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Abstract

The upcoming next-generation of wide-area cosmological surveys will provide us with an
unprecedented amount of high-quality data. This will allow us to constrain cosmological
parameters with sufficient precision to distinguish between many competing theories that
try to explain the different mechanisms through which the large scale structure of the uni-
verse forms, and maybe even point to new paths we haven’t explored yet. However, these
surveys will also bring a new set of challenges on how to properly extract the maximum
amount of information possible from these huge data sets. Many commonly used approx-
imations will no longer be valid, and in particular the standard Fourier power spectrum
approach will not be able to capture the full information about the two-point statistics of
tracers of the large scale structure in redshift space. An alternative is to work in harmonic
space with the angular power spectrum C`(z, z

′), which naturally includes wide-angle ef-
fects and has the potential to provide a unified framework to combine these surveys in the
future. In this work we develop an important tool towards that goal, by deriving an exact
expression for the multi-tracer Fisher matrix of the angular power spectrum, both in real
and redshift spaces.

Keywords: Large scale structure; Fisher matrix; Angular power spectrum; Multi-tracer;
Redshift space distortions.





Resumo

A próxima geração de levantamentos cosmológicos em grandes áreas do céu vão nos
proporcionar uma enorme quantidade de dados de alta qualidade. Isso nos permitirá re-
stringir parâmetros cosmológicos com precisão suficiente para distinguir entre diversas
teorias que tentam explicar os diferentes mecanismos que regem a formação da estrutura
em larga escala do universo, e talvez até apontar para novos caminhos que ainda não foram
explorados. Entretanto, esses levantamentos também trazem novos desafios sobre como
extrair o máximo de informação possível desses enormes conjuntos de dados. Muitas
aproximações comumente utilizadas deixarão de ser válidas e em particular a abordagem
usual, que se utiliza do espectro de potência de Fourier, não é capaz de capturar toda a in-
formação sobre a função de correlação de dois pontos dos traçadores da estrutura em larga
escala incluindo distorções de redshift. Uma alternativa é trabalhar no espaço harmônico
com o espectro de potência angularC`(z, z′), que naturalmente inclui efeitos causados por
largas separações angulares, e que tem o potencial de fornecer um formalismo unificado
para combinar esses levantamentos no futuro. Nesta dissertação, uma ferramenta impor-
tante para alcançar esse objetivo é desenvolvida derivando uma expressão exata para a
matriz de Fisher do espectro de potência angular para múltiplos traçadores, tanto no es-
paço real quanto no espaço de redshift.

Palavras-chaves: Estrutura em larga escala; Matriz de Fisher; Espectro de potência an-
gular; Múltiplos traçadores; Distorções no espaço de redshift.
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1 Introduction

Until a few decades ago, cosmology suffered from a significant deficiency of data and
the tools used to analyze them were adequate to deal only with small areas and volumes.
In fact, many different theories on structure formation were consistent with the scarce
data available, but cosmological surveys in the past few decades quickly changed this
picture. First, we have the cosmic microwave background (CMB), which was famously
discovered by accident in 1964 by astronomers Penzias and Wilson, and the first accurate
measurements of its temperature anisotropies was performed by COBE (Bennett et al.,
1996), which showed that it had a near perfect black body spectrum. Then there is dark
matter, which we have known about for almost a century now, ever since Zwicky de-
scribed in 1934 the need of some sort of invisible dark matter to hold the Coma cluster
together, but this anomaly was largely ignored for a long time. Only a few decades ago
more compelling evidence for dark matter was gathered (see e.g. Bertone et al., 2005 for a
review), and welcomed particle physicists into cosmology: currently the most promising
candidates are very weakly interacting elementary particles that we haven’t been able to
detect so far. Finally, two independent teams in the late 90s (Riess et al., 1998; Perlmutter
et al., 1999) found evidence of some dark energy that accelerates the expansion of the
universe. The simplest explanation for it is a cosmological constant Λ added to Einstein’s
field equations, but an alternative to introducing a new energy component is modifying
our theory of gravity itself.

These groundbreaking discoveries allowed us to discard many of our theories, and
were revolutionary to such a degree that we now have a simple and quite elegant standard
model of cosmology with only six parameters: ΛCDM. This model has been supported
by an overwhelming amount of evidence and extended accordingly in the past couple
of decades. It explains a wide variety of different phenomena and observations, from a
fraction of a second after the Big Bang to today: the structure of the CMB, the distribu-
tion of galaxies on large scales, the accelerated expansion of the universe, the observed
abundances of light elements.

Nevertheless, despite its incredible success, passing multiple tests over the past couple
of decades, it is incomplete and does not offer a universally accepted solution to all of our
problems: the true nature of arguably the two biggest mysteries in cosmology, dark matter
and dark energy, still eludes us. On top of that, as the era of precision cosmology began
with data from probes such as WMAP in the early 2000s, tensions between large and
small scale data sets started to emerge, pointing to possible gaps in this model. The most
well known of these tensions is probably the discrepancy between the present value of
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Hubble constant H0 inferred from Planck’s measurements of the CMB, and the value ob-
tained from late-time supernovae observations by the SH0ES collaboration (Di Valentino
et al., 2021). Another new generation of surveys such as the upcoming J-PAS (Benitez
et al., 2014), DESI (Levi et al., 2019), Euclid (Amendola et al., 2018), PFS (Ellis et al.,
2012), LSST (Ivezić et al., 2019), and the recently released DES-Y3 (Sevilla-Noarbe
et al., 2021), will map even larger fractions of the observable universe and allow us to
constrain cosmological parameters with unprecedented precision, and maybe even allow
us to solve these tensions between different data sets and point to new physics beyond the
current standard ΛCDM model.

However, nothing in life comes for free. With the much larger sky coverage and
increased depth of these surveys, many of the approximations commonly used will no
longer be valid (see Bellomo et al., 2020), and the much larger data sets themselves also
present another challenge. Much effort has been dedicated to this problem in recent years,
but some key aspects are still not very well understood. So it is now more important than
ever to find optimal ways to take advantage of the upcoming wealth of data. A very
powerful tool in this context is the Fisher matrix formalism, which provides us a way
to predict how well we will be able to constrain cosmological parameters with future
surveys. Hence, we can test and compare different data analysis pipelines and binning
strategies even before any data is collected.

In the current standard cosmological model ΛCDM, we expect a sort of hierarchical
formation of structure: smaller objects form first and they merge into larger and larger
structures overtime. Gravity makes even the smallest of anisotropies in the density field
grow, and today enough time has passed since the primordial universe that we can iden-
tify a clear pattern of cosmic filaments and voids that stretch across considerable fractions
of the observable universe (see Figure 1). On large scales, however, due to the standard
assumption of cosmology that the universe is homogeneous and isotropic, the position of
an individual object has no relevance. But due to gravitational attraction, matter tends
to agglomerate in regions of higher density, so the correlation between the positions of
two galaxies carries physical information contained in the two-point function of the den-
sity contrast, and its Fourier transform, the power spectrum. Therefore, we can map out
the 3D distribution of matter distribution in the universe, by combining measurements of
redshift and angular position of astronomical objects, offering us a way to estimate cos-
mological parameters and better understand the mechanisms that rule structure formation
in the universe.

In order to actually test cosmological models, we must first estimate some quantity
from the data which can be predicted by our theories. Considering only one tracer, Feld-
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Figure 1: The large scale distribution of dark matter from the most ambitious hydrodynamical
simulation to date by the Illustris TNG Collaboration.

man, Kaiser & Peacock (FKP) showed in Feldman et al. (1993) that there is a unique
galaxy weighting scheme that leads to an ideal (minimum variance) estimator of the
Fourier power spectrum. However, while galaxy positions have been our main source
of information due to their sheer numbers, we can also study the large scale structure with
a variety of different objects, such as quasars, voids and the Lyman-α forest. These highly
nonlinear objects result from very complicated formation processes over long periods of
time, which can cause their distribution to differ from that of dark matter. Therefore,
these objects are biased tracers of the underlying matter density field, as first suggested
by Kaiser (1984). This bias is a function of redshift and can depend on the properties
of the objects such as luminosity, color and morphology, and can also be scale depen-
dent, though this dependence is weak and tends to a constant on large scales (Mann et al.,
1998). Since different tracers aren’t independent, and actually map the same underlying
distribution of dark matter (although in different ways, with different biases), one might
hope to combine them in the analysis to extract as much information as possible from our
data sets.

In fact, it has become evident that a multi tracer analysis offers many benefits. For
instance, the two main sources of uncertainty in our measurements are shot noise, which
arises from the fact that the distribution of galaxies is basically a discrete Poisson process,
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and cosmic variance, a fundamental statistical limitation due to the fact that we cannot
recreate the big bang in a laboratory with the same initial conditions as our own and
wait billions of years to measure other universes. Nevertheless, we can overcome the
limitations of cosmic variance on bias-sensitive parameters (Seljak, 2009; Seljak et al.,
2009) by combining multiple tracers of the underlying density field.

Of course, designing a multi tracer survey isn’t trivial, as different tracers may require
different observational techniques for target selection, and different treatment of system-
atic effects. Fortunately, we can split a single tracer survey into multiples samples by
color or luminosity (Blake et al., 2013; Ross et al., 2014), or combine observations made
by different surveys (Gil-Marín et al., 2016), although this is somewhat limited by the fact
that most surveys are designed to be complimentary to others in terms of sky coverage
and redshift range, so the overlap might be too small for any practical purposes.

It has also been shown in Abramo et al. (2016) that the multi-tracer optimal estimator
(MTOE) is a superior weighting scheme for the density fields of any number of tracers.
While this is especially interesting for large scale effects, which suffer the most from
cosmic variance, it’s been shown that the MTOE has advantages in small scales as well
(Montero-Dorta et al., 2020). This estimator allows one to simultaneously fit both the
matter power spectrum as well as the biases of the tracers, as opposed to the PVP estimator
(Percival et al., 2004) for which one must fix the biases. It was also shown to have a better
performance than the FKP estimator, to which it reduces in the case of a single tracer.

So the problem has pretty much been now solved for the simplified scenario where
we compute the Fourier spectrum of a volume at fixed redshift (a “snapshot” mapped
through Cartesian coordinates). Since we can measure redshifts with outstanding preci-
sion, to which we can assign a distance, this standard approach of using the 3D Fourier
matter power spectrum to constrain cosmological parameters with clustering data has
served us well for many years. However, this approach presents many issues, which are
becoming ever more apparent now. First, we can’t directly measure distances to astro-
physical objects, we can only infer them after choosing a specific cosmological model to
translate from redshift space to real space, which can introduce a bias in the results, and
not many studies have been done on the consequences of making a bad choice. More
importantly, the Fourier approach is only valid in the flat-sky limit, which will not be the
case for upcoming surveys, and it also requires the use of large redshift bins, effectively
ignoring cosmic evolution and suppressing the effects of redshift space distortions caused
by peculiar velocities (see Section 4).

One can circumvent the problems of the Fourier spectrum by decomposing the 3D
lightcone into 2D redshift slices and work directly in harmonic space, with the formalism
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of the angular power spectrum, which has already been widely developed and applied by
the CMB community (e.g. Ade et al., 2014), and has also the advantage of having, in an
idealized full sky survey, diagonal covariance matrices because the harmonic modes are
independent on linear scales. The consistencies between galaxy clustering and cosmic
shear analysis in harmonic and real space were verified in Andrade-Oliveira et al. (2021)
and Doux et al. (2021), respectively.

Another advantage of working in harmonic space is that wide-angle and redshift space
distortion (RSD) effects are naturally included. These are relevant effects that must be
taken into account in future clustering analyses to avoid biasing our results, but RSDs are
also especially important as a tool to help us understand dark energy, since they allow us
to constrain the growth rate of large scale structure, which is different for each model.

However, it is still not clear how to weigh the different tracers in spherical shells (i.e.,
for different redshift slices on the past lightcone). In a series of papers that advocate for
this transition to a tomographic pipeline, Tanidis and Camera (2019, 2021) discuss the
importance of properly including redshift space distortions in angular power spectrum
analyses, and also showcase the power of the multi tracer technique by constraining the
sum of neutrino masses. The advantages of working in harmonic space were also show-
cased in Loureiro et al. (2019), where it was shown that this approach yields comparable,
if not better constraints, even for spectroscopic data.

In this work, we further develop our collective knowledge on angular clustering statis-
tics by deriving an exact expression for the multi tracer Fisher matrix of the angular power
spectra, including RSD and without the commonly used flat-sky and Limber’s approxima-
tions. This allows us to predict how well a survey can constrain cosmological parameters,
and is also the basis necessary for a future work that will tell us the best way to com-
bine multiple tracers of the large scale structure over the same volumes, in a way that
maximizes the cosmological information we can extract from the data.
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2 Current cosmological surveys

The two main probes that have been used to study the large scale structure of the
universe are measurements of cosmic shear and galaxy clustering, and in this work we fo-
cus on the latter. Current galaxy surveys rely on basically two observational techniques:
broad band imaging and spectroscopy. With the former, our instruments are designed to
collect the light of as many objects as possible in multiple frequency bands, without any
discrimination other than some lower flux limit to ensure a high quality of the data. These
photometric imaging surveys give us relatively poor measurements on redshifts (with a
precision of around ∼ 4%), in exchange for mapping a huge amount of objects, which al-
lows the selection of specific galaxies or quasars to which we can point our spectroscopic
telescopes and measure their spectrum much more precisely for a better estimation of
their redshifts (∼ 0.1%) in a follow up survey. This, of course, introduces some selection
bias to our analysis and also comes at a cost of longer observational time, representing
a trade-off between more accurate information about redshift and the quantity of objects
we can map.

Since the speed of light is finite, measurements of distances also correspond to dif-
ferent times in the history of the universe, so we can study the evolution of large scale
structures by observing their growth over our past lightcone. These observations contain
valuable information about the nature of both dark matter and dark energy. The former
acts in a way to pull matter together and accelerate the formation of large scale structures,
while the latter has an opposite effect and effectively tries to push matter apart as the
universe expands, slowing down this structure forming process, in a perpetual game of
cosmic tug of war.

One of the arguably most important still ongoing surveys is the Sloan Digital Sky
Survey (SDSS), which began in the year 2000 its mission of imaging the sky in five
broad bands (u, g, r, i, z), and measuring the spectra of galaxies, quasars and stars. It
was extended multiple times to also explore the structure of the Milky Way and observe
supernova Ia events, and continued to map even larger fractions of the sky. The 7th
Data Release (DR7) marked the completion of its initial goals, after cataloging over 18
million galaxies over an area of 8423 deg2 (1/5 of the sky) in the northen hemisphere and
measuring the spectra of over 930,000 galaxies and 120,000 quasars over 8000 deg2. The
first angular power spectrum analysis for the full SDSS galaxy sample was then performed
in Hayes et al. (2011), though the constraints achieved were weak (but consistent with
others) due to computational limitations.
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The survey was then extended for a third phase and SDSS-III’s Baryon Oscillation
Spectroscopic Survey (BOSS) was designed to measure the imprints left by the Baryon
Acoustic Oscillations (BAO) in the late time galaxy distribution, which provides a stan-
dard ruler for the measurement of angular diameter distances as a function of redshift and
also the Hubble constant, giving us another way to constrain the accelerated expansion of
the universe completely independent from supernovae. It consisted of two simultaneous
spectroscopic surveys: one measured the redshifts of 1.5 million red luminous galaxies
(LRGs) extending to z = 0.7 over an area of 9329 deg2, and the other observed 150,000
quasars in the redshift range 2.15 ≤ z ≤ 3.5 for a Lyα forest analysis, which allowed
BOSS to successfully obtain the first reliable measurements of the BAO peaks. Its fi-
nal DR12 (Alam et al., 2017) spectroscopic galaxy sample was used by Loureiro et al.
(2019) to show that a harmonic approach provides competitive cosmological constraints
for ΛCDM, wCDM and the sum of neutrino masses using the full shape of the angular
power spectrum, whilst having numerous advantages over the Fourier method (see Section
3).

