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Resumo

A termodinâmica estocástica tornou-se um dos principais pilares da mecânica estatística

moderna, e uma atenção especial tem sido dada a sistemas que apresentam compor-

tamento coletivo. Neste projeto de mestrado, investigamos aspectos distintos em duas

classes de sistemas que exibem comportamento coletivo. O primeiro é um sistema de

opinião que mostra uma variedade de transições de fase, dependendo dos detalhes do

modelo (topologia, inércia e vizinhança). Investigamos em detalhes suas propriedades,

formulando uma abordagem termodinâmica consistente, relacionando calor com dissi-

pação. O último sistema estudado aqui é um protótipo mínimo de um modelo de motor

fora do equilíbrio que exibe comportamento coletivo, composto por duas nanomáquinas

interagentes. Investigamos suas propriedades termodinâmicas, como eficiência, potên-

cia, o design do motor e rotas distintas para melhorar seu desempenho. Os resultados

mostram que uma escolha adequada de parâmetros e design do sistema pode resultar em

uma melhoria notável, incluindo eficiências máximas se aproximando de valores ideais e

eficiências em potência máxima maiores do que os limites conhecidos na literatura.

Paralavras-chave: Termodinâmica estocástica; transições de fase fora do equilíbrio;

máquinas térmicas; mecânica estatística.
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Abstract

Stochastic thermodynamics has become one of the main cornerstones of modern sta-

tistical mechanics and special attention has been given to systems presenting collective

behavior. In this master project, we have investigated distinct aspects in two classes

of systems exhibiting collective behavior. The former is an opinion system displaying

a variety of phase transitions depending on the model details (topology, inertia, and

neighborhood). We have investigated in detail its properties by formulating a consistent

thermodynamics approach by relating heat with dissipation. The latter system studied

here is a minimal prototype of a nonequilibrium engine model displaying collective be-

havior, composed of two interacting nanomachines. We investigated its thermodynamic

properties, such as efficiency, power, engine design, and distinct routes for improving its

performance. Results show that a suitable choice of parameters and design can result in

a remarkable improvement, including maximum efficiencies approaching ideal values and

efficiencies at maximum power greater than known bounds in the literature.

Keywords: Stochastic thermodynamics; out-of-equilibrium phase transitions; heat

engines; statistical mechanics.
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Chapter 1

Introduction

The ambition to build efficient engines is not only prominent, but also pressing in thermo-

dynamics since the pioneering work by Sadi Carnot [1, 2], having gained new momentum

with the development of nonequilibrium thermodynamics of small-scale systems [3–5]. Un-

like classical thermodynamics, fluctuations become fundamental at the nanoscopic scale,

and the study about their role has attracted large attention both theoretically [6–8] and

experimentally [9, 10]. As irreversibility is unavoidable, the search for new strategies to

satisfactorily characterize it in the realm of nonequilibrium thermodynamics is crucial and

strongly desirable. With this in mind, several distinct approaches have been proposed.

Among them, we highlight the study of the maximum attainable power and efficiency

[11–14] and the modulation of the system-bath interaction time control via shortcuts to

adiabaticity [15–17] or isothermality [17, 18]. The thermodynamic description of nonequi-

librium systems is done thanks to the stochastic thermodynamics for both master equation

and Fokker-Planck systems, and can be understood as an enlargement of the statistical

mechanics for systems out of thermodynamic equilibrium. In addition, this approach pro-

vides an expression for the production of entropy (a keystone quantity that characterizes

systems out of thermodynamic equilibrium) and a suited formulation of the first law of

thermodynamics.

More recently, the properties of systems operating under collective rules have attracted

much attention, not only for understanding their thermodynamic properties but also for

using them as a reliable setup for many distinct applications [10, 19]. The best-known

example of collective behavior in equilibrium systems is the ferromagnetism phenomenon,

in which systems become polarized due to a particular external influence (e.g., magnetic
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CHAPTER 1. INTRODUCTION

fields or temperature changes). In the last years, equilibrium models have had long-

standing importance in the context of collective effects and are at the heart of numerous

theoretical and experimental advances, presenting distinct models (e.g., Ising, Potts, XY,

and Heisenberg) as ideal platforms for describing ferromagnetism. Among the distinct

examples of collective behavior existing in out of equilibrium, we cite the synchronization

and swarming phenomena. While both can be observed in insects, the former is mainly

associated with the species of synchronous fireflies P. carolinus that have been shown to

flash in sync under certain conditions [20–23], while the latter has been documented in

distinct biological collectives such as bacterial colonies performing chemotaxis [24, 25] and

the migration of schools of fish, flights of birds and cells [26–28]. It then becomes clear

that collective effects are present in many aspects of nature and physics and are prime

subjects to investigate under the stochastic thermodynamics framework.

This master dissertation investigates the thermodynamics of two models presenting

collective effects. The first is the majority vote model, one of the simplest nonequilibrium

up-down symmetric systems exhibiting an order-disorder phase transition [4, 29]. Exten-

sive studies of this model in distinct lattice topologies have shown that the symmetry-

breaking phase transition is not affected by the kind of underlying networks, even though

the critical behavior results in an entirely different set of critical exponents . However, in

the last years, recent works verified that the usual second-order phase transition in the

majority vote model (MV) becomes first-order upon the inclusion of a term that adds

competition between local neighborhood and individual opinion (inertia) [29, 30]. The

behavior of entropy production as a tool for characterizing phase transition has attracted

great and recent interest, as it discerns equilibrium from nonequilibrium systems, such

as the latter one characterized by a positive entropy production rate in the nonequi-

librium steady state regime (NESS) [31, 32]. Despite previous works investigating the

main properties of the MV through the entropy production signatures, other thermody-

namic quantities have yet to be defined to establish a firm link between voter models and

stochastic thermodynamics’ framework. Aimed at partially overcoming such drawbacks, a

thermodynamic description for opinion models is proposed in this work, in which the idea

of a distinct thermal reservoir per neighborhood opinion configuration was introduced.

Such a framework allows one to associate the dynamics with well-defined temperatures

and reconciles the relationship between entropy production and heat flux [33]. More con-

cretely, a general and unambiguous temperature definition is derived, providing a way to

properly investigate the behavior of entropy production and heat fluxes in distinct phases

4



CHAPTER 1. INTRODUCTION

and continuous and discontinuous transition regimes [34].

In the second part of this work, we investigate another aspect of collective effects, con-

sidering a comparison between distinct engine designs for a minimal setup for a collective

engine. Under a generic point of view, stochastic engines are classified into three cate-

gories, stemming from fixed thermodynamic forces [7, 8], from the time-periodic variation

of external parameters [5, 35] and via sequential/collisional approach [36–38], in which at

each stroke/stage, the system is subjected to a different condition (held fixed along the

stage). Each one has been considered as a reliable approach in distinct contexts, such

as the last one encompassing the presence of distinct drivings over each member of the

system, a weak coupling between the system and the reservoir, or even for mimicking

the environment for quantum systems. As stated before, the thermodynamics of systems

exhibiting collective effects have received considerable recent attention as an alternative

strategy for improving the system’s performance. Among the distinct examples, we cite

a system of interacting Brownian particles [32, 39–42], work-to-work transducers [43, 44]

and heat engines [32, 45–48]. All of them are restricted to cases of systems operating at

equal temperatures and fixed parameters. Our study will investigate a simpler case, deal-

ing with a minimal collective effect system composed of two interacting units beyond the

fixed forces context. Hence, its simplicity constitutes an ideal laboratory for comparing

three fundamental aspects of nanoscopic engines: the kind of design (sequential versus

fixed thermodynamic forces), distinct approaches for the work source (not considered

previously) and under situations collective effects can improve the system’s performance

when compared with its interactionless version. The former goal has been inspired from

previous contributions [5, 7, 49]. Our findings reveal that collective effects, along with a

suited design of parameters (energy, period, duration of each stage) at each stroke can

significantly enhance the system’s performance. Such remarkable improvement can re-

sult in optimal power outputs and efficiencies at maximum a power greater than known

bounds or even efficiencies approaching the ideal (Carnot) limit. As a side result, our

study shows the simultaneous contact between two thermal baths case [7] as the ideal

limit of fast switching times.

This work is organized as follows: in Chapter 2, a general theory behind the work

presented is shown. Starting from the usual Markov Chain, we move on to master equa-

tions, showing that different formalisms (in the context of thermodynamics and lattice

models) can be helpful to describe different physical phenomena. Then, a brief descrip-
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CHAPTER 1. INTRODUCTION

tion of Stochastic Thermodynamics and Active Matter is presented. In Chapter 3, we

present the work performed to derive general relationships for the majority vote model’s

thermodynamic heat flux and entropy productions. Chapter 4 contains the work made

to idealize and explore a minimal 3-state model, obtaining its complete solution in the

collisional approach and then showcasing two distinct applications for the general Quan-

tum Dot engine. Finally, conclusions are drawn in Chapter 5, and Appendixes show the

published/submitted papers.
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Chapter 2

Fundamental Concepts

One of the earliest documented observations of random motion at the microscopic scale

was made by the botanist Robert Brown [50]. Upon introducing pollen grains into a

water container, he noticed that they would "jiggle" and disperse throughout the water,

eventually occupying a space resembling a sphere. This unique movement dynamic, coined

Brownian Motion, coupled with its macroscopic manifestation, known as diffusion, would

later be rigorously studied by Paul Langevin [51, 52] and Albert Einstein [53]. Their

groundbreaking work laid the foundations for what would eventually be named "Stochastic

Physics", and set the stage for many years to come. Beyond the confines of pure physics,

these dynamic behaviors found applicability in a plethora of scientific areas. Notably, they

offered insights into phenomena ranging from public opinion formation to the motility of

microscopic biological collectives, including bacteria and cells [25, 54–56].

The modification of Newton’s second law to include a random force for a particle

subject to a dissipative force leads to what is commonly known as Brownian motion [4,

57],

mv̇(t) = −αv(t) + F`(t). (2.1)

In Eq.̃(2.1), v(t) denotes the particle’s velocity and F`(t) is known as the Markov

propagator, a random variable with dimensions of force that, in the absence of temporal

correlation, that is, 〈F`(t)〉 = 0, 〈F`(t)F`(t′)〉 = DT δ(t−t′), defined the equation presented

above as a Langevin Equation. In this context, DT is defined as the translation diffusion

7



CHAPTER 2. FUNDAMENTAL CONCEPTS

coefficient.

The inherent randomness of the Langevin equation paves the way for the three pri-

mary tools employed in Stochastic Physics and throughout this work: the derivation of

probability distribution, averages, and their respective connection with thermodynamics.

The absence of temporal correlation in the stochastic variable ensures that the system’s

state at a given time step, t, is solely influenced by its previous state. Such class of sys-

tems, known as Markovian, can be studied by either obtaining the average behavior over a

specific duration—especially in the non-equilibrium steady state, t→∞, effectively miti-

gates the impact of random fluctuations—or by deducing the probability density function

describing the system’s average temporal evolution [3, 58]. While these two theoretical

frameworks are intrinsically connected with each other, a strategic tackling of each base

concept is essential for the full understanding of the three distinct projects presented in

this work.

2.1 Non-Equilibrium Statistical Physics

Imagine you dine at the same breakfast spot every day. This establishment offers only

three different meals: avocado toast (A), breakfast burritos (B), and cereal (C). One of

their unique rules is that they rarely serve the same meal on consecutive days. Moreover,

the probability of serving a particular meal next depends solely on what was served the

day before. Now, if they served avocado toast (A) today, is it possible to determine the

probability that the sequence of meals over the next four days will be C, A, B, and C

respectively?

2.1.1 Markov Chains

A Markov chain characterizes the probability dynamics of a sequence of events unfolding

in discrete time space. When this evolution is purely stochastic within a discrete time

space, the transition of states between steps remains temporally uncorrelated, except for

the correlation between the current step and the immediately previous one [3, 4, 52].

Consider a system whose state at step ` is described by the variable s`. At each step,

the transitions between states are random. Consequently, the probability that the system

8



CHAPTER 2. FUNDAMENTAL CONCEPTS

will be in state s` at step `, after following a specific stochastic trajectory starting at

` = 0, is described by the usual Kolmogorov relation [59] for the conditional probability

P` (s`|s0, s1, ..., s`−1). This system is said to be Markovian as long as this conditional

probability is equivalent to the probability of the system being in state s` given only that

it was in state s`−1 in previous step,

P`+1 (s`+1|s`) = P` (s`|s`−1)P`−1 (s`−1|s`−2) ...P1 (s1|s0)P0 (s0) . (2.2)

In other words: a system is said to be Markovian if its evolution on the state space can

be entirely described by the information of the previous state and the initial condition [4,

57]. Using Eq.(2.2), we can then define the probability of the system being in the state s`
regardless of any specific trajectory, P`(s`). This is achieved by summing over all possible

trajectories up until `− 1,

P`(s`) =
∑

s`−1

P` (s`|s`−1)P`−1(s`−1).

In the cases where the conditional probability has no temporal dependence, i.e., the

transition between states occurs at a constant rate, one can express said probability as

the matrix containing all the information of every possible transition between states,

coined Stochastic Matrix, P` (s`|s`−1) := T (s`, s`−1), and obtain the probability at time `,

P` = TP`−1, (2.3)

that can be expressed in the equivalent form, using the simplified notation for states,

P`+1(n) =
∑

m(6=n)

T (n,m)P`−1(m) + T (n, n)P`(n). (2.4)

where P` now represents a probability vector of dimensions equivalent to the number of

states, S, and T is the stochastic matrix of dimensions S × S with properties T (n,m) >

0,
∑

n T (n,m) = 1. An intuitive way to represent a Markov chain is through the diagram

presented in Fig. (2.1).

In essence, the equation for a Markov chain allows for the description of possible

steady states of any stochastic model, given its restrictions. In simple systems like the

one described by Ehrenfest model, a diffusion model describing the resulting dynamics

of a set of N balls hopping between two containers, the solution of the adequate form of

9



CHAPTER 2. FUNDAMENTAL CONCEPTS

Figure 2.1: Illustration of a Markov chain (left) and its respective Stochastic Matrix
(right). Each entry on the Ti,j matrix represents the transition rate at which the system
goes from j to i. In the case of the illustration on the left, every entry on the last row
is zero except from tC→E and tE→E. It follows that tC→E + tE→E = 1.

Eq. (2.3) can predict the existence of multiple phases and, in the case of a simple Random

Walk, where the underlying mechanism behind the dynamics is also diffusion, lead to more

robust results, e.g. the Central Limit Theorem [3, 4, 52, 57]. While this might suffice

for the macroscopic description of inorganic matter and simple stochastic models, the

transition from discrete to a continuous temporal space will allow for a more elegant and

intricate investigation in more complex dynamics, such as in biological systems, opinion

models, or out-of-equilibrium thermodynamic heat engines. The description of systems

evolving at continuous time, however, is done by means of the master equation formalism.

2.2 The master equation

The continuous time limit of Eq. (2.4) is obtained by assuming that transitions between

different states occur at a time instant, τ → 0, in such a way that the probability of

remaining at the same state is close to 1. More specifically, we express transition proba-

bilities in the following way

T (n,m) = τW (n,m), n 6= m

T (n, n) = 1− τΘ(n),

where Θ(n) =
∑

m(6=n)W (m,n) Now, the dynamics are entirely expressed in terms of

transition rates W (n,m), and due to the property

∑

m

T (m,n) = 1,

10



CHAPTER 2. FUNDAMENTAL CONCEPTS

the Θ(n) term must obey the relation

Θ(n) =
∑

m(6=n)

W (m,n).

We can then rewrite Eq.(2.4), including the τ dependence,

p(n, t+ τ) = τ
∑

m(6=n)

W (n,m)p(m, t) + [1− τΘ(n)] p(n, t), (2.5)

where p(n, t) denotes the probability of the system being in state n at time t, and the

change in notation is simply a visual choice to indicate the transition from Markov chains

to master equation formalisms.

That, after some manipulation, assumes the usual derivative form

p(n, t+ τ)− p(n, t)
τ

=
∑

m(6=n)

W (n,m)p(m, t)−Θ(n)p(n, t),

and, by taking the limit τ → 0, we obtain

dp(n, t)

dt
=
∑

m(6=n)

[W (n,m)p(m.t)−W (m,n)p(n, t)] , (2.6)

where W (n,m) accounts for the transition from state m to state n. In all of these

constructions and solutions, some properties of the master equation must remain the same

[4, 60]. The transition matrices must have only real eigenvalues, and the probability must

converge at the limit t→∞. Both of these requirements are fulfilled in the normalization

of W , namely

∑

n

W (n,m) ≥ 0 n 6= m, (2.7)

whereW (n,m) > 0. From now on, transition ratesW (n,m) will be expressed in the form

ωnm.

In principle, the probability distribution can be found by solving the master equation

at the steady state, as dp(n, t)/dt = 0. However, in many cases (e.g., systems with a

large number of configurations), it can become quite cumbersome to find a steady state

solution. For this reason, alternative techniques, such as perturbative methods [61] or
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eigendecomposition [4] have been considered. Conversely, solutions via mean-field theory

and numerical integrations/simulations are also remarkable, and also will be mentioned in

the following sections [30, 62, 63]. The following section shows one of the exact solutions,

via eigendecomposition.

2.2.1 Solution via Eigendecomposition

This method of solving the master equation relies on the algebraic properties of the

transition matrix [4]. First, by defining the vectors ~φµ and ~ψµ as the respective left and

right eigenvectors of the µ-th state of the transition matrix, W , it follows that

~φµW = ~φµλµ (2.8a)

W ~ψµ = λµ ~ψµ (2.8b)

where λµ is the µ-th eigenvalue of W . The associate master equation, in this notation,

reads

d~p(t)

dt
= W~p(t). (2.9)

Given that the general solution of this ODE is

~p(t) = eW (t−t0)~p(0),

it is possible to perform an expansion using the aforementiond quantities in the following

way

eW (t−t0) = eλ0(t−t0) ~ψ0
~φ0 + eλ1(t−t0) ~ψ1

~φ1 + eλ2(t−t0) ~ψ2
~φ2...

up to the µ-th state, allowing for the general solution for ~p(t) in terms of the eigenvectors

and eigenvalues,

~p(t) =
N∑

µ

eλµ(t−t0) ~ψµ~φµ~p(0)

12
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that we can promptly rewrite in terms of the operator resulting of the product of the left

and right eigenvectors, Γµ = ~ψµ~φµ,

~p(t) =
N∑

µ

eλµ(t−t0)Γµ~p(0). (2.10)

Now, it is interesting to make a few observations about this matrix. First, due to general

linear algebra, we can safely write, using matrix diagonalization,

W = ψΛφ

=




ψ0,0 ψ1,0 ... ψN,0

ψ0,1 ψ1,1 ... ψN,1

...

ψ0,N ψ1,N ... ψN,N







λ0 0 ... 0

0 λ1 ... 0

...

0 0 ... λN







φ0,0 φ0,1 ... φ0,N

φ1,0 φ1,1 ... φ1,N

...

φN,0 φN,1 ... φN,N




= ~ψ0λ0
~φ0 + ~ψ1λ1

~ψ0 + ...+ ~ψNλN ~φN

=
N∑

µ

λµ ~ψµ~φµ

=
N∑

µ

λµΓµ,

where Λ = φWψ is the eigenvalue matrix that comes from the diagonalization of W and

φµ,i is the i-th component of the µ-th eigenvector. Using the fact that, due to the imposed

normalization of the transition matrix, λ0 = 0, we find that

W =
N∑

µ

λµΓµ

= λ0Γ0 + λ1Γ1 + ...+ λNΓN

= 0 + λ1Γ1 + ...+ λNΓN

=
N∑

µ 6=0

λµΓµ,

13
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which we can than sum over rows, knowing that
∑

mWm,n = 0,

∑

m

Wm,n =
∑

m

(∑

µ 6=0

λNµ Γµ

)

m,n

0 =
∑

µ6=0

λNµ
∑

m

Γµ,m,n,

implying that this operator carries the normalization of the transition matrix,

∑

m

Γµ,m,n = 0. (2.11)

Furthermore, by taking advantage of the trace property, Tr{W} =
∑

µ λµ, and proceeding

analogously,

Tr{W} = Tr

{
N∑

µ

λµΓµ

}
,

N∑

µ

λ =
N∑

µ

Tr{λµΓµ},

N∑

µ

λ =
N∑

µ

λµ Tr{Γµ},

and we see that Tr{Γµ} = 1. Finally, the solution for the master equation considered in

Chapter 4 assumes the form

~p(t) = ~p(eq) +
[
eλ1(t−t0)Γ1 + eλ2(t−t0)Γ2

]
~p(0) (2.12)

where ~p(eq) = Γ0~p(0) = Γ0(1/3), and it becomes clear that in the limit t → ∞, that is,

in the stationary state, the probability distribution evolves to a time-independent value,

that will be one of equilibrium or nonequilibrium depending on the specifications of each

problem. On the other hand, in the cases where the transition matrix changes periodically,

the steady state will also be periodic.

2.3 Stochastic Thermodynamics

To contextualize the stochastic thermodynamics framework, let us consider a simple exam-

ple [57]. A system of interacting Brownian particles will dissipate heat at each collision,
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but the random nature of Brownian motion implies that the dissipated heat is also a

stochastic quantity. They show us that, unlike the standard thermodynamics, dealing

with macroscopic systems operating at the quasi-static limit, several (most of) systems

in nature operate far from equilibrium [3]. Stochastic thermodynamics corresponds to

a unified theory combining the theory of stochastic processes (e.g. master equation or

Fokker-Planck) with thermodynamic considerations. At a fundamental level, stochastic

thermodynamics is aimed at reformulating the first and second laws in a representation

of average fluxes in the non-equilibrium steady state and using these average quantities

to provide a satisfactory description of the system being investigated [3, 4, 56].

However, reliably defining these quantities requires some assumptions about the sys-

tem being studied to be made. First, when the system is placed in contact with a single

thermal reservoir without time variation of parameters nor nonconservative forces, it will

evolve to its (equilibrium) steady state being (Boltzmann-Gibbs) in which transition rates

between any microscopic states, n and m, and, after sufficiently long times, obey the de-

tailed balance condition,

ωm,np
(eq)
n − ωn,mp(eq)

m = 0. (2.13)

Once detailed balance is followed, we can define the stationary probability as the thermo-

dynamic equilibrium probability, p(eq). In general, the detailed balance will be fulfilled if

transition rates are defined in such a way that they obey

ωn,m
ωm,n

= exp [−β (εn − εm)] , (2.14)

where εn is the energy level of state n, and does not explicitly depend on the time.

In the case at which Eq. (2.13) is not satisfied (e.g., systems placed in contact with

distinct thermal baths or whose parameters are time-dependent), the system will evolve

to a nonequilibrium steady state regime. However, one can use Eq. (2.13) as a starting

point for deriving a thermodynamical approach, in which one relates quantities with

macroscopic variables using Eq. (2.14), in many situations referred to as local detailed

balance [64, 65]. Along this work, we shall consider transition rates defined according to

the local detailed balance. Second, the stochastic approach for thermodynamics consists
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of defining the entropy as a function of time, S(t), using the Boltzmann-Gibbs form,

S(t) = −kB
∑

n

pn(t) ln pn(t), (2.15)

whose time derivative reads

dS(t)

dt
= −kB

∑

n

[
dpn(t)

dt
ln pn(t) +

dpn(t)

dt

]
.

