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moda, Lucas Proença, Júlia Felix, Lucas Nogueira, Giovanna Verrillo e Gabriel Ruiz pela
amizade, camaradagem, risadas e apoio durante essa jornada.

Agradeço também a Dmitri Orlov e Andreas Kleiner por terem me ajudado no desen-
volvimento deste projeto com extrema solicitude e paciência. Sou muito grato aos meus
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Abstract

The high confinement mode observed in tokamak plasmas is seen as the most promising
operational regime for economically viable nuclear fusion power plants. A particular
characteristic of the high confinement plasmas is the onset of periodic instabilities known
as edge localized modes (ELMs). These instabilities generate unacceptably large heat
fluxes on the divertor plates that erode the divertor and reduces significantly its life time
on a future reactor. Therefore, there is a need to develop ELM control methods in large
machines, such as ITER. Several experiments have demonstrated that the application of
non-axisymetric resonant magnetic perturbations (RMPs), created by electric currents
flowing in localised coils outside the plasma, can be used to control ELMs. Due to
its e�ciency, ELM control coils, also called RMP coils, were added to ITER baseline
project. Although the RMP coils have been successfully used to suppress ELMs in various
tokamaks, the numerical modelling of these plasma discharges reveal that current physical
models are not capable of describing satisfactorily the observed e↵ects. The lack of a
trustworthy physical model to describe the impact of RMP fields in tokamak plasmas
is a central topic when plasma physics scientists try to predict the plasma reaction to
the RMP fields in ITER. In order to enhance the numerical results reliability, carefully
designed experiments to validate physical models are being realised in several tokamaks
around the globe. Here in Brazil, a significant upgrade of the TCABR tokamak, operated
at Plasma Physics Laboratory of Institute of Physics of the University of São Paulo, is
in progress. In this upgrade, it is planned the installation of six sets of RMP coils, which
enable the TCABR to test physical models used to predict the plasma response to RMP
fields. This work has the objective of designing the RMP coil sets that will be installed
in TCABR, which enables the validation of physical models in a wide variety of plasma
scenarios, RMP field configurations and magnetic spectra with a large range of poloidal
and toroidal harmonics.
Keywords: Magnetohydrodynamics, MHD equilibrium and stability, Tokamaks, Plasma
Physics.
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Resumo

O modo de alto confinamento observado em plasmas de tokamaks é visto como o regime
operacional mais promissor para se obter usinas de energia a fusão nuclear economica-
mente viáveis. Uma caracteŕıstica particular desses plasmas de alto confinamento é a
presença de instabilidades periódicas conhecidas como edge localized modes (ELMs). Es-
tas instabilidades causam fluxos de calor inaceitavelmente altos nas placas do divertor de
modo que a erosão causada por tal fluxo reduzirá significativamente o tempo de vida do
divertor em um futuro reator. Há, portanto, a necessidade de desenvolver métodos de
controle de ELMs em máquinas de grande porte, como o ITER. Tem sido amplamente
demonstrado que a presença de perturbações magnéticas ressonantes (resonant magnetic
perturbations - RMPs) não-axissimétricas, criadas por correntes elétricas fluindo em bobi-
nas localizadas fora do plasma, podem ser usadas para suprimir ELMs. Devido à sua
eficiência, bobinas de controle de ELMs, comumente chamadas de bobinas RMP, foram
adicionadas ao projeto base do ITER. No entanto, embora tais bobinas têm sido usadas
com sucesso para suprimir ELMs em vários tokamaks, a modelagem numérica dessas
descargas revela que os modelos f́ısicos atuais ainda não são capazes de reproduzir sat-
isfatoriamente os efeitos observados. A falta de um modelo f́ısico confiável que descreva
o impacto de campos RMP em plasmas de tokamak é uma questão fundamental quando
se tenta prever a resposta de plasmas criados no ITER à campos RMP. Para melhorar
a confiabilidade dos resultados destes códigos, experimentos cuidadosamente projetados
para validar modelos f́ısicos estão sendo realizados em vários tokamaks ao redor do mundo.
Aqui no Brasil, um upgrade significativo do tokamak TCABR, operado pelo Laboratório
de F́ısica de Plasmas do Instituto de F́ısica da Universidade de São Paulo, está em anda-
mento. Neste upgrade, está planejado a instalação de seis conjuntos de bobinas RMP que
permita a criação de ambientes no TCABR em que os modelos f́ısicos usados para prever
a resposta de plasmas à campos RMP possam ser validados. Este trabalho tem como
objetivo projetar o sistema de bobinas RMP que será instalado no tokamak TCABR. As
bobinas RMP serão projetadas de modo a permitir a validação de modelos f́ısicos em uma
ampla variedade de cenários de plasma, de configurações geométricas de campo RMP e
de espectro com amplo conteúdo de harmônicos toroidais e poloidais.
Palavras-chave: Magnetohidrodinâmica, Equiĺıbrio e estabilidade MHD, Tokamak, F́ısica
de Plasmas.
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Chapter 1

Introduction

For decades, scientists have been working to establish conditions in which controlled
thermonuclear fusion become economically viable in order to enable this energy source to
be part of the energetic matrix. In this chapter, the main challenges encountered in the
development of nuclear fusion power plants are discussed.

1.1 The need for new energy resources

Energy is the most basic need for food production, heating, lighting, transport, etc.
In order to maintain a high quality of life, a substantial energy demand needs to be
supplied by low-cost energy generation. The increase of the quality of life of the world
population, along with a significant raise in population, has led to a boost in energy usage.
International agencies expect a world energy consumption increase of, approximately, 56%
in the period between 2010 and 2040 [3, 4]. The major contribution to this raise (more
than 85%) is caused by the economic and population growth on emerging countries, such
as China and India. One of the biggest challenges in meeting this rising energy demand is
to find new energy sources which are safe, environmentally sustainable and economically
viable. The present energy demand is supplied by a combination of several resources, such
as fossil fuels, solar, wind, hydroelectric, nuclear fission and geothermal. Each options
has its benefits and hindrances, hence there is no unique and obvious solution to the
problem. The majority of the countries uses fossil fuel power plants to power their homes
and industries.

In principle, the energy demand rise can be addressed by an increase in coal burning, of
which reserves are quite substantial - they can meet the present energy consumption at the
current rate for several centuries [5]. However, the CO2 emission during the burn of fossil
fuels is starting to cause observable negative e↵ects in the environment and climate. The
apparent scientific consensus is that this solution is highly disfavourable for the humanity.
The necessity of the reducing the emission of greenhouse gases, such as CO2, shows that
the energy production through fossil fuel burning needs to be limited. However, there are
only few scenarios in which fossil fuels are totally substituted by other energy sources that
causes less damage to the environment. Hence, in the absence of a solution, alternative
energy sources must be investigated and developed.
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1.2 Thermonuclear fusion and magnetic confinement

Nuclear fusion is one of the very few envisaged energy sources that has the potential to
be part of the energetic matrix. For nuclear fusion to occur, the electrostatic repulsion
between two positively charged atomic nuclei must be overcome. Therefore, high kinetic
energy nuclei are needed in this process. Among the possible exothermic nuclear reactions,
the most prominent is the one that involves two hydrogen heavy isotopes Deuterium (D)
and Tritium (T):

1D
2 + 1T

3 �! 2He
4 (3.50 MeV) + 0n

1 (14.1 MeV). (1.1)

This reaction has the largest cross section at the lowest activation energy [6, 7]. Nonethe-
less, the largest value of this reaction cross section is still much smaller than the cross
section associated to a Coulombian scattering. As a consequence, a nucleon will be scat-
tered by other nuclei several times before a D-T reaction happens, even though the nuclei
have su�cient kinetic energy to fuse. Hence, nuclei must stay confined for a su�ciently
long time for nuclear fusion reactions to have time to happen. The most promising so-
lution for this condition is heating a mixture of D and T until their temperature is high
enough for the nuclear fusion processes. Due to the thermal nature of this processes, it
is called thermonuclear fusion. In order to maintain the high temperature required for
nuclear fusion to take place, the contact between particles and material walls must be
minimised. At such temperatures, atoms are totally ionised and, hence, they are on the
plasma state. Since electric charged particles are influenced by electromagnetic fields, a
potential plasma confinement method is using magnetic fields.

Di↵erent magnetic configurations for fusion have been proposed, with several geometric
field configurations. At the 1950’s, a magnetic confinement concept called tokamak was
developed to study energy production conditions through thermonuclear fusion [8]. The
word tokamak is a Russian acronym for toroidalnaja kamera s magnitnymi katushkami,
which can be translated as toroidal chamber with magnetic coils. The plasma temperature
achieved on this first tokamak was much higher than those obtained at other concepts
[9]. For this reason, research on tokamaks grew at a fast pace. Nowadays, the tokamak is
still the most developed concept for thermonuclear plasmas studies and, therefore, is the
most advanced candidate for a future nuclear fusion power plant.

1.3 The physics of tokamak plasmas

In future fusion power plants, the major contribution to keep the plasma temperature
must come from the fusion-born ↵ particles. The energy transfer from the ↵ particles
to D and T is done through Coulomb scattering. Therefore, it is vital that ↵ particles
be su�ciently well confined for their confinement be long enough so they transfer the
majority of their energy (3.5MeV) to the plasma. For a future fusion power plant to be
economically viable, the plasma energy must be confined for a su�ciently long time in
order to auxiliary heating, needed to keep the plasma at the desirable temperature, be
minimal. This energy balance is expressed in terms of the energy confinement time, ⌧E,
which is defined as the ratio of the total plasma thermal energy and plasma power losses.
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When the energy produced by D-T reactions is equal to the energy needed to keep the
plasma at a specific temperature, it is said the plasma reached the breakeven condition.
At this state, the energy released by fusion is equal to the energy lost by the plasma. This
condition can be expressed by the Lawson criterion [10], also known as the triple product:

n0 T0 ⌧E > 3⇥ 1021
keV · s
m3

. (1.2)

Here n0 and T0 are the maximum values for the ion density and temperature, whose
profile shape are parabolic. This condition shows the requirements for the plasma density,
temperature and energy confinement time to reach the breakeven condition. The Lawson
criterion can also be expressed in terms of the fusion energy gain factor, Q, defined as the
ratio of the produced fusion power and the auxiliary heating power needed to keep the
plasma at a stationary state. When the plasma reaches Q = 1, the plasma is said to be
in the breakeven. In practice, however, the ↵ particle confinement is not perfect and part
of the particle energy is inevitably lost to material walls. Hence, if the auxiliary heating
is turned o↵, a Q = 1 plasma starts to cool-down and it exits from the Q = 1 state. As Q
is past the breakeven condition, self-heating increases and gradually relaxes the need for
auxiliary heating. When Q = 1 happens, the reaction becomes self-sustained and this
condition is called ignition. Operation just below ignition condition is highly desirable for
future fusion power plants.

1.4 The objectives of this work

This thesis aims to contribute toward solving two important thermonuclear fusion prob-
lems: (i) the plasma stability of the standard high confinement mode TCABR plasma
and (ii) the validation of physical models that describe the plasma response to non-
axisymmetric externally applied resonant magnetic perturbation (RMP) fields. The mo-
tivations for each topic are given in subsections 1.4.1 and 1.4.2.

1.4.1 The threads posed by plasma edge instabilities

Many scientific challenges must be surpassed before nuclear fusion becomes a economi-
cally viable energy source. Instabilities in plasma are still a concern as they impose several
and complex restrictions to the maximum device performance. Edge plasma instabilities
showed to be a threat in the development of fusion power plants with plasmas operated
in the high confinement mode, also called H-mode. This confinement mode is seen as the
most promising operational regime for the construction of economically attractive fusion
power plants. This regime is characterised by the formation of a high pressure gradi-
ent in the plasma edge and by the development of instabilities known as edge localised
modes (ELMs) [11]. ELMs were identified as peeling-ballooning modes, triggered by the
increased pressure gradient and/or the current density in the plasma edge [12, 13, 14, 15].
The crash of these modes transports a significant part of the plasma thermal energy to
a region around the plasma called scrape-o↵ layer (SOL) in which the ejected energy is
carried to the first walls. This energy transport creates unbearable levels of heat flux onto

3



Figure 1.1: Schematic draw of a tokamak plasma with a divertor.

the divertor plates [16], Figure 1.1. The erosion caused by the high heat fluxes onto the
divertor plates can decrease the plasma facing component (PFC) lifespan severely. Con-
sequently, the development of ELM control strategies is crucial to enable the development
of fusion power plants.

