
Universidade de São Paulo
Instituto de F́ısica

Estados ligados de Majorana em junções de nanofios

Lucas Baldo Mesa Casa

Orientador: Prof. Dr. Luis Gregório Dias da Silva
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Prof(a). Dr(a). Luis Gregório Dias da Silva - Orientador (IFUSP)
Prof(a). Dr(a). Eric de Castro e Andrade (IFSC USP)
Prof(a). Dr(a). Edson Vernek (UFU)

São Paulo
2021

Luis Dias da Silva

Luis Dias da Silva

Luis Dias da Silva

Luis Dias da Silva

Luis Dias da Silva



FICHA CATALOGRÁFICA
Preparada pelo Serviço de Biblioteca e Informação
do Instituto de Física da Universidade de São Paulo

Casa, Lucas Baldo Mesa

Estados ligados de Majorana em junções de nanofios / Majorana
bound states in nanowire junctions   São Paulo, 2021.

Dissertação (Mestrado) – Universidade de São Paulo, Instituto de
Física, Depto. de Física dos Materiais e Mecânica

Orientador: Prof. Dr. Luis Gregório Dias da Silva

Área de Concentração: Física

Unitermos: 1. Supercondutividade; 2. Computação quântica; 3.
Física da matéria condensada; 4. Majorana; 5. Nanofios

USP/IF/SBI-030/2021



University of São Paulo
Physics Institute

Majorana bound states in nanowire junctions

Lucas Baldo Mesa Casa

Supervisor: Prof. Dr. Luis Gregório Dias da Silva
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Abstract

The possible realization of Majorana quasiparticles in condensed matter systems has
motivated much research over the last decade, as it might pave the ground for topological
quantum computing devices. In this work we review important concepts and results in
the area, such as non-Abelian anyons, the Kitaev model and braiding. We then turn to a
proposed implementation of Majorana fermions by reproducing literature results showing
the emergence of p-wave superconductivity in nanowires with Rashba spin-orbit coupling
and s-wave superconductivity in external magnetic fields. We study the spectrum for both
infinite and finite nanowires and its evolution with respect to the field strength. We show
that a topological phase transition is achieved and the emergence of Majorana Bound
States (MBSs) in the topological phase. We investigate the distribution of these states
across the nanowire and their non-locality.

We then reproduce results of NS and SNS junctions with Rashba nanowires, showing
the leaking of the edge states into the normal regions. We also study the effects of the
superconducting phase difference across the SNS junction, in particular how MBSs emerge
at the interfaces only for a phase difference of π. We then calculate the Josephson current
across the junction for different regimes and find a signature for the presence of MBSs.
Finally, we propose a quantitative measurement for this signature through the derivative
of the supercurrent for a phase difference of π.

Keywords— Majorana bound states, Topological superconductivity, Rashba spin-orbit cou-
pling, nanowires, hybrid junctions
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Resumo

A posśıvel realização de quasipart́ıculas de Majorana em sistemas de matéria condensada
foi um tópico de intensa pesquisa na ultima década, já que estas quasipart́ıculas podem abrir
caminho para computação quântica topológica. Neste trabalho nós revisamos conceitos e re-
sultados importantes da área, como anyons não-Abelianos, o modelo de Kitaev e braiding. Em
seguida, nós focamos em uma proposta de implementação de férmions de Majorana e reproduzi-
mos resultados da literatura mostrando a emergência de supercondutividade do tipo p-wave em
nanofios com acoplamento spin-órbita do tipo Rashba e supercondutividade s-wave em cam-
pos magnéticos externos. Nós estudamos o espectro para nanofios tanto infinitos quanto finitos
e a sua evolução com respeito à força do campo. Nós mostramos que uma transição de fase
topológica é atingida e a emergência de Estados Ligados de Majorana (ELM) na fase topológica.
Nós investigamos a distribuição desses estados ao longo do nanofio e a sua não-localidade.