Due to the normalization of the probability,
∑

n pn(t) = 1, the second term on the right

side of Eq. (2.16) vanishes. Using the master equation, the first term can be rewritten in

terms of the rates,

dS(t)

dt
= −kB

∑

(n,m)

ln pn(t) [ωn,mpm(t)− ωm,npn(t)] . (2.16)

This change in entropy must correspond to the difference between the entropy that is

produced internally by the system and the entropy that is exchanged between the system

and the environment. Defining the former as the entropy production rate, σ(t), and the

latter and the entropy flux from the system, Φ(t), we can rewrite the previous expression

simply as

dS(t)

dt
= σ(t)− Φ(t).

The next step for a thermodynamic approach consists of assuming that the entropy pro-

duction can be written according to the Schakenberg formula [66],

σ(t) =
kB
2

∑

(n,m)

[ωm,npn(t)− ωn,mpm(t)] ln
ωm,npn(t)

ωn,mpm(t)
. (2.17)

Having dS/dt and σ, it follows that Φ reads

Φ(t) = −kB
2

∑

(n,m)

[ωm,npn(t)− ωn,mpm(t)] ln
ωm,n
ωn,m

. (2.18)

Note that σ(t) is strictly non-negative, while Φ(t) depends on the heat flow exchanged

between the system and the thermal bath. Also, in the NESS (nonequilibrium steady

state regime), σ = Φ. In the equilibrium state (detailed balance fulfilled) σ = 0, whereas

σ = Φ > 0 in the NESS.
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Third and last, the first law of (stochastic) thermodynamics can be set in a similar

way. Starting from the mean energy definition, U(t) =
∑

n εn(t)pn(t), and taking the time

derivative,

dU(t)

dt
=
∑

n

[
dεn(t)

dt
pn(t) + εn(t)

dpn(t)

dt

]
, (2.19)

where the first and second terms of the right side can be identified as direct work, Ẇd and

heat fluxes, Q̇, respectively. Since U(t) is a state function, it follows that, in the NESS,

dU/dt = 0, and, consequently,

Ẇd =
∑

n

ε̇np
st
n , (2.20)

Q̇ =
∑

m,n

εnωm,np
st
n , (2.21)

where the superscript st indicates the steady state. It follows that Ẇd+ Q̇ = 0, consistent

with the first law of thermodynamics.

As a closing remark, it is important to point out that, in the case of some protocol

promoting the time variation of energy levels, Ẇd is associated with the variation of energy

levels with respect to a given protocol (e.g., time variations, changes in the magnetic field),

while the heat flux, in turn, is related to the variation of the probability distribution.

2.3.1 The Collisional Approach

In classical thermodynamics, a certain worksource, such as water put into a furnace to

boil and generate vapor, placed in contact with both hot and cold thermal baths, can

operate as a thermal engine or as a pump, according to the work generated along the

cyclic process being positive or negative [1, 67]. Recently, these thermal engines have

been reproduced via stochastic models depicting nonequilibrium systems [36, 48, 68]. In

this section, we focus on a second framework to design out-of-equilibrium systems as

thermodynamic machines, namely, the collisional approach.

In this approach, we define a certain time period, τ , in which our setup evolves in

time [61]. At t = 0, the dynamic starts and the system is placed in contact with a

thermal reservoir of inverse temperature β(1) and transition rates ω(1)
m,n, for a total time
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Figure 2.2: Simple illustration of the idea behind the collisional approach. At every τν ,
a certain interacting system is placed in contact with a distinct thermal bath, and, after
the period (t = τ) is complete, the system is then returned to its original position.

τ1. Afterward, the system is then switched and placed in contact with a second reservoir,

giving rise to another set of parameters characterized by the ω(2)
m,n, for a total time of

τ2. e.g., if the application is constrained to N reservoirs, when t =
∑

ν τν = τ , the

system is then returned to its initial state. Since probabilities are continuous functions,

the probabilities associated with each stage must obey periodic boundary conditions,

p(ν)
µ (t = τν−1) = p(ν+1)

µ (t = τν) , (2.22)

where, ν = N + 1 = 1. Naturally, this also implies that the fluxes will also vanish when

summed over stages.

In general, the number of reservoirs and the relationship between the periods of each

switching are parameters to be considered in each framework [32, 36, 38, 69, 70]. The

properties of the system at the NESS are obtained by averaging each quantity over an

entire period, τ . Therefore, the probability fluxes are in general defined as

〈J(ν)〉 =
1

τ

∫ τν

τν−1

ω(ν)p(ν)(t)dt, (2.23)

where each flux component corresponds to the probability from a certain state to another,

and can be individually written as

〈J (ν)
ij 〉 =

1

τ

∫ τν

τν−1

[
ω

(ν)
i,j p

(ν)
j (t)− ω(ν)

j,i p
(ν)
i (t)

]
dt. (2.24)

Similarly, quantities associated with the entire duration of the dynamic can be expressed
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as the sum of each contribution at each state,

〈σ〉 =
∑

ν

〈σ(ν)〉, (2.25a)

〈Ẇd〉 = −
∑

ν

〈Q̇(ν)〉, (2.25b)

where both entropy production and heat flux can be obtained using the proceedings

presented in the previous section. These quantities, when averaged over the entire period,

become equivalent to the values assumed in the NESS. The following section presents a

simple application of the collisional approach for a system with 2 states.

Simple Example: the 2 states and 2 reservoirs case

As a brief "case study", imagine a simple stochastic system of 2 states, n = 0, 1, that stay

in a cold thermal bath for a total time period of τ/2, and afterward, it’s moved to a hot

reservoir until t = τ . The results presented here will be used to draw comparisons with the

model presented in Chapter 4, and were inspired in Ref. [7]. At each stage, we consider

the transition rates defined by ω(ν)
0,1 = exp

[
ε(ν)β(ν)/2

]
, ω

(ν)
1,0 = exp

[
−ε(ν)β(ν)/2

]
. By using

the eigendecomposition of the evolution matrix, ω, presented previously, alongside the

boundary conditions to obtain the initial condition for the probabilities, we see that

p(ν)(t) = p(eq,ν) − exp
[
λ(ν)[t− (ν − 1)τ/2]

]
(
eλ

(ν+1)τ/2 − 1
) (

p(eq,ν) − p(eq,ν+1)
)

e[λ(1)+λ(2)]τ/2 − 1
(2.26)

where λ(ν) = − cosh
[
ε(ν)β(ν)/2

]
and, subsequently, the single probability flux takes the

form

〈J (ν)
1 〉 = (−1)ν

(
eλ

(1)τ/2 − 1
)(

eλ
(2)τ/2 − 1

) [
p

(eq,1)
1 − p(eq,2)

1

]

τ
[
e[λ(1)+λ(2)]τ/2 − 1

] . (2.27)
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Figure 2.3: Curves of power, given by Eq.(2.31) and efficiency, η = 1−ε(1)/ε(2) for different
values of ε(2) and β(1) = 10, β(2) = 1, τ = 1.

With this, using the relationships previously shown for entropy production, one can see

that this quantity, for each stage, can expressed simply as

〈σ(ν)〉 =
1

2

{
ln

[
ω
ω
(ν)
0,1

ω
(ν)
1,0

]
〈J (ν)

0,1 〉+ ln

[
ω
ω
(ν)
1,0

ω
(ν)
0,1

]
〈J (ν)

1,0 〉
}

= ln

[
ω
ω
(ν)
0,1

ω
(ν)
1,0

]
〈J (ν)

0,1 〉

that, when summed over both strokes, wields

〈σ〉 = X〈J〉(1)
1 (2.28)

where 〈σ〉 assumes the usual flux times thermodynamic force form, and X plays the role

of a thermodynamic force, given by

X =

[
ε(1)

T (1)
− ε(2)

T (2)

]
. (2.29)

The heat fluxes at each stroke are obtained in a similar manner, wielding

〈Q̇(ν)〉 = (−1)ν+1〈J (1)
1 〉ε(ν), (2.30)

that corresponds to power of the form

P = 〈J (1)
1 〉

[
ε(2) − ε(1)

]
. (2.31)
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Given that the hot reservoir is defined to correspond to ν = 2, efficiency is expressed

as η = −P/〈Q̇(2)〉 = 1 − ε(1)/ε(2). The curves for both of these quantities are shown

in Fig. (2.3). As it will become clear in Chapter 4, one can then explore the optimal

relations between parameters for obtaining maximum power and maximum efficiency, as

well as remarkable optimization routes and extensions for such model, taking into account

collective effects [7, 8, 71].

2.4 Overview about Phase Transitions

Phase transitions in equilibrium systems are very well documented and sufficiently de-

scribed via rigorous [67, 72, 73] results and mean-field frameworks like the Landau or

Ginzburg-Landau functionals [1, 2, 4, 57, 73]. As mentioned in the introduction, equi-

librium models have been considered ideal platforms for verifying the universal aspects

of phase transitions. As an example, we cite the Ising and the Blume-Emery-Griffiths

(BEG) models phase diagrams (disordered, ferromagnetic, and staggered quadrupolar, in

the latter case) is sufficiently described with the Landau theory with single and coupled

ordered parameters, respectively [74]. In this case, the transition between phases will be

either of first/discontinuous or second/continuous order, depending on the free energy

having a discontinuity in its first or second thermodynamic derivative, respectively [67].

Out-of-equilibrium phase transitions, in general, observed in systems with different types

of interactions, such as the Kinetic Ising, opinion, and the Vicsek models [29, 75–77] are

not satisfyingly described via the framework of classical statistical mechanics, since one

has not a free energy to decide in which phase the system will be. Also, the absence of

an exact solution in most cases prevents some analytical treatments. However, in the last

years the general concepts about second/continuous and first/discontinuous for nonequi-

librium phase transitions have been proposed/extended with respect to equilibrium ones

[62, 78–80].

In order to illustrate the main ideas behind nonequilibrium phase transitions, we shall

consider a mean-field-like treatment.
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2.4.1 Mean-Field Theory for Phase Transitions

The idea behind opinion systems is to provide an insight into general phenomena observed

in many different aspects of life, such as elections, propagation of information, diseases,

and general consensus formation. Aside from this, opinion models are also able to provide

valuable contributions about out-of-equilibrium transitions. One approach to investigate

the phase transitions generally associated with these types of models is through the use

of mean-field theory, where one is able to obtain a reasonable description of for both

continuous and discontinuous transitions, albeit missing the characterization of the steady

state nature (equilibrium or nonequilibrium) of these phenomena [4].

Order Parameter

Like the equilibrium Ising model, nonequilibrium systems with Z2 (up-down) symmetry,

are described using spin variables [60]. Given a certain topology, described either by a

regular square lattice or a complex network, each site (or node) will be described by a spin

variable σi = ±1 and the system ordering can be characterized via the (order parameter)

magnetization:

〈m〉 = 〈
∣∣∣∣∣

1

N

∑

i

σi

∣∣∣∣∣〉. (2.32)

Given that the average value of the magnetization will be restrained between 0 and 1, these

types of systems will present two distinct phases: ordered, when m 6= 0, and disordered,

when m = 0. By varying a given control parameter, the system behavior is changed, from

an ordered (ferromagnetic) phase to a disordered (paramagnetic) phase, respectively.

For the description of continuous phase transitions, the general mean-field-like ap-

proximation for the behavior of the order parameter is obtained in a similar way to the

proceedings presented in "Landau" theory for equilibrium transitions [4, 60, 75]. Assum-

ing the magnetization has translational invariance, so that m = 〈σi〉, this approximation

can be written accordingly to Ref. [4]

dm

dt
= −rm− u

2
m3 (2.33)

Since m = 0 is the trivial solution, the parameters at which Eq. (2.33) presents another
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Figure 2.4: Behavior of the order parameter, 〈m〉 for the continuous (left) and discontin-
uous (right) phase transitions. In the left, the • indicates the critical point, qC . In the
right, the symbols • and • pertains to the critical points in the backwards and forwards
transitions, respectively. The darkened region in the right panels indicates the bistability
region.

(non-trivial) solution, given by m = mC 6= 0,

[mC(t)]2 =
2m2

0r

[2r +m2
0u] e2rt −m2

0u
. (2.34)

and it becomes clear that, when t → ∞, the possible solutions will be m2
C = 0 or

m2
C = −r/2u, meaning that the only possible way to m 6= 0 to exist is when r < 0. A

more intuitive way to write r, then, is as r ∼ q − qc, where q is the control parameter.

If q ≥ qc, the only possible phase predicted will be the disordered one, whereas when

q < qc, we’ll find the system in the ferromagnetic phase [4, 74]. Furthermore, it is

possible to see that the critical exponent of the order parameter as we approach the

critical point, mC ∼ (q − qc)1/2 places this type of transitions in the same universality

class of the classical ferromagnetic model (β = 1/2). As can be seen in Fig. (2.4), the

order parameter in this case will continuously decrease until reaching zero, at qc, indicating

a smooth transition between ordered and disordered phases.

In order to reproduce discontinuous, or first-order, phase transitions, one can simply

add an extra term in Eq.(2.33),

dm

dt
= −rm+

u

2
m3 − cm5, (2.35)
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where c > 0. Solving this problem in the steady state, dm/dt = 0, shows that we have

now 2 possible steady solutions aside from the trivial one, given by

mD,1 = ±1

2

√
u−
√
u2 − 16rc

c
, (2.36a)

mD,2 = ±1

2

√
u+
√
u2 − 16rc

c
. (2.36b)

As long as r < u2/(16c), both solutions will be real, consistent with the spontaneous

symmetry breaking. Conversely, for the solution mD,1, the transition point will occur

when r1 = u2/(16c), and the system will evolve to the solution m = 0 irrespective of the

initial condition. By increasing r by a sufficiently small amount, the order parameter will

present a jump and vanish in a discontinuous way. The solution mD,2 will present the

same behavior at a second critical point, r2. The region of r2 < r < r1 is then marked by

bistability, i.e., the system evolves to one of the two possible stable solutions (m = 0 or

m 6= 0), depending on the initial conditions, which is a trademark of discontinuous phase

transitions.

As a final remark, although such a heuristic description is able to capture the transition

behavior, it fails to characterize the thermodynamics and nonequilibrium aspects of these

systems. Such issues will be addressed in Chapter 3.
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Chapter 3

Non-Equilibrium Thermodynamics of

the Majority Vote Model

The original majority vote model is one of the simplest and most representative nonequilib-

rium systems exhibiting a continuous phase transition belonging to the same universality

class of the Ising model, irrespective of the lattice topology and system neighborhood.

More recently [29, 79, 81, 82], it has been shown that the inclusion of an inertial term can

shift the phase transition, from continuous to discontinuous. Since these models are irre-

versible and produce entropy in the (nonequilibrium) steady state regime, a question that

naturally arises concerns a thermodynamic description in order to relate the production

of entropy with heat as well as to associate a temperature to its dynamics. The central

goal of this chapter is to address such points.

3.1 Overview of the Majority Vote Model

While the proposition of the majority vote model presented in this dissertation contains

the inertial term, it is interesting to make a few comments about the previous work done

on the inertia-less case [4].
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3.1.1 Majority Vote Model without Inertia

The majority vote model is a simple out-of-equilibrium opinion system with Z2 (up-down)

symmetry whose system’s state is described by the configuration given by the collection

of N individual opinion variables (i.e., spins), σ ≡ {σ1, σ2, σ3, ..., σN}, where σi = ±1 [4,

34]. At any time, each site will be randomly chosen and change its spin to be aligned

with the average spin of its k-neighbours with probability 1−f , and with complementary

probability f , the spin does not follow the majority rule, and remains unchanged. More

specifically, the transition rate from σi to −σi is given by

ωi(σ) =
1

2
[1− (1− 2f)σisgn(`)] , (3.1)

where sgn(•) is the sign function and ` =
∑

δ σ
k
i+δ is the sum over the spins of the k

neighbors of site i.

The model dynamics are governed by the following master equation,

Ṗ (σ, t) =
N∑

i

{
ωi(σ

i)P (σi, t)− ωi(σ)P (σ, t)
}
, (3.2)

where ω(σ) denotes the transition rate. From the configuration in which the i-th site flips

its spin from σi to −σi and σi ≡ (σ1, ...,−σi, ..., σN). Although such a master equation is

not exactly solvable, through mean-field theory it is possible to obtain remarkable insight

about its phase dynamics.

3.1.2 Majority Vote Model with Inertia

While the original majority vote model doesn’t present discontinuous transitions [4], the

introduction of an inertial term so each site under the possibility of transition has a certain

"resistance" to flipping its own spin, together with the variation of the connectivity num-

ber, gives rise to discontinuous phase transitions both on regular and complex networks.

Aside from the misalignment parameter, f , and from the number of site connections per

site (e.g Euclidean neighbors in a square lattice or number of nodes in a random graph), k,

these transitions will also be influenced by the parameter representing transition inertia,
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θ, making it so the transitions of the spin of site i from σi to −σi is given by

ωi(σ) =
1

2
{1− [1− 2f ]σisgn [Xi(θ, `, k)]} , (3.3)

where ` =
∑k

j=1 σj represents the sum of the nearest k spins, i.e, the majority’s spin,

sgn(X) is the sign function, and Xi = (1−θ)`+kθσi attempts to the competition between

local and majority opinions, through the connectivity. In the case of θ = 0, the model is

reduced to the original formulation presented previously [29]. When θ > 0, depending on

the topology and connectivity (illustrated in Fig.3.1), the model can predict a shift in the

nature of the phase transitions (from continuous to discontinuous) [4, 83–88].

Figure 3.1: Illustration of the topologies studied in this work. The left panel shows a
regular square lattice in which each site has k = 20 neighbors. The right panel presents
a (simplified) illustration of a random regular network where each node has k = 20
connections.

In configurations described by the latter condition, the inertia will effectively control

the minimum value of ` for which transitions occur with rate 1− f . In the case of σi = 1,

the site will present the transition σi → −σi with probability 1 − f if sgn(X) < 0, i.e.,

if X < 0, and, naturally, ` > kθ
θ−1

. In the opposite case, when σi = −1, the favored

transition will happen when sgn(X) > 0, for X > 0, and ` < kθ
θ−1

. For both cases, when

` = kθ
θ−1

, sgn(X) = 0 and, therefore, the transitions will be simply 1
2
.

From the master equation, together with the magnetization relations m = 〈σi〉 and
dm/dt = −2〈σiωi(σ)〉, the general expression for the magnetization in the NESS simply

reads

m = (1− 2f)〈sgn(X)〉. (3.4)
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As stated before, the above expression can not be exactly solved and for this reason, we are

going to perform an approximate treatment, based on a mean-field-analysis. By assuming

that the probabilities associated with each site’s spin are independent, irrespective of

topology, it becomes possible to rewrite the average in Eq.(3.4) as a combination of

conditional probabilities,

〈sgn(X)〉 = P (X > 0|σi = 1)P (σi = 1) + P (X > 0|σi = −1)P (σi = −1)

− P (X < 0|σi = 1)P (σi = 1) + P (X < 0|σi = −1)P (σi = −1) ,

where each conditional probability is approximated via a product of a constant belonging

to the connectivity and the number of spins, in the mean-field hypothesis, that are pointing

up, n1 = k(1− 2θ)/(2(1− θ)), or down, n2 = k/(2(1− θ)) and

P (X > 0|σi = 1) =
k∑

n=n1

Ck
np

n
+p

k−n
− , (3.5a)

P (X > 0|σi = −1) =
k∑

n=n2

Ck
np

n
+p

k−n
− , (3.5b)

P (X < 0|σi = 1) =
k∑

n=n2

Ck
np

n
−p

k−n
+ , (3.5c)

P (X < 0|σi = −1) =
k∑

n=n1

Ck
np

n
−p

k−n
+ . (3.5d)

Note that sgn(X) is solely expressed in terms ofm, k , θ and f . Furthermore, these results,

together with the numerical ones, show the existence of a hysteresis loop (as mentioned

in Chapter 2 and in agreement with general theory for discontinuous phase transitions)

for the random regular topology, as θ and k are increased, as shown in Figure 3.2, in the

forward and backward changing of the control parameter, f . In the regime of large k,

the above summations can be replaced for Gaussian integrals, in which one can obtain a

simplified expression for m. As can be seen in Ref.[31], this results in the transcendental

equation for the order parameter,

m =
(1− 2f) (erf(a)− erf(b))

2− (1− 2f) (erf(a) + erf(b))
, (3.6)
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where

a =

√
k

2

[
θ

1− θ +m

]

b =

√
k

2

[
θ

1− θ −m
]
.

For k →∞, Eq.(3.6) simplifies to

m =
(1− 2f) (1 + sgn [m− θ/(1− θ)])

2− (1− 2f) (1− sgn [m− θ/(1− θ)]) . (3.7)

In order to proceed beyond the mean-field theory, we resort to numerical simulations in

Figure 3.2: From top to bottom, mean-field results for regular networks for k = 4, k = 8
and k = 12, respectively. Left panels show the behaviour of magnetization, whereas right
panels shows the respective phase diagrams. Figure adapted from [31]

which a spin flip is performed according to the transition rates given by Eq. (3.3). For

the sake of illustration, we plot the behavior of the magnetization for regular lattices and

random regular graphs in Fig.(3.3) for different system sizes.
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Figure 3.3: Behavior of magnetization for (left) the regular square lattice and (right)
random regular topology, with forwards and backwards trajectories indicated via the .
and / symbols, respectively. For both panels, θ = 3/8 and k = 20. It’s interesting to note
that as N →∞, for the complex topology, the behavior of magnetization approaches the
one expected for the mean-field results, showing an increasing abrupt drop at the critical
point.

The above findings highlight the role of inertia in order to shift the phase transition.

In order to describe it in more detail, as well as its influence on the model thermodynamics

(to be described further), we can resort again, for a given θ and k, to the threshold value,

`∗ = σkθ
θ−1

, that will define the minimum majority configuration of (for simplicity), |`|, for
the spin flip to occur with probability 1 − f . In other words, the transition rate will

be given by the complementary probability f as long as |`| < |`∗|. The consequence of

these competing dynamics will directly affect the nature of the transitions predicted by

the model, the phase diagrams, and thermodynamic quantities [30, 85–87]. The threshold

inertia, θ∗, given by θ∗ = 2`
k+2`

, marks the existence of plateaus in the phase diagram (see,

e.g. Fig 3.4), in which transition rate reads 1−f for θ < θ∗ and f otherwise. For example,

for k = 20, the plateau positions occur at the following values of inertia

θ∗ =

{
1

11
,
1

6
,

3

13
,
2

7
,
1

3
,
3

8
,

7

17
,
4

9
,

9

19
,
1

2

}
. (3.8)

whose effect on the phase diagram is shown in Fig.(3.4). Note that plateau’s positions do

not depend on the lattice topology.
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Figure 3.4: Phase diagrams in the f×θ plane for (left) a regular square lattice and (right)
a random regular network, for connectivity k = 20. Solid lines represent continuous
transitions, whereas dashed lines indicate discontinuous transitions. The colors black and
red on the right panel indicate the forwards and backwards changing of the misalignment
parameter, f , being respectively increased or decreased for the same initial condition.