Several studies showed that the application of RMP fields, created by electric currents
circulating in coils outside the plasma, a↵ects ELM behaviour [17]. These perturbations
reduces drastically, and sometimes completely suppresses, the transient heat fluxes caused
by ELMs, replacing an intermittent wall heat load by an approximately constant wall heat
load. The explanation for the observed ELM suppression through the use of RMP fields is
the enhancement of plasma radial transport in plasma edge by the creation of a stochastic
layer, limiting the increase of the pressure gradient in the plasma edge and preventing
the plasma from entering into an unstable region of the operational space. In order to
create a stochastic layer, magnetic islands must be created at rational surfaces located in
the plasma edge and these magnetic islands must overlap with those at neighbouring flux
surfaces.

Due to their e�ciency, ELM control coils, also termed as RMP coils, were incorporated
to the base project of the International Thermonuclear Experimental Reactor (ITER)[18,
19] to control ELMs. ITER is a experimental reactor which is being constructed at Saint-
Paul-lès-Durance, France, through consortium of countries formed by European Union,
India, Japan, China, Russia, South Korea and the United States of America. The ITER
cross-section is shown in Figure 1.2.

Although the use of RMP coils proved to be successful in mitigating/suppressing
ELMs in various tokamaks around the globe, numerical modelling of these discharges
shows that present physical models are still not capable of reproducing quantitatively the
observed e↵ects. A trustworthy physical model that can describe satisfactorily the plasma
response to RMP fields is vital to the prediction of plasma response of ITER plasmas to
RMP fields. In order to enhance the predictions reliability of physical models, carefully
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Figure 1.2: Cross section view of the ITER tokamak

projected experiments to validate these models are being carried in tokamaks around the
world. Here, in Brazil, a significant upgrade of the Tokamak à Chau↵age Alfvén Brésilien
(TCABR) is in progress. TCABR is a small tokamak operated at the Plasma Physics
Laboratory of Institute of Physics of the University of São Paulo. The ultimate goal
of this upgrade is to install an innovative set of RMP coils that will enable TCABR to
create plasma scenarios in which physical models, used for predicting the plasma response
to RMP fields, can be validated in conditions not achieved in other current tokamaks.

1.4.2 The impact of RMP fields on ELMs

In order to control ELMs, some techniques were developed and tested in tokamaks. The
first technique that mitigated ELMs was the use of poloidal field coils in TCV and ASDEX
Upgrade. This technique consists of the application of square voltage perturbations to
the poloidal field coils, making the plasma oscillate vertically. The results showed that
ELMs, in both TCV and ASDEX Upgrade, were mitigated and the peak heat fluxes onto
the divertor decreased [20, 21]. A di↵erent method to control ELMs is the repetitive
pellet injection, tested in ASDEX Upgrade. The results showed that, for adjusted pellet
size and velocity, the pellets triggered ELMs, whose peak heat fluxes on the divertor are
reduced [22].
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Figure 1.3: Schematic drawing of the RMP coils of TCABR: in red is the middle array of
I-coils, while in blue and green is the upper and lower arrays of I-coils, respectively. In
magenta, is the array of CP-coils.

Among the techniques to achieve ELM mitigation/suppression, the most promising
solution is the application of non-axisymetric, relatively small, RMP fields, which breaks
magnetic the field axisymmetry. These fields can create magnetic islands at rational
surfaces and, if these islands overlap on the pedestal region, a region of stochastic magnetic
field lines is created. This region augments particle and energy radial transport in the
plasma edge, reducing edge pressure gradient and parallel current density, which are the
drivings for ELMs. The pioneered work on ELM suppression was carried out on the
DIII-D tokamak [23], where they achieved ELM-free H-mode plasma operation.

These perturbative fields are produced by RMP coils, which are window frame coils
distributed toroidally around the vacuum vessel and can be installed inside or outside
of the machine. On TCABR, there will be two groups of RMP coils, where each group
composed of 3 sets of 18 RMP coils each. One group is located on the LFS (the I-coils)
and another group located on the HFS (the CP-coils), Figure 1.3. Because of the latter
set, TCABR will be the first machine to have RMP coils on the HFS and it will be the
first machine to generate n  9 RMP fields, since each of the six sets is composed of 3
arrays of 18 coils each, i.e. a total of 108 RMP coils. Each coil will be independently
powered by a power supply on DC mode, with coil currents up to 2 kA, or on AC mode,
with coil current up to 1 kA and any waveform up to f  10 kHz.

1.5 Outline of this work

In this chapter, an introduction about nuclear fusion, the tokamak device and the problems
encountered in H-mode tokamak plasmas was presented. The challenges encountered in
developing controlled nuclear fusion were discussed, where the problem of ELMs in H-
mode tokamak plasmas and the use of RMP fields to control ELMs were presented.

• Chapter 2 addresses the theory of magnetohydrodynamics (MHD), where the plasma
is modelled as a conducting fluid subject to magnetic fields. A simplified model is
developed to describe the stability criteria to ELMs in H-mode tokamak plasmas,
addressing the main physical topics and details about plasma stability.
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• Chapter 3 presents the computational tools used in this thesis, which details about
the TCABR H-mode plasma equilibrium calculations are discussed. Lastly, the
M3D-C1 model, a visco-resistive MHD code, and the plasma models used in this
thesis are presented.

• Chapter 4 discusses about the stability of the standard H-mode plasma studied
for the TCABR. The linear stability of MHD modes is investigated, analysing the
nature of unstable modes. Furthermore, a scan of 2 main plasma edge quantities is
carried out to evaluate the plasma stability sensitivity.

• In chapter 5, the design of the RMP coils for the TCABR is carried, where the
physical criteria used are presented. A coil current and a coil geometry optimisations
for the I- and CP-coils are executed in order to reduce the coil current amplitude
and satisfy the physical criteria.

• Chapter 6 summarises the main results and conclusions of this work.
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Chapter 2

Theoretical background

In this chapter, the theoretical background about ELMs and plasma stability is presented,
where a simplified analytic physical model is developed. This model addresses the main
topics about ELMs and their criteria.

2.1 The ideal MHD model

Tokamak plasmas can be modelled as visco-resistive conducting fluids subject to strong
magnetic fields. Therefore, plasmas can be described through a set of non-linear fluid
and electromagnetic equations that form the well known magnetohydrodynamic (MHD)
model. When viscosity and resistivity are neglected, the remaining set of equations gives
rise to the so-called ideal MHD model [7]:

@⇢m
@t

+r · (⇢m u) = 0 (2.1a)

⇢m


@

@t
+ (u ·r)

�
u = J ⇥B �rp (2.1b)

d

dt

✓
p

⇢�m

◆
= 0 (2.1c)

E + u⇥B = 0 (2.1d)

r⇥E = �@B
@t

(2.1e)

r⇥B = µ0J (2.1f)

r ·B = 0 (2.1g)

where ⇢m, u, p,J ,B, E are plasma mass density, velocity, pressure, current density, mag-
netic field and electric field.
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2.2 Toroidally symmetric ideal MHD equilibria

Using the set of equations 2.1, one can describe the equilibrium of a plasma in a tokamak.
Firstly, one can define the flux of the poloidal component of the magnetic field:

 =

Z
B · dA (2.2)

where the integration is done over a circle located at a distance Z above the origin of
a cylindrical coordinate system and centred with the Z-axis. Since the magnetic field is
toroidally symmetric, the integral is just:

 (R,Z) = 2⇡

RZ

0

Bz(R
0, Z)R0 dR0 (2.3)

Di↵erentiating with respect to R:

@ 

@R
= 2⇡RBZ =) BZ(R,Z) =

1

2⇡R

@ 

@R
(2.4)

Using Ampère’s law (Equation 2.1g) and assuming axisymmetry (@B�

@�
= 0), BR is:

BR(R,Z) = � 1

2⇡R

@ 

@Z
(2.5)

These expressions can be combined to provide the vector poloidal magnetic field:

Bpol =
r ⇥ �̂

2⇡R
(2.6)

where �̂ is the unitary vector in the toroidal direction. Hence, the magnetic field in a
toroidally symmetric system can be written as:

B =
r ⇥ �̂

2⇡R
+B� �̂ (2.7)

Using Equation (2.1f), the plasma current density can be written as:

J =
1

µ0

"
r(RB�)⇥ �̂

R
� �⇤ 

R
�̂

#
(2.8)

where �⇤ is R @

@R

�
1
R

@

@R

�
+ @

2

@Z2 .
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Considering a stationary equilibrium (u = 0), the momentum balance equation (Equa-
tion 2.1b) is reduced to:

J ⇥B = rp (2.9)

Since J · J ⇥ B = B · J ⇥ B = 0, one finds that J · rp = 0 and B · rp = 0.
Therefore, J and B are perpendicular to rp. Note that:

B ·rp = 0 =) B��̂ ·rp+
1

R
r ⇥ �̂ ·rp = 0 (2.10)

where the first term is zero because of the toroidal symmetry ( @p
@�

= 0). Since r ⇥ �̂ ·
rp = �̂ ·r ⇥rp, therefore:

B ·rp = 0 =) 1

R
�̂ ·r ⇥rp = 0 =) �̂ ·r ⇥rp = 0 =) p = p( ) (2.11)

Therefore, rp can be written in terms of  : rp = dp
d r . The same idea used in

B ·rp = 0 can be applied in J ·rp = 0:

J ·rp = 0 =) r(RB�)⇥ �̂ ·rp��⇤ �̂ ·rp = 0 (2.12)

Since p is toroidally symmetric ( @p
@�

= 0), the second term is zero. The first term can be

rewritten as r(RB�)⇥ �̂ ·rp = �̂ ·rp⇥r(RB�), therefore:

J ·rp = 0 =) �̂ ·rp⇥r(RB�) = 0 =) RB� = F = F ( ) (2.13)

Hence, rF = r(RB�) can be described as: rF = dF
d r . Using the results from

Equations (2.12) and (2.13), Equation (2.8) can be rewritten as:

J =
1

µ0

✓
1

R

dF

d 
r ⇥ �̂� 1

R
�⇤ �̂

◆
(2.14)

Finally, substituting Equations (2.7) and (2.14) on Equation (2.9), one obtains:

�⇤ = �µ0 R
2 dp

d 
� 1

2

dF 2

d 
(2.15)

This equation is known as the Grad-Shafranov (GS) equation [24, 25] and it is a non-
linear, elliptic, second order, partial di↵erential equation that, in most cases of interest,
must be solved numerically. To solve the GS equation, two free flux functions must
be specified: the plasma pressure, p( ), and the poloidal current function, F ( ). In
addition, boundary conditions must be specified on the boundary of a closed domain.
Several numerical methods exist to solve the GS equation, with the most widely used is
the so-called iterative Picard method and various equilibrium codes have been written
[26, 27, 28, 29, 30].
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2.3 The energy principle of ideal MHD

In future fusion power plants, plasmas will have to be operated within, and relatively
far from, the stability boundaries, which are limits in the operational space that deter-
mine the regions of stable plasma operation. To find whether an ideal MHD equilibrium
is stable or unstable, one can perturb the equilibrium and observe whether the plasma
returns to its original configuration (stable equilibrium) or whether the plasma continue
evolving further away from the original configuration (unstable equilibrium). Mathemat-
ically, this is performed through a linearisation of the ideal MHD equations 2.1 around
a particular equilibrium configuration. In this approach, all the variables of the system
(n, u, p, E, B, J) are Taylor expanded around their respective equilibrium values:

f(r, t) = f0(r) + ✏ f1(r, t) + ✏2 f2(r, t) + . . . (2.16)

where ✏ is a control parameter and f0 can be any variable of the system. The perturbed
quantities are also Fourier decomposed:

f1(r, t) =
1X

j=�1

f j

1 (r) e
�i!j t (2.17)

