
Universidade de São Paulo
Instituto de Física

Estudo sobre a produção de entropia e
transporte de calor em cadeias harmônicas
sujeitas a variações temporais periódicas

Bruno Augusto Naves Akasaki

Orientador: Prof. Dr. Carlos Eduardo Fiore dos

Santos

Dissertação de mestrado apresentada ao Instituto

de Física da Universidade de São Paulo, como req-

uisito parcial para a obtenção do título de Mestre

em Ciências.

Banca Examinadora:

Prof. Dr. Carlos Eduardo Fiore dos Santos - IFUSP

Prof. Dr. Eric de Castro e Andrade - IFSC/USP

Prof. Dr. Karel Proesmans - Simon Fraser Universit

São Paulo

2020



 
 
 
 
 
 
 
 
 
 
 
 
 
 

FICHA CATALOGRÁFICA 

Preparada pelo Serviço de Biblioteca e Informação 

do Instituto de Física da Universidade de São Paulo  

         
   
 
  Akasaki, Bruno Augusto Naves  
 

 Estudo sobre a produção de entropia e transporte de calor em 
cadeias harmônicas sujeitas a variações temporais periódicas. São Paulo, 
2020. 
 
 
         
         Dissertação (Mestrado) – Universidade de São Paulo. Instituto de 
Física. Departamento Física Geral 
         
          Orientador: Prof. Dr. Carlos Eduardo Fiore dos Santos 
    
          Área de Concentração: Física da matéria condensada 
      
          Unitermos: 1. Termodinâmica Estocástica.; 2. Sistemas fora do 
equilíbrio.; 3. Produção de Entropia.; 4. Coeficientes de Onsager.; 5. 
Física da matéria condensada. 
 
USP/IF/SBI-038/2020 

 

 
        

 



University of São Paulo
Physics Institute

Entropy production and heat transport in
harmonic chains under time-dependent

periodic drivings

Bruno Augusto Naves Akasaki

Supervisor: Prof. Dr. Carlos Eduardo Fiore dos

Santos

Dissertation submitted to the Physics Institute of

the University of São Paulo in partial fulfillment

of the requirements for the degree of Master of

Science.

Examining Committee:

Prof. Dr. Carlos Eduardo Fiore dos Santos (Surpevisor) - IFUSP

Prof. Dr. Eric de Castro e Andrade - IFSC/USP

Prof. Dr. Karel Proesmans - Simon Fraser Universit

São Paulo

2020



 
 
 
 
 
 
 
 
 
 
 
 
 
 

FICHA CATALOGRÁFICA 

Preparada pelo Serviço de Biblioteca e Informação 

do Instituto de Física da Universidade de São Paulo  

         
   
 
  Akasaki, Bruno Augusto Naves  
 

 Estudo sobre a produção de entropia e transporte de calor em 
cadeias harmônicas sujeitas a variações temporais periódicas. São Paulo, 
2020. 
 
 
         
         Dissertação (Mestrado) – Universidade de São Paulo. Instituto de 
Física. Departamento Física Geral 
         
          Orientador: Prof. Dr. Carlos Eduardo Fiore dos Santos 
    
          Área de Concentração: Física da matéria condensada 
      
          Unitermos: 1. Termodinâmica Estocástica.; 2. Sistemas fora do 
equilíbrio.; 3. Produção de Entropia.; 4. Coeficientes de Onsager.; 5. 
Física da matéria condensada. 
 
USP/IF/SBI-038/2020 

 

 
        

 



Acknowledgments

Faço questão de escrever os agradecimentos em português para que todas as pessoas

citadas possam entender a importância que tiveram para que essa dissertação se

tornasse realidade.

Primeiro, gostaria de agradecer o meu orientador, Carlos Fiore, por todo o

auxílio desde que o conheci. Uma pessoa que ama imensamente o seu trabalho e

se dedica a todo momento, e que conseguiu transmitir essa paixão por pesquisa e

Física para mim. Além de ser um mentor, tenho a felicidade de dizer que é um

grande amigo. Muito obrigado mesmo, pelas conversas, dicas e suporte. Sem você

isso não teria sido possível.

Agradeço aos meus pais, Jorge e Onilda, por todo o incentivo e por terem

me apoiado quando tomei a decisão de seguir para o mestrado. Vocês servem de

inspiração para que eu possa continuar me dedicando e me desafiando, e tem uma

importância imensa em minha vida. Amo vocês!

Agradeço ao Prof. Mario José de Oliveira pelas discussões e ideias em relação

a esse trabalho, ao grupo do departamento pelas diversas conversas, ensinamentos

e suporte, e aos professores que tive o prazer de conhecer durante esses dois anos.

Por fim, gostaria de agradecer a minha família e amigos, que mesmo não os

visitando tanto quanto gostaria, fizeram com que eu pudesse relaxar e me distrair

em todas as vezes que nos vimos.



Resumo

Akasaki, B. A. N. Entropy production and heat transport in har-

monic chains under time-dependent periodic drivings. 2020. Dissertação

(Mestrado em Física) - Instituto de Física, Universidade de São Paulo, São Paulo,

2020.

Nesta dissertação de mestrado estudamos as propriedades termodinâmicas de

cadeias lineares sujeitas a forças e temperaturas oscilantes no tempo por meio

da abordagem termodinâmica estocástica. Os sistemas em questão são descritos

pela equação de Fokker-Planck-Kramers e obtivemos o comportamento exato para

as propriedades termodinâmicas como funções da frequência e parâmetros do

problema. A análise será dividida em duas partes: regime de cadeias curtas e

longas. No primeiro caso, obtivemos expressões para a produção de entropia a

qual pode ser escrita como uma forma bilinear pelo produto de forças e fluxos

termodinâmicos, cujos coeficientes Onsager são calculados para tipos distintos de

variações temporais dos parâmetros. O limite de cadeias longas é analisado por

meio de um protocolo em que as temperaturas intermediárias são escolhidas de

forma auto-consistente e a produção de entropia é decomposta como uma soma de

duas contribuições: uma proveniente de banhos reais (colocados nas extremidades

da cadeia) e outros de banhos autoconsistentes. Enquanto o primeiro termo devido

as temperaturas dos reservatórios térmicos é dominante no regime de cadeias curtas,

o último devido as forças variantes no tempo prevalece para os longos. Ainda foi

possível constatarmos que o fluxo de calor obedece a lei de Fourier. No caso de

duas partículas interagentes, verificamos que o comportamento da produção de

entropia com a inclusão de uma defasagem e o comportamento da frequência ótima

em relação aos parâmetros do problema.

Palavras-chave: TERMODINÂMICA ESTOCÁSTICA, SISTEMAS FORA DO

EQUILÍBRIO, PRODUÇÃO DE ENTROPIA, COEFICIENTES DE ONSAGER



Abstract

We study the properties of interacting linear chains subject to periodic drivings

through the framework of stochastic thermodynamics. The systems are described

by Fokker-Planck-Kramers equation and exact solutions are obtained as functions

of the modulation frequency and strength constants. Analysis will be carried out

for short and long chains. In the former case, explicit expressions are derived for

a chain of two particles, in which the entropy production is written down as a

bilinear function of thermodynamic forces and fluxes, whose associated Onsager

coefficients are evaluated for distinct kinds of periodic drivings. The limit of long

chains is analyzed by means of a protocol in which the intermediate temperatures

are self-consistently chosen and the entropy production is decomposed as a sum of

two individual contributions, one coming from real baths (placed at extremities of

lattice) and other from self-consistent baths. Whenever the former dominates for

short chains, the latter contribution prevails for long ones. It was also possible to

verify that the thermal reservoirs leads to a heat flux according to Fourier’s law

as well as the behavior of the entropy production with a inclusion of a lag and the

behavior of the optimal frequency in relation to the problem parameters.

Keywords: STOCHASTIC THERMODYNAMICS, NONEQUILIBRIUM SYS-

TEMS, ENTROPY PRODUCTION, ONSAGER COEFFICIENTS
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Chapter 1

Introduction

The stochastic approach to equilibrium and nonequilibrium thermodynamics, also

known as, stochastic thermodynamics has become one of the main cornestones of

modern statistical mechanics and a consistent theory for nonequilibrium thermo-

dynamics [1-29]. It was originated from distinct approaches and pioneer works,

such as the seminal work by Onsager and Prigogine who established that close

to equilibrium a linear approach can be used to determine the thermodynamic

fluxes, such as heat and work. In addition, it has been show that they satisfy gen-

eral properties, such as Onsager symmetry and the Green-Kubo relations. Other

important step in this direction occurred when Schnakenberg [6] introduced the

stochastic definition of entropy production rate which has the probabilistic aspect,

in addition to the definition of entropy itself introduced by Gibbs [30].

In the last years, stochastic thermodynamics has been put under firmer basis by

using Markov dynamics together with the assumption of local detailed balance and

leading to a consistent definition of the thermodynamic properties of the system.

The stochastic fluxes of the system satisfy general relations such as the Jarzynski

equality [58, 59].

Basically, stochastic thermodynamics encompasses two main classes of systems:

those described by systems in the continuous and discrete spaces. The former

case was used by Einstein [31], Smoluchowski [32], and Langevin [33] to explain

Brownian motion. It was generalized to the case of Brownian particles subject

to an external force by Fokker [34], Smoluchowski [35], Planck [36], and Ornstein
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[37], giving rise to the equation governing the time evolution of the probability

distribution became known as the Fokker-Planck equation. Kramers [38] extended

the Fokker-Planck equation to the case of a massive particle and studied the escape

of a Brownian particle over a potential barrier arriving at the Arrhenius factor.

The latter case takes into account discrete state space and has been used in various

problems in physics, chemistry and biology. We mention the study of chemical

reactions [5, 8, 9, 18, 29], population dynamics and epidemiology [39, 40, 41],

and biological systems in general [4, 17, 28, 42, 43, 44, 45, 46, 106]. We wish to

mention particularly the stochastic models with many degrees of freedom such as

the so-called stochastic lattice models usually used to describe phase transitions

and criticality in physics, chemistry, and biology [15, 47, 48, 49, 50, 51, 52, 53, 54].

In all previous examples, the entropy production has played a fundamental

role in nonequilibrium statistical physics not only for typifying the irreversibility

[62, 63, 64], but also for tackling general considerations about efficiency of heat

engines [65], the analysis of (irreversible) phase transition portraits [66, 67, 68],

thermodynamic uncertainties relations [60, 61] and others.

A fundamental relation for the entropy production comes from simple entropic

arguments in which the system is coupled to a thermal reservoir. Its time entropy

variation 𝑑𝑆/𝑑𝑡 is the difference of two terms

𝑑𝑆

𝑑𝑡
= Π(𝑡) − Φ(𝑡), (1.1)

where Π(𝑡) is the entropy production rate and Φ(𝑡) is the entropy flux rate from/to

the system to/from the environment. Since the environment works as a subsystem

in equilibrium, Π(𝑡) corresponds to the entropy produced inside the system. Eq.

(1.1) implies that all entropy spontaneously produced (by the system) has to be

delivered to the environment in the steady state regime. When the system is

in thermal equilibrium, it follows that Π𝑠 = Φ𝑠 = 0, whereas Π𝑠 = Φ𝑠 > 0 out

of the equilibrium regime. Thereby, entropy production discerns equilibrium and

nonequilibrium systems, since it is continuously produced in the latter case. In such

case, the steady entropy production rate can alternatively be evaluated through

9



the calculation of the steady entropy flux.

More recently, the stochastic thermodynamics of periodically driven systems [80,

81, 82, 83] has attracted a great deal of interest in part because their thermodynamic

properties can be experimentally accessible have attracted a great deal of interest

[80, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101]. In

addition, some of their remarkable features, such as a general description in the

linear regime ( in which Onsager coefficients and general reciprocal relations can be

achieved), the existence of uncertainties constraints leading to existence of bounds

among macroscopic averages and other features have been put under a firmer

basis. In other cases, the probability distribution of work for systems described

by Langevin equations with time dependent drivings has also been analyzed [78].

However, the more general case of interacting particles subject to distinct time

periodic drivings has not been studied thoroughly. In particular, the question of

how the inclusion of interaction changes the nonequilibrium trademarks as well as

the entropy production properties has not been addressed before.

In this master work, we fill this gap by investigating the thermodynamic proper-

ties of interacting chains of Brownian particles subject to (time dependent) periodic

forces and temperature drivings. Exact expressions for the thermodynamic quan-

tities, including the dissipated heat, entropy production, heat flux and others are

obtained. The limits of short and long particle chains are thoroughly investigated.

For the latter case, intermediate temperatures are self-consistently chosen through

a protocol taking into account an inner entropy production source. This is mean-

ingfully different from the original approach by Bosterli et al. [104], in which no

heat flux is exchanged among the particles and self-consistent baths. Thus, our ap-

proach provides us not only to analyze the role of two distinct sources of dissipation,

but also establishing which contribution dominates in the limits of short and long

chains. Two main findings can be drawn: For the case of two interacting particles,

the entropy production is derived as a bilinear function of fluxes and forces for

both drivings in forces and temperatures, whose associated Onsager coefficients

depend on the interaction parameters and frequency driving. Remarkably, the

effect of a phase difference (a lag) between external forces is investigated and the

10



condition for maximum/minimum entropy production is found to depend only on

the temperature reservoirs and frequency driving, irrespective of the interaction

strength between particles. The effect of oscillating temperature and a comparison

with the single (underdamped) the harmonic oscillator will be also considered.

The entropy production of long particle chains can be splitted in two terms:

one coming from the thermal reservoirs and the other from the self-consistent ones.

This dissertation is organized as follows: In Chapter 2 we give a brief introduction

about stochastic thermodynamics and we describe the theoretical background and

the exact solution for a case without time dependent drivings in Chapter 3. In

Chapter 4 we introduce and thermodynamics properties are evaluated the time

dependent force for hamonic chains. In Chapter 5 we focus on the time dependent

oscillating temperatures. Conclusions finally are discussed in Chapter 6.

11



Chapter 2

Stochastic thermodynamics:

fundamental concepts

2.1 Some remarks about entropy production

Classical thermodynamics deals with equilibrium states based on three laws which

has been successful in describing systems at the microscopic level, in which local

fluctuations are not taken into account. One of the most important findings

concerns that total entropy (of an isolated system) never decreases implying that it

is always greater than or equal to zero. Stochastic thermodynamics provide some

new findings by expanding to nonequilibrium systems with fluctuations, trying to

identify on the individual level notions of classical thermodynamics, like the work

and heat and the entropy production.

According to the second law of thermodynamics, thermal equilibrium is deter-

mined by the principle o maximum entropy. In a equilibrium system, the entropy

depends on extensive variables 𝑥𝑘 (energy, number of particles, etc). First, let’s

consider a system composed of two couple subsystems (𝐴 and 𝐵). By taking into

account that the composite system 𝐴 + 𝐵 is isolated, we have that

𝑥𝐴
𝑘 + 𝑥𝐵

𝑘 = constant, (2.1)

12



and hence

𝑑𝑥𝐴
𝑘 = −𝑑𝑥𝐵

𝑘 . (2.2)

It is worth mentioning that such above constraints are equivalent to the first

law of thermodynamics. Using the additive property of the entropy 𝑆

𝑆 = 𝑆𝐴 + 𝑆𝐵, (2.3)

its derivative with respect to the 𝑥𝐴
𝑘 (or 𝑥𝐵

𝑘 ) is given by

𝜕𝑆

𝜕𝑥𝐴
𝑘

= 𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

+ 𝜕𝑆𝐵

𝜕𝑥𝐴
𝑘

, (2.4)

and
𝜕𝑆

𝜕𝑥𝐵
𝑘

= 𝜕𝑆𝐴

𝜕𝑥𝐵
𝑘

+ 𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

. (2.5)

Taking into account Eq. (2.2), it follows that

𝜕𝑆

𝜕𝑥𝐴
𝑘

= 𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

− 𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

. (2.6)

Due to the second law of thermodynamics, the total entropy is a maximum at the

equilibrium and it follows that

𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

= 𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

, (2.7)

where
𝜕𝑆𝑘

𝜕𝑥𝑘
𝑘

= 𝑓𝑘, (2.8)

which 𝑓𝑘 represents the intensive thermodynamic variable associated to 𝑥𝑘.

Let us consider the relaxation toward the equilibrium as the two systems 𝐴 and

𝐵 are placed in contact with each other. The time evolution of entropy system is

given by
𝑑𝑆

𝑑𝑡
=
∑︁

𝑘

(︃
𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

𝑑𝑥𝐴
𝑘

𝑑𝑡
+ 𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

𝑑𝑥𝐵
𝑘

𝑑𝑡

)︃
, (2.9)

13



and taking into account the constraint

𝑥𝐴
𝑘 + 𝑥𝐵

𝑘 = constant, (2.10)

or equivalently
𝑑𝑥𝐴

𝑘

𝑑𝑡
= −𝑑𝑥𝐵

𝑘

𝑑𝑡
, (2.11)

we have that
𝑑𝑆

𝑑𝑡
=
∑︁

𝑘

(︃
𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

− 𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

)︃
𝑑𝑥𝐵

𝑘

𝑑𝑡
. (2.12)

The first term can be intepreted as the current leaving 𝐴 and the current entering

in 𝐵, the last term in the right is the flux associated to the variable 𝑥𝐵
𝑘 . Thus

𝑑𝑆

𝑑𝑡
=
∑︁

𝑘

𝐽𝑘

(︃
𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

− 𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

)︃
, (2.13)

and
𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

− 𝜕𝑆𝐴

𝜕𝑥𝐴
𝑘

= 𝑓𝐵
𝑘 − 𝑓𝐴

𝑘 = 𝐹𝑘, (2.14)

is a generalized thermodynamic force (affinity). We can interpret 𝐹𝑘 = 𝑓𝐵
𝑘 − 𝑓𝐴

𝑘

as responsible for generating the currents 𝐽𝑘, which is consistent to the thermal

equilibrium when the current 𝐽𝑘 is zero if no forces exists 𝑓𝐴
𝑘 = 𝑓𝐵

𝑘 . In principle

the current 𝐽𝑘 at a given time 𝑡 could depend on the affinities at previous times

𝑡′ < 𝑡. We shall assume that the process is close to the equilibrium and systems

are large, so that 𝐽𝑘(𝑡) only depends on the affinites at the same time 𝑡. Thus, the

relation
𝑑𝑆

𝑑𝑡
=
∑︁

𝑘

𝐹𝑘𝐽𝑘, (2.15)

reveals that the total entropy is not conserved, but spontaneously produced by

the irreversible change of energy/particles. Since 𝐴 + 𝐵 is isolated and there is no

entropy flux from outside, the change of entropy must be associated with an entropy

production. One can rewrite above relation in the case when 𝐹𝑘 =
(︁

1
𝑇2

− 1
𝑇1

)︁
and(︁

𝜇2
𝑇2

− 𝜇1
𝑇1

)︁
, like

𝑑𝑆

𝑑𝑡
=
∑︁

𝑘

(︂ 1
𝑇2

− 1
𝑇1

)︂
𝐽𝑢 +

(︂
𝑢2

𝑇2
− 𝑢1

𝑇1

)︂
𝐽𝑁 . (2.16)
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The entropy production is not a property of 𝐴 or 𝐵, but a global property of the

joint system 𝐴+𝐵. There is one case where one can give a different interpretation.

Let us consider the system 𝐵 ≫ 𝐴 (𝐵 acts as a thermal reservoir case). Then, we

can assume that
𝜕𝑆𝐵

𝜕𝑥𝐵
𝑘

= 𝑓𝐵
𝑘 = const, (2.17)

since 𝐵 will always remain closed to the equilibrium and 𝑓𝐵
𝑘 will not change due

to the contact with 𝐴. In such case, we can assume that there is not entropy

production due to the subsystem 𝐵, since its dynamics is always reversible and

thereby the entropy production is only due to the subsystem 𝐴. Thus, from Eq.

(2.13) the term
𝑑𝑆𝐵

𝑑𝑡
=
∑︁

𝑘

𝑓𝐵
𝑘 𝐽𝑘, (2.18)

can be interpreted as an entropy flux Φ (e.g., the entropy contribution coming

from the reservoir).

The terms in the right side of Eq. (2.13) can be rewritten as

𝑑𝑆𝐵

𝑑𝑡
=
∑︁

𝑘

𝑓𝐵
𝑘 𝐽𝑘, (2.19)

𝑑𝑆𝐴

𝑑𝑡
= −

∑︁
𝑘

𝑓𝐴
𝑘 𝐽𝑘, (2.20)

respectively. Hence,
𝑑𝑆

𝑑𝑡
= 𝑑𝑆𝐵

𝑑𝑡
+ 𝑑𝑆𝐴

𝑑𝑡
, (2.21)

and
𝑑𝑆𝐴

𝑑𝑡
= 𝑑𝑆

𝑑𝑡
− 𝑑𝑆𝐵

𝑑𝑡
= Π − Φ. (2.22)

In other words: the time variation of the entropy of 𝐴 is the difference of two

terms. The entropy production and an entropy flux from/to the environment.