3.1.3 Entropy Production

As mentioned previously in Chapter 2, the model description in terms of the magnetization

does not characterize the nonequilibrium feature of such systems. In Ref. [31], the

irreversible feature of such systems is characterized in terms of entropy production at the

steady state, given by,

〈σ〉 = kB
∑

i

〈
ωi(σ) ln

ωi(σ)

ωi(σi)

〉
. (3.9)

Using the transition rates from Eq.(3.1), the ratio inside the ln(•) term can be rewritten

as

ωi(σ)

ωi(σi)
= σ|`|sgn(`) ln

1− (1− 2f)|`|
1 + (1− 2f)|`| ,

so the average entropy production becomes

〈σ〉 =
∑

i

1

2

〈[
σsgn(X)− |`|(1− 2f)sgn2(X)

]
ln

1− (1− 2f)|`|
1 + (1− 2f)|`|

〉
. (3.10)

31



CHAPTER 3. NON-EQUILIBRIUM THERMODYNAMICS OF THE MAJORITY
VOTE MODEL

Using the one-site approximation and following the procedures presented in Ref.[31], this

simplifies to

〈σ〉 =
N

2
ln

1 + (1− 2f)|`|
1− (1− 2f)|`|

[
m2

(1− 2f)|`| − (1− 2f)|l|
]
. (3.11)

It is now important to draw a few comments about this result. First, for continuous

transitions, Eq. (3.11) is continuous at the vicinity of the critical point, where m ∼
(f − fc)1/2, but its derivative in respect to f presents a discontinuity at fc. Second, this

behavior, characterized via the mean-field exponent α = 0, together with the previously

calculated β = 1/2 and (obtained via the variance of the order parameter) γ = 3/2, shows

that the critical point, fc, is characterized via the aforementioned discontinuity of dσ/df

(see Section 3.1.4 for a more detailed discussion), reinforced by the fact that the critical

exponents follow the hyperscaling relation, α + β + γ = 2. It then becomes possible to

characterize both types of transitions, continuous or not, using the entropy production

and its first derivative with respect to the control parameter [29, 62].

Finally, proceeding analogously, it’s possible to define the entropy production for this

system in the presence of inertia. The ratio of the transition rate and its inverse then

reads,
wi(σ)

wi(σi)
=

1− (1− 2f)σisgn[(1− θ)`+ kθσi]

1 + (1− 2f)σisgn[(1− θ)`− kθσi]
. (3.12)

As previously stated, the argument of the sgn, for a given k and θ, will be non-zero only

for certain values of `. This indicates that only certain local configurations will contribute

to the production of entropy [31, 34]. For ` 6= kθ/(1− θ), Eq. (3.12) can be conveniently

rewritten as

ln
wi(σ)

wi(σi)
= −σisgn(`)H

[
|`| − kθ

1− θ

]
ln

(
1− f
f

)
, (3.13)

where H(•) is the Heaviside theta function. However, for ` = kθ/(1 − θ), Eq. (3.13)

acquires a distinct value given by ln(wi(σ)/wi(σ
i)) = σisgn(`) ln(2f). Finally, by sub-

stituting Eq.(3.3) and Eq.(3.13) in Eq.(3.12), we obtain an expression for the entropy

production in terms of the misalignment parameter,

〈σ〉 =
1

2
ln

1− f
f

{
(1− 2f)

〈
sgn2(`)H

[
|`| − kθ

1− θ

]〉

−
〈
σisgn(`)H

[
|`| − kθ

1− θ

]〉}
, (3.14)

An illustration of the relationship between θ and `/k that allows for the contribution to
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Figure 3.5: Top left: Scheme representing the values of `∗ for ηi = ±1 corresponding to
the plateaus. In the shaded area, where |`| < |`∗|, the neighborhoods do not contribute
to the entropy production. Dashed lines indicate the values of θ∗. Top right: hysteresis
loop for entropy production on a random graph for k = 20 and θ = 3/8. Bottom: entropy
production obtained via numerical simulations for different values of θ, k = 20, N = 1600,
and a (left) random regular network and a (right) regular lattice.

entropy production, alongside the curves of said thermodynamic quantity for different

configurations is presented in Fig.(3.5).

3.1.4 Finite-Size Scaling for the Entropy Production

According to finite-size scaling (FSS) theory, at the vicinity of the critical point, fc, a

given quantity X [X ∈ (|m|, χ and σ′ ≡ dσ/df)] will behave as X = Nyx/νfx(N
1/ν |ε|),

where fx is a scaling function, ε = (f − fc)/fc is the distance to the criticality and yx is

the critical exponent obtained from (yx = −β, γ and α)[89]. The last exponent is similar
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to the relationship between the thermal derivative of the entropy, S, and specific heat, C,

in equilibrium phase transitions (recalling that C = Nα/νfc(N
1/ν |ε|) [89], illustrating that

the connection between entropy production and exchanged heat presented here introduces

a physical argument for such scaling behavior.

In this work, we focus on its relationship with discontinuous phase transitions (for

continuous phase transitions, see Ref.[33]). For a generic ensemble average X, the starting

point consists of assuming a bimodal Gaussian distribution, centred at µo and µd (with

associated variances χo and χd). In the case of the steady entropy production at the

vicinity of ε = f − fc, a bimodal entropy production probability distribution centered at

µo and µd (with associate variances χd and χo) leads to the approximate expression for σ:

〈σ〉 ≈ µo + αµde
−N [(µo−µd)ε]

1 + αe−N [(µo−µd)ε]
, (3.15)

where α =
√
χd/χo. We note that the ordered and disordered phases are favored as ε < 0

and ε > 0 (assuming that µo < µd), respectively, and σ = (µo + αµd)/(1 + α) at ε = 0,

indicating that all entropy production curves, simulated for distinct N ’s, will cross at the

transition point fc. Having σ, its derivative in respect to f behaves at the vicinity of fc
as:

〈σ′〉 ≈ N(µo − µd)2eN(µo−µd)ε

α (1 + αeN(µo−µd)ε)
2 , (3.16)

showing that σ′ scales with N at the coexistence ε = 0, in agreement with the above finite

size expression for the quantityX. Alternatively (and analogously), Eq. (3.15) is obtained

by resorting to the ideas presented in [90–92], where coexisting phases are treated via a

two-state model in which ordered and disordered phases are given by transition rates

exhibiting an exponential dependence on the system size N and proportionality to the

distance ε to the transition point:

a ∼ k
√
χae

−N(c0−caε), b ∼ k
√
χbe
−N(c0+cbε), (3.17)

where k, c0, ca, cb > 0 are constants. “Ordered" and “disordered" probabilities, p and q

respectively, are related to rates a and b by means of relations p = b/(a+b) and q = 1−p,
given by p =

√
χb(
√
χb +

√
χae

cNε)−1, where c = ca + cb > 0. As shown in Ref. [91],

a given ensemble average (including the entropy production σ = 〈στ 〉/τ averaged over a

sufficiently long time t → ∞ and over many independent stochastic trajectories has its
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average given by σ = µap+ µbb, where

〈σ〉 ≈ µb
√
χb + µa

√
χae

cNε

√
χb +

√
χaecNε

, (3.18)

which has precisely the form of Eq. (3.15).

The main features of discontinuous phase transitions are summarized in Fig. 3.6. From

now on we shall consider k = 20 again, which exhibits a discontinuous phase transition

for θ > 1/3, as depicted in panel Fig.3.6(a). Aforementioned portraits are exemplified

in panels (b) − (d) for θ = 3/8. We remark that continuous lines, given by Eq. (3.15),

describe very well the behavior of the entropy production and its derivative, the latter

presenting a maximum at f ∗c scaling with N−1, whose value as N → ∞ agrees very well

with those obtained from the crossing among curves.

3.2 Thermodynamics of The Majority Vote Model

Historically, the properties of the majority vote model have been studied without thermo-

dynamic consideration, mostly due to its inherent inconsistency in this regard. In other

words, the MV is a model defined by probabilistic rules in such a way that no energy has

been associated with transitions nor connection with temperature has been considered

previously [4, 33]. To tackle this issue, our approach consists of assuming that the one-

site transition rate, ωi(σ), can be decomposed in ` distinct components, each component

as being associated with a given thermal bath, with reciprocal inverse temperature, β`,

as illustrated in Fig. (3.7). Note that such assumption (transition decomposed as a sum

of mutually excludent transition rates) can be performed since at each time the site i

has solely a given specific neighborhood (ranging from −` to `). However, due to the

Z2 symmetry, transitions with ` and −` nearest neighbor sites can be associated to the

same reservoir. We then represent the one-site transition rate, ωi(σ), as the total sum

of the k/2 unique contributions associated with the distinct thermal baths of each |`|-th
reservoir, allowing for the definition of each rate using mutually excludent Glauber-form

rates,

ωi(σ) =
∑

`

ω`i(σ) =
∑

`

α`
2

[1− tanh (β`∆E/2)] , (3.19)
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Figure 3.6: In (a), the phase diagram of the inertial majority model for a regular lattice
for k = 20. Panel (b) depicts the entropy production σ for distinct system sizes N = L2.
Continuous lines denote the phenomenological description from Eq. (3.15) and vertical
line corresponds to the crossing among entropy production curves at fc = 0.05085(2). In
(c), the derivative σ′ ≡ dσ/df versus f obtained from continuous lines in (b). Panel (d)
show the position f ∗c of maximum of σ′ versus N−1 and its accordance with the crossing
among entropy production curves yielding (symbol •) as N →∞.
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where α` is a constant and ∆E denotes the energy to "flip" a site’s opinion, that, due to the

model’s Z2 symmetry, can be written in an Ising-like form, E(σ) = −J∑〈ij〉 σiσj−h
∑

i σi,

where J stands for the interaction strength between sites and h would be an analogous

to the magnetic field [72]. Note that for a generic Z2 dynamics, the energy of the system

being expressed according to the Ising form is the most general form accounting the

interaction between nearest neighbor spins. In the present case, due to Z2 symmetry, we

set h = 0 for all values of θ.

Figure 3.7: Simple illustration of the approach proposed: a given system with k connec-
tivity and a certain value of θ is assumed to be in contact with k/2 thermal baths, each
one associated with a distinct local configurations `. For a given θ, the number of baths
is either kept at k/2 or reduced, according to |`∗|.

From Eq.(3.19), the ratio between each component ω`i(σ) in the right side and its

reverse, ω`i(σi), is given by
w`i(σ)

w`i(σi)
= e−β`[E(σi)−E(σ)]. (3.20)

Once a relationship between transition rates and difference of energy and temperature was

introduced, we can obtain the model’s thermodynamic properties. As shown in Chapter

2, the mean energy flux, d〈U〉/dt, can be expressed via the sum of the contributions of

each thermal reservoir’s heat exchange. By inserting the above energy definition into the

master equation, it follows that d〈U〉/dt = Φ`, where

Φ` =
∑

i

〈
[
E(σi)− E(σ)

]
ω`,i(σ)〉 (3.21)

implying that
∑

` Φ` = 0 at the NESS, consistent with the first law of thermodynamics.

Similarly, both entropy production and flux will also be decomposed according to the `-th

thermal reservoir. Since the entropy change vanishes at the NESS, dS/dt =
∑

`(Π`− σ`),

37



CHAPTER 3. NON-EQUILIBRIUM THERMODYNAMICS OF THE MAJORITY
VOTE MODEL

the entropy production and entropy flux can be identified by Eq. (3.22): Π =
∑

` Π` =
∑

` σ` = σ. The expressions above are consistent with Refs. [40, 93]. Finally, by inserting

Eq. (3.20) into Eq. (3.14), each entropy flux component σ` is related with exchanged heat

Φ` by a Clausius-like form σ` = −β`Φ`, where Φ` is given by Eq. (3.21). Alternatively, σ

can also be written in the usual thermodynamics form as a sum of thermodynamic fluxes

times forces:

σ = −
∑

`

β`Φ` or σ =
∑

`6=2

X`Φ`, (3.22)

where the second temperature was set as a reference to define all (k/2)−1 thermodynamic

forces X` ≡ β2 − β`, associated with its respective flux, Φ`. For simplicity, we set the

Ising interaction parameter to J = 1. The relationship between the temperature and the

model parameters is obtained as follows. From the expression for E(σ), it follows that

∆E = 2σi`, which can be rewritten as ∆E = 2σi|`|sgn(`). By taking the logarithm of Eq.

(3.20), it follows that

ln
w`i(σ)

w`i(σi)
= −2β`|`|σisgn(`). (3.23)

Since the rates associated with each thermal bath are mutually excludent, from the direct

comparison with Eq. (3.13) for a given ` provides to obtain each (reciprocal inverse)

temperature β` given by

β` =
1

2|`|H
[
|`| − kθ

1− θ

]
ln

(
1− f
f

)
, (3.24)

where β2 = 2β4 = 3β6... = kβk/2 in the inertialess case. We pause to make a few

comments. First, Eq. (3.24) is one of the main results of this chapter. It extends the

calculation of temperatures for a given neighborhood and inertia, and reduces to the

expression from Ref. [33] as θ = 0. Second, β` vanishes for large enough values of inertia

θ > θp, illustrating that despite a heat flux associated with the `-th reservoir being well-

defined, it does not produce entropy. Third and last, the temperature assumes a different

value for θ = θ∗ given by

β` = − 1

2|`| ln(2f). (3.25)

This completes our description of the temperature definitions for the MV as well as

the influence of inertia. Now we turn to unravel the role of each ` to the fluxes of heat

and entropy production.

Starting with the inertialess case, where β2 > β4 > ... > βk, we argue that the
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heat fluxes associated with the states in contact with the coldest and hottest baths are

always positive and negative, respectively: Φ2 < 0 and Φk > 0, whose a (non-rigorous)

argument is present as follows. Starting with the two thermal baths case (k = 4), it is

straightforward to verify that, since σ acquires the simple form σ = (β2 − β4)Φ4 > 0.

Given that β2 − β4 > 0 [cf. Eq. (3.24)], it follows that Φ4 ≥ 0 and hence Φ2 = −Φ4 ≤ 0.

The case of more than two reservoirs is more intriguing, since intermediate fluxes can be

positive, negative, or even change their sign upon f being varied [see e.g. Fig. 4.3 (d)].

For k = 6, one has σ = −(β2− β6)Φ2− (β4− β6)Φ4 ≥ 0 and three possibilities for Φ2 and

Φ4. The former, in which both are negative, promptly implies σ ≥ 0, whereas the second

case, Φ2 ≤ 0 and Φ4 ≥ 0, is also consistent since −(β2 − β6)Φ2 ≥ (β4 − β6)Φ4 and hence

Φ6 ≥ 0 (recalling that Φ6 = −(Φ2 + Φ4)). The third possibility, in which Φ2 ≥ 0 and

Φ4 ≤ 0 violates the second law in some cases and thus it is not possible. Similar findings

are verified for θ 6= 0, but we should note that only neighborhoods with `∗ greater than

` − kθ/(1 − θ) will contribute to the entropy production, σ = −∑k
`∗ β`Φ`. For example,

for k = 20 and distinct inertia intervals 3/8 < θ ≤ 7/17, 7/17 < θ ≤ 4/9, θ > 4/9, the

corresponding entropy productions read σ = −∑k
`=14 β`Φ`, σ = −β16Φ16−β18Φ18−β20Φ20

and σ = −β18Φ18−β20Φ20, such latter one similar to the k = 4 case (but here
∑k

`=2 Φ` = 0)

and once again illustrating that Φ`∗=18 ≤ 0 and Φk=20 ≥ 0. We close this section by

pointing out that, despite the above non-rigorous argument, the general finding Φ`∗ ≤ 0

and Φk ≥ 0 has been verified in all cases. In contrast, it is not possible to draw general

conclusions about intermediate fluxes, in which some change sign as f increases.

3.2.1 Fluctuation theorems

Thermodynamic consistent systems satisfy the detailed fluctuation theorem (DFT) for

the entropy production, which gives rise to the stochastic version of the second law. It

states that negative fluctuations of the integrated entropy production are exponentially

suppressed by the positive counterparts. For a given integration window τ , the DFT

is asymptotically valid for Σ =
∫ τ

0
σ(t)dt at the NESS since it is equal to the entropy

production:

lim
τ→∞

ln
Pτ (Σ)

Pτ (−Σ)
= Σ, (3.26)

where Pτ (Σ) represents the probability of measuring Σ in a trajectory of length τ . This re-

lation holds beyond the long-time limit when the internal change of configuration entropy

is considered in addition to the entropy fluxes. Consequence of the above, the integral
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fluctuation theorem (IFT) reads

lim
τ→∞

〈
e−Σ
〉
τ

= 1 (3.27)

and is useful for relating the components of Σ, such as in the celebrated Jarzynski equality

[94] that relates the statistics of work to free energy differences, bridging equilibrium and

nonequilibrium quantities. The feasibility of employing such methods is tightly related to

the ability to observe fluctuations in the trajectories, which become rare as τ increases. We

explore the manifestation of these relations, cornerstones of stochastic thermodynamics,

in the MV vote model.

The left panel of Fig. 3.8 shows the convergence of the left-hand side of Eq. (3.26)

to its right-hand side as the integration windows get larger for the entropy production

evaluated from Eq. (3.22). Observing the DFT becomes an expensive task even for small

systems since the negative fluctuations of entropy production become increasingly rare

for larger values of τ . The right panel shows the left-hand side of the IFT in Eq. (3.27),

which converges to one despite the presence of inertia. It is worth mentioning that the

convergence is observed from above and from below. Although no general conclusion

can be drawn, the behavior of these fluctuation relations might be related to the phase

transitions: In the examples, the IFT presents a slower convergence at the vicinity of the

phase transition.

3.2.2 Heat fluxes at phase transitions

According to Eq. (3.21), every heat flux Φ` is an ensemble average in similarity with the

entropy production and, for this reason, we expect at least the most significant components

of the entropy production to behave similarly to σ at the vicinity of a phase transition. As

described previously, at discontinuous phase transitions, the curves of entropy production

cross at fc for distinct system sizes in regular lattices, and a hysteretic branch is present

in complex topologies [31]. Thus, a similar behavior might be expected for the most

significant heat flux components. These features are promptly verified for the largest

fluxes ` = 12, 14 and 20. For a regular lattice, panels (a)-(c) of Fig. 4.3 display the

crossing of the fluxes for different system sizes, and panel (d) shows the quantitative

value of each individual flux. For a random-regular network, panels (a)-(c) of Fig. 3.10

show the hysteresis branch while (d) shows individual flux values. The continuous lines in
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Figure 3.8: Left : Convergence to the detailed fluctuation theorem as integration window
τ increases for a lattice L = 6 and f = 0.04; solid lines are simulation results while dashed
lines are the respective linear fits. Right : Convergence to the integral fluctuation theorem
for the case with no inertia (blue) and with inertia θ = 3/8 (green); additional parameters
are k = 20 and N = 104.

panels Fig. 4.3 (a)-(c) are obtained from the bimodal Gaussian description in Eq. (3.15),

in good agreement with the simulation results. Remarkably, for both regular and complex

topologies, the phase transition can be probed and precisely located from the behavior of

any individual flux.

3.2.3 Contributions to dissipation

Inspecting of the thermodynamic contribution of individual values of ` raises the question

of how each type of neighborhood contributes to entropy production, a measure of dissipa-

tion. As previously discussed, the second law imposes Φ`∗ < 0 and Φk > 0 irrespective of

f , and also local configurations satisfying |`| < |`∗| do not dissipate. Taking into account

that some intermediate fluxes Φ` are non-monotonic in terms of f , one could expect that

they would present a less significant contribution. Inspired by evidence from simulations,

we observe the predominance of Φ`∗ and Φk, hence we introduce the contribution of these

two fluxes as σ`∗,k = −β`∗Φ`∗ − βkΦk > 0. This represents an approximation but not a

bound since the remaining fluxes can change their signs.
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Figure 3.9: For the regular lattice with θ = 3/8, k = 20 and distinct system sizes N = L2,
panels (a)-(b) depict the most representative (largest absolute values) heat fluxes per
particle Φ`’s versus control parameter f . Continuous lines denote correspond to the
phenomenological approach according to the ideas of Eq. (3.15). Although the component
heat flux panel (c) mildly changes with f , all curves also cross at fc. Panel (d) shows all
Φ`’s (` = 2, 4, ..., k) for N = 602.
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Figure 3.10: For a system of size N = 5000, the same as before, but for a random-regular
structure.

Figure 4.6 compares, for the random-regular and regular lattices, σ`∗,k and σ for dis-

tinct values of θ. In all cases, σ`∗,k is not only close to σ but also captures the same

qualitative behavior, successfully describing the interplay between the control parameter

f , inertia θ, and the dissipation, including a peak located at the vicinity of the phase tran-

sition. For larger θ the set of dissipating local configurations shrinks, hence the better

agreement between both curves.

3.2.4 Concluding Remarks

The nonequilibrium thermodynamic theory of the generic majority vote model was pre-

sented and thoroughly investigated, encompassing its phase transition. A consistent defi-

nition of temperature and the connection between heat fluxes and entropy production were

introduced and analyzed in the context of continuous and discontinuous phase transitions.
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Figure 3.11: For k = 20, random-regular (left) and regular (right) structures of sizes
N = 1600 and 402, curves for σ`∗,k (dot-dashed) and σ (continuous) are shown in terms
of f for distinct θ’s. From top to bottom, `∗ = 2, 4, 6, 12 and 14.

The present approach for fluxes is thermodynamically consistent and equivalent to the

microscopic entropy production definition and satisfies the detailed fluctuation theorem.

We believe that the present framework not only conciliates the thermodynamic as-

pects of an important class of nonequilibrium systems but also introduces a new kind of

nonequilibrium ingredient, based on the idea of a thermal bath associated with the sys-

tem neighborhood. Such an idea has revealed general for a generic voter-like model with

"up-down" Z2 symmetry. In the presence of inertia, the spin changes induced by some

local configurations are reversible, depending on the relation between inertia, neighbor-

hood, and connectivity. Moreover, we explore what are the most relevant neighborhoods

driving the system dissipation, including its qualitative features across a phase transition,

and how these neighborhoods contribute to the structure of the phase diagram.

Furthermore, it is important to note that while the use of the Ising-like energy associ-

ated with the flipping of a spin, and the use of Glauber-like rates to express the transition

rates of each local configuration, |`|, may approximate the findings presented here to

that of the latter model, the characteristics of the Majority Vote Model, being its out of

equilibrium nature and the interaction between inertia and local configuration, are still

present in the results. General spin models like the classic Ising model are formulated at

equilibrium, and while the connectivity plays a role in phenomena such as ground state
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energy, phase transitions and criticality (where the most general mean-field treatment for

this model assumes k ∼ N , i.e, all-to-all), and the approach presented here could be also

used to describe it (further implying that the approach is general, and not restricted to the

M.V.), both the numerical and analytical results presented here from the nonequilibrium

thermodynamics of the Majority Vote Model are strictly tied to its characteristic, such

as the resulting plateaus on the phase diagrams and the inertia present in the transition

rates, whose presence can be seen even in the inverse temperature. For instance, one can-

not assume that the estimation of entropy production based on contributing heat fluxes

would be valid for an Ising model application, but further investigations may give rise

to more general observations of the results of the proposed approach, while the approach

itself can be applied to any model [4, 33, 34, 74].