Following the same procedures used in Classical Mechanics, one defines the perturbed
plasma velocity u1 as:

u1 =
d⇠

dt
(2.18)

where ⇠ is the plasma displacement. At t = 0, the perturbed variables are all set to zero:
B1(r, t = 0) = ⇢1(r, t = 0) = p1(r, t = 0) = ⇠(r, t = 0) = v1(r, t = 0) = E1(r, t =
0) = J1(r, t = 0) = 0. This means that at t = 0, the plasma is at equilibrium. Following
the procedure just described, the first-order mass conservation (Equation 2.1a), adiabatic
energy (Equation 2.1c) and momentum (Equation 2.1b) become:

@⇢1
@t

= �r · (⇢0 v1) =) ⇢1 = �r · (⇢0 ⇠) (2.19)

@p1
@t

= �p0�r · v1 � v1 ·rp0 =) p1 = �p0�r · ⇠ � ⇠ ·rp0 (2.20)

⇢0
@v1

@t
= J0 ⇥B1 + J1 ⇥B0 �rp1 (2.21)

Combining Ohm’s Law (Equation 2.1d) and Faraday’s Law (Equation 2.1e) yields:

@B1

@t
= r⇥ (v1 ⇥B0) =) B1 = r⇥ (⇠ ⇥B0) (2.22)

Substituting Equations (2.19) and (2.20) into Equation (2.21):

⇢0
@2⇠

@t2
=

1

µ0
[(r⇥B0)⇥B1 + (r⇥B1)⇥B0] +r(p0 �r · ⇠ + ⇠ ·rp0) (2.23)
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where B1 is related to ⇠ through Equation (2.22). Therefore, Equation (2.23) is only de-
pendent of the equilibrium values of the variables of the system and plasma displacement.
A reduced form of this equation is:

⇢0
@2⇠

@t2
= F (⇠) (2.24)

which F (⇠) is called MHD force operator. Using Fourier decomposition, the partial
derivative equation transforms into an eigenvalue/eigenfunction problem:

�!2 ⇢0 ⇠ = F (⇠) (2.25)

where ⇢0 works as a weight function. The force operator F is self-adjoint [31] and,
therefore, the eigenvalues !2 are real and the correspondent eigenfunctions ⇠n form a
set of orthogonal basis functions. Hence, any solution can be written as a sum of the
eigenfunctions multiplied by their respective weight. Since eigenvalues !2 are real, the
stability properties of the system is determined as follows:

• If !2 > 0, then ! is real. Therefore, the variables have a bounded oscillatory
behaviour around the equilibrium, i.e. the system is stable.

• If !2 < 0, then ! is imaginary. Hence, there is an exponentially growing solution
and an exponentially decaying solution. Since an exponentially growing solution
exists, the system is unstable.

Since F is self-adjoint, an energy principle can be formulated based on the Ritz’ vari-
ational principle [32]. The idea here is to transform the eigenvalue/eigenvector problem
into an energy problem (scalar). This can be done by multiplying Equation (2.25) by ⇠⇤

and integrating it over the plasma volume:

!2

2

Z
�⇢0 |⇠|2 dV =

1

2

Z
⇠⇤ · F (⇠) dV = �W (⇠⇤, ⇠) (2.26)

Here, the left hand side integral is associated to the plasma kinetic energy of the perturbed
system, K(⇠⇤, ⇠), and the right hand side integral corresponds to the work done by the
F when each plasma volume element is displaced by ⇠. Hence:

!2(⇠⇤, ⇠) =
�W (⇠⇤, ⇠)

K(⇠⇤, ⇠)
(2.27)

Since this relation is valid for any ⇠, !2 is no longer an eigenvalue. However, a relation
between !2 and the eigenvalues of the problem can still be obtained by writing ⇠ as:

⇠ =
X

j

aj ⇠j (2.28)

where ⇠j is the j-th eigenfunction. Since this problem is linear, one can substitute Equation
(2.28) into Equation (2.27), thus yielding:

!2 = �

P
i

P
j

a⇤
j
ai
R
⇠⇤
i
· F (⇠j) dV

P
i

P
j

a⇤
j
ai
R
⇢0 ⇠⇤i ⇠j dV

(2.29)
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The denominator integral corresponds to an orthogonality relation:
R
⇢0 ⇠⇤i ⇠j dV = �ij.

Using equation (2.25) on the numerator integral yields: !2
j

R
⇢0 ⇠⇤i ⇠j dV = !2

j
�ij, in which

one has made use of the orthogonality relation. Hence:

!2 =

P
j

|aj|2!2
j

P
j

|aj|2
(2.30)

where !j is the j-th eigenvalue. Hence, !2 is a weighted sum of the eigenvalues of the
system. With this relation, a more deep meaning of !2 can be understood:

• When !2 < 0, there must be, at least, one negative !2
j
, therefore the system is

unstable;

• When !2 > 0, no conclusion can be made, except if one proves !2 > 0 for any test
plasma displacement. Then, the system is stable.

Since K(⇠⇤, ⇠) is always positive, the sign of !2 is determined by �W (⇠⇤, ⇠), hence:

• If �W > 0, the system is stable;

• If �W < 0, the system is unstable.

The energy principle can be extended if one considers that the plasma is surrounded
by a vacuum region, which is then surrounded by a conducting wall. This leads to the
so-called extended energy principle. In this principle, the boundary conditions at interface
are:

• At any material wall, ⇠n = 0. In addition, if an ideally conducting wall is considered,
Bn = 0 at the ideally conducting wall. All plasma variables, such as ⇢m, u and p,
are zero outside the conducting wall;

• At the plasma-vacuum interface, B1,n is continuous, while B1,t might be discontin-
uous across the interface, which indicates the existence of a surface current density
flowing at the interface.

Applying these conditions, a rearrangement of �W can be done, leading to [31]:

�W = �WF + �WV + �WS (2.31)

where �WF is the fluid (plasma) contribution, �WV is the vacuum contribution and �WS

is the plasma surface contribution. Each term can be written as [1]:

�WF =
1

2

Z

Fluid


|B1,?|2

2µ0
+

B2
0,?

2µ0
|r · ⇠? + 2⇠? · |2 + � p0|r · ⇠|2�

� 2(⇠? ·rp0)( · ⇠⇤?)�
j0,||
B0

(⇠⇤? ⇥B0) ·B1

�
dV (2.32)

�WV =
1

2

Z

Vacuum

B2
1

2µ0
dV (2.33)

�WS =
1

2

Z

Surface

|n · ⇠?|2 n ·
����r

✓
p0 +

B2
0

2µ0

◆���� dS (2.34)
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where n is the normal vector of the surface and the double line indicates the disconti-
nuity on the plasma-vacuum interface. By the stability criteria, the vacuum term only
contributes to stability, while the surface term depends if the thermal and magnetic pres-
sure and equilibrium magnetic energy gradient jump are parallel or anti-parallel to the
normal vector. The fluid term is usually the most important in determining the stability
of the system and each term inside its integral correspond to a di↵erent plasma behaviour.
The first term in the integral represents the amount of energy required to perturb the
magnetic field and it is related to the shear Alfvén waves; the second term represents the
energy needed to bend the equilibrium magnetic field and to compress the plasma, and
it is related to compression Alfvén waves; the third term represents the stored energy of
ideal plasma due to an adiabatic compression and it is related to sonic waves. Note that
all these three terms are positive, since they are quadratic, which leads to plasma stabili-
sation. However, the last two terms can be destabilising and plasma stability depends on
their signs.

The fourth term of the fluid contribution gives rise to pressure driven instabilities. Its
sign will depend on the relative directions of rp0 and magnetic field curvature : if both
vectors are parallel, this term is negative, making the plasma more unstable. However,
if they are anti-parallel, the term is positive, hence the term is stabilising. In tokamaks,
both situations occur: at high field side (HFS), this term is stabilising, while at low field
side (LFS), this term is destabilising. Therefore, stability of pressure driven modes depend
on the integral of  along the field line: if the contribution from the LFS is larger than
that from the HFS, it leads to a unstable mode. Examples of pressure driven instabilities
in tokamaks are interchange and ballooning modes.

The fifth term of the fluid contribution gives rise to current driven instabilities, in
which current densities parallel to the equilibrium magnetic field may lead to instabilities.
Examples of instabilities are kink and peeling modes.

2.4 Extended energy principle for a screw pinch

A circular cross section plasma in a tokamak can be modelled as a periodic screw pinch,
i.e. all the variables of the system must be periodic in both the poloidal and the toroidal
directions. Hence, one can perform a spatial Fourier decomposition of the plasma dis-
placement, where the toroidal mode number n is related to the axial wave vector kz
through kz = �n/R0, which R0 is the major radius of an equivalent torus. A important
connection between the periodic screw pinch and the tokamak models is that the axial
direction of a screw pinch z is related to the toroidal angle through � = z/R0. From this
point, all toroidal components in a toroidal plasma, e.g. B�, will be related to the axial
component (z direction), i.e. Bz. Therefore, the Fourier decomposition of the plasma
displacement is:

⇠(r, ✓, z) = ⇠(r) e
i

⇣
m✓� n

R0
z

⌘

(2.35)

Since this is a periodic screw pinch model, ⇠ can be decomposed as:

⇠ = ⇠r r̂ + ⇠⌘ ⌘̂ + ⇠|| ê|| (2.36)
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where ê|| is the direction parallel to the equilibrium magnetic field line and ⌘̂ is perpen-
dicular to both r̂ and ê||. Let us now turn the attention to the stability analysis of the
screw pinch. Since compression helps to stabilise the plasma, let us consider instabilities
that do not compress the plasma, i.e. let us impose that: r · ⇠ = 0. With this assump-
tion, one can eliminate from Equation (2.32) its stabilising contribution. Because ⌘ is in
a flux surface and it appears on the Equation (2.32) through the Fourier decomposition
(Equation 2.35), it will only depend on r and ⌘. Therefore, one can minimise Equation
(2.32) with respect to ⌘. After some extensive algebra, the Equation can be rewritten as
[1]:

�W =
2⇡2 R0

µ0

aZ

0

(f ⇠02
r
+ g ⇠2

r
) dr +

�����
2⇡2 B2

z

µ0 R0
⇠2
r

"
n2 � m

2

q2

n2

R
2
0
+ m2

r2

+
r2

m
⇤

✓
m

q
� n

◆2
#�����

r=a

(2.37)

where a is the plasma minor radius, q is the safety factor for a cylindrical and circular
cross section plasma, defined by: q(r) = r Bz

R0 B✓
. The functions f and g are:

f = r
B2

z

R2
0

⇣
m

q
� n

⌘2

n2

R
2
0
+ m2

r2

(2.38)

g =
2µ0 p0

1 +
�
mR0
nr

�2 + r
B2

z

R2
0

✓
m

q
� n

◆2

0

B@1� 1
⇣

n r

R0

⌘2
+m2

1

CA+
2n2 B2

z

r R4
0

n2 � m
2

q2⇣
n2

R
2
0
+ m2

r2

⌘2 (2.39)

and ⇤ is the stabilising e↵ect of the conducting wall:

⇤ = �mR0 Ka

n aK 0
a

1� K
0
rwall

Ia

I0rwall
Ka

1� K0
rwall

I0a
I0rwall

K0
a

(2.40)

with Kr = Km(nr/R0) and Ir = Ir(nr/R0) being the modified Bessel functions of first
kind and second kind, respectively, and the prime indicates the radial derivative.

An important point in Equation (2.37) is its dependency upon m

q
� n. Note that

function f and the last 2 terms of the function g depend on m

q
�n. These three terms are

stabilising and they all vanish at q = m/n. So, there are special surfaces in the plasma
that plays a important role in the stability of tokamak plasmas. These surfaces are called
rational or resonant surfaces, since m and n are integers. At these surfaces, a field line
closes upon itself after n toroidal turns and m poloidal turns.