Such relation will be obtained in the next chapter from stochastic arguments. An

exemplification is

Φ =
∑︁

𝑘

𝑓𝐵
𝑘 𝐽𝐾 = 𝐽𝑢

𝑇
, (2.23)

if 𝑘 = 𝑢 and 𝑇 is the both temperature.
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2.1.1 Linear responsive theory

Linear stochastic thermodynamics is commonly the starting point for a nonequi-

librium thermodynamics theory. In the case of systems 𝐴 and 𝐵 are quite close

to the equilibrium and that the affinites (forces) 𝐹𝑘 = 𝑓𝐵
𝑘 − 𝑓𝐴

𝑘 are small. Then,

we can expand the currents in Taylor series in 𝐹𝑘 up to first order, it becomes

𝐽𝑘 =
∑︁

𝑙

𝐿𝑘,𝑙𝐹𝑙, (2.24)

where 𝐿𝑘,𝑙 are Onsager coefficients. For example for 𝐾 and 𝑙 being the 𝜇 and 𝑁 ,

we have that

𝐽𝑢 = 𝐿𝑢,𝑢𝐹𝑢 + 𝐿𝑢,𝑁𝐹𝑁 (2.25)

and

𝐽𝑁 = 𝐿𝑁,𝑢𝐹𝑢 + 𝐿𝑁,𝑁𝐹𝑁 . (2.26)

According to Onsager, the cross coefficients are equal 𝐿𝑢,𝑛 = 𝐿𝑛,𝑢. In particular,

the main result by Onsager was to show that the matrix 𝐿 is positive semi-definite

𝐿 ≥ 0.

Above finding is a typical structure of a linear responsive theory: it means that

when the stimulus is small, the corresponding response will be linear on it. Let us

return to the entropy production, according to the previous relations

Π = 𝑑𝑆

𝑑𝑡
=
∑︁

𝑘

𝑓𝑘𝐽𝑘, (2.27)

In the regime of linear response, we may substitute and we get

Π =
∑︁

𝑘

∑︁
𝑙

𝐿𝑘,𝑙𝐹𝑘𝐹𝑙. (2.28)

Since Π ≥ 0 it follows that

4𝐿𝑙𝑙𝐿𝑘𝑘 − (𝐿𝑙𝑘 + 𝐿𝑘𝑙)2 ≥ 0 (2.29)

Such features about Onsager coefficients will be verified in the next chapter for a
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chain of two interacting particles.
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Chapter 3

Continuous variable systems

approach

3.1 Langevin equation

Brownian motion plays a fundamental role in statistical physics, since several

insights about dynamics of macroscopic systems can be achieved and corroborated

by it main features. It corresponds to the random movement of fluid-immersed

particles due to the collision with fluid molecules. Its general description was

established by Robert Brown (1773-1858) in 1828, who studied the movement of

the pollen particles and observed an agitated and irregular movement. In the

nineteenth century, it was found the dependence of the Brownian motion with

several physical parameter, such as diameter, temperature and viscosity.

Afterwards, in 1905 Albert Einstein (1879-1955) developed a quantitative de-

scription of the Brownian motion. In particular, he realized that an underlying

atomic bath was required for providing fluctuations for the erratic motion of parti-

cles, giving rise to the random walk. Thus, in quantitative terms, Brownian motion

corresponds to a random motion subject to two forces, the first being dissipative

and the second a random due to the collision between particles and molecules fluid.

For simplicity, we assume that the dissipative frictional force is proportional to its

velocity and a random force, which comes from independent impacts.

The motion equation fulfilling these properties is called a Langevin equation

18



and it is given by

𝑚
𝑑𝑣

𝑑𝑡
= −𝛼𝑣 + 𝐹𝑎(𝑡), (3.1)

and
𝑑𝑥

𝑑𝑡
= 𝑣, (3.2)

where 𝑣 is the particle velocity, 𝑥 the particle position and 𝛼 the coefficient of

friction, respectively. The dissipative force is represented by the first term in the

right side of the equation (3.1), whereas the random force is given by 𝐹𝑎(𝑡), which

has the following properties:

⟨𝐹𝑎(𝑡)⟩ = 0, (3.3)

and ⟨
𝐹𝑎(𝑡)𝐹𝑎(𝑡′)

⟩
= 𝐵𝛿(𝑡 − 𝑡

′), (3.4)

implying that on average the force due to impacts with the molecules is zero and

collisions are independent. The random force that satisfies such above conditions

is called white noise. By dividing both terms of the equation (3.1) by the mass 𝑚,

we have that
𝑑𝑣

𝑑𝑡
= −𝛾𝑣 + 𝜁(𝑡), (3.5)

where 𝛾 = 𝛼
𝑚

e 𝜁(𝑡) = 𝐹𝑎(𝑡)
𝑚

is a stochastic variable that has the following properties:

⟨𝜁(𝑡)⟩ = 0, (3.6)

and ⟨
𝜁(𝑡)𝜁(𝑡′)

⟩
= Γ𝛿(𝑡 − 𝑡

′), (3.7)

where Γ = 𝐵
𝑚2 .

We can easily find a generic solution for the Langevin equation (3.5) for any

noise 𝜁(𝑡), by integrating equation (3.1):

𝑣(𝑡) = 𝑣0𝑒
−𝛾𝑡 + 𝑒−𝛾𝑡

∫︁ 𝑡

0
𝑒𝛾𝑡

′

𝜁(𝑡′)𝑑𝑡
′
, (3.8)

where 𝑣0 is the particle velocity at time 𝑡 = 0.
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The average velocity can be given using the expression (3.8) and by using the

properties of white noise given by Eq. (3.6) e (3.7), we have that

⟨𝑣⟩ = 𝑣0𝑒
−𝛾𝑡, (3.9)

meaning that on the average the particle velocities exponentially vanishes, as

expected for a particle subject to a viscous force. In particular, the velocity

variance can be evaluated in a simular way, whose expression reads

⟨
𝑣2
⟩

𝑐𝑣
=
⟨
𝑣2
⟩

− ⟨𝑣⟩2 = Γ
2𝛾

(︁
1 − 𝑒−2𝛾𝑡

)︁
. (3.10)

Note that for long times, ⟨𝑣2⟩ → Γ
2𝛾

. This can be understood by recalling that the

kinetic energy of a particle with mass 𝑚 moving at a velocity 𝑣 is

𝐸kin = 1
2𝑚𝑣2, (3.11)

and the principle of equipartition energy ensures that in thermal equilibrium the

particles have the same average kinetic energy for a given temperature. So that,

for a particle moving in a fluid at a temperature 𝑇 , it follows that

⟨𝐸cin⟩ = 1
2𝑘𝐵𝑇 ⇒ 1

2𝑚
⟨
𝑣2
⟩

= 1
2𝑘𝐵𝑇. (3.12)

Substituting Eq. (3.10) in this last equation for long times, we get

Γ = 2𝛾𝑘𝐵𝑇

𝑚
, (3.13)

and

𝐵 = 2𝛼𝑘𝐵𝑇. (3.14)

Thus, the parameter 𝐵 is related to the system temperature through relation

Γ = 𝐵
𝑚2 .

20



3.2 Fokker-Planck equation

Let us take again the above set of Langevin equations for a set of 𝑁 particles.

Each particle, 𝑖 is then given by the equations,

𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥) + 𝜁𝑖(𝑡),

⎧⎪⎪⎨⎪⎪⎩
⟨𝜁𝑖(𝑡)⟩ = 0⟨
𝜁𝑖(𝑡),𝜁𝑖(𝑡‘)

⟩
= Γ𝑖𝛿𝑖𝑗𝛿(𝑡 − 𝑡‘),

(3.15)

where 𝑖 attempts for the 𝑖th particle ranged from 𝑖 = 1, . . . ,𝑁 . Above equation de-

scribes the overdamped case, in which it has the following Fokker-Planck equations

(or Smoluchowski equations)

𝜕

𝜕𝑡
𝑃 (𝑥,𝑡) = −

𝑁∑︁
𝑖=1

𝜕

𝜕𝑥
[𝑓𝑖(𝑥)𝑃 (𝑥,𝑡)] +

𝑁∑︁
𝑖=1

Γ𝑖

2
𝜕2

𝜕𝑥2
𝑖

𝑃 (𝑥,𝑡), (3.16)

where 𝑃 (𝑥,𝑡) denotes the probability distribution of the 𝑥 = 𝑥1, . . . , 𝑥𝑁 . The

Fokker-Planck equation can be conveniently rewritten as a continuity equation

𝜕

𝜕𝑡
𝑃 (𝑥,𝑡) = −

𝑁∑︁
𝑖=1

𝜕𝐽𝑖(𝑥,𝑡)
𝜕𝑥𝑖

, (3.17)

where the 𝑖 -th component of the probability flow 𝐽𝑖(𝑥, 𝑡) is given by

𝐽𝑖(𝑥,𝑡) = 𝑓𝑖(𝑥)𝑃 (𝑥,𝑡) − Γ𝑖

2
𝜕𝑃 (𝑥,𝑡)

𝜕𝑥𝑖

. (3.18)

In the first analysis, we obtained its steady state solution in which 𝜕
𝜕𝑡

𝑃 (𝑥,𝑡) = 0,

implying that the probability density is independent on the time 𝑃 (𝑥, 𝑡) = 𝑃 (𝑥).

The equation (3.17) then reads

0 =
𝑁∑︁

𝑖=1

𝜕𝐽𝑖(𝑥)
𝜕𝑥𝑖

, (3.19)

which also implies that 𝐽𝑖(𝑥) is time independent and constant. When each current

vanishes 𝐽𝑖(𝑥) = 0, we have the microscopic reversibility and steady state corre-

sponds to the thermodynamic equilibrium. Hence, Eq. (3.18), can be rewritten
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as
𝜕

𝜕𝑥𝑖

ln 𝑃 (𝑥) = 2
Γ𝑖

𝑓𝑖(𝑥), (3.20)

and when forces 𝑓𝑖 are conservative for all 𝑖 (𝑓𝑖 = − 𝜕𝑉
𝜕𝑥𝑖

) and all of them are in the

same temperature (Γ𝑖 = Γ), it follows that by finding the probability 𝑃 (𝑥) has the

Boltzmann-Gibbs form given by

𝑃 (𝑥) = 𝐴𝑒−2𝑉 (𝑥)/Γ, (3.21)

where 𝐴 is a probability normalization constant related to the partition function.

Thereby, when forces are conservative and the microscopic reversibility is sat-

isfied, the probability distribution is Boltzmann-Gibbs and the system is in ther-

modynamic equilibrium, in which it is in contact with a thermal reservoir at a

temperature proportional to Γ. When 𝐽𝑖(𝑥) ̸= 0, the system will evolve to a

nonequilibrium state. This is indeed the case of temperatures being different

and/or not conservative forces.

3.2.1 Entropy and entropy production

The entropy 𝑆 of a system described by a probability distribution 𝑃 (𝑥, 𝑡) is defined

by

𝑆(𝑡) = −𝑘𝐵

∫︁
𝑃 (𝑥,𝑡) ln 𝑃 (𝑥,𝑡)𝑑𝑥, (3.22)

which 𝑑𝑥 = 𝑑𝑥1𝑑𝑥2 · · · 𝑑𝑥𝑁 .

We can determine the temporal variation of entropy by the Fokker-Planck Eq.

(3.17) (for 𝑘𝐵 = 1)
𝑑𝑆

𝑑𝑡
= −

𝑁∑︁
𝑖=1

∫︁
𝐽𝑖

𝜕 ln 𝑃

𝜕𝑥𝑖

𝑑𝑥, (3.23)

By using Eq. (3.18), we can rewrite the above equation in the following way

𝑑𝑆

𝑑𝑡
= −

𝑁∑︁
𝑖=1

2
Γ𝑖

∫︁
𝑓𝑖𝐽𝑖𝑑𝑥 +

𝑁∑︁
𝑖=1

2
Γ𝑖

∫︁ 𝐽2
𝑖

𝑃
𝑑𝑥, (3.24)

and hence the time variation of the entropy is given in the form introduced by
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Prigonine and deduced previously through entropy arguments

𝑑𝑆

𝑑𝑡
= Π − Φ. (3.25)

The first term in the right side of Eq. (3.24) is the flux from/to the system

to/from the reservoir. Plugin Eq. (3.18) into Eq. (3.24), we can simplify the

entropy flux for a more intuitive expression, given by

Φ =
𝑁∑︁

𝑖=1

(︃
2
Γ𝑖

⟨
𝑓 2

𝑖

⟩
+
⟨

𝜕𝑓𝑖

𝜕𝑥𝑖

⟩)︃
. (3.26)

Note that above expression depends on the averages of forces and its derivatives

and can be evaluated under a simpler way. Conversely, the second term in the

right side of Eq. (3.24) represents the entropy production rate Π, given by

Π =
𝑁∑︁

𝑖=1

2
Γ𝑖

∫︁ 𝐽2
𝑖

𝑃
𝑑𝑥, (3.27)

and it depends on currents 𝐽𝑖’s and it is always greater than 0, as should be. In the

steady state regime, 𝑑𝑆
𝑑𝑡

= 0, we have that Π = Φ, in such a way that all entropy

produced by the system has to be delivered to the reservoir.

Once again from Eq. (3.24), we can realize that both the entropy production

and the entropy flux depends on the current 𝐽𝑖. In other words, when there is

microscopic reversibility 𝐽𝑖 = 0 is fulfilled it leads to thermodynamic equilibrium

steady state.

3.3 Kramers equation

The two-variable Fokker-Planck equation is called the Kramers equation. It de-

scribed the "underdamped" Brownian motion represented by the Langevin Equation

(3.1) which has a dissipative force, a force depending on the position, apart from

the random force. In this case, we will consider a system with 𝑁 particles subject

to a force 𝐹 (𝑥) that depends only on position 𝑥 and random forces. Newton’s
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equations are given by

𝑚
𝑑𝑣𝑖

𝑑𝑡
= −𝛼𝑣𝑖 + 𝐹𝑖(𝑥) + 𝐹 𝑎

𝑖 (𝑡), (3.28)

and
𝑑𝑥𝑖

𝑑𝑡
= 𝑣𝑖, (3.29)

where 𝑖 = 1,2, . . . ,𝑁 , 𝑥 = (𝑥1, . . . ,𝑥𝑁) and 𝑣 = (𝑣1, . . . ,𝑣𝑁) are the set of positions

and velocities, respectively, 𝐹𝑖(𝑥) is the force, 𝛼 the coefficient of friction and 𝐹 𝑎
𝑖 (𝑡)

the dissipative random force.

As stated previously, the random noise 𝐹𝑎(𝑡) also has the following properties:

⟨𝐹 𝑎
𝑖 (𝑡)⟩ = 0, (3.30)

and ⟨
𝐹 𝑎

𝑖 (𝑡)𝐹 𝑎
𝑖 (𝑡′)

⟩
= 𝐵𝑖𝛿𝑖𝑗𝛿(𝑡 − 𝑡

′), (3.31)

respectively. We can conveniently divide both terms of the equation (3.28) by the

mass 𝑚, reading

𝑑𝑣𝑖

𝑑𝑡
= −𝛾𝑣𝑖 + 𝑓𝑖(𝑥) + 𝜁𝑖(𝑡),

⎧⎪⎪⎨⎪⎪⎩
⟨𝜁𝑖(𝑡)⟩ = 0⟨
𝜁𝑖(𝑡),𝜁𝑖(𝑡‘)

⟩
= Γ𝑖𝛿𝑖𝑗𝛿(𝑡 − 𝑡‘)

(3.32)

which 𝛾 = 𝛼
𝑚

, 𝑓𝑖(𝑥) = 𝐹𝑖(𝑥)
𝑚

, 𝜁𝑖(𝑡) = 𝐹 𝑎
𝑖 (𝑡)
𝑚

and Γ𝑖 = 𝐵𝑖

𝑚2 .

Above set of equations has the probability distribution 𝑃 (𝑥,𝑣,𝑡) associated to

the Kramers equation

𝜕𝑃

𝜕𝑡
= − 𝜕

𝜕𝑥𝑖

(𝑣𝑖𝑃 ) − 𝜕

𝜕𝑣𝑖

[(𝑓𝑖 − 𝛾𝑣𝑖) 𝑃 ] + Γ𝑖

2
𝜕2𝑃

𝜕𝑣2
𝑖

. (3.33)

As performed previously, we can write the Kramers equation (3.33) in the form of

a continuity equation given by

𝜕

𝜕𝑡
𝑃 (𝑥,𝑣,𝑡) = −

𝑛∑︁
𝑖=1

𝜕𝐽𝑥
𝑖

𝜕𝑥𝑖

−
𝑛∑︁

𝑖=1

𝜕𝐽𝑣
𝑖

𝜕𝑣𝑖

, (3.34)
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where

𝐽𝑥
𝑖 = 𝑣𝑖𝑃, (3.35)

and

𝐽𝑣
𝑖 = (𝑓𝑖 − 𝛾𝑣𝑖) 𝑃 − Γ

2
𝜕𝑃

𝜕𝑣𝑖

, (3.36)

denote the components of the probability stream. 𝐽𝑥
𝑖 represents a probability

current in the direction 𝑥𝑖 and 𝐽𝑣
𝑖 represents a probability current in the direction

𝑣𝑖. At the steady state regime the Kramers equation becomes

𝜕𝐽𝑥
𝑖

𝜕𝑥𝑖

+ 𝜕𝐽𝑣
𝑖

𝜕𝑣𝑖

= 0. (3.37)

Microscopic reversibility is expressed by the following conditions:

𝐽𝑥
𝑖 (𝑥, − 𝑣) = −𝐽𝑥

𝑖 (𝑥,𝑣), (3.38)

𝐽𝑣
𝑖 (𝑥, − 𝑣) = −𝐽𝑣

𝑖 (𝑥,𝑣), (3.39)

respectively.

3.3.1 Entropy and entropy production

By defining the system entropy 𝑆(𝑡) in the following way

𝑆(𝑡) = −𝑘𝐵

∫︁
𝑃 (𝑥,𝑣,𝑡) ln 𝑃 (𝑥,𝑣,𝑡)𝑑𝑥𝑑𝑣, (3.40)

where 𝑑𝑥 = 𝑑𝑥1𝑑𝑥2 · · · 𝑑𝑥𝑁 and 𝑑𝑣 = 𝑑𝑣1𝑑𝑣2 · · · 𝑑𝑣𝑁 and taking its time derivative

we have that
𝑑𝑆

𝑑𝑡
= −𝑘𝐵

∫︁ 𝑑𝑃 (𝑥,𝑣,𝑡)
𝑑𝑡

(ln 𝑃 (𝑥,𝑣,𝑡) + 1) 𝑑𝑥 𝑑𝑣. (3.41)

By setting 𝑘𝐵 = 1 and by using the Eq. (3.34), integrating by parts and by imposing

that the probability distribution and their derivatives vanishes the boundaries of

a 𝑅 region of the 𝑠𝑝𝑎𝑐𝑒(𝑥, 𝑣), the temporal variation of entropy reads

𝑑𝑆

𝑑𝑡
= −

𝑁∑︁
𝑖=1

∫︁
𝐽𝑥

𝑖

𝜕 ln 𝑃

𝜕𝑥𝑖

𝑑𝑥𝑑𝑣 −
𝑁∑︁

𝑖=1

∫︁
𝐽𝑣

𝑖

𝜕 ln 𝑃

𝜕𝑣𝑖

𝑑𝑣𝑑𝑥. (3.42)
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Setting the current 𝐽𝑖(𝑥,𝑣) as given by

𝐽𝑖 = −𝛾𝑣𝑖𝑃 − Γ𝑖

2
𝜕𝑃

𝜕𝑣𝑖

, (3.43)

we can rewrite the components of the probability as follows

𝐽𝑥
𝑖 = 𝑣𝑖𝑃, (3.44)

𝐽𝑣
𝑖 = 𝑓𝑖𝑃 + 𝐽𝑖, (3.45)

and by substituting in the temporal variation of entropy and integrating by parts,

the entropy time variation is once again given by

𝑑𝑆

𝑑𝑡
= Π − Φ, (3.46)

where the entropy production rate Π is given by

Π =
𝑁∑︁

𝑖=1

(︃
2
Γ𝑖

∫︁ 𝐽2
𝑖

𝑃
𝑑𝑥𝑑𝑣

)︃
, (3.47)

and the entropy flux Φ is given by

Φ =
𝑁∑︁

𝑖=1

(︃
2𝛾2

Γ𝑖

⟨
𝑣2

𝑖

⟩
− 𝛾

)︃
. (3.48)

As stated before, If 𝑓𝑖 is conservative, each current 𝐽𝑖 vanishes and Φ = 0 = Π in

the steady state regime.

