• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.43.2023.tde-22082023-123444
Documento
Autor
Nome completo
Leandro Alex Moreira Viscardi
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2023
Orientador
Banca examinadora
Barbosa, Henrique de Melo Jorge (Presidente)
Calheiros, Alan James Peixoto
Correia, Alexandre Lima
Dias, Maria Assuncao Faus da Silva
Gutierrez, Enver Manuel Amador Ramirez
Título em inglês
Environmental controls on isolated convection in the Amazon: an observational and numerical modeling study
Palavras-chave em inglês
Environmental controls
GoAmazon2014/5 experiment
High-resolution simulations
Shallow-to-deep convective transition
Tropical convection
Resumo em inglês
The Amazon rainforest is a vital component of the global climate system, playing a significant role in the hydrological and energy cycles. The intense convection in this region influences atmospheric circulation on a global scale and drives large-scale transports of energy and moisture, with implications for potential climate change pathways. Despite its importance, understanding and simulating the shallow-to-deep (STD) convective transition in this region has been a long-standing challenge. This is partially due to the wide range of spatial and temporal scales involved and the complexity of cloud physical processes and biosphere-atmosphere interactions. In this study, we combined recent observations and high-resolution simulations to evaluate the triggering mechanisms and assess the relative importance of different environmental controls on locally-driven convection in the Amazon. Observationally, we evaluated the environmental conditions associated with shallow, congestus, and isolated deep convection days during the wet season (December to April), employing data from the GoAmazon (2014-2015) experiment. The deep regime is characterized by moister conditions in low levels during the morning and strong moisture convergence in the afternoon. In contrast, shallow and congestus days are drier and dominated by moisture divergence in the morning. The peak of precipitation associated with the STD transition occurs around 16-17 local standard time. Afternoon precipitation, on average, increases with integrated column water vapor, low-level wind shear, and convective available potential energy; but relatively higher values of these parameters do not necessarily guarantee that the STD transition will occur. Numerically, we conducted simulations during the period of December 2014, utilizing large-scale forcing specifically developed for the GoAmazon2014/5 experiment. The model consistently reproduced the observations for precipitation, moisture, and surface fluxes of radiation, latent and sensible heat. Through sensitivity experiments, we examined the relative importance of moisture and vertical wind shear in controlling the STD convective transition. We found that deep convection in the Amazon region is highly sensitive to low-level environmental conditions. Notably, early morning low-level preconditioning is vital to daytime convection and precipitation. Only unrealistically dry conditions in the free troposphere effectively inhibit the development of deep convection. The large-scale field of vertical moisture advection strongly impacts the development of convection, which is indirectly linked to water vapor convergence. Low-level wind shear facilitates the STD transition under moderate strength, although it can still occur even in the absence of wind shear or under strong wind shear conditions. The upper-level wind shear negatively impacts high cloud formation, but this impact is relatively minor compared to that associated with low-level wind shear. The synergy between observations and high-resolution simulations provided a comprehensive analysis with crucial quantitative information on the environmental controls of isolated convection. Our findings contribute to advancing our comprehension of tropical convection and provide valuable guidance for future research aimed at enhancing weather and climate models.
Título em português
Controles ambientais sobre a convecção isolada na Amazônia: um estudo observacional e de modelagem numérica
Palavras-chave em português
Controles ambientais
Convecção tropical
Experimento GoAmazon2014/5
Simulações de alta resolução
Transição da convecção rasa para profunda
Resumo em português
A Floresta Amazônica é um componente vital do sistema climático global, desempenhando um papel significativo nos ciclos hidrológico e energético. A intensa convecção nesta região influencia a circulação atmosférica em escala global e impulsiona o transporte em grande escala de energia e umidade, com implicações para possíveis trajetórias de mudanças climáticas. Apesar de sua importância, entender e simular a transição da convecção rasa para profunda (STD, do inglês shallow-to-deep) nessa região tem sido um desafio de longa data. Isso se deve, em parte, à ampla variedade de escalas espaciais e temporais envolvidas e à complexidade dos processos físicos de nuvens e das interações entre a biosfera e a atmosfera. Neste estudo, combinamos observações recentes e simulações de alta resolução para avaliar os mecanismos desencadeadores e avaliar a importância relativa de diferentes controles ambientais na convecção que se desenvolve localmente na Amazônia. Observacionalmente, avaliamos as condições ambientais associadas aos dias de convecção rasa, congestus e profunda isolada durante a estação chuvosa (dezembro a abril), utilizando dados do experimento GoAmazon (2014-2015). O regime de convecção profunda é caracterizado por condições mais úmidas em níveis baixos durante a manhã e forte convergência de umidade durante a tarde. Em contraste, os dias de convecção rasa e congestus são mais secos e dominados por divergência de umidade pela manhã. O pico de precipitação associado à transição STD ocorre em torno das 16-17 horas no horário local. A precipitação durante a tarde, em média, aumenta com o conteúdo de umidade integrada na coluna atmosférica, cisalhamento do vento em baixos níveis e energia potencial convectiva disponível; no entanto, valores relativamente mais altos dessas variáveis não necessariamente garantem que a transição STD ocorrerá. Numericamente, realizamos simulações durante o período de dezembro de 2014, utilizando forçamento de grande escala desenvolvido especificamente para o experimento GoAmazon2014/5. O modelo reproduziu consistentemente as observações de precipitação, umidade e fluxos de radiação, calor latente e calor sensível na superfície. Através de experimentos de sensitividade, examinamos a importância relativa da umidade e do cisalhamento vertical do vento no controle da transição STD. Descobrimos que a convecção profunda na região da Amazônia é altamente sensível às condições ambientais de baixos níveis. Notavelmente, o precondicionamente de baixos níveis durante a manhã é fundamental para a convecção e a precipitação durante o dia. Apenas condições irrealisticamente secas na troposfera livre efetivamente inibem o desenvolvimento de convecção profunda. O campo de grande escala de advecção vertical de umidade tem um forte impacto no desenvolvimento da convecção, o que está indiretamente relacionado à convergência de vapor de água. O cisalhamento do vento em baixos níveis favorece o desenvolvimento da convecção durante a tarde em condições de intensidade moderada; no entanto, a transição STD pode ocorrer mesmo na ausência de cisalhamento do vento ou sob condições de forte cisalhamento do vento. O cisalhamento do vento em altos níveis afeta negativamente a formação de nuvens altas, mas esse impacto é relativamente menor em comparação com o associado ao cisalhamento do vento em baixos níveis. A sinergia entre as observações e as simulações de alta resolução proporcionou uma análise abrangente com informações quantitativas cruciais sobre os controles ambientais da convecção isolada. Nossas descobertas contribuem para avançar nossa compreensão da convecção tropical e fornecem orientações valiosas para pesquisas futuras com o objetivo de aprimorar os modelos meteorológicos e climáticos.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
thesis_lamviscardi.pdf (13.99 Mbytes)
Data de Publicação
2023-09-04
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.