2.5 ELMs in the ideal MHD model

Edge localised modes (ELMs)[11] are instabilities caused by the coupling of current driven
instabilities (peeling modes) with pressure driven modes (ballooning modes). These modes
can be quite violent as they can expel huge amounts of energy and particles to the material
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Figure 2.1: A standard ELM cycle: the 1st phase is a linear phase, where edge pressure
gradient and parallel edge current density starts to increase; the 2nd phase starts when
the edge pedestal pressure is critically stable (ballooning critical) and the edge parallel
current density is still building up; in the 3rd phase, the plasma edge is critically stable to
ballooning and peeling modes and non-linear processes leads to the ELM crash, ejecting
particles and energy to the wall, reducing plasma edge pressure and current density.
Reproduced from [1].

walls, causing heat fluxes onto plasma facing components of the order of hundreds of
MW/m2 in large machines such as JET.

These modes are periodic and their periods can be described by a linear phase, in
which there is an increase of temperature, pressure, parallel current density in the plasma
edge [12, 13, 14, 15] and, consequently, of stored energy, and by non-linear phase, in which
the ELM is triggered and particles and energy are expelled from the confined region. A
typical ELM cycle is illustrated in Figure 2.1.

Up to this date, there is no unified ELM description, but a phenomenological approach
has been used to describe di↵erent types of ELMs (Figure 2.2):

• Type I ELMs : instabilities in which peeling and ballooning modes are coupled.
These modes are the most violent, ejecting large amounts of particles and energy to
the wall, above any material heat flux threshold [16]. The toroidal mode number of
this instability ranges from n = 7� 14.

• Type II ELMs : instabilities mainly triggered by ballooning modes on scenarios with
high triangularity (�), poloidal beta (�p) and safety factor at flux surface  N = 0.95
(q95). These modes are not intense as type I ELMs and, since they are triggered by
ballooning modes, the toroidal mode number of this instability is typically high, i.e.
n > 15

17



Figure 2.2: A schematic diagram of type I,II and III ELM cycle with its respective
characteristics and an example of values of pressure gradient and parallel current in L-H
transition

• Type III ELMs : instabilities triggered by peeling modes, in which the plasma is
stable for pressure gradient modes. This instability is mainly driven by high boot-
strap currents and where the plasma scenario is close to L-H threshold transition,
with temperature, density and plasma confinement time smaller than the values for
a type I ELM scenario.

Applying a minimisation using Euler-Lagrange equation on Equation (2.37) for criti-
cally stable to kink modes plasmas, a stability criteria can be derived [1]:

↵


r

R0

✓
1� 1

q2

◆
+ s�0 � ft

R0 s

2r

�
> R0 q s

✓
j||,driven

B

◆
(2.41)

where ↵ is the normalised plasma pressure, or ballooning parameter:

↵ = �2µ0 R0 q

B2

dp

dr
(2.42)

ft is the trapped particle fraction, s is the magnetic shear

s =
r

q

dq

dr
(2.43)

and �0 is the radial derivative of the Shafranov shift, defined by:

�0 = � r

R0

 
�̂pol +

ˆ̀
i

2

!
(2.44)

Here, �̂pol =
2µ0

B
2
pol
(hpi � p) is the local poloidal beta and ˆ̀

i =
hB2

poli
B

2
pol

is the local normalised

inductance.
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Equation (2.41) is a model which if the inequality is true, the plasma is stable. The
first term of the LFS describes the Mercier contribution [1], that can lead to pressure
driven modes. The second term of the LFS describes the Pfirsch-Schlüter current, which
is an e↵ect of the divergence of the diamagnetic current in a torus that can be not
zero in a flux surface. The third term of the left hand side describes the destabilising
bootstrap contribution, accounted by the bootstrap current that will be described in the
next chapter. The right hand side j||,driven represents the parallel current with exception
of Pfirsch-Schlüter and bootstrap current which are on the left hand side due to their
dependence to p0. Since, ↵ is linearly dependent on p0, this equation relates |rp| and
J|| linearly if plasma is critically stable to peeling modes (current driven instabilities).
Hence, if the pressure gradient is increased, more parallel current can be induced and the
plasma is still stable. However, this equation is only valid when the pressure gradient in
the edge is not close to the instability region. When this happens, ballooning theory must
be accounted and the relation between parallel density current and pressure gradient is
complex, hence, stability studies demand numerical calculations [33, 14].
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Chapter 3

Computational tools

This chapter presents the computational tools used in this work. In particular, a detailed
description is given to the Plasma Scenario Design (PSD) code, written by Prof. Gustavo
Canal, used to generate the TCABR plasma scenarios used in this work.

3.1 The Plasma Scenario Design code

In this section, the main steps followed by the PSD code are described in details. The PSD
code not only solves the GS equation for a prescribed plasma boundary, plasma current,
etc., but also allows for (i) the inclusion of neoclassical e↵ects to the equilibrium, such as
the bootstrap current and neoclassical plasma rotation, (ii) the automatic adjustment of
kinetic profiles when ballooning stability is reached, (iii) the calculation of the poloidal
field coil currents needed to create the desired equilibrium, among other options.

3.1.1 The TCABR pedestal structure

The characteristics of the H-mode edge pedestal are crucial for characterising the confine-
ment of the core plasma. In addition, understanding and predicting the pedestal pressure
and width is essential for characterising the stability of tokamak plasmas. The pedestal
is characterised by a steep pressure in the plasma edge (last 5 � 10% of the plasma
poloidal flux). During the evolution of the properties of the pedestal, the pedestal height
(plasma pressure at the pedestal top) increases due to the improvement in confinement,
causing a further increase of the pedestal height and pressure gradient, which triggers
local pressure driven instabilities that increase the pedestal width. The pedestal height
and width continue to grow, but at di↵erent rates, such that the edge pressure gradient
keeps increasing until a more severe (global MHD) instability is driven, causing the edge
pedestal to collapse - the ELM crash. The two instabilities just mentioned are [34]:

• Local kinetic ballooning modes (KBM): a short wavelength instabilities driven by
local pressure gradients and kinetic e↵ects [34]. The evolution of the structure
of a pedestal limited by KBMs can be calculated using the so-called ballooning
critical pedestal (BCP) method, in which the pedestal profile (height and width) is
ballooning critical if the centre of the pedestal, i.e. where the pressure gradient is
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B (T ) � N pped (kPa)
0.13 0.0592 4.08
0.14 0.0526 3.73
0.15 0.0471 3.44
0.16 0.0425 3.18

Table 3.1: KBM-PBM stability limit in terms of poloidal field.

maximum, is marginally stable (at the ballooning stability threshold) or unstable.
Using this method, one can relate the pedestal width (� N ) with the local poloidal
beta at the pedestal top, �p,ped [34]:

� N = C
p
�p,ped =) pKBM =

1

2µ0

✓
Bpol� N

C

◆2

(3.1)

with C depending on ion collisionality and aspect ratio. Studies show that C can
assume values between 0.06 � 0.09. Here, C = 0.076 is the used value, which is a
value that has been validated in several experiments on DIII-D and is also the value
assumed in the EPED code used to predict the pedestal structure of ITER H-mode
plasmas. [34].

• Global peeling-ballooning modes (PBMs): coupling of two types of ideal MHD
modes: peeling modes, which are current driven, and ballooning modes, which are
pressure gradient driven. This coupling generates modes on the pedestal and it has
typically an intermediate toroidal mode number (n = 7 � 14). The crash of these
modes releases particles and energy from the edge pedestal structure, decreasing the
pedestal pressure height and gradient. For standard aspect ratio, such as TCABR
and DIII-D, the PBM stability boundary can be estimated through a scaling law:
[34]:

pPBM = A�3/4
 N

(3.2)

with A = 34 kPa and � N being the pedestal width in units of normalised poloidal
flux.

The pedestal height and width are defined when the pedestal is marginally stable for
both KBMs and PBMs modes, Figure 3.1. For TCABR, the poloidal field is in the range
of 0.13�0.17T and the pedestal height and width for each value of poloidal magnetic field
can been seen in Figure 3.1. The KBM and PBM marginally stable values for pedestal
height and width are given in Table 3.1.

A systematic way of determining the pedestal pressure is through the pedestal electron
temperature (Te,ped), which can be estimated through [35]:

Te,ped = 0.034

✓
B0

q95

◆4 a(1 + 95)

Ip

�2✓↵2
c

n̄e

◆
(3.3)
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Figure 3.1: Pedestal height and width marginally stable for KBM and PBMs.

where ↵c is the critical ballooning parameter, given by:

↵c = 0.4 ŝ
⇥
1 + 295(1 + 5�295)

⇤
(3.4)

Here: B0(T ), q95, a(m), 95, �95, Ip(MA), n̄e(1020) and ŝ are, respectively, toroidal mag-
netic field measured at R0, edge safety factor, plasma minor radius, elongation, triangu-
larity, plasma current, line-averaged electron plasma density and magnetic shear. On the
other hand, the pedestal width can be calculated via [33]:

� N = 0.076
p
�p,ped (3.5)

which �p,ped is the pedestal poloidal beta, defined by:

�p,ped =
4µ0 ne,ped kB Te,ped

hBpoli2
(3.6)

where kB is the Boltzmann constant, ne,ped and Te,ped are electron pedestal density and
temperature, respectively, and hBpoli is the mean value of the poloidal field in the pedestal.

3.1.2 Plasma kinetic profiles

The signature of H-mode tokamak plasmas is the structure of electron temperature, den-
sity and, consequently, pressure profiles. These profiles have a pedestal structure in the
plasma edge, where they can be modelled as [36]:

f( ) = fa + (fped � fa) tanh


�
 a �  

 a �  0

�
+ (f0 � fped)

✓
 a �  

 a �  0

◆µ

(3.7)

Here, f represents either temperature or density as a function of the poloidal magnetic
flux  . fa is the value in the plasma edge, f0 is the value at the magnetic axis and fped
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is the value on the pedestal top. � and µ are free parameters, where the first adjusts the
pedestal width and the latter adjusts how the profile peaks at the magnetic axis. With
the temperature and density profiles, one can calculate the pressure profile for each specie
via:

p↵(kPa) = 16.02n↵(10
20)T↵(keV) (3.8)

where the specie pressure is in units of kPa, the specie temperature is in units of keV, the
specie density is in units of 1020. Therefore, the total pressure is the sum of the pressure
of all species. For the TCABR:

ptot = pe + pi + pC + pFe (3.9)

where pe is the electron pressure, pi is the ion pressure, pC is the carbon impurity pressure
and pFe is the iron impurity pressure.

In this work, the poloidal plasma rotation is assumed to be purely neoclassical [37].
If one takes equilibrium flux-surface averaged parallel component of the momentum force
balance for the main ion and a impurity species, it results in:

hB ·r ·⇧↵i = hB · F↵i (3.10)

where ⇧↵ is the stress tensor and F↵ is the source of momentum due to momentum
exchange between di↵erent fluids. This equation shows the balance between momentum
source and viscous forces. When the plasma is in the Pfirsch-Schlüter regime, the ion
and impurity poloidal rotation velocities can be derived from equation (3.10) and can be
found at [37]. The expressions are the following:
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BB�

hB2i (3.12)

where vth,i is the ion thermal velocity, ⇢i is the ion Larmor radius, K1 and K2 are the
collisionality-dependent viscosity coe�cients as defined in [37], F ( ) = RB� and k( )
are flux-dependent functions, LTi is the ion temperature gradient scale length, defined as
1

LTi
= d lnTi

dr , and Lpi is the ion pressure gradient scale length. It is important to note

the strong relation between the ion poloidal rotation velocity and the ion temperature
gradient. For the impurity poloidal rotation velocity, there are more intricate relations and
both ion temperature and pressure gradient scale lengths are important in the calculations,
making impurity poloidal velocity dependent of ion quantities. It is worth noting how
small is the contribution of impurity pressure gradient scale length due to the factor Zi

Z↵
.