Nós então reproduzimos resultados para junções NS e SNS em nanofios com acoplamento
Rashba, mostrando o vazamento dos estados de borda para dentro das regiões normais. Nós
também estudamos os efeitos da diferença de fase supercondutora através da junção SNS, em
particular como ELMs emergem nas interfaces somente para uma diferença de fase de π. Nós
então calculamos a corrente Josephson através da junção em diferentes regimes e encontramos
uma assinatura para a presença dos ELMs. Por último, propomos uma medição quantitativa
dessa assinatura através da derivada da supercorrente para uma diferença de fase de π.

Palavras-chave— estados ligados de Majorana, supercondutividade topológica, acopla-
mento spin-órbita do tipo Rashba, nanofios, junções h́ıbridas
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Chapter 1

Introduction

The last two decades have seen a significant rise in interest in exotic particles called Majorana
fermions. Discovered in 1937, they are particular solutions to the Dirac equation which have
the peculiarity of being their own anti-particles. For a long time considered only in the realm
of particle physics, they have lately drawn attention in condensed matter physics, where they
have been proposed to appear as zero energy states in unconventional superconductors. With
a landmark paper, Kitaev, in 2001, constructed a simple model of a topological superconductor
which could host these quasi-particle excitations at its edges. The idea sparked great interest
as it was later argued that these states could be used for topologically protected quantum
computation [1].

At the core of these ideas, a topological superconductor is one that undergoes phase tran-
sition without a symmetry breaking. The concept of topology, which in Mathematics refers
to surface properties of non-local nature and that are preserved under smooth deformations,
was appropriated in condensed matter physics to classify the order ruling these unconventional
phases of materials. In this context, two systems are said to be topologically equivalent if their
Hamiltonians can be continuously deformed into one another without any level crossings. This
is specially useful in materials with a significant stability under smooth parameter change or
adiabatic evolution. Materials are then given a topological classification and the non topolog-
ically trivial ones usually also present states located at its boundaries, called edge states. The
above mentioned Kitaev model describes a one dimensional topological superconductor and its
corresponding edge states are bound Majorana quasi-particles”.

Besides the robustness due to the topological properties, these excitations have yet another
peculiar property: the anionic non-abelian statistics. The anionic term means that its statistics
differ from the Fermionic and Bosonic ones, and non-abelian means that consecutive exchanges
involving a set of these particles can lead to different results when done in different orders. This
property allows for encoding and manipulation of information and has motivated the proposals
of topologically protected quantum computation using these quasi-particles.

In turn, this motivated a race for the implementation and detection of these exotic particles,
which has become quite intense in this past decade after a landmark discovery of realistic mate-
rials that could host them [2, 3]. Serious efforts from many groups have led to the experimental
finding of important theoretical predictions, such as the zero-bias peaks. But together with these
findings, obstacles appeared along the way, as it has been proven to be difficult to differentiate
between possible Majorana bound states and other trivial zero-energy excitations.

In this work we will study one of the main platforms being considered, the Rashba nanowire,
as well as hybrid structures with these nanowires that were later proposed to expand the possi-
bilities of signature detection. We will also discuss in more detail the properties of these bound
Majorana states at the beginning.
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1.1 Overview

Much of this work is built on top of an earlier version [4]. This final document is divided
into three parts.

• We begin by introducing the reader to several key-concepts in the study of Majorana
states in condensed matter. This is done in Chapter 2. We start by introducing the
concept of Anyons. We then discuss how Majorana states can be obtained from the Dirac
equation and how these states can be realized in the Kitaev model. We also show how
this model presents a topological phase transition associated with the appearance of these
exotic states. Finally, we combine the ideas from this chapter to show the anyonic and
non-Abelian nature of Majorana Bound States.

• In Chapter 3, we make use of the concepts that have been introduced earlier to describe
and study a more realistic proposal of platforms for Majorana Bound States, the Rashba
nanowire. We begin by describing this system in the absence of superconductivity and
study its bulk properties. We then make use of the Bogoliubov-de Gennes formalism to
consider a superconducting system and see how the properties change. We show that in
this new system a phase transition can happen. We then move to a tight-binding approach
and show that this phase transition in also present in a finite system. We see that, in the
topological regime, a zero energy state emerges satisfying the properties of a Majorana
quasi-particle and we identify it as a Majorana Bound State.

