〉+ 〈Tr LF (τ)Fm1DnLFFp1〉

+〈Tr LF (τ)Fm1DnLBDpLF 〉+ 〈Tr LF (τ)Fm1DnLFDpLB〉

+〈Tr LF (τ)DmLBFn1DpLF 〉+ 〈Tr LF (τ)DmLBDnLFFp1〉

+〈Tr LF (τ)DmLBDnLBDpLF 〉

+〈Tr LF (τ)DmLBDnLFDpLB〉

〈Tr LF (τ)DmLFFn1Fp1〉+ 〈Tr LF (τ)DmLFFn1DpLB〉

+〈Tr LF (τ)DmLFDnLBFp1〉

+〈Tr LF (τ)DmLFDnLBDpLB〉

+〈Tr LF (τ)DmLFDnLFDpLF 〉
(194)

notice that the presence of two L’s and a gauge propagator, or more than two L’s, makes

the contribution for this term also start from 1/k2.

To λ, therefore, the structure constant fDDD of three displacements is equal to zero,

and we have to go beyond:

fDDD(λ) = 0 +O(λ2) . (195)

4.3.2 Three-point of displacements to λ2

We analyze again 1’) and 2’). The diagrams appearing in the first of them contributing

at order λ2 are synthesized in Figure 8, where operators coming from insertions or the

action are represented by bullets.

To see this, we just have to repeat the procedure in the previous section for (188); the

first term reads:

〈Tr Fm1(s1)Xnp(s2, s3)〉 = 〈Tr Fm1Fn1Fp1〉+ 〈Tr Fm1Fn1DpLB〉

+ 〈Tr Fm1DnLBFp1〉+ 〈Tr Fm1DnLBDpLB〉

+ 〈Tr Fm1DnLFDpLF 〉

, (196)
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� � �
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� � �

s1 s2 s3

IV

Figure 8: Resulting diagrams for none insertion from loop expansion.

resulting in four important diagrams, I and II in fig. 8 associated to the first term above

and III and IV in the same figure associated to the last term in there. Scalars appear

just as bubbles or higher order terms due to factors from LB’s or to the presence of more

than one gauge propagator from gauge-scalar interaction term.

The second stays:

〈Tr DmLB(s1)Xnp(s2, s3)〉 = 〈Tr DmLBFn1Fp1〉+ 〈Tr DmLBFn1DpLB〉

+ 〈Tr DmLBDnLBFp1〉+ 〈Tr DmLBDnLBDpLB〉

+ 〈Tr DmLBDnLFDpLF 〉

, (197)

no relevant contribution due to several L’s.

The third term reads:

〈Tr DmLF (s1)Ynp(s2, s3) = 〈Tr DmLFFn1DpLF 〉+ 〈Tr DmLFDnLFFp1〉

+ 〈Tr DmLFDnLBDpLF 〉+ 〈Tr DmLFDnLFDpLB〉
; (198)

the first two terms here are similar to the last one in (196), two repeated diagrams

appearing then: III and IV. The last two terms here do not contribute for the same

reason as the previous case, they also appear there.

For 2’) we just have to look again at (193) and (194), b in (192) clearly contributes

with 1/k3 terms only. In the following diagrams, × represents operators coming from

expasions of partial lines.
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In (193), we have two diagrams from the reds: first and last term, V and VI in

fig. 9, respectively; scalar bubbles and/or excessive gauge propagators make second and

third reds not relevant; the fourth red has 1/k2 factor from LB’s and at least one gauge

propagator, therefore 1/k3 contribution. No contributions from blues for similar reasons.

VI repeated diagram for the two first greens; the remaining green terms have too much

L’s and at least one gauge propagator required, making them 1/k3 relevants only.

Turning to (194), the first two reds contribute according to VI too; other reds are alike

dispensed terms before. None contribution from the blues. First green term contributes

according to VI again, the others are of at least 1/k3 order.

× � � �

s1 s2 s3τ

V

× � � �

s1 s2 s3τ

VI

Figure 9: Resulting diagrams for one insertion from loop expansion.