In H-mode plasma edge, the impurity poloidal velocity can be large due to the steep
ion pressure gradient and impurities rotates typically at the diamagnetic drift direction.
On the other hand, the ion poloidal rotation velocity can be zero or even change sign
in the pedestal region, as it depends on ion parameters in the plasma edge. The main
responsible parameter for this change is the ion collisionality ⌫⇤,i, which is closely related
to the coe�cient K1.
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The ion toroidal velocity on the pedestal top is calculated via neoclassical theory [38]:

v�,ped = 0.104

✓
dc
2
� R̄x

◆
q95 Ti

L�B0
(3.13)

where v�,ped is in units of km/s, dc is the poloidal variation of the turbulent plasma
viscosity, qa is the plasma safety factor at  N = 0.95, L� is the e-folding decay length of

the plasma potential fluctuation intensity
D
�̃2
E1/2

in units of cm, Ti is the pedestal top

ion temperature in eV and R̄x is the normalised X-point major radius, defined as:

R̄x =
2Rx � (Rout +Rin)

(Rout �Rin)
(3.14)

where Rx is the X-point radius, Rout is the major radius of the outer separatrix at the
midplane and Rin is the major radius of the inner separatrix at the midplane.

At the magnetic axis, the H-mode plasma toroidal velocity is modelled as [39]:

(v�,axis)H = A
Wp

Ip
+ (v�,axis)L (3.15)

where A is a constant, Wp is the plasma stored energy and (v�,axis)L is the L-mode plasma
toroidal velocity at the magnetic axis. For the TCABR, it was observed that the L-mode
plasma toroidal velocity at the magnetic axis is 30 km/s.

3.1.3 Inclusion of the bootstrap current

In order to calculate the plasma kinetic equilibrium accurately, one must account for all
currents present in the plasma. Due to the non-uniform toroidal magnetic field on a flux
surface and low collisionality, electron and ion execute the so-called banana orbits that
gives rise to a parallel current density termed bootstrap current. This current is also
related to pressure, electron and ion temperature gradients, trapped particle fraction and
collisionality [40]:

jBS = jp + JTe + jT i = �R0 pe (gp + gTe + gT i) (3.16)

where:

gp = L31
1

pe

@p

@ 
, gTe = L32

1

Te

@Te

@ 
, gTi = L34 ↵

1� pe

p

pe

p

1

Ti

@Ti

@ 
(3.17)

Here, p is the total thermal pressure, pe is the electron pressure, Te and Ti are the electron
and ion temperatures, while the coe�cients L31, L32, L34 and ↵ are functions of the
electron and ion collisionalities ⌫⇤

e
, ⌫⇤

i
and the trapped particle fraction ft.
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3.1.4 Power balance

One of the main plasma equations, the power balance accounts all plasma powers due to
phenomena such as: radial transport, radiation (line radiation, cyclotron emission and
bremsstrahlung) and ohmic heating:

@W

@t
= Pohm + Paux + P↵ � Prad �

W

⌧e
(3.18)

which W is the total plasma stored thermal energy, Pohm is the ohmic heating power,
Paux is the auxiliary power input into the plasma by external methods such as neutral
beam injection and microwave heating, P↵ is the heating power due to fusion-born ↵-
particles, Prad is the power lost due to radiation (line radiation, cyclotron emission and
bremsstrahlung) and ⌧e is the energy confinement time, which is expressed by a empirical
scaling law[41]:

⌧e = 0.0562 I0.93
p

B0.15
0 P�0.69

in n̄0.41
e

M0.19 R1.97
0 0.78 ✏0.58 (3.19)

where Ip (MA) is the plasma current, B0 (T ) is the toroidal magnetic field measured at R0,
Pin (MW ) = Pohm +Paux +P↵ is the input power, n̄e (1019) is the line-averaged electronic
density, M (u.a.) is the isotopic hydrogen mass, R0 (m) is the machine major radius,  is
the plasma elongation and ✏ = a/R0 is the plasma aspect ratio.

In TCABR, there are no auxiliary heating nor fusion power, so Pin = Pohm and the
power balance reduces to:

@W

@t
= Pohm � Prad �

W

⌧e
(3.20)

With the ohmic power calculated by:

Pohm =

Z
j ·E dV (3.21)

Since the externally applied, induced electric field in the plasma is in the toroidal direction
and it can be described by a loop voltage Vl: Vl =

@ 

@t
, i.e. E|| =

Vl
2⇡R0

, one obtains:

Pohm =

Z
jtor Vl

2⇡R0
dV (3.22)

Radiated power is the sum of line radiation, cyclotron emission and bremsstrahlung power.
The first is [6]:

PR =
X

ne nZ RZ(Te) (3.23)

where ne is the electron density, nZ is the impurity density and RZ(Te) is the radiated
power function, i.e. Figure 3.2. The sum accounts all impurities species in the plasma.

For bremsstrahlung, the radiated power is [6]:

Pbrem = 1.6918⇥ 10�38 Z2
e↵ ne nz T

1/2
e

(3.24)

where Ze↵ is the e↵ective ion charge of the impurity. For TCABR, the accounted impu-
rities are iron (Fe), where the iron density is accounted to be about 5 ⇥ 10�4 of ni, and
carbon (C), where the carbon density is accounted to be about 3⇥ 10�2 of ne.
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Figure 3.2: Radiated power density normalised to the product of electron and impurity
density for several elements. Reproduced from [1].

For the cyclotron radiation, the radiated power density is given by [6]:

Pc =

✓
e4

3⇡ ✏0 m3
e
c3

◆
B2 ne Te (3.25)

where ✏0 is the vacuum permittivity, me is the electron mass and c is the speed of the
light in vacuum.

The total plasma stored energy W is calculated via the integral of total pressure:

W =
3

2

Z
ptot dV (3.26)

3.1.5 H-mode transition and pedestal structure

In 1982, Fritz Wagner and his team at the ASDEX Tokamak in Germany [42], discov-
ered a spontaneous transition in plasma confinement which created a strong gradient on
the electron temperature and density and, consequently, electron pressure profiles in the
plasma edge. This strong pressure gradient in the plasma edge was associated to a strong
reduction in radial transport and a significant improvement in both particle and energy
confinement. This new plasma mode of operation is called high confinement mode or
simply H-mode, Figure 3.3.
The access to H-mode is not fully understood. Many studies were conducted on a broad
range of tokamak sizes, observing how certain parameters influences the H-mode transi-
tion:
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Figure 3.3: Examples of L- and H-mode electron pressure, temperature and density radial
profiles for two discharges in DIII-D tokamak. Reproduced from [2].

• Direction of rB drift: in JET [43] and DIII-D [44], both teams observed a correla-
tion of the L-H transition with the direction of the ion rB drift. In both machines,
if the ion rB drift points towards the X-point, the transition occurs at a lower
power threshold;

• Neutral gas injection: in TCV [45], COMPASS and MAST [46], injection of neutral
gas on the HFS allowed H-mode transition to occur at lower power threshold in
comparison to injecting neutral gas from the LFS.

• Plasma configuration: in TCV [47], NSTX [48] and MAST [46], the plasma configu-
ration was observed to influence strongly the H-mode access, with diverted configu-
rations reducing the power needed for the transition. In these machines, increasing
lower triangularity reduces the L-H power for edge densities above 1.7⇥ 1019 m�3.
In MAST, double-null configurations reduced largely the threshold power, while in
NSTX, single-null were preferable.

Using data from 13 machines, a scaling law for the L-H transition was derived in order
to estimate the minimum power [49]:

PLH (MW ) = 0.072n0.7
20 B0.7

0 S0.9

✓
Ze↵

2

◆0.7

F (A)0.5 (3.27)

Here F (A) = 0.1 A

f(A) with f(A) = 1�
q

2
1+A

, with A = R0/a being the aspect ratio, n20

being the electron density in units of 1020 and S is the surface area of plasma boundary.
For a TCABR single-null divertor configuration, the L-H power threshold is expected to
be about 240 kW.
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3.2 The M3D-C1 model

In this work, the plasma response to RMP fields and the growth rates of MHD instabilities
were calculated using the two-fluid visco-resistive MHD code M3D-C1 [50, 51], which was
developed at the Princeton Plasma Physics Laboratory (PPPL). The code was brought
to Brazil through a collaboration between PPPL and the TCABR team and the code is
installed at the supercomputer Santos Dumont, operated by the National Laboratory of
Scientific Computing (LNCC) at Petrópolis - RJ. This code solves the MHD equations on
a extended region that includes the confined plasma, scrape-o↵ layer, conducting wall and
the vacuum region surrounding the conducting wall. The codes solves the following set of
MHD equations through a finite element method, which ensures the continuous property
of the value and the derivative of the fields calculated.
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+r · (nu) = 0, (3.28a)
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r⇥E = �@B
@t

, (3.28e)

r⇥B = µ0J , (3.28f)

E + u⇥B = ⌘J +
1

ne
(J ⇥B �rpe �r ·⇧e) . (3.28g)

Here, p is total pressure, u is the fluid velocity, pe and p are the electron and total plasma
pressures, J is the plasma current density, n is the plasma density, E and B are the
electric and magnetic fields, mi is the ion mass, � is the heat capacity ratio, ⌘ is the
Spitzer resistivity, ⇧e and ⇧ are the electron and total stress tensors, qe and q are the
electron and total heat flux, Qe and Q are electron and total external heat, Fe and F
are external force acting on the electrons and on the plasma (electrons + ions). This set
of equations is solved on an unstructured mesh, generated by a code developed by the
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Figure 3.4: The generated mesh used for the M3D-C1 studies. It has 25957 elements,
covering all 3 regions (plasma core, scrape-o↵ layer and vacuum).

private company Simmetrix. Since the main objective is the study of this work is to study
the impact of RMP fields on the plasma, the generated mesh has a higher resolution in
the plasma edge and around the separatrix for more accurate results, Figure 3.4.

The simulations carried in this work were run on the linear version of the code, where
Equations (3.28) are linearised around the equilibrium. This linearised system is then
solved on 2 plasma models:

• Vacuum model - the RMP field is superposed with the axisymetric equilibrium
magnetic field, i.e. the plasma does not respond to the externally applied RMP
field.

• Single-fluid model - the plasma is modelled as single-fluid, which can respond to the
externally applied RMP fields.
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Chapter 4

Equilibrium and stability of the
TCABR standard scenario

Before designing the innovative set of RMP coils for TCABR, it is crucial to construct an
accurate MHD equilibria and characterise the stability of the synthetic MHD equilibria
generated. These equilibria will be used for designing the RMP coils and, therefore, it
is important to estimate how stable/unstable these plasmas are. Since RMP coils are
used to control ELMs, some H-mode scenarios must be unstable to MHD modes (peeling-
ballooning modes) in order to generate ELMs. The stability of MHD mode is characterised
by the growth rate � = 1

2
d
dt lnK, where K is the plasma kinetic energy. A positive growth

rate leads to a unstable MHD mode, while a negative growth rate to a stable MHD mode.
This chapter is divided in three pieces: the first part describes the construct of the

standard MHD equilibrium scenario used to design the RMP coils; in the second part,
an investigation on what MHD modes are unstable in the standard H-mode scenario
of TCABR and what is the role of resistivity in their stability; in the final part, one
investigates the role of the pedestal structure, as electron temperature at the pedestal
top, Te,ped, and electron pedestal width � N , on the stability and examine how sensitive
the plasma stability is to these quantities.