Figure 2: Constraints on fσ8 obtained for different redshifts from multiple surveys. Extracted
from Aubert et al. (2020)

BOSS was further extended in SDSS-IV with eBOSS, which complemented the previ-
ous measurements by mapping an even larger volume. This new survey targeted 300,000
LRGs in a different redshift range of 0.6 < z < 1.0, over 6000 deg2, and was also capable
of observing 175,000 emission line galaxies (ELGs) up to z = 1.1 over 1200 deg2. It also
more than tripled the number of observed quasars, to a total of ∼ 500,000, and greatly
increased the redshift range of these observations to 0.8 < z < 3.5. This was the first
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survey to measure the redshifts of ELGs and it is currently the only multi tracer sample
with a large overlapping volume from a single survey. A study on BAO and RSD was
performed in Zhao et al. (2021) using data from the previous release (DR16) and combin-
ing these two tracers in Fourier space, which raised the significance level of a nonzero ΩΛ

to ∼ 11σ. Combined with previous phases of SDSS and Planck’s CMB measurements,
these observations allowed us to precisely measure 80% of the expansion history of the
universe and constrain cosmological parameters such as ΩΛ, H0 and σ8 with a precision
better than 1%, and the growth rate to 6% (See Figure 2), and showed no need to extend
the standard cosmological model beyond the flat ΛCDM. With its latest DR17 (Alam
et al., 2021), SDSS provided the most detailed three-dimensional map of the universe to
date.

Obtaining such precise spectra is, however, a very time consuming process, because
we must target each object individually and observe it for a sufficient time to collect
enough light and obtain its precise spectrum. Additionally, we have an increasing role
being played by photometric surveys, that sacrifice some precision in their redshift mea-
surements in order to map a much larger quantity of objects, with better signal-to-noise
ratios. These surveys use a technique known as photo-z estimation, which relies on the
observation of the sky in multiple frequency bands. For a given object, we can combine
its intensity information from different broad-band filters to obtain an estimate for their
redshifts. These are obviously far less precise than spectroscopic ones, but this method is
significantly faster and increases the number of galaxies we can observe in a given amount
of time by a factor of a few hundred.

The Dark Energy Survey is a fine example of a purely photometric survey, designed
to help uncover the secrets of the accelerated expansion of the universe through type
Ia supernovae, BAOs, galaxy clusters and weak gravitational lensing. It observed the
galaxy distribution in southern sky in five photometric bands, with long integration times
over 6 years (2013-2019) to detect fainter galaxies than previous surveys, as well as type
Ia supernovae in a smaller patch of the sky. With its recently released three years of
data (Y3) (Sevilla-Noarbe et al., 2021), DES mapped nearly 226 million galaxies fit for
cosmological analysis, covering redshifts of approximately z ∼ 0.2-1.2 over an area of
∼5000 deg2, and provided the largest photometric data set we currently have.

A combination of the DES-Y3 3x2pt analysis with CMB, BAO, RSD, and SNe Ia
data allowed us to obtain the most precise constraints on the ΛCDM and wCDM models
to date (see Figure 3). The full observations over its 6 years of operations will deliver data
with roughly double the exposure time and continue to support the development of new
data processing techniques for even more ambitious surveys in the future.
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One of these next generation surveys is the Dark Energy Spectroscopic Instrument,
which began operating in 2019 and is considered the successor to BOSS. It will target
over 30 million objects and measure redshifts across a wide area of 14,000 deg2, including
LRGs up to z = 1, quasars in the range 2.1 < z < 3.5, as well ELGs up to z = 1.7 which
will represent its largest sample. It is expected to significantly improve the precision on
BAO and the sum of neutrino masses, and place strong constraints on theories of modified
gravity and inflation by measuring the spectral index ns.

The LSST (Ivezić et al., 2019), on the other hand, is the most ambitious wide area
photometric survey ever proposed, set to begin collecting data in 2022 in six band filters
(u,g,r,i,z,y). The main program will take 90% of its observing time and will be dedicated to
mapping a 18,000 deg2 region over 800 times during its 10 years of operations, which will
allow us to observe much fainter galaxies than existing surveys and probe much deeper
redshifts than ever before. This will give us databases with several billion galaxies up to
z ∼ 3, as well as millions SNe Ia up to z ∼ 1. The remaining 10% will be dedicated to

Figure 3: Marginalized constraints on parameters in the ΛCM (left) and wCDM (right) models,
from the DES 3x2pt, Planck CMB and external BAO+ RSD+SNe Ia data. The combinations
of these data sets are shown in blue and represent the best constraints on these cosmological
parameters to date. Extracted from Abbott et al. (2022)

.
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other programs to improve the sky coverage for specific regions, such as the ecliptic and
galactic planes, which will further increase the total coverage to over half of the whole
sky.

Another upcoming mission is the Euclid space telescope (Moneti et al., 2022), whose
launch is scheduled for 2023. It will be complemented by ground-based telescopes in
both hemispheres to obtain photometric redshifts in 7 different broad optical filters (g,r,i,z
from the ground, and Y,J,H from Euclid) in an area of 15,000 deg2. It is expected to
measure over 30 million spectroscopic redshifts to be used for galaxy clustering and BAO
in the range 0.7 < z < 1.8, and observe over 1.5 billion sources suitable for weak
lensing analysis up to z = 2, with a precision 50 times better than current ground-based
surveys. Its main objective is to help us understand the physical origins of the accelerated
expansion of the universe by, e.g., measuring the growth index γ with a 1σ precision,
enough to distinguish between a large variety of modified gravity theories and general
relativity.

Figure 4: The J-PAS filter system, extracted from Benitez et al. (2014). The narrow filters have
a FWHL of 145Å and are spaced by about 100Å, meaning they have a significant overlap, which
allows for a better quality of the estimated photo-z.

While all of these surveys are based on either broad band imaging or moderate reso-
lution spectroscopy, each having their advantages and shortcomings, the recently started
J-PAS (Benitez et al., 2014) proposes to unite the best of both worlds using 56 narrow
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band (see Figure 4) filters instead. It will be able to detect several tracers such as millions
of LRGs (up to z ∼ 1), ELGs (up to z ∼ 1.4) and quasars (up to z ∼ 5), and by mapping
a large area of 8500 deg2 (∼ 1/5 of the sky) while still maintaining near-spectroscopic ac-
curacies on redshifts (∼ 0.3%). This will allow for a competitive measurement of both the
angular and radial components BAOs, which will provide an independent determination
of the equation of state parameter w with precisions of order < 4%. Recently, the J-PAS
pathfinder survey miniJPAS Bonoli et al. (2021), confirmed the quality of that data set in
terms of depth, photometric redshift accuracy and the ability to distinguish between the
different types of objects using the pseudo-spectra provided by the narrow-band filters.

This high quality data will, however, come at a cost: the LSST alone is expected to
bring in 20 TB of data per night of observation. So we must develop an efficient data
analysis pipeline to extract as much information as possible from the upcoming wealth
of data. Some form of data compression has typically been used to make our analysis
computationally realistic (Tegmark et al., 1998; Alonso, 2018), however, care must be
taken to avoid losing precision or even suppressing signs of new physics (Heavens et al.,
2020). The near full-sky coverage also means that many of the commonly used approx-
imations used for past surveys will no longer be valid. I will discuss these limitations in
the following section.
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3 Galaxy Clustering

One of the main ways we have been trying to study the distribution of matter in the
universe is through the clustering of galaxies, because they are the easiest to detect and
most abundant objects we can observe. For that reason, we build very large telescopes to
measure the positions of galaxies and construct a three dimensional map of their positions
in the sky. On large scales, galaxies trace the dark matter distribution up to a factor of
proportionality known as bias, b(z), which is in principle a function of scale, but is often
assumed to be constant to simplify calculations. This assumption is somewhat justified by
works such as Verde et al. (2002) who found that, on large scales, galaxies have a linear
bias close to unity, but we might have to measure this quantity more precisely for the full
picture.

It is, however, hopeless to try and create a model for the exact positions of galaxies in
our universe and describe the distribution of matter in the universe in a deterministic way.
Instead, we try to describe the statistical properties of the matter density field. Let ρg(~r)
be the galaxy density at a position ~r(z) in real space1, and ρ̄g the mean density over all
space. The galaxy density contrast is defined by

δg(~r, z) =
ρg(~r, z)− ρ̄g

ρ̄g
(3.1)

These density fluctuations grow over time because galaxies interact gravitationally
with each other, so regions of high density tend to become denser with time, while un-
derdense regions will become even less dense. Two-point functions of these overdensities
have proven to be very useful summary statistics because of the near Gaussian nature of
the matter density field on large scales, and there are a few different ways we can go about
it.

In this Section I will briefly review the approaches typically used to analyze clustering
data: the Fourier power spectrum P (k) used mostly with spectroscopic data, and the
angular spectrum C`, which has been in widespread use by the CMB community but
has also been used with photometric data, which sacrifice some precision in the radial
information in order to map the angular position of a much larger number of objects.
Here I focus on the latter because that is the formalism we further developed with this
work, for reasons that will become clear with this section.

1This definition is easier if we think of cells of volume ∆V , in that case ρg(~xi) = Ng(~xi)/∆V , where
~xi is the position of any given cell.
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3.1 The Fourier power spectrum

Primordial perturbations in the early universe are considered the seeds of all struc-
ture we observe today. They are a consequence of quantum fluctuations during inflation,
therefore we can think of the matter distribution in the large scale structure of the universe
as the result of a stochastic process, which is described by the theory of random fields (see
e.g. Primordial Cosmology by Peter and Uzan). A fundamental assumption in cosmology
is that this field is statistically homogeneous and isotropic, and hence that it is completely
determined by its irreducible moments, or correlation functions, with the first two being
the mean and the covariance, also called the two-point correlation function in the context
of large scale structure.

Our observations further justify working with the simple case of a linear Gaussian
field, whose Fourier modes evolve independently, These fields are completely described
by the mean and the two-point correlation function, defined as the expectation value:

ξg(|~r − ~r′|) = 〈δg(r)δ∗g(r′)〉 (3.2)

Physically, this expresses the excess probability of finding any two galaxies separated
by a distance ∆~r = ~r − ~r′. Hence, it is a measure of the distribution of matter. Such
perturbative quantities are usually assumed to be statistically homogeneous and isotropic,
that is, invariant under translation and rotations. The former implies that the correlation
is a function of only the distance between the galaxies, and only of the absolute value of
that distance, as a consequence of the latter.

In Fourier space, many of our equations have a simpler form, so it is useful to take
the Fourier transform of the galaxy density contrasts. Here we have to invoke the cosmo-
logical principle, and assume that the density ρ(~r) represents the real cosmic density field
reasonably well such that it can be taken to be periodic inside the survey volume. In that
case, the Fourier transform of the density fluctuations is:

δ̂g(~k) =

∫
d3r ei

~k·~r δg(~r); δg(~r) =

∫
d3k

(2π)3
e−i

~k·~r δ̂g(~k) (3.3)

which can also be written in terms of the growth function D(z) and the scale-independent
bias b(z) to make the dependence on redshift more explicit:

δg(~k, z) = D(z)δg(~k, 0) = b(z)D(z)δ(~k, 0) (3.4)
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From this definition, we write a related quantity, the galaxy power spectrum, Pg(k),
which is often more convenient to work with because its covariance matrix is more di-
agonal than that of the correlation function, and it is the quantity actually predicted by
our theories of structure formation. It is also more intuitive physically because it cleanly
separates well understood large scale processes from non-linear small scale ones. It is
defined by the covariance of the Fourier modes:

〈δg(~k, z)δ∗g(
~k′, z′)〉 =

∫
d3r d3r′ exp(i~k~r − i~k′~r ′) ξg(r, r′)

= (2π)3 δ(~k − ~k′)Pg(k, z)

(3.5)

with

Pg(k, z) ≡
∫
d3r ei

~k·~r ξg(r), ξg(r) =

∫
d3k

(2π)3
e−i

~k·~r Pg(k, z) (3.6)

The Dirac delta function in Eq. (3.5) expresses the assumed statistical homogeneity
of galaxy clustering, while the fact that Pg(k) depends only on the absolute value of
the wavevector ~k expresses isotropy. This quantity maps the galaxy distribution in the
universe, and can be related to the power spectrum of the underlying matter density field
through the galaxy bias:

Pg(k, z) = b(z)2P (k) (3.7)

If the density field is Gaussian, then the matter power spectrum P (k) provides a com-
plete statistical description of the matter distribution. It should be noted, however, that
this approximation eventually collapses once the fluctuations grow large enough, for they
cannot remain Gaussian because the density must always be positive. Hence, for small,
non-linear scales, we must include higher order terms which are then non-vanishing. But
in this work we focus on the linear regime, where inhomogeneities are still small enough
to be treated in linear order. Also note that this formalism isn’t exclusive to galaxies and
can be straightforwardly applied to any other tracers of matter.

Let’s now consider the total power spectrum of the actual matter density field, P (k),
and think about their connection to the primordial fluctuations in the early universe. They
are typically described by the primordial power spectrum, P0(k), which can be predicted
by our theory. These perturbations grow as a consequence of the dynamical interactions
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of matter over time, and their linear evolution can be encoded in a transfer function, T (k),
which also describes the physics of dark matter and electromagnetism interactions. The
linear power spectrum in the present day can then be written as:

Plin(k) = T (k)2P0(k) (3.8)

The primordial spectrum is usually assumed to follow a power law, P0(k) ∝ kn,
while the computation of T (k) is very complicated, but can be performed with numerical
codes such as CMBFAST or CAMB. So by measuring the linear power spectrum today,
we can straightforwardly test our theoretical predictions and fit cosmological parameters.
Though in this work we only consider the linear regime, it is worth noting that the non-
linear power spectrum has no analytical solutions. They can be modeled with N-body
simulations (see e.g. Peacock and Dodds, 1996). However, this requires a huge amount
of computing time, so what we do instead is use the Halo model formalism (see Seljak,
2000) to generate analytic fits (Halofit in CAMB) for the non-linear spectra of many N-
body simulations.

Figure 5: The linear (blue) and non-linear (yellow) matter power spectrum for CAMB’s fiducial
cosmology at redshifts z = 0 (solid) and z = 0.72 (dashed).

One can see in Figure 5 that the linear and non-linear spectra are essentially identical
until we get to small scales (k & 0.1h−1 Mpc). It is also possible to see the imprints of
the BAOs as wiggles in the matter power spectrum. These oscillations provide strong con-
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straints on both the angular diameter distance dA(z) and the Hubble parameter H(z) with
completely linear physics, unlike SNIa which involve highly non-linear stellar explosions.

Not only it facilitates the comparison between theory and data, the power spectrum is
also useful as a form of data compression, since it reduces the data set from millions of
positions of the tracers down to just a few hundred band powers. But how do we actually
go from a given data set consisting of hundreds of millions of positions of galaxies to an
actual power spectrum which we can compare with our theory?

In order to extract information from our observations, we use something called an
estimator, which is a function of the data and is also a random variable itself. We want
our estimator to be to be both precise and accurate: the first requirement means that it
should give us a distribution around the ensemble average as narrow as possible, that is,
with minimum variance. The second one means that this average of our measurements
must be as close as possible to the true value of the quantity we are trying to estimate.
Ideally, we want this average to be exactly equal to the true value, and if that is the case,
the estimator is said to be unbiased.

The most widely known estimators for the Fourier power spectrum are perhaps the
FKP (Feldman et al., 1993) and PVP (Percival et al., 2004) estimators which are, in fact,
both unbiased and have minimal variance. The first one, however, assumes that all types
of galaxies trace the underlying density field in the same way as dark matter does, and
we have known for a long time that this is not the case. While the second one takes into
account the fact that different tracers will map the matter distribution in a distinct manner,
one must first fix the biases and RSD parameters. A generalization of these estimators
was obtained in Abramo et al. (2016), using the full Fisher matrix for the Fourier power
spectrum for surveys of multiple tracers, which was previously derived from counts of
galaxies in Abramo (2012). This optimal estimator can also simultaneously measure the
scale dependent bias, RSD and non-gaussianities.