Finally we go to the calculations. The way is short, however. Diagrams I and III are

the least trivial, and as can be seen from (196), we also have three derivatives involved in

the expectation value. The computation of the VEV in these cases requires the use of a

computer program, which can be simplified using known expressions in ABJM literature,

as in [72], for example. These diagrams result in zero, individually.

Diagrams II, IV, V and VI do not involve vertices, they are just products of prop-

agators, but again there are derivatives acting on these products and evaluated at the

points x = (s1, 0, 0), y = (s2, 0, 0) and z = (s3, 0, 0). It turns out they vanish too, now

algebraically. In the case of VI, for example, it is easier to see; take for example its

appearence in the first green term of (194), in that case the following VEV occurs:

〈(ψ̄+)
â

a(τ)∂m(ψ+)
b

b̂(x)〉〈Fn1(s2)Fp1(s3)〉

Equations (176) then tell us that the quantity above will be proportional to:

∂

∂xm
(w − x)1

|w − x|3−2ε

∣∣∣∣
points

,

108



with “points” standing for w = (τ, 0, 0) and x = (s1, 0, 0).

Clearly we see that the partial derivative is going to drop coordinates in the numerator

orthogonal to the line, such that when evaluated in the “points” they are going to result

in zero.

We conclude then that, even to λ2, the structure constant of three insertions of dis-

placements on the line is zero. Updating our previous result then, we have:

fDDD = 0 +O(λ3) . (199)

This result shows that third variations of deformed WL from the 1/2 BPS Wilson

Line in ABJM are zero up to λ3. It is in accordance with the fact that such variations for

deformed WL from 1/2 BPS Wilson Line in N = 4 SYM (a more supersymmetric theory)

are also zero, as pointed out at the end of section 4.2. There, however, we concluded it

was true for any order in λ. For this reason, it is a strong clue that our result should

also hold for any order in λ. Another important check can be made by considering the

two-point function of displacements at λ2; in this case, diagrams I and II apper in a

similar way in the first term of (182), as well as diagrams III and IV in the last term in

there29; they vanish, in accordance with the fact that the Bremstrahlung function (186)

has only terms proportional to λ and λ3.

In fact, from an analogous argument as for the 4d case, it is possible to conclude

the same. The correlation function composed of three insertions of displacements have

three free indices: m, n and p, which are allowed to take the values 2 and 3 only. In

order to compute the third variation on the deformed wilson line (remember (159) once

more), we have to contract those indices again with the unique invariant tensor at our

disposition: the totally antisymmetric Levi-Civita symbol εijk. When contracting though,

we certainly will have at least two equal entries in that tensor, therefore resulting in zero

always, independent on the order in λ for fDDD.

4.3.3 Discussion

We studied two applications of (159) in this last chapter. In the first of them we have

reproduced calculations of a recent paper, finding the structure constant for an specific

two-point function in the presence of the 1/2 BPS Straight Wilson Line in N = 4 SYM at

first order in the t’Hooft parameter; that paper go beyond what we have presented here

and try to compute the structure constant for the three-point functions also, but not so

securely about the results found, as commented in there ( [23]).

In the second application we tried to compute the structure constant of a specific three-

point function in the presence now of the 1/2 BPS Straight Wilson Line in N = 6 ABJM.

We found that it vanishes up to λ3, so that it may be nonzero only considering λ3 or higher.

29More diagrams appear besides these ones actually, some of them vanishes trivially, others not.
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We checked the result by making two considerations: third order variations of deformed

wilson lines vanish inN = 4 SYM, which is a theory with more symmetries, as argumented

also in [23], so the same should be expected here and our result, therefore, does not violate

it; moreover, the diagrams appearing in our calculations also appear in the computation

of the structure constant of the two-point function of the same operator insertion and in

a similar way. In that case, the term proportional to λ2 in the structure constant must

vanish alone in view of the Bremstrahlung function (186) used for comparation.

Our result is thus another step forward, but does not give any information about the

content of the structure constant fDDD for λ3, although one could be wondering if it is

true for all orders in λ too. The fact is that it does not necessarily have to be zero to

guarantee the third variation of the deformed wilson line is also zero, this last already

holds in view of symmetry of the indices involved, as pointed out before.
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5 Closing Remarks

This thesis has been concerned primarily with the defect CFTs defined by (supersym-

metric) Wilson lines in 4 and 3 dimensions. In Chapter 1 some effort has been made to

present all the necessary ingredients of quantum field theory and conformal field theory,

in a concise way. I have tried to provide all the particularities encountered in CFTs, in

particular the fact that 2- and 3-point functions are fixed by the conformal symmetries,

thus defining the CFT data given by anomalous dimensions and structure constants.