Our findings are valid for a class that describes systems from opinion models to the

physics of thermal engines, presenting collective effects that can be leveraged for improved

performance. Such potential application raises interesting questions such as the role of

lattice topology and even the kind of voter model used (see e.g. Ref. [33] for a comparison

between them) in order to optimize the desirable power and efficiency in the presence of

a worksource. Such topics should be investigated in the future.
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Stochastic Heat Engines

Historically, one of the main goals of thermodynamics has been to optimize the perfor-

mance of systems such as thermal engines. Afterward, this issue has been extended to the

nonequilibrium thermodynamics realm. Given a system and its associated processes, being

it purely physical [39–42], biological [95–98], chemical [43, 44], or even applied physics,

such as in quantum or nanoscopic technology [45–47], nonequilibrium thermodynamics

has always excelled at describing how the system can be optimized when dissipation and

fluctuations are presented.

As stated in the introduction, collective effects have recently attracted remarkable in-

terest, not only for their presence in several systems in nature but also for the possibility

of being used for the construction of efficient engine setups. Since little is known about

the influence of the engine design and most studies are restricted to the simplest cases

(e.g. simultaneous contact with two thermal baths), not necessarily constituting a realistic

setup implementation, we investigate the collisional/sequential description for a minimal

model for collective effects, composed of two interacting nanomachines placed in contact

with a distinct thermal reservoir and nonequilibrium worksource at each stage/stroke. Its

simplicity enables us to obtain all thermodynamics exactly, irrespective of the model de-

tails and to exploit in detail the role of interaction time between the system and reservoir.

We investigated two kinds of engines and the influence of the interaction, temperature,

period, as well as time asymmetry (i.e. a different duration of each stroke).
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4.1 Minimal Collective Model: 3 states and 2 strokes

Our setup is described as a system composed of two interacting nanomachines. As shall

be described in more detail in Sec. 4.3, we are dealing with a system of three states,

characterized in terms of the variable n, accounting for the population of the upper state

of each unit. More specifically, states of the system are described as follows: both machines

in the lower state (n = 0), a single nanomachine in the upper state and the other in the

lower state, (n = 1), and both on the upper state (n = 2). The system is placed in contact

with the ν-th thermal bath and its respective parameters, specified by transition rates

ωνi,j, during the time τν−1 and τν . The only transitions allowed are those consisting of a

single "hop" between states, n → n ± 1, meaning that transitions of the type 0 ↔ 2 are

forbidden. An illustration of the model can be seen in Fig. 4.1.

Figure 4.1: Simple illustration of the model for the symmetric case (thermal baths of
equal times). In the first stroke, when t ≤ τ/2, a certain direction of transitions are
favoured through the choice of adequate transition rates, either to the presence of a
nonconservative driving, Fν , as depicted, or a certain interaction energy, V (ν). In the
second stroke, t > τ/2, the opposite happens. After an entire period is complete, the
system returns to the initial reservoir.

Furthermore, given that the system dynamics are temporally constrained to a certain

period τ , the transition rates during each ν-th stroke will be described by that stroke’s

respective transition matrix,

ω(ν) =




−ω(ν)
1,0 ω

(ν)
0,1 0

ω
(ν)
1,0 −ω(ν)

0,1 − ω(ν)
2,1 ω

(ν)
1,2

0 ω
(ν)
2,1 −ω(ν)

0,1 − ω(ν)
1,2 .


 (4.1)

In this contribution, we focus solely on the 2 stage application, where the periodic bound-
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ary conditions read

p(1)(0) = p(2)(τ) (4.2a)

p(1)(τ1) = p(2)(τ2) (4.2b)

The general solution to the master equation (for each stroke) then reads

p(ν)(t) = p(eq,ν) +
2∑

j=1

eλ
(ν)
j [t−τν−1]Γ

(ν)
j p(ν) (τν−1) , (4.3)

where p(ν) (τν−1) is a vector representing the initial conditions for the probability at stage

ν. To obtain an analytical solution, the equations resulting from the periodic boundary

conditions were solved using the software Mathematica, and the resulting output was then

probed so patterns of combinations (similar sequences of operations, as can be seen in be-

low) of eigenvalues, determinants and products between the matrices Γ
(ν)
µ were identified.

Given that these expressions are quite long, we present the solution for the symmetric

case (τ1 = τ2 = τ/2), the shorter of the two,

p(1) (0) =

−

[
eτω

(1)/2 + e
τ
(
λ
(2)
1 +λ

(2)
2 +λ

(1)
1 +λ

(1)
2

)
/2

]
p(eq,1)

Z

+

∑
ν,µ,µ′

e
τ
(
λ
(2)
1 +λ

(2)
2 +λ

(1)
ν

)
/2

∆
(1)
µ,µ′

[
Γ

(2)
µ′+1p

(eq,1) + e
−τλ(2)

µ′+1
/2p(eq,2)

]

Z ,

(4.4)

and

p(2)
(τ

2

)
=

−

[
eτω

(1)/2 + e
τ
(
λ
(1)
1 +λ

(1)
2 +λ

(2)
1 +λ

(2)
2

)
/2

]
p(eq,2)

Z

+

∑
ν,µ,µ′

e
τ
(
λ
(1)
1 +λ

(1)
2 +λ

(2)
ν

)
/2

∆
(2)
µ,µ′

[
Γ

(1)
µ′+1p

(eq,2) + e
−τλ(1)

µ′+1
/2p(eq,1)

]

Z .

(4.5)

where

Z/2 =
(
eτλ

(1)
1 /2 − eτλ(1)2 /2

)(
eτλ

(2)
1 /2 − eτλ(2)2 /2

)
Tr
{

Γ
(1)
2 Γ

(2)
2

}
−
(
e
τ
(
λ
(1)
2 +λ

(2)
1

)
/2 − 1

)(
e
τ
(
λ
(1)
1 +λ

(2)
2

)
/2 − 1

)
,
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and

∆
(ν)
µ,µ′ = Tr

{
Γ(ν+1)
µ Γ

(ν)
µ′

}
− Γ(ν+1)

µ Γ
(ν)
µ′ .

By integrating Eqs.(4.4,4.5) over the entire period, one can define the average probability

fluxes, 〈J〉(ν). For the first reservoir, the fluxes are given by

〈J〉(1)
01 =

1

τ

∫ τ1

0

{
ω

(1)
01 p

(1)
1 (t)− ω(1)

10 p
(1)
0 (t)

}
dt, (4.6)

〈J〉(1)
21 =

1

τ

∫ τ1

0

{
ω

(1)
21 p

(1)
1 (t)− ω(1)

12 p
(1)
2 (t)

}
dt. (4.7)

Due to the periodic boundary conditions and normalization of probabilities, the fluxes

obey the following equations ∑

ν

〈J〉(ν) = 0, (4.8a)

∑

i

〈J〉(ν)
i = 0. (4.8b)

While the role of the probability fluxes will become more clear in the following section,

it’s interesting to note its asymptotic behaviors for both short (τ → 0) and long (τ →∞)

periods,

lim
τ→0
〈J〉(ν) =

1

2
ω(ν)p̃, (4.9a)

lim
τ→∞
〈J〉(ν) =

(−1)(ν+1)

τ

{
p(eq,1) − p(eq,2)

}
. (4.9b)

In the first limit, the expressions for the probability components of the vector p̃ are given

by

p̃0 =

(
ω

(1)
01 + ω

(2)
01

)(
ω

(1)
12 + ω

(2)
12

)

(
ω

(1)
01 + ω

(2)
01

)(
ω

(1)
12 + ω

(2)
12

)
+
(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
12 + ω

(2)
12

)
+
(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
21 + ω

(2)
21

) ,

p̃1 =

(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
12 + ω

(2)
12

)

=
(
ω

(1)
01 + ω

(2)
01

)(
ω

(1)
12 + ω

(2)
12

)
+
(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
12 + ω

(2)
12

)
+
(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
21 + ω

(2)
21

) ,

p̃2 =

(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
21 + ω

(2)
21

)

(
ω

(1)
01 + ω

(2)
01

)(
ω

(1)
12 + ω

(2)
12

)
+
(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
12 + ω

(2)
12

)
+
(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
21 + ω

(2)
21

) .
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and is the flux is described by exactly half of the solution for the case of a system placed in

contact with 2 thermal reservoirs, and a single stroke, further explained in Section 4.3.3.

With all the necessary ingredients at hand, we are finally in a position to investigate the

thermodynamic properties of the model.

4.2 General Thermodynamic Properties

Until here, all analyses have been carried out without any thermodynamic consideration.

For that, we follow the common approach considered in the literature (see, e.g., Refs.

[5, 36, 40, 99, 100]) in which the ratio between transition rates ω(ν)
ij and ω

(ν)
ji is defined

according to the local detailed balance,

ln
ω

(ν)
ij

ω
(ν)
ji

= −βν
[
ε̃

(ν)
i − ε̃(ν)

j + d
(ν)
ij F

(ν)
]
, (4.10)

where ε̃(ν)
i − ε̃(ν)

j is the difference between states i and j, d(ν)
ji F

(ν) accounts to the influence

of a driving force, and the element d(ν)
ji satisfies the anti-symmetric property d(ν)

ji = −d(ν)
ij .

From Eq.(4.10), we consider the entropy production formula

Πν(t) =
∑

i<j

J
(ν)
ij (t) ln

ω
(ν)
ij pj(t)

ω
(ν)
ji pi(t)

, (4.11)

whose integration over a complete cycle, together with the previously mentioned boundary

conditions, leads to the standard form 〈σ〉 = −∑ν β
(ν)〈Q̇〉(ν), where 〈Q̇〉(ν) is given by

〈Q̇〉(ν) =
1

τ

∑

i<j

[
ε̃

(ν)
i − ε̃(ν)

j + d
(ν)
ij Fν

]
〈J〉(ν)

ij . (4.12)

By expressing Eq. (4.12) in terms of fluxes 〈J〉(ν)
01 and 〈J〉(ν)

21 , the exchanged heat, 〈Q̇〉ν ,
then reads

〈Q̇〉(ν) =
1

τ

[(
ε̃

(ν)
0 − ε̃(ν)

1 + d
(ν)
01 Fν

)
〈J〉(ν)

01 +
(
ε̃

(ν)
2 − ε̃(ν)

1 + d
(ν)
21 Fν

)
〈J〉(ν)

21

]
. (4.13)

Since the system evolves to a nonequilibrium steady state regime, returning to the

initial state after a complete cycle, the first law of thermodynamics establishes that P =
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−
[
〈Q̇〉(1) + 〈Q̇〉(2)

]
. Using Eq. (4.12), together with Eq.(4.13), the general expression for

power is then given by

〈P〉 = −


∑

i

(
ε̃

(2)
i − ε̃(1)

i

)
(
p

(1)
i (τ1)− p(1)

i (0)
)

τ
+
∑

i<j

d
(1)
ij

(
F (1)〈J〉(1)

ij − F (2)〈J〉(2)
ij

)

 ,

(4.14)

Inspection of Eq.(4.14) reveals that the model’s power output has two sources. The

first term on the right side of Eq.(4.14), conveniently written in terms of the probabilities

and energy difference between strokes, pertains to the power output associated with the

reservoir switching aspect of the model, meaning that heat dissipated during this dynamic

will be reflected as work. The second term on the R.H.S, however, can be interpreted as

the power output due to the system being forced to an out-of-equilibrium state due to

the external non-conservative driving applied to it.

For a consistent analysis throughout the different cases studied with this model, as well

as a way to further validate eventual comparisons with the different models presented in

the literature [5, 46, 101–103], the second reservoir is defined as being the "hot" reservoir,

that is, β(1) > β(2), meaning that the definition for efficiency is simply η = −P/〈Q̇〉(2).

Given that, in thermodynamics, the maximum value efficiency for a heat engine can

achieve is Carnot [1], ηc = 1−β(2)/β(1), it’s easy to see that if 〈Q̇〉(2), part of the extracted

heat from the second reservoir will be converted into power output (implying P < 0), and

the system will operate as a heat engine. Conversely, in the scenario where 〈Q̇〉(2) < 0,

this would imply that P > 0, indicating a transition to a heat pump regime, where now

the efficiency is bound by ηc < η ≤ ∞.

Despite the model’s simplicity, the appropriate choice of parameters (as will be seen

in the two following sections) shows that there’s a rich complexity of behaviors where

the model can both reproduce previously seen results [5, 101] as well as provide insight

into maximum efficiency and efficiency at maximum power [104] and contribute to the

discourse of relevance of minimal models in the context of stochastic thermodynamics.
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4.3 Applications

As stated previously, the system is composed of two interacting nanomachines, whose

interaction energy depends on their occupations. At each stroke, both are subject to the

same temperature in such a way that there is a correspondence between their individual

occupation σi and the system occupation n = σ1 + σ2,

• n = 0→ both units are empty, σ1 = σ2 = 0,

• n = 1→ one unit is occupied (not distinguishable), σν 6= σν′ = 1,

• n = 2→ both units are occupied, σ1 = σ2 = 1.

Such a setup is characterized by the generic energy

ε̃(ν) = Vν [(1− σ1)σ2 + σ1(1− σ2)] + Uνσ1σ2 + εν(σ1 + σ2), (4.15)

where V (ν) and U (ν) account for the interaction strength energies provided units are in

distinct and the same states, respectively, whereas ε(ν) are the individual ones.

We shall consider two approaches for the worksource. First, we consider a case where

the units have different energy levels and interaction energies, ε(ν) and V (ν), respectively.

After, we consider a case where the non-conservative driving changes during strokes, F (ν),

and the interaction energy is constant. In both cases, we make a brief description of the

effects of period duration and effects of asymmetrical time switchings.

4.3.1 Distinct Interactions between units

Main expressions and general findings

Our first approach consists of building a setup via a change of individual and interaction

energies at each stroke without non-conservative drivings. Such study has been inspired

in recent works [5, 7, 35, 36]. Transition rates ω(ν)
ij follow Eq. (4.10) and have been defined

in the following form

ω
(ν)
10 = 2Γ exp

{−β(ν)

2
(V (ν) + ε(ν))

}
(4.16a)
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ω
(ν)
01 = Γ exp

{−β(ν)

2
(−V (ν) − ε(ν))

}
(4.16b)

ω
(ν)
21 = Γ exp

{−β(ν)

2
(−V (ν) + ε(ν))

}
(4.16c)

ω
(ν)
12 = 2Γ exp

{−β(ν)

2
(V (ν) − ε(ν))

}
(4.16d)

where V (ν), ε(ν) assume distinct values at each stroke and Γ represents the coupling be-

tween the system and the reservoir. From Eq. (4.12), the average heat flux at each stroke

is given by

〈Q̇〉(1) = −
[
〈J〉(1)

01 (V (1) + ε(1)) + 〈J〉(1)
21 (V (1) − ε(1))

]
,

〈Q̇〉(2) =
[
〈J〉(1)

01 (V (2) + ε(2)) + 〈J〉(1)
21 (V (2) − ε(2))

]
, (4.17)

whose steady entropy production 〈σ〉 assumes the generic "fluxes times forces" form σ =

J1X1 + J2X2, where J1 = 〈J〉(1)
01 and J2 = 〈J〉(1)

21 with X1 and X2 given by

X1 =
V (1) + ε(1)

T (1)
− V (2) + ε(2)

T (2)
(4.18a)

X2 =
V (1) − ε(1)

T (1)
− V (2) − ε(2)

T (2)
(4.18b)

With this results, the expressions for the power P and system efficiency η are then given

by

P =
[
ε(1) − ε(2)

] [
〈J〉(1)

01 − 〈J〉(1)
21

]
+
[
V (1) − V (2)

] [
〈J〉(1)

01 + 〈J〉(1)
21

]
, (4.19)

and

η = −
[
ε(1) − ε(2)

] [
〈J〉(1)

01 − 〈J〉(1)
21

]
+
[
V (1) − V (2)

] [
〈J〉(1)

01 + 〈J〉(1)
21

]

ε(2)
[
〈J〉(1)

01 − 〈J〉(1)
21

]
+ V (2)

[
〈J〉(1)

01 + 〈J〉(1)
21

] , (4.20)

respectively. It is important to draw a few comments about these results. First, Eqs. (4.17)-

(4.20) are general for the two-stroke case, irrespective of the period, asymmetry and model

parameters. Second, in the absence of interactions (V (1) → 0 and V (2) → 0), the sys-

tem becomes equivalent to the interactionless setup investigated in Refs. [7, 8, 48] for

µ1 = µ2 = 0. In such cases, Eqs. (4.19) and (4.20) reduce to ηs = 1 − ε(1)/ε(2) and
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Ps = (ε(1) − ε(2))〈J〉s, respectively, where 〈Js〉 (for τ1 = τ/2) reads:

〈Js〉 =

∏
µ

{
−1 + cosh

[
τ cosh

(
β(µ)ε(µ)

2

)]
+ sinh

[
τ cosh

(
β(µ)ε(µ)

2

)]}

(
eβ(1)ε(1) − eβ(2)ε(2)

)−1∏
µ′

(
1 + eβ(µ′)ε(µ′)

)
[−1 + cosh (τC) + sinh (τC)]

, (4.21)

where

C = cosh

(
β(1)ε(1)

2

)
+ cosh

(
β(2)ε(2)

2

)

Both ηs and Ps can be related through the expression Ps = −ε(2)ηs〈Js〉, consistent with

the heat engine characterised by 〈Js〉 > 0 , since β(1)ε(1) > β(2)ε(2), 〈Ps〉 < 0, 0 < ηs < ηc.

Conversely, the pump is characterized by the other way around of conditions 〈J̄s〉 <
0 (since β(1)ε(1) < β(2)ε(2)), Ps > 0 and ηc < ηs < 1.

Third, contrasting with the interactionless case, there are two independent fluxes,

〈J〉(1)
01 and 〈J〉(1)

21 , revealing that the interaction between units gives rise to a much richer

behavior than the single case [7]. Eqs. (4.17) and (4.19) impose some constraints on the

operation of each type of regime. In particular, a quick inspection of the expressions for

power and heat reveals that the heat engine occurs when both inequalities

[
ε(2) − ε(1)

] [
〈J〉(1)

01 − 〈J〉(1)
21

]
<
[
V (1) − V (2)

] [
〈J〉(1)

01 + 〈J〉(1)
21

]
, (4.22a)

and

ε(2)
[
〈J〉(1)

21 − 〈J〉(1)
01

]
> V (2)

[
〈J〉(1)

01 + 〈J〉(1)
21 ,
]

(4.22b)

are simultaneously satisfied, whereas the pump regime takes place for opposite inequali-

ties.

Fourth, our system will operate more efficiently than the interactionless case (η > ηs) if[
ε(1)V (2) − ε(2)V (1)

] [
〈J〉(1)

01 + 〈J〉(1)
21

]
> 0. For ε(1)/ε(2) or V (1)/V (2) held fixed, η = ηc when

β(2)V (2) = β(1)V (1) and β(2)ε(2) = β(1)ε(1), whose efficiency is given by η = 1− V (1)/V (2),

akin to the interactionless expression. Conversely, maximum efficiency is lower than

Carnot, ηME < ηc, if the condition ε(1)/ε(2) = V (1)/V (2) = β(2)/β(1) is not satisfied.

Fifth and last, the occurrence of the pump regime implies the following relation between

parameters

[
β(2)ε(2) − β(1)ε(1)

] [
〈J〉(1)

21 − 〈J〉(1)
01

]
>
[
β(2)V (2) + β(1)V (1)

] [
〈J〉(1)

21 + 〈J〉(1)
01 〉
]
. (4.23)
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These features are presented in Figs. 4.2, 4.3, and section 4.3.1 contains a phase diagram

for the distinct regions of heat engine and pump regimes in the β(ν), V (ν), ε(ν) plane.

Results for symmetric switching times

The analysis will be carried out for the following set of parameters: β1 = 10, β2 = 1,

τ = 1 and kB = 1. In order to obtain a first insight into how the interaction between

units influences the system performance, Fig. 4.2 depicts the system performance for

ε1/ε2 = 0.6, in which the interactionless case operates as an engine with power and

efficiency given by Ps = −0.08362 and ηs = 0.4, respectively.

Figure 4.2: The influence of the interaction parameters over the system performance. The
top and bottom panels depict the power and efficiency heat maps. The surfaces highlighted
by the color pink represent the region in which η ≤ ηs. Parameters: β2 = 1, β1 = 10, τ = 1
and ε1/ε2 = 0.6. Symbols HE (left bars) and P (right bars) correspond to the heat engine
and pump regimes, respectively, whereas * and • attempt to the global maximum of PmP
and ηME in the HE regime. The gray region indicates dud (D) behavior. For this set of
parameters ηME < ηc, whereas the light blue line in the bottom panel indicates the region
in which ηmP = ηCA.

We highlight two remarkable changes coming from the interaction, under suitable

choices of V (1)(V (2)) at strokes ν = 1(2). The former is a substantially broader set of

parameters, in which η > ηs and P > Ps. This also extends the regime of possible

distinct operations, giving rise to a pump regime as V (2) is raised. Similar results are

found for distinct β(1)/β(2)’s, although the variation of temperatures can favor a given

operation regime, as can be seen in Fig. 4.6.

The interplay between the ratio of individual energies, ε(1)/ε(2) and interactions V (1)/V (2)
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Figure 4.3: The influence of individual energies ε(1)/ε(2) over the system performance. Left
and right panels depict fixed V (1) and V (2), respectively, while top and bottom panels show
η’s and P ’s heat maps, respectively. The left and right bars denote HE and P regimes,
respectively. Symbols •, * and � attempt to Carnot efficiency ηc, efficiencies at maximum
power ηmP at the heat engine (HE) and pump (P) regimes, respectively. Light blues in top
panels indicate the regions in which ηmP = ηCA. Parameters: β(2) = 1, β(1) = 10, τ = 1,
V (2) = 1 (right) and V (1) = 1 (left).

energies is depicted in Fig. 4.3, in which η < ηs < ηc for small V2’s. However, increasing

the ratios not only extends the heat regime to the region 0 < ε(1)/ε(2) < β(2)/β(1), in which

the interaction-less case operates as a pump, but also lead to higher efficiencies η > ηs as

V (2) increases and presents a maximum value, ηME, at V
(2)
ME. As portrayed in Sec. 4.3.1,

ηME < ηc for ε(1)β(1) 6= ε(2)β(2), and ηME = ηc if V (2) = V
(2)
ME when ε(1)β(1) = ε(2)β(2) (e.g.

blue • in Fig. 4.3). Similarly to η, it is possible to find suitable values of parameters in

which P > Ps (from now, we assume the convention of meaning the absolute value of P)
as well as optimize it via a suitable choice of V (2)

mP .