Since redshifts can be measured with exquisite precision by galaxy surveys, the stan-
dard approach has been to use the Fourier power spectrum. Despite certain advantages
related to the radial information, P (k) is not directly observable, so it is necessary to make
a number of assumptions, such as choosing a cosmological model to translate from red-
shift to real space. This is usually done recursively: one first chooses a set of fiducial pa-
rameters, computes the power spectrum assuming they correctly describe the background
cosmology, then estimates a new set of cosmological parameters to be subsequently used
as the new fiducial cosmology, and the process is repeated until convergence is reached.
This can introduce a bias into our results, and estimating the errors is not straightforward
because not only P (k), but also its argument k depend on cosmological parameters.
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Another problem is that the Fourier power spectrum approach doesn’t include lensing,
and it also assumes that the sky is flat, which isn’t realistic for the next generation of cos-
mological surveys because they will probe deeper redshifts and have a much larger sky
coverage. This assumption also implies that the survey volume is a large 3D Cartesian
box at a large distance from the observer, but since the speed of light is finite, we don’t
observe the Universe as a snapshot. Instead, what we see are successive 2D surfaces of
simultaneity over our past lightcone. Thus, we don’t have access to a 3D map of the uni-
verse in a given instant, and we can’t observe the time evolution over a cosmologically
relevant time (> 100 Myr) of a specific region in the sky either. Therefore, physical ob-
servables are more naturally expressed in spherical coordinates {z, θ, ϕ}, in the lightcone,
as opposed to our theory, which is best expressed in Cartesian coordinates {t, x, y, z} due
to our basic hypothesis of large-scale homogeneity and isotropy.

Works such as Yamamoto et al. (2006) and Scoccimarro (2015) have tried to take into
account the curvature of the sky and they are able to deal with this problem up to a point,
but these approximations start to fail at intermediate scales. Therefore, this method is
quickly becoming unreliable to study the large scale structure through the clustering of
galaxies, and we need an alternative.

3.2 The angular power spectrum

Our observations of the universe consist basically of spherical shells of constant red-
shift, hence we can use a decomposition in spherical harmonics Y`m, since they constitute
a natural orthonormal basis on the sphere. Let’s consider again the density contrast of
galaxies, which can be written as:

δg(θ, ϕ) =
∑
l,m

a`mY`m(θ, ϕ) (3.9)

with the harmonic coefficients given by:

a`m =

∫
dΩY ∗`m(θ, ϕ)δg(θ, ϕ). (3.10)

Alternatively, δg(θ, ϕ) can be seen as the galaxy density δ(~r), Eq. (3.3), integrated
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along the line of sight, such that:

a`m =

∫
dΩY`m(θ, ϕ)

∫
dz δg(~r(z))n(z)

=

∫
dΩY`m(θ, ϕ)

∫
dz n(z)

∫
d3k

(2π)3
b(z)δ̂g(~k)4π

∑
`′m′

ilj`(kr)Y`′m′(k̂)Y ∗`′m′(r̂)

=
4π

(2π)3

∫
dz b(z)n(z)

∫
d3k D(z)δ̂(~k, 0)

∑
`′m′

ilj`(kr)Y`′m′(k̂)δ`mδ`′m′

=
4π

(2π)3

∫
dz b(z)n(z)D(z)

∫
d3k δ(~k, 0)i`j`(kr)Y`m(k̂)

(3.11)

where n(z) is the normalized selection function, and j` is the `-th order spherical Bessel
function. In the second line, the plane wave expansion and the spherical harmonic addi-
tion theorem were used to rewrite the exponential:

ei
~k~r = 4π

∑
`m

ilj`(kr)Y`m(k̂)Y ∗`m(r̂) (3.12)

and the orthonormality of the spherical harmonics,
∫
dΩsY

∗
`m(ŝ)Y`′m′(ŝ) = δ``′δmm′

The angular power spectrum is then defined as the variance of these harmonic coeffi-
cients

〈a`m(r)a∗`′m′(r′)〉 = δ``′δmm′ C`(r, r
′) (3.13)

Being a two-point function, the angular spectrum represents the lowest order deviation
from isotropy. This is an actual observable, as opposed to the Fourier power spectrum,
and has the advantage of being fully model independent.

The dependencies on z of Eq. (3.10) can also be collected in a window function,

W (kr) =

∫
dz b(z)n(z)D(z)j`(kr(z)) (3.14)
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such that a simple expression for the angular power spectrum can be found:

Cij
` (r, r′) =

2

π

∫ ∞
0

dk k2W i(kr)W j(kr′)P (k, 0) (3.15)

where the superscripts i, j were introduced to denote different redshifts bins because the
C`’s at different z are not independent, and their correlations actually contain very impor-
tant information about the Baryon Acoustic Oscillations (BAOs). Therefore, the equation
above defines both auto (i = j) and cross-correlations (i 6= j). This allows us to recover
three dimensional information as well as compare data with theory. Note that this ex-
pression only includes the main contribution of the density perturbations, but unlike in
the case of the Fourier spectrum, effects such as lensing can be naturally included in the
window function as an additional term:

W (kr) =

∫
dz b(z)n(z)D(z)j`(kr(z)) + 2[Q(z)− 1]`(`+ 1)κ(z) (3.16)

where κ(z) is the weak lensing convergence.

3.2.1 Angular spectra estimation

Here I will briefly discuss some basic measurement techniques for the angular power
spectrum, and the issues that come with it. First, note that our theories describe most
quantities of interest as continuous functions of position, but in practice, our observations
are intrinsically discrete and we can only assign some value (e.g. galaxy number counts)
at a finite number of points on the sphere. Hence, a key intermediate step in the data
analysis process is to convert the raw data obtained from our detectors to a pixelized sky
map. It is important to use a good pixelization scheme that is as smooth and regular as
possible, and which also exploits symmetries of the spherical harmonics to simplify the
subsequent analysis.

Many different schemes were proposed over the past decades, but today the widely
used methodology for discretization and fast numerical analysis on a sphere is HEALPix,
which was originally developed for processing CMB data by Gorski et al. (1999), but can
generally be applied for any function on the sphere.

I consider here only the auto-correlations r = r′ for simplicity, and denote C`(r, r) ≡
C`. Noting that we can only measure (2` + 1) m-modes for a given multipole `, the
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simplest estimator for the angular power spectrum is

Ĉ` =
1

2`+ 1

∑̀
m=−`

|a`m|2 (3.17)

For an idealized full sky coverage, it is unbiased, that is:

〈Ĉ`〉 =
1

2`+ 1

∑̀
m=−`

〈a`ma∗`m〉 → C` (3.18)

and in this case the harmonic modes are independent, so the covariance matrices are
diagonal on linear scales, unlike in real space, where the angular correlation function on
different scales are correlated. However, this is never the case since we will always have
at the very least a region of the sky masked by the Milky Way, and for a realistic, partial
sky coverage the spherical harmonics are no longer orthogonal, so different ` modes are
coupled and contribute to the true power spectrum. Nevertheless, we can deal with this
by approximating the integral over the sky by a discrete sum over the pixels in the survey
region, such that the harmonics coefficients of Eq. (3.10) are now given by

ã`m =

∫
dΩY ∗`m(θ, ϕ)δg(θ, ϕ)

≈
∑
p

ΩpY
∗
`m(θp, ϕp) δg(θp, ϕp)

(3.19)

where (θp, ϕp) are the coordinates of the pixel p and Ωp is the surface area of that pixel.
A better estimator for the angular spectra is then the pseudo-C`, or simply PC`, defined
as (see Hivon et al., 2001):

C̃` =
1

1 + 2`

∑̀
m=−`

|ã`m|2 (3.20)

This is a nearly optimal estimator and very fast to compute from a pixelated map. The
original algorithm has been extended and implemented in public software packages, such
as NAMASTER (Alonso et al., 2019), which provides a framework capable of computing
the cross-spectra for galaxy clustering, lensing or shear, and to deal with any number
of linear systematics. Note that the pseudo-C` gives us a biased estimate of the angular
spectra, but the full-sky C` can then be recovered with a coupling matrix M resulting
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from the cut sky:

〈C̃`〉 =
∑
`′

M``′〈C`′〉 (3.21)

This coupling matrix M depends only on the geometry of the survey mask, and is com-
puted by comparing the spectrum of a lognormal mock simulation of the full sky to the
spectrum of the survey mask. This can easily be done numerically in terms of Wigner 3j
symbols with NAMASTER.

One then needs to invert the coupling matrix to recover the true C`, however this can’t
generally be done directly due to the intrinsic loss of information when masking the sky.
A possible solution is to bin the coupled PC` into bandpowers q, defined as a set of Nq

multipoles `q ≡ (`1
q, · · · , `

Nq
q ) and a set of weights for these multipoles normalized such

that
∑

`w
`
q = 1. The binned angular power spectrum is then given by:

C̃q =
∑
`

w`qC̃` =
∑
q′

Mqq′ Cq′ (3.22)

where it should be understood that the sum is implicitly performed over the multipoles in
the bins ` ∈ q, and the binned coupling matrix is

Mqq′ =
∑
`

∑
`′

w`qM``′ (3.23)

which is much more stable and easier to invert than the original unbinned matrix. In order
to finally compare the estimated angular power spectrum with our predictions, the theo-
retical spectrum must also be binned, following the same steps outlined for the estimator
above:

i) couple the multipoles;

ii) bin the spectra into bandpowers;

iii) decouple the bandpowers.

These steps are encoded into a filter matrix:

Fq` =
∑
qq′

M−1
qq′

∑
`′

w`q′ M`′` (3.24)
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such that the binned theoretical angular power spectrum is given by:

Cth
q =

∑
`

Fq`Cth
` (3.25)

Note that the PC` does not assume Gaussianity, so it gives us unbiased estimates of
the angular power spectrum for realistic, non-Gaussian fields as well.

3.2.2 Comparing the harmonic and Fourier approaches

There are some difficulties in applying angular power spectrum estimators to spectro-
scopic data. First, even with a fine binning strategy, it is not straightforward to guarantee
that all of the radial information is contained in the projected redshift bins. And more
importantly, these surveys require targeting of specific galaxies with fiber spectrographs
and longer integration times are needed, resulting in a much lower galaxy density and,
therefore, a lower signal to noise ratio (SNR). Nevertheless, it has been successfully done
in Loureiro et al. (2019) for the BOSS DR12 catalog, where the authors obtained cosmo-
logical constraints comparable to the results obtained by the BOSS collaboration with a
standard analysis, while not having to assume a fiducial cosmological model.

For photometric surveys, on the other hand, a tomographic analysis is naturally per-
formed since they lack the precision on the radial information, though they are still com-
petitive due to having a much higher number of objects. Besides, it is possible to recover
the 3D clustering information from the 2D tomography using angular auto and cross cor-
relations between different redshift bins (e.g. Asorey et al., 2012), and both approaches
were shown to be equivalent. The harmonic approach also does not suffer from the flat-
sky limitations and can naturally include wide-angle effects, which will be relevant for
the upcoming surveys.

Of course, the harmonic approach has its own drawbacks. In principle, to compare
with our theoretical predictions, we must include all cross-correlation bins. But since
the spherical Bessel integrals are slowly converging due to their highly oscillatory nature,
even with some form of data compression, such as the Karhunen-Loeve method described
in Tegmark et al. (1998), this is computationally impractical for our future data sets.

It has been common practice to use the Limber approximation, which makes those
integrals much easier to compute by replacing the spherical Bessel functions with a Dirac
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delta:

j`(kx)→
√

π

2`+ 1
δD(`+ 1/2− kx) (3.26)

This approximation is good if the rest of the integrand varies slowly compared to
the Bessel function, and this is typically true for large ` (for an in depth discussion, see
LoVerde and Afshordi, 2008). Although the effects on parameter estimation are negligible
with current data, Fang et al. (2020b) argue that for future data sets like the upcoming
LSST, the Limber approximation can bias our results significantly. To deal with this
problem, they propose an extension to the FFTLog method to efficiently compute the
angular power spectra that is also able to deal with integrals involving derivatives of the
spherical Bessel function, which show up in RSD and other high-order corrections. The
authors also point out that one might get away with using the Limber approximation for
galaxy-galaxy lensing, but not for galaxy clustering.

Other numerical methods for the harmonic approach such as ANGPOW (Campagne
et al., 2017), 2-FAST (Gebhardt and Jeong, 2017), SuperFaB (Gebhardt and Doré, 2021)
have been proposed to speed up those integrals, but here we review a simple pipeline that
helps alleviate this issue without sacrificing precision.

3.2.3 A Hybrid approach for the angular power spectrum

An important step in the process of extracting information from our surveys is the
proper binning of the data. One can in principle even take varying bin sizes to better
sample scales with a higher signal-to-noise ratio. In the Fourier power spectrum approach,
we must use redshift bins thick enough (e.g. ∆z ≈ 0.1) to contain all the k modes we
are interested in. All quantities are assumed to be constant in that bin, and the correlation
between different bins are ignored, effectively giving us diagonal covariance matrices by
construction. But for the angular power spectrum C`, we lose significant information by
taking a redshift slice as large as ∆z, which can suppress the signal along the line of
sight, so we must use much smaller bin sizes. However, they must also be larger than the
error in the redshift measurements, and in this case we must include the cross-correlations
between the different bins, and this can quickly become computationally unfeasible for
large data sets.

A hybrid method proposed by Camera et al. (2018) consists in combining the two
methods: first, the data is divided in thick ∆z = 0.1 bins, as in the Fourier approach.
Then, they are subdivided into 10 thin top-hat bins of δz = 0.01, which are convolved
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with a Gaussian of width σz = 0.001, making the bins overlap slightly to account for non-
negligible errors in redshift estimation. Each thick bin is considered a separate survey to
which we apply the tomographic approach, considering all the cross correlations between
the thin bins. Then, all the Fisher matrices obtained from each thick bin are summed.

This hybrid approach is far less computationally expensive than the others: for 0.6 ≤
z ≤ 2.0, it requires the computation of only 770 spectra, as opposed to the 9870 needed
with the regular tomographic approach. This method works because most of the infor-
mation comes from correlations at small separations, since the correlation coefficient be-
tween different bins quickly falls off as a function of ∆z. Thus, treating every thick bin as
a separate survey and neglecting the cross correlations between distant bins is a reasonable
approximation. Although it neglects lensing, it was also shown that this binning strategy
has a constraining power comparable to the standard P (k) analysis, and presents a sig-
nificant information gain over the tomographic approach. The hybrid method, therefore,
optimizes the angular power spectrum computations for spectroscopic surveys.

3.3 Sources of statistical errors

In this subsection, I discuss the two main statistical issues we encounter when trying
to measure the power spectrum or the correlation function of a given galaxy sample: shot
noise and cosmic variance.

Cosmological surveys can only probe a fraction of the density field of our universe,
and they do so imperfectly. Although it would be ideal, our telescopes can’t detect all the
objects in a given region, only those brighter than some lower intensity threshold. Thus, a
survey is characterized by its selection function, n̄(~r), which is the expected mean number
of galaxies at position ~r given the selection criteria of the survey, such as the flux limit.
Now remember that the Fourier transform of the density contrast, Eq. (3.1), can be written
as:

δ(~k) =
1

V

∫
d3r δ(~r)ei

~k·~r (3.27)

where V is a volume sufficiently large to represent the real underlying density field. By
definition, the power spectrum is simply

P (k) ≡ 〈|δ(~k)|2〉 (3.28)
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Since we don’t observe a smooth field, the finite number of observed galaxies are
assumed to be drawn from a Poisson sampling of the true density field, then the selection
function can be interpreted as the probability of including a galaxy at position ~r in the
survey, in units of number of galaxies per unit volume. In this Poisson process, the number
density distribution of objects is given by:

n(~r) =
∑
i

δD(~r − ~ri) (3.29)

where ~ri is the position a galaxy i. The continuous densities ρ are then replaced by this
discrete number density and the contrast becomes:

δd(~r) =
n(~r)− n̄(~r)

n̄(~r)
(3.30)

Now we split the volume V into infinitesimal volume elements dVi where there are
either 0 or 1 galaxies (ni = 0, 1), such that 〈ni〉 = 〈n2

i 〉, and we take the Fourier transform
of the density contrast with this discrete distribution:

δd(~k) =
1

n̄

∑
i

nie
i~k·~ri − δK~k,0 (3.31)

where δK is the Kronecker delta and the subscript d represents the discretized contrast.
Now we can compute the ensemble average

〈δd(~k)δ∗d(
~k′)〉 =

〈
1

n̄2

∑
ij

ninje
i(~k~ri−~k′·~rj) − 1

n̄

∑
i

nie
i~k·~riδK~k′,0

− 1

n̄

∑
j

nje
i~k′·~rjδK~k,0 + δK~k,0δ

K
~k′,0

〉 (3.32)

Remember that for a Poisson distribution:

〈ni〉 = n̄dVi (3.33)

〈ninj〉i 6=j = n̄2dVidVj[1 + δ(~ri), δ(~rj)], (3.34)

then after a bit of algebra, we find that the power spectrum we measure for a given dis-
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tribution of galaxies will have a noise contribution, given by the inverse of their number
density:

〈δd(~k)δ∗d(
~k′)〉 = P (k) +

δ~k~k′

n̄
. (3.35)

Intuitively, this makes sense because we should be able to extract more accurate infor-
mation if we can observe a higher density of galaxies: in the limit n̄→∞, the shot noise
is null and we perfectly recover the correlation function. In principle, instrumental noise
should also be added here, but here we assume it is much smaller than the shot noise so
that it can be neglected.