Chapter 2 has been dedicated to introducing defect CFTs, namely CFT defined along

a defect in space-time. The introduction of an extended operator breaks up the original

conformal group of a theory into a smaller (yet still conformal) group, giving rise to a

different CFT. In that chapter we learnt how to construct the main objects of study

in a defect CFT using the embedding space formalism. We then concluded with the

presentation of the displacement operator, an important actor of the final part of this

dissertation.

In Chapter 3 another actor of great importance has been introduced, namely the

supersymmetric Wilson loop which is the operator we used to define the defect CFT. We

started from the very fundamental definition of Wilson operator in a gauge theory and

then extended it to some superconformal field theories of interest in holography: N = 4

SYM in 4 dimensions and N = 6 ABJM theory in 3 dimensions.

Finally, in the last Chapter 4, it has been shown how Wilson loops can be used to

define defect CFTs. An interesting relation between Wilson loops defined along ‘wavy’

contours, deformations of the straight line or the circle, and correlators of local operators

inserted along the contour has been discussed. This relation was derived and summarized

in equation (159). The rest of the chapter has been thus reserved to explore such terrific

connection, with the hope of having given a useful contribution in this sense. In particular,

I have setup various computations to compute, at the perturbative level, correlation func-

tions of displacement operators inserted along the 1/2 BPS Wilson line of ABJM theory,

which to the best of my knowledge has been done only for 2-point functions, see [24].

Outlook for the future
In recent years a significant amount of attention has been given to this topic but

there are still some very interesting open questions. Computing these correlators along

the defect, and the structure constants in particular, is by itself very important and

interesting, since this essentially represents solving the theory. Moreover, one can hope to

compare the results obtained here from a perturbative computation with results obtained

using bootstrap methods (at generic couplings) and/or holography (for the strong coupling

limit).
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The calculations were performed here in some detail in order to show possible dif-

ficulties one could face, related in particular to regularization. We found the structure

constant of three insertions of displacement operators into the 1/2 BPS straight Wilson

line in ABJM to order λ2. It is possible to go on and find values for higher orders in λ,

although it may be very hard to do. Maybe one could come up with some trick along the

lines of [73] to avoid having to perform explicit integrals.

One could apply the same techniques to determine 4-point functions or higher n-point

functions. In particular, the fourth (or higher) order deformation of a Wilson line can

be found by determining the 4-point function of displacements, which in turn can be

expressed in terms of 2- and/or 3-point functions of another primary operators. It can be

useful then to find structure constants for other defect 2- and 3-point functions of primary

insertions in the theory. This is in fact something we intend to do as a follow-up work.
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A Poincarè Group

This section contains the basics about the Poicaré group and is based entirely on [75,76].

The Poincarè group is composed of translations and proper orthochronous Lorentz

transformations. In section 1.1.4 we worked out the consequences of a system invariant

under translations and we got that momentum operators are the generators of such sym-

metries. The explicit form of these generators in the field representation were also given

there (Pµ = −i∂µ) and it can be verified they satisfy:

[Pµ,Pν ] = 0

The Lorentz group is by definition the linear homogeneous transformations on the co-

ordinates that preserves the Minkowski metric ηµν in d-dimensional flat spacetime (d-1

spacelike directions and 1 timelike direction). That is, they are of the form:

x′µ = Λµ
νx

ν with dx′2 = dx2

The second condition above tells us that Λµ
ν must satisfy η = ΛTηΛ, with det Λ = ±1.