As can be seen in Fig. 4.3, the influence of V (1) (V (2) held fixed) is remarkably different

from the left panels (V (1) held fixed), whose engine regime and higher efficiencies are
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constrained to small values of V (1)’s (consistent with the general findings from Sec. 4.3.1),

hence, indicating that stronger interactions in the second stage are more significant than

in the first one. Furthermore, η > ηs for a broader set of values of V (1). as ε(1)/ε(2)

is increased. The behavior of P is akin to the previous one and presents a maximum

at a (small) V1mP ’s (fixed ε1/ε2) as well as an optimal ε1/ε2 providing its simultaneous

maximization.

As a complementary analysis, it is also possible to compare the efficiencies at maximum

power ηmP with the Curzon and Ahlborn case, ηCA = 1−
√
β2/β1 [104], which has been

verified in distinct systems [36, 105, 106]. Despite not constituting a universal result,

it provides a powerful guide about the system operation at finite power, which is more

realistic than the ideal case (η = ηc and P = 0). In all cases, the interaction among

units can also be chosen for providing efficiencies at maximum power ηmP > ηCA for a

wide range of parameters (see e.g. light blue lines in Figs. 4.2-4.3 in which ηmP = ηCA).

Depending on the parameters the engine is projected, ηmP < ηCA [Figs. 4.2 and 4.3 (left

panel) ] and ηmP > ηCA (right panel of Fig. 4.3) at the simultaneous maximization of

power.

In short, the presence of collective effects between two units makes it possible to conve-

niently choose interaction parameters at each stage, providing higher performances than

its interactionless counterpart (for the same values of individual energies), as well as dis-

tinct optimization routes, such as the maximization of power and efficiency. Additionally,

an extra advantage concerns the possibility of changing the regime operation, from heat

engine to pump and vice-versa, by changing the interactions at each stroke.

Influence of period τ and asymmetric switchings

The influence of period τ and the inclusion of a different time duration at each stroke,

expressed by the asymmetry κ = τ1/τ2 6= 1 will be considered in this section. Due to the

existence of several distinct parameters, for this section, the set of parameters is fixed at

ε(1)/ε(2) = 0.6, V (1) = 0.2, β(1) = 10 and β(2) = 1.

Although Ps increases as τ is lowered, the period plays a less important role in the

interactionless case, in part because ηs is independent of Js and τ [7, 48]. On the other

hand, the existence of two independent fluxes, as a consequence of the interaction between
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Figure 4.4: Left and right panels depict the influence of period τ (for symmetric time
switchings) and distinct κ’s (for τ = 1), respectively, for P (top) and η (bottom), re-
spectively. Symbols ∗ and • denote associate PmP ’s and ηME’s, respectively. Parameters:
β(1) = 10, β(2) = 1, V (1) = 0.2, ε(1)/ε(2) = 0.6.

nanomachines, makes the influence of τ more revealing. We highlight two aspects regard-

ing the influence of τ , as depicted in the left panels of Fig. 4.4. First, it significantly affects

the system performance, marking the increase of both P (as the interactionless system)

and η (unlike the interactionless), with increasing maximum PmP and ηME at V2mP and

V2ME, respectively, as τ is decreased toward the limit τ → 0, in which the system becomes

equivalent to the (simultaneous) contact with hot and cold thermal baths (see Eq. 4.21).

Second, despite the increase of τ reduces P and η, it enlarges the heat engine operation.

Thus, the period can be conveniently chosen to obtain a desirable compromise between

the system performance (power and efficiency) and the range of the operation regime.

A second aspect to be investigated in this section relies on the inclusion of a distinct

duration of each stage, measured by the asymmetry κ = τ1/τ2. This ingredient has been

revealed to be a powerful ingredient for improving the system’s power in the interactionless

case [107] or even both P and η in the case of collisional Brownian engines [108] and is

depicted in the right panels of Fig. 4.4. Although η typically increases as V (2) raises and
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κ (or τ1) is reduced, consistent with the system placed in contact with the hot thermal

bath during a larger interval, there is an optimal κo ensuring optimal power PmP . Thus,
like the interactionless case [107], κ can be conveniently chosen in order to increase the

power-output and P > Ps. Since η > ηs for a broad range of V (2)’s and the interaction

offers an extra advantage in which κ can be suitably chosen in order to obtain the desired

η (greater than ηs) or even the desired compromise between P and η.

Global phase diagram for distinct interactions at each stroke

In this section, we depict the system phase diagram (top panel) built from inequalities,

(ε2 − ε1)(J̄
(1)
01 − J̄ (1)

21 ) < (V1 − V2)(J̄
(1)
01 + J̄

(1)
21 ) and ε2(J̄

(1)
21 − J̄ (1)

01 ) > V2(J̄
(1)
01 + J̄

(1)
21 ), shown

in the main text for the heat engine (HE) regime and the other way around for the pump

(P). In particular, the crossover between HE and P regimes will be characterized by ideal

efficiency provided ε1/ε2 = V1/V2 = β2/β1 (green symbols). The bottom panels show, for

different sets of temperatures, the phase diagram V1/V2× ε1/ε2. As discussed in the main

text, while larger β1/β2 favors the HE regime, its decrease increases the region in which

the system operates as a pump.

4.3.2 Distinct Non-conservative Drivings

Main expressions and heat maps

Our second approach encompasses a worksource coming from a non-conservative driving,

introduced by means of a bias in order to benefit certain transitions. By following the

ideas of Refs.[5, 36, 109], transitions of type i→ i+ 1 (i→ i−1) are favored according to

whether the system is placed in contact with the cold (hot) thermal baths, leading to an

incremental P reading Fν , whereas the remainig parameters (V and ε) are held fixed. Our

study relies on investigating two important aspects: the role of drivings at each stroke

and its relationship with V , temperatures β1/β2 and the influence of period τ . Transition
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Figure 4.5: Top panel: The phase diagram β(2)/β(1) × V (1)/V (2) × ε(1)/ε(2). The green
line represents the points where β(2)/β(1) = V (1)/V (2) = ε(1)/ε(2). Bottom panels depict,
for β(1) = 10 (left), β(1) = 10/3 (middle) and β(1) = 10/4 (right), the phase diagrams in
the V (1)/V (2)× ε(1)/ε(2) plane. P and HE denote, respectively, the pump and heat engine
regimes. White region attempts to the dud regime, whereas green bullets correspond to
the ideal efficiency ηc.

rates ω(ν)
ij follow Eq. (4.10) and are listed below

ω
(ν)
10 = 2Γ exp{−β

(ν)

2
(Ea + V + ε+ (−1)νFν)} (4.24)

ω
(ν)
01 = Γ exp{−β

(ν)

2
(Ea − V − ε− (−1)νFν)} (4.25)

ω
(ν)
21 = Γ exp{−β

(ν)

2
(Ea + ε− V + (−1)νFν)} (4.26)

ω
(ν)
12 = 2Γ exp{−β

(ν)

2
(Ea − ε+ V − (−1)νFν)}, (4.27)

where Fν assumes distinct values at each stroke. Parameter Ea attempts to an activation

energy and it will be included in order to draw a comparison with previous results [5,
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110]. Although our main findings are independent of Ea, its inclusion makes the heat

engine regime more pronounced. From now on, we shall set Ea = 1 in all analyses.

Figure 4.6: Depiction of power P (top) and efficiency η̂ (bottom) versus V for distinct
β(1)’s. Parameters: β(2) = 1, Ea = 1, F2 = 1, F1 = 0.1 and τ = 1 and β(1) = 10 (left),
β(1) = 20/9 (middle) and β(1) = 3/2 (right). Stars and squares denote the location of
PmP ’s for heat engine and pump, respectively. Circles and triangles denote the location
of maximum efficiencies for the engine (0 ≤ η < ηc) and pump (ηc < η ≤ ∞) regimes,
respectively.

From Eqs. (4.13) and (4.14) and by taking V (1) = V (2) = V and ε(1) = ε(2) = ε,

the average power and the heat extracted exchanged with the hot bath are given by the

following expressions

P = −(F1 + F2)(〈J〉(1)
01 − 〈J〉(1)

21 ), (4.28)

〈Q̇〉(2) =
[
(V + ε+ F2)〈J〉(1)

01 + (V − ε− F2) 〈J〉(1)
21

]
, (4.29)

whose system entropy production reads σ̄ = −β(1)〈Q̇〉(1) − β(2)〈Q̇〉(2) and assumes the

bilinear form 〈σ〉 = J1X1 + J2X2, where J1 = 〈J (1)
01 〉 and J2 = 〈J (1)

21 〉 with thermodynamic

forces X1 and X2 given by

X1 =
ε+ V + F2

T (2)
− ε+ V − F (1)

T (1)
,

X2 =
ε− V + F2

T (2)
− ε− V − F (1)

T (1)
. (4.30)
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The efficiency is given by the ratio between P and Q̇2 given by

η =
(F1 + F2)(〈J〉(1)

01 − 〈J〉(1)
21 )

(V + ε+ F2)〈J〉(1)
01 + (V − ε− F2) 〈J〉(1)

21

, (4.31)

respectively. The existence of the heat engine and pump regimes imposes some constraints

in the fluxes, implying that in the former case, parameters have to be adjusted in such

a way that 〈J〉(1)
01 > 〈J〉(1)

21 and V (〈J〉(1)
01 + 〈J〉(1)

21 ) > (ε + F2)(〈J〉(1)
21 − 〈J〉(1)

01 ), whereas the

latter (pump) implies opposite inequalities.

A first insight about the influence of drivings is depicted in Figs. 4.6 for fixed F1/F2.

Efficiency and power curves exhibit an interesting and rich behavior due to the interplay

among parameters ε, V, β(1)/β(2) and τ . While the heat regime is levered by increasing ε

and/or the ratio β(1)/β(2) (left and middle panels), the pump regime is favored for lower

values of β(1)/β(2) (middle and right). The crossover from the heat to the pump regimes

gives rise to an intermediate regime in which the system operates dudly (see e.g. middle

panels). In such a case, there are optimal interactions VmP and VME marking maximum

(absolute) power (PmP ) and efficiency (ηME), respectively. Conversely, only P can be

optimized when the crossover between the above regimes is marked by the absence of

a dud regime (e.g. left and right panels) and η monotonically decreases upon V being

raised. Fig. 4.7 extends the above findings by depicting heat maps for the efficiency

and power for distinct ratio F1/F2 and fixed ε. Similarly to systems composed of many

interacting units under fixed drivings [36, 110], the power P presents a simultaneous

maximization (concerning both V and F1/F2), whereas η approaches to the ideal regime

F2/F1 is increased. However, a difference with respect to previous studies concerns the

absence of a heat engine as F1 = F2. Unlike Refs. [5, 36, 110], in which the heat engine

was investigated for large N ’s, our minimal setup of N = 2 interacting units requires

a desirable compromise between Fν ’s and parameters for operating properly as a heat

engine.

The influence of period is depicted in Fig. 4.8 for the same parameters from Fig. 4.7

(left and right panels). In both cases, P is strongly influenced by the period and ap-

proaches to the simultaneous contact with baths as τ → 0, whose expressions were pre-

sented in Eq.(4.9a). Also, depending on the parameters the engine is projected (right

panels), the increase of τ changes the regime operation, from heat engine to pump. In

both cases, the behavior of η is more revealing and mildly changes with τ . While small
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Figure 4.7: The same as in Fig.4.2, but by changing the drivings at each stroke. Param-
eters: ε = 0.5, β(2) = 1, β(1) = 20/9, Ea = 1, τ = 1, F2 = 0.45

differences are almost imperceptible in the left panels, a somewhat increase of η as τ is

lowered is verified. This finding is remarkable, because it may be used for conveniently

choosing the period in order to obtain the desirable P with a small variation of η.

Asymmetric time switchings

In the last analysis, we investigate the influence of asymmetric interaction times in the

presence of distinct drivings at each stroke, as shown in Fig.4.9. In similarity with Fig. 4.4,

the asymmetry can be conveniently chosen for enhancing the power and efficiency or even

for obtaining a desirable compromise between them. There is an optimal κo leading to

simultaneous maximization of power while η always increases as κ is lowered, consis-

tent with the contact with a hot bath for a larger amount of the period. Despite such

similarities, the asymmetry seems to be less pronounced than in the previous case, and

optimal quantities do not deviate significantly from the symmetric (κ = 1) case. A pos-

sible reason is that power and efficiency exhibit a more intricate dependence on fluxes

and changes of energy parameters (former approach) than on driving variations [see e.g.

Eqs. (4.19)-(4.28) and (4.20)-(4.31)].

4.3.3 The fast time switchings τ → 0 and the two reservoirs case

In the regime of fast switching dynamics, τ → 0, one gets the following expressions for

fluxes

lim
τ→0

J̄
(1)
01 =

1

2Z

(
ω

(1)
01 ω

(2)
10 − ω(1)

10 ω
(2)
01

)(
ω

(1)
12 + ω

(2)
12

)
, (4.32)
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Figure 4.8: The influence of period τ over the system performance. Depiction of P and
η versus V for distinct τ ’s for β(1) = 10 (left) and β(1) = 20/9 (right). Parameters:
β(2) = 1, Ea = 1, ε = 0.5, F2 = 1, F1 = 0.1.

and

lim
τ→0

J̄
(1)
21 =

1

2Z

(
ω

(1)
21 ω

(2)
12 − ω(1)

12 ω
(2)
21

)(
ω

(1)
10 + ω

(2)
10

)
, (4.33)

where

Z =
(
ω

(1)
01 + ω

(2)
01

)(
ω

(1)
12 + ω

(2)
12

)
+
(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
12 + ω

(2)
12

)
+
(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
21 + ω

(2)
21

)
.

(4.34)

The above expressions can be understood from the fact the system relaxes “infinitely

fast” to its steady state at each stroke, allowing to rewrite Eq.(4.3) in the following form

ṗ
(ν)
i (t) =

∑
j 6=i{ω

(ν)
ji pi(t) − ω

(ν)
ij pj(t)}, where pi(t) = p

(1)
i (t) + p

(2)
i (t). Thus, the fully

dynamics is described by ṗi(t) =
∑

j 6=i{Ωjipi(t)−Ωijpj(t)}, where Ωij = ω
(1)
ij +ω

(2)
ij , which

is equivalent to the simultaneous contact with both thermal reservoirs. A second way of

understanding such a limit comes from the time integration of the master Equation over

each stage by taking into account the boundary conditions. In such cases, the steady
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Figure 4.9: Depiction of power P and efficiency η versus V for different κ. Symbols •
and ∗ denote the maximization of efficiency and power, respectively. Parameters: ε =
0.5, β(2) = 1, β(1) = 20/9, Ea = 1, τ = 1, F1 = 0.1, F2 = 1.

state regime is given by the following relations (ω
(1)
01 + ω

(2)
01 )p1 − (ω

(1)
10 + ω

(2)
10 )p0 = 0 and

(ω
(1)
20 +ω

(2)
20 )p0 + (ω

(1)
12 +ω

(2)
12 )p2− (ω

(1)
01 +ω

(2)
01 +ω

(1)
21 +ω

(2)
21 )p1 = 0. By solving above system

of linear equations, together with the condition p0 + p1 + p2 = 1, one finds the following

expressions for the probabilities:

p0 =
1

Z

(
ω

(1)
01 + ω

(2)
01

)(
ω

(1)
12 + ω

(2)
12

)
,

p1 =
1

Z

(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
12 + ω

(2)
12

)
, (4.35)

p2 =
1

Z

(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
21 + ω

(2)
21

)
. (4.36)

(4.37)

It is worth mentioning that pi’s can be alternatively obtained via the spanning tree

method for N = 2. From pi’s, fluxes are promptly obtained, providing the same results as

Eq. (4.32) and (4.33). Thermodynamic quantities are straightforwardly evaluated, whose

main expressions for P , 〈Q̇2〉 and η and have been shown along the main text.

4.3.4 Concluding Remarks

Nanoscopic engines operating via collective operation have attracted considerable atten-

tion and posed as potential candidates for the construction of reliable setups. However,

given that most studies are restricted to fixed thermodynamic forces, little is known about

how its construction influences the performance. The present study aimed to fill partially

this gap by investigating the thermodynamic quantities of a minimalist collective model
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placed sequentially with distinct thermal baths at each stage. Distinct aspects have been

addressed, such as different worksources, the role of interactions, the period, and the time

durations of each stroke. Results indicate that our minimal approach, together with a

suitable choice of parameters, not only can boost the system performance, providing op-

timal power outputs and efficiencies greater than its interactionless case but also guide

the operation regime, including distinct heat engine and pump regimes. Although the

ideal regime τ → 0 provides higher performances than for finite τ , our contribution sheds

light on how the interplay between interaction and individual parameters, together a suit-

able tuning of the interaction time can optimize both power and efficiency as much as

possible under more a realistic context (finite τ). Another remarkable finding concerns

that the case of the system simultaneously placed in contact with two thermal reservoirs,

previously investigated in various works [5, 7, 101], constitutes a particular case of our

framework for fast switchings.
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Conclusion

In this work, we investigated, from stochastic thermodynamics, two classes of collective

systems. The former was one of the simplest (and most important) opinion models, the

majority vote model, displaying the same symmetry as the Ising model. The second model

is a prototype of an engine operating collectively.

The idea was to associate, for each local model neighborhood, a distinct thermal

reservoir, enabling us to express transition rates according to the local detailed balance

and then to associate a well defined temperature. Such an idea has revealed general

and it has been considered for distinct opinion models defined by Ising-like variables.

The connection between the entropy production and heat was performed together with

a detailed analysis of their behaviors in the phase transition regimes, for both regular

and complex topologies. Another remarkable aspect of our study relies on the fact that,

as the system presents several independent heat fluxes as the neighborhood is large, our

framework was able to exploit the most significant ones. With this, we were able to derive

a way to estimate entropy production, given a certain upper bound, based on the first

and last contributing fluxes. Finally, we were able to further investigate the relationships

of said fluxes both at the phase transitions (discontinuous) and with dissipation.

In the second part, we investigated, in detail, distinct approaches for a minimal pro-

totype of a nonequilibrium engine setup. Our results showed that a suited choice of

parameters, together with the duration of each stroke, can boost the system performance,

leading to efficiencies close to the ideal values, even for an engine composed of two in-

teracting units. Also, despite the model’s simplicity and expressions for thermodynamic
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quantities being quite cumbersome, our results shed light not only on the collective be-

havior in a minimal setup but also on how some nonequilibrium projections correspond

to particular cases of our implementation.

As potential perspectives of our work, we highlight the usage of voter models as ap-

proaches for nonequilibrium engine setups, as well as to optimize the associated power

and efficiency. This raises several questions, such as a comparison between opinion mod-

els or even the influence of the lattice topology. A question that naturally arises about

the second study is an extension for distinct system sizes, in which a phase transition is

expected [5], and also possible ramifications of the approach utilized, such as the study of

active matter systems as possible worksources, given they also operate out of equilibrium

[19, 28]. Another extension of our project concerns the thermodynamics and efficiency of

active matter engines [111, 112]. Unlike the engines studied throughout this thesis, active

ones operates at the "level of individual particles" and not just by external drivings or

difference of temperatures presenting two fundamental ingredients, i.e., self-propulsion

and collective dynamics. The so-called "active thermal engines", although less studied in

the literature, may present superior performance to classical "non-active" engines as they

involve additional degrees of freedom, related to the interactions between particles . In

this case, they can operate between temperatures substantially different (effective) and

presenting non-conventionally high efficiencies. Such points should be investigated in the

future.
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We show the two papers produced from our work, titled "Nonequilibrium Thermodynamics of

the Majority Vote Model" and "Thermodynamics of a minimal collective heat engine:

Comparison between engine designs". The former was published in Entropy 2023, 25(8), 1230;

doi.org/10.3390/e25081230 and the latter (arXiv: https://doi.org/10.48550/arXiv.2311.18629)

was submitted for publication at Physical Review E.
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Abstract: The majority vote model is one of the simplest opinion systems yielding distinct phase
transitions and has garnered significant interest in recent years. This model, as well as many
other stochastic lattice models, are formulated in terms of stochastic rules with no connection to
thermodynamics, precluding the achievement of quantities such as power and heat, as well as their
behaviors at phase transition regimes. Here, we circumvent this limitation by introducing the idea of
a distinct and well-defined thermal reservoir associated to each local configuration. Thermodynamic
properties are derived for a generic majority vote model, irrespective of its neighborhood and
lattice topology. The behavior of energy/heat fluxes at phase transitions, whether continuous
or discontinuous, in regular and complex topologies, is investigated in detail. Unraveling the
contribution of each local configuration explains the nature of the phase diagram and reveals how
dissipation arises from the dynamics.

Keywords: majority vote models; stochastic thermodynamics; phase transitions and spin systems

1. Introduction

Opinion dynamics is a crucial issue in sociophysics, encompassing several topics,
such as complex social processes, populational dynamics, decision making, elections and
spreading of fake news/rumors and others [1]. In recent years, distinct approaches have
been proposed and investigated, aimed at tackling the key aspects of opinion dynamics.
Several of them deal with systems presenting phase transitions, marking the existence of
two regimes, one of which has a prevailing given opinion.

Among the distinct opinion systems, the majority vote (MV) model is highlighted by
its simplicity and for exhibiting universal features of nonequilibrium phase transitions. Its
interaction mechanism comprises the agent’s tendency to align (follow) its opinion based
on the majority opinion of its nearest neighborhood [2–4]. Subsequently, generalizations
of the MV model have aroused interest, taking into account the influence of network
topology [3,4], the inclusion of distinct noises [5,6], more states per agents [7,8] and more
recently, inertial effects [8–10]. In the latter, the presence of inertial terms has revealed
a robust mechanism, affecting the classification of phase transitions even for different
lattice topologies [10] and in systems subject to temporal disorder [11]. More recently,
the main properties of the MV have been extensively studied in terms of entropy production
signatures [12,13].

Stochastic thermodynamics [14–17] has become one of the most important topics in the
realm of nonequilibrium statistical mechanics and an appropriate framework for describing
the thermodynamic properties of Markovian nonequilibrium systems, having as a starting
point a suitable definition of production of entropy that is able to discern equilibrium from
nonequilibrium systems [18]. It presents intrinsically out of equilibrium results, such as
generalizations of the first and second laws, that can be used to describe dynamics in terms
of energy exchanges, their fluctuations and limits. Despite previous works investigating the
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main properties of the MV through the entropy production [12,13], other quantities have to
be defined to establish a firm link between voter models and stochastic thermodynamics’
own framework. Aimed at overcoming such a drawback, a thermodynamic description for
opinion models has been recently proposed [19], in which the idea of a distinct thermal
reservoir per neighborhood opinion configuration was introduced. Such a framework
not only allows one to associate the dynamics with well-defined temperatures but also
reconciles the relationship between entropy production and heat flux.

In this paper, we advance on the aforementioned idea, by thoroughly investigating the
thermodynamics of the majority vote model. More concretely, a general and unambiguous
temperature definition is derived, providing a way to properly investigate the behavior
of entropy production and heat fluxes in distinct phases as well as in continuous and
discontinuous transition regimes. The investigation is also aimed at understanding the
roles of inertia and distinct topologies (regular and complex), and testing fluctuation theo-
rems. Given that the number of reservoirs and heat fluxes increases with the connectivity,
the analysis of their roles and which of them is more representative of entropy production
will be addressed and, finally, used to probe its traits across phase transitions.