3.4 Example: particles in contact with different

reservoirs

As an example, we will obatin some nonequilibrium properties of a system of two

mass 𝑚 particles in contact with thermal reservoirs at different temperatures and

interacting through a harmonic force. This system was solved in Ref. [72] and it

will be used in the next chapters. The motion equation are given by the following
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Langevin equations:

𝑚
𝑑𝑣1

𝑑𝑡
= 𝐹1 − 𝛼𝑣1 + ℱ1(𝑡), (3.49)

and

𝑚
𝑑𝑣2

𝑑𝑡
= 𝐹2 − 𝛼𝑣2 + ℱ2(𝑡), (3.50)

respectively, where 𝑖 = 1,2, 𝑥𝑖 and 𝑣𝑖 = 𝑑𝑥𝑖

𝑑𝑡
denote position and velocity of the

𝑖th particle, respectively. The stochastic variable for each particle has white noise

properties:

⟨ℱ𝑖(𝑡)⟩ = 0, (3.51)
⟨
ℱ𝑖(𝑡)ℱ𝑗(𝑡

′)
⟩

= 2𝛼𝑇𝑖𝛿𝑖𝑗𝛿(𝑡 − 𝑡
′), (3.52)

the particles are subject to the following forces

𝐹𝑖 = −𝑘 (𝑥𝑖 − 𝑥𝑗) − 𝑘
′
𝑥𝑖 for 𝑖 ̸= 𝑗. (3.53)

The time evolution of the probability distribution 𝑃 (𝑥, 𝑣, 𝑡) associated with

this equation of motion is given by the Kramers equation.

𝜕𝑃

𝜕𝑡
= − 𝜕

𝜕𝑥1
(𝑣1𝑃 ) − 𝜕

𝜕𝑥2
(𝑣2𝑃 ) − 𝜕

𝜕𝑣1

[︂(︂
𝐹1

𝑚
− 𝛾𝑣2

)︂
𝑃
]︂

− 𝜕

𝜕𝑣2

[︂(︂
𝐹2

𝑚
− 𝛾𝑣1

)︂
𝑃
]︂

+ Γ1

2
𝜕2𝑃

𝜕𝑣2
1

+ Γ2

2
𝜕2𝑃

𝜕𝑣2
2

(3.54)

where 𝛾 = 𝛼
𝑚

and Γ𝑖 = 2𝛼𝑇𝑖

𝑚2 .

Although equivalent, the properties can be alternatively obtained by solving

the equations for the averages, instead of solving Eq. (3.54). In particular, the

time evolution of a generic average of type ⟨𝑔⟩ =
∫︀

𝑔(𝑥,𝑣)𝑃 (𝑥,𝑣,𝑡)𝑑𝑥𝑑𝑣 is obtained

through expression
𝑑

𝑑𝑡
⟨𝑔⟩ =

∫︁
𝑔(𝑥,𝑣)𝜕𝑃

𝜕𝑡
𝑑𝑥𝑑𝑣, (3.55)

and by inserting Eq. (4.9) in Eq. (3.55) and by performing appropriate partial

integrations, an explicit equation for the time evolution of ⟨𝑔⟩ is evaluated in terms

of correlations associated to the positions and velocities.
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For example, for 𝑔 = 𝑥2
1, 𝑥2

2, 𝑥1, 𝑥2, 𝑥1𝑣1, ... their associate motion equations

reads

𝑑

𝑑𝑡

⟨
𝑥2

1

⟩
= 2 ⟨𝑣1𝑥1⟩ , (3.56)

𝑑

𝑑𝑡

⟨
𝑥2

2

⟩
= 2 ⟨𝑣2𝑥2⟩ , (3.57)

𝑑

𝑑𝑡
⟨𝑥1𝑥2⟩ = ⟨𝑣1𝑥2⟩ + ⟨𝑣2𝑥1⟩ , (3.58)

𝑑

𝑑𝑡
⟨𝑥1𝑣1⟩ =

⟨
𝑣2

1

⟩
− 𝐾

⟨
𝑥2

1

⟩
+ 𝐿 ⟨𝑥1𝑥2⟩ − 𝛾 ⟨𝑥1𝑣1⟩ , (3.59)

𝑑

𝑑𝑡
⟨𝑥2𝑣2⟩ =

⟨
𝑣2

2

⟩
− 𝐾

⟨
𝑥2

2

⟩
+ 𝐿 ⟨𝑥2𝑥1⟩ − 𝛾 ⟨𝑥2𝑣2⟩ , (3.60)

𝑑

𝑑𝑡
⟨𝑥1𝑣2⟩ = ⟨𝑣1𝑣2⟩ − 𝐾 ⟨𝑥1𝑥2⟩ + 𝐿

⟨
𝑥2

1

⟩
− 𝛾 ⟨𝑥1𝑣2⟩ , (3.61)

𝑑

𝑑𝑡
⟨𝑥2𝑣1⟩ = ⟨𝑣2𝑣1⟩ − 𝐾 ⟨𝑥2𝑥1⟩ + 𝐿

⟨
𝑥2

2

⟩
− 𝛾 ⟨𝑥2𝑣1⟩ , (3.62)

𝑑

𝑑𝑡

⟨
𝑣2

1

⟩
= −2𝐾 ⟨𝑣1𝑥1⟩ + 2𝐿 ⟨𝑥2𝑣1⟩ − 2𝛾

⟨
𝑣2

1

⟩
+ Γ1, (3.63)

𝑑

𝑑𝑡

⟨
𝑣2

2

⟩
= −2𝐾 ⟨𝑣2𝑥2⟩ + 2𝐿 ⟨𝑥1𝑣2⟩ − 2𝛾

⟨
𝑣2

2

⟩
+ Γ2, (3.64)

and

𝑑

𝑑𝑡
⟨𝑣1𝑣2⟩ = −𝐾 ⟨𝑥1𝑣2⟩ + 𝐿 ⟨𝑥2𝑣2⟩ − 𝐾 ⟨𝑥2𝑣1⟩ + 𝐿 ⟨𝑥1𝑣1⟩ − 2𝛾 ⟨𝑣1𝑣2⟩ ,
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where 𝐾 =
(︂

𝑘+𝑘
′

𝑚

)︂
and 𝐿 = 𝑘

𝑚
. Since we are interested in the steady state

properties, it follows that

⟨𝑣1𝑥1⟩ = ⟨𝑣2𝑥2⟩ = ⟨𝑣1𝑣2⟩ = 0, (3.65)

⟨𝑣1𝑥2⟩ + ⟨𝑣2𝑥1⟩ = 0, (3.66)

⟨
𝑣2

1

⟩
−
(︃

𝑘 + 𝑘
′

𝑚

)︃⟨
𝑥2

1

⟩
+ 𝑘

𝑚
⟨𝑥1𝑥2⟩ − 𝛾 ⟨𝑥1𝑣1⟩ = 0, (3.67)

⟨
𝑣2

2

⟩
−
(︃

𝑘 + 𝑘
′

𝑚

)︃⟨
𝑥2

2

⟩
+ 𝑘

𝑚
⟨𝑥2𝑥1⟩ − 𝛾 ⟨𝑥2𝑣2⟩ = 0, (3.68)

−
(︃

𝑘 + 𝑘
′

𝑚

)︃
⟨𝑥1𝑥2⟩ + 𝑘

𝑚

⟨
𝑥2

1

⟩
− 𝛾 ⟨𝑥1𝑣2⟩ = 0, (3.69)

−
(︃

𝑘 + 𝑘
′

𝑚

)︃
⟨𝑥2𝑥1⟩ + 𝑘

𝑚

⟨
𝑥2

2

⟩
− 𝛾 ⟨𝑥2𝑣1⟩ = 0, (3.70)

2
(︃

𝑘 + 𝑘
′

𝑚

)︃
⟨𝑣1𝑥1⟩ + 2 𝑘

𝑚
⟨𝑥2𝑣1⟩ − 2𝛾

⟨
𝑣2

1

⟩
+ Γ1 = 0, (3.71)

and

− 2
(︃

𝑘 + 𝑘
′

𝑚

)︃
⟨𝑣2𝑥1⟩ + 2 𝑘

𝑚
⟨𝑥1𝑣2⟩ − 2𝛾

⟨
𝑣2

2

⟩
+ Γ2 = 0. (3.72)

Since such equations are linear, their solutions can be found and given by

⟨
𝑣2

1

⟩
= Γ1 + Γ2

4𝛾
+ 𝐾𝛾 (Γ1 − Γ2)

4 (𝐿2 + 𝐾𝛾) , (3.73)
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⟨
𝑣2

1

⟩
= Γ1 + Γ2

4𝛾
− 𝐾𝛾 (Γ1 − Γ2)

4 (𝐿2 + 𝐾𝛾) , (3.74)

⟨𝑥1𝑣2⟩ = − ⟨𝑥2𝑣1⟩ = 𝐿 (Γ1 − Γ2)
4 (𝐿2 + 𝐾𝛾) , (3.75)

⟨
𝑥2

1

⟩
= 𝐾 (Γ1 + Γ2)

4𝛾 (𝐾2 − 𝐿2) + 𝛾 (Γ1 − Γ2)
4 (𝐿2 + 𝐾𝛾2) , (3.76)

⟨
𝑥2

2

⟩
= 𝐾 (Γ1 + Γ2)

4𝛾 (𝐾2 − 𝐿2) − 𝛾 (Γ1 − Γ2)
4 (𝐿2 + 𝐾𝛾2) , (3.77)

and

⟨𝑥1𝑥2⟩ = 𝐿 (Γ1 + Γ2)
4𝛾 (𝐾2 − 𝐿2) , (3.78)

where 𝐾 =
(︂

𝑘+𝑘
′

𝑚

)︂
and 𝐿 = 𝑘

𝑚
. Since Π = Φ in the steady state regime, it follows

that

Φ = 2𝛾2

Γ1

⟨
𝑣2

1

⟩
+ 2𝛾2

Γ2

⟨
𝑣2

2

⟩
− 2𝛾, (3.79)

and we finally arrive at the following

Φ = (Γ1 − Γ2)2

2Γ1Γ2

𝛾𝐿2

𝐿2 + 𝐾𝛾2 , (3.80)

or even

Π = (𝑇1 − 𝑇2)2

2𝑇1𝑇2

𝛼𝑘2

2 (𝑚𝑘2 + (𝑘 + 𝑘′) 𝛼2) . (3.81)

Note that Φ > 0 and it vanishes when will be 𝑇1 = 𝑇2. This result will be used

in the next chapter where two particles are also subject to periodic drivings.
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Chapter 4

Linear chains in the presence of

external force

4.1 Fokker-Planck-Kramers equation

As stated previously, we shall analyze some nonequilibrium properties of a system

of 𝑁 particles subject to a force that depends only on the position 𝐹 (𝑥) in the

presence of a time dependent external thermal force 𝐹 ext(𝑡). A given 𝑖th particle

is described by the motion equations:

𝑚
𝑑𝑣

𝑑𝑡
= 𝐹𝑖 − 𝛼𝑣 + ℱ𝑖(𝑡), (4.1)

𝑣𝑖 = 𝑑𝑥𝑖

𝑑𝑡
, (4.2)

which 𝑖 = 1,2, . . . ,𝑁 , 𝑥 = (𝑥1, . . . ,𝑥𝑁) is the set of positions, 𝑣 = (𝑣1, . . . ,𝑣𝑁) is

the set of velocities, 𝐹𝑖 = 𝐹𝑖(𝑥) + 𝐹 ext
𝑖 (𝑡) the total external force, 𝛼 the coefficient

of friction and ℱ𝑖(𝑡) the random force. Also 𝐹𝑖(𝑡) fulfills the conditions:

⟨ℱ𝑖(𝑡)⟩ = 0, (4.3)

⟨
ℱ𝑖(𝑡)ℱ𝑖(𝑡

′)
⟩

= 2𝛼𝑇𝑖𝛿𝑖𝑗𝛿(𝑡 − 𝑡
′). (4.4)
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By dividing both sides of the equation (4.1) by the mass 𝑚, we have that

𝑑𝑣𝑖

𝑑𝑡
= −𝛾𝑣𝑖 + 𝑓𝑖(𝑥) + 𝜁𝑖(𝑡), (4.5)

where

⟨𝜁𝑖(𝑡)⟩ = 0, (4.6)
⟨
𝜁𝑖(𝑡)𝜁𝑖(𝑡

′)
⟩

= Γ𝑖𝛿𝑖𝑗𝛿(𝑡 − 𝑡
′), (4.7)

where 𝛾 = 𝛼
𝑚

, 𝑓𝑖 = 𝑓𝑖(𝑥) + 𝑓 ext
𝑖 (𝑡) = 𝐹𝑖(𝑥)

𝑚
+ 𝐹 ext

𝑖 (𝑡)
𝑚

, 𝜁𝑖(𝑡) = ℱ𝑖(𝑡)
𝑚

e Γ𝑖 = 2𝛼𝑇𝑖

𝑚2 .

Here we rederive the main expressions in the presence of external forces. Let

𝑃 (𝑥,𝑣,𝑡) ≡ 𝑃 (𝑥1,.., 𝑥𝑁 , 𝑣1,..., 𝑣𝑁 , 𝑡) be the joint probability distribution at time

𝑡, where 𝑥 and 𝑣 denote the collection of particle positions 𝑥𝑖 and velocities 𝑣𝑖,

respectively. As described previously, its time evolution is described by the Fokker-

Planck-Kramers (FPK) equation [57, 72, 63]

𝜕𝑃

𝜕𝑡
= −

∑︁
𝑖

(︃
𝜕

𝜕𝑥𝑖

(𝑣𝑖𝑃 ) − 𝜕

𝜕𝑣𝑖

[︁(︁
𝑓𝑖 − 𝛾𝑣𝑖

)︁
𝑃
]︁

+ Γ
2

𝜕2𝑃

𝜕𝑣2
𝑖

)︃
, (4.8)

that conveniently can be rewritten in the form of a continuity equation

𝜕𝑃

𝜕𝑡
= −

∑︁
𝑖

(︃
𝑣𝑖

𝜕𝑃

𝜕𝑥𝑖

+ [𝑓𝑖 + 𝑓 𝑒𝑥𝑡
𝑖 (𝑡)]𝜕𝑃

𝜕𝑣𝑖

+ 𝜕𝐽𝑖

𝜕𝑣𝑖

)︃
, (4.9)

where

𝐽𝑖 = −𝛾𝑣𝑖𝑃 − 𝛾𝑘B𝑇𝑖

𝑚

𝜕𝑃

𝜕𝑣𝑖

. (4.10)

If the temperatures of all particles 𝑇𝑖 are the same and the external forces are

null, the probability distribution approaches for large times the Gibbs equilibrium

distribution,

𝑃 𝑒(𝑥,𝑣) = 1
𝑍

𝑒−𝐸/𝑘B𝑇 , (4.11)

where 𝐸 = 𝑚𝑣2/2 + 𝑉 is the energy of the system. This result shows that the

FPK Eq. (4.9) indeed describes the contact of a system with a heat reservoir

at a temperature 𝑇 . On the other hand, this will not be the case of the system

in contact with distinct reservoirs and/or when it is subject to time oscillating
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forces or temperatures. In such case, the system dissipates heat and continuously

produce entropy.

The present stochastic approach for nonequilibrium thermodynamics also re-

produces the first law of thermodynamics. For instance, let us take the definition

of mean total energy given by

𝑢 = ⟨𝐸⟩ =
∫︁

(𝑇 + 𝑉 ) 𝑃𝑑𝑥𝑑𝑣 (4.12)

so deriving from time
𝑑𝑢

𝑑𝑡
=
∫︁

(𝑇 + 𝑉 ) 𝜕𝑃

𝜕𝑡
𝑑𝑥𝑑𝑣 (4.13)

From the FK equation, we can rewrite the time variation of the energy 𝑈 = ⟨𝐸⟩

as
𝑑𝑈

𝑑𝑡
= −

𝑁∑︁
𝑖=1

(Φ(𝑖)
q + Φ(𝑖)

w ), (4.14)

where the heat flux Φ(𝑖)
q from the system to the environment (thermal bath) is

expressed as [72, 63]

Φ(𝑖)
q = 𝛾(𝑚⟨𝑣2

𝑖 ⟩ − 𝑘B𝑇𝑖), (4.15)

whose first and second terms can be understood as the heating power and the

power of heat losses, respectively. The term Φ(𝑖)
w can be interpreted as the work

per unity of time given by

Φ(𝑖)
w = −𝑚⟨𝑣𝑖⟩𝑓 𝑒𝑥𝑡

𝑖 (𝑡). (4.16)

In the absence of external forces all heat flux comes from/goes to the thermal bath.

4.1.1 Entropy and entropy production

As stated before the construction of stochastic thermodynamics requires the defi-

nition of an entropy function.

The entropy 𝑆 of the system is determined from the Gibbs expression

𝑆 = −𝑘B

∫︁
𝑃 (𝑥,𝑣,𝑡) ln 𝑃 (𝑥,𝑣,𝑡)𝑑𝑥𝑑𝑣. (4.17)
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By appealing to the definition, its time derivative is (again) given by the sum of

two terms:
𝑑𝑆

𝑑𝑡
= Π − Φ, (4.18)

where the first is identified as the rate of entropy production given by [72, 63]

Π = 𝑘B

𝑁∑︁
𝑖=1

1
Γ𝑖

∫︁ 𝐽2
𝑖

𝑃
𝑑𝑥𝑑𝑣. (4.19)

Once again, Π ≥ 0 (as expected). Conversely, the second term corresponds to the

flux of entropy given by

Φ = −
𝑁∑︁

𝑖=1

2𝛾𝑘B

Γ𝑖

∫︁
𝑣𝑖𝐽𝑖𝑑𝑥𝑑𝑣, (4.20)

or even rewritten as

Φ = 𝑘B

𝑁∑︁
𝑖=1

Φ(𝑖)
q

𝑇𝑖

. (4.21)

As mentioned previously, Eq. (4.21) can be alternatively used for evaluated the

steady production of entropy, since it depends only on averages ⟨𝑣2
𝑖 ⟩ and on the

temperatures 𝑇𝑖.

4.2 Exact solution for time dependent periodic

drivings

Now we are in position for presenting the (original) results that consists of obtaining

the nonequilibrium properties of "brownian particles" in the presence of time

dependent periodic drivings.

For simplifying matters, from now on we shall adopt 𝑘B = 1. Except in Chapter.

5, all analysis will restrict to the case of a chain of 𝑁 particles interacting to its

nearest neighbors by means of harmonic forces and also subject to individual and

external forces. The expression for the force of 𝑖-th particle 𝑓 *
𝑖 then reads

𝑓 *
𝑖 = − 𝑘

𝑚
(𝑥𝑖 − 𝑥𝑖+1) − 𝑘*

𝑚
𝑥𝑖 + 𝑓 ext

𝑖 (𝑡), (4.22)
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𝑓 *
𝑖 = − 𝑘

𝑚
(𝑥𝑖 − 𝑥𝑖−1) − 𝑘*

𝑚
𝑥𝑖 + 𝑓 ext

𝑖 (𝑡), (4.23)

for particles placed at extremities, 𝑖 = 1 and 𝑁 , respectively, and

𝑓 *
𝑖 = − 𝑘

𝑚
(2𝑥𝑖 − 𝑥𝑖−1 − 𝑥𝑖+1) − 𝑘*

𝑚
𝑥𝑖 + 𝑓 ext

𝑖 (𝑡), (4.24)

for the intermediate ones. Quantities 𝑘* and 𝑘 are spring constants characterizing

individual harmonic forces and the coupling between neighboring particles, respec-

tively. Each particle is subject to an external force 𝑓 ext
𝑖 (𝑡). Above expressions can

be conveniently rewritten as

𝑓 *
𝑖 = −𝐾𝑥𝑖 + 𝐿𝑥𝑖+1 + 𝑓 ext

𝑖 (𝑡), (4.25)

𝑓 *
𝑖 = −𝐾𝑥𝑖 + 𝐿𝑥𝑖−1 + 𝑓 ext

𝑖 (𝑡), (4.26)

and, for 𝑖 = 1 and 𝑖 = 𝑁 , respectively, and

𝑓 *
𝑖 = − (𝐾 + 𝐿) 𝑥𝑖 + 𝐿 (𝑥𝑖+1 + 𝑥𝑖−1) + 𝑓 ext

𝑖 (𝑡), (4.27)

respectively, where 𝐿 = 𝑘/𝑚 and 𝐾 = (𝑘 + 𝑘*)/𝑚 for 𝑖 ̸= 1 and 𝑖 ̸= 𝑁 .

Performed in the previous chapter, the time evolution of a generic average of

type ⟨𝑔⟩ =
∫︀

𝑔(𝑥,𝑣)𝑃 (𝑥,𝑣,𝑡)𝑑𝑥𝑑𝑣 is obtained through expression

𝑑

𝑑𝑡
⟨𝑔⟩ =

∫︁
𝑔(𝑥,𝑣)𝜕𝑃

𝜕𝑡
𝑑𝑥𝑑𝑣, (4.28)

and by inserting Eq. (4.9) in Eq. (4.28) and performing appropriate partial

integrations, an explicit equation for the time evolution of ⟨𝑔⟩ is evaluated in terms

of correlations associated to the positions and velocities. Now, due to the time

dependence on the external forces, the evaluation of averages like ⟨𝑔⟩ becomes

cumbersome. However, the calculations become quite simpler by rewriting the

motion equations in terms of their associate covariances. For instance, let us take

for example a generic average ⟨𝑔⟩ =
⟨
𝑣𝑙

𝑖𝑥
𝑚
𝑗

⟩
(with 𝑙 ≥ 1 and 𝑚 ≥ 1) with covariance

given by
⟨
𝑣𝑙

𝑖𝑥
𝑚
𝑗

⟩
𝑐𝑣

≡ ⟨𝑣𝑙
𝑖𝑥

𝑚
𝑗 ⟩ − ⟨𝑣𝑙

𝑖⟩⟨𝑥𝑚
𝑗 ⟩. Unlike the time evolution of ⟨𝑣𝑙

𝑖𝑥
𝑚
𝑗 ⟩, the
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time equation for 𝑑
⟨
𝑣𝑙

𝑖𝑥
𝑚
𝑗

⟩
𝑐𝑣

/𝑑𝑡 = 𝑑⟨𝑣𝑙
𝑖𝑥

𝑚
𝑗 ⟩/𝑑𝑡 − ⟨𝑥𝑚

𝑗 ⟩𝑑⟨𝑣𝑙
𝑖⟩/𝑑𝑡 − ⟨𝑣𝑙

𝑖⟩𝑑⟨𝑥𝑚
𝑗 ⟩/𝑑𝑡 does

not depend explicitly on 𝑡. Since the equations for all covariances are linear and

time independent, the exact solution is possible for all system sizes 𝑁 . Finally,

having the covariances ⟨𝑣2
𝑖 ⟩𝑐𝑣 and the averages ⟨𝑣𝑖⟩, the entropy flux can be directly

evaluated from the usage of Eqs. (4.15) and (4.21).