This term also appears for the angular power spectrum and, in general the expectation
value of the observed overdensities is a sum of the true correlation function and this
diagonal shot noise term:

〈δ(r)δ∗(r′)〉 = C(r, r′) = ξ(r, r′) +
δD(r − r′)
n̄(r)

(3.36)

Now, remember that the scales k ∼ 1/λ we can study with a given survey depend
on its volume. Therefore, some modes are beyond reach because we can only map a
finite volume, and the largest modes we can probe are very poorly determined because
there is only one realization of the matter density field available, that is, we only have
one universe to observe. This limitation is known as cosmic variance and is the other
main source of statistical uncertainty we have in power spectrum estimation, being more
relevant at larger scales.

We can estimate how much this affects our error bars by considering the ideal scenario
of a full sky survey, in which case Eq. (3.17) is unbiased and optimal. If we further assume
that the harmonic density contrast a`m on the sphere are Gaussian variables, we can use
Wick’s theorem to compute the estimator’s variance:

V ar(Ĉ`, Ĉ`′) = 〈Ĉ`Ĉ`〉 − 〈Ĉ`〉〈Ĉ`〉 =
1

(2`+ 1)(2`′ + 1)

∑
mm′

〈a`ma∗`ma`′m′a∗`′m′〉 − C`C`′

=
1

(2`+ 1)(2`′ + 1)

∑
mm′

(
C`C`′ + (−1)−(m+m′)δ``′δmm′C2

` + δ``′δmm′C2
`

)

− C`C`′ (3.37)
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=
1

(2`+ 1)(2`′ + 1)

∑
mm′

2C2
` δ``′δmm′ =

2C2
`

2`+ 1
δ``′ = σ2

c

While shot noise can, in principle, be reduced by increasing the number density of
the observed tracers, cosmic variance is limited by the volume of the survey, and that’s
a problem especially on very large scales since we only have one universe to observe at
any particular time. This in principle represents a fundamental statistical limit for our
measurements about the large scale structure of the universe.

However, with a multi tracer approach, it is possible to overcome this limitation (see
e.g. Seljak, 2009; Abramo and Leonard, 2013) and measure some bias sensitive parame-
ters with a precision unconstrained by the cosmic variance σc, as long as the shot noise of
all concerning tracers is sufficiently small. This is done by combining two or more tracers
of the same underlying density field with different biases and comparing their relative
clustering. This increase in constraining power is a direct consequence of the the multi
tracer Fisher matrix, whose eigenvalues are the relative clustering amplitudes between
these tracers (see Abramo and Leonard, 2013).
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4 Redshift space distortions

In this section I briefly review an important effect that affects our measurements: lin-
ear redshift space distortions (RSD), first derived in Kaiser (1987). This is an important
effect caused by peculiar velocities of galaxies and results in the discrepancy between
their positions in real and redshift space, which complicates the interpretation of galaxy
clustering and must be taken into account. On the other hand, it also offers a new inde-
pendent way of measuring the growth rate of structure formation, which can be used for
constraining the density parameters of the universe, and also as a test of general relativity
on large scales. A more complete review on the effects of linear RSD can be found in
Hamilton (1998), or Percival et al. (2011) for a more recent but less thorough one. A
description of non-linear RSD effects can be found in e.g. Taruya et al. (2010).

4.1 Peculiar velocities and linear RSD

Although this can change in the following years, or decades, with the refinement of our
gravitational waves detection network, or even some other innovative method, currently
the best way we have to estimate cosmological distances is the recessional velocity of
galaxies, to which we can attribute a distance through the Hubble–Lemaître law:

v(z) = H(z)r(z) (4.1)

For relatively close galaxies, the Hubble parameter H can be taken as approximately
constant such that the expression above can be written as:

v ≈ H0r (4.2)

where H0 is the Hubble constant today. So up to a few hundred megaparsecs from us, the
recessional velocity v of a galaxy is linearly proportional to its real distance r.

In practice, our measurements are done by identifying emission or absorption lines of
particular elements in the spectra of the observed objects, and comparing to the known
wavelengths of the same lines for a source at rest. Then the redshift can be found through
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the relation:

z =
λo − λe
λe

=
∆λ

λe
=

√
1 + v/c

1− v/c
− 1 ≈ v

c
(4.3)

where λo and λe are the wavelengths of the observed and emitted light, respectively, and
the approximation is valid for redshifts z � 1. Therefore, we can use Eq. (4.2) to infer
distances on scales for which the traditional distance ladder doesn’t work. Note that this
relies on the assumption that atomic physics does not change over cosmological time
scales, such that these spectra were actually the same billions of years ago.

Since it is possible to measure redshifts with an incredibly good accuracy, unlike
distances, large cosmological surveys were devised to map the position of galaxies in
redshift space. However, our measurements are susceptible to deviations from the Hubble
flux, caused by inhomogeneities in the gravitational field around the galaxy, which can
give rise to the so called peculiar velocities. In other words, if the universe was not
expanding, galaxies would still have some velocity, generally in the direction of a region
of high density around it, which would shift their measured spectra. The observed velocity
of a given galaxy is then given by a combination of Hubble flow (which is proportional to
their physical distance) and their peculiar velocity, ~vp = ~v · r̂:

~vo = H(z)~r + ~vp (4.4)

Therefore, the distances ~s we actually observe in a redshift map are distorted by a
factor proportional to their peculiar velocity, and to good approximation only in the radial
direction. In comoving coordinates, we have:

~s = ~r +
vp(~r)

a(z)H(z)
r̂ (4.5)

where a(z) = (1 + z)−1 is the scale factor and H(z) is the Hubble parameter. Note that
both the position in real space, ~r = ~r(z), and in redshift space, ~s = ~s(z), are functions
of the redshift z, but henceforth we shall generally suppress this dependence from our
notation for simplicity. Other factors, such as weak lensing and the integrated Sachs-
Wolfe effect, also affect the observed redshift of galaxies, but here we consider only
distortions caused by peculiar velocities.

This effect is quite intuitive: the expansion of the universe makes galaxies move away
from us at a rate proportional to their distance. Hence, if their peculiar motion makes
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Figure 6: A simple schematic showing how peculiar velocities (represented by the arrows) affect
our observations of a spherical distribution of matter.

them recede at a even faster rate, they will look farther away than they actually are. By
contrast, if their peculiar velocity is anti-parallel to the line of sight, they will seem closer
to us. To see how this affects a group or cluster of galaxies, let’s consider a spherical shell
of galaxies falling towards its center.

A schematic is presented in Figure 6 to illustrate how peculiar velocities distort over-
densities along the line of sight. At large scales, the peculiar velocity of galaxies in a
spherical shell falling towards a central region of overdensity is small compared to its
radius, so what we observe is a squashed shell. Hence, the clustering is artificially am-
plified along the line of sight and this is known as the Kaiser effect. On the other hand,
when we go to smaller scales, the infall peculiar velocity tends to get relatively larger. At
the turnaround point, when the peculiar velocity just cancels out the general Hubble ex-
pansion, we would observe a shell collapsed to a single velocity in redshift space. And at
even smaller, non-linear scales, the relatively large velocities make the galaxy distribution
appear elongated along the line of sight, giving rise to the so called fingers-of-god.

This is a significant effect that must be taken into account for any observable that
involves radial distance, such as galaxy number counts. For small areas in the sky, the
Fourier transform of the density contrast in redshift space is related to the real-space
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contrast by

δs(~k) = (1 + βµ2)δ(~k) (4.6)

where the superscript s denotes a quantity in redshift space, µ = k̂ · ẑ is the cosine of the
angle between ~k and the line of sight ẑ, and β is the linear redshift distortion parameter,
which, in a standard pressureless FLRW cosmology with bias b, can be related to the
present day cosmological density Ωm of the universe by

β =
f(Ωm)

b
≈ Ω0.54

m

b
(4.7)

where f = d ln δ/d ln a is the dimensionless linear growth rate. Note that β is not really
a true cosmological parameter such as, say, Ω0, because it only exists within the context
of linear biasing, which is most likely wrong and just a good approximation. Neverthe-
less, this distortion parameter can be measured through the amplitude of distortions on
large scales, and was originally proposed to provide an independent way to determine
the density parameter Ωm itself, though the particularly simple approximation in (4.7)
requires one to assume that ΛCDM, and thus general relativity, are correct. As a matter
of fact, it is possible to measure this growth index γ in f(Ωm) = Ωγ

m, and nowadays the
distortion parameter is also a powerful tool to test models of modified gravity (see e.g.
Hernández-Aguayo et al., 2019, and references therein).

Equation (4.6) was first derived in Kaiser (1987) and is known as the Kaiser formula,
but this approximation is not suitable for the next generation of surveys and we can do
better. We start from the continuity equation, which can be used to relate the density and
velocity fields:

ρ̇ = −~∇ · (ρ~v) (4.8)

where the dot denotes a time derivative and ~∇· is the divergence. In linear perturbation
theory, we can write the density as ρ = ρ0[1 + δ(~r)], with ρ0 constant. Performing a
change of variables d/dt = aH(d/da), we have:

− aH dδ(~r)

da
= ~∇ · ~v = −Hδ(~r)d ln δ(~r)

d ln a
= −H(z)f(z)δ(~r) (4.9)

In Fourier space, notorious for simplifying vectorial computations, the divergence of the
velocity field takes a much simpler form, so we take a quick detour and Fourier transform
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the equation above to write the peculiar velocity as:

vp(~k) = ~v(~k) · r̂ = if(z)H(z)δ(~k, z)
(~k · r̂)
k2

(4.10)

Note that i(~k · r̂)/k2 ≡ − d
dr
~∇−2, so we can go back to real space, where the peculiar

velocity is now given by (see e.g. Hamilton and Culhane, 1995):

vp(~r) = −H(z)f(z)
d

dr
~∇−2δ(~r) (4.11)

where ~∇−2 is the inverse Laplacian. This comes from the fact that, in linear perturbation
theory, an overdensity creates a peculiar velocity field (see e.g. Peebles, 2020), which can
be derived from the a potential function whose Laplacian is the overdensity itself.

Now, to find the relationship between the real and redshift space overdensities, re-
member that the mass must be conserved, such that:

ρsd
3s = ρrd

3r ⇒ 1 + δs(~s) =
d3r

d3s
[1 + δ(~r)] (4.12)

where the Jacobian can be computed from Eq. (4.5):

d3r

d3s
≡ J =

[(
1+

1

H(z)

d

dr
vp(~r)

)(
1+

vp(~r)

H(z)r

)2
]−1

≈
(

1+
1

H(z)

d

dr
vp(~r)

)−1

(4.13)

where the approximation follows from the fact that the correction from the derivative of
the peculiar velocity, is larger than the other correction by a factor of kr: for a plane
wave perturbation, it is of order kv/H0, while the second one is of order v/H0r. Kaiser
argued that r is of the order of the size of the survey, while k is of the order of the Fourier
modes we try to measure. But there are very few modes with wavelength that large within
the survey volume and they are very poorly determined, hence we are only generally
interested in modes with kr � 1. Therefore, in linear approximation, we have:

1 + δs(~s) =

(
1− 1

H(z)

d

dr
vp(~r)

)
[1 + δ(~r)] (4.14)

Now remember the expression we found for the peculiar velocity, Eq. (4.11), then the
relation between the density contrast in real and redshift space, without the small angle
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approximation, becomes

δs(~s) =

(
1 + f(z)

d2

dr2
~∇−2

)
δ(~r) (4.15)

4.2 The angular power spectrum in redshift space

We can now find an exact expression for the angular power spectrum in redshift space.
From now on, I will drop the superscript in the notation of the overdensity, δs(~s)→ δ(~s),
because it should be clear from their argument whether they refer to real or redshift space.
First, we decompose the overdensities in spherical harmonics:

δ(~s) =
∑
l,m

a`m(s)Y`m(ŝ); a`m(s) =

∫
dΩs Y

∗
`m(ŝ)δ(~s) (4.16)

where we add a subscript on dΩs to make it clear that the angular integral is performed
over the unprimed coordinates. The harmonic correlation in redshift space is then given
by:

〈a`m(s)a∗`′m′(s′)〉 =

∫
dΩs dΩs′ Y

∗
`m(ŝ)Y`′m′(ŝ′)〈δ(~s)δ∗(~s)〉

=

∫
dΩs dΩs′ Y

∗
`m(ŝ)Y`′m′(ŝ′) (4.17)

×

〈[
1 + f(z)

d2

dr2
~∇−2

]
δ(~r)

[
1 + f(z′)

d2

dr′2
~∇−2

]
δ∗(~r ′)

〉

Now, remember that the real space overdensity is:

δ(~r) =

∫
d3k

(2π)3
e−i

~k~r δ̂(~k) (4.18)

so we can use the plane wave expansion and after some lengthy but straightforward alge-
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bra (see Appendix A for an explicit derivation), we find that

〈δ`m(s)δ∗`′m′(s′)〉 =
2

π

∫
dk k2 [j`(kr)− f(z)j′′` (kr)]

× [j`(kr
′)− f(z′)j′′` (kr′)]P (k)δ``′δmm′

≡ Cs
` (r, r

′)δ``′δmm′

(4.19)

where the angular power spectrum in redshift space is

Cs
` (r, r

′) ≡ 2

π

∫
dk k2 [j`(kr)− f(z)j′′` (kr)] [j`(kr

′)− f(z′)j′′` (kr′)]P (k) (4.20)

Note that this expression does not take lensing into account, though it can be naturally
included in a window function. In this work, however, it is a complication we will not
deal with.
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5 Fisher matrix in real space

When estimating how accurately we can measure cosmological parameters and con-
strain our models, it is useful to use the Fisher information matrix, first proposed nearly
80 years ago by Fisher (1935) and introduced to the cosmology community by Tegmark
et al. (1997).