These introduced thermal reservoirs and their respective temperatures are of an
effective nature rather than physical entities. They are introduced to accommodate models
that otherwise would not benefit from stochastic thermodynamics’ toolbox, thus extending
the validity of its results.

This paper is organized as follows: Section 2 introduces the model and its main
properties, model thermodynamics are presented in Section 3 and conclusions are drawn
in Section 4.

2. Majority Vote Model and Phase Transition Behavior

In this section, we present an overview of the majority vote model and its phase tran-
sition aspects. It consists of a simple system with Z2 “up-down” symmetry, in which each
microscopic configuration η is set by the collection of N individuals η ≡ (η1, η2, ..., ηi, ..., ηN),
with ηi being the spin variable of site i which takes the values ±1 according to whether the
spin is “up” or “down”. With probability 1− f , the spin ηi tends to align itself with its local
neighborhood majority. Conversely, with complementary probability f , the majority rule is
not followed. The inertial version differs from the original one by the inclusion of a term
proportional to the local spin competing with the neighborhood. The model dynamics are
governed by the following master equation

d
dt

P(η, t) =
N

∑
i=1
{wi(η

i)P(ηi, t)− wi(η)P(η, t)}, (1)

where wi(η) comprises the transition rate at which each site i changes its opinion from ηi
to −ηi, given by

wi(η) =
1
2
{1− (1− 2 f )ηisgn(X)}, (2)

where X = (1− θ)`+ kθηi, k is the connectivity of a site, θ is the inertia strength, and sgn(X)
is the sign function. The term ` plays a key role in the following results; it is defined as
the sum of a site’s neighboring spins, ` := ∑j ηj, and we omit the dependence on η for
convenience. At a given configuration, all sites with ` will become thermodynamically
equivalent, defining a thermal reservoir. The system presents two ferromagnetic phases
for small f . Upon raising f , the system yields an order–disorder phase transition, where
the value of the critical point is dependent on the lattice topology and neighborhood [2,3].
Although phase transitions are always continuous for the original model (θ = 0) [4],
the inclusion of inertia can shift the phase transition from continuous to discontinuous
depending on the lattice topology and the neighborhood [8–10].

Since Equation (2) states that the transition rate depends on the sign of X, the flip
probability (whether 1− f or f ) will depend on the interplay between the number of nearest
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neighbors k and θ. For example, for ηi = −1, the argument of sgn(X) reads `− θ(k + `)
implying that the transition −1→ +1, due to a neighborhood with `/(k + `) > θ, occurs
with probability 1− f (similar to the inertialess case), whereas when `/(k + `) < θ the
probability is f . Thus, we define `∗ := −kθηi/(1− θ) as the threshold value splitting the
neighborhoods: All values |`| > |`∗| yield a transition rate equals to the inertialess case,
while |`| < |`∗| yield wi(η) = f regardless of ηi. For completeness, the transition rate is
1/2 when both values are the same.

For fixed k, as in the present case, the phase diagram θ versus f will be characterized
by plateaus. If θ is increased, the plateaus emerge when `∗ has an even integer value,
since it marks a regime where one additional neighborhood type ` shifts its contribution
f ↔ 1− f . The plateaus can be obtained by relation

θ∗ =
2m

k + 2m
, m ∈ N. (3)

For instance, when the connectivity is k = 20, these values are

θ∗ =
{

1
11

,
1
6

,
3

13
,

2
7

,
1
3

,
3
8

,
7

17
,

4
9

,
9

19
,

1
2

}
, (4)

which are later verified in the phase diagrams obtained by simulations in the first figure in
Section 2.2 and the first figure in Section 2.3. They are the same for both regular and random-
regular topologies, although the classification of the phase transition is also influenced by
the topology, demonstrating that the mechanism behind the appearance of such plateaus is
related to sharp shifts of contribution of each neighborhood `.

2.1. Entropy Production

The entropy production and its connection with the heat flux is the central issue of this
paper. Before relating both of them, we first review the main features of the microscopic
entropy production formula. Starting with the entropy definition S = −〈ln P(η)〉 (here
and hereafter, we adopt the convention kB = 1 for the Boltzmann constant) and assuming
the system is in contact with a (or multiple) reservoir(s), its time derivative dS/dt is the
difference between two terms: dS/dt = Π− σ, where Π and σ are the entropy production
and entropy flux rates, given by the generic expressions:

Π =
1
2 ∑

η
∑

i
{wi(η

i)P(ηi, t)− wi(η)P(η, t)} ln
wi(η

i)P(ηi, t)
wi(η)P(η, t)

(5)

and

σ =
1
2 ∑

η
∑

i
{wi(η

i)P(ηi, t)− wi(η)P(η, t)} ln
wi(η

i)

wi(η)
. (6)

where the one-site dynamics assumption was used. Since dS/dt = 0 in the nonequilibrium
steady state (NESS), in which P(η, t) → pst(η), the steady entropy production can be
calculated from σ, acquiring the convenient ensemble average form [13]:

σ = ∑
i

〈
wi(η) ln

wi(η)

wi(ηi)

〉
, (7)

In order to evaluate σ from Equation (7) we take the ratio between wi(η) and its reverse
wi(η

i) given by
wi(η)

wi(ηi)
=

1− (1− 2 f )ηisgn[(1− θ)`+ kθηi]

1 + (1− 2 f )ηisgn[(1− θ)`− kθηi]
. (8)

Inspection of the ratio above reveals that only local configurations where |`| > |`∗|
will contribute to the entropy production. When |`| < |`∗|, the ratio vanishes and therefore
these configurations yield reversible transitions. This property is illustrated in Figure 1,
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where values of `∗ are shown in terms of θ. For a given finite k, the even values of ` locate
the plateaus in the figure.

Figure 1. Scheme representing the values of `∗ for ηi = ±1 corresponding to the plateaus. In the
shaded area, where |`| < |`∗|, the neighborhoods do not contribute to the entropy production.

For ` 6= kθ/(1− θ), Equation (8) is conveniently rewritten as

ln
wi(η)

wi(ηi)
= −ηisgn(`)H

[
|`| − kθ

1− θ

]
ln
(

1− f
f

)
, (9)

where H(•) is the Heaviside function. However, for ` = kθ/(1− θ), marking the plateau po-
sition, Equation (9) acquires a distinct value given by ln

(
wi(η)/wi(η

i)
)
= ηisgn(`) ln(2 f ).

The above formulae are equivalent by calculating such a ratio only over the subspace
of local configurations in which the ratio is different from 1, that is for ` ≥ kθ/(1− θ) [13].
Thus, when expressed in terms of the misalignment parameter f , the steady entropy
production σ is given by

σ =
1
2

ln
1− f

f

{
(1− 2 f )

〈
sgn2(`)H

[
|`| − kθ

1− θ

]〉

−
〈

ηisgn(`)H
[
|`| − kθ

1− θ

]〉}
, (10)

which only depends on f and on 〈ηisgn(`)H[|`| − kθ/(1− θ)]〉 and
〈sgn2(`)H[|`| − kθ/(1− θ)]〉.

2.2. Overview about Phase Transitions and Finite-Size Scaling

As stated broadly in the literature, continuous and discontinuous phase transitions
become rounded at the vicinity of phase transitions due to finite size effects, whether
for equilibrium [20,21] and nonequilibrium systems [22,23]. Despite the order parameter
and its moments have been broadly exploited for characterizing nonequilibrium phase
transitions, recently, the behavior of entropy production and allied quantities (e.g., its first
derivative) has attracted a great deal of attention as their identificators [12,13,24–27].
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According to the finite-size scaling (FSS) theory, at the vicinity of the critical point fc,
a given quantity X [X ∈ (|m|, χ and σ′ ≡ dσ/d f )] will behave as X = Nyx/ν fx(N1/ν|ε|),
where fx is a scaling function, ε = ( f − fc)/ fc is the distance to the criticality and yx is
the critical exponent obtained from (yx = −β, γ and α) [20]. The last exponent is similar
to the relationship between the thermal derivative of the entropy, S, and specific heat, C,
in equilibrium phase transitions (recalling that C = Nα/ν fc(N1/ν|ε|) [20], illustrating that
the connection between entropy production and exchanged heat presented here introduces
a physical argument for such scaling behavior.

Since the scaling behavior of heat fluxes (and their derivatives) at the criticality was
considered previously in [19] we are going to focus on nonequilibrium discontinuous phase
transitions in this paper. For a generic ensemble average X, the starting point consists of
assuming a bimodal Gaussian distribution, centered at µo and µd (with associated variances
χo and χd). In the case of the steady entropy production at the vicinity of ε = f − fc,
a bimodal entropy production probability distribution centered at µo and µd (with associate
variances χd and χo) leads to the approximate expression for σ:

σ ≈ µo + αµde−N[(µo−µd)ε]

1 + αe−N[(µo−µd)ε]
, (11)

where α =
√

χd/χo. We note that the ordered and disordered phases are favored as ε < 0
and ε > 0 (assuming that µo < µd), respectively, and σ = (µo + αµd)/(1 + α) at ε = 0,
indicating that all entropy production curves, simulated for distinct N’s, will cross at the
transition point fc. Having σ, its derivative in respect to f behaves at the vicinity of fc as:

σ′ ≈ N(µo − µd)
2eN(µo−µd)ε

α
(
1 + αeN(µo−µd)ε

)2 , (12)

showing that σ′ scales with N at the coexistence ε = 0, in agreement with the above
finite size expression for the quantity X. Alternatively (and analogously), Equation (11) is
obtained by resorting to the ideas presented in [28–30], where coexisting phases are treated
via a two-state model in which ordered and disordered phases are given by transition rates
exhibiting an exponential dependence on the system size N and proportionality to the
distance ε to the transition point:

a ∼ k
√

χae−N(c0−caε), b ∼ k
√

χbe−N(c0+cbε), (13)

where k, c0, ca, cb > 0 are constants. “Ordered” and “disordered” probabilities, p and q,
respectively, are related to rates a and b by means of relations p = b/(a + b) and q = 1− p,
given by p =

√
χb(
√

χb +
√

χaecNε)−1, where c = ca + cb > 0. As shown in Ref. [29],
a given ensemble average including the entropy production σ = 〈στ〉/τ averaged over a
sufficiently long time t→ ∞ and over many independent stochastic trajectories given by
σ = µa p + µbb, where

σ ≈ µb
√

χb + µa
√

χaecNε

√
χb +

√
χaecNε

, (14)

which has precisely the form of Equation (11).
The main features of discontinuous phase transitions are summarized in Figure 2.

From now on we shall consider k = 20 which exhibits a discontinuous phase transition
for θ > 1/3, as depicted in panel Figure 2a). Aforementioned portraits are exemplified
in panels (b)− (d) for θ = 3/8. We remark that continuous lines, given by Equation (11),
describe very well the behavior of the entropy production and its derivative, the latter
presenting a maximum at f ∗c scaling with N−1, whose value as N → ∞ agrees very well
with those obtained from the crossing among curves.
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Figure 2. In (a), the phase diagram of the inertial majority model for a regular lattice for k = 20.
Vertical lines mark the plateau positions predicted in Equation (3). Panel (b) depicts the entropy
production σ for distinct system sizes N = L2’s. Continuous lines denote the phenomenological de-
scription from Equation (11) and vertical line corresponds to the crossing among entropy production
curves at fc = 0.05085(2). In (c), the derivative σ′ ≡ dσ/d f versus f obtained from continuous lines
in (b). Panel (d) show the position f ∗c of maximum of σ′ versus N−1 and its accordance with the
crossing among entropy production curves yielding (symbol •) as N → ∞.

2.3. Discontinuous Phase Transitions in Complex Topologies

The behavior of discontinuous phase transitions in complex topologies is more reveal-
ing and it is different for small and large system sizes. In the former case, quantities change
smoothly as f is varied (see e.g., Figure 3c), in similarity with the behavior in regular
structures, also characterized by the reduced cumulant U4 presenting a minimum value
increasing with N (inset) and a maximum behavior of χ near the coexistence. Conversely,
the behavior becomes akin to the mean-field when N is large, in which the phase coexis-
tence manifests itself by means of a hysteretic branch, e.g., a region located at fb < f < fc
when the dynamics evolve to the ordered (stable for f ≤ fb) and disordered (stable for
f ≥ fc) phases depending on the initial condition. Such changes upon raising N share some
similarities with the metastable behavior observed in the dynamics and thermodynamics
of work-to-work transducers, where the system behavior “quickly” approaches the MFT’s
[behavior] as N increases [31].

Here, we describe a brief (nonrigorous) argument about the expected behavior in
complex topologies by resorting to the ideas from Ref. [13]. Since spins are independent
of each other in the disordered phase, the order parameter behaves as 〈ηi〉 ∼ N−1/2

and then a n-th correlation will behave as 〈ηiηi+1...ηi+n〉 ≈ 〈ηi〉〈ηi+1〉...〈ηi+n〉 = N−n/2.
Hence, in the thermodynamic limit, all correlations will vanish and σ will depend solely
on control parameters. On the other hand, 〈ηiηi+1...ηi+n〉 is expected to be finite and also
f− dependent in the ordered phase, consistent with σ exhibiting a dependence on the
control parameters and correlations. Therefore, the existence of a hysteretic loop for the
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order parameter (panel (b)) is also translated to the entropy production behavior (see
e.g., panel (d)).
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Figure 3. Phase transition for the MV in a random-regular topology with connectivity k = 20. Panel
(a) depicts the phase diagram θ versus f . Continuous and dashed lines show, for a system of size
N = 104. Note that a hysteretic branch for θ > 3/13. Panels (b,c) show, for θ = 3/8, the order
parameter |m| versus f for distinct large and small system sizes N, respectively. Inset: the reduced
cumulant U4 versus f . Circles and× attempt to the forward and backward “trajectories”, respectively.
In (d), its corresponding σ’s for N = 5000.

3. Thermodynamics of the Majority Vote Model
3.1. General Features

In Section 2, the main properties of the majority vote model were analyzed without any
thermodynamic consideration. Here, we incorporate the notion of temperatures mediating
changes of configuration in order to establish the connection with thermodynamics. Since
the stochastic dynamics over the configuration space is fully determined by its transition
rates, we shall resort the ideas from Refs. [16,17,32] in which transition rates are defined by
assuming the local detailed balance. The central point consists of assuming that the one-site
transition rate wi(η) is decomposed in ` distinct (and mutually exclusive) components,
each one associated with a given thermal reservoir (reciprocal inverse temperature β`),
given by wi(η) = ∑` w`i(η) (` = 2, 4, ..., k), where w`i(η) assumes the Glauber form:

w`i(η) =
α`
2
{1− tanh(β`∆E)}, (15)

where α` is a constant and ∆E = E(ηi)− E(η) denotes the energy difference between con-
figurations η and ηi. For “up-down” Z2 symmetry systems, the energy can be generically
expressed according to the Ising-like form E(η) = −J ∑(i,j) ηiηj − H ∑N

i=1 ηi [33], where J
represents the interaction energy between spins, and H is a parameter accounting for the de-
pendence on the local spin ηi (usually the magnetic field). Giving that sgn(`) = −sgn(−`),
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one has H = 0 for all values of θ. From Equation (15), the ratio w`i(η
i)/w`i(η) is then

expressed according to the local detailed balance:

w`i(η)

w`i(ηi)
= e−β` [E(ηi)−E(η)]. (16)

We are now in a position to obtain the model’s thermodynamic properties. The time
variation of the mean energy U = 〈E(η)〉 is given by dU/dt = ∑` Φ`, where Φ` denotes
the heat exchanged due to the `-th thermal reservoir, given by

Φ` = ∑
i
〈[E(ηi)− E(η)]w`i(η)〉, (17)

constrained by the first law of thermodynamics, ∑` Φ` = 0 in the NESS. The entropy
production and entropy flux are also decomposed into `-indexed components by replacing
wi(η)→ w`i(η) in Equations (5) and (6). In particular, the latter reads

σ` = ∑
η

pst(η)∑
i

w`i(η) ln
w`i(η)

w`i(ηi)
. (18)

Since the entropy change vanishes at the NESS, dS/dt = ∑`(Π` − σ`), both entropy
production and entropy flux can be identified by Equation (18): Π = ∑` Π` = ∑` σ` = σ.
The expressions above are consistent with Refs. [16,32].

Finally, by inserting Equation (16) into Equation (18), each entropy flux component σ`
is related with exchanged heat Φ` by a Clausius-like form σ` = −β`Φ`, where Φ` is given
by Equation (17). Alternatively, σ can also be written in the usual thermodynamics form as
a sum of thermodynamic fluxes times forces:

σ = −∑
`

β`Φ` or σ = ∑
` 6=2

X`Φ`, (19)

where the second temperature was set as a reference to define all (k/2)− 1 thermodynamic
forces X` ≡ β2 − β`, associated with its respective flux, Φ`. For simplicity, we set the Ising
interaction parameter to J = 1. From the expression for E(η), it follows that ∆E = 2ηi`,
which can be rewritten as ∆E = 2ηi|`|sgn(`). By taking the logarithm of Equation (16), it
follows that

ln
w`i(η)

w`i(ηi)
= −2β`|`|ηisgn(`). (20)

Since the transition rates associated with each thermal reservoir are mutually exclusive,
a direct comparison with Equation (9) for a given ` provides to obtain each (reciprocal
inverse) temperature β` given by

β` =
1

2|`|H
[
|`| − kθ

1− θ

]
ln
(

1− f
f

)
, (21)

where β2 = 2β4 = 3β6... = kβk/2 in the inertialess case. We pause to make a few comments.
First, Equation (21) comes from the local detailed balance and constitutes one of the main
results of this paper. Such temperature relation (see e.g., Equation (15)) provides a clear
connection between entropy production and heat fluxes, in which (as shall be discussed
later) some of the heat components has to be strictly positive and negative in order to
ensure σ ≥ 0. Second, Equation (21) extends the calculation of temperatures for a given
neighborhood and inertia, and reduces to the expression from Ref. [19] as θ = 0. Third,
β` vanishes for large enough values of inertia θ > θp, illustrating that despite a heat flux
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associated with the `-th reservoir being well-defined, it does not produce entropy. Fourth
and last, the temperature assumes a different value for θ = θp given by

β` = −
1

2|`| ln(2 f ). (22)

This completes our description of the temperature definitions for the MV as well as
the influence of inertia. Now we turn to unravel the role of each ` to the fluxes of heat and
entropy production. Starting with the inertialess case, where β2 > β4 > ... > βk, we argue
that the heat fluxes associated with the states in contact with the coldest and hottest baths
are always positive and negative, respectively: Φ2 < 0 and Φk > 0, whose a (nonrigorous)
argument is present as follows. Starting with the two thermal baths case (k = 4), it is
straightforward to verify that, since σ acquires the simple form σ = (β2 − β4)Φ4 > 0.
Given that β2 − β4 > 0 (cf. Equation (21)), it follows that Φ4 ≥ 0 and hence Φ2 = −Φ4 ≤ 0.
The case of more than two reservoirs is more intriguing, since intermediate fluxes can be
positive, negative, or even change their sign upon f being varied (see e.g., the first figure
(d) in Section 3.3). For k = 6, one has σ = −(β2 − β6)Φ2 − (β4 − β6)Φ4 ≥ 0 and three
possibilities for Φ2 and Φ4. The former, in which both are negative, promptly implies
σ ≥ 0, whereas the second case, Φ2 ≤ 0 and Φ4 ≥ 0, is also consistent since −(β2 −
β6)Φ2 ≥ (β4 − β6)Φ4 and hence Φ6 ≥ 0 (recalling that Φ6 = −(Φ2 + Φ4)). The third
possibility, in which Φ2 ≥ 0 and Φ4 ≤ 0 violates the second law in some cases and thus
it is not possible. Similar findings are verified for θ 6= 0, but we should note that only
neighborhoods with `∗ greater than `− kθ/(1− θ) will contribute to the entropy production,
σ = −∑k

`∗ β`Φ`. For example, for k = 20 and distinct inertia intervals 3/8 < θ ≤ 7/17,
7/17 < θ ≤ 4/9, θ > 4/9, the corresponding entropy productions read σ = −∑k

`=14 β`Φ`,
σ = −β16Φ16 − β18Φ18 − β20Φ20 and σ = −β18Φ18 − β20Φ20, such latter one similar to
the k = 4 case (but here ∑k

`=2 Φ` = 0) and once again illustrating that Φ`∗=18 ≤ 0 and
Φk=20 ≥ 0. We close this section by pointing out that, despite the above nonrigorous
argument, the general finding Φ`∗ ≤ 0 and Φk ≥ 0 has been verified in all cases. In contrast,
it is not possible to draw general conclusions about intermediate fluxes, in which some
change sign as f increases.

3.2. Fluctuation Theorems

Thermodynamic consistent systems satisfy the detailed fluctuation theorem (DFT)
for entropy production, which gives rise to the stochastic version of the second law. It
states that negative fluctuations of the integrated entropy production are exponentially
suppressed by the positive counterparts. For a given integration window τ, the DFT
is asymptotically valid for Σ =

∫ τ
0 σ(t)dt at the NESS since it is equal to the entropy

production:

lim
τ→∞

ln
Pτ(Σ)

Pτ(−Σ)
= Σ, (23)

where Pτ(Σ) represents the probability of measuring Σ in a trajectory of length τ. This
relation holds beyond the long-time limit when the internal change of configuration entropy
is considered in addition to the entropy fluxes. Consequence of the above, the integral
fluctuation theorem (IFT) reads

lim
τ→∞

〈
e−Σ

〉
τ
= 1 (24)

and is useful for relating the components of Σ, such as in the celebrated Jarzynski equal-
ity [34] that relates the statistics of work to free energy differences, bridging equilibrium
and nonequilibrium quantities. The feasibility of employing such methods is tightly related
to the ability to observe fluctuations in the trajectories, which become rare as τ increases.
We explore the manifestation of these relations, cornerstones of stochastic thermodynamics,
in the MV vote model.
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The left panel of Figure 4 shows the convergence of the left-hand side of Equation (23)
to its right-hand side as the integration windows become larger for the entropy production
evaluated from Equations (18) and (19). Observing the DFT becomes an expensive task
even for small systems since the negative fluctuations of entropy production become
increasingly rare for larger values of τ. The right panel shows the left-hand side of the
IFT in Equation (24), which converges to one despite the presence of inertia. It is worth
mentioning that the convergence is observed from above and from below. Although no
general conclusion can be drawn, the behavior of these fluctuation relations might be
related to the phase transitions: In the examples, the IFT presents a slower convergence at
the vicinity of the phase transition.

Figure 4. (Left) Convergence to the detailed fluctuation theorem as integration window τ increases
for a lattice L = 6 and f = 0.04; solid lines are simulation results while dashed lines are the respective
linear fits. (Right) Convergence to the integral fluctuation theorem for the case with no inertia (blue)
and with inertia θ = 3/8 (green); additional parameters are k = 20 and N = 104.

3.3. Heat Fluxes at Phase Transitions

According to Equation (17), every heat flux Φ` is an ensemble average and, therefore,
we expect at least the most significant components of the entropy production to behave
similarly to σ at the vicinity of a phase transition. More specifically, at discontinuous phase
transitions, the curves of entropy production cross at fc for distinct system sizes in regular
lattices, and a hysteretic branch is present in complex topologies [13]. These properties
are promptly verified for the largest fluxes ` = 12, 14 and 20. For a regular lattice, panels
(a)–(c) of Figure 5 display the crossing of the fluxes for different systems sizes, and panel
(d) shows the quantitative value of each individual flux. For a random-regular network,
panels (a)–(c) of Figure 6 show the hysteretic branch while (d) shows individual flux values.