Below we derive explicit expressions for distinct covariances between the 𝑖 th

and 𝑖 + 1-th particles for a generic chain of 𝑁 sites.

𝑑

𝑑𝑡

⟨
𝑥2

𝑖

⟩
𝑐𝑣

= 2 ⟨𝑣𝑖𝑥𝑖⟩𝑐𝑣 , (4.29)

𝑑

𝑑𝑡
⟨𝑥𝑖𝑥𝑖+1⟩𝑐𝑣 = ⟨𝑣𝑖𝑥𝑖+1⟩𝑐𝑣 + ⟨𝑣𝑖𝑥𝑖+1⟩𝑐𝑣 , (4.30)

𝑑

𝑑𝑡
⟨𝑥𝑖𝑣𝑖⟩𝑐𝑣 =

⟨
𝑣2

𝑖

⟩
𝑐𝑣

− 𝐾
⟨
𝑥2

𝑖

⟩
𝑐𝑣

+ 𝐿 ⟨𝑥𝑖𝑥𝑖+1⟩𝑐𝑣 − 𝛾 ⟨𝑥𝑖𝑣𝑖⟩𝑐𝑣 , (4.31)

𝑑

𝑑𝑡
⟨𝑥𝑖𝑣𝑖+1⟩𝑐𝑣 = ⟨𝑣𝑖𝑣𝑖+1⟩𝑐𝑣 − 𝐾 ⟨𝑥𝑖𝑥𝑖+1⟩𝑐𝑣 + 𝐿

⟨
𝑥2

𝑖

⟩
𝑐𝑣

− 𝛾 ⟨𝑥𝑖𝑣𝑖+1⟩𝑐𝑣 , (4.32)

𝑑

𝑑𝑡

⟨
𝑣2

𝑖

⟩
𝑐𝑣

= −2𝐾 ⟨𝑣𝑖𝑥𝑖⟩𝑐𝑣 + 2𝐿 ⟨𝑥𝑖+1𝑣𝑖⟩𝑐𝑣 − 2𝛾
⟨
𝑣2

𝑖

⟩
𝑐𝑣

+ Γ𝑖, (4.33)

𝑑

𝑑𝑡
⟨𝑣𝑖𝑣𝑖+1⟩𝑐𝑣 = −𝐾 ⟨𝑥𝑖𝑣𝑖+1⟩𝑐𝑣 + 𝐿 ⟨𝑥𝑖+1𝑣𝑖+1⟩𝑐𝑣 − 𝐾 ⟨𝑥𝑖+1𝑣𝑖⟩𝑐𝑣 + 𝐿 ⟨𝑥𝑖𝑣𝑖⟩𝑐𝑣 − 2𝛾 ⟨𝑣𝑖𝑣𝑖+1⟩𝑐𝑣 .

(4.34)

Here we introduced the rescaled temperature Γ𝑖 defined by Γ𝑖 = 2𝛾𝑇𝑖/𝑚 and

thereby for fixed Γ𝑖’s, the achievement of ⟨𝑣2
𝑖 ⟩𝑐𝑣’s reduces to systems of linear

equations.

The time evolution of single averages ⟨𝑣𝑖⟩ and ⟨𝑥𝑖⟩ are also required for obtaining
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⟨𝑣2
𝑖 ⟩, whose expressions read

𝑑

𝑑𝑡
⟨𝑣𝑖⟩ = −(𝐾 + 𝐿)⟨𝑥𝑖⟩ + 𝐿(⟨𝑥𝑖+1⟩ + ⟨𝑥𝑖−1⟩) − 𝛾⟨𝑣𝑖⟩ + 𝑓 𝑒𝑥𝑡

𝑖 (𝑡), (4.35)

for 𝑖 ̸= 1,𝑁 and

𝑑

𝑑𝑡
⟨𝑣𝑖⟩ = −𝐾⟨𝑥𝑖⟩ + 𝐿⟨𝑥𝑖+1⟩ − 𝛾⟨𝑣𝑖⟩ + 𝑓 𝑒𝑥𝑡

𝑖 (𝑡), (4.36)

𝑑

𝑑𝑡
⟨𝑣𝑖⟩ = −𝐾⟨𝑥𝑖⟩ + 𝐿⟨𝑥𝑖−1⟩ − 𝛾⟨𝑣𝑖⟩ + 𝑓 𝑒𝑥𝑡

𝑖 (𝑡), (4.37)

for 𝑖 = 1 and 𝑁 , respectively and from Eq. (3.50), the time evolution of ⟨𝑥𝑖⟩ reads

𝑑

𝑑𝑡
⟨𝑥𝑖⟩ = ⟨𝑣𝑖⟩. (4.38)

Although the previous procedure does not depend on the shape of external forces,

from now on we will restrict our analysis to harmonic external forces given by

𝑓 𝑒𝑥𝑡
𝑖 (𝑡) = 𝑓0𝑖 cos(𝜔𝑡 + 𝜑), (4.39)

with 𝜔 and 𝜑 being its frequency and phase difference (lag), respectively. By

assuming that each ⟨𝑥𝑖⟩ has solution of type

⟨𝑥𝑖⟩ = 𝐴0𝑖 + 𝐴1𝑖 cos 𝜔𝑡 + 𝐴2𝑖 sin 𝜔𝑡, (4.40)

The mean velocity ⟨𝑣𝑖⟩ then becomes

⟨𝑣𝑖⟩ = 𝜔
[︂
𝐴2𝑖 cos(𝜔𝑡) − 𝐴1𝑖 sin(𝜔𝑡)

]︂
(4.41)

By inserting above solutions in Eqs. (4.35) [or Eq. (4.36)/(4.37)] and (4.38), the

coefficients 𝐴1𝑖 and 𝐴2𝑖 are obtained.

We shall start the analysis of chains of two particles and further we are going

to generalize for long chain of an arbitrary system.
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4.3 Two particles case

We have defined a non-equilibrium theory for external forces affecting the system

with two sections. Defining that these efforts have oscillatory behavior, so that

⎧⎪⎪⎨⎪⎪⎩
𝑓 ext

1 = 𝑓01 cos 𝜔𝑡,

𝑓 ext
2 = 𝑓02 cos(𝜔𝑡 + 𝜑).

The motion equations are the same as in Eq. (4.5). In addition, random noise

has the same properties (4.6) and (4.6) and particles are subject to the following

forces

𝐹𝑖 = −𝑘 (𝑥𝑖 − 𝑥𝑗) − 𝑘
′
𝑥𝑖 𝑖 ̸= 𝑗, (4.42)

which can be conveniently rewritten as

𝑓 *
𝑖 = −𝐾𝑥𝑖 + 𝐿𝑥𝑗 𝑖 ̸= 𝑗, (4.43)

respectively, where 𝐿 = 𝑘/𝑚 and 𝐾 = (𝑘 + 𝑘*)/𝑚.

As we noted in previous chapters for calculating entropy yields it is necessary

to calculate averages of type ⟨𝑥𝑖𝑥𝑗⟩, ⟨𝑥𝑖𝑣𝑗⟩ and ⟨𝑣𝑖𝑣𝑗⟩. We can find the averages

using the Kramers equations and through a system of equations for the temporal

evolution of these averages.

𝑑

𝑑𝑡

⟨
𝑥2

1

⟩
= 2 ⟨𝑣1𝑥1⟩ , (4.44)

𝑑

𝑑𝑡

⟨
𝑥2

2

⟩
= 2 ⟨𝑣2𝑥2⟩ , (4.45)

𝑑

𝑑𝑡
⟨𝑥1𝑥2⟩ = ⟨𝑣1𝑥2⟩ + ⟨𝑣2𝑥1⟩ , (4.46)
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𝑑

𝑑𝑡
⟨𝑥1𝑣1⟩ =

⟨
𝑣2

1

⟩
− 𝐾

⟨
𝑥2

1

⟩
+ 𝐿 ⟨𝑥1𝑥2⟩ − 𝛾 ⟨𝑥1𝑣1⟩ + 𝑓 ext

1 ⟨𝑥1⟩ , (4.47)

𝑑

𝑑𝑡
⟨𝑥2𝑣2⟩ =

⟨
𝑣2

2

⟩
− 𝐾

⟨
𝑥2

2

⟩
+ 𝐿 ⟨𝑥2𝑥1⟩ − 𝛾 ⟨𝑥2𝑣2⟩ + 𝑓 ext

2 ⟨𝑥2⟩ , (4.48)

𝑑

𝑑𝑡
⟨𝑥1𝑣2⟩ = ⟨𝑣1𝑣2⟩ − 𝐾 ⟨𝑥1𝑥2⟩ + 𝐿

⟨
𝑥2

1

⟩
− 𝛾 ⟨𝑥1𝑣2⟩ + 𝑓 ext

2 ⟨𝑥1⟩ , (4.49)

𝑑

𝑑𝑡
⟨𝑥2𝑣1⟩ = ⟨𝑣2𝑣1⟩ − 𝐾 ⟨𝑥2𝑥1⟩ + 𝐿

⟨
𝑥2

2

⟩
− 𝛾 ⟨𝑥2𝑣1⟩ + 𝑓 ext

1 ⟨𝑥2⟩ , (4.50)

𝑑

𝑑𝑡

⟨
𝑣2

1

⟩
= −2𝐾 ⟨𝑣1𝑥1⟩ + 2𝐿 ⟨𝑥2𝑣1⟩ − 2𝛾

⟨
𝑣2

1

⟩
+ Γ1 cos 𝜔𝑡 + 2𝑓 ext

1 ⟨𝑣1⟩ , (4.51)

𝑑

𝑑𝑡

⟨
𝑣2

2

⟩
= −2𝐾 ⟨𝑣2𝑥2⟩ + 2𝐿 ⟨𝑥1𝑣2⟩ − 2𝛾

⟨
𝑣2

2

⟩
+ Γ2 cos 𝜔𝑡 + 2𝑓 ext

2 ⟨𝑣2⟩ , (4.52)

and

𝑑

𝑑𝑡
⟨𝑣1𝑣2⟩ = −𝐾 ⟨𝑥1𝑣2⟩ + 𝐿 ⟨𝑥2𝑣2⟩ − 𝐾 ⟨𝑥2𝑣1⟩ + 𝐿 ⟨𝑥1𝑣1⟩ − 2𝛾 ⟨𝑣1𝑣2⟩ +

+ 𝑓 ext
1 ⟨𝑣2⟩ + 𝑓 ext

2 ⟨𝑣1⟩ ,

where 𝐾 =
(︂

𝑘+𝑘
′

𝑚

)︂
and 𝐿 = 𝑘

𝑚
. As exposed in the last section, there are com-

ponents 𝑓 ext
𝑖 ⟨𝑥𝑖⟩, 𝑓 ext

𝑗 ⟨𝑥𝑖⟩, 𝑓 ext
𝑖 ⟨𝑣𝑖⟩ and 𝑓 ext

𝑗 ⟨𝑣𝑖⟩ for 𝑖 ̸= 𝑗 in the equations above

differently from Ref. [63].

The time evolution for the covariances is then given by

𝑑

𝑑𝑡

⟨
𝑥2

1

⟩
𝑐𝑣

= 2 ⟨𝑣1𝑥1⟩𝑐𝑣 , (4.53)

𝑑

𝑑𝑡

⟨
𝑥2

2

⟩
𝑐𝑣

= 2 ⟨𝑣2𝑥2⟩𝑐𝑣 , (4.54)
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𝑑

𝑑𝑡
⟨𝑥1𝑥2⟩𝑐𝑣 = ⟨𝑣1𝑥2⟩𝑐𝑣 + ⟨𝑣2𝑥1⟩𝑐𝑣 , (4.55)

𝑑

𝑑𝑡
⟨𝑥1𝑣1⟩𝑐𝑣 =

⟨
𝑣2

1

⟩
𝑐𝑣

− 𝐾
⟨
𝑥2

1

⟩
𝑐𝑣

+ 𝐿 ⟨𝑥1𝑥2⟩𝑐𝑣 − 𝛾 ⟨𝑥1𝑣1⟩𝑐𝑣 , (4.56)

𝑑

𝑑𝑡
⟨𝑥2𝑣2⟩𝑐𝑣 =

⟨
𝑣2

2

⟩
𝑐𝑣

− 𝐾
⟨
𝑥2

2

⟩
𝑐𝑣

+ 𝐿 ⟨𝑥2𝑥1⟩𝑐𝑣 − 𝛾 ⟨𝑥2𝑣2⟩𝑐𝑣 , (4.57)

𝑑

𝑑𝑡
⟨𝑥1𝑣2⟩𝑐𝑣 = ⟨𝑣1𝑣2⟩𝑐𝑣 − 𝐾 ⟨𝑥1𝑥2⟩𝑐𝑣 + 𝐿

⟨
𝑥2

1

⟩
𝑐𝑣

− 𝛾 ⟨𝑥1𝑣2⟩𝑐𝑣 , (4.58)

𝑑

𝑑𝑡
⟨𝑥2𝑣1⟩𝑐𝑣 = ⟨𝑣2𝑣1⟩𝑐𝑣 − 𝐾 ⟨𝑥2𝑥1⟩𝑐𝑣 + 𝐿

⟨
𝑥2

2

⟩
𝑐𝑣

− 𝛾 ⟨𝑥2𝑣1⟩𝑐𝑣 , (4.59)

𝑑

𝑑𝑡

⟨
𝑣2

1

⟩
𝑐𝑣

= −2𝐾 ⟨𝑣1𝑥1⟩𝑐𝑣 + 2𝐿 ⟨𝑣1𝑥2⟩𝑐𝑣 − 2𝛾
⟨
𝑣2

1

⟩
𝑐𝑣

+ Γ1, (4.60)

𝑑

𝑑𝑡

⟨
𝑣2

2

⟩
𝑐𝑣

= −2𝐾 ⟨𝑣2𝑥2⟩𝑐𝑣 + 2𝐿 ⟨𝑣2𝑥1⟩𝑐𝑣 − 2𝛾
⟨
𝑣2

2

⟩
𝑐𝑣

+ Γ2, (4.61)

and

𝑑

𝑑𝑡
⟨𝑣1𝑣2⟩𝑐𝑣 = −𝐾 ⟨𝑥1𝑣2⟩𝑐𝑣 + 𝐿 ⟨𝑥2𝑣2⟩𝑐𝑣 − 𝐾 ⟨𝑥2𝑣1⟩𝑐𝑣 + 𝐿 ⟨𝑥1𝑣1⟩𝑐𝑣 − 2𝛾 ⟨𝑣1𝑣2⟩𝑐𝑣 .

(4.62)

At the steady state we have a set of equations are similar to those found for the

averages of a system with zero external forces of the application in the last chapter,

and hence it gives the following solutions for the variances.

⟨
𝑣2

1

⟩
𝑐𝑣

= Γ1 + Γ2

4𝛾
+ 𝐾𝛾 (Γ1 − Γ2)

4 (𝐿2 + 𝐾𝛾2) , (4.63)

and ⟨
𝑣2

2

⟩
𝑐𝑣

= Γ1 + Γ2

4𝛾
− 𝐾𝛾 (Γ1 − Γ2)

4 (𝐿2 + 𝐾𝛾2) , (4.64)
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respectively. The system entropy flux (4.20) can be written as

Φ = 2𝛾2

Γ1

(︂⟨
𝑣2

1

⟩
𝑐𝑣

+ ⟨𝑣1⟩2
)︂

+ 2𝛾2

Γ2

(︂⟨
𝑣2

2

⟩
𝑐𝑣

+ ⟨𝑣2⟩2
)︂

− 2𝛾. (4.65)

That is, it is possible to determine the entropy production by evaluating ⟨𝑣𝑖⟩2

and ⟨𝑣2
𝑖 ⟩𝑐𝑣. Using the motion equations of the system, we can get a set of equations

for their expected values.

𝑑

𝑑𝑡
⟨𝑥1⟩ = ⟨𝑣1⟩ , (4.66)

𝑑

𝑑𝑡
⟨𝑥2⟩ = ⟨𝑣2⟩ , (4.67)

𝑑

𝑑𝑡
⟨𝑣1⟩ = −𝐾 ⟨𝑥1⟩ + 𝐿 ⟨𝑥2⟩ + 𝑓 ext

1 − 𝛾 ⟨𝑣1⟩ , (4.68)

and

𝑑

𝑑𝑡
⟨𝑣2⟩ = −𝐾 ⟨𝑥2⟩ + 𝐿 ⟨𝑥1⟩ + 𝑓 ext

2 − 𝛾 ⟨𝑣2⟩ , (4.69)

respectively. Since the external forces are periodic, one assumes that ⟨𝑥𝑖⟩’s and

⟨𝑣𝑖⟩’s changes into the time in the following way

⟨𝑥1⟩ = 𝐴
(x1)
0 + 𝐴

(x1)
1 cos 𝜔𝑡 + 𝐴

(x1)
2 sin 𝜔𝑡, (4.70)

and

⟨𝑥2⟩ = 𝐴
(x2)
0 + 𝐴

(x2)
1 cos 𝜔𝑡 + 𝐴

(x2)
2 sin 𝜔𝑡, (4.71)

respectively. By inserting Eq. (4.70) into (4.66), we have that

𝑑

𝑑𝑡
⟨𝑥1⟩ = ⟨𝑣1⟩ = −𝜔𝐴

(x1)
1 sin 𝜔𝑡 + 𝜔𝐴

(x1)
2 cos 𝜔𝑡, (4.72)
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by inserting Eq. (4.71) into (4.67), we have that

𝑑

𝑑𝑡
⟨𝑥2⟩ = ⟨𝑣2⟩ = −𝜔𝐴

(x2)
1 sin 𝜔𝑡 + 𝜔𝐴

(x2)
2 cos 𝜔𝑡. (4.73)

By deriving Eq. (4.72) and Eq. (4.73) relative to time we have

𝑑

𝑑𝑡
⟨𝑣1⟩ = −𝜔2𝐴

(x1)
1 cos 𝜔𝑡 − 𝜔2𝐴

(x1)
2 sin 𝜔𝑡, (4.74)

and

𝑑

𝑑𝑡
⟨𝑣2⟩ = −𝜔2𝐴

(x2)
1 cos 𝜔𝑡 − 𝜔2𝐴

(x2)
2 sin 𝜔𝑡 (4.75)

respectively, by replacing Eq. (4.74) into (4.68), finally have that

0 =
(︂

− 𝐾𝐴
(x1)
0 + 𝐿𝐴

(x2)
0

)︂
+

+
(︂

− 𝐾𝐴
(x1)
1 + 𝐿𝐴

(x2)
1 − 𝛾𝜔𝐴

(x1)
2 + 𝑓01 + 𝜔2𝐴

(x1)
1

)︂
cos 𝜔𝑡+

+
(︂

− 𝐾𝐴
(x1)
2 + 𝐿𝐴

(x2)
2 + 𝛾𝜔𝐴

(x1)
1 + 𝜔2𝐴

(x1)
2

)︂
sin 𝜔𝑡.

By replacing Eq. (4.75) into (4.69), we have that

0 =
(︂

− 𝐾𝐴
(x2)
0 + 𝐿𝐴

(x1)
0

)︂
+

+
(︂

+ 𝐿𝐴
(x1)
1 − 𝛾𝜔𝐴

(x2)
2 + 𝑓02 cos 𝜑 +

(︁
−𝐾 + 𝜔2

)︁
𝐴

(x2)
1

)︂
cos 𝜔𝑡+

+
(︂

+ 𝐿𝐴
(x1)
2 + 𝛾𝜔𝐴

(x2)
1 + 𝑓02 sin 𝜑 +

(︁
−𝐾 + 𝜔2

)︁
𝐴

(x2)
2

)︂
sin 𝜔𝑡.