Suppose we want to constrain a set of parameters θ, under the assumption of a certain
model M given some data set x. Before the measurements, we can think of x as a random
variable with some probability distribution p(x|θ) that is a function of the parameters. The
Fisher matrix offers us a simple way of measuring how much information the observable
x carries about a parameter θ. In the frequentist view, it is defined as the expectation
value of the Hessian of log likelihood L = − lnL:

Fαβ =

〈
∂2 lnL
∂θα∂θβ

〉
(5.1)

while in the Bayesian approach the data is not seen as random variables, so the Fisher
matrix is then evaluated at the maximum likelihood:

Fµν =
∂2L

∂θα∂θβ

∣∣∣∣∣
θ=θ̄

(5.2)

These two definitions coincide for Gaussian data if the mean and variance depend on
the parameters in a linear way. The Fisher matrix is the inverse of the covariance matrix,
and indeed, the Cramér-Rao inequality tells us that it provides a lower bound on the error
of a parameter θµ,

σ(θα) ≤
√

(F−1)αα (5.3)

which means that this formalism allows us to find out the absolute minimum error bars
we could possibly obtain for a parameter θα with a given unbiased estimator, regardless
of the method used to analyze the data. This is useful when planning future experiments,
since no data or even simulations are necessary. We can forecast how well multiple ex-
periments will do, knowing only our model and measurement uncertainties, and compare
their precision versus the cost to make a better informed decision.
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In the case of a Gaussian distribution with mean µ, and covariance:

C = 〈(x− µ)(x− µ)T 〉, (5.4)

and defining the data matrix:

D = (x− µ)(x− µ)T , (5.5)

we have:

2L = ln detC + (x− µ)C−1(x− µ)T

2L =Tr[lnC + C−1D],

(5.6)

where we used the identity ln detC = Tr lnC. Taking the partial derivative of the equa-
tion above gives:

2
∂L
∂θα

=Tr

[
C−1 ∂C

∂θα
− C−1 ∂C

∂θα
C−1D + C−1 ∂D

∂θα

]
(5.7)

Now remember that 〈x〉 = µ and 〈xxT 〉 = C + µµT , so

〈D〉 = C

〈
∂D

∂θα

〉
= 0

〈
∂D2

∂θα∂θβ

〉
=
∂µ

∂θα

∂µT

∂θβ
+
∂µ

∂θα

∂µT

∂θβ

(5.8)

With this we see that 〈∂L/∂θα〉 = 0. Using the chain rule on (5.7), we get:

2
∂L2

∂θα∂θβ
= Tr

[
C−1 ∂C2

∂θα∂θβ
− C−1 ∂C

∂θα
C−1 ∂C

∂θβ

+ C−1

(
∂C

∂θα
C−1 ∂C

∂θβ
+
∂C

∂θβ
C−1 ∂C

∂θα

)
C−1D
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− C−1

(
∂C

∂θα
C−1 ∂D

∂θβ
+
∂C

∂θβ
C−1 ∂D

∂θα

)

− C−1 ∂C2

∂θα∂θβ
C−1D + C−1 ∂D2

∂θα∂θβ

]
(5.9)

Therefore, for a Gaussian distribution with µ = 0, the Fisher matrix (5.1) is simply:

Fαβ =
1

2
Tr

[
C−1 ∂C

∂θα
C−1 ∂C

∂θβ

]
(5.10)

The beauty of this formalism is that we can combine multiple independent experi-
ments, as well as any prior knowledge we have about the parameters, by adding their
Fisher matrices. Then we simply invert the summed matrix to get the uncertainties of the
joint analysis. The Fisher matrix can also in principle be computed analytically, making it
a much faster alternative for error estimation than Monte Carlo simulations, which must
explore the whole multidimensional parameter space.

In addition to being a very powerful prediction tool before any data is even gathered,
the Fisher matrix can also be used to maximize the information we can extract from the
actual data, by paving the path to obtaining optimized analytical maximum likelihood
(ML) estimators.

5.1 Fisher matrix in the lightcone

We wish to compute the Fisher matrix for the key physical observable that we have
on redshift slices: the angular power spectrum, C`(z, z′). This corresponds to angular
averaging two slices, one at redshift z and the other at redshift z′. Due to the azimuthal
symmetry, the dependence on m is cancelled and only the total angular momentum num-
ber ` survives the angular integration. This is in contrast with the 3D picture in Cartesian
coordinates, where we start with the density contrast δi(~x) for a tracer µ, and after Fourier
transforming and averaging over the modes, we end up with the power spectrum Pi(~k),
or more generically, with spectra for any tracers i and j, P ij(~k).

In Abramo et al. (2016) it was shown how to optimally combine different tracers
over the same volume, in order to maximize the signal/noise of the observables P i(~k).
Since the optimal weights are simply a realization of the idea of maximizing signal (or
minimizing noise), similarly to what is done with Wiener filters, the key intermediate step
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towards obtaining those weights is an analytical computation of the Fisher matrix. This
was done in, e.g., Abramo (2012); Abramo and Leonard (2013), where a simple analytical
expression for the Fisher matrix for the observables P i(~k) was obtained:

F ij =
δij

P iP i

∫
vi

d3x d3k

(2π)3
F ij , (5.11)

where the spatial integration is performed over the volume where the tracers have been
mapped, and which are used for the computation of the power spectra. Inside the inte-
gral we have the Fisher information matrix per unit of phase space volume (Abramo and
Leonard, 2013):

F ij =
1

4

δijP iP(1 + P) + P iPj(1− P)

(1 + P)2
(5.12)

where we defined the effective (adimensional) clustering strength in units of shot noise,
P i = n̄i(~x)P i(~k), and the total effective clustering strength of all the Nt tracers, P =∑Nt

i=1P i. Shot noise is assumed to be Poissonian, that is P i
shot = 1/n̄i, where n̄i(~x) is the

number density of the tracer α inside the survey volume, In other words, P i = P i/P i
shot.

This means that equation (5.12) is in fact the Fisher information density per unit of
phase space volume for logP i (Abramo, 2012):

F [ logP i(~x,~k), logPj(~x ′, ~k′) ] = (2π)3δD(~x− ~x ′)δD(~k − ~k ′)F ij(~x,~k) (5.13)

In bins of finite volume we have:

F [ logP i , logPj ] = δij F ij (5.14)

which means that separate volume carry effectively independent information. One can
easily check that the multi-tracer Fisher matrix of equation (5.11) reduces to the FKP
Fisher matrix when there is only one type of tracer.

Several approximations were used in order to arrive at these expressions. Amongst
them, the assumption that the volumes were large and separate, which is what allow us to
assume the statistical independence between them. In practice, one basically must map a
volume vi that is large is sufficiently spatially separated from another volume vj , such that
the measurements of the power spectra in each volume sample statistically independent
realizations of the modes δ̃i(~k).
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The main contribution of this work is the generalization of the approach used in
Abramo (2012); Abramo and Leonard (2013); Abramo et al. (2016) in order to derive
the Fisher matrix for the angular power spectra C`(z, z′):

F ij
`1,`2

(z1, z
′
1; z2, z

′
2) = F [Ci

`1
(z1, z

′
1), Cj

`2
(z2, z

′
2)] . (5.15)

We are particularly interested in the limit where the redshift slices are very thin and can
be even adjacent, e.g.: z′i = zi + ∆zi, with ∆zi � 1, and z2 = z1 + ∆z12, with ∆z12

also small, in which case it will not be necessarily true that Ci1
`1

(z1, z
′
1) is still statistically

independent of Ci2
`2

(z2, z
′
2).

5.2 The harmonic Fisher matrix in real space

The remainder of this dissertation will focus on presenting the main results of this
work (Abramo et al., 2022): we derive exact expressions for the covariance and Fisher ma-
trices of the angular power spectrum for two redshift slices with radii x̄ and ȳ, Cij

` (x̄, ȳ),
working under the assumption of linear biasing for the tracers.

First, let’s derive the Fisher matrix from first principles in real space, that is, excluding
redshift space distortions. The degrees of freedom available in a survey are the positions
of the galaxies, or other tracers of the underlying matter distribution. The measurement
of the number densities ni(~x) of tracer species i, over some volume around the position
~x, reflects some mean density of those tracers as well as a fluctuation δni = ni − n̄i

around this mean. From these observables we can compute the main object that carries
information about cosmology, the data covariance, defined as:

Σij(~x, ~y) = 〈δni(~x) δnj(~y)〉 = n̄i(~x) n̄j(~y) ξij(~x, ~y) + n̄i(~x)δijδD(~x− ~y) (5.16)

where ξij(~x, ~y) is the 2-point correlation function and the last term is the contribution
from shot noise, which we assume can be modeled by a Poisson process. The multi-tracer
2-point correlation function is generally assumed to be related to the matter correlation
function, ξ(m)(~x, ~y), through some knowable relations such as tracer bias, redshift-space
distortions, etc. In real space, the matter two-point correlation function can be written in
terms of the matter power spectrum Pm(k) as:

ξ(m)(~x, ~y) = ξ(m)(|~x− ~y|) =

∫
d3k

(2π)3
e−i

~k·(~x−~y) Pm(k) (5.17)
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If we want to estimate the constraints on some set of parameters θµ, which can be
derived from the two-point correlation functions, we start by constructing the Fisher in-
formation matrix for that set of parameters:

F [θµ, θν ] = F µν =
1

2
Tr

[
∂Σ

∂θµ
Σ−1 ∂Σ

∂θν
Σ−1

]
(5.18)

=
1

2

∑
iji′j′

∫
d3x

∫
d3y

∫
d3x′

∫
d3y′

×
{
∂Σij(~x, ~y)

∂θµ
[Σji′(~y, ~x ′)]−1∂Σi′j′(~x ′, ~y ′)

∂θν
[Σj′i(~y ′, ~x)]−1

}

where the compact notation for the trace in the definition of the first line denotes both
of a sum over all tracers, as well as spatial integrals over all positions. As hinted by
this expression, the tracer indices are linked to the spatial positions where we measure
those same tracers: i ↔ ~x, j ↔ ~y, i′ ↔ ~x ′, j′ ↔ ~y ′. Therefore, we can use a compact
notation where the sum over a tracer index also denotes the integral over its corresponding
positions in space.

After computing the Fisher matrix we can invert it to find the covariance matrix for
the parameters θµ:

Cov[θµ, θν ] = Covµν = [Fµν ]
−1 (5.19)

Now, remember that we do not observe the Universe in snapshots, but over the past
light-cone, and the surfaces of constant time are not flat, but 2D spherical shells. There-
fore, to include all the physics that depends on evolution or redshift-space effects, it is
necessary to describe them using spherical coordinates.

So we would like to express the number of galaxies that occupy some spherical shell
of width ∆x and radius x ∈ [x̄−∆x/2, x̄+∆x/2] in terms of an expansion over spherical
harmonics,

N i
`m(x̄) =

∫
x̄

d3xY ∗`m(x̂)ni(~x) =

∫ x̄+∆x/2

x̄−∆x/2

dx x2

∫
d2x̂ Y ∗`m(x̂)ni(~x) (5.20)

From this, we define the harmonic space 2-point correlation function (i.e. the angular
power spectrum) in terms of the expectation value of the counts inside the spherical shells
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of radii x̄ and ȳ:

〈
δN i

`m(x̄) δN j∗
`′m′(ȳ)

〉
= Σij

` (x̄, ȳ) δ``′ δmm′ (5.21)

=

∫
x̄

dx x2

∫
ȳ

dy y2

∫
d2x̂

∫
d2ŷ Y ∗`m(x̂)Y`′m′(ŷ) Σij(~x, ~y)

where symmetry under rotations leads to the diagonal structure of the correlation function
in harmonic space. Notice that the harmonic data covariance above reduces to the angular
power spectrum only after subtracting shot noise, Σij

` (x̄, ȳ)→ Cij
` (x̄, ȳ).

Let’s take a step back and look at the covariance matrix in configuration space. Note
that it can be written in terms of the harmonic space covariance by summing over the
spherical harmonics:

Σij(~x, ~y) =
4π

∆Vx̄

4π

∆Vȳ

∑
`m

Y`m(x̂)Y ∗`m(ŷ) Σij
` (x̄, ȳ)

=
4π

∆Vx̄

4π

∆Vȳ

∑
`

2`+ 1

4π
L`(x̂ · ŷ) Σij

` (x̄, ȳ)

(5.22)

where the volume of the spherical shell around x̄ is given by ∆Vx̄ =
∫
x̄
d3x = 4π x̄2 ∆x,

and the last line makes it clear that the correlation function depends on the angle only
through the combination µ = x̂ · ŷ that appears in the argument of the Legendre polyno-
mial L`. Now, if we are able to find an expression for the inverse of the data covariance
in harmonic space, such that:

∑
j

∑
ȳ

[
Σij
` (x̄, ȳ)

]−1
Σji′

` (ȳ, x̄′) = δii′δx̄ x̄′ (5.23)

then we could define the inverse of the data covariance in real space in analogy to Eq.
(5.22):

[
Σij(~x, ~y)

]−1
=

∆Vx̄
4π

∆Vȳ
4π

∑
`m

Y`m(x̂)Y ∗`m(ŷ)
[
Σij
` (x̄, ȳ)

]−1
(5.24)

Taking the limit back to the continuum by making the volume elements infinitesimally
small, it is then straightforward to show, with the help of Eq. (5.23) and the orthogonality
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of the spherical harmonics,

∑
`m

Y`m(x̂)Y ∗`m(ŷ) = δD(x̂− ŷ) ,

that the expression above, Eq. (5.24), is indeed the inverse of the covariance:

∑
j

∫
d3y

[
Σij(~x, ~y)

]−1
Σji′(~y, ~x ′) = δii′δD(~x− ~x ′) (5.25)

We can now go back to the expression for the Fisher matrix, Eq. (5.18), and plug
in the the covariance and its inverse, Eqs. (5.22) and (5.24), to obtain, after some trivial
algebra:

F µν =
1

2

∑
`

(2`+ 1)
∑
i,x̄

∑
j,ȳ

∑
i′,x̄′

∑
j,ȳ′

∆Vx̄
4π

∆Vȳ
4π

∆Vx̄′

4π

∆Vȳ′

4π

× ∂Σij
` (x̄, ȳ)

∂θµ

[
Σji′

` (ȳ, x̄′)
]−1 ∂Σi′j′

` (x̄′, ȳ′)

∂θν

[
Σj′i
` (ȳ′, x̄)

]−1

(5.26)

Notice that the angular integrals cancel all the dependence on the spherical harmonics,
such that only one set of (`,m) survives, resulting in the factor

∑`
m=−` = 2`+ 1 since no

term depends on m. This shows that the Fisher matrix can be decomposed into linearly
independent spherical harmonic components:

F µν =
∑
`

F µν
` (5.27)

where we define:

F µν
` =

2`+ 1

2
Tr

{
∂Σij

`

∂θµ

[
Σji′

`

]−1 ∂Σi′j′

`

∂θν

[
Σj′i
`

]−1
}

(5.28)

with the trace denoting, in short-hand notation, both sums over tracer indices as well as
integrals over the corresponding radii,

∑
x̄ ∆Vx̄/4π(· · · ) →

∫
dx̄ x̄2(· · · ). Since we will

choose our parameters θµ → Cij
` , and ∂Cij

` /∂C
i′j′

`′ ∼ δ``′ the full Fisher matrix for the
correlation functions in harmonic space is given by Eq. (5.28). Note that in this derivation
we have assumed that the whole sky was available, but as discussed in Section 2, this is
never the case and with partial sky coverage fsky = ∆Ω/4π, where ∆Ω is the survey
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angular area, and collecting different `’s inside a bin ¯̀, the expression becomes (Hu and
Jain, 2004):

F µν
¯̀ =

fsky
2

∑
`∈¯̀

(2`+ 1) Tr

{
∂Σij

`

∂θµ

[
Σji′

`

]−1 ∂Σi′j′

`

∂θν

[
Σj′i
`

]−1
}

(5.29)

5.3 Inverting the data covariance

From Eq. (5.28), it is clear that in order to compute the Fisher matrix, we must first
invert the data covariance, and this turns out to be the hardest part. For any realistic
scenario, it is hopeless to invert such a matrix numerically due to its massive size. So we
must find an analytical expression for this inverse, defined such that:

∑
j

∑
ȳ

Σij
` (x̄, ȳ)

[
Σji′

` (ȳ, x̄′)
]−1

= δii′δx̄x̄′ (5.30)

Let’s start by going back to the covariance in harmonic space, Eq. (5.21), and writing
it in the form:

Σij
` =

∫
x̄

dx x2

∫
ȳ

dy y2

∫
d2x̂

∫
d2ŷ Y`m(x̂)Y ∗`m(ŷ)

〈
δni(~x)δnj(~y)

〉
(5.31)

=

∫
x̄

dx x2

∫
ȳ

dy y2

∫
d2x̂

∫
d2ŷ Y`m(x̂)Y ∗`m(ŷ)

[
n̄i(~x) n̄j(~y) ξij(~x, ~y)

+ δij n̄
i(~x) δD(~x− ~y)

]
We can identify the first term with the correlation function of the counts in shells in

harmonic space (i.e. the angular power spectrum), and the second term is the shot noise.
For simplicity, here we will assume that the mean numbers of tracers can be pulled outside
the integral, though they can vary as a function of the angular coordinates due to masks or
selection functions. As discussed before, we can also simplify the notation, n̄i = n̄i(x̄),
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n̄j = n̄j(ȳ). The angular power spectrum is then:

Cij
` = n̄in̄j

∫
x̄

dx x2

∫
ȳ

dy y2

∫
d2x̂ Y`m(x̂)

∫
d2ŷ Y ∗`m(ŷ) ξij(~x, ~y)

= n̄in̄j
∫
x̄

dx x2

∫
x̄

dy y2

∫
d2x̂ Y`m(x̂)

∫
d2ŷ Y ∗`′m′(ŷ)

∫
d3k

(2π)3
ei
~k(~x−~y)P ij(~k)

(5.32)

where we assumed homogeneity, and that the correlation function is computed at a hyper-
surface of constant time. We now use the Rayleigh expansion of a plane wave in spherical
harmonics:

ei
~k·~x = 4π

∑
`m

i`j`(kx)Y`m(k̂)Y ∗`m(x̂) (5.33)

and after some trivial algebra (see the real space term in Appendix A) we get:

Cij
` = n̄in̄j

∫
x̄

dx x2

∫
ȳ

dy y2 × 2

π

∫ ∞
0

dk k2 j`(kx) j`(ky)P ij(k) (5.34)

In the linear regime we have P ij(k) = bibjDiDjPm(k), and if the redshift slices are
thin enough, we can take the growth functions and biases of the tracers outside the volume
integral and simplify the expression above:

Cij
` (x̄, ȳ) = n̄in̄j bibj DiDj

∫
x̄

dx x2

∫
ȳ

dy y2 × 2

π

∫ ∞
0

dk k2 j`(kx) j`(ky)Pm(k)

= n̄in̄j bibj DiDj C
(m)
` (x̄, ȳ) (5.35)

where C(m)
` (x̄, ȳ) is the matter angular power spectrum. This expression can also be

extended to take into account non-linearities (see, e.g., Grasshorn Gebhardt and Jeong,
2020).