The subgroup of these transformations with det Λ = 1 and with the timelike diagonal

component greater or equal to 1 (in the mostly plus signature) is the one we want. We

denote such group by SO(d − 1, 1). Infinitesimally, that is, with Λµ
ν = δµν + ωµν and

small omegas, that condition says that the parameters ωµν are antisymmetric in their

indices. Thus, conveniently, it is adopted the convetion that the generators associated

are represented by antisymmetric objects J µν , such that a general and an infinitesimal

Lorentz transformation on a field φ (in a possible representation of the group) are given

respectively by:

φ′ ≡ LΛφ = exp

(
− i

2
ωµνSµν

)
φ

φ′(x′) ' φ− i

2
ωµνSµνφ

where these Sµν denote the particularization of the object J µν to the intrinsic behaviour

of the field φ under such transformations. Therefore J µν incorporates both Sµν and also

the contribution coming from the effect of the symmetry on the coordinates, Mµν . In

section 1.1.4 we also calculated the conserved current for a system with Lorentz symmetry.

Following then the reasoning of finding the conserved charges integrating (22) and from

113



them obtaining the generators associated by means of (18), one arrives at:

Jµν ≡
∫
dd−1xj0µν = Mµν + Sµν

Mµν ≡
∫
dd−1x

∂L
∂(∂0φ)

(xµ∂ν − xν∂µ)φ

Sµν ≡
∫
dd−1x

∂L
∂(∂0φ)

Sµνφ

with associated generators:

J µν ≡Mµν + Sµν

Mµν ≡ −i (xµ∂ν − xν∂µ)
(200)

The expressions for conserverd charges in this case show that one component of the cross

product between position and momentum does enter in the integrand of Mµν , so that it

can be interpreted as the angular momentum operator and the generators Mµν as the

ones which yields spacetime rotations in d dimensions (boosts and spatial rotations).

Now we have all the generators associated to the Poincarè group, the last step is to

show the algebra associated to it. The computation of the commutators is straightforward

to do and is omitted here; the crucial point resides in the fact that Sµν is independent on

the position, after all it corresponds to an intrinsic property of the fields. So we have:

[J µν ,J ρσ] = i (ηνρJ µσ + ηµσJ νρ − ηµρJ νσ − ηνσJ µρ)

[Pρ,J µν ] = −i (ηµρPν − ηνρPµ)

[Pµ,Pν ] = 0

(201)

Usually when we say realtivistic quantum field theory, it is to be understood as a theory

invariant under the symmetry transformations generated by the Jµν and P µ, that is, a

theory invariant under Poincarè group.

A.1 Fundamental Representation

Above we presented the generalities concerning field representation of the Poincarè group.

A particular and, in fact, very useful representation of it is the so called Weyl-spinor field

representation, which is the building block for other non-trivial field representations, in

which fields have extra components.

The starting point is the spinor representation of the SU(2) group, that one of 2-

dimensional unitary matrices with determinant equals to 1. Spinors form a 2-dimensional

representation of this group. All other representations of SU(2) can be constructed from

tensor products of spinors, and they are labeled by an index j which takes half-integer

values, including zero. The algebra of this group and the solution associated to spinors
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are shown below: [
J i, J j

]
= iεijkJk, J i = σi/2

where εijk is the totally antisymmetric levi-civita symbol and σi are the Pauli matrices:

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
and σ3 =

[
1 0

0 −1

]

Spinors are representations with j = 1/2, that is, spin 1/2. j is the label associated

to the eigenvalue j(j + 1) of the Casimir operator J2. j = 0 is the scalar (or singlet)

representation. It can be shown, for example, that vectors are equivalent to the represen-

tation obtained from tensor product between two spinors, that is 1/2⊗1/2, and in general

tensorial representations are obtained from tensor products of vectorials. The dimension

of the representation is equal to 2j+1 and the construction of invariant subspaces follows

the usual rule for spin summation from quantum mechanics, which allows us obtaining

irreducible and, therefore, physically relevant representations of the group.