Separating the constant terms, cosines and sines from the two equations and

equaling zero, we get the following equations

• Constants

− 𝐾𝐴
(x1)
0 + 𝐿𝐴

(x2)
0 = 0 (4.76)
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and

− 𝐾𝐴
(x2)
0 + 𝐿𝐴

(x1)
0 = 0. (4.77)

• Sines

− 𝐾𝐴
(x1)
2 + 𝐿𝐴

(x2)
2 + 𝛾𝜔𝐴

(x1)
1 + 𝜔2𝐴

(x1)
2 = 0, (4.78)

and

𝐿𝐴
(x1)
2 + 𝛾𝜔𝐴

(x2)
1 + 𝑓02 sin 𝜑 +

(︁
−𝐾 + 𝜔2

)︁
𝐴

(x2)
2 = 0. (4.79)

• Cosines

− 𝐾𝐴
(x1)
1 + 𝐿𝐴

(x2)
1 − 𝛾𝜔𝐴

(x1)
2 + 𝑓01 + 𝜔2𝐴

(x1)
1 = 0, (4.80)

and

𝐿𝐴
(x1)
1 − 𝛾𝜔𝐴

(x2)
2 + 𝑓02 cos 𝜑 +

(︁
−𝐾 + 𝜔2

)︁
𝐴

(x2)
1 = 0. (4.81)

Solving these systems of equations, we get

𝐴
(x2)
0 = 𝐴

(x1)
0 = 0, (4.82)

𝐴
(x1)
1 =

𝑓01 (𝐾 − 𝜔2)
(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 − 𝐿2

)︁
+ 𝑓02𝐿 (−𝜔2 (𝛾2 + 2𝐾) + 𝐾2 − 𝐿2 + 𝜔4)(︁

𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2
)︁ (︁

𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2
)︁ ,

(4.83)

𝐴
(x1)
2 =

𝛾𝜔
(︁
𝑓01

(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 + 𝐿2

)︁
+ 2𝑓02𝐿 (𝐾 − 𝜔2)

)︁
(︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

)︁ (︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

)︁ , (4.84)

𝐴
(x2)
1 =

𝑓01𝐿 (−𝜔2 (𝛾2 + 2𝐾) + 𝐾2 − 𝐿2 + 𝜔4) + 𝑓02 (𝐾 − 𝜔2)
(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 − 𝐿2

)︁
(︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

)︁ (︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

)︁ ,

(4.85)
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and

𝐴
(x2)
2 =

𝛾𝜔
(︁
2𝑓01𝐿 (𝐾 − 𝜔2) + 𝑓02

(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 + 𝐿2

)︁)︁
(︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

)︁ (︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

)︁ . (4.86)

Replacing these solutions in Eq. (4.72), we have

⟨𝑣1⟩ = 𝜔

⎡⎣𝛾𝜔 cos(𝑡𝜔)
(︁
𝑓01

(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 + 𝐿2

)︁
+ 2𝑓02𝐿 (𝐾 − 𝜔2)

)︁
(︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

)︁ (︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

)︁ +

−
sin(𝑡𝜔)

(︁
𝑓01 (𝐾 − 𝜔2)

(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 − 𝐿2

)︁
+ 𝑓02𝐿 (−𝜔2 (𝛾2 + 2𝐾) + 𝐾2 − 𝐿2 + 𝜔4)

)︁
(︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

)︁ (︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

)︁
⎤⎦.

Replacing these solutions in Eq. (4.73), we have

⟨𝑣2⟩ = 𝜔

⎡⎣𝛾𝜔 cos(𝑡𝜔)
(︁
𝑓01

(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 + 𝐿2

)︁
+ 2𝑓02𝐿 (𝐾 − 𝜔2)

)︁
(︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

)︁ (︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

)︁ +

−
sin(𝑡𝜔)

(︁
𝑓01 (𝐾 − 𝜔2)

(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 − 𝐿2

)︁
+ 𝑓02𝐿 (−𝜔2 (𝛾2 + 2𝐾) + 𝐾2 − 𝐿2 + 𝜔4)

)︁
(︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

)︁ (︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

)︁
⎤⎦.

Thereby, having obtained ⟨𝑣1⟩ and ⟨𝑣2⟩ the entropy flux Φ(𝑡) in the steady state

regime can be obtained.

4.3.1 Entropy production

So for a chain of two interacting particles subject to harmonic forces without

phase difference (laglesscase, 𝜑 = 0). From the solution of linear set of equations

described before, we can describe the expressions for the covariances as:

⟨
𝑣2

1

⟩
𝑐𝑣

= Γ1 + Γ2

4𝛾
+ 𝐾𝛾 (Γ1 − Γ2)

4 (𝐿2 + 𝐾𝛾2) , (4.87)

and ⟨
𝑣2

2

⟩
𝑐𝑣

= Γ1 + Γ2

4𝛾
− 𝐾𝛾 (Γ2 − Γ1)

4 (𝐿2 + 𝐾𝛾2) . (4.88)
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Taking into account that ⟨𝑣2
𝑖 ⟩ = ⟨𝑣2

𝑖 ⟩𝑐𝑣 + ⟨𝑣𝑖⟩2 (for 𝑖 = 1 and 2), we see that the

entropy flux can be splitted in two parts,

Φ(𝑡) = Φ𝑇 + Φ𝑓 (𝑡), (4.89)

where Φ𝑇 and Φ𝑓 (𝑡) read

Φ𝑇 = 2𝛾2

Γ1

⟨
𝑣2

1

⟩
𝑐𝑣

+ 2𝛾2

Γ2

⟨
𝑣2

2

⟩
𝑐𝑣

− 2𝛾, (4.90)

and

Φ𝑓 (𝑡) = 2𝛾2

Γ1
⟨𝑣1⟩2 + 2𝛾2

Γ2
⟨𝑣2⟩2 , (4.91)

respectively. The former term can be identified as the entropy flux coming from

the thermal reservoirs, whereas the latter is associated to the entropy flux coming

from the oscillating forces.

Above expressions can be simplified, acquiring the following form

Φ𝑇 = 𝛾𝐿2

2 (𝐿2 + 𝐾𝛾2)
(Γ1 − Γ1)2

Γ1Γ2
, (4.92)

and

Φ𝑓 (𝑡) = 2𝛾2𝜔2∑︁
𝑖

(︃
(𝐴2𝑖 cos 𝜔𝑡 − 𝐴1𝑖 sin 𝜔𝑡)2

Γ𝑖

)︃
, (4.93)

respectively, whose coefficients 𝐴1𝑖 and 𝐴2𝑖 are shown in Appendix 7.1. Since we

are interested in the steady state regime, we shall appeal to Eq. (1.1) and referring

the first and second terms as the entropy production rates Π𝑇 ≡ Φ𝑇 and defining

the average over a cycle as

Π ≡ 𝜔

2𝜋

∫︁ 2𝜋/𝜔

0
Φ𝑓 (𝑡)𝑑𝑡, (4.94)

respectively. Once again, Π𝑇 ≡ Φ𝑇 solely depends on the difference of temperatures

and are similar to the case with no external forces [72], whereas Π̄ is related to the
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time dependent forces averaged over a oscillation period and it is given by

Π = 𝛾2𝜔2 [Γ1 (𝐴2
12 + 𝐴2

22) + Γ2 (𝐴2
11 + 𝐴2

21)]
Γ1Γ2

. (4.95)

By substituting the expressions for 𝐴1𝑖’s and 𝐴2𝑖’s we finally arrive at the following
expression:

Π =
𝛾2𝜔2

{︁
𝑓2

01

[︁
Γ2

(︁
𝛾2𝜔2 +

(︀
𝐾 − 𝜔2

)︀2
)︁

+ 𝐿2Γ1

]︁
+ 2𝑓01𝑓02𝐿

(︀
𝐾 − 𝜔2

)︀
(Γ1 + Γ2) + 𝑓2

02

[︁
Γ1

(︁
𝛾2𝜔2 +

(︀
𝐾 − 𝜔2

)︀2
)︁

+ 𝐿2Γ2

]︁}︁
Γ1Γ2

[︀
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2]︀ [︀𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2]︀ .

(4.96)

This is the one of main results of this section, and we pause to make some few

comments: First, from Eq. (4.95) it follows that Π is always greater than 0,

vanishing when 𝑓01 = 𝑓02 = 0 and/or 𝜔 = 0. Second, in the limit of slow or fast

oscillations, 𝜔 << 1 or 𝜔 >> 1, Π behaves as

Π ∼
𝛾2
[︂
Γ1(𝑓01𝐾 + 𝑓02𝐿)2 + Γ2(𝑓01𝐿 + 𝑓02𝐾)2

]︂
𝜔2

Γ1Γ2(𝐾2 − 𝐿2)2 , (4.97)

and

Π ∼
(︂

𝑓 2
01Γ2 + 𝑓 2

02Γ1

Γ1Γ2

)︂
𝛾2

𝛾2 + 𝜔2 , (4.98)

respectively, implying that Π vanishes as 𝜔2 and 1/𝜔2 for low and large periods,

respectively.

Third, there is an intermediate frequency 𝜔* in which Π̄ is maximum. Although

𝜔* can be evaluated exactly, it displays an unwieldy dependence on the control

parameters. For this reason, we split the analysis in four parts, by inspecting its

dependence on the interaction parameters 𝐾 and 𝐿, the dissipation constant 𝛾

and the ratio between external forces 𝑓02/𝑓01, as depicted in Fig. 4.1. Whenever

𝜔* increases by raising 𝐾,𝐿 and the ratio 𝑓02/𝑓01, it decreases when 𝛾 is increased.

Fourth, when the interaction between particles is “weak”, 𝑘 << 𝑘*, Π reduces to

the single forced harmonic oscillator expression:

Π ∼ 𝛾2𝜔2(𝑓 2
01Γ2 + 𝑓 2

02Γ1)
Γ1Γ2[𝛾2𝜔2 + (𝐾 − 𝜔2)2] , (4.99)

46



0 5 10 15 20
1

2

3

4

0 5 10 15 20
1

2

3

4

5

0 5 10 15
0

0,5

1

0 5 10 15 20
1

1,05

1,1

1,15

ω
∗

K L

f
02

/f
01

γ

(a) (b)

(c) (d)

Figure 4.1: The frequency 𝜔* in which Π̄ is maximum versus distinct control parameters
for Γ1 = 1 and Γ2 = 10. In (𝑎), (𝑏), (𝑐) and (𝑑) we take 𝛾 = 1, 𝐿 = 2 and 𝑓02/𝑓01 = 2,
𝛾 = 1, 𝐾 = 3 and 𝑓02/𝑓01 = 2, 𝛾 = 1, 𝐾 = 3 and 𝐿 = 2 and 𝐾 = 3, 𝐿 = 2 and
𝑓02/𝑓01 = 2, respectively.
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acquiring the simpler form

Π ∼ 𝛾2𝜔2𝑓 2
01

Γ1[𝛾2𝜔2 + (𝐾 − 𝜔2)2] , (4.100)

as Γ1 = Γ2 and 𝑓01 = 𝑓02. Fifth and last, in the strong coupling regime, 𝑘 >> 𝑘*

and 𝑘/𝑚 >> 𝜔2 (or equivalently 𝐿 ≈ 𝐾 and 𝐿 >> 𝜔2), Π becomes

Π ∼
(︂

𝛾2

𝛾2 + 𝜔2

)︂(︂ 1
Γ1

+ 1
Γ2

)︂
(𝑓01 + 𝑓02)2, (4.101)

which is independent on strength oscillator parameters 𝐾 and 𝐿.

4.3.2 Bilinear form and Onsager coefficients

In similarity to Chapter 2, the shapes of Eqs. (4.92) and (4.96) show that the

entropy production components can be written as flux-times-force expressions

Π𝑇 = 𝒥𝑇 𝑓𝑇 and

Π = 𝒥 𝑓
1 𝑓01 + 𝒥 𝑓

2 𝑓02, (4.102)

respectively, where the forces 𝑓𝑇 = 1/Γ1 − 1/Γ2 and 𝑓0𝑖(𝑗) have associated fluxes

𝒥𝑇 , 𝒥 𝑓
1 and 𝒥 𝑓

2 given by

𝒥𝑇 = Γ1Γ2𝛾𝐿2

2 (𝐿2 + 𝐾𝛾2)

(︂ 1
Γ1

− 1
Γ2

)︂
, (4.103)

and

𝒥 𝑓
1 = 𝐿11𝑓01 + 𝐿12𝑓02, and 𝒥 𝑓

2 = 𝐿21𝑓01 + 𝐿22𝑓02, (4.104)

respectively. The bilinear form for Π provides to identify the terms 𝐿11 and 𝐿12

as the associated Onsager coefficients given by

𝐿11 =
𝛾2𝜔2

[︁
Γ2

(︁
𝛾2𝜔2 +

(︀
𝐾 − 𝜔2)︀2

)︁
+ 𝐿2Γ1

]︁
Γ1Γ2

[︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

]︁ [︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

]︁ , (4.105)

and
𝐿12 =

𝐿
(︀
𝐾 − 𝜔2)︀ (Γ1 + Γ2)

Γ1Γ2

[︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

]︁ [︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

]︁ , (4.106)
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respectively. Analogous expressions are hold valid for 𝐿21 and 𝐿22 by exchanging

1 ↔ 2. Note that 𝐿11 ≥ 0 and 𝐿22 ≥ 0 (as expected). The non-negativity of the

entropy production also requires that 4𝐿11𝐿22 − (𝐿12 + 𝐿21)2 ≥ 0. To verify this,

let us consider Γ2 = 𝑟Γ1 with 𝑟 being an arbitrary (non negative) real number.

Such above inequality is always satisfied, since the term

[︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 + 𝐿2𝑟

]︁ [︁
𝑟
(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2)︁+ 𝐿2

]︁
𝐿2(𝑟 + 1)2 (𝐾 − 𝜔2)2 ,

is greater than 1/4 for all values of 𝑟,𝐾,𝜔 and 𝛾.

4.3.3 Phase difference between harmonic forces

Here we extend the results from previous subsection but taking into account a

phase difference between external forces 𝑓 𝑒𝑥𝑡
1 (𝑡) and 𝑓 𝑒𝑥𝑡

2 (𝑡). More specifically,

𝑓 𝑒𝑥𝑡
1 (𝑡) has the same expression as previously, but 𝑓 𝑒𝑥𝑡

2 (𝑡) now reads 𝑓 𝑒𝑥𝑡
2 (𝑡) =

𝑓02 cos(𝜔𝑡 + 𝜑). By repeating aforedescribed procedures, we assume that ⟨𝑣𝑖⟩ =

𝑤 (𝐶2𝑖 cos 𝜔𝑡 − 𝐶1𝑖 sin 𝜔𝑡), whose coefficients 𝐶1𝑖 and 𝐶2𝑖 are decomposed in two

parts: 𝐶1𝑖 = 𝐴1𝑖 + 𝐵1𝑖(𝜑), whose 𝐴1𝑖 and 𝐴2𝑖 are the same as Eqs. (7.1) and (7.2)

and the dependence on the phase difference appears only in 𝐵1𝑖 and 𝐵2𝑖, whose

explicit coefficients are listed in Appendix 7.2. We then arrive at the following

expression for the steady entropy production Π

Π = 𝛾2𝜔2 [Γ1 (𝐶2
12 + 𝐶2

22) + Γ2 (𝐶2
11 + 𝐶2

21)]
Γ1Γ2

, (4.107)

which is quite similar to Eq. (4.95). As in the lagless case, it has three terms
with first and third terms being identical to Eq. (4.96) and the phase difference
dependence appearing only in middle term reading

⎡⎣ 2𝑓01𝑓02𝐿
[︀
𝛾𝜔(Γ2 − Γ1) sin 𝜑 +

(︀
𝐾 − 𝜔2)︀ (Γ1 + Γ2) cos 𝜑

]︀
Γ1Γ2

(︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

)︁(︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

)︁
⎤⎦ . (4.108)
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Figure 4.2: For distinct frequencies 𝜔’s, panel (𝑎) depicts the average entropy production
Π versus the phase difference 𝜑 for Γ1 = 1, Γ2 = 10, 𝐾 = 3 and 𝛾 = 1. For 𝐾 = 3 and 𝛾 =
1 and distinct sets of Γ1 and Γ2, panel (𝑏) shows the positions 𝜑 of maximum/minimum
of entropy production Π versus 𝜔.

Note that the it reduces to the middle term from Eq. (4.96) when 𝜑 = 0. The

position of the maximum and minimum in Π fulfills the above relation

𝜑 = tan−1
[︃

𝛾𝜔(Γ2 − Γ1)
(𝐾 − 𝜔2) (Γ1 + Γ2)

]︃
. (4.109)

Note that 𝜑 depends only on the signs of both Γ2 − Γ1 and 𝐾 − 𝜔2 and it is

independent on 𝐿. In particular, in the regime of Γ2 >> Γ1(Γ2 << Γ1), 𝜑

is independent on Γ𝑖’s, reading ±𝛾𝜔/(𝐾 − 𝜔2). Conversely, for fast and slow

oscillations, it approaches to zero as 𝛾(Γ1−Γ2)/𝐾𝜔(Γ2+Γ1) and 𝛾𝜔(Γ2−Γ1)/𝐾(Γ2+

Γ1), respectively. Fig. 4.2 plots Π versus 𝜑 for distinct set of values of 𝜔 and Γ𝑖’s.

Note that the maxima of mean entropy production yields at 𝜑 ∼ 0(𝜋) for small

(large) values of 𝜔 and 𝜑 → 𝜋/2 when 𝜔 →
√

𝐾. The dependence of extremes

clearly follows theoretical predictions from Eq. (4.109) (see e.g. panels (𝑎) and (𝑏)

in Fig. 4.2).
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4.4 More than two particles

In this section we present the main results for long chains of oscillators. In real

systems, due to the lattice imperfections and impurities, the difference of tem-

perature between particles placed at extremities is responsible for a transport of

heat following Fourier’s law. More concretely, it states that the heat current is

proportional to the inverse of the length of the chain given by

𝒥𝑇 = −𝜅
𝑑𝑇

𝑑𝑥
, (4.110)

where 𝜅 is the heat conductivity. In the case of a finite difference of temperatures

Δ𝑇 , it follows that 𝒥𝑇 ∼ 1/𝑁 and thereby the heat flux is proportional to the

inverse of the system size. Obtaining Fourier’s Law from microscopic models have

attracted great interest in the last years [111, 112, 102, 103]. In principle, one

could suppose that a linear chain of particles interacting through harmonic forces

in contact with two temperature reservoirs placed at extremities would lead to a

heat flux obeying Fourier’s law. However this is not the case [113]. Among the

distinct approaches aimed at obtaining a heat flux inversely proportional to the

system chain, we mention the self-consistent protocol proposed by Bosterli et al.

[104]. It consists of baths acting on all sites, but intermediate temperatures are

chosen self-consistently in such a way that they do not exchange any heat with

the system in the steady state, ensuring that heat flux is only due to particles

placed at extremities. Here we take a similar approach by Bosterli et al., in which

each intermediate temperature is chosen so that it equals to the variance ⟨𝑣2
𝑖 ⟩𝑐𝑣,

Γ*
𝑖 = 2𝛾 ⟨𝑣2

𝑖 ⟩𝑐𝑣. Although it reduces to the original protocol when external forces are

absent, here all self-consistent reservoirs are expected to produce entropy coming

from external forces. Fig. 4.3 illustrates a linear chain in the presence of thermal

and self-consistent baths.

In order to compare the distinct sources of dissipation, thermal and time oscil-

lating forces, we will consider that particles placed at extremities are not subjected

to external forces. Thereby, under the above choice of the intermediate Γ𝑖’s, the
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Figure 4.3: Schematic diagram consisting of an one-dimensional chain of 𝑁 harmonic
oscillators with individual and coupling interactions 𝑘* and 𝑘, respectively. Γ1 and Γ𝑁

denote the cold and hot bath temperatures, respectively, whereas the self-consistent
reservoirs are ranged from Γ*

2 to Γ*
𝑁−1. Each intermediate particle is also subject to

an external force 𝑓𝑒𝑥𝑡
𝑖 (𝑡). The usage of our protocol leads to intermediate temperatures

changing linearly from Γ1 to Γ𝑁 , consistent to a flux of heat along the chain, symbolized
by the color gradient from the red to the blue reservoirs.

flux of entropy becomes

Φ(𝑡) = Φ𝑇 + Φ𝑓 (𝑡), (4.111)

where Φ𝑇 read

Φ𝑇 = 2𝛾2

Γ1

⟨
𝑣2

1

⟩
𝑐𝑣

+ 2𝛾2

Γ𝑁

⟨
𝑣2

𝑁

⟩
𝑐𝑣

− 2𝛾, (4.112)

and Φ𝑓 (𝑡) is a sum of individual contributions

Φ𝑓 (𝑡) = 2𝛾2
(︂⟨𝑣1⟩2

Γ1
+

𝑁−1∑︁
𝑖=2

⟨𝑣𝑖⟩2

Γ*
𝑖

+ ⟨𝑣𝑁⟩2

Γ𝑁

)︂
. (4.113)

Despite the absence of external forces for extreme particles, the averages ⟨𝑣1⟩ and

⟨𝑣𝑁⟩ present oscillating behavior coming from couplings with neighboring particles

(see e.g. Eqs. (4.36) and (4.37)).