If the spherical shells are sufficiently thin, such that the argument of the spherical
Bessel functions can be approximated by the mean radius, x→ x̄, then the angular power
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spectrum further simplifies to:

Cij
` (x̄, ȳ) ≈ N̄ iN̄ j × 2

π

∫ ∞
0

dk k2 j`(kx̄) j`(kȳ)P ij(k) (5.36)

where in the second line we defined the mean number of tracers per unit solid angle,
N̄ i
x̄ = n̄i(x̄) ∆Vx̄/4π. Though we will not rely on this approximation, it will be useful

later to simplify the notation.

The result presented in Eq. (5.34), together with the closure relation for spherical
Bessel functions,

∫ ∞
0

dt t2 j`(at) j`(bt) =
π

2

δ(a− b)
a2

(5.37)

allows us to rewrite the harmonic data covariance, Eq. (5.31), as:

Σij
` = n̄in̄j

∫
x̄

dx x2

∫
ȳ

dy y2 × 2

π

∫ ∞
0

dk k2 j`(kx) j`(ky)M ij(k) (5.38)

where we defined the matrix:

M ij(k) = P ij(k) +
δij√
n̄i n̄j

(5.39)

It is easy to show that the inverse data covariance is given by:

[
Σji′

` (y, x′)
]−1

=
1

n̄j
1

n̄i′
× 2

π

∫ ∞
0

dk′ k′2 j`(k
′y) j`(k

′x′)
[
M ji′(k′)

]−1

(5.40)

which, together with the expression for the covariance Eq. (5.31), satisfies the definition
of the inverse, Eq. (5.23). So now we need to find an expression for the inverse of the
matrix M ij . First, we rewrite it as:

M ij(k) =
1√
n̄i

[
δij + P ij

] 1√
n̄j

(5.41)

where P ij =
√
n̄i n̄j P ij . Notice also that this adimensional quantity is separable, in

the sense that P ijP i′j′ = P ii′Pjj′ , and
∑

l P ilPjl = P ijP , where we defined the trace
P =

∑
iP ii.



46

We will assume here that the biases, growth rate and number densities of the tracers
vary slowly with the radii, compared to the typical scales where we measure clustering.
Under these approximations, one can easily check that the inverse of Eq. (5.41) is given
by:

[M ij]−1 =
√
n̄i
[
δij −

P ij

1 + P

]√
n̄j (5.42)

The fundamental reason we were able to invert this expression is that the data covari-
ance in real space can be written as a function of its Fourier conjugate:

Σij
` (x̄, ȳ) = N i

x̄N
j
x̄

2

π

∫ ∞
0

dk k2 2

π

∫ ∞
0

dk′ k′2 j`(kx̄) Σij
` (k, k′) j`(k

′ȳ) (5.43)

where we defined

Σij
` (k, k′) =

π

2

δ(k − k′)
k2

[
δij

n̄i
+ P ij(k)

]
=
π

2

δ(k − k′)
k2

M ij(k) (5.44)

which is perfectly diagonal in the Fourier modes. So the problem was reduced to finding
the trivial inverse of the matrix M ij . A similar approach will be used in Section 6 when
we generalize the results of this section to include redshift space distortions.

5.4 The Fisher matrix in harmonic space

Now that we have expressions for the inverse of the harmonic data covariance, we can
return to Eq. (5.28) and write the Fisher matrix for the observables of interest, the angular
power spectra, θµ → Cij

` (x̄, ȳ).

But first, it is worth noting that these angular spectra are symmetric, Cij
` = Cji

` , and so
are the corresponding data covariances. Therefore, if we simply identify the parameters of
the Fisher matrix like that, we would be counting the cross-correlations twice. We handle
this double-counting by defining non-degenerate spectra as:

C
[ij]
` =

{
Cij
` i ≤ j

0 i > j
(5.45)

Note that we can write the angular power spectrum in terms of their non-degenerate
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counterpart:

Cij
` (x̄, ȳ) = C

[ij]
` (x̄, ȳ) + C

[ji]
` (ȳ, x̄)− δijCij(x̄, ȳ) (5.46)

where the last term of this expression is such that Cii
` (x̄, ȳ) = Cii

` (ȳ, x̄), by definition.

We can now evaluate the partial derivatives, remembering that a given tracer index
always refers to the same radial bin, so we can use the short-hand notation δ̄ii′ = δii′δx̄x̄′ ,
leading to:

δCij
`

δC
[i′j′]
`

= δ̄ii′ δ̄jj′ + δ̄ij′ δ̄ji′ − δ̄ij δ̄ji′ δ̄i′j′ δ̄j′i (5.47)

Substituting this into Eq. (5.28) finally gives us the Fisher matrix for the angular
power spectrum in real space:

F [C
[ij]
` , C

[i′j′]
` ] =

2`+ 1

4
(2− δ̄ij)(2− δ̄i′j′)

{
[Σii′

` ]−1[Σjj′

` ]−1 + [Σij′

` ]−1[Σi′j
` ]−1

}
(5.48)

And the covariance matrix in harmonic space follows directly from it:

Cov[C
[ij]
` , C

[i′j′]
` ] =

1

2`+ 1

[
Σii′

` Σjj′

` + Σij′

` Σi′j
`

]
(5.49)
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6 Fisher matrix in redshift space

In this section we will take into account the linear redshift space distortions described
in Section 4 to generalize the procedure of Section 5 and compute the Fisher matrix di-
rectly in redshift space. Analogously to the real space case, the two-point correlation
function is defined here as the expectation value of the counts inside the spherical shells
of radii x̄ and ȳ, but now including the effects of peculiar velocities which adds some
extra terms, as shown in the derivation leading to Eq. (4.20):

Cij
`,s(x̄, ȳ) = n̄i(x̄)n̄j(ȳ)

∫
x̄

dx x2

∫
ȳ

dy y2 2

π

∫ ∞
0

dk k2

×
[
j`(kx)− βi(z)j′′` (kx)

] [
j`(ky)− βj(z′)j′′` (ky)

]
P ij(k)

(6.1)

with βi = f(z)/bi, where f(z) is the growth rate. Notice that making βi → 0 is equivalent
to cancelling the effects of the peculiar velocities, and this expression indeed reduces to
the real space correlation function given by Eq. (5.34). Therefore, in redshift space the
harmonic data covariance is simply a generalization of Eq. (5.38):

Σij
`,s(x̄, ȳ) = n̄in̄j

∫
x̄

dx x2

∫
x̄

dy y2 2

π

∫ ∞
0

dk k2

×

{[
j`(kx)− βij′′` (kx)

] [
j`(ky)− βjj′′` (ky)

]
P ij(k)

+ j`(kx)j`(ky)
δij√
n̄in̄j

}
(6.2)

Just like in real space, the most difficult step in the computation of the Fisher matrix
is finding the inverse of the data covariance in the same sense of Eq. (5.23), that is:

∑
j

∑
ȳ

[
Σij
`,s(x̄, ȳ)

]−1
Σji′

`,s(ȳ, x̄
′) = δii′δx̄ x̄′ (6.3)

In order to accomplish this, in analogy to what was done in real space, we will make
use of analytical solutions to the integrals of products of spherical Bessel functions that
appear in Eq. (6.2). These solutions, however, were nowhere to be found in the literature,
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so we have to derive them.

6.1 Integrating products of spherical Bessel functions

First, note that the term without any derivatives is simply the closure relation, Eq.
(5.37), which was used in real space. The difficulty arises with the terms involving the
second derivatives, for which we recall that the spherical Bessel functions satisfy two
important recursion relations:

j`(z) =
`− 1

z
j`−1(z)− ∂zj`−1(z) (6.4)

j`(z) =
2`− 1

z
j`−1(z)− j`−2(z) (6.5)

These relations can be used to find a differential equation for the spherical Bessel
functions:

z2j′′` (z) + 2zj′`(z) +
[
z2 − `(`+ 1)

]
j`(z) = 0 (6.6)

which can be combined again with the first recursion relation above to write an expression
for the second derivative as a function of spherical Bessel functions:

j′′` (z) =
1

z2

{[
`2 − `− z2

]
j`(z) + 2 z j`+1(z)

}
(6.7)

Before continuing, let’s quickly draw a distinction between our path and that chosen
since Fisher, Scharf and Lahav (1994) first wrote an expression for the angular power
spectrum in redshift space. After that seminal paper, many others (e.g. Padmanabhan
et al., 2007) expressed the second derivative of the spherical Bessel function in terms of
Bessel functions of different orders:

j′′` (z) =
`(`− 1)

(2`+ 1)(2`− 1)
j`−2(z) +

(`+ 1)(`+ 2)

(2`+ 1)(2`+ 3)
j`+2(z)− (2`2 + 2`− 1)

(2`+ 3)(2`− 1)
j`(z)

(6.8)

In this work, on the other hand, we make use of the alternative expression given by
Eq. (6.7), which, as we will see, leads to analytical integrals.
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Let’s first solve the term with only one derivative of the spherical Bessel function:

A =

∫
dk k2 j`(kx)j′′` (ky) (6.9)

by using the expression above, Eq (6.7), to split it into three integrals, with no more
derivatives involved, which should simplify our problem:

A =

∫
dk k2 j`(kx)

(ky)2

{[
`2 − `− k2y2

]
j`(ky) + 2ky j`+1(ky)

}

=
(`2 − `)
y2

∫
dk j`(kx)j`(ky)︸ ︷︷ ︸

A1

−
∫
dk k2 j`(kx)j`(ky)︸ ︷︷ ︸

A2

+
2

y

∫
dk k j`(kx)j`+1(ky)︸ ︷︷ ︸

A3

(6.10)

For the first term, we use the following well known result (see e.g. Bloomfield et al.
2017):

A1 =

∫
dk j`(kx)j`(ky) =

π

2

1

(2`+ 1)r>

(
r<
r>

)`
(6.11)

where r> and r< are, respectively, the larger and smaller value between x and y. The
second term is, once again, simply the closure relation:

A2 =

∫ ∞
0

dk k2 j`(kx)j`(ky) =
π

2

δD(x− y)

x2
(6.12)

And for the last one, we remember that the spherical Bessel function is defined in terms
of the usual Bessel function of the first kind:

j`(z) =

√
π

2z
J`+1/2(z) (6.13)

so we can rewrite that term as:

A3 =

∫
dk k j`(kx)j`+1(ky) =

π

2

1
√
xy

∫
dk J`+1/2(kx) J`+3/2(ky) (6.14)

This integral is also well known and can be found in e.g. the classic book A Treatise

on the Theory of Bessel Functions by Watson (1944), and gives us:
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A3 =

∫
dk k j`(kx)j`+1(ky) =

π

2
×



1

2x2
if x = y

0 if x > y

x`

y`+2
if x < y

(6.15)

Plugging these results back into (6.10), we obtain the first analytical integral we will
need in order to invert the data covariance:∫

dk k2j`(kx)j′′` (ky) = − π

2x2
δD(x− y) +H`(x, y) (6.16)

where:

H`(x, y) =
π

2y2



1

x

[
2(2`+ 1) + `(`− 1)

2(2`+ 1)

]
if x = y

1

x

(y
x

)` [2(2`+ 1) + `(`− 1)

(2`+ 1)

]
if x > y

1

y

`(`− 1)

(2`+ 1)

(
x

y

)`
if x < y

(6.17)

Notice that, curiously, this result is discontinuous, but that does not turn out to be
a problem for our purposes. As we will see later on, this integral appears twice, with
interchanged arguments in the Bessel functions x̄ ↔ ȳ. In particular, when we consider
the auto-correlations of the same tracer, their symmetric combination is a continuous
expression (see Figure 9):

H̃` =
1

2
[H`(x, y) +H`(y, x)] =

π

2 r>

(
r<
r>

)` [
2(2`+ 1)r2

< + `(`− 1)(x2 + y2)

2(2`+ 1)x2y2

]
(6.18)

Now, we still need to find an analytical expression for the term in Eq (6.2) which
contains two derivatives of the spherical Bessel function:

B =

∫
dk k2j′′` (kx)j′′` (ky) (6.19)
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In similar fashion to what we did for Eq (6.9), we rewrite the derivatives and split this
integral into nine parts:

B =

∫
dk k2

(kx)2(ky)2

{[
`2 − `− k2y2

]
j`(ky) + 2ky j`+1(ky)

}
×
{[
`2 − `− k2x2

]
j`(kx) + 2kx j`+1(kx)

}
=

(`2 − `)2

(xy)2

∫
dk

k2
j`(kx)j`(ky)︸ ︷︷ ︸
B1

− (`2 − `)
y2

∫
dk j`(kx)j`(ky)︸ ︷︷ ︸

B2

+ 2
(`2 − `)
xy2

∫
dk

k
j`+1(kx)j`(ky)︸ ︷︷ ︸

B3

−(`2 − `)
x2

∫
dk j`(kx)j`(ky)︸ ︷︷ ︸

B4

(6.20)

+

∫
dk k2 j`(kx)j`(ky)︸ ︷︷ ︸

B5

−2

x

∫
dk k j`+1(kx)j`(ky)︸ ︷︷ ︸

B6

+ 2
(`2 − `)
yx2

∫
dk

k
j`+1(ky)j`(kx)︸ ︷︷ ︸

B7

− 2

y

∫
dk k j`+1(ky)j`(kx)︸ ︷︷ ︸

B8

+
4

xy

∫
dk j`+1(kx)j`+1(ky)︸ ︷︷ ︸

B9

We already know how to compute most of these terms, except for B1 and B3 (which
is identical to B7). Although they have an analytical solution in terms of hypergeometric
functions (see Watson (1944)), more suitable expressions can be found for integer values
of `. We start by rewriting the integral in B1 as:

B1 = r>

∫ ∞
0

dq

q2
j`(q)j`

(
q
r<
r>

)
(6.21)

with q = kr>, and by solving this integral numerically for some multipoles, we can find
the pattern:

B1 =

∫ ∞
0

dk

k2
j`(kx)j`(ky)
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=
π

2

2`(`+ 1)!(2`− 3)!!

(2`+ 3)!
r>

(
r<
r>

)` [
2`+ 3− (2`− 1)

(
r<
r>

)2
]

(6.22)

Similarly, for the integral in B3, we obtain:

B3 =

∫ ∞
0

dk

k
j`+1(kx)j`(ky) =

π

2



1

(2`+ 1)(2`+ 3)
if x = y

1

(2`+ 1)(2`+ 3)

(
x

y

)`+1

if x < y

1

2

(y
x

)` [ 1

2`+ 1
− 1

2`+ 3

(y
x

)2
]

if x > y

(6.23)

These closed forms of the integrals in B1 and B3 are new results, as far as we are
aware. We checked the validity of these expressions by numerically performing those
integrals with the help of the FFTLog algorithm (see Appendix B), which basically com-
putes a Hankel transform – Eq B.1. In Figures 7 and 8, I plot a comparison between
the analytical expressions, Eqs. (6.22) and (6.23), and the numerical solution to those
integrals, from ` = 2 up to ` = 50. Though extensions to the original FFTLog have
been developed to include integrals involving derivatives of Bessel functions Fang et al.
(2020b) and to deal with non-Gaussian covariances Fang et al. (2020a), here I use a simple
implementation of the algorithm to perform these integrals.