With that in mind, notice that the first commutation relation in (201) contains the

one above if we restrict ourselves to d = 4 and then rearrange the six components of J µν

into J i ≡ 1/2εijkJ jk and Ki ≡ J i0:[
J i,J j

]
= iεijkJ k[

Ki,Kj
]

= −iεijkJ k[
J i,Kj

]
= iεijkKk

where the algebra of J i is the traditional angular momentum algebra, while Ki is repon-

sible for boost transformations, behaving like a vector operator as the last relation above

shows30. Moreover, if one defines J ±,i ≡ (J i ± iKi)/2, the relations above reduces onto

two independent algebras: [
J ±,i,J ±,j

]
= iεijkJ ±,k[

J ±,i,J ∓,j
]

= 0

We see then that, in four dimensions, the Lorentz group can be decomposed into two

SU(2) groups, so that the representations of it can be constructed as tensorial products of

representations of this group, thus labeled by two half-integers (j−, j+). Emerges then the

question of which is taken as the fundamental representation of Lorentz group: 1/2⊗0 or

0⊗ 1/2; it turns out both representations are of equal importance and actually motivate

the definition of Weyl-spinors in four dimensions: left-handed Weyl-spinors, ψL, are in

the (1/2,0) representation of Lorentz group, therefore with J −,i = σi/2 (consequently

30Therefore it must not be confused with the conformal generator of special conformal transformations.
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J i = σi/2 and Ki = iσi/2), and transforms under a Lorentz transformation ΛL like:

ψL → ΛLψL ≡ exp

[
(−iθ − η) · σ

i

2

]
ψL

where it was defined: θi ≡ 1/2εijkωjk, ηi ≡ ωi0 and σ ≡ (σ1, σ2, σ3), with the ω’s

standing for the general parameters of a Lorentz transformation as before. Right-handed

Weyl-spinors, ψR, are defined analogously, leading to:

ψL → ΛRψR ≡ exp

[
(−iθ + η) · σ

i

2

]
ψR

The notion of Weyl-spinors can be extended to higher dimensions. The crucial point

resides in the fact that rotations are generated by antisymmetric generators, and for this

reason traceless, operators. Therefore, Weyl-spinors do exist only in even-dimensional

spacetime. The generalization goes with the help of the so called Dirac gamma matrices,

γµ, and their Clifford algebra:

γµγν + γνγµ ≡ {γµ, γν} = −2ηµνI (202)

Notice that γ2
0 = I and γ2

k = −I, for k ∈ {1, 2, ..., d− 1}. Therefore, the eigenvalues of γ0

are 1 and -1, and it can be chosen to be hermitian, while γk are antihermitian; in this way

we have γ†0 = γ0 and γ†k = γ0γkγ0, so that they are unitary matrices. A representation

then is constructed using the generators defined as below:

J µν =
i

2
[γµ, γν ]

In fact:

[J µν ,J ρσ] =
i

2

i

2
[γµγν − γνγµ, γργσ − γσγρ]

=
i

2

i

2
{[γµγν , γργσ]− [γνγµ, γργσ]− [γµγν , γσγρ] + [γνγµ, γσγρ]}

=
i

2
(γµJ νργσ + J µργνγσ + J ρµγνγσ + γρJ µσγν

− γνJ µργσ − J νργµγσ − J ρνγµγσ − γρJ νσγµ

− γµJ νσγρ − J µσγνγρ − J σµγνγρ − γσJ µργν

+ γνJ µσγρ + J νσγµγρ + J σνγµγρ + γσJ νργµ)

=
i

2
(γµJ νργσ + γρJ µσγν − γνJ µργσ − γρJ νσγµ

− γµJ νσγρ − γσJ µργν + γνJ µσγρ + γσJ νργµ)

= i(−ηµσJ νρ − ηνρJ µσ + ηνσJ µρ + ηρµJ νσ)
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where it was used the identity [AB,CD] = A[B,C]D+[A,C]BD+CA[B,D]+C[A,D]B

to write the third equality and the antisymmetry of the generators to write the fourth

equality. The final result follows from Clifford algebra. Left and right-handed Weyl-

spinors are then defined by means of the chirality γd+1 ≡ iγ0γ1...γd−1, which can be

verified to satisfy:

{γd+1, γµ} = 0 , γ2
d+1 = I and γ†d+1 = γd+1

Multiplying the first equation above by γ†µ allows us to show that γd+1 is traceless, in view

of unitarity of the gammas. Then, the second relation tells us that the eigenvalues of it

are 1 and -1 and, since d is even, we conclude that we can made J µν block-diagonal, in

which one block corresponds to the eigenvalue -1 of γd+1 and the other to 1. To these two

ortoghonal subspaces we associate the left and right-handed Weyl-spinors, respectively.