4.1 The TCABR H-mode standard scenario

The starting point of any detailed study on plasma stability and plasma response to
RMP fields is the ability to create accurate MHD equilibria. In this work, the plasma
scenarios used on stability and plasma response studies were constructed using a code
developed by Prof. Gustavo Canal (see Section 3.1). It solves the Grad-Shafranov equa-
tion for a prescribed plasma shape and position and some important plasma quantities:
upper and lower triangularity (�u, �l), elongation (), toroidal magnetic field at the mag-
netic axis (B0), plasma current (Ip), ion and electron temperatures and densities at R0

(Ti,0, Te,0, ni,0, ne,0), electron and ion density at R0 (ni,ped, ne,ped) and e↵ective ion charge
(Ze↵). With these quantities, the code simulates the temperature, density, pressure,
current and rotation profiles, also calculating dynamic quantities such as collisionality,
bootstrap current and plasma poloidal and toroidal rotation velocities. According to
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Figure 4.1: Equilibrium profiles of the standard scenario. In this scenario, the main
plasma parameters are: Ip = 107 kA, B0 = 1.2T, q95 = 3.5,  = 1.27, �u = 0.4, �l = 1.0,
 N,ped = 0.92.

the prescribed plasma shape, the code tries to shape the plasma by applying current on
poloidal field (PF) coils. The code also accounts for the mutual coupling among the ohmic
coil, PF coils, the vacuum vessel and the plasma. The code converges when the error be-
tween 2 consecutive interactions is smaller than a prescribed value. Since we are interested
in the pedestal studies, a script to simulate the pedestal structure was also included in
the code. For the RMP studies, a standard H-mode scenario was generated where the
equilibrium and kinetic quantities are calculated and shown in Figures 4.1 and 4.2.

4.2 Linear stability against edge localised modes

The first issue to be addressed in the standard H-mode scenario in TCABR is whether
the plasma is unstable to any MHD mode that can lead to an ELM. To address this issue,
stability calculations using the M3D-C1 were ran for the standard H-mode scenario and
the growth rate (�) of the MHD modes were analysed for various toroidal mode number,
ntor = 1 to 12, Figure 4.3. The code evolves the MHD equations (3.28) for about 150
⌧A, where ⌧A = a

vA
is a constant Alfvén time, related to the plasma minor radius and the

Alfvén velocity vA = Bp
µ0 ⇢m

, with B = 1T and ⇢m = mi n0 is the plasma mass density

with n0 = 1020 m�3.
The simulations, the growth rates � calculated by the M3D-C1 code are then nor-

malised by the e↵ective ion diamagnetic frequency, !⇤
i
, defined as half of the maximum

ion diamagnetic frequency in the pedestal region. This diamagnetic frequency, defined
as !i =

ntor
ei ni

dp
d N

(ei is the ion charge, ni is the ion density and p is the total pressure),
corresponds to a rotation in the opposite direction of the plasma current and it leads
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Figure 4.2: Kinetic profiles of the standard scenario.

to stabilisation of MHD modes on the plasma edge [52, 53]. If the normalised growth
rate �/!⇤

i
< 1, the unstable single-fluid MHD mode is stabilised by the ion diamagnetic

rotation and the plasma is considered to be stable. Otherwise, the MHD mode grows
faster than the stabilising e↵ect of the ion diamagnetic rotation, leading to a unstable
mode and, consequently, to an ELMs.

According to the single-fluid stability calculations shown in Figure 4.3, the unstable
MHD modes in the TCABR standard scenario are the ones with n = 5 � 7, with n = 6
being the most unstable. This results indicates that the standard scenario will be unstable
to peeling-ballooning modes, which is highly desirable as the TCABR upgrade aims at
further developing methods of ELM suppression using RMP fields. Peeling-ballooning
modes are driven by parallel current density flowing on the plasma edge, Jk,edge, and the
pressure gradient in the plasma edge, (rp)edge.

In addition, a characterisation of the stability of these unstable modes was carried to
investigate the role of plasma resistivity, ⌘. A plasma resistivity scan was carried for the
most unstable MHD mode of the standard scenario (n = 6) to understand whether these
unstable modes are of ideal nature or resistive nature.

As shown in Figure 4.4, as the resistivity is reduced to the ideal MHD limit ( ⌘
⌘0

! 0),
the n = 6 mode becomes stable, i.e. � < 0. Therefore, plasma resistivity is expected
to play a significant role on the mode growth rate of the TCABR H-mode standard
scenario, indicating that ELMs in TCABR will be driven by resistive modes. A further
indication is through the growth rate data fitting: the angular coe�cient of this log-log
graph is 0.322 ± 0.002, close to the theoretically predicted behaviour of resistive modes,
i.e. � = �0(

⌘

⌘0
)1/3 [54]. Hence, it is expected that the TCABR standard scenario be

unstable to ELMs.
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Figure 4.3: Normalised growth rates �/!⇤
i
for MHD modes with toroidal mode numbers

n = 2 to 12 and the time evolution of the growth rates � up to 150 ⌧A.

Figure 4.4: E↵ect of plasma resistivity on the growth rate of the n = 6 peeling ballooning
mode.

4.3 Pedestal parameters and edge stability analysis

In H-mode, the edge of plasma develops a structure called pedestal in which temperature,
density and pressure profiles have a strong gradient. Since H-mode plasmas can be un-
stable to ELMs triggered by rp and/or Jk on the plasma edge [14, 33], the study of the
pedestal height and width is essential to characterise the stability of these plasmas.

In this work, the study of rp and Jk impact on plasma stability was carried out
through the simulation of five H-mode scenarios, where all scenarios have the same plasma
current Ip = 112.4 kA, elongation  = 1.39, inferior and superior triangularity �u =
0.27, �l = 1, minor radius a = 0.15 m and density and temperature at R0 Te,0 = 550 eV,
ne,0 = 3.6⇥ 1019 m�3. These five scenarios di↵er in the values of electron temperature
at the pedestal top (Te,ped) and electron temperature pedestal width (� N ), listed on
Table 4.1.
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Shot Te,ped (eV) � N

007000 220 0.075
007001 200 0.075
007002 240 0.075
007003 220 0.085
007004 220 0.065

Table 4.1: Prescribed electron temperature on the pedestal top and electron temperature
pedestal width studied to investigate stability.

Figure 4.5: Stability analysis of the MHD modes with toroidal mode numbers n =
1, 4, 9, 14 for di↵erent pedestal top electron temperature.

The stability calculations of the five TCABR H-mode scenarios was carried out for
ntor = 1 � 14, Figure 4.5, and the simulation was carried out for 150 ⌧A. The stability
analysis was executed through a study about the growth rates of the MHD modes for
several values Te,ped and a fixed value � N = 0.075.

For the low-ntor values (ntor = 1, 4), i.e. mainly driven by peeling modes, the variation
of Te,ped did not change their stability, showing that this scenarios are not close to the
peeling mode stability boundary. It also indicates that the (Jk)edge values are not close
to the critical stability value. On the other hand, the intermediate and high ntor values
(ntor = 9, 14) shows that an increase of Te,ped causes the plasma to become unstable with
ntor = 14 mode being the most sensitive to the Te,ped variation. The mode ntor = 9
and ntor = 14 correspond, respectively, to peeling-ballooning and ballooning modes, in
which rpedge is the main drive. Since an increase of Te,ped also increases pe,ped, rpedge
also increases for a fixed value of � N , leading to more unstable peeling-ballooning and
ballooning modes.

Stability calculations were also carried out to study the e↵ect of variations of � N for
a fixed Te,ped = 220 eV , Figure 4.6.

For low-ntor values (ntor = 1, 4), the variation of the pedestal width did not destabilise
these modes. Notwithstanding, the intermediate and high-ntor values (ntor = 9, 14) shows
that an increase of pedestal width causes these MHD modes to become stable, with the
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Figure 4.6: Stability analysis of the MHD modes with toroidal mode numbers n =
1, 4, 9, 14 for di↵erent pedestal widths.

mode n = 14 being the most sensitive to this pedestal width variation. These modes are
driven by peeling-ballooning (ntor = 9) and ballooning (ntor = 14) modes, both modes are
driven by rpedge, where an increase of � N , for a fixed Te,ped, decreases (rp)edge and the
mode drive, thus having a stabilising e↵ect.

Lastly, the five H-mode scenarios studied showed that current driven modes (peeling
modes) are stable and far from the stability boundary. However, peeling-ballooning and
ballooning modes are sensitive to Te,ped and � N , where both quantities change rpedge
and, consequently, the main drive of these modes. The results indicate that numerical
simulations of ELMs in TCABR must be done carefully due to the MHD stability modes
sensibility to pedestal quantities.
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Chapter 5

Conceptual design of an advanced
set of RMP coils for TCABR

In this chapter, the physical criteria for the RMP coils study are presented and the
geometric design and the current optimisation of 2 coil sets are carried: one coil set on the
LFS, called I-coils, and the other on the HFS, called CP-coils. Each coil set is composed
of 3 toroidal arrays of 18 equally spaced coils, where each coil is powered independently
by a AC/DC current supply. On AC mode, the supply will be able to do any waveform
with f  10 kHz and current amplitude up to 1 kA, while in DC, the current amplitude
can be as high as 2 kA. Each I-coil has 12 turns, while each CP-coil has 30 turns. The
baseline RMP model is presented in Figure (5.1).

Figure 5.1: The TCABR RMP coil baseline model.
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This study is conducted on the coil geometric design and the coil current optimisation
in order to reduce the current supplied to the coils. However, the RMP fields produced
by these coils need to satisfy a physical criteria set.

5.1 Design criteria

The conceptual design of the TCABR RMP coils requires a set of criteria that is used to
evaluate whether the applied RMP fields are perturbing the plasma edge su�ciently to
create a layer of stochastic magnetic field lines through the overlap of magnetic islands,
induced by the RMP fields. This stochastic layer can mitigate/suppress ELMs by enhanc-
ing particle and energy radial transport, thus having a stabilising e↵ect. This mechanism
can reduce the amount of energy and particles ejected during an ELM, or even completely
suppress ELMs through an increase of the neoclassical turbulence transport [23].

In this work, three design criteria are being considered:

• The magnitude of the magnetic perturbations that are resonant at  N = 0.95 must
be su�ciently large, i.e. [55]:

�Bm,n

B0
� 1⇥ 10�4, i.e. �Bm,n � 0.01%B0 (5.1)

where �Bm,n is the magnitude of Fourier-decomposed RMP field perpendicular to
the equilibrium flux surfaces [56]:

�Bm,n =
(2⇡)2
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2⇡Z
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B ·r✓⇤
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where ✓⇤ is the poloidal angle defined by d✓⇤ = d�

q

• The Chirikov parameter [57, 58, 59] �Chir must satisfy the following condition in the
pedestal region on the vacuum model:

�Chir =
� m,n +� m+1,n

2( m+1,n �  m,n)
> 1 (5.3)

where � m,n is the width (in  N units) of a magnetic island located at the rational
surface q( N) = m/n.

• The vacuum island overlap width �VIOW must be wider than the pedestal width
� N [60]:

�VIOW > � N = 0.08 (5.4)

The first criterion corresponds to the minimum RMP field strength needed to create a
stochastic layer in the pedestal region. This layer is formed when magnetic islands overlap.
The criterion uses the norm Fourier-decomposed component rather than the magnitude of
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the field, since only the resonant component �Bm,n can open magnetic islands on rational
surfaces q( N) = m/n.

The second criterion addresses the island overlap. The Chirikov parameter is a figure of
merit which depends on the width of neighbour magnetic islands and the distance between
their rational surfaces. The criterion says if �Chir > 1, two neighbouring magnetic islands
boundaries would overlap, breaking the island structure and creating a region of stochastic
magnetic field lines. Furthermore, to avoid the plasma core to slow down, exiting from
H-mode and locking in phase with the perturbation field, and the discharge to end in
a major current disruption, this criterion must be only satisfied in the pedestal region.
Therefore, the Chirikov parameter must not be larger than one in the plasma core region.

The third criterion is related to the aforementioned criterion, but now all of the mag-
netic island widths are analysed thoroughly, verifying if a chain of magnetic islands are
overlapping and creating the stochastic region in the pedestal region [60].

Another important study carried out in this work is the coil current optimisation for a
given equilibrium configuration and coil set. In this case, the goal is to minimise the coil
currents needed to satisfy the physical criteria (Equations 5.1 to 5.4). Using an optimal
coil current configuration reduced the demand on the power supplies. The RMP coil
current is modelled as:

Icoil(t) = IRMP(t) cos[ntor�+ �0(t)] (5.5)

where IRMP(t) is the current amplitude, ntor is the toroidal periodicity of the coil current
distribution, � is the toroidal coordinate and �0(t) is the phase of the coil current.