In all cases, Π𝑇 = Φ𝑇 can be written as for the two particles case

Π𝑇 = 𝒥𝑇 𝑓𝑇 , (4.114)

where the thermodynamic force 𝑓𝑇 and its associate flux 𝒥𝑇 read 𝑓𝑇 = 1/Γ1−1/Γ𝑁

and 𝒥𝑇 = 𝜅(Γ𝑁 − Γ1)/𝑁 , respectively. Thereby, the expression for Π𝑇 becomes

Π𝑇 = 𝜅

𝑁

(Γ𝑁 − Γ1)2

Γ1Γ𝑁

. (4.115)

Since the thermal conduction coefficient 𝜅 is finite (it depends only on parameters
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Γ1,Γ𝑁 ,𝐾 and 𝐿), the entropy production Π𝑇 decays as 𝑁−1 (see e.g. Fig. 4.5(𝑏)).

4.4.1 Three particles case

Here we derive explicit results for a chain of 𝑁 = 3 particles. In such case, Eq.

(4.113) becomes

Φ𝑓 (𝑡) = 2𝛾2

Γ1
⟨𝑣1⟩2 + 2𝛾2

Γ*
2

⟨𝑣2⟩2 + 2𝛾2

Γ3
⟨𝑣3⟩2 , (4.116)

and the entropy production Π𝑇 due to thermal reservoirs has the shape of Eq.

(4.114) with 𝒥𝑇 given by

𝒥𝑇 = Γ1Γ3𝛾𝐿2 (2𝛾2𝐾 + 𝐿2)
2 [𝐿2 + 𝛾2 (4𝐾 − 2𝐿)] [𝐿2 + 𝛾2 (𝐾 + 𝐿)]𝑓𝑇 . (4.117)

Once again, Π𝑇 ≥ 0, since 4𝐾 − 2𝐿 = 2(𝑘 + 2𝑘*)/𝑚. Using the motion equations

we arrive at the following expression for Π:

Π =
𝑓 2

02𝛾
2𝜔2

[︁
Γ1Γ3

(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2)︁+ 𝐿2Γ*

2(Γ1 + Γ3)
]︁

Γ1Γ*
2Γ3

[︁
𝛾2𝜔2 + (𝐾 + 2𝐿 − 𝜔2)2

]︁ [︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

]︁ , (4.118)

which is strictly positive and vanishes when 𝑓02 and/or 𝜔 are equal to zero.

Also, in the regime of slow and fast oscillations, Π exhibit similar dependencies on

𝜔 to the two particles case:

Π ∼
(︂

𝐾2

Γ*
2

+ 𝐿2(Γ1 + Γ3)
Γ1Γ3

)︂
𝛾2𝜔2𝑓 2

02
(𝐾 + 2𝐿)2(−𝐾 + 𝐿)2 , (4.119)

for 𝜔 << 1 and

Π ∼ 𝛾2𝑓 2
02

Γ*
2

1
𝜔2 , (4.120)

for 𝜔 >> 1, respectively, implying that for such latter limit the entropy production

is independent on extreme temperatures. For strong couplings between particles,
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Figure 4.4: For a chain of 𝑁 = 50 particles with 𝐾 = 2,𝐿 = 1,𝛾 = 1 and 𝜔 = 1, the
rescaled temperatures Γ𝑖’s versus the position of the 𝑖-th site for three set of temperatures
(Γ1,Γ𝑁 ). The intermediate temperatures are calculated according to the prescription
Γ*

𝑖 = 2𝛾
⟨︀
𝑣2

𝑖

⟩︀
𝑐𝑣.

𝐿 ≈ 𝐾 >> 𝜔2, Π approaches to

Π ∼ 𝛾2

𝛾2 + 𝜔2

(︂ 1
Γ1

+ 1
Γ*

2
+ 1

Γ3

)︂
𝑓 2

02, (4.121)

which is quite similar to Eq. (4.101) [for 𝑁 = 2] and it is independent on the

interaction strengths.

4.4.2 The limit of long particles chains

All results obtained for 𝑁 = 3 particles can be straightforward extended for long

chains. However, it becomes very cumbersome to obtain simplified expressions

for Π in such cases. For this reason, we will restrict the next analysis for specific

values of control parameters. Fig. 4.4 shows, for a chain of 𝑁 = 50 particles and

three sets of temperatures (Γ1,Γ𝑁), the temperature profiles calculated from the

self consistent protocol. In all cases, the set of intermediate temperatures changes

linearly from Γ1 to Γ𝑁 , consistent to a flux of heat along the chain from the hot

to the cold reservoirs.

Fig. 4.5(𝑎) compares the individual entropy production contributions for dis-

tinct system sizes for 𝑓02 = 𝑓03 = ... = 𝑓0𝑁−1. Since external forces are equally

presented in all intermediate particles, the entropy production associated to self

consistent baths increases linearly with 𝑁 . Also, panel (𝑎) depicts the existence

of two regimes. For small chains the thermal reservoir contribution Π𝑇 dominates
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Figure 4.5: For Γ1 = 1 and Γ𝑁 = 10, panels (𝑎) depicts the individual entropy production
contributions from the thermal and self-consistent baths versus 𝑁 for 𝐾 = 3,𝐿 = 2 and
𝜔 = 1.5. In (𝑏) the behavior of entropy production from the thermal reservoirs Π𝑇 vs
𝑁−1.

over the self-consistent ones Π, whereas Π wins over Π𝑇 upon 𝑁 is increased. In

the limit 𝑁 → ∞ (see e.g panel (𝑏)), only the contributions from self-consistent

reservoirs prevail, in consonance with Fourier’s law [Eq. (4.115)]. Finally, it is

worth emphasizing two distinct linear behaviors of Π. It arises from the parti-

cles closer to the thermal reservoirs providing more contribution for the entropy

production for small chains than for large ones.
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Chapter 5

Linear chains in the presence of

oscillating temperature

The investigation of systems under oscillating temperature has been reported in

several works [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101],

which provides a way of measuring the heat capacity experimentally. Here we intend

to verify the nonequilibrium trademarks of a chain of two interacting particles under

time oscillating temperatures. For simplicity, we consider external forces absent.

The entropy production can also be evaluated straightforwardly from Eq. (4.21),

but instead the temperature Γ𝑖(𝑡) of the each reservoir is now time dependent

Γ𝑖(𝑡) = Γ0𝑖 + 𝐹𝑇𝑖
cos(𝜔𝑡), with Γ0𝑖 and 𝐹𝑇𝑖

being the reference temperature and

the strength of temperature driving, respectively.

In the first analysis, we shall reproduce the main results from Ref. [73], in

which a single harmonic oscillator is subject to an oscillating temperture. Next,

we describe our original contribution, in which a chain of two interacting particles

is subject to periodic temperature drivings.

By reapeating the aforementioned procedures for the Fokker-Planck equation

in the presence of oscillating temperature, the motion equations are given by

𝑑 ⟨𝑣2⟩
𝑑𝑡

= −2𝐾 ⟨𝑥𝑣⟩ − 2𝛾
⟨
𝑣2
⟩

+ 𝑘𝐵Γ, (5.1)

𝑑 ⟨𝑥2⟩
𝑑𝑡

= 2 ⟨𝑥𝑣⟩ , (5.2)
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and
𝑑 ⟨𝑥𝑣⟩

𝑑𝑡
=
⟨
𝑣2
⟩

− 𝐾
⟨
𝑥2
⟩

− 𝛾 ⟨𝑥𝑣⟩ . (5.3)

Solving this set of equations and for 𝑘𝐵 = 1 we can find an expression for ⟨𝑣2⟩ as

⟨
𝑣2
⟩

= Γ0

2𝛾
+ Γ0

2𝛾
(𝐴1 cos 𝜔𝑡 + 𝐴2 sin 𝜔𝑡) , (5.4)

where

𝐴1 = 4𝜔2 (𝜔4 − 3𝐾𝜔2 + 4𝐾2 + 𝛾2𝜔2)
(𝛾2 + 𝜔2)

(︁
4𝛾2𝜔2 + (𝜔2 − 4𝐾)2

)︁ , (5.5)

and

𝐴2 = 2𝛾𝜔 (𝜔4 − 6𝐾𝜔2 + 8𝐾2 + 𝛾2𝜔2)
(𝛾2 + 𝜔2)

(︁
4𝛾2𝜔2 + (𝜔2 − 4𝐾)2

)︁ . (5.6)

We know from previous chapter that the entropy flux can be given by Equation

(3.48) which for one particle is

Φ = 2𝛾2

Γ𝑖

⟨
𝑣2
⟩

− 𝛾, (5.7)

since the entropy production rates Π = Φ (In the steady state) and taking the

average over a cycle like before, we find

Π = 𝛾𝜔2 (𝜔4 − 8𝐾𝜔2 + 16𝐾2 + 4𝐾𝛾2 + 𝛾2𝜔2)
(𝛾2 + 𝜔2)

(︁
4𝛾2𝜔2 + (𝜔2 − 4𝐾)2

)︁ (︃
Γ0

(Γ0 − Γ1) (Γ0 + Γ1)
− 1

)︃
, (5.8)

in accordance with the entropy production found in Ref. [73]. Note that it vanishes

as 𝜔 → 0 and becomes 𝛾2
(︁

Γ0
(Γ0−Γ1)(Γ0+Γ1) − 1

)︁
when 𝜔 → ∞.

Now we can study a chain of two interacting particles under time oscillating

temperatures which are given by

Γ𝑖(𝑡) = Γ0𝑖 + 𝐹𝑇𝑖
cos(𝜔𝑡), (5.9)

with Γ0𝑖 and 𝐹𝑇𝑖
being the reference temperature and the strength of temperature

driving, respectively. Although such problem is exactly solvable [see e.g. Fig. 5.1

(𝑏)] and reduces to previous expression (Eq. (5.8)) when Γ01 = Γ02 and 𝐿 = 0, the
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expression for Π is much more complex than previous cases and involves many terms

related to distinct powers of interaction parameters 𝐾,𝐿 and driving frequency

𝜔. For this reason, our analysis will be carried out close to equilibrium regime,

in which a linear treatment can be performed. More specifically, we take both

reference temperatures to be equal Γ01 = Γ02 = Γ0 and the driving strengths are

low 𝐹𝑇𝑖
<< Γ0. In such case, the entropy production Π can also be written down

in the bilinear form Π = 𝒥𝑇1𝐹𝑇1 + 𝒥𝑇2𝐹𝑇2 , where the fluxes 𝒥𝑇1 and 𝒥𝑇2 read

𝒥𝑇1 = 𝐿𝑇1,𝑇1𝐹𝑇1 + 𝐿𝑇1,𝑇2𝐹𝑇2 , (5.10)

and

𝒥𝑇2 = 𝐿𝑇2,𝑇1𝐹𝑇1 + 𝐿𝑇2,𝑇2𝐹𝑇2 , (5.11)

respectively, where 𝐿𝑇𝑖,𝑇𝑗
are the associated Onsager coefficients given by

𝐿𝑇1,𝑇1 = 𝛾

2Γ2
0

(︃∑︀9
ℓ=0 𝐵ℓ 𝜔2ℓ∑︀9
ℓ=0 𝐺ℓ 𝜔2ℓ

)︃
, (5.12)

and

𝐿𝑇1,𝑇2 = −4𝛾3𝐿2

Γ2
0

(︃∑︀6
ℓ=0 𝐴ℓ 𝜔2ℓ∑︀9
ℓ=0 𝐺ℓ 𝜔2ℓ

)︃
, (5.13)

respectively, where 𝐿𝑇1,𝑇1 = 𝐿𝑇2,𝑇2 and 𝐿𝑇1,𝑇2 = 𝐿𝑇2,𝑇1 and coefficients 𝐴𝑖’s, 𝐵𝑖’s

and 𝐺𝑖’s solely depend on the parameters 𝛾 and 𝐿 = 2𝐾 and are listed in the

Appendix 7.3.

We pause again to make some few comments: First, in the limit of slow and

fast frequencies, Π approaches to the following expressions

Π ∼ 4𝛾3𝐿2𝐴0

Γ2
0𝐺0

(𝐹𝑇1 − 𝐹𝑇2)2, (5.14)

and

Π ∼ 𝛾

2Γ2
0
(𝐹 2

𝑇1 + 𝐹 2
𝑇2), (5.15)

respectively. They contrast with the oscillating forced case, since are independent

on 𝜔 and different from zero in both extreme cases. Whenever it depends on 𝐿

for low oscillations, the entropy production is independent on the coupling for fast
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Figure 5.1: Panels (𝑎) and (𝑏) depict the steady entropy production rate Π versus
frequency driving 𝜔 for time dependent oscillating forces and temperatures, respectively.
In all cases we take 𝛾 = 1,𝐾 = 2,Γ1 = Γ2 = 10 and 𝑓02 = 2𝑓01 = 4 [panel (𝑎)] and
𝐹𝑇2 = 2𝐹𝑇1 = 4 [panel (𝑏)]. Inset: The steady Π for distinct 𝐿’s for low 𝜔.

oscillations. Finally, for strong interaction strength, 𝐿 >> 1 and 𝐿 >> 𝜔2, Π

reads

Π ∼ 𝛾

4Γ2
0(𝛾2 + 𝜔2)

[︁
𝛾2(𝐹𝑇1 − 𝐹𝑇2)2 + 2𝜔2(𝐹 2

𝑇1 + 𝐹 2
𝑇2)
]︁

, (5.16)

which is also independent on 𝐿. We close this section by comparing, in Fig. 5.1 (𝑎)

and (𝑏) the steady entropy production behaviors versus the frequency driving 𝜔 for

both oscillating temperature and forces (obtained from the exact solution). They

exhibit meaningfully different dependence on 𝜔, even for extreme 𝜔. Whenever

Π vanishes for 𝜔 << 1 and 𝜔 >> 1 in the case of time oscillating forces, it

reaches constant values for temperature drivings, in accordance with asymptotic

expressions Eqs. (5.14) and (5.15), respectively, obtained from the linear regime

approximation.
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Chapter 6

Conclusions

Nonequilibrium thermodynamics have attracted great deal of interest in the last

years and a particular attention has been given to periodically driven systems.

In this work, we analyzed, via stochastic thermodynamics, the properties of lin-

ear chains of Brownian particles. Our results constituted a further step in the

previous studies [73, 63] in which periodic drivings have been considered for the

underdamped harmonic oscillator. We derived exact expressions for the heat flux,

entropy production and allied quantities. The analysis were splitted in two parts:

regimes of short and long chains.

Several conclusions have been drawn from our work. In the former case the

interaction between partícles is responsible for a bilinear form of the entropy

production, whose Onsager coefficients are functions of interaction parameters and

frequency drivings. They behave very differently depending on the kind of driving,

e.g. when the driving is introduced in the temperature or forces. Reciprocal

relations were also obtained.

Second, the limit of long chains was studied by means of a self-consistent

protocol for choosing intermediate temperatures. In such a case, the entropy

production is a sum of two terms: one coming from the real baths and the other

from the self-consistent reservoirs. Whenever the former dominates for short chains,

the latter contribution prevails for long ones. The contribution from the thermal

reservoirs is responsible to heat flux according to Fourier’s law.

There are serveral perspectives to be addressed. The inclusion of both temper-
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ature and external force drivings in harmonic chains should be interesting, in order

to compare not only the structure of entropy production but also the Onsager

coefficients. In this case, considerations about the efficiency can be performed.

The oscillating force can be interpreted as a source of mechanical work, whereas

the oscillating temperature as a source of heat. Also, the investigation of other

kinds of drivings, such as the time discrete drivings should also be interesting in

order to compare with sinusoidally time dependent ones. We intend to develop

these topics in ongoing studies.
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Chapter 7

Appendix

7.1 Obtaining the coefficients 𝐴𝑖𝑗 for 𝑁 = 2 par-

ticles case with no phase difference

Here we show explicit expressions for the coefficients 𝐴𝑖𝑗’s for the two particles

case subject to oscillating forces. The index 𝑖 stands for the 𝑖-th particle (𝑖 = 1,2).

𝐴1𝑖 =
𝑓0𝑖 (𝐾 − 𝜔2)

[︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 − 𝐿2

]︁
+ 𝑓0𝑗𝐿 [−𝜔2 (𝛾2 + 2𝐾) + 𝐾2 − 𝐿2 + 𝜔4][︁

𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2
]︁ [︁

𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2
]︁ ,

(7.1)
and

𝐴2𝑖 =
𝛾𝜔
[︁
𝑓0𝑖

(︁
𝛾2𝜔2 +

(︀
𝐾 − 𝜔2)︀2 + 𝐿2

)︁
+ 2𝑓0𝑗𝐿

(︀
𝐾 − 𝜔2)︀]︁(︁

𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2
)︁(︁

𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2
)︁ . (7.2)

Having the 𝐴𝑖𝑗’s, the steady entropy production Π is straightforwardly evaluated.
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7.2 Obtaining the coefficients 𝐵𝑖𝑗 for 𝑁 = 2 par-

ticles case and phase difference

Here we show explicit expressions for the coefficients 𝐵𝑖𝑗’s for the two particles

subject to phase difference between oscillating forces.

𝐵11 = 𝑓02𝐿 ((cos 𝜑 − 1) (−𝜔2 (𝛾2 + 2𝐾) + 𝐾2 − 𝐿2 + 𝜔4) + 2𝛾𝜔 (𝐾 − 𝜔2) sin 𝜑)(︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

)︁ (︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

)︁ ,

(7.3)

𝐵21 =
𝑓02𝐿

(︁
sin 𝜑

(︁
𝛾2𝜔2 − (𝐾 − 𝜔2)2 + 𝐿2

)︁
+ 2𝛾𝜔 (𝐾 − 𝜔2) (cos 𝜑 − 1)

)︁
(︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

)︁ (︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

)︁ , (7.4)

𝐵12 =
𝑓02𝛾𝜔 sin 𝜑

(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 + 𝐿2

)︁
+ 𝑓02 (𝐾 − 𝜔2) (cos 𝜑 − 1)

(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 − 𝐿2

)︁
(︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

)︁ (︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

)︁ ,

(7.5)

and

𝐵22 =
𝑓02 (𝜔2 − 𝐾) sin 𝜑

(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 − 𝐿2

)︁
+ 𝑓02𝛾𝜔(cos 𝜑 − 1)

(︁
𝛾2𝜔2 + (𝐾 − 𝜔2)2 + 𝐿2

)︁
(︁
𝛾2𝜔2 + (𝐾 + 𝐿 − 𝜔2)2

)︁ (︁
𝛾2𝜔2 + (−𝐾 + 𝐿 + 𝜔2)2

)︁ ,

(7.6)

respectively. Note that all of them vanishes as 𝜑 = 0, restoring the expressions

Eqs. (7.1) and (7.2), respectively.

7.3 Obtaining the coefficients 𝐴𝑖’s, 𝐵𝑖’s and 𝐺𝑖’s

for 𝑁 = 2 particles case and oscillating tem-

perature

Here we show explicit expressions for the coefficients 𝐴𝑖’s, 𝐵𝑖’s and 𝐺𝑖’s for the

two particles case and time oscillating temperatures.

𝐴0 = 2304𝐿5
(︁
2𝛾2 + 𝐿

)︁
,
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𝐴1 = −128𝐿3
(︁
−7𝛾4 + 58𝛾2𝐿 + 123𝐿2

)︁
,

𝐴2 = 16𝐿
(︁
8𝛾6 − 50𝛾4𝐿 + 34𝛾2𝐿2 + 931𝐿3

)︁
,

𝐴3 = 4
(︁
−11𝛾6 + 78𝛾4𝐿 + 319𝛾2𝐿2 − 1606𝐿3

)︁
,

𝐴4 = −3
(︁
17𝛾4 + 82𝛾2𝐿 − 548𝐿2

)︁
,

𝐴5 = 3𝛾2 − 214𝐿,

𝐴6 = +10,

𝐵0 = 36864𝛾4𝐿7 + 18432𝛾2𝐿8,

𝐵1 = 31744𝛾6𝐿5 + 112640𝛾4𝐿6 + 27648𝛾2𝐿7 + 36864𝐿8,

𝐵2 = 4608𝛾8𝐿3 + 18176𝛾6𝐿4 − 77056𝛾4𝐿5 + 203904𝛾2𝐿6 − 172032𝐿7,

𝐵3 = 128𝛾10𝐿 + 608𝛾8𝐿2 − 6592𝛾6𝐿3 + 85920𝛾4𝐿4 − 230720𝛾2𝐿5 + 269824𝐿6,

𝐵4 = 16𝛾10 − 64𝛾8𝐿 + 4536𝛾6𝐿2 − 34864𝛾4𝐿3 + 125488𝛾2𝐿4 − 170496𝐿5,

𝐵5 = 56𝛾8 − 792𝛾6𝐿 + 8112𝛾4𝐿2 − 34928𝛾2𝐿3 + 54288𝐿4,
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𝐵6 = 73𝛾6 − 928𝛾4𝐿 + 5120𝛾2𝐿2 − 9536𝐿3,

𝐵7 = 43𝛾4 − 376𝛾2𝐿 + 936𝐿2,

𝐵8 = 11𝛾2 − 48𝐿,

𝐵9 = 1,

𝐺0 = 147456𝛾6𝐿6 + 147456𝛾4𝐿7 + 36864𝛾2𝐿8,

𝐺1 = 50176𝛾8𝐿4 − 94208𝛾6𝐿5 + 262144𝛾4𝐿6 − 24576𝛾2𝐿7 + 36864𝐿8,

𝐺2 = 3584𝛾10𝐿2 − 23552𝛾8𝐿3 + 166400𝛾6𝐿4 − 323584𝛾4𝐿5 + 384512𝛾2𝐿6 − 172032𝐿7,

𝐺3 = 64𝛾12 − 768𝛾10𝐿 + 14720𝛾8𝐿2 − 77312𝛾6𝐿3 + 262528𝛾4𝐿4 − 399872𝛾2𝐿5 + 269824𝐿6,

𝐺4 = 240𝛾10 − 2688𝛾8𝐿 + 24672𝛾6𝐿2 − 96960𝛾4𝐿3 + 200592𝛾2𝐿4 − 170496𝐿5,

𝐺5 = 348𝛾8 − 3504𝛾6𝐿 + 20024𝛾4𝐿2 − 52736𝛾2𝐿3 + 54288𝐿4,

𝐺6 = 245𝛾6 − 2064𝛾4𝐿 + 7424𝛾2𝐿2 − 9536𝐿3,

𝐺7 = 87𝛾4 − 528𝛾2𝐿 + 936𝐿2,
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𝐺8 = 15𝛾2 − 48𝐿,

𝐺9 = 1.
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Entropy production and heat transport in harmonic chains under
time-dependent periodic drivings

Bruno A. N. Akasaki , Mário J. de Oliveira , and C. E. Fiore
Universidade de São Paulo, Instituto de Física, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brazil

(Received 1 November 2019; revised manuscript received 23 December 2019; published 28 January 2020)

Using stochastic thermodynamics, the properties of interacting linear chains subject to periodic drivings are
investigated. The systems are described by Fokker-Planck-Kramers equation and exact solutions are obtained as
functions of the modulation frequency and strength constants. Analysis will be carried out for short and long
chains. In the former case, explicit expressions are derived for a chain of two particles, in which the entropy
production is written down as a bilinear function of thermodynamic forces and fluxes, whose associated Onsager
coefficients are evaluated for distinct kinds of periodic drivings. The limit of long chains is analyzed by means
of a protocol in which the intermediate temperatures are self-consistently chosen and the entropy production
is decomposed as a sum of two individual contributions, one coming from real baths (placed at extremities
of lattice) and other from self-consistent baths. Whenever the former dominates for short chains, the latter
contribution prevails for long ones. The thermal reservoirs lead to a heat flux according to Fourier’s law.