Four-dimensional spacetime case is of particular interest. A more practical toolkit can

be obtained for it from this generalized formalism above in comparison with the pedagocial

approach adopted initially. By means of the definitions σµ ≡ (I,σ) and σ̄µ ≡ (I,−σ),

where σ are the Pauli matrices, taking the generators as following is a traditional way of

separating that subspaces and define 4d Weyl-spinors explicitly:

J µν =

[
σµν 0

0 σ̄µν

]

where the elements are 2 × 2 matrices and we defined σµν ≡ i/4(σµσ̄ν − σν σ̄µ) and

σ̄µν ≡ i/4(σ̄µσν−σ̄νσµ). Notice this is in agreement with what was done at the beginning,

it is just a question of redefinitions; so it automatically satisfies the algebra mentioned.

Weyl-spinors are then 2-components objects (from now on undotted indices like α for

left-ones and dotted indices like α̇ for right-ones) that, under Lorentz transformations,

change as follows:

ψα → (ΛL) β
α ψβ with ΛL ≡ exp

(
− i

2
ωµνσ

µν

)
ψα̇ → (ΛR) β̇

α̇ ψβ̇ with ΛR ≡ exp

(
− i

2
ωµν σ̄

µν

) (203)

Now, since we are interested in theory of fields, we make use of the ideas just developed

to define Weyl-spinor fields. These fields are operators that, under a general Lorentz

transformation, behave like:

ψL(x)→ ψ′L(x′) ≡ ΛLψL(x)

ψR(x)→ ψ′R(x′) ≡ ΛRψR(x)

Working infinitesimally we are able to find the generators of Lorentz symmetries in this
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representation. For left-handed spinors for example:

δψL(x) ≡ ψ′L(x)− ψL(x) = ψ′L(x′ − δx)− ψL(x)

= ψ′L(x′)− ψL(x)− δxρ∂ρψL(x)

Noting that the contribution coming from the last term above is the symmetry effect

on the coordinates only, that is, − i
2
ωµνMµν = ωµν(x

µ∂ν − xν∂µ), we can write:

J µν =Mµν + σµν

(J µν) β
α ψβ(x) = ωµν

[
δβα(xµ∂ν − xν∂µ)− i/2σµν

] β
α
ψβ(x)

We see then that σµν and σ̄µν are just the spin part of the generators. General irreducible

representations of Lorentz group can be constructed from this one by means of tensorial

products as we saw. The inclusion of translations in order to have field representations

of the Poincarè properly saying is straightforward and follows (201). Therefore, the rep-

resentation explored here allows us to construct any Poincarè invariant Lagrangians.

B General Relativity toolkit

This appendix is intended to be a brief exposition of the essential tools in General Rela-

tivity which turn out to be relevant in CFTs. It is based on the fantastic set of lectures

given by Fredric Schuller [77]. For more details we refer the reader to that playlist, here

the presentation is kept simple, without rigorous definitions and proves.

General Relativity relies on the concept of smooth manifolds. Roughly speaking, a

manifold is a topological space31 that can be charted in an atlas; if the chart is contained

in Rd, we say we have a d-dimensional topological manifold. The importance of such atlas

is to translate real object properties onto a representative and tractable way. Smoothness,

for example, enters in the game once a smooth-compatible atlas is considered, where

compatibility is a technical term which should be understood as a shared characteristic

by any two charts through a transition map.

Naturally then, vector spaces emerge in the discussion and the description in terms

of tensors become indispensable. From a vector space (V,+, ·) we define its dual vector

space (V ∗,⊕,�) of linear maps from V to R. A (r, s)-tensor T over V thus can be defined

as a multi-linear map:

T : V ∗ × ...× V ∗ × V × ...× V → R , (204)

for r V ∗ factors and s V factors, r and s in N0. And the components of a tensor can also

31A set equipped with a topology.
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be defined in terms of the basis elements {εir} of V ∗ and {εjs} of V :

T i1,...,ir
j1,...,js

≡ T (εi1 , ..., εir , εj1 , ..., εjs) .