The continuous lines in panels Figure 5a–c are obtained from the bimodal Gaussian
description in Equation (11), in good agreement with the simulation results. Remarkably,
for both regular and complex topologies, the phase transition can be probed and precisely
located from the behavior of any individual flux.
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Figure 5. For the regular lattice with θ = 3/8, k = 20 and distinct system sizes N = L2, panels
(a,b) depict the most representative (largest absolute values) heat fluxes per particle Φ`’s versus con-
trol parameter f . Continuous lines denote correspond to the phenomenological approach according
to the ideas of Equation (11). Although the component heat flux panel (c) mildly changes with f , all
curves also cross at fc. Panel (d) shows all Φ`’s (` = 2, 4, ..., k) for N = 602.
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3.4. Contributions to Dissipation

Inspecting the thermodynamic contribution of individual `’s raises the question of
how each type of neighborhood contributes to entropy production, a measure of dissipation.
As previously discussed, the second law imposes Φ`∗ < 0 and Φk > 0 irrespective of f ,
and also local configurations satisfying |`| < |`∗| do not dissipate. Taking into account that
some intermediate fluxes Φ` are nonmonotonic in terms of f , one could expect that they
would present a less significant contribution. Inspired by evidence from simulations, we
observe the predominance of Φ`∗ and Φk, hence we introduce the contribution of these two
fluxes as σ`∗ ,k = −β`∗Φ`∗ − βkΦk > 0. This represents an approximation but not a bound
since the remaining fluxes can change their signs.

Figure 7 compares, for the random-regular and regular lattices, σ`∗ ,k and σ for distinct
values of θ. In all cases, σ`∗ ,k is not only close to σ but also captures the qualitative behavior,
successfully describing the interplay between the control parameter f , inertia θ, and the
dissipation, including a peak located at the vicinity of the phase transition. For larger θ
the set of dissipating local configurations shrinks, hence the better agreement between
both curves.

Figure 7. For k = 20, random-regular (left) and regular (right) structures of sizes N = 1600 and 402,
curves for σ`∗ ,k (dot-dashed) and σ (continuous) are shown in terms of f for distinct θ’s. From top to
bottom, `∗ = 2, 4, 6, 12 and 14.

4. Conclusions

The nonequilibrium thermodynamic theory of the generic majority vote model was
presented and thoroughly investigated, encompassing its phase transition. A consistent def-
inition of temperature and the connection between heat fluxes and entropy production were
introduced and analyzed in the context of continuous and discontinuous phase transitions.
The present approach for fluxes is thermodynamically consistent and equivalent to the
microscopic entropy production definition and satisfies the detailed fluctuation theorem.

We believe that the present framework not only conciliates the thermodynamic as-
pects of an important class of nonequilibrium systems but also introduces a new kind of
nonequilibrium ingredient, based on the idea of a thermal reservoir associated with the
system neighborhood. Such an idea has revealed general for a generic voter-like model
with “up-down” Z2 symmetry. In the presence of inertia, the spin changes induced by some
local configurations are reversible. Moreover, we explore what are the most relevant neigh-
borhoods driving the system dissipation, including its qualitative features across a phase
transition, and how these neighborhoods contribute to the structure of the phase diagram.

Our findings are valid for a class that describes systems from social dynamics to the
physics of thermal engines, presenting collective effects that can be leveraged for improved
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performance. Such potential application raises interesting questions such as the role of
lattice topology and even the kind of voter model used (see e.g., Ref. [19] for a comparison
between them) in order to optimize the desirable power and efficiency. Such topics should
be investigated in the future.
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Collective effects have attracted remarkable recent interest, not only for their presence in several systems
in nature but also for the possibility of being used for the construction of efficient engine setups. Notwith-
standing, little is known about the influence of the engine design and most studies are restricted to the simplest
cases (e.g. simultaneous contact with two thermal baths), not necessarily constituting a realistic setup imple-
mentation. Aimed at partially filling this gap, we introduce the collisional/sequential description for a minimal
model for collective effects, composed of two interacting nanomachines placed in contact with a distinct thermal
reservoir and nonequilibrium worksource at each stage/stroke. Thermodynamic quantities are exactly obtained
irrespectively the model details. Distinct kinds of engines are investigated and the influence of the interac-
tion, temperature, period, and time asymmetry have been undertaken. Results show that a careful design of
interaction provides a superior performance than the interactionless case, including optimal power outputs and
efficiencies at maximum power greater than known bounds or even the system presenting efficiencies close to
the ideal (Carnot) limit. We also show that the case of the system simultaneously placed in contact with two
thermal reservoirs constitutes a particular case of our framework.

I. INTRODUCTION

The construction of nanoscopic steady-state heat engines
has attracted a great deal of recent attention in the realm
of stochastic thermodynamics [1–5], not only for extending
the fundamental concept of the energy conversion (from the
macroscopic to the nanoscopic scale), but also because it
presents three fundamental differences when compared with
the equilibrium thermodynamics. First, there is no need
for moving parts and pistons since the energy conversion
comes from currents of microscopic particles/units. Second,
nanoscopic-engineered setups typically operate far from equi-
librium and consequently, its performance is expected to be
lower than the ideal case. Third, fluctuations of quantities and
currents can become important in small-scaled systems. The
issues above illustrate the search for the protocol as crucial to
ensure its reliability and desired performance.

In the last years, distinct kinds of engines operating far
from equilibrium have been proposed and investigated [1, 6–
9]. Under a generic point of view, they are grouped out in
three categories, stemming from fixed thermodynamic forces
[10–16], from the time-periodic variation of external parame-
ters [17–20] and via sequential/collisional approach [21–26],
in which at each stroke/stage, the system is subjected to a dif-
ferent condition (held fixed along the stage). Each one has
been considered as a reliable approach in distinct contexts,
such last one encompassing the presence of distinct drivings
over each member of the system, a weak coupling between
the system with the reservoir, or even for mimicking the en-
vironment for quantum systems [27–29]. While most of the
above studies are restricted to setups composed of one unit
[18, 19, 23, 24, 30], the thermodynamics of systems exhibit-
ing collective effects has received considerable recent atten-
tion as an alternative strategy for improving the system per-
formance. Among the distinct examples, we cite a system of
interacting Brownian particles [20], work-to-work transducers
[31, 32] and heat engines [15, 16]. All of them are restricted
to cases of systems operating at equal temperatures [31, 32],

fixed parameters [15, 16] or sinusoidal drivings [20].

In this contribution, we conciliate the points above by in-
vestigating a minimal model for collective effects, formed by
two interacting units placed sequentially with distinct thermal
baths at each stroke. Previous studies have tackled different
versions, such as its all-to-all (mean-field) design [15, 16]
and distinct topology of interactions [14], both for fixed ther-
modynamic forces and a large number of units. Our study
will focus on the opposite case, dealing with a minimal col-
lective effect system composed of two interacting units be-
yond the fixed forces context. Hence, its simplicity consti-
tutes an ideal laboratory for comparing three fundamental as-
pects of nanoscopic engines: the kind of design (sequential
versus fixed thermodynamic forces), distinct approaches for
the worksource (not considered previously) and under situa-
tions collective effects can improve the system performance
when compared with its interactionless version. The former
goal has been inspired from previous contributions [24, 30],
whereas the different worksources addressed here were con-
sidered in Refs. [14–16, 24]. It is worth mentioning that our
system shares some similarities with recent studies about a
setup composed of two interacting quantum dots under the re-
peated interactions [33, 34]. Our findings reveal that collective
effects, together with a suited design of parameters (energy,
period, duration of each stage), can significantly enhance the
system’s performance. Such remarkable improvement can re-
sult in optimal power outputs, efficiencies at maximum power
greater than known bounds or even efficiencies approaching
to the ideal (Carnot) limit. As a side result, our study shows
the simultaneous contact with two thermal baths case [15] as
the ideal limit of fast switching times.

This paper is organized as follows. In Sec. II the model
and the main expressions for thermodynamic quantities will
be presented. In Secs. III and IV we shall analyze in detail two
distinct approaches for our engine setup. Conclusions will be
drawn in Sec. V.
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II. MODEL AND THERMODYNAMICS

Our minimal model for collective effects is composed of
two interacting units sequentially placed into contact with N
distinct reservoirs, each one of duration τν − τν−1. The total
time to complete one cycle being τ. At each stroke, occurring
between τν−1 < t ≤ τν, each unit can be in a lower (σk = 0)
or upper (σk = 1) state, with individual energies 0 and ϵν,
respectively. The system is connected to the reservoir ν, with
temperature βν = 1/(kBTν), and total energy is given by

ϵ̃(ν) = Vν[(1−σ1)σ2+σ1(1−σ2)]+Uνσ1σ2+ϵν(σ1+σ2), (1)

where Uν,Vν correspond to distinct interaction energies, pro-
vided they are in the same and different states, respectively.
Throughout this paper, we adopt kB = 1. In addition, the sys-
tem can be subjected to a non-conservative force Fν.

After the time duration τν, it is disconnected and recon-
nected to the next reservoir with temperature βν+1 = 1/Tν+1
and subjected to another set of parameters ϵν+1, Uν+1, Vν+1
and Fν+1. This process is then repeated until a complete cy-
cle, after the total time τ. As in Refs. [14, 15, 35], above
system dynamics becomes simpler when characterized by the
total particle number i occupying the upper state, assuming
the values i = 0, 1 or 2, according to whether it is empty, hav-
ing one unit, or having two units, with energies ϵ̃(ν) = 0,Vν+ϵν
and Uν+2ϵν, respectively. Let p(ν)

i (t) be the system’s probabil-
ity at the state i at the time t when it is placed in contact with
the ν-th reservoir, governed by the following master equation

ṗ(ν)
i (t) =

∑

j,i

J(ν)
i j , (2)

where J(ν)
i j ≡ ω(ν)

i j p(ν)
j −ω(ν)

ji p(ν)
i and ω(ν)

i j accounts to the transi-

tion rate from state j to i, satisfying the condition
∑

i ω
(ν)
i j = 0

for every strokes.
We shall restrict our analysis to the simplest case N = 2, as

sketched in Fig. 1, in which the time duration of the first and
second strokes read τ1 and τ2 = τ− τ1, respectively. Note that
one has the symmetric time operation when τ1 = τ/2. Given
that the probability distribution is continuous, it should satisfy
the following boundary conditions for p(ν)

i (t) (for all i = 0, 1
and 2):

p(1)
i (τ1) = p(2)

i (τ1) , p(1)
i (0) = p(2)

i (τ) . (3)

By resorting to the eigendecomposition of Eq. (2) along with
the periodic boundary conditions given by Eq. (3), it is pos-
sible to obtain the expression for the probability component
p(ν)

i (t) at the ν-th stage:

p(ν)
i (t) = p(eq,ν)

i +

2∑

j=1

eλ
(ν)
j [t−τi−1]Γ

(ν)
j p(ν)(τi−1), (4)

where p(eq,ν) is the probability vector associated with λ0 = 0,
λ(ν)

j < 0 is the j-th non-zero eigenvalue, Γ(ν)
j = ψ

(ν)
j ϕ

(ν)
j is the

FIG. 1. Sketch of the setup, composed of two coupled nanomachines,
characterized by a three-state system specified by the variable i ac-
counting to the occupation of the upper level. At each stage (with
duration τ1 and τ− τ1) the system is placed in contact with a distinct
thermal bath and parameters, specified by the purple and green col-
ors. The stroke change occurs at t = τ1 and the system returns to its
initial state at t = τ.

matrix associated with the product of the j-th right and left
eigenvectors and p(ν)

l is the initial condition vector at the start
of each stroke, obtained from the above boundary conditions.
Despite being exact, expressions for p(ν)

l are quite cumber-
some. In Appendix A, we list them for the particular case
τ1 = τ/2.

Once the probability distribution, all thermodynamic quan-
tities can be obtained. By integrating Eq. (2) over a com-
plete cycle and by summing them, one has that

∑
j,i J̄(1)

i j =

−∑ j,i J̄(2)
i j , where J

(1)
i j =

∫ τ1

0 J(1)
i j dt/τ, J

(2)
i j =

∫ τ
τ1

J(2)
i j dt/τ and

Eq. (3) was used. At each time, only transitions i → i ± 1 are
allowed, implying that a transition of type 0↔ 2 is forbidden
and hence the system presents only two independent fluxes,
namely J̄(1)

01 and J̄(1)
21 , whose expressions are given by

J̄(1)
01 =

1
τ

∫ τ1

0

{
ω(1)

01 p(1)
1 (t) − ω(1)

10 p(1)
0 (t)
}

dt (5a)

J̄(1)
21 =

1
τ

∫ τ1

0

{
ω(1)

21 p(1)
1 (t) − ω(1)

12 p(1)
2 (t)
}

dt, (5b)

respectively. We pause to make a few comments about fluxes
J̄(1)

i j ’s. Firstly, in the regime of fast switchings τ → 0, where
each stroke relaxes infinitely fast to the steady state, each flux
J̄(ν)

i j acquires a simpler form listed in Appendix B. They can
be alternatively obtained by assuming the system relaxes “in-
finitely fast” to the steady state in such a way that

J̄(ν)
i j →

1
2

{
ω(ν)

i j p j − ω(ν)
ji pi

}
, (6)

for j = 1 and i ∈ {0, 2}, where pi = p(1)
i + p(2)

i , whose ex-
pressions for pi are listed in Appendix B and are equivalent to
the system simultaneously placed in contact with both thermal
baths. Secondly, in the regime of slow switchings, τ ≫ 1,

J̄(ν)
i j →

(−1)(ν+1)

τ

{
p(eq,1)

i − p(eq,2)
i

}
, (7)

which vanishes as τ → ∞, consistent with the case of the
system being placed in contact with a single thermal reservoir.
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Until here, all analyses have been carried out without any
thermodynamic consideration. For that, we follow the com-
mon approach considered in the literature (see, e.g., Refs.
[1, 15, 16, 36, 37]) in which the ratio between transition rates
ω(ν)

i j and ω(ν)
ji are defined according to the local detailed bal-

ance:

ln
ω(ν)

i j

ω(ν)
ji

= −βν
[
ϵ̃(ν)

i − ϵ̃(ν)
j + d(ν)

i j Fν

]
, (8)

where ϵ̃(ν)
i − ϵ̃(ν)

j is the difference between states i and j and

d(ν)
ji Fν accounts to the influence of a driving force, where ele-

ment d(ν)
ji satisfies the anti-symmetric property d(ν)

ji = −d(ν)
i j .

From Eq.(8) we consider the entropy production formula

Πν(t) =
∑

i< j

J(ν)
i j (t) ln

ω(ν)
i j p j(t)

ω(ν)
ji pi(t)

, (9)

whose integration over a complete cycle, together with the
previously mentioned boundary conditions leads to the stan-
dard form σ̄ = −∑ν βνQ̇ν, where Q̇ν is given by

Q̇ν =
∑

i< j

[
ϵ̃(ν)

i − ϵ̃(ν)
j + d(ν)

i j Fν

]
J

(ν)
i j . (10)

By expressing Eq. (10) in terms of fluxes J̄(ν)
01 and J̄(ν)

21 , the

exchanged heat Q̇ν then reads

Q̇ν =
[(
ϵ̃(ν)

0 − ϵ̃(ν)
1 + d(ν)

01 Fν

)
J̄(ν)

01 +
(
ϵ̃(ν)

2 − ϵ̃(ν)
1 + d(ν)

21 Fν

)
J̄(ν)

21

]
.

(11)
Since the system evolves to a nonequilibrium steady state
regime returning to the initial state after a complete cycle, the
first law of thermodynamics establishes that P = −(Q̇1 + Q̇2),
and hence the expression for P is given by

P = −[
∑

i

(
ϵ̃(2)

i − ϵ̃(1)
i

)
(
p(1)

i (τ1) − p(1)
i (0)

)

τ

+
∑

i< j

d(1)
i j

(
F1J

(1)
i j − F2J

(2)
i j

)
],

(12)

where Eqs. (3) and (11) were used, together the proper-
ties: d(1)

i j = −d(2)
i j , d(ν)

i j = −d(ν)
ji and J

(ν)
i j = −J

(ν)
ji . Above

equation states that the power output comes from two work-
sources: the former, from the time variation of energies (first
term) after each stroke and the latter from non-conservative
forces (second term). By expressing in terms of independent
fluxes, Eq. (12) reads P =

[(
ϵ̃(2)

0 − ϵ̃(2)
1

)
−
(
ϵ̃(1)

0 − ϵ̃(1)
1

)]
J̄(1)

01 +[(
ϵ̃(2)

2 − ϵ̃(2)
1

)
−
(
ϵ̃(1)

2 − ϵ̃(1)
1

)]
J̄(1)

21 −
(
d(1)

01 J̄(1)
01 + d(1)

21 J̄(1)
21

)
(F1 + F2).

Finally, by defining the second stage as the hot reservoir and
choosing parameters properly, an amount of heat extracted
from the hot bath Q̇2 > 0 can be partially converted into power
output P < 0 (Q̇2 = −P − Q̇1), consistent to the heat engine
operation. Conversely, the pump regime is characterized by an

amount of power required for delivering heat or particles from
the cold to the hot reservoir, implying that P = −Q̇1− Q̇2 with
P > 0 and Q̇2 < 0. In both cases, we adopted the efficiency
definition η = −P/Q̇2, implying that the former and latter
regimes have efficiencies constrained according to 0 ≤ η < ηc
and ηc < η ≤ ∞, respectively, where ηc = 1 − β2/β1 denotes
Carnot efficiency.

Despite the simplicity, the model presents a great number
of parameters (βν, ϵν,Vν,Uν, Fν) and one of our main goals is
to draw a comparison with previous results [15, 35] in which
solely units in distinct states interact with each other. For this
reason, we shall curb ourselves to the case Uν = 0.

III. DISTINCT INTERACTIONS AT EACH STROKE

A. Main expressions and general findings

Our first approach consists of building a setup via change
of individual and interaction energies at each stroke without
non-conservative drivings. Transition rates ω(ν)

i j follow Eq. (8)
and have been defined in the following form

ω(ν)
10 = 2Γ exp{−βν

2
(Vν + ϵν)}, (13)

ω(ν)
01 = Γ exp{−βν

2
(−Vν − ϵν)}, (14)

ω(ν)
21 = Γ exp{−βν

2
(−Vν + ϵν)}, and (15)

ω(ν)
12 = 2Γ exp{−βν

2
(Vν − ϵν)} (16)

where Vν, ϵν assume distinct values at each stroke and Γ ex-
presses the coupling between the system and the reservoir.
From Eq. (10), the average heat flux at each stroke is given
by

Q̇1 = −
[
J̄(1)

01 (V1 + ϵ1) + J̄(1)
21 (V1 − ϵ1)

]
,

Q̇2 =
[
J̄(1)

01 (V2 + ϵ2) + J̄(1)
21 (V2 − ϵ2)

]
, (17)

whose steady entropy production σ assumes the generic
”fluxes times forces” form σ = J1X1 + J2X2, where J1 = J̄(1)

01

and J2 = J̄(1)
21 with X1 and X2 given by

X1 =
V1 + ϵ1

T1
− V2 + ϵ2

T2
,

X2 =
V1 − ϵ1

T1
− V2 − ϵ2

T2
. (18)

Expressions for the power P and system efficiency η are given
by

P = (ϵ1 − ϵ2)(J̄(1)
01 − J̄(1)

21 ) + (V1 − V2)(J̄(1)
01 + J̄(1)

21 ), (19)

and

η = − (ϵ1 − ϵ2)(J̄(1)
01 − J̄(1)

21 ) + (V1 − V2)(J̄(1)
01 + J̄(1)

21 )

ϵ2(J̄(1)
01 − J̄(1)

21 ) + V2(J̄(1)
01 + J̄(1)

21 )
, (20)
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respectively. We pause again to make a few comments. First,
Eqs. (17)-(20) are general for the two-stroke case, irrespective
of the period, asymmetry and model parameters. Second, in
the absence of interactions (V1 → 0 and V2 → 0), the system
becomes equivalent to the interactionless setup investigated in
Refs. [24, 25, 38] for µ1 = µ2 = 0. In such cases, Eqs. (19) and
(20) reduce to ηs = 1−ϵ1/ϵ2 and Ps = (ϵ1−ϵ2)J̄s, respectively,
where J̄s (for τ1 = τ/2) reads:

J̄s =
∏

µ

{
−1 + cosh

[
τ cosh

(
βµϵµ

2

)]
+ sinh

[
τ cosh

(
βµϵµ

2

)]}

(
eβ1ϵ1 − eβ2ϵ2

)−1∏
µ′
(
1 + eβµ′ ϵµ′

)
[−1 + cosh (τX) + sinh (τX)]

,

(21)

where X = cosh (β1ϵ1/2) + cosh (β2ϵ2/2). Both ηs and Ps can
be related through expression Ps = −ϵ2ηsJ s consistent to heat
engine characterized by J̄s > 0 (since β1ϵ1 > β2ϵ2), Ps < 0,
0 ≤ ηs ≤ ηc. Conversely, the pump is characterized by the
other way around of conditions J̄s < 0 (since β1ϵ1 < β2ϵ2),
Ps > 0 and ηc < ηs ≤ 1. Third, contrasting with the in-
teractionless case, there are two independent fluxes, J̄(1)

01 and
J̄(1)

21 , revealing that the interaction between units gives rise to
a much richer behavior than the single case [24]. Eqs. (17)
and (19) impose some constraints on the operation regime.
In particular, the heat engine occurs when both inequalities
(ϵ2− ϵ1)(J̄(1)

01 − J̄(1)
21 ) < (V1−V2)(J̄(1)

01 + J̄(1)
21 ) and ϵ2(J̄(1)

21 − J̄(1)
01 ) >

V2(J̄(1)
01 + J̄(1)

21 ) are simultaneously satisfied, whereas the pump
regime takes place for opposite inequalities. Fourth, our sys-
tem will operate more efficiently than the interactionless case
(η > ηs) if (ϵ1V2 − ϵ2V1)(J̄(1)

01 + J̄(1)
21 ) > 0. The ideal regime

operation yields when J̄(1)
01 , J̄

(1)
21 → 0. For ϵ1/ϵ2 or V1/V2

held fixed, η = ηc when β2V2 = β1V1 and β2ϵ2 = β1ϵ1, re-
spectively, whose efficiency is given by η = 1 − V1/V2, akin
to the interactionless expression. Conversely, maximum effi-
ciencies ηME < ηc if the condition ϵ1/ϵ2 = V1/V2 = β2/β1
is not satisfied. Fifth and last, the occurrence of the pump
regime implies at the following relation between parameters
(β2ϵ2 − β1ϵ1)(J̄(1)

21 − J̄(1)
01 ) > (β2V2 + β1V1)(J̄(1)

21 + J̄(1)
01 ).

Figs. 2, 3 and Appendix C illustrate all above features.