DOI: 10.1103/PhysRevE.101.012132

I. INTRODUCTION

The description of thermodynamic quantities at the meso-
scopic level gives rise to the stochastic thermodynamics [1–3],
in which fluctuations in the thermodynamic fluxes become
important. This theory not only allows to reproduce the fun-
damental concepts of thermodynamics of equilibrium systems
but can also be extended for the more general case of nonequi-
librium ones. In particular, it shows that stochastic fluxes
satisfy general relations such as the Jarzynski equality [4,5]
or/and it predicts the existence of general bounds among
thermodynamic fluxes [6,7].

Entropy production has played a fundamental role in
nonequilibrium statistical physics not only for typifying the
irreversibility [8–10], but also for tackling general consid-
erations about efficiency of heat engines [11], the analysis
of (irreversible) phase transition portraits [12–14], thermody-
namic uncertainties relations [6,7], and others. A fundamental
relation for the entropy production comes from simple en-
tropic arguments in which the system is coupled to a thermal
reservoir. Its time entropy variation dS/dt is the difference of
two terms

dS

dt
= �(t ) − �(t ), (1)

where �(t ) is the entropy production rate and �(t ) is the
entropy flux rate from/to the system to/from the environment.
Since the environment works as a subsystem in equilibrium,
�(t ) corresponds to the entropy produced inside the system.
Equation (1) implies that all entropy spontaneously produced
(by the system) has to be delivered to the environment in
the steady state regime. When the system is in thermal equi-
librium, it follows that �s = �s = 0, whereas �s = �s > 0
out of the equilibrium regime. Thereby entropy production
discerns equilibrium and nonequilibrium systems, since it is

continuously produced in the latter case. In such case, the
steady entropy production rate can alternatively be evaluated
through the calculation of the steady entropy flux �s.

The thermodynamic properties of Markovian systems
have been extensively studied in the framework of mas-
ter [8–10,15,16] and Fokker-Planck equations [17–25]. A
special recent attention has been devoted to periodically
driven systems [26–29]. In part because their thermodynamic
properties can be experimentally accessible [26,30–47]. In
addition, some of their remarkable features, such as a general
description in the linear regime (Onsager coefficients and
general reciprocal relations can be achieved), the existence
of uncertainties constraints leading to existence of bounds
among macroscopic averages and other features have been put
under a firmer basis. In other cases, the probability distribution
of work for systems described by Langevin equations with
time dependent drivings has also been analyzed [24]. How-
ever, the more general case of interacting particles subject to
time periodic drivings has not been studied thoroughly. In
particular, the question of how the inclusion of interaction
changes the nonequilibrium trademarks as well as the entropy
production properties has not been addressed before.

In this paper, we fill this gap by investigating the thermody-
namic properties of interacting chains of Brownian particles
subject to (time dependent) periodic forces and temperature
drivings. Exact expressions for the thermodynamic quanti-
ties, including the dissipated heat, entropy production, heat
flux and others are obtained. The limits of short and long
particle chains are thoroughly investigated. For the latter
case, intermediate temperatures are self-consistently chosen
through a protocol taking into account an inner entropy
production source. This is meaningfully different from the
original approach by Bosterli et al. [48], in which no heat flux
is exchanged among the particles and self-consistent baths.
Thus, our approach provides us not only to analyze the role
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of two distinct sources of dissipation, but also establishing
which contribution dominates in the limits of short and long
chains. Two main findings can be drawn: For the case of
two interacting particles, the entropy production is derived
as a bilinear function of fluxes and forces for both drivings
in forces and temperatures, whose associated Onsager coef-
ficients depend on the interaction parameters and frequency
driving. Remarkably, the effect of a phase difference (a lag)
between external forces is investigated and the condition for
maximum/minimum entropy production is found to depend
only on the temperature reservoirs and frequency driving,
irrespective of the interaction strength between particles. The
entropy production of long particle chains can be split in two
terms: one coming from the thermal reservoirs and the other
from the self-consistent ones.

This paper is organized as follows. In Sec. II we describe
the theoretical background and the exact solution for time
dependent drivings is evaluated in Sec. III. In Secs. IV and V,
the two and several particles cases are analyzed, respectively.
Conclusions are discussed in Sec. VI.

II. FOKKER-PLANCK-KRAMERS EQUATION

We consider a set of N interacting particles with equal
masses m, in which the ith particle evolves in time according
to the following set of coupled Langevin equations:

dvi

dt
= f ∗

i − γ vi + Fi(t ), (2)

and

dxi

dt
= vi, (3)

with xi denoting its position with velocity vi = dxi/dt , re-
spectively, whereas γ is the dissipation constant. Here, f ∗

i
stands for the force acting to the ith particle, which is assumed
to be decomposed as the sum of a time dependent term
f ext
i (t ) plus a term fi depending only on the positions. Thus,

fi can be written as the derivative of the potential energy
V , fi = −∂V/∂xi. The stochastic force Fi(t ) accounts for
the interaction between particle i and the environment and
satisfies the properties

〈Fi(t )〉 = 0, (4)

and

〈Fi(t )F j (t
′)〉 = 2γ Tiδi jδ(t − t ′), (5)

respectively, where Ti > 0 is distinct for each particle. Let
P(x, v, t ) ≡ P(x1, . . . , xN , v1, . . . , vN , t ) be the joint proba-
bility distribution at time t , where x and v denote the col-
lection of particle positions xi and velocities vi, respectively.
Its time evolution is described by the Fokker-Planck-Kramers
(FPK) equation [3,9,18]

∂P

∂t
= −

∑
i

(
vi

∂P

∂xi
+ [

fi + f ext
i (t )

] ∂P

∂vi
+ ∂Ji

∂vi

)
, (6)

where

Ji = −γ viP − γ kBTi

m

∂P

∂vi
. (7)

If the temperatures of all particles Ti are the same and
the external forces are null, the probability distribution ap-
proaches for large times the Gibbs equilibrium distribution,

Pe(x, v) = 1

Z
e−E/kBT , (8)

where E = mv2/2 + V is the energy of the system. This
result shows that the FPK Eq. (6) indeed describes the contact
of a system with a heat reservoir at a temperature T . On the
other hand, this will not be the case of the system in contact
with distinct reservoirs and/or when it is subject to time
oscillating forces or temperatures. In such case, the system
dissipates heat and continuously produce entropy.

From the FK equation, the time variation of the energy
U = 〈E〉 reads

dU

dt
= −

N∑
i=1

(
�(i)

q + �(i)
w

)
, (9)

where the heat flux �(i)
q from the system to the environment

(thermal bath) is expressed as [9,18]

�(i)
q = γ

(
m

〈
v2

i

〉 − kBTi
)
, (10)

whose first and second terms can be understood as the heating
power and the power of heat losses, respectively. The term
�(i)

w can be interpreted as the work per unity of time given by

�(i)
w = −m〈vi〉 f ext

i (t ). (11)

In the absence of external forces all heat flux comes
from/goes to the thermal bath.

The entropy S of the system is determined from the Gibbs
expression

S = −kB

∫
P ln Pdxdv. (12)

From the FPK equation, one finds that its time derivative has
the form of Eq. (1), where the first is identified as the rate of
entropy production given by [9,18]

� = mkB

γ

N∑
i=1

1

Ti

∫
J2

i

P
dxdv. (13)

Note that � � 0 (as expected). Conversely, the second term
corresponds to the flux of entropy given by

� = −
N∑

i=1

mkB

Ti

∫
viJidxdv, (14)

or even rewritten as

� = kB

N∑
i=1

�(i)
q

Ti
. (15)

As mentioned previously, Eq. (15) can be alternatively used
for evaluated the steady production of entropy, since it de-
pends only on averages 〈v2

i 〉 and on the temperatures Ti.
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III. EXACT SOLUTION FOR TIME DEPENDENT
EXTERNAL FORCES

For simplifying matters, from now on we shall adopt
kB = 1. Except in Sec. IV B, all analyses will be restricted
to the case of a chain of N particles interacting to its nearest
neighbors by means of harmonic forces and also subject to
individual and external forces. The expression for the force of
ith particle f ∗

i then reads

f ∗
i = − k

m
(xi − xi+1) − k∗

m
xi + f ext

i (t ), (16)

f ∗
i = − k

m
(xi − xi−1) − k∗

m
xi + f ext

i (t ), (17)

for particles placed at extremities, i = 1 and N , respectively,
and

f ∗
i = − k

m
(2xi − xi−1 − xi+1) − k∗

m
xi + f ext

i (t ), (18)

for the intermediate ones. Quantities k∗ and k are spring
constants characterizing individual harmonic forces and the
coupling between neighboring particles, respectively. Above
expressions can be conveniently rewritten as

f ∗
i = −Kxi + Lxi+1 + f ext

i (t ), (19)

f ∗
i = −Kxi + Lxi−1 + f ext

i (t ), (20)

and, for i = 1 and i = N , respectively, and

f ∗
i = −(K + L)xi + L(xi+1 + xi−1) + f ext

i (t ), (21)

respectively, where L = k/m and K = (k + k∗)/m for i �= 1
and i �= N .

The time evolution of a generic average of type 〈g〉 =∫
g(x, v)P(x, v, t )dxdv is obtained through the expression

d

dt
〈g〉 =

∫
g(x, v)

∂P

∂t
dxdv, (22)

and by inserting Eq. (6) into Eq. (22) and performing ap-
propriate partial integrations, an explicit equation for the
time evolution of 〈g〉 is evaluated in terms of correlations
associated to the positions and velocities. Due to the time
dependence on the external forces, the evaluation of averages
like 〈g〉 becomes cumbersome. However, the calculations
become quite simpler by rewriting the motion equations in
terms of their associate covariances. For instance, let us
take for example a generic average 〈g〉 = 〈vl

i x
m
j 〉 (with l � 1

and m � 1) with covariance given by 〈vl
i x

m
j 〉cv ≡ 〈vl

i x
m
j 〉 −

〈vl
i 〉〈xm

j 〉. Unlike the time evolution of 〈vl
i x

m
j 〉, the time

equation for d〈vl
i x

m
j 〉cv/dt = d〈vl

i x
m
j 〉/dt − 〈xm

j 〉d〈vl
i 〉/dt −

〈vl
i 〉d〈xm

j 〉/dt does not depend explicitly on t . Since the equa-
tions for all covariances are linear and time independent, the
exact solution is possible for all system sizes N . Finally, hav-
ing the covariances 〈v2

i 〉cv and the averages 〈vi〉, the entropy
flux can be directly evaluated from the usage of Eqs. (10)
and (15).

Below we derive explicit expressions for distinct covari-
ances between the i-th and i + 1-th particles for a generic

chain of N sites:

d

dt

〈
x2

i

〉
cv

= 2〈vixi〉cv, (23)

d

dt
〈xixi+1〉cv = 〈vixi+1〉cv + 〈vixi+1〉cv, (24)

d

dt
〈xivi〉cv = 〈

v2
i

〉
cv − K

〈
x2

i

〉
cv + L〈xixi+1〉cv − γ 〈xivi〉cv,

(25)

d

dt
〈xivi+1〉cv = 〈vivi+1〉cv − K〈xixi+1〉cv + L

〈
x2

i

〉
cv

− γ 〈xivi+1〉cv, (26)

d

dt

〈
v2

i

〉
cv = −2K〈vixi〉cv + 2L〈xi+1vi〉cv − 2γ

〈
v2

i

〉
cv + �i,

(27)

d

dt
〈vivi+1〉cv = −K〈xivi+1〉cv + L〈xi+1vi+1〉cv

− K〈xi+1vi〉cv + L〈xivi〉cv − 2γ 〈vivi+1〉cv.

(28)

Here, we introduced the rescaled temperature �i defined by
�i = 2γ Ti/m and, thereby for fixed �i’s, the achievement of
〈v2

i 〉cv’s reduces to systems of linear equations.
The time evolution of single averages 〈vi〉 and 〈xi〉 are also

required for obtaining 〈v2
i 〉, whose expressions read

d

dt
〈vi〉 = −(K + L)〈xi〉 + L(〈xi+1〉 + 〈xi−1〉)

− γ 〈vi〉 + f ext
i (t ), (29)

for i �= 1, N and

d

dt
〈vi〉 = −K〈xi〉 + L〈xi+1〉 − γ 〈vi〉 + f ext

i (t ), (30)

d

dt
〈vi〉 = −K〈xi〉 + L〈xi−1〉 − γ 〈vi〉 + f ext

i (t ), (31)

for i = 1 and N , respectively and from Eq. (3), the time
evolution of 〈xi〉 reads

d

dt
〈xi〉 = 〈vi〉. (32)

Although the previous procedure does not depend on the
shape of external forces, from now on we will restrict
our analysis to harmonic external forces given by f ext

i (t ) =
f0i cos(ωt + φ) with ω and φ being its frequency and phase
difference (lag), respectively. By assuming that each 〈xi〉
has solution of type 〈xi〉 = A0i + A1i cos ωt + A2i sin ωt , 〈vi〉
becomes 〈vi〉 = ω[A2i cos(ωt ) − A1i sin(ωt )]. By inserting
above solutions in Eqs. (29) [or Eqs. (30), (31)] and (32), the
coefficients A1i and A2i are obtained. It is worth mentioning
that coefficients vary with the number of particles and their
expressions for two particles are listed in Appendix A.

IV. TWO PARTICLES CASE

A. Oscillating forces

In the first application we analyze a chain of two in-
teracting particles subject to harmonic forces without phase
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difference (lagless case, φ = 0). From the solution of linear
set of equations described in Sec. III, we obtain the following
expressions for the covariances:

〈
v2

1

〉
cv = �1 + �2

4γ
+ Kγ (�1 − �2)

4(L2 + Kγ 2)
, (33)

and 〈
v2

2

〉
cv = �1 + �2

4γ
− Kγ (�1 − �2)

4(L2 + Kγ 2)
. (34)

Taking into account that 〈v2
i 〉 = 〈v2

i 〉cv + 〈vi〉2 (for i = 1 and
2), we see that the entropy flux can be split in two parts,

�(t ) = �T + � f (t ), (35)

where �T and � f (t ) read

�T = 2γ 2

�1

〈
v2

1

〉
cv + 2γ 2

�2

〈
v2

2

〉
cv − 2γ , (36)

and

� f (t ) = 2γ 2

�1
〈v1〉2 + 2γ 2

�2
〈v2〉2, (37)

respectively. The former term can be identified as the entropy
flux coming from the thermal reservoirs, whereas the latter

is associated to the entropy flux coming from the oscillating
forces.

The above expressions can be simplified, acquiring the
following form:

�T = γ L2

2(L2 + Kγ 2)

(�1 − �1)2

�1�2
, (38)

and

� f (t ) = 2γ 2ω2
∑

i

(
(A2i cos ωt − A1i sin ωt )2

�i

)
, (39)

respectively, whose coefficients A1i and A2i are shown in Ap-
pendix A. Since we are interested in the steady state regime,
we shall appeal to Eq. (1), referring to the first and second
terms as the entropy production rates �T ≡ �T and � ≡
ω

2π

∫ 2π/ω

0 � f (t )dt , respectively. Once again, �T ≡ �T solely
depends on the difference of temperatures and are similar to
the case with no external forces [18], whereas �̄ is related to
the time dependent forces averaged over a oscillation period
and it is given by

� = γ 2ω2
[
�1

(
A2

12 + A2
22

) + �2
(
A2

11 + A2
21

)]
�1�2

. (40)

By substituting the expressions for A1i’s and A2i’s we finally
arrive at the following expression:

� = γ 2ω2
{

f 2
01[�2(γ 2ω2 + (K − ω2)2) + L2�1] + 2 f01 f02L(K − ω2)(�1 + �2) + f 2

02[�1(γ 2ω2 + (K − ω2)2) + L2�2]
}

�1�2[γ 2ω2 + (K + L − ω2)2][γ 2ω2 + (−K + L + ω2)2]
.

(41)

This is the one of main results of the paper, and we pause to
make a few comments: First, from Eq. (40) it follows that � is
always greater than 0, vanishing when f01 = f02 = 0 and/or
ω = 0. Second, in the limit of slow or fast oscillations, ω � 1
or ω 	 1, � behaves as

� ∼ γ 2[�1( f01K + f02L)2 + �2( f01L + f02K )2]ω2

�1�2(K2 − L2)2
, (42)

and

� ∼
(

f 2
01�2 + f 2

02�1

�1�2

)
γ 2

γ 2 + ω2
, (43)

respectively, implying that � vanishes as ω2 and 1/ω2 for low
and large frequencies, respectively.

Third, there is an intermediate frequency ω∗ in which �̄ is
maximum. Although ω∗ can be evaluated exactly, it displays
an unwieldy dependence on the control parameters. For this
reason, we split the analysis in four parts, by inspecting
its dependence on the interaction parameters K and L, the
dissipation constant γ and the ratio between external forces
f02/ f01, as depicted in Fig. 1. Whenever ω∗ increases by
raising K, L and the ratio f02/ f01, it decreases when γ is
increased. Fourth, when the interaction between particles is
“weak”, k � k∗, � reduces to the single forced harmonic
oscillator expression

� ∼ γ 2ω2
(

f 2
01�2 + f 2

02�1
)

�1�2[γ 2ω2 + (K − ω)2]
, (44)

acquiring the simpler form

� ∼ γ 2ω2 f 2
01

�1[γ 2ω2 + (K − ω)2]
, (45)

0 5 10 15 20
1

2

3

4

0 5 10 15 20
1

2

3

4

5

0 5 10 15
0

0.5

1

0 5 10 15 20
1

1.05

1.1

1.15

ω∗
LK

f02/f01
γ

(a) (b)

(c) (d)

FIG. 1. The frequency ω∗ in which �̄ is maximum versus
distinct control parameters for �1 = 1 and �2 = 10. In (a), (b),
(c), and (d) we take γ = 1, L = 2 and f02/ f01 = 2, γ = 1, K = 3
and f02/ f01 = 2, γ = 1, K = 3 and L = 2 and K = 3, L = 2 and
f02/ f01 = 2, respectively.
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as �1 = �2 and f01 = f02. Fifth and last, in the strong cou-
pling regime, k 	 k∗ and k/m 	 ω2 (or equivalently L ≈ K
and L 	 ω2), � becomes

� ∼
(

γ 2

γ 2 + ω2

)(
1

�1
+ 1

�2

)
( f01 + f02)2, (46)

which is independent on strength oscillator parameters K
and L.