In particular, the so called tangent spaces play the central role. They can be con-

structed by means of the concept of velocity of a smooth curve γ : R →M at a point p

in the smooth manifold M. The velocity of γ at p is the linear map:

vγ,p : C∞(M)→ R ,

such that

f 7−→ vγ,p(f) ≡ (f ◦ γ)′(λ0) ,

where C∞(M) stands for the vector space of smooth maps f and γ(λ0) = p. Intuitively:

R M R
γ f

f ◦ γ

For each point p ∈ M we define then the set TpM ≡ {vγ,p/γ smooth curves}, the

vector space tangent to M at p. A natural basis for it is the induced one from a chart

(U, x) in the atlas, U an element of the topology:

εi =

(
∂

∂xi

)
p

.

For example, taking λ0 = 0, the velocity can be written in terms of them like:

vγ,p(f) = γ̇x(0)

(
∂f

∂xi

)
p

∀f ∈ C∞(M) .

For a given X ∈ TpM, its components change under a change of charts (U, x) → (V, y)

as:

Xj
(y) =

(
∂yj

∂xi

)
p

X i
(x) .

We also have the definition of the cotangent space (TpM)∗ of linear maps from TpM to

R. A typical element of it is the gradient of f at p, (df)p:

(df)p(X) ≡ Xf ,

where X ∈ TpM. Naturally, the set {(dxi)p} form a basis for (TpM)∗, and a covector ω
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in that space change components according to:

ω(y),i =

(
∂xj

∂yi

)
p

ω(x),j .

More generally, we also define the total tangent space toM, TM, and the total cotangent

space associated as:

TM≡
⋃̇
p∈M

TpM and T ∗M≡
⋃̇
p∈M

(TpM)∗ .

They are smooth-manifolds, but the construction of the atlas is omitted.

The point in making such definitions is that now we can finally introduce the concept

of a bundle, which supports the definition of quantities of physical interest, like fields,

and also allows the connection between two smooth manifolds to be made more clearly.

Essentially, a bundle is a triple E
π−→M of a smooth manifold E which we call total space,

a smooth surjective map π known by projection map and another smooth manifold M
which we use as base space; for example, E = cylinder,M = circle, π : E →M. Applied

to our context, by making use of the surjective map π : TM → M, with X 7→ p the

unique point p ∈ M such that X ∈ TpM, we construct the tangent bundle composed by

TM as total space and M as base space.

To see the link between two different manifolds, which is of great usefulness in this

work and in succeeding studies in General Relativity, we consider two smooth manifolds

M and N and use a smooth function φ to inject the further into the later:

M φ−−−−→
injective

N . (205)

By making use then of the following directive diagram

TM TN

M N R
φ f

φ∗

π
TM

π
TN

,

where π’s stand for surjectives maps, we define two important maps: the push-forward φ∗

and the pull-back φ∗. The first of them is defined by X 7→ φ∗(X), with φ∗(X)f ≡ X(f ◦φ),

for any f ∈ C∞(N ); note that φ∗(TpM) ⊆ Tφ(p)N , so “vectors are pushed forward”.

The second is in analogy given by φ∗ : T ∗N → T ∗M, with ω 7→ φ∗(ω)(X) ≡ ω (φ∗(X));

now “covectors are pulled back”. In components the following holds: φ∗i = φ∗,i.

These new maps can the be used for obtaining tensors in one manifold from tensor in

the other. A (0, s)-tensor in M, for example, TMs, follows from an also (0, s)-tensor in
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N , TNs, through:

TMs(X1, ..., Xs) ≡ TNs(φ∗(X1), ..., φ∗(Xs)) , (206)

which, by considering charts (U, x) of M and (V, y) of N , in components reads:

(TM)i1,...,is;p = (TN)a1,...,as;φ(p)

(
∂φ̂a1

∂xi1

)
p

...

(
∂φ̂as

∂xis

)
p

, with φ̂a = (y ◦ φ)a . (207)

The partial derivatives above form an induced basis of TpM from the chart (U, x).

Finally, for completeness, we point out how quantities appearing in the theory de-

veloped in this work do situate in this context. A vector field in this language is just a

smooth map χ satisfying π ◦ χ = IM in the diagram below: Tensor fields then emerge by

TM M
π

χ

.

expanding this idea by means of a new structure called C∞-module Γ(TM), which we do

not explore here.
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