• Finally, in Chapter 4 we study how hybrid structures with these nanowires behave. We first
analyze the case of a junction with one normal region and one superconducting region (NS).
Next we study a junction of a normal region in between two separate superconducting
regions (SNS). In this system we also study the Josephson current that arises between the
two superconductors and relate its profile to the presence or absence of topological states
in the nanowire.

2



Chapter 2

Basic Concepts

Before appreciating the emergence of Majorana states in nanowires with Rashba spin-orbit
coupling, it is instructive to first understand what are these elusive particles, which properties
they possess and how these properties can be harnessed in topological quantum computation.
We thus begin this chapter by studying anyons, the class of particles these Majorana states
belong to due to their non-standard statistics. Next, we study in detail how Majorana states
can be obtained from the Dirac equation of ordinary fermions. With these proper introductions
to the subject we will then present the Kitaev model, a one dimensional system that presents
some very interesting and relatively simple topological behaviour. We will verify a topological
phase transition as well as the emergence of edge states, which, as we will see, shows a Majorana-
like character. Finally, we will go a level of abstraction higher and show how moving these edge
states around can make visible their non-abelian statistics.

2.1 Anyons

Arguably, one of the greatest discoveries of the 20th century has been that all known particles
that compose the universe can be divided into two groups: that of bosons [5, 6, 7] and that of
fermions [8, 9]. This classification is a consequence of the indistinguishability of similar particles
and the symmetries they obey through the exchange between themselves. Moreover, the class
a particle belongs to critically affects the behaviour of the system it forms. This is manifest
not only in quantum statistics, where each class of particles has its associated distribution, but
can also be traced as a root of many other intrinsically quantum phenomena, such as the Pauli
exclusion principle and the Bose-Einstein condensation [1]. As fundamental and ubiquitous as it
is, this classification was later found out not to be the full picture, at least when the assumptions
are revised.

This dualistic view implicitly assumes our usual 3+1-dimensional space-time. In order to see
this, we can first imagine two identical particles and notice how, in this space-time, interchanging
them adiabatically (which means continuously and adiabatically exchanging all their quantum
numbers) twice is equivalent to adiabatically moving one particle around another [1]: it is just a
matter of going to the reference frame of one of the particles. This later movement is topologically
equivalent to not moving any of the particles at all, that is, the trajectory of the orbiting particle
can be continuously deformed into a single point without crossing another particle’s world line.
Because of this, the unitary transformation that represents this process should be equivalent
to the identity operator. In turn, this constrains the representation of a single interchange to
square to unity. Also, if we want the two mathematical states (the one before and the one after
the exchange) to represent the same physical state, the single interchange must be represented
as a phase. Therefore, the only possible one-dimensional representations for this transformation
are the phases of ±1: in three dimensions there can be only bosons and fermions.
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Figure 2.1: The trajectory of a particle around another is continuously deformable to the

identity in three dimensions, but not in two Figure from Ref. [10].

If we instead consider lower-dimensional spaces, however, significant differences appear, as
was first studied by Leinaas and Myrheim, in 1977, and by Wilczek, in 1982 [11, 12]. In 1+1-
dimensional space-time there is no way to exchange two particles without crossing their world-
lines, so the above view on statistics becomes meaningless on its own [1]. In 2+1 dimensions,
on the other hand, we find that this exchange is still possible, but two exchanges are no longer
continuously deformable into the identity without the crossing of world-lines [13, 14]. Because
the representation of two interchanges is not equivalent to unity anymore, we find that one
interchange alone is no longer limited to acting only as a sign, but is represented by a general
phase

ψ(r1, r2)→ eiθψ(r1, r2), (2.1)

where θ is a real number sometimes referred to as the statistical angle. This transformation
reduces to the particular cases of bosons and fermions when θ = 0, π respectively, such that
those classes still exist in two dimensions. Outside these special cases, however, we have particles
that fit into neither group and so constitute new classes, which have been conveniently named
anyons [15] and their associated statistical angle called anyonic phase.

Moreover, the set of closed trajectories for the two particle system can be classified by the
number of windings a particle does around another. This winding number can, in principle,
physically differentiate between the initial and final states after a double interchange of par-
ticles, so the two states need not represent the same physical state. When this happens, the
transformation can no longer be represented by only a phase, but acts as a more general unitary
operator on a manifold of states [16],

ψa(r1, r2)→
∑
b

Uabψb(r1, r2), (2.2)

where each ψa represents a state with a specific winding number and Uab are the matrix elements
of a unitary matrix.