We can clearly see that our analytical results clearly match the numerical Hankel trans-
form to exquisite accuracy. It is important to note that one might run into numerical issues
with our analytical expression for the first integral, Eq. (6.22), at high multipoles because
then the argument of the factorials become very large. Python, for instance, does not nat-
urally support arbitrarily large float, but in principle, this problem can be solved by using
e.g. the decimal module.

On the other hand, when x 6= y, the FFTLog result also becomes very unstable after a
certain value of `. Increasing the number of points for the integration interval does help al-
leviate this issue, but this defeats the whole point, since to get a stable result up to ` = 60,
the FFTLog algorithm for these particular integrals takes as long as a simple quadrature
routine, while for comparison the analytical result was nearly 2000 times faster without
losing precision. Some extension to the code might be required to properly perform those
integrals for higher multipoles, but here I will not dwell on that since at this point it is
already clear that the analytical and numerical results agree with each other.
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Figure 7: Integrals of the product of spherical Bessel functions with the k−2 term, using
the FFTlog algorithm (dotted lines) and the analytical (solid lines) expression, Eq. (6.22),
with relative residuals. We fix y = 100, for some x = 50, 100, 200 and vary ` in the top
plot, while in the bottom plots we vary x for some fixed ` = 10, 20, 40.
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Figure 8: Integrals of the product of spherical Bessel functions with the k−1 term, using
the FFTlog algorithm (dotted lines) and the analytical (solid lines) expression, Eq. (6.23),
with relative residuals. We fix y = 100, for some x = 50, 100, 200 and vary ` in the top
plot, while in the bottom plots we vary x for some fixed ` = 10, 20, 40.
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Note that these plots also show that those integrals quickly become negligible when
x 6= y. This is a consequence of the fact that the spherical Bessel functions oscillate out
of phase when they have different arguments, especially for higher multipoles. This hints
at the possibility of not having to include very high multipoles and cross-correlations of
widely separated bins, though how far is far enough will depend on the application and
precision desired.

Using these new results, Eq. (6.22) and (6.23), along with equations (6.11), (6.12)
and (6.15), we can finally write an analytical expression for the last integral we need
— in addition to Eq. (6.16) — in order to invert the redshift space data covariance and
ultimately compute the Fisher matrix:

∫ ∞
0

dk k2 j′′` (kx)j′′` (ky) =
π

2

δ(x− y)

x2
+G`(x, y) (6.24)

where we defined:

G`(x, y) =
π

2

{
4

r3
>

1

(2`+ 3)

(
r<
r>

)`
− 2

r`<
r`+3
>

−
(

1

r2
>

+
1

r2
<

)
1

r>

(
r<
r>

)`
(`2 − `)
(2`+ 1)

+
2(`2 − `)
r2
>r<

(
r<
r>

)`+1
1

(2`+ 1)(2`+ 3)
(6.25)

+
2(`2 − `)
r2
<r>

(
r<
r>

)` [
1

(2`+ 1)
− 1

(2`+ 3)

(
r<
r>

)2
]

+
(`2 − `)2

(r< r>)2

2`(`+ 1)!(2`− 3)!!

(2`+ 3)!
r>

(
r<
r>

)` [
2`+ 3− (2`− 1)

(
r<
r>

)2
]}

Though this expression in Eq. (6.25) might look daunting, it is very easy and fast
to compute numerically. In Figure 9, I plot this term, as well as the continuous version
of H`(x, y) given in Eq. (6.18), with a fixed value of y = 100 and varying x for some
multipoles ` = 10, 20, 40. We can see that there is a clear peak at x = y, which becomes
more and more pronounced for higher multipoles and seems to tend to a Dirac delta in
the limit ` → ∞. This will lead to a semi diagonal structure for the redshift space data
covariance and is what will allow us to find its inverse, to which we turn now.
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Figure 9: Plots of Eqs. (6.18) and (6.25) as a function of x with a fixed y = 100, for multipoles
` = 10, 20, 40.

6.2 Inverting the data covariance in redshift space

In this section, I will show how to invert the expression for the data covariance. Like
in real space, this turn out to be the hardest step of computing the Fisher matrix, and now
it is even more complicated because there are three extra terms in the covariance, which
we rewrite here as:

Σij
`,s(x̄, ȳ) = n̄i(x̄) n̄j(ȳ)

∫
x̄

dx x2

∫
ȳ

dy y2 2

π

∫ ∞
0

dk k2

{[
j`(kx)− βij′′` (kx)

]
(6.26)

×
[
j`(ky)− βjj′′` (ky)

]
P ij(k) + j`(kx)j`(ky)

δij√
n̄i(x) n̄j(y)

}

≈ N̄ i δij δx̄ȳ

+N̄ iN̄ j 2

π

∫ ∞
0

dk k2
[
j`(x̄)− βij′′` (kx̄)

] [
j`(kȳ)− βjj′′` (kȳ)

]
P ij(k)

where remember that the tracer and bin indices are linked and N̄ i = N̄ i
x̄ = n̄i(x̄)∆Vx̄/4π

is the mean angular number density of tracers in the radial bin x̄. In the second line, we
simply used the approximation of Eq. (5.36) to shorten the notation, but our results do
not depend on it.

Note that we don’t have analytical expressions for these integrals, since the P ij(k)

could, in principle, be any complicated function of k. But all our hard work was not in
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vain, because we can rewrite our problem by using a condensed notation:

π

2

δD(k − k′)
k2

→ δkk
′

,
2

π

∫
dk k2 →

∑
[k]

(6.27)

and defining a normalized data covariance:

Σij
`,s → Σ̃ij

`,s ≡
1√
N̄ i N̄ j

Σij
`,s (6.28)

Now let’s also define the auxiliary “dual vectors”:

V i
` (k, x̄) ≡

√
∆Vx̄
4π
P ii(k)

[
j`(kx̄)− βij′′` (kx̄)

]
(6.29)

where we used the definition of the clustering strength introduced in the previous sec-
tion, Eq. (5.41), P ij(k) =

√
n̄in̄j P ij(k). Using the associative property of the spectra

P ii(k)P jj(k′) = P ij(k)P ij(k′) (valid at least to first approximation, in the linear regime),
we can write the data covariance as:

Σ̃ij
`,s(x̄, ȳ) = δijδx̄ȳ +

∑
[k],[k′]

V i
` (k, x̄) δkk

′
V j
` (k′, ȳ)

= δijδx̄ȳ +
∑
[k]

V i
` (k, x̄)V j

` (k, ȳ) (6.30)

Now, we use the Woodbury matrix identity,

M = A+XBY tr

⇒M−1 = A−1 + A−1X(B−1 + Y trA−1X)−1Y trA−1

(6.31)

with A→ δijδx̄ȳ, B → δijδ
kk′ and X, Y → V i

` (k, x̄), V j
` (k′, ȳ), to obtain:

[Σ̃ij
`,s(x̄, ȳ)]−1 = δijδx̄ȳ (6.32)

−
∑
[k]

∑
[k′]

V i
` (k, x̄)

[
δijδ

kk′ +
∑
x̄

V i
` (k, x̄)V j

` (k′, x̄)

]−1

V j
` (k′, ȳ)
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The matrix inside the square brackets can be thought of as the Fourier space analogous
of the data covariance:

Σ̃ij
`,s(k, k

′) = δijδ
kk′ +

∑
x̄

V i
` (k, x̄)V i

` (k′, x̄) (6.33)

Notice that the redshift space distortions introduce some off-diagonal structure in the
Fourier data covariance, as opposed to the real space case where it was perfectly diagonal
— see Eq. (5.44). Nevertheless, it is still dominated by the diagonal terms, so it is feasible
to invert this object and then transform it back to the real space representation and obtain
the inverse covariance in terms of the spherical shells.

Hence, the problem of inverting the multi tracer data covariance in redshift space is
reduced to inverting Eq. (6.33). We use the fact that the correlation function is computed
at a hypersurface of constant time, and the sum over the radii x̄ above corresponds to an
integration over the radial coordinate in that hypersurface. Therefore, the quantities n̄i,
bi and βi = bi/f can be considered constants in this expression, and we remember that∑

x̄

∫
x̄
dx =

∫∞
0
dx, so that we can write the Fourier covariance in terms of the integrals

we computed in the previous subsection, Eqs. (6.25) and (6.17):

Σ̃ij
` (k, k′) =δijδ

kk′ +
√
P ii(k)P jj(k′)

×
∑
x̄

∫
x̄

dx x2
[
j`(kx)− βi j′′` (kx)

] [
j`(k

′x)− βj j′′` (k′x)
]

=δkk
′
[
δij + (1 + βi)(1 + βj)

√
P ii(k)Pjj(k′)

]
+
√
P ii(k)Pjj(k′)

[
βi βj G`(k, k

′)− βiH`(k, k
′)− βj H`(k

′, k)
]

Now it is convenient to gather the terms in the last line of Eq. (6.34) into the mixing
matrix:

T ij` (k, k′) ≡
√
P ij(k)P ij(k′)

[
βiβj G`(k, k

′)− βiH`(k, k
′)− βjH`(k

′, k)
]

(6.34)

where we used the definition of clustering strength P introduced in the previous section,

P ij(k) = bibj
√
n̄in̄jP (k) =

√
n̄in̄jP ij(k) (6.35)
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We also define an analogous redshift-space clustering strength:

P ij(s) ≡ (1 + βi)(1 + βj)P ij (6.36)

and note that in the linear regime, the clustering strength (as well as P ij(s)) can be factored,
P ii(k)Pjj(k′) = P ij(k)P ij(k′), so we can rewrite the Fourier covariance as:

Σ̃ij
` (k, k′) =δkk

′
[
δij + P ij(s)

]
+ T ij` (k, k′)

= δkk
′
[
δij + P ij(s) + λij` (k)

]
+ T̃ ij` (k, k′)

=δkk
′S ij` (k) + T̃ ij` (k, k′)

(6.37)

where λij` (k) ∼ T ij` (k, k), and T̃ ij` (k, k′) collects all the off-diagonal terms, and we de-
fined

S ij` (k) = δij + λij` + P ij(s) (6.38)

As it turns out, the off-diagonal terms of the matrix T ij` (k, k′) are indeed negligible in
relation to the the diagonal ones. In the top row of Fig. 10 we plot this normalized matrix

T norm` (k, k′) = T ij` (k, k′)/
√
T ii` (k, k)T jj` (k′, k′) in the case of a single tracer, for the

multipoles ` = 10 and ` = 40. In the lower panel, we show the lines of the (normalized)
mixing matrices with ` = 10, 20, and 40, for fixed values k′ = 0.03, 0.05, 0.07 and 0.09h

Mpc−1.

These two plots clearly show that the matrix elements fall off as we move away from
the diagonal, and at a faster rate for higher multipoles `. Note that the normalized mixing
matrix is determined entirely by the functions H` and G`, and has no dependence at all on
the shape of the power spectrum or on the number of tracers. Therefore, it should be a very
good approximation to discard all non-diagonal terms of the matrix T ij` (k, k′) altogether,
except for the lowest multipoles. Then we can find an expression for the inverse of the
covariance in terms of a series expansion around T̃ ij` (k, k′).

We can now proceed to computing the inverse of this data covariance in harmonic
Fourier space. First, notice that:

(1 + P + λ)−1 = (1 + P)−1
[
1 + (1 + P)−1λ

]−1
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Figure 10: The radial (Fourier) mixing matrix T ij` (k, k′), normalized by its diagonal,

Tnorm` (k, k′) = T ij` (k, k′)/
√
T ii` (k, k)T jj` (k′, k′), for visualization purposes. Top: mixing matrix

for ` = 10 (left) and ` = 40 (right). Bottom: rows of the normalized mixing matrices, with fixed
k′ = 0.03, 0.05, 0.07, and 0.09 Mpc−1 (from left to right, respectively). Notice that for k = k′ the
normalized mixing matrix is always equal to 1. The different lines corresponds to the multipoles
` = 10 (solid), 20 (dashed) and 40 (dotted).

In a similar way to what was done in real space, we can use the Woodbury identity,
which leads to:

[
δij + P ij(s)

]−1

= δij −
P ij(s)

1 + P(s)

(6.39)

where P(s) =
∑

iP ii(s). The inverse of S ij` is therefore given by:
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[S ij` ]−1 =
∑
l

[
δil −

P il(s)
1 + P(s)

][
δlj +

∑
n

(
δln −

P ln(s)
1 + P(s)

)
λnj`

]−1

(6.40)

Let’s now go back to Eq. (6.37) to check that the redshift-space corrections λij` are
quite small. In practical applications, we use discrete Fourier bins of width ∆k, so in this
case we have δ(k − k′) → δKkk′/∆k, where δKkk′ is the Kronecker delta for the bins. The
covariance in Fourier space is then given by:

Σ̃ij
` (k, k′)→ π

2

δKkk′

k2∆k
S ij` (k) + T̃ ij` (k, k′) , (6.41)

where now we identify:

λij` (k)→ 2

π
k2 ∆k T ij` (k, k) . (6.42)

These terms are therefore proportional to the Fourier bin width, while from Eq. (6.34)
and the definitions of H` and G`, Eqs. (6.17) and (6.25), it is straightforward to see that,
up to factors of the redshift-space parameter β, we have T ij` (k, k) ∼ α`P ij(k)/k3, where
α` is a coefficient that could be very large for larger values of `. This means that the term
λij` ∼ α`P ij(k) ∆k/k is not negligible in general. If in a very particular case λij` happens
to be small compared with δij and P ijs [see Eq. (6.38)], then the inverse of the matrix S ij` ,
Eq. (6.40), could be written in terms of a series expansion:

[S ij` ]−1 ≈ δij −
P ij(s)

1 + P(s)

−
∑
l,n

(
δil −

P il(s)
1 + P(s)

)
λln`

(
δnj −

Pnj(s)

1 + P(s)

)
+O(λ2)

(6.43)

In any case, S ij` (k) is a simple Nt × Nt object (where Nt is the number of tracers),
which can easily be inverted numerically for each value of k and multipole `. Once
[S ij` (k)]−1 has been determined, we can finally obtain the inverse covariance. Since the
off-diagonal matrix T̃ ij(k, k′) is small compared with the diagonal part of the data covari-
ance of Eq. (6.37), we can invert that expression in terms of a series expansion around
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T̃ ij(k, k′):

[Σ̃ij
` (k, k′)]−1 ≈ δkk

′
[S ij` (k)]−1−

∑
n,n′

[S in` (k)]−1 T̃ nn
′

` (k, k′) [Sn
′j

` (k′)]−1 +O(T̃ 2) (6.44)

As discussed above, it is often sufficient to consider only the first term in the expres-
sion above, neglecting the off-diagonal matrix T̃ ij` , which leads to corrections of order
∼ 10−2 − 10−3, depending on the multipole. This is a manifestation of the fact that the
correlation function is much more diagonal in Fourier space than it is in real space, and is
what ultimately allows us to invert the harmonic data covariance.

Remember that the inverse must be such that:

∑
j

∑
[k′′]

[
Σ̃ij
` (k, k′′)

]−1

Σ̃ji′

` (k′′, k′) =
∑
j

2

π

∫ ∞
0

dk′′ k′′2
[
Σ̃ij
` (k, k′′)

]−1

Σ̃ji′

` (k′′, k′)

= δkk
′
δii′ =

π

2

δ(k − k′)
kk′

δii′

(6.45)

We check the accuracy of the inversion of the data covariance by considering the case
of a single tracer, such that we have:

S` = 1 + λ` + P(s) , S−1
` =

1

1 + λ` + P(s)

Note that, after discretizing the Dirac delta as a Kronecker delta, δ(k−k′)→ δKkk′/∆k,
we can rewrite Eq. (6.45) as:

M`(k, k
′) =

2

π
kk′∆k

∑
[k′′]

[
Σ̃`(k, k

′′)
]−1

Σ̃`(k
′′, k′) = δKkk′ (6.46)

For simplicity, I now take constant β = 1, n̄ = 10−3. Using a simple power spectrum
from CAMB’s fiducial cosmology, I plot in Figure 11 some rows of M`(k, k

′) for fixed
k = 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, with k ∈ [0.02, 0.10] and a bin size of ∆k =

0.0002. We can clearly see that the approximation works really well, especially for higher
multipoles. Even better precision can be achieved by taking smaller bins, at the cost of
a longer computing time, but only up to a certain point where the O2(T̃ ) correction in
Eq. (6.44) becomes relevant. We found, however, that these corrections are completely
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negligible, with the largest elements being at most of order∼ 10−5 for ` . 100 and scales
k . 1 h Mpc−1.