1. Bilinear form and Onsager coefficients

The shapes of Eqs. (38) and (41) show that the entropy
production components can be written as flux-times-force

expressions �T = JT fT and

� = J f
1 f01 + J f

2 f02, (47)

respectively, where the forces fT = 1/�1 − 1/�2 and f0i( j)

have associated fluxes JT , J f
1 , and J f

2 given by

JT = �1�2γ L2

2(L2 + Kγ 2)

(
1

�1
− 1

�2

)
, (48)

and

J f
1 = L11 f01 + L12 f02 and J f

2 = L21 f01 + L22 f02,

(49)

respectively. The bilinear form for � provides to identify the
terms L11 and L12 as the associated Onsager coefficients given
by

L11 = γ 2ω2[�2(γ 2ω2 + (K − ω2)2) + L2�1]

�1�2[γ 2ω2 + (K + L − ω2)2][γ 2ω2 + (−K + L + ω2)2]
, (50)

and

L12 = L(K − ω2)(�1 + �2)

�1�2[γ 2ω2 + (K + L − ω2)2][γ 2ω2 + (−K + L + ω2)2]
, (51)

respectively. Analogous expressions are held valid for L21 and L22 by exchanging 1 ↔ 2. Note that L11 � 0 and L22 � 0 (as
expected). The non-negativity of the entropy production also requires that 4L11L22 − (L12 + L21)2 � 0. To verify this, let us
consider �2 = r�1 with r being an arbitrary (non-negative) real number. Such above inequality is always satisfied, since the
term

[γ 2ω2 + (K − ω2)2 + L2r][r(γ 2ω2 + (K − ω2)2) + L2]

L2(r + 1)2(K − ω2)2
,

is greater than 1/4 for all values of r, K, ω, and γ .

2. Phase difference between harmonic forces

Here, we extend the results from the previous subsection but taking into account a phase difference between external forces
f ext
1 (t ) and f ext

2 (t ). More specifically, f ext
1 (t ) has the same expression as previously, but f ext

2 (t ) now reads f ext
2 (t ) = f02 cos(ωt +

φ). By repeating afore-described procedures, we assume that 〈vi〉 = w(C2i cos ωt − C1i sin ωt ), whose coefficients C1i and C2i

are decomposed in two parts: C1i = A1i + B1i(φ), whose A1i and A2i are the same as Eqs. (A1) and (A2) and the dependence
on the phase difference appears only in B1i and B2i, whose explicit coefficients are listed in Appendix B. We then arrive at the
following expression for the steady entropy production �:

� = γ 2ω2
[
�1

(
C2

12 + C2
22

) + �2
(
C2

11 + C2
21

)]
�1�2

, (52)

which is quite similar to Eq. (40). As in the lagless case, it has three terms with first and third terms being identical to Eq. (41)
and the phase difference dependence appearing only in middle term reading[

2 f01 f02L[γω(�2 − �1) sin φ + (K − ω2)(�1 + �2) cos φ]

�1�2(γ 2ω2 + (K + L − ω2)2)(γ 2ω2 + (−K + L + ω2)2)

]
. (53)

Note that the it reduces to the middle term from Eq. (41)
when φ = 0. The position of the maximum and minimum in
� fulfills the above relation

φ = tan−1

[
γω(�2 − �1)

(K − ω2)(�1 + �2)

]
. (54)

Note that φ depends only on the signs of both �2 − �1

and K − ω2 and it is independent on L. In particular, in

the regime of �2 	 �1(�2 � �1), φ is independent on �i’s,
reading ±γω/(K − ω2). Conversely, for fast and slow oscil-
lations, it approaches to zero as γ (�1 − �2)/Kω(�2 + �1)
and γω(�2 − �1)/K (�2 + �1), respectively. Figure 2 plots �

versus φ for distinct set of values of ω and �i’s. Note that
the maxima of mean entropy production yields at φ ∼ 0(π )
for small (large) values of ω and φ → π/2 when ω → √

K .
The dependence of extremes clearly follows theoretical pre-
dictions from Eq. (54) (see, e.g., panels (a) and (b) in Fig. 2).
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FIG. 2. For distinct frequencies ω’s, (a) depicts the average
entropy production � versus the phase difference φ for �1 = 1,
�2 = 10, K = 3, and γ = 1. For K = 3 and γ = 1 and distinct sets
of �1 and �2, (b) shows the positions φ of maximum/minimum of
entropy production � versus ω.

B. Oscillating temperatures

The investigation of systems under oscillating temperature
has been reported in several works [30–47], which provides a
way of measuring the heat capacity experimentally. Here, we
intend to verify the nonequilibrium trademarks of a chain of
two interacting particles under time oscillating temperatures.
For simplicity, we consider external forces absent. The en-
tropy production can also be evaluated straightforwardly from
Eq. (15), but instead the temperature �i(t ) of the each reser-
voir is now time dependent �i(t ) = �0i + FTi cos(ωt ) with �0i

and FTi being the reference temperature and the strength of
temperature driving, respectively.

Although such a problem is exactly solvable [see, e.g.,
Fig. 3(b)] and reduces to the findings from Ref. [19] when
�01 = �02 and L = 0, the expression for � is much more
complex than previous cases and involves many terms related
to distinct powers of interaction parameters K, L and driving
frequency ω. For this reason, our analysis will be carried
out close to equilibrium regime, in which a linear treatment
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ω−2
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FIG. 3. (a) and (b) depict the steady entropy production rate �

versus frequency driving ω for time dependent oscillating forces and
temperatures, respectively. In all cases we take γ = 1, K = 2, �1 =
�2 = 10, and f02 = 2 f01 = 4 [(a)] and FT2 = 2FT1 = 4 [(b)]. Inset:
The steady � for distinct L’s for low ω.

can be performed. More specifically, we take both reference
temperatures to be equal �01 = �02 = �0 and the driving
strengths are sufficiently low FTi � �0. In such case, the
entropy production � can also be written down in the bilinear
form � = JT1 FT1 + JT2 FT2 , where the fluxes JT1 and JT2 read

JT1 = LT1,T1 FT1 + LT1,T2 FT2 , (55)

and

JT2 = LT2,T1 FT1 + LT2,T2 FT2 , (56)

respectively, where LTi,Tj are the associated Onsager coeffi-
cients given by

LT1,T1 = γ

2�2
0

( ∑9
�=0 B� ω2�∑9
�=0 G� ω2�

)
, (57)

and

LT1,T2 = −4γ 3L2

�2
0

( ∑6
�=0 A� ω2�∑9
�=0 G� ω2�

)
, (58)

respectively, where LT1,T1 = LT2,T2 and LT1,T2 = LT2,T1 and co-
efficients Ai’s, Bi’s, and Gi’s solely depend on the parameters
γ and L = 2K and are listed in Appendix C.

We pause again to make some few comments: First, in
the limit of slow and fast frequencies, � approaches to the
following expressions:

� ∼ 4γ 3L2A0

�2
0G0

(
FT1 − FT2

)2
, (59)

and

� ∼ γ

2�2
0

(
F 2

T1
+ F 2

T2

)
, (60)

respectively. They contrast with the oscillating forced case,
since are independent on ω and different from zero in both
extreme cases. Whenever it depends on L for low oscillations,
the entropy production is independent on the coupling for fast
oscillations. Finally, for strong interaction strength, L 	 1
and L 	 ω2, � reads

� ∼ γ

4�2
0 (γ 2 + ω2)

[
γ 2

(
FT1 − FT2

)2 + 2ω2
(
F 2

T1
+ F 2

T2

)]
, (61)

which is also independent on L. We close this section by
comparing, in Fig. 3(a) and 3(b) the steady entropy production
behaviors versus the frequency driving ω for both oscillating
temperature and forces (obtained from the exact solution).
They exhibit meaningfully different dependence on ω, even
for extreme ω. Whenever � vanishes for ω � 1 and ω 	 1 in
the case of time oscillating forces, it reaches constant values
for temperature drivings, in accordance with asymptotic ex-
pressions Eqs. (59) and (60), respectively, obtained from the
linear regime approximation.

V. MORE THAN TWO PARTICLES

In this section we present the main results for long chains
of oscillators. In real systems, due to the lattice imperfections
and impurities, the difference of temperature between parti-
cles placed at extremities is responsible for a transport of heat
following Fourier’s law. More concretely, it states that the heat
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Γ

kk kk
Γ1 NΓ

*

. . .
k

Γ* Γ*

FIG. 4. Schematic diagram consisting of a one-dimensional
chain of N harmonic oscillators with individual and coupling interac-
tions k∗ and k, respectively. �1 and �N denote the cold and hot bath
temperatures, respectively, whereas the self-consistent reservoirs
range from �∗

2 to �∗
N−1. Each intermediate particle is also subject

to an external force f ext
i (t ). The usage of our protocol leads to inter-

mediate temperatures changing linearly from �1 to �N , consistent to
a flux of heat along the chain, symbolized by the color gradient from
the red to the blue reservoirs.

current is proportional to the inverse of the length of the chain
given by

JT = −κ
dT

dx
, (62)

where κ is the heat conductivity. In the case of a finite
difference of temperatures T , it follows that JT ∼ 1/N
and thereby the heat flux is proportional to the inverse of
the system size. Obtaining Fourier’s law from microscopic
models have attracted great interest in the last years [49–52].
In principle, one could suppose that a linear chain of particles
interacting through harmonic forces in contact with two tem-
perature reservoirs placed at extremities would lead to a heat
flux obeying Fourier’s law. However, this is not the case [53].
Among the distinct approaches aimed at obtaining a heat flux
inversely proportional to the system chain, we mention the
self-consistent protocol proposed by Bosterli et al. [48]. It
consists of baths acting on all sites, but intermediate temper-
atures are chosen self-consistently in such a way that they
do not exchange any heat with the system in the steady
state, ensuring that heat flux is only due to particles placed
at extremities. Here, we take a similar approach by Bosterli
et al., in which each intermediate temperature is chosen so
that it equals to the variance 〈v2

i 〉cv , �∗
i = 2γ 〈v2

i 〉cv . Although
it reduces to the original protocol when external forces are
absent, here all self-consistent reservoirs are expected to pro-
duce entropy coming from external forces. Figure 4 illustrates
a linear chain in the presence of thermal and self-consistent
baths.

In order to compare the distinct sources of dissipation,
thermal and time oscillating forces, we will consider that
particles placed at extremities are not subjected to external
forces. Thereby, under the above choice of the intermediate
�i’s, the flux of entropy becomes

�(t ) = �T + � f (t ), (63)

where �T read

�T = 2γ 2

�1

〈
v2

1

〉
cv

+ 2γ 2

�N

〈
v2

N

〉
cv

− 2γ , (64)

and � f (t ) is a sum of individual contributions

� f (t ) = 2γ 2

(
〈v1〉2

�1
+

N−1∑
i=2

〈vi〉2

�∗
i

+ 〈vN 〉2

�N

)
. (65)

0 10 20 30 40 50
i

0

5

10

15

20

Γi

FIG. 5. For a chain of N = 50 particles with K = 2, L = 1, γ =
1, and ω = 1, the rescaled temperatures �i’s versus the position of the
ith site for three set of temperatures (�1, �N ). The intermediate tem-
peratures are calculated according to the prescription �∗

i = 2γ 〈v2
i 〉cv .

Despite the absence of external forces for extreme parti-
cles, the averages 〈v1〉 and 〈vN 〉 present oscillating behavior
coming from couplings with neighboring particles [see, e.g.,
Eqs. (30) and (31)].

In all cases, �T = �T can be written as for the two
particles case

�T = JT fT , (66)

where the thermodynamic force fT and its associate flux JT

read fT = 1/�1 − 1/�N and JT = κ (�N − �1)/N , respec-
tively. Thereby, the expression for �T becomes

�T = κ

N

(�N − �1)2

�1�N
. (67)

Since the thermal conduction coefficient κ is finite (it depends
only on parameters �1, �N , K and L), the entropy production
�T decays as N−1 [see, e.g., Fig. 6(b)].

A. Three particles

Here, we derive explicit results for a chain of N = 3
particles. In such case, Eq. (65) becomes

� f (t ) = 2γ 2

�1
〈v1〉2 + 2γ 2

�∗
2

〈v2〉2 + 2γ 2

�3
〈v3〉2, (68)

and the entropy production �T due to thermal reservoirs has
the shape of Eq. (66) with JT given by

JT = �1�3γ L2(2γ 2K + L2)

2[L2 + γ 2(4K − 2L)][L2 + γ 2(K + L)]
fT . (69)

Once again, �T � 0, since 4K − 2L = 2(k + 2k∗)/m. Using
the motion equations we arrive at the following expression
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for �:

� = f 2
02γ

2ω2[�1�3(γ 2ω2 + (K − ω2)2) + L2�∗
2 (�1 + �3)]

�1�
∗
2�3[γ 2ω2 + (K + 2L − ω2)2][γ 2ω2 + (−K + L + ω2)2]

, (70)

which is strictly positive and vanishes when f02 and/or ω are
equal to zero. Also, in the regime of slow and fast oscillations,
� exhibit similar dependencies on ω to the two particles case

� ∼
(

K2

�∗
2

+ L2(�1 + �3)

�1�3

)
γ 2ω2 f 2

02

(K + 2L)2(−K + L)2
, (71)

for ω � 1 and

� ∼ γ 2 f 2
02

�∗
2

1

ω2
, (72)

for ω 	 1, respectively, implying that for such latter limit the
entropy production is independent on extreme temperatures.
For strong couplings between particles, L ≈ K 	 ω2, � ap-
proaches to

� ∼ γ 2

γ 2 + ω2

(
1

�1
+ 1

�∗
2

+ 1

�3

)
f 2
02, (73)

which is quite similar to Eq. (46) [for N = 2] and it is
independent on the interaction strengths.

B. The limit of long particle chains

All results obtained for N = 3 particles can be straight-
forwardly extended for long chains. However, it becomes
very cumbersome to obtain simplified expressions for � in
such cases. For this reason, we will restrict the next analysis
for specific values of control parameters. Figure 5 shows,
for a chain of N = 50 particles and three sets of tempera-
tures (�1, �N ), the temperature profiles calculated from the
self-consistent protocol. In all cases, the set of intermediate
temperatures changes linearly from �1 to �N , consistent to
a flux of heat along the chain from the hot to the cold
reservoirs.

Figure 6(a) compares the individual entropy production
contributions for distinct system sizes for f02 = f03 = · · · =
f0N−1. Since external forces are equally presented in all
intermediate particles, the entropy production associated to

0 0.03 0.06 0.09 0.12 0.15
0

0.5

K=2 and L=1
K=3 and L=2

4 8 12 16 20
0

1

2

3

N-1

ΠΤ

N

ΠΤ

Π

(a) (b)

FIG. 6. For �1 = 1 and �N = 10, (a) depicts the individual en-
tropy production contributions from the thermal and self-consistent
baths versus N for K = 3, L = 2, and ω = 1.5. In (b) the behavior of
entropy production from the thermal reservoirs �T vs N−1.

self-consistent baths increases linearly with N . Also, panel
(a) depicts the existence of two regimes. For small chains
the thermal reservoir contribution �T dominates over the
self-consistent ones �, whereas � wins over �T upon N
is increased. In the limit N → ∞ [see e.g., panel (b)], only
the contributions from self-consistent reservoirs prevail, in
consonance with Fourier’s law [Eq. (67)]. Finally, it is worth
emphasizing two distinct linear behaviors of �. It arises from
the particles closer to the thermal reservoirs providing more
contribution for the entropy production for small chains than
for large ones.

VI. CONCLUSIONS

The nonequilibrium properties of linear chains of Brow-
nian particles were analyzed via stochastic thermodynamics.
Expressions for the heat flux, entropy production, and al-
lied quantities were exactly obtained. The regimes of short
and long chains were detailed inspected. In the former case
the entropy production was derived as bilinear functions
of fluxes and forces, from which the associated Onsager
coefficients depend on interaction couplings and frequency
drivings. Reciprocal relations were also obtained. The limit
of long chains was studied by means of a self-consistent
protocol for choosing intermediate temperatures. The entropy
production is a sum of two terms: one coming from the
real baths and the other from the self-consistent reservoirs.
Whenever the former dominates for short chains, the latter
contribution prevails for long ones. The contribution from
the thermal reservoirs is responsible to heat flux according to
Fourier’s law.

As a final comment, it is worth to discuss future extensions
of the present study. The inclusion of both temperature and
external force drivings in harmonic chains should be inter-
esting, in order to compare not only the structure of entropy
production but also the Onsager coefficients. Also, the inves-
tigation of other kinds of drivings, such as the time discrete
drivings should also be interesting in order to compare with
sinusoidally time dependent ones.
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APPENDIX A: OBTAINING THE COEFFICIENTS Ai j FOR
N = 2 PARTICLES CASE WITH NO PHASE DIFFERENCE

Here, we show explicit expressions for the coefficients
Ai j’s for the two particles case subject to oscillating forces.
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The index i stands for the ith particle (i = 1, 2):

A1i = f0i(K − ω2)[γ 2ω2 + (K − ω2)2 − L2] + f0 jL[−ω2(γ 2 + 2K ) + K2 − L2 + ω4]

[γ 2ω2 + (K + L − ω2)2][γ 2ω2 + (−K + L + ω2)2]
(A1)

and

A2i = γω[ f0i(γ 2ω2 + (K − ω2)2 + L2) + 2 f0 jL(K − ω2)]

(γ 2ω2 + (K + L − ω2)2)(γ 2ω2 + (−K + L + ω2)2)
. (A2)

Having the Ai j’s, the steady entropy production � is straightforwardly evaluated.

APPENDIX B: OBTAINING THE COEFFICIENTS Bi j FOR N = 2 PARTICLES CASE AND PHASE DIFFERENCE

Here, we show explicit expressions for the coefficients Bi j’s for the two particles subject to phase difference between
oscillating forces:

B11 = f02L((cos φ − 1)(−ω2(γ 2 + 2K ) + K2 − L2 + ω4) + 2γω(K − ω2) sin φ)

(γ 2ω2 + (K + L − ω2)2)(γ 2ω2 + (−K + L + ω2)2)
, (B1)

B21 = f02L(sin φ(γ 2ω2 − (K − ω2)2 + L2) + 2γω(K − ω2)(cos φ − 1))

(γ 2ω2 + (K + L − ω2)2)(γ 2ω2 + (−K + L + ω2)2)
, (B2)

B12 = f02γω sin φ(γ 2ω2 + (K − ω2)2 + L2) + f02(K − ω2)(cos φ − 1)(γ 2ω2 + (K − ω2)2 − L2)

(γ 2ω2 + (K + L − ω2)2)(γ 2ω2 + (−K + L + ω2)2)
, (B3)

and

B22 = f02(ω2 − K ) sin φ(γ 2ω2 + (K − ω2)2 − L2) + f02γω(cos φ − 1)(γ 2ω2 + (K − ω2)2 + L2)

(γ 2ω2 + (K + L − ω2)2)(γ 2ω2 + (−K + L + ω2)2)
, (B4)

respectively. Note that all of them vanish as φ = 0, restoring the expressions (A1) and (A2), respectively.

APPENDIX C: OBTAINING THE COEFFICIENTS
Ai’s, Bi’s, AND Gi’s FOR N = 2 PARTICLES CASE

AND OSCILLATING TEMPERATURE

Here, we show explicit expressions for the coefficients Ai’s,
Bi’s, and Gi’s for the two particles case and time oscillating
temperatures:

A0 = 2304L5(2γ 2 + L),

A1 = −128L3(−7γ 4 + 58γ 2L + 123L2),

A2 = 16L(8γ 6 − 50γ 4L + 34γ 2L2 + 931L3),

A3 = 4(−11γ 6 + 78γ 4L + 319γ 2L2 − 1606L3),

A4 = −3(17γ 4 + 82γ 2L − 548L2),

A5 = 3γ 2 − 214L,

A6 = +10,

B0 = 36864γ 4L7 + 18432γ 2L8,

B1 = 31744γ 6L5 + 112640γ 4L6 + 27648γ 2L7 + 36864L8,

B2 = 4608γ 8L3 + 18176γ 6L4−77056γ 4L5 + 203904γ 2L6

− 172032L7,

B3 = 128γ 10L+608γ 8L2 − 6592γ 6L3 + 85920γ 4L4

− 230720γ 2L5 + 269824L6,

B4 = 16γ 10 − 64γ 8L + 4536γ 6L2 − 34864γ 4L3

+ 125488γ 2L4 − 170496L5,

B5 = 56γ 8 − 792γ 6L + 8112γ 4L2−34928γ 2L3 + 54288L4,

B6 = 73γ 6 − 928γ 4L + 5120γ 2L2 − 9536L3,

B7 = 43γ 4 − 376γ 2L + 936L2,

B8 = 11γ 2 − 48L,

B9 = 1,

G0 = 147456γ 6L6 + 147456γ 4L7 + 36864γ 2L8,

G1 = 50176γ 8L4 − 94208γ 6L5 + 262144γ 4L6

− 24576γ 2L7 + 36864L8,

G2 = 3584γ 10L2 − 23552γ 8L3 + 166400γ 6L4

− 323584γ 4L5 + 384512γ 2L6 − 172032L7,
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G3 = 64γ 12 − 768γ 10L + 14720γ 8L2 − 77312γ 6L3

+ 262528γ 4L4 − 399872γ 2L5 + 269824L6,

G4 = 240γ 10 − 2688γ 8L + 24672γ 6L2 − 96960γ 4L3

+ 200592γ 2L4 − 170496L5,

G5 = 348γ 8 − 3504γ 6L + 20024γ 4L2

− 52736γ 2L3 + 54288L4,

G6 = 245γ 6 − 2064γ 4L + 7424γ 2L2 − 9536L3,

G7 = 87γ 4 − 528γ 2L + 936L2,

G8 = 15γ 2 − 48L,

G9 = 1.
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