Given a set of N particles with such property, the operators representing the interchange of
different pairs of particles need not to commute. This means that the order in which the particles
are interchanged matters, and for this reason they have been named non-Abelian anyons. A short
pedagogical introduction on the subject can be found in Ref. [17], where a physical mechanism
involving the Aharonov-Bohm effect is used to exemplify the existence of such exotic particles
in two-dimensional systems.

One important point must be made here. Although the mathematical existence of anyons,
Abelian or not, can follow from the above arguments, it is not obvious if these ideas could
ever model physical systems in the real world, which is 3+1-dimensional. A glimpse of hope
appears, however, when we realize that nowadays we have the technology to build condensed
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matter systems with micrometric or even nanometric thickness in specific directions, effectively
freezing the spatial degrees of freedom along those axes for the electrons and quasi-particles
inside them. With the spatial distribution along one axis frozen, the particles behave as if lying
in a lower-dimensional space, hence allowing the above argument to work and anyons to emerge
[16].

One of the first such platforms that were proposed to host anyons is the fractional quantum
Hall effect (FQHE)[18], where 2-dimensional system of electrons in a magnetic field show plateaus
of Hall conductance at fractional values of the conductance quanta. These fractional plateaus
turned out to be very difficult to explain and the FQHE is still today an important and active
research topic. Among the possible explanations developed, one was that some of the exotic
states present in the system were anyons [19, 20]. This, however, has been far from the only
practical systems in which experimentalists have been looking for anyons. Other examples range
from optical systems, which recently yielded braiding statistics characteristic of non-Abelian
anyons [21], to topological superconductors, which are believed to host even more exotic particles
called Majorana Bound States [22, 23].

These Majorana particles are not only expected to behave as non-Abelian anyons, but also
carry special properties due to the fact that they constitute what are called Majorana fermions.
The main difference they present from ordinary (Dirac) fermions is that they are their own anti-
particles. As such, they appear as zero-energy excitations inside the gap of those topological
superconductors. These Majorana Bound States are the main star of this work and we now shift
our focus to understand where this Majorana character they present comes from.

2.2 Majorana fermions

Derived in 1928, the Dirac equation describes how fermions, such as electrons, behave in 3D
space [24]. It can be written as

ih̄
∂

∂t
Ψ = ĤDiracΨ

= (cαp̂ + βmc2)Ψ, (2.3)

where ĤDirac is the Dirac Hamiltonian and αi and β are 4 × 4 complex matrices that satisfy
the relativistic energy equation

c2p2 +m2c4 = (cαp + βmc2)2. (2.4)

Such matrices are not unique and each choice entails a spinor representation. The so-called
Dirac representation is tied to the choice β = σ3 ⊗ 1, α = σ1 ⊗ σ. From these, another set of
matrices called the gamma matrices can be constructed:

γ = (β;βα). (2.5)

We can then rewrite the Dirac Equation in real space as [23]

(ih̄γµ∂µ −mc)Ψ = 0. (2.6)

At this point we stress that the primitive matrices α and β are both complex, at least in
principle, and so are the gamma matrices. Likewise, the solutions to the Dirac Equation, that
is, the 4-component spinors Ψ, are complex fields, as it should be for charged particles [23].
The differential equation, then, intertwines the real and imaginary parts of the spinors such
that we cannot split the equation into two independent ones. It was only in 1937 that it was
discovered that a real set of gamma matrices that obeyed Eq. (2.4) actually existed, meaning
that a separation of the real and imaginary parts of the equation was actually possible. The
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person to do this was the Italian physicist Ettore Majorana [25] and the gamma matrices found
by him were

γ̃0 = σ2 ⊗ σ1

γ̃1 = iσ1 ⊗ 1
γ̃2 = iσ3 ⊗ 1
γ̃3 = iσ2 ⊗ σ2. (2.7)

Notice how they are all purely imaginary, so that the operators that act on the spinor fields
in Eq. (2.6) are real. With this new set of matrices, Majorana proposed a novel particular
solution to the Dirac Equation, where the spinor fields themselves are real, obeying the so-called
reality condition [23]