Figure 11: Rows of M(k, k′) for different ` with a bin size of ∆k = 0.0002.

Hence, after reverting back to our original notations so that we can compare with
the configuration space result, we finally find that the inverse of the harmonic-space data
covariance is:

[Σij
`,s(x̄, ȳ)]−1 ≈ 1

N̄ i(x̄)
δij δx̄ȳ (6.47)

− 2

π

∫
dkk2

[
j`(kx̄)− βij′′` (kx̄)

] [
j`(kȳ)− βjj′′` (kȳ)

]
P ij(k)[S ij(k)]−1

+

(
2

π

)2 ∫
dk k2

∫
dk′ k′2

[
j`(kx̄)− βij′′` (kx̄)

] [
j`(k

′ȳ)− βjj′′` (k′ȳ)
]

×
∑
i′,j′

√
P ii(k)[S ii′(k)]−1T̃ i

′j′

` (k, k′)[Sj′j(k′)]−1
√
P jj(k′) + . . .

As a sanity check, notice that for βi → 0 we also get T kk′` → 0, and we recover the
real-space inverse, Eq. (5.40). Remember that T ij` and Sij` are given in terms of analytical
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expressions — see Eqs. (6.34) and (6.38) —, so the inverse covariance above can be
computed in terms of 3 × Nt(Nt + 1)/2 Fourier integrals involving Bessel functions,
which can be handled by, e.g., FFTLog (see Appendix B for a basic description of the
algorithm, and references of more efficient extensions). If a more accurate calculation
is needed, we could drop the approximation used in Eq. (6.26) and then we would also
compute another 3×Nt(Nt + 1)/2 double integrals.

As discussed above, it is often a good approximation to neglect the matrix T̃ ij` , in
which case the expressions above would simplify further, to:

[Σ̃ij
` (k, k′)]−1 → δkk

′
[S ij` (k)]−1 , (6.48)

and hence we can keep only the single Fourier integral in Eq. (6.47). Although this
approximation is excellent for high multipoles (` & 10), one may need to perform the
double integral in Eq. (6.47) for very low multipoles.

6.3 Fisher and covariance matrices in redshift space

The inverse of the data covariance was the final missing piece of the puzzle, and we are
finally in a position to return to the Fisher matrix. It is straightforward to see that all the
expressions derived in Section 5 in real space still hold, and can be trivially generalized
to redshift space. The Fisher matrix for the angular power spectra in redshift space is then
given by an expression completely analogous to Eq. (5.48):

F [C
[ij]
`,s , C

[i′j′]
`,s ] =

2`+ 1

4
(2− δ̄ij)(2− δ̄i′j′)

{
[Σii′

`,s]
−1[Σjj′

`,s ]
−1 + [Σij′

`,s]
−1[Σi′j

`,s]
−1
}

(6.49)

where we used the notation introduced in Section 4 that connects the tracer index and
the radial bin index implicitly, i.e., δ̄ij = δijδx̄ȳ. The inversion of this expression is
also identical to the case in real space, which leads to the harmonic covariance matrix in
redshift space that generalizes Eq. (5.49):

Cov[C
[ij]
`,s , C

[i′j′]
`,s ] =

1

2`+ 1

[
Σii′

`,sΣ
jj′

`,s + Σij′

`,sΣ
i′j
`,s

]
(6.50)
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7 Conclusions and future prospects

An outstanding amount of data is set to be delivered by state of the art cosmological
surveys in the upcoming years. But the way we have usually handled clustering data in
the past with the Fourier power spectrum is not gonna cut it for these new generation sur-
veys, because some crucial approximations for that method will not be realistic anymore.
Hence, a more robust analysis that can properly take into account the curvature of the sky
for large angular scales is necessary. This naturally leads us to a description of the matter
distribution in terms of spherical harmonics, with the natural observable that contains all
the information in the past lightcone being the angular power spectrum.

Motivated by the need to understand how much information we will actually be able
to extract from these nearly full-sky surveys, we have derived an expression for the multi
tracer Fisher matrix of the angular power spectrum, including cross-correlations, both in
real and redshift spaces. In order to accomplish this, we found new analytical expressions
for integrals involving products of spherical Bessel functions in terms of polynomials,
which allowed us to find an analytical expression for the inverse of the harmonic data
covariance, including redshift space distortions. This was the key step that in turn gave
us semi-analytical, easy-to-compute, expressions for the Fisher and covariance matrices
for the angular power spectrum, which are essentially exact, since the commonly used
Limber and flat-sky approximations were not employed in this derivation. In fact, the
only approximation we resorted to was a first order expansion for the inverse of the data
covariance, and we showed that this approximation works incredibly well.

We now also have the foundation necessary to compute the optimal weights for the
quadratic estimators that combine different tracers for a better estimate of the angular
power spectrum. The procedure can be found in detail in Tegmark et al. (1998) or Abramo
et al. (2016), and should be a straightforward calculation once the Fisher matrix is known.
For this next step, it is important to note that in this derivation, we have assumed a full-
sky coverage, which is not realistic because at least a portion of the sky will always be
masked by our own galaxy. Therefore, before we can apply these estimators to real data
sets and compare with others, we will have to take into account the partial sky coverage
to generalize our results in a similar way to what is done for the pseudo-C` estimator
described in Section 3.

Additionally, here we limited our calculations to the linear regime of redshift space
distortions, as described in Section 4. The angular power spectrum, however, requires the
use of narrow redshift bins to fully encapsulate wide angle effects and redshift evolution,
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and not wash out the BAO and RSD information. The increased precision on photo-z
measurements and higher tracer densities from spectroscopic surveys will allow us to use
smaller bins and increase the RSD signal, but when they are comparable to deviations
caused by peculiar velocities (typically of order 750 kms−1 → ∆z ≈ 0.005) the non-
linear RSD effects become important and have to be taken into account.

Nevertheless, this work represents an important step towards a unified formalism for
studying the large scale structure with a spherical harmonic description, suitable for the
overwhelming amount of data coming our way this decade. Much work has yet to be done
to fully take advantage of the incredible collaborative efforts in mapping the universe with
such precision. In our never ending quest to understand the cosmos, only one thing is
certain: with more knowledge comes more questions.
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Appendices

A Derivation of Eq. (4.20)

For simplicity, we split the harmonic correlation, Eq. (4.17), into four terms and
compute each one separately:

〈a`m(s)a∗`′m′(s′)〉 =

∫
dΩs dΩs′ Y

∗
`m(ŝ)Y`′m′(ŝ′)

×

〈[
1 + f(z)

d2

dr2
~∇−2

]
δ(~r)

[
1 + f(z′)

d2

dr′2
~∇−2

]
δ∗(~r ′)

〉

= f1(s, s′) + f2(s, s′) + f3(s, s′) + f4(s, s′)

(A.1)

The first term is just the correlation in real space:

f1(s, s′) = 〈a∗`m(s)a`′m′(s′)〉

=

∫
dΩsdΩs′ Y

∗
`m(ŝ)Y`′m′(ŝ′)〈δ(~r)δ∗(~r ′)〉

=

∫
dΩsdΩs′ Y

∗
`m(ŝ)Y`′m′(ŝ′)

〈∫
d3k

(2π)3
e−i

~k~r δ̃(~k)

∫
d3k′

(2π)3
ei
~k′~r ′ δ̃∗(~k′)

〉

=

∫
d3k

(2π)3
P (~k)

∫
dΩsdΩs′ Y

∗
`m(ŝ)Y`′m′(ŝ′) e−i

~k(~r−~r ′)

(A.2)

where in the last line we used the definition of the Fourier power spectrum, Eq. (3.5). To
move forward, we use the expansion in plane waves to rewrite the exponentials:

ei
~k~r =

∑
`

(2`+ 1)i`j`(kr)P`(k̂ · r̂) (A.3)

where the P` are the Legendre polynomials. With the addition theorem for the spherical
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harmonics, we can write the equation above as:

ei
~k~r = 4π

∑
`m

ilj`(kr)Y`m(k̂)Y ∗`m(r̂) (A.4)

This is known as the Rayleigh formula, and we can use this result together with the or-
thonormality of the spherical harmonics,

∫
dΩsY

∗
`m(ŝ)Y`′m′(ŝ) = δ``′δmm′ , to write f1

as:

f1(s, s′) =

∫
d3k

(2π)3
P (~k)

∫
dΩsdΩs′Y

∗
`m(ŝ)Y`′m′(ŝ′)

× 4π
∑
l1m1

(−i)l1jl1(kr)Y ∗l1m1
(k̂)Y`1m1(ŝ)

× 4π
∑
l2m2

il2jl2(kr
′)Yl2m2(k̂)Y ∗`2m2

(ŝ′)

=
2

π

∫
dk k2

∫
dΩk P (k)il−l

′
j`(kr)jl′(kr

′)Y`m(k̂)Y ∗`′m′(k̂)

=
2

π

∫
dk k2j`(kr)j`(kr

′)P (k)δ``′δmm′

(A.5)

Hence, the real space part of the harmonic correlation is:

f1(s, s′) = Cr
` (r, r

′)δ``′δmm′ (A.6)

where the real space angular power is given in terms of the Fourier spectrum through the
following relation:

Cr
` (r, r

′) ≡ 2

π

∫ ∞
0

dk k2j`(kr)j`(kr
′)P (k) (A.7)

This expression is found all over the literature and is enough for the flat sky limit,
since all the other extra RSD terms in this approximation are just multiplicative constants.
But for a complete description of RSDs on the sphere, we must compute the other terms
in Eq. (A.1). Let’s now see how to deal with the last one, then the remaining two will be
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trivial:

f4(s, s′) =

∫
dΩs dΩs′ Y

∗
`m(ŝ)Y`′m′(ŝ′)

〈
d2

dr2
~∇−2δ(~r)

d2

dr′2
~∇′−2δ∗(~r′)

〉
f(z)f(z′) (A.8)

Here it is once again convenient to work in Fourier space, where ei(~k~r−~k′~r ′) we have :

f4(s, s′) = f(z)f(z′)

∫
dΩsdΩs′Y

∗
`m(ŝ)Y`′m′(ŝ′)

×
∫
d3k d3k′

(2π)6

d2

dr2

d2

dr′2
~∇−2~∇′−2ei(

~k~r−~k′~r ′)〈δ(~k)δ∗(~k′)〉

(A.9)

Using the definition of the power spectrum and the Rayleigh formula once again, Eq.
(A.4), and making the derivative now be taken with respect to the argument, j′′` (kr) =
d2j`(kr)

d(kr)2
, we get:

f4(s, s′) =
∑
`1m1

∑
`2m2

i`1−`2
∫
dΩs Y

∗
`m(ŝ)Y`1m1(ŝ)

∫
dΩs′ Y`′m′(ŝ′)Y ∗`2m2

(ŝ′)

× 2

π
f(z)f(z′)

∫
Ωk Y

∗
`1m1

(k̂)Y`2m2(k̂)

∫
dk k2 P (k, z)j′′`1(kr)j

′′
`2

(kr′)

=
2

π
f(z)f(z′)

∑
`1m1

∑
`2m2

i`1−`2 δ``1δmm1δ`′`2δm′m2δ`1`2δm1m2

×
∫
dk k2 P (k, z)j′′`1(kr)j

′′
`2

(kr′)

(A.10)

After summing over all the indices, we finally get:

f4(s, s′) =
2

π
f(z)f(z′)

∫
dk k2j′′` (kr)j′′` (kr′)P (k)δ``′δmm′ (A.11)

The derivation of the second and third terms is exactly the same, except with only one
derivative, and they are related to each other by simply interchanging their arguments.
Hence, in full analogy to the derivation of f4, it is easy to show that:
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f2(s, s′) = −2f(z)

π

∫
dk k2j′′` (kr)j`(kr

′)P (k)δ``′δmm′ (A.12)

f3(s, s′) = −2f(z′)

π

∫
dk k2j`(kr)j

′′
` (kr′)P (k)δ``′δmm′ (A.13)

Putting Eqs. (A.6) and (A.11-A.13) together, we finally get

〈
a`m(s)a∗`′m′(s′)

〉
=

2

π

∫
dk k2

[
j`(kr)− f(z)j′′` (kr)

]
×
[
j`(kr

′)− f(z′)j′′` (kr′)
]
P (k)δ``′δmm′

(A.14)

as quoted in the main text. Then Eq. (4.20) follows trivially from the definition of the
angular power spectrum as the 2-point correlation function of the harmonic coefficients.

B FFTLog

Here, we briefly describe the FFTLog algorithm, widely used to quickly compute
integrals involving Bessel functions. We start by discussing the context in which this is a
useful tool. First, remember that the Hankel transform is an integral transformation whose
kernel is a Bessel function:

g(r) =

∫ ∞
0

dk f(k)(kr)q Jµ(kr) r (B.1)

It often shows up problems with cylindrical or spherical symmetries, when we write
the Fourier transform in spherical coordinates, and in cosmology we often go back and
forth between real and Fourier space. This transform most commonly appears in the form
of Eq. (B.1). We usually describe large-scale clustering by the configuration-space 2-
point correlation function, and its Fourier transform, the power spectrum, and those two
quantities are related by a Hankel transform.

Therefore, we need to able to perform these transformations quickly and with good
accuracy. But doing so is not so trivial, first because the Bessel function is highly oscil-
latory, which means that integrating with any of the most common quadrature methods
can give us very inaccurate results. Another problem is that we usually want to cover sev-
eral orders of magnitude, so if we used something like the FFT algorithm, which requires
linearly spaced points, we would have to deal with unnecessarily large matrices and just
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waste resources.

These problems may be solved by using an FFT algorithm originally proposed by
Talman (1978), for applications in atomic physics, and was implemented in cosmology
by Hamilton (2000), who called it the FFTLog algorithm, since it is analogous to the
regular FFT, but for sequences uniformly spaced and periodic in logarithmic space.

B.1 The algorithm

Consider a function f(k) periodic in logarithmic space ln k with period L,

f(keL) = f(k) (B.2)

This periodicity implies that the Fourier transform of f(k) contains only discrete
Fourier modes, exp(2πim ln(k/k0)/L), with integer m. Take the fundamental interval
to be [ln k0 − L/2, ln k0 + L/2] and suppose that f(k) is smooth in the sense that it is
some linear combination of the N lowest frequency modes,

f(k) =
∑
m

cme
2πim ln(k/ko)/L (B.3)

The sampling theorem tells us the coefficients cm are

cm =
1

N

∑
n

fne
−2πimn/N (B.4)

where

fn = f(kn) =
∑
m

cme
2πimn/N (B.5)

with kn = k0e
nL/N .

The discrete Hankel transform of fn is

f̃n =
∑
m

cmume
−2πimn/N (B.6)
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with the coefficients

um(µ, q) = (k0r0)−2πim/LUµ

(
q +

2πim

L

)
(B.7)

and the complex valued function

Uµ(x) =

∫ ∞
0

txJµ(t)dt = 2x
Γ[(µ+ 1 + x)/2]

Γ[(µ+ 1− x)/2]
(B.8)

The fundamental aspect of the algorithm lies in this function, Uµ, which is the Mellin
transform of the Bessel function of first kind, so it can be computed analytically in terms
of Gamma functions.

What the FFTLog algorithm actually computes is the discrete Hankel transform of a
sequence of logarithmically spaced points, and consists of basically three steps:

1. Fourier transform the fn to obtain the coefficients cm (B.4).

2. Multiply it by um (B.7).

3. Fourier transform umcm back to get the Hankel transform f̃n.

This algorithm suffers from some of the same problems of the regular FFT. Usually
we’re interested in the discrete Hankel transform as an approximation to the continuous
one, so we truncate the function to a finite logarithmic interval, then we replicate the
truncated function in logarithmic space, and these steps cause ringing and aliasing, re-
spectively. Therefore, appropriate precautions must be taken to reduce these unwanted
effects.
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