B. System behavior and heat maps for equal switching times
τ1 = τ/2

Once introduced the main expressions, we are now in a po-
sition to depict the system behavior and main results. We
chose units in such a way that βνVν and βνϵν are dimension-
less. The analysis will be carried out for the following set of
parameters: β1 = 10, β2 = 1, τ = 1. In order to obtain a first
insight into how the interaction between units influences the
system performance, Fig. 2 depicts the system performance
for ϵ1/ϵ2 = 0.5, in which the interactionless case operates as
an engine with power and efficiency given by Ps = −0.1477
and ηs = 0.5, respectively.

We highlight two remarkable changes coming from the in-
teraction, under suitable choices of V1(V2) at strokes v = 1(2).

FIG. 2. The influence of the interaction parameters over the system
performance. Top and bottom panels depict the power and efficiency
heat maps. The surfaces highlighted by the color pink represent the
region in which η ≤ ηs. Parameters: β2 = 1, β1 = 10, τ = 1 and
ϵ1/ϵ2 = 0.5. Symbols HE (left bars) and P (right bars) correspond
to the heat engine and pump regimes, respectively, whereas * and •
attempt to the global maximum of PmP and ηME in the HE regime.
The gray region indicates dud (D) behavior. For this set of parameters
ηME < ηc, whereas the light blue line in the bottom panel indicates
the region in which ηmP = ηCA.

The former is a broad set of parameters, in which η > ηs and
P > Ps. The inclusion of interactions also extends the regime
of operation, giving rise to a pump regime as V2 is raised. Sim-
ilar results are found for distinct β1/β2’s, although the varia-
tion of temperatures can favor a given operation regime (see
e.g. Appendix C).

The interplay between individual ϵ1/ϵ2 and interaction
V1/V2 energies is depicted in Fig. 3, in which η < ηs < ηc
for small V2’s. However, its increase not only extends the heat
regime to the region 0 < ϵ1/ϵ2 < β2/β1, in which the inter-
actionless case operates as a pump, but also leads to higher
efficiencies η > ηs as V2 increases and a maximum value ηME
at V2ME . As portrayed in Sec. III A, ηME < ηc for ϵ1β1 , ϵ2β2
and ηME = ηc at V2 = V2ME when ϵ1β1 = ϵ2β2 (e.g. blue •
in Fig. 3) and the interactionless case is efficient in such latter
case. Similarly to η, it is possible to find suitable values of
parameters in which P > Ps (from now on meaning the ab-
solute value of P) as well as optimize it via a suitable choice
of V2mP. However, there is a remarkable difference with re-
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FIG. 3. The influence of individual energies ϵ1/ϵ2 over the system performance. Left and right panels depict fixed V1 and V2, respectively,
while top and bottom panels show η’s and P’s heat maps, respectively. Left and right bars denote HE and P regimes, respectively. Symbols •,
* and □ attempt to Carnot efficiency ηc, efficiencies at maximum power ηmP at the heat engine (HE) and pump (P) regimes, respectively. Light
blues in top panels indicate the regions in which ηmP = ηCA. Parameters: β2 = 1, β1 = 10, τ = 1, V2 = 1 (right) and V1 = 1 (left).

spect to η, the existence of an optimal set of ϵ1/ϵ2 and V2 in
which (the absolute) P is simultaneously maximized (see e.g.
symbol ∗ in bottom heat maps).

The influence of V1 (V2 held fixed) is remarkably differ-
ent from left panels (V1 held fixed), and the engine regime
and higher efficiencies are constrained to small values of V1’s
(consistent with the general findings from Sec. III A), hence
pointing us out that stronger interactions in the second stage
are more significant than in the first one (second stage oper-
ating as the hot thermal bath). Also, η > ηs for a broader set
of values of V1 as ϵ1/ϵ2 is large. The behavior of P is akin to
the previous one and presents a maximum at a (small) V1mP’s
(fixed ϵ1/ϵ2) as well as an optimal ϵ1/ϵ2 providing its simulta-
neous maximization.

As a side analysis, we compare efficiencies at maximum
power ηmP with Curzon and Ahlborn bound ηCA = 1− √β2/β1
[39], which has been verified in distinct systems [2, 16, 40].
Despite not constituting a universal result, it provides a pow-
erful guide about the system operation at finite power, which
is more realistic than the ideal case (η = ηc and P = 0). In
all cases, the interaction among units can also be chosen for
providing efficiencies at maximum power ηmP > ηCA for a
wide range of parameters (see e.g. light blue lines in Figs. 2-3

in which ηmP = ηCA). Depending on the parameters the en-
gine is projected, ηmP < ηCA [Figs. 2 and 3 (left panel) ] and
ηmP > ηCA (right panel of Fig. 3) at the simultaneous maxi-
mization of power.

Summarizing our findings, the presence of collective effects
between two units makes it possible to conveniently choose
interaction parameters at each stage, providing higher per-
formances than its interactionless counterpart (for the same
values of individual energies), as well as distinct optimiza-
tion routes, such as the maximization of power and efficiency.
Additionally, an extra advantage concerns the possibility of
changing the regime operation, from heat engine to pump and
vice-versa, by changing the interactions at each stroke.

C. Influence of period τ and asymmetric switchings

The influence of period τ and the inclusion of a different
time duration at each stroke, expressed by κ = τ1/τ2 , 1 will
be considered in this section. Due to the existence of several
distinct parameters, we shall focus on parameters ϵ1/ϵ2 = 0.6,
V1 = 0.2, β1 = 10 and β2 = 1.

Although Ps increases as τ is lowered, the period plays a
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FIG. 4. Left and right panels depict the influence of period τ (for symmetric time switchings) and distinct κ’s (for τ = 1), respectively, for P
(top) and η (bottom), respectively. Symbols ∗ and • denote associate PmP’s and ηME’s, respectively. Parameters: β1 = 10, β2 = 1, V1 = 0.2,
ϵ1/ϵ2 = 0.6.

less important role in the interactionless case, in part because
ηs is independent of Js and τ [24, 38]. On the other hand,
the existence of two independent fluxes, as a consequence of
the interaction between nanomachines makes the influence of
τ more revealing. We highlight two aspects regarding the in-
fluence of τ, as depicted in the left panels of Fig. 4. First, it
significantly affects the system performance, marking the in-
crease of both P (as the interactionless system) and η (unlike
the interactionless), with increasing maximum PmP and ηME
at V2mP and V2ME , respectively, as τ is decreased toward the
limit τ → 0, in which the system becomes equivalent to the
(simultaneous) contact with hot and cold thermal baths (see
e.g. Appendix B). Second, despite the increase of τ reduces P
and η, it enlarges the heat engine operation. Thus, the period
can be conveniently chosen to obtain a desirable compromise
between the system performance (power and efficiency) and
the range of the operation regime.

A second aspect to be investigated in this section relies on
the inclusion of a distinct duration of each stage, measured
by the asymmetry κ. This ingredient has been revealed to be
a powerful ingredient for improving the system power in the
interactionless case [30] or even both P and η in the case of
collisional Brownian engines [22] and is depicted in the right
panels of Fig. 4. Although η typically increases as V2 raises
and κ (or τ1) is reduced, consistent with the system placed
in contact with the hot thermal bath during a larger interval,
there is an optimal κo ensuring optimal power PmP. Thus, like

the interactionless case [30], κ can be conveniently chosen in
order to increase the power-output and P > Ps. Since η >
ηs for a broad range of V2’s, the interaction offers an extra
advantage in which κ can be suitably chosen in order to obtain
the desired η (greater than ηs) or even the desired compromise
between P and η.

IV. COLLISIONAL MACHINE UNDER NON
CONSERVATIVE DRIVINGS

A. Main expressions and heat maps

Our second approach encompasses a worksource coming
from a non-conservative driving, introduced by means of a
bias in order to benefit certain transitions. By following the
ideas of Refs.[15, 16, 31], transitions of type i → i + 1
(i → i − 1) are favored according to whether the system is
placed in contact with the cold (hot) thermal baths, leading to
an incremental P reading Fν, whereas the remainig parame-
ters (V and ϵ) are held fixed. Our study relies on investigating
two important aspects: the role of drivings at each stroke and
its relationship with V , temperatures β1/β2 and the influence
of period τ. Transition rates ω(ν)

i j follow Eq. (8) and are listed
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FIG. 5. Depiction of power P (top) and efficiency η̂ (bottom) versus V for distinct β1’s. Parameters: β2 = 1, Ea = 1, F2 = 1, F1 = 0.1 and
τ = 1 and β1 = 10 (left), β1 = 20/9 (middle) and β1 = 3/2 (right). Stars and squares denote the location of PmP’s for heat engine and pump,
respectively. Circles denote the location of maximum efficiencies for the engine (0 ≤ η < ηc regime.

below

ω(ν)
10 = 2Γ exp{−βν

2
(Ea + V + ϵ + (−1)νFν)} (22)

ω(ν)
01 = Γ exp{−βν

2
(Ea − V − ϵ − (−1)νFν)} (23)

ω(ν)
21 = Γ exp{−βν

2
(Ea + ϵ − V + (−1)νFν)} (24)

ω(ν)
12 = 2Γ exp{−βν

2
(Ea − ϵ + V − (−1)νFν)}, (25)

where Fν assumes distinct values at each stroke. Parameter
Ea attempts to an activation energy and it will be included in
order to draw a comparison with previous results [14, 15]. Al-
though our main findings are independent of Ea, its inclusion
makes the heat engine regime more pronounced. From now
on, we shall set Ea = 1 in all analyses.

From Eqs. (11) and (12) and by taking V1 = V2 = V and
ϵ1 = ϵ2 = ϵ, the average power and the heat extracted ex-
changed with the hot bath are given by the following expres-
sions

P = −(F1 + F2)(J̄(1)
01 − J̄(1)

21 ), (26)

Q̇2 =
[
(V + ϵ + F2)J̄(1)

01 + (V − ϵ − F2) J̄(1)
21

]
,

whose system entropy production reads σ̄ = −β1Q̇1 − β2Q̇2
and assumes the bilinear form σ = J1X1 + J2X2, where J1 =

J̄(1)
01 and J2 = J̄(1)

21 (as in Sec. III) with thermodynamic forces
X1 and X2 given by

X1 =
ϵ + V + F2

T2
− ϵ + V − F1

T1
,

X2 =
ϵ − V + F2

T2
− ϵ − V − F1

T1
. (27)

The efficiency is given by the ratio between P and Q̇2 given

by

η =
(F1 + F2)(J̄(1)

01 − J̄(1)
21 )

(V + ϵ + F2)J̄(1)
01 + (V − ϵ − F2) J̄(1)

21

, (28)

respectively. The existence of the heat engine and pump
regimes imposes some constraints in the fluxes, implying that
in the former case parameters have to be adjusted in such a
way that J̄(1)

01 > J̄(1)
21 and V(J̄(1)

01 + J̄(1)
21 ) > (ϵ + F2)(J̄(1)

21 − J̄(1)
01 ),

whereas the latter (pump) implies opposite inequalities.
A first insight about the influence of drivings is depicted in

Figs. 5 for fixed F1/F2. Efficiency and power curves exhibit
an interesting and rich behavior due to the interplay among
parameters ϵ,V, β1/β2 and τ. While the heat regime is levered
by increasing ϵ and/or the ratio β1/β2 (left and middle panels),
the pump regime is favored for lower values of β1/β2 (middle
and right). The crossover from the heat to the pump regimes
gives rise to an intermediate regime in which the system op-
erates dudly (see e.g. middle panels). In such a case, there
are optimal interactions VmP and VME marking maximum (ab-
solute) power (PmP) and efficiency (ηME), respectively. Con-
versely, only P can be optimized when the crossover between
the above regimes is marked by the absence of a dud regime
(e.g. left and right panels) and η monotonically decreases
upon V being raised. Fig. 6 extends above findings by depict-
ing heat maps for the efficiency and power for distinct ratio
F1/F2 and fixed ϵ. Similarly to systems composed of many in-
teracting units under fixed drivings [14, 16] and results from
Sec. III, the power P presents a simultaneous maximization
(concerning both V and F1/F2), whereas η approaches to the
ideal regime F2/F1 is increased. However, a difference with
respect to previous studies concerns the absence of heat en-
gine as F1 = F2. Unlike Refs. [14–16], in which the heat
engine was investigated for large N’s, our minimal setup of
N = 2 interacting units requires a desirable compromise be-
tween Fν’s and parameters for operating properly as an heat
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engine.

FIG. 6. The same as in Fig.2, but by changing the drivings at each
stroke. Parameters: ϵ = 0.5, β2 = 1, β1 = 20/9, Ea = 1, τ = 1,
F2 = 0.45

The influence of period is depicted in Fig. 7 for the same
parameters from Fig. 6 (left and right panels). In both cases,
P is strongly influenced by the period and approaches to the
simultaneous contact with baths as τ→ 0, whose expressions
are evaluated via Appendix B. Also, depending on the param-
eters the engine is projected (right panels), the increase of τ
changes the regime operation, from heat engine to pump. In
both cases, the behavior of η is more revealing and mildly
changes with τ. While small differences are almost impercep-
tible in the left panels, a somewhat increase of η as τ is low-
ered is verified. This finding is remarkable, because it may be
used for cconveniently choosing the period in order to obtain
the desirable P with a small variation of η.

B. Asymmetric time switchings

In the last analysis, we investigate the influence of asym-
metric interaction times in the presence of distinct drivings at
each stroke, as shown in Fig.8.

FIG. 8. Depiction of power P and efficiency η versus V for different
κ. Symbols • and ∗ denote the maximization of efficiency and power,
respectively. Parameters: ϵ = 0.5, β2 = 1, β1 = 20/9, Ea = 1, τ = 1,
F1 = 0.1, F2 = 1.

In similarity with Fig. 4, the asymmetry can be conve-
niently chosen for enhancing the power and efficiency or even
for obtaining a desirable compromise between them. There is
an optimal κo leading to simultaneous maximization of power
while η always increases as κ is lowered, consistent with the
contact with hot bath for a larger amount of the period. De-
spite such similarities, the asymmetry seems to be less pro-
nounced than in the previous case, and optimal quantities do
not deviate significantly from the symmetric (κ = 1) case. A
possible reason is that power and efficiency exhibit a more
intricate dependence on fluxes and changes of energy param-
eters (former approach) than on driving variations [see e.g.
Eqs. (19)-(26) and (20)-(28)].

V. CONCLUSIONS

Nanoscopic engines operating via collective operation have
attracted considerable attention and posed as potential candi-
dates for the construction of reliable setups. However, given
that most studies are restricted to fixed thermodynamic forces,
little is known about how its construction influences the per-
formance. The present study aimed to fill partially this gap
by investigating the thermodynamic quantities of a minimal-
ist collective model placed sequentially with distinct thermal
baths at each stage. Distinct aspects have been addressed,
such as different worksources, the role of interactions, the pe-
riod and the time durations of each stroke. Results indicate
that our minimal approach, together with a suitable choice of
parameters, not only can boost the system performance, pro-
viding optimal power outputs and efficiencies greater than its
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FIG. 7. The influence of period τ over the system performance. Depiction of P and η versus V for distinct τ’s for β1 = 10 (left) and β1 = 20/9
(right). Parameters: β2 = 1, Ea = 1, ϵ = 0.5, F2 = 1, F1 = 0.1.

interactionless case, but also guide the operation regime, in-
cluding distinct heat engine and pump regimes. Although the
ideal regime τ → 0 provides higher performances than for fi-
nite τ’s, the present contribution sheds light on how the inter-
play between interaction and individual parameters, together
a suitable tuning of the interaction time can optimize both
power and efficiency as much as possible under more a re-
alistic context (finite τ). Another remarkable finding concerns
that the case of the system simultaneously placed in contact
with two thermal reservoirs, previously investigated in various
works [15, 20, 35], constitutes a particular case of our frame-
work for fast switchings. As future extensions of our paper,

it might be interesting to extend our sequential framework to
setups composed of a larger number of nanomachines as well
as drawing a comparison among their interactions.
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Appendix A: Obtaining the exact solution for the boundary conditions

As described in the main text, by resorting to the eigendecomposition of the evolution matrix, together above boundary
conditions, we arrive at the following expression f or the probability component p(ν)

i (t) at the ν-th stroke:

p(ν)
i (t) = p(eq,ν)

i +

2∑

j=1

eλ
(ν)
j [t−(ν−1) τ2 ]Γ

(ν)
j p(ν)((ν − 1)

τ

2
), (A1)

where p(eq,ν) is the stationary state probability associated with λ0 = 0 and λ(ν)
j is the j-th non-zero eigenvalue and Γ(ν)

j = ψ
(ν)
j ϕ

(ν)
j

is the matrix associated with the product of the j-th right and left eigenvectors and p(ν)((ν−1) τ2 ) is the vector at each stroke given
by

p(1)(0) =
−
[
eτω

(1)/2 + eτ
(
λ(2)

1 +λ
(2)
2 +λ

(1)
1 +λ

(1)
2

)
/2
]

p(eq,1) +
∑
ν,µ,µ′

eτ
(
λ(2)

1 +λ
(2)
2 +λ

(1)
ν

)
/2∆

(1)
µ,µ′

[
Γ

(2)
µ′+1p(eq,1) + e−τλ

(2)
µ′+1/2p(eq,2)

]

2
[(

eτλ
(1)
1 /2 − eτλ

(1)
2 /2
) (

eτλ
(2)
1 /2 − eτλ

(2)
2 /2
)

Tr
{
Γ

(1)
2 Γ

(2)
2

}
−
(
eτ
(
λ(1)

2 +λ
(2)
1

)
/2 − 1

) (
eτ
(
λ(1)

1 +λ
(2)
2

)
/2 − 1

)] (A2)
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p(2)
(
τ

2

)
=

−
[
eτω

(1)/2 + eτ
(
λ(1)

1 +λ
(1)
2 +λ

(2)
1 +λ

(2)
2

)
/2
]

p(eq,2) +
∑
ν,µ,µ′

eτ
(
λ(1)

1 +λ
(1)
2 +λ

(2)
ν

)
/2∆

(2)
µ,µ′

[
Γ

(1)
µ′+1p(eq,2) + e−τλ

(1)
µ′+1/2p(eq,1)

]

2
[(

eτλ
(1)
1 /2 − eτλ

(1)
2 /2
) (

eτλ
(2)
1 /2 − eτλ

(2)
2 /2
)

Tr
{
Γ

(1)
2 Γ

(2)
2

}
−
(
eτ
(
λ(1)

2 +λ
(2)
1

)
/2 − 1

) (
eτ
(
λ(1)

1 +λ
(2)
2

)
/2 − 1

)] (A3)

where

∆
(ν)
µ,µ′ = Tr

{
Γ(ν+1)
µ Γ

(ν)
µ′
}
− Γ(ν+1)

µ Γ
(ν)
µ′

Appendix B: The fast time switchings τ→ 0 and the two reservoirs case

In the regime of fast switching dynamics, τ→ 0, one gets the following expressions for fluxes

lim
τ→0

J̄(1)
01 =

1
2Z

(
ω(1)

01ω
(2)
10 − ω(1)

10ω
(2)
01

) (
ω(1)

12 + ω
(2)
12

)
, (B1)

and

lim
τ→0

J̄(1)
21 =

1
2Z

(
ω(1)

21ω
(2)
12 − ω(1)

12ω
(2)
21

) (
ω(1)

10 + ω
(2)
10

)
, (B2)

where Z =
(
ω(1)

01 + ω
(2)
01

) (
ω(1)

12 + ω
(2)
12

)
+
(
ω(1)

10 + ω
(2)
10

) (
ω(1)

12 + ω
(2)
12

)
+
(
ω(1)

10 + ω
(2)
10

) (
ω(1)

21 + ω
(2)
21

)
. The above expressions can be

understood from the fact the system relaxes “infinitely fast” to its steady state at each stroke, allowing to rewrite Eq.(2) in the
following form ṗ(ν)

i (t) =
∑

j,i{ω(ν)
ji pi(t) − ω(ν)

i j p j(t)}, where pi(t) = p(1)
i (t) + p(2)

i (t). Thus, the fully dynamics is described by

ṗi(t) =
∑

j,i{Ω ji pi(t) − Ωi j p j(t)}, where Ωi j = ω(1)
i j + ω

(2)
i j , which is equivalent to the simultaneous contact with both thermal

reservoirs. A second way of understanding such a limit comes from the time integration of Eq. (2) over each stage by taking
into account the boundary conditions from Eq. (3). In such cases, the steady state regime is given by the following relations
(ω(1)

01 + ω
(2)
01 )p1 − (ω(1)

10 + ω
(2)
10 )p0 = 0 and (ω(1)

20 + ω
(2)
20 )p0 + (ω(1)

12 + ω
(2)
12 )p2 − (ω(1)

01 + ω
(2)
01 + ω

(1)
21 + ω

(2)
21 )p1 = 0. By solving above

system of linear equations, together with the condition p0+ p1+ p2 = 1, one finds the following expressions for the probabilities:

p0 =
1
Z

(
ω(1)

01 + ω
(2)
01

) (
ω(1)

12 + ω
(2)
12

)
,

p1 =
1
Z

(
ω(1)

10 + ω
(2)
10

) (
ω(1)

12 + ω
(2)
12

)
, (B3)

p2 =
1
Z

(
ω(1)

10 + ω
(2)
10

) (
ω(1)

21 + ω
(2)
21

)
. (B4)

(B5)

It is worth mentioning that pi’s can be alternatively obtained via the spanning tree method for N = 2. From pi’s, fluxes are
promptly obtained, providing the same results as Eq. (B1) and (B2). Thermodynamic quantities are straightforwardly evaluated,
whose main expressions for P, Q̇2 and η and have been shown along the main text.

We close this section by pointing out above expressions are general and hold valid in both Secs. III and IV when τ→ 0.

Appendix C: Global phase diagram for distinct interactions at each stroke

In this section, we depict the system phase diagram (top panel) built from inequalities, (ϵ2−ϵ1)(J̄(1)
01 − J̄(1)

21 ) < (V1−V2)(J̄(1)
01 + J̄(1)

21 )
and ϵ2(J̄(1)

21 − J̄(1)
01 ) > V2(J̄(1)

01 + J̄(1)
21 ), shown in the main text for the heat engine (HE) regime and the other way around for the

pump (P). In particular, the crossover between HE and P regimes will be characterized by ideal efficiency provided ϵ1/ϵ2 =

V1/V2 = β2/β1 (green symbols). The bottom panels show, for different sets of temperatures, the phase diagram V1/V2 × ϵ1/ϵ2.
As discussed in the main text, while larger β1/β2 favors the HE regime, its decrease increases the region in which the system
operates as a pump.
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FIG. 9. Top panel: The phase diagram β2/β1 × V1/V2 × ϵ1/ϵ2. The green line represents the points where β2/β1 = V1/V2 = ϵ1/ϵ2. Bottom
panels depict, for β1 = 10 (left), β1 = 10/3 (middle) and β1 = 10/4 (right), the phase diagrams in the V1/V2 × ϵ1/ϵ2 plane. P and HE denote,
respectively, the pump and heat engine regimes. White region attempts to the dud regime, whereas green bullets correspond to the ideal
efficiency ηc.
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