• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.43.2010.tde-20052010-113301
Document
Author
Full name
Everton Santos Medeiros
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2010
Supervisor
Committee
Caldas, Ibere Luiz (President)
Batista, Antonio Marcos
Leonel, Edson Denis
Title in Portuguese
Controle de caos e saltos entre atratores em um sistema com impactos
Keywords in Portuguese
Sistemas com impactos
Teoria de caos
Abstract in Portuguese
Em um sistema mecânico, descrito pelo modelo par de impactos, estudamos o controle de caos, através de uma perturbação paramétrica, e os saltos entre trajetórias de dois atratores. Para esse sistema não integrável, obtivemos numericamente e analisamos a evolução das suas variáveis, para um grande conjunto de condições iniciais e parâmetros de controle. Para essa análise foram obtidos planos de fase, seções de Poincare, diagramas de bifurcação, bacias de atração, expoentes de Lyapunov e espaços bidimensionais de parâmetros. Um controle paramétrico foi implementado somando uma perturbação senoidal, com amplitude e freqüência definidas, ao forçamento original do sistema. O controle de caos foi analisado no espaço bidimensional de parâmetros do sistema. Observamos nesse espaço a formação de janelas periódicas (camarões) na vizinhança das janelas previamente existentes. Constatamos que, nas novas janelas, os atratores controlados possuem periodicidade e forma iguais as dos atratores presentes em janelas previamente existentes. Os saltos entre as trajetórias de dois atratores coexistentes foram analisados, com o sistema perturbado por uma simulação de um ruído branco com uma banda de freqüências. Mostramos que a freqüência dos saltos aumenta com a amplitude do ru´do e a intensidade da dissipação, devido `a mudança que esses fatores causam nas bacias de atração dos dois atratores.
Title in English
Control of caos and basin hopping in a system with impacts
Keywords in English
Caos theory
Control of caos
Systems with impacts
Abstract in English
For a mechanical system, described by the impact-pair model, we studied the control of chaos by a parametric perturbation and the basin-hopping phenomeno. For this nonintegrable system, we obtained numerically the evolution of its dynamical variables for a large set of initial conditions and control parameters. For this analysis, we used phase planes, Poincar´e sections, bifurcation diagrams, basin of attractions, Lyapunov exponents, and bidimensional parameter spaces. A parametric control was implemented by adding an external perturbation with defined amplitude and frequency. The control of chaos was analized in the two-dimensional parameter space. In the parameter space, we observed the formation of new periodic windows (shrimps) in the neighborhood of previously one. In the new periodic windows, the new controlled attractors have the same shape and periodicity of those in the original windows. For two attractors, the basin-hopping was analyzed for a white noise with frequency band. We showed that the hop frequency increases with the noise amplitude and the dissipation intensity. This occurs due to changes in the basins of attraction.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
tese.pdf (6.66 Mbytes)
Publishing Date
2010-05-24
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.