One advantage of this current model is the ability to change the coil current configu-
ration ntor and the perturbative magnetic field spectra by adding �0 values on di↵erent
coil arrays. The focus of this coil current optimisation study is, for a given coil configu-
ration ntor, to find the values of �0 on the upper and lower arrays of I- and CP-coils that
minimises the coil current while verifying if the physical criteria.

Since the power supplies planned for the RMP coils will be able to work on AC and DC
current modes, both IRMP(t) and �0(t) can be time-dependent quantities and will be able
to be adjusted and controlled in real time during a discharge. In this work, both quantities
are taken as constant in time, since the focus is on the coil design and optimisation. The
plasma scenario used for the coil design is the standard scenario described at section 4.1.

5.2 The I-coils

In this section, it is discussed the optimisation of the RMP coil sets on the LFS. Firstly, a
coil current minimisation is carried for the baseline coil geometry, verifying if the criteria,
given by Equations 5.1 to 5.4, are satisfied. Secondly, a coil geometry optimisation is
executed, where three coil geometries are investigated. Finally, a coil current minimisation
of the optimal coil geometry is carried out.
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Figure 5.2: Radial profile of the amplitude of the resonant harmonics for di↵erent values
of toroidal phase and for (a) ntor = 6 and (b) ntor = 9.

5.2.1 Optimisation of the coil current configuration

The design of the I-coils starts with an optimisation of the coil current configuration for the
baseline I-coils shown in Figure (5.1). The optimisation of the coil current configuration
consists of an independent scan of the toroidal phase �0 (Equation 5.5) of the current
configuration in the upper and in the lower I-coil arrays relative to the middle I-coil array.
These independent scans aim at identifying the minimum current amplitude in each coil of
the three I-coil toroidal arrays that create resonant harmonics in the pedestal region while
meeting all the design criteria for ntor  9. In these calculations, the current amplitude in
the three toroidal arrays is set to the maximum value that can be provided by the power
supplies, i.e. IRMP = 24 kA-t. While the middle array toroidal phase �0 = 0, the upper
and lower arrays have toroidal phases given by �u and �l, respectively.

As shown in Figure 5.2, for both ntor, the optimal toroidal phase for the upper array
is �u = 300� and for the lower array is �l = 210�. While the criterion given by Equation
5.1 is well satisfied for the ntor = 6 configuration, for which the peak resonant field at
 N = 0.95 is 0.7 mT (0.05% of B0), it is marginally satisfied for the ntor = 9 configuration,
for which the peak resonant field at  N = 0.95 is 0.1 mT (0.01% of B0).

In addition to the calculated resonant harmonic, which was used to verify the design
criteria given by Equation 5.1, magnetic island widths and both the associated Chirikov
parameter and the vacuum overlap island width (VIOW) were calculated to verify the de-
sign criteria given by Equations 5.3 and 5.4. Using the optimal coil current configurations
for ntor = 6 and ntor = 9 and applying the maximum current amplitude IRMP = 24 kA-t,
the magnetic islands and their widths were calculated for both plasma models, namely
the vacuum approach the single-fluid MHD model, Figure 5.3.

From Figure (5.3), the RMP fields on both ntor configurations show that the island
overlap criterion (Equation 5.4) is satisfied, with the remark that for the ntor = 9 con-
figuration, the design criteria is marginally satisfied. The calculations for the ntor = 6
configuration also demonstrates that, at the maximum IRMP, the island overlap region
extends over the pedestal and into the plasma, which is not desirable, as this reduces
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Figure 5.3: (a-b) Magnetic island width and (c-d) Chirikov parameter for the optimal
current for ntor = 6 and ntor = 9 and for both plasma models.

plasma confinement. This is an indication that the maximum value of IRMP that can
be provided by the power supplies is su�ciently large to create a stochastic layer in the
plasma edge and have a significant impact on ELM stability.

When the single-fluid plasma response is accounted, the calculated island widths and
both the associated Chirikov parameter and �VIOW are significantly a↵ected. For ex-
ample, the magnetic islands in the pedestal region for both ntor configurations are wider
than the islands on the vacuum approach on the pedestal top (0.8 <  N < 0.9), where
the e↵ect can be observed in the Chirikov parameter for both ntor and on the �VIOW for
the ntor = 9. This shows that the plasma that is amplifying the intermediate and high-
ntor fields, which is a very fortunate result as it enforces the amplitude of the weaker,
higher-ntor harmonics, which are the ones that su↵er stronger radial decay.

To further characterise these observations, magnetic field lines were traced to generate
Poincaré sections that allow to visualise the stochastic layer in the plasma edge. This
technique allows us to visualise the magnetic island structure and the assessment of the
plasma reaction to the RMP fields applied by the I-coils. Using optimal current configu-
ration, Poincaré sections were generated for both plasma models for ntor = 6, Figure 5.4,
and for ntor = 9, Figure 5.5.

The calculations show that, as already expected, that an increase in the coil current
IRMP increases the stochastic layer. Note that a well noticeable edge stochastic layer width
is produced with relatively low values of coil current (the maximum current amplitude is
IRMP = 24 kA-t). It is somewhat surprising that the Poincaré sections presented in Figure
5.4 suggest that the plasma response increases significantly the width of the stochastic
layer for ntor = 6, while the results presented in Figure 5.3 indicate that plasma response
should not have a significant e↵ect. Note, however, in Figure 5.3(b) and (d), the presence
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Figure 5.4: Poincaré sections for optimal current configuration and ntor = 6.

Figure 5.5: Poincaré sections for optimal current configuration and ntor = 9.
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of an region of larger stochasticity around  N = 0.85 when plasma response is taken into
account. Apparently, this non-monotonic increase of stochasticity towards the plasma
edge is the cause of the observed, and desired, increase of the stochastic layer width.

Regarding the ntor = 9 configuration, it is quite easy to see in Figure 5.5 that plasma
response has a stronger e↵ect when compared with the ntor = 6. This result is in agreement
with the previous observation that plasma response is expected to amplify RMP field of
higher values of ntor. This seems to be one of the few situations in which nature appear to
provide an impact that goes in the desired direction as higher-ntor RMP fields are the ones
the decay more rapidly with the distance from the coil due to their 1/rntor dependence.
Of course, one should be very careful with this very optimistic predictions since plasma
response models, such as the one implemented in the M3D-C1 code used in this work,
are still under an intense process of validation. Therefore, future experiments will have
to be carefully carried out on TCABR to provide an answer about to which extent these
optimistic predictions are trustful.

5.2.2 Optimisation of the coil geometry

As presented in section 5.2.1, a more conservative analysis (vacuum approach) shows that
the amplitude of the resonant fields for ntor = 9 marginally satisfies the design criteria. To
improve the design of the I-coils, the geometry of the coils were optimised such that the
RMP field amplitudes for ntor = 9 be su�ciently large to well satisfy the design criteria.
For this study, three coil geometries were considered, Figure 5.6, and the optimal coil
current toroidal phases found in section 5.2.1 for ntor = 6 and ntor = 9 were used, i.e.
upper array coils �u = 300� and lower array coils �l = 210�. The calculated resonant
harmonics for ntor = 6 and ntor = 9, for IRMP = 24 kA-t and for both plasma models, can
be seen in Figure 5.7. In this study, the middle I-coil array was switched o↵ to study the
e↵ect of geometry optimisation only on the upper and lower I-coil arrays.

The calculations show that the coil geometry #3 is the optimal design, one that
produces the largest RMP fields, for both ntor = 6 and ntor = 9 and for the same coil
current amplitude, (IRMP = 24 kA-t), being about two times larger than the amplitude
produced by the other coil geometries. In the vacuum approach, the RMP fields produced
by the upper and lower coil arrays for ntor = 6 and ntor = 9 satisfy the design criterion
given by Equation 5.1: at  N = 0.95, the RMP fields for ntor = 6 are 0.95mT (which
is 0.079% of B0) and for ntor = 9, the RMP fields are 0.17mT (which is 0.014% of B0).
This result shows that, even without using the middle array, the geometry #3 I-coils are
capable of producing RMP fields that well satisfy the design criteria, given by Equation
5.1, for both ntor.

Furthermore, when plasma response is taken into account, all three coil geometries
studied produced the same plasma response pattern, indicating that the plasma response
to perturbations applied from the LFS is not sensitive to the location and geometry of
the I-coils.

An interesting observation is the correlation between plasma amplification of resonant
harmonics and the !E⇥B plasma rotation profile, Figure 4.2. The regions where the
gradient of the !E⇥B is close to 0 are also the regions where the RMP fields are amplified.
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(a) Coil geometry 1 - baseline (b) Coil geometry 2 (c) Coil geometry 3

Figure 5.6: Di↵erent geometries of the I-coils upper and lower arrays that were studied
in this geometric optimisation.

Figure 5.7: Radial profile of the amplitude of the resonant harmonics for di↵erent coil
geometries, ntor configurations and plasma models.
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Figure 5.8: Radial profile of the amplitude of the resonant harmonics for di↵erent values
of toroidal phase and for (a) ntor = 6 and (b) ntor = 9.

On the other hand, the regions where the gradient of the !E⇥B is large are also the regions
where the RMP fields are screened. The same kind of correlation was also seen in M3D-
C1 simulations for NSTX-U single-null and snowflake scenarios [61]. This observation
implies that the plasma response is very sensitive to the plasma rotation radial profile and,
therefore, due to the complexity of measuring plasma rotation accurately, this might be a
source of discrepancy between simulated plasma response and experimental measurements
of plasma response.

5.2.3 The optimised conceptual design

The coil geometry #3 had the best performance using the coil current configuration op-
timised for the coil geometry #1, which was the baseline geometry. Therefore, a better
characterisation of this new geometry requires an additional optimisation of the coil cur-
rent configuration. Once more, this optimisation was carried out by scanning the toroidal
phase �0 on the upper and lower arrays relative to the middle array. This scan was done
in a symmetric configuration, where the upper and lower arrays have the same toroidal
phase value. The scan was carried out for ntor = 6 and ntor = 9 configuration with
maximum current amplitude (IRMP = 24 kA-t) and for both plasma models.

As shown in Figure 5.8, for both ntor, the optimal toroidal phase �0 for the upper and
lower arrays are 270�. With this value, the RMP fields produced by the coil geometry
#3 satisfied the design criteria, given by Equation 5.1, for the vacuum approach: at
 N = 0.95, the RMP fields for ntor = 6 configuration are 1.55 mT (0.13% of B0) and
the RMP fields for ntor = 9 are 0.27 mT (0.02% of B0). These results correspond to
a two times increase for ntor = 6 and a three times increase for ntor = 9. Therefore,
the optimisation of the coil geometry and the current configuration allowed a significant
reduction on the coil current IRMP amplitude that must be provided by the power supplies.

The calculations of magnetic island widths was repeated in order to verify if the�VIOW

criterion, Equation 5.4, and the Chirikov criterion, Equation 5.3, were met, Figure 5.9.
In the vacuum approach, the magnetic island overlap and the Chirikov criteria, Equa-
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Figure 5.9: (a-b) Magnetic island width and (c-d) Chirikov parameter for the optimal
current for ntor = 6 and ntor = 9 and for both plasma models.

tions 5.4 and 5.3, are both well satisfied. Using the maximum coil current IRMP = 24
kA-t, the magnetic island overlap region reaches the plasma core ( N < 0.8) for both
ntor = 6 and ntor = 9. Therefore, 24 kA-t is more than enough to produce significant
amplitudes of ntor = 6 perturbations in the plasma edge.

In the single-fluid model, the plasma is found to shield ntor = 6 RMP fields in the
plasma core, while the plasma is modestly amplifying the ntor = 9 RMP fields at the
pedestal top. The plasma amplification/screening e↵ect can be seen more easily on the
Chirikov parameter for the single-fluid model, where this behaviour was also seen coil
geometry #1.

A further analysis about the magnetic islands was carried out by tracing the magnetic
field lines and generating Poincaré section for both vacuum approach and single-fluid
model for ntor = 6, Figure 5.10, and ntor = 9, Figure 5.11.

Similarly to the baseline coil geometry #1, when the single-fluid plasma response
is taken into account, the calculated island widths and both the associated Chirikov
parameter and the �VIOW are significantly a↵ected. For ntor = 6, the magnetic island
structure is severely destroyed for IRMP = 1.5 kA-t and 3 kA-t and, for IRMP = 4.5 kA-t,
the stochastic region extends deeper into the plasma ( N > 0.75) for current amplitudes
as low as IRMP = 4.5 kA-t. For ntor = 9, stochastic region also increases due to the plasma
response but does not extend so deep into the plasma core as the ntor = 6. However, a
comparison between single-fluid model ntor = 9 from coil geometry #3 and the baseline
coil geometry, Figure 5.5, shows that a large decrease in the IRMP was possible, going from
IRMP = 15 kA-t for the baseline coil geometry to IRMP = 6 kA-t for the coil geometry #3.
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Figure 5.10: Poincaré sections for optimal current configuration and ntor = 6.

Figure 5.11: Poincaré sections for optimal current configuration and ntor = 9.
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Figure 5.12: Radial profile of the amplitude of the resonant harmonics for di↵erent values
of toroidal phase and for (a) ntor = 6 and (b) ntor = 9.

In summary, the results presented demonstrated that the coil geometry #3 satisfied the
design criteria to mitigate/suppress ELMs for ntor  9 current configurations.

5.3 The CP-coils

In this section, it is discussed the optimisation of the RMP coil sets on the HFS. Firstly, a
coil current minimisation is carried for the baseline coil geometry, verifying if the criteria,
given by Equations 5.1 to 5.4, are satisfied. Secondly, a coil geometry optimisation is
executed, where several coil geometries are investigated.

5.3.1 Optimisation of the coil current configuration

Analogously to the conceptual design of the I-coils, the conceptual design of the CP-coils
will be made first through the optimisation of the CP-coils current configuration for the
baseline coil geometry shown in Figure 5.1 and for both ntor = 6 and ntor = 9. This
optimisation was carried out with the maximum coil current amplitude IRMP = 60 kA-t
and the toroidal phase was scanned in a antisymmetric configuration, where the upper
and lower arrays have opposite phases, e.g. if the upper array has �u = 90�, the lower
array will have �l = �90�.

Calculations of the resonant harmonics in the vacuum approach for ntor = 6, Figure
5.12(a) show that the optimal toroidal phase corresponds to �u = 270� and �l = �270�.
In this optimal toroidal phase, the RMP fields produced for ntor = 6 well satisfy the
criterion given by Equation 5.1 in the vacuum approach: at  N = 0.95, the RMP fields
amplitude are 0.45 mT, which are 0.037% of B0. For ntor = 9, the optimal toroidal phase
is found to be �u = �l = 0�. The calculations show that, for ntor = 9, the design criteria
are not satisfied: at  N = 0.95, the RMP fields amplitude are 0.013 mT, which are
0.0011% of B0. This value is a factor 10 smaller than that required for ELM suppression
in other machines. Therefore, additional optimisation is required. It is important to note
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Figure 5.13: (a-b) Magnetic island width and (c-d) Chirikov parameter for the optimal
current for ntor = 6 and ntor = 9 and for both plasma models.

that the design criteria used in this work correspond to a set of empirical laws obtained
from experiments in which the RMP fields are applied from the LFS. There is evidence,
however, that RMP fields applied from the HFS can couple more e�ciently with the
plasma and, interestingly, the optimal applied field pitch is significantly di↵erent of the
equilibrium field pitch [62].

Using the optimal toroidal phase for both ntor = 6 and ntor = 9, magnetic islands
overlap, Equation 5.4, and the Chirikov criteria, Equation 5.3, were studied for both
plasma models, Figure 5.13.

The calculations show that, in the vacuum approach, only the optimal ntor = 6 con-
figuration satisfies the magnetic island overlap condition, Equation 5.4, and the Chirikov
condition, Equation 5.3. With maximum coil current amplitude IRMP = 60 kA-t, the over-
lap region is wider than the pedestal, even being able to reach the plasma core, with the
Chirikov parameter satisfying the criterion in the pedestal region. The optimal ntor = 9
configuration, on the other hand, creates a stochastic region just in a fraction of the
pedestal.

When the plasma response is taken into account, the RMP fields applied by the CP-
coils are screened by the plasma, reducing the magnetic island, the Chirikov parameter,
�VIOW and, consequently, the stochastic layer width. This is the opposite behaviour
observed for I-coils simulations, where the plasma is found to amplify the applied RMP
fields. One should note, however, that in these simulations of the CP-coils the low-ntor

harmonic is more shielded than the high-ntor harmonic, while for the I-coils the high-ntor

harmonic is amplified by the plasma.
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Figure 5.14: Poincaré sections for optimal current configuration and ntor = 6.

Although these results show that a further optimisation of the CP-coils is required,
they also show that the plasma response to fields applied from the LFS and from the HFS
can be quite di↵erent. The physical mechanisms that control if an particular harmonic
will be screened or amplified are still not clear and require more detailed study.

In order to better understand how the plasma response is changing the RMP fields
applied from the HFS, Poincaré section were created for both ntor = 6, Figure 5.14, and
ntor = 9, Figure 5.15, for both plasma models.

The calculations show that, for ntor = 6, the stochastic layer width increases when the
current amplitude increases, which is, of course, expected, and when the plasma response
is taken into account. This last observation is opposite to the observed reduction of
�VIOW and �Chir = 1 criteria presented above. One possible explanation to this apparent
inconsistency is the non-monotonic increase in island width towards the plasma edge,
where a local maximum can be seen at about  N = 0.88. For ntor = 9 and in agreement
with the calculated magnetic island overlap criteria, the calculations shows very little or
almost no di↵erence between the vacuum and single-fluid approach.

In summary, the results show that the baseline CP-coils geometry can create ntor = 6
RMP fields, although the current amplitude IRMP must be close to 60 kA-t limit. Nonethe-
less, for ntor = 9, the calculations using both plasma models show that the design criteria
are not satisfied. A factor of 10 in the RMP amplitude is needed to satisfy the design
criteria, hence a geometry optimisation of the CP-coils is required.
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Figure 5.15: Poincaré sections for optimal current configuration and ntor = 9.

5.3.2 Optimisation of the coil geometry

As presented in the previous subsection, even at the maximum current amplitude, the
ntor = 9 fields do not satisfy the design criteria and, therefore, a geometric optimisation
is required. In this geometry optimisation, the CP-coils height and array separation are
scanned for the optimal toroidal phase found in section 5.3.1. In the coil height scan,
the height of the CP-coils was varied from 3 cm up to 11 cm while keeping the distance
between coil arrays to 2 cm. The middle array was fixed at z = 0.

The calculations show that optimal CP-coils height is about 5 cm, Figure 5.16, where
the value of the RMP fields at  N = 0.95 are 0.014 mT (0.0011% of B0). This value,
however, is still not enough to satisfy the design criteria. To further improve the coil
design, the distance between coil arrays was scanned from 1 cm up to 7 cm, while the coil
height was fixed at its optimal value, i.e. 5 cm. The scan results are presented in Figure
5.17.

The calculation show that the optimal distance between coil arrays is 2 cm, which is
exactly the one used in the height scan, i.e. there is no way to improve the coil design
even further. However, there is still one possibility of increasing the resonant fields very
significantly without requiring further geometric changes in the coils. The calculations
shown in this work were carried out with the plasma separatrix being about 6 cm away
from the coils. Since the RMP field amplitude depends on the distance between the coils
and the plasma as 1/dntor , a small reduction of the distance between the plasma and CP-
coils is expected to have a very significant positive impact. However, this distance scan
study would require the creation of various plasma scenarios, with fine-tuned distances
between the coils and the plasma, thus, this study will be carried out in another work.
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Figure 5.16: CP-coils design height tested in ntor = 9 configuration where the plasma is
in the vacuum approach.

Figure 5.17: CP-coils design distance between arrays tested in ntor = 9 configuration
where the plasma is in the vacuum approach.

Anyway, the expected improvement in RMP field amplitude can be estimated as:

�Bm,n=9(d = 3 cm)

�Bm,n=9(d = 6 cm)
=

✓
6 cm

3 cm

◆9

⇡ 500. (5.6)

Therefore, a small change in the plasma radial position can lead to an increase in
RMP field amplitude of more than two orders of magnitude. This strong variation of the
amplitude of RMP fields of higher-ntor values with the distance from the plasma poses a
challenge to the plasma control system, which will have to be at the same time robust and
precise in order to keep the plasma horizontal position very stable to avoid excessively
large variations of resonant field amplitude during experiments.
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Chapter 6

Conclusions

In this work, H-mode kinetic plasma equilibria were generated and their stability were
analysed with the visco-resistive MHD code M3D-C1. The simulations showed that
TCABR ohmic H-mode plasmas are expected to be unstable to ELM whose most unstable
modes have ntor = 6 � 8. In addition, these modes were found to be resistive, i.e. their
growth rates are expected to be very sensitive to the electron temperature profile during
experiments. Due to this expected sensitivity, the e↵ect of the pedestal structure on the
modes growth rate was studied through variations of the electron temperature pedestal
width and height. The results show that the unstable resistive peeling-ballooning modes
in TCABR will have a dominant ballooning drive.

After characterising the equilibrium and stability of the envisaged H-mode standard
plasma scenario in TCABR, the conceptual design of an advanced set of ELM control
coils was carried out using the so-called vacuum approach and the M3D-C1 visco-resistive
single-fluid MHD model. For the conceptual design, the coils were separated into two
groups: the LFS coils (I-coils) and the HFS coils (CP-coils). The design of the I-coils was
carried out through the optimisation of the geometry of the coils and of the toroidal phase
of the coil currents in the upper and lower arrays. The RMP field amplitudes predicted in
both plasma models were large enough to satisfy the design criteria for ntor  9. However,
while the design of the CP-coils followed the same procedure carried out for the I-coils,
the RMP field amplitudes for ntor = 9 were not enough to satisfy the design criteria, being
a factor 10 smaller than the minimum required. The RMP field amplitudes for ntor = 6
were marginally satisfied. Although the coils design is fully optimised, there is still the
possibility of bringing the plasma closer to the coils. Decreasing the distance between the
plasma separatrix and the CP-coils from 6 cm to 3 cm is expected to increase the RMP
field amplitude by a factor 500, making the RMP fields to be a factor 50 larger than the
minimum required by the design criteria. This study, however, is left for a separate work
due to the need of generating a large variety of well-tuned plasma scenarios.

It is important to note that the design criteria used in this work correspond to a set of
empirical laws obtained from experiments in which the RMP fields are applied from the
LFS. There is evidence, however, that RMP fields applied from the HFS can couple more
e�ciently with the plasma and, interestingly, with the optimal applied field pitch being
significantly di↵erent from the equilibrium field pitch [62].
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One very interesting observation is that, on the one hand, RMP fields of high-ntor

values were amplified by the plasma when the perturbations are applied from the LFS.
On the other hand, low-ntor harmonics are screened by the plasma when the perturbations
are applied from the HFS. Although these results are somewhat problematic for the CP-
coils, whose fields su↵er from a strong radial decay, they also show that the plasma
response to fields applied from the LFS and from the HFS can be quite di↵erent. Another
interesting observation is the correlation between plasma response amplification of the
RMP field and the !E⇥B plasma rotation radial profile. The regions where the gradient
of !E⇥B is close to zero are also the regions where the RMP fields are amplified. On the
other hand, the regions where the gradient of the !E⇥B profile is large are also the regions
where the RMP fields are screened. This observation implies that the plasma response is
very sensitive to the plasma rotation radial profile and, therefore, due to the complexity
of measuring plasma rotation accurately, this might be a source of discrepancy between
simulated plasma response and experimental measurements of plasma response. The
physical mechanisms that control if a particular harmonic will be screened or amplified
are still not clear and require a more detailed study.
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