Ψ̃ = Ψ̃∗. (2.8)

Particles that obey such solution came to be known as Majorana fermions, as opposed to
the more general Dirac fermions. In order to understand what this condition means, we can go
to another representation, say, the Dirac one, and see how the equation changes. Let U be the
unitary transformation that leads from the Majorana representation to the Dirac one, that is,
one such that

γµ = Uγ̃µU−1. (2.9)

We see that Ψ̃ transforms as Ψ̃ → UΨ̃ = Ψ, while Ψ̃∗ transforms as Ψ̃∗ → (UΨ̃)∗ =
U∗Ψ̃∗ = Ψ∗. Thus, after multiplying both sides by U−1, Eq. (2.8) gives way to

Ψ = U−1U∗Ψ∗

= CΨ∗, (2.10)

Here we just defined the operator C, whose interpretation will become clear in a moment.
The above equation is often referred to as the pseudo-reality condition since it is a more general
version of the reality condition of Eq. (2.8). We now modify the Dirac equation in order to
introduce a minimal coupling to the electromagnetic field,

[γµ(ih̄∂µ + eAµ)−mc]Ψ = 0. (2.11)

From this we find that conjugation followed by the action of this new operator on the left
yields

0 = [−Cγµ∗C−1(ih̄∂µ − eAµ)−mc]CΨ∗

= [−U−1(U∗γµ∗UT )U(ih̄∂µ − eAµ)−mc]Ψ∗c
= [−U−1γ̃µ∗U(ih̄∂µ − eAµ)−mc]Ψ∗c
= [U−1γ̃µU(ih̄∂µ − eAµ)−mc]Ψ∗c
= [γµ(ih̄∂µ − eAµ)−mc]Ψ∗c , (2.12)

where we defined the new spinor Ψc and made use of the fact that in the Majorana representation
the gamma matrices are purely imaginary, so γ̃µ∗ = γ̃µ. What we have obtained is thus that the C
operator generates a new equation of the Dirac kind, but with an opposite charge. Together with
the complex conjugation operation, this operator can be identified with the charge conjugation
symmetry. Indeed, Eq. (2.10) constrains a fermion to be its charge-conjugate counterpart, which
in this context can be interpreted as its antiparticle [23]. Majorana fermions, thus, are fermions
which are their own anti-particle.

6



One direct consequence of this is that they must be neutral, that is, chargeless particles.
In the Majorana representation, as we have seen, this manifests itself through a purely real
wavefunction. This, together with the ideas of basis change we just saw, suggests that a Dirac
fermion can be thought of as a superposition of two (or more) different Majorana states with
a phase between them. If we move to a second quantization formalism, this can be simply
expressed by

ĉ =
γ̂a + iγ̂b

2
, (2.13)

where ĉ is the annihilation operator for a (non-relativistic) Dirac fermion, while γ̂i represent
different modes of Majorana fermions. With little rework the above expression leads back to
our result on the Majorana particles being neutral: they can be expressed as a superposition of
creation and annihilation operators of ordinary fermions,

γ̂a = ĉ+ ĉ†, (2.14)

such that the expected value for the number operator is zero. Similarly, one finds that γ̂b =
i(ĉ† − ĉ), so that [γ̂a, γ̂b] = 0. However, it is straightforward to see that γ̂a does not conserve
charge, since it does not commute with the number operator: [γ̂a, ĉ

†ĉ] = ĉ† − ĉ. One also finds

that defining a Majorana number operator such as n̂γ = γ̂†i γ̂i is useless, as this is just unity. This
does not mean that there is no notion of counting associated with Majorana particles. Although
we cannot count the number of Majorana particles, we can still count their parity. For that
we have to take into account that there are two different types of Majorana operators. This
motivates the definition of a parity operator as

P = iγ̂aγ̂b

= 2ĉ†ĉ− 1, (2.15)

with eigenvalues ±1. One can check that this operator counts whether there is an even or odd
number of Majorana fermions in a given state. Since one also finds that γ̂2

i = 1, that is how far
one can go. Creating none or two Majoranas are equivalent processes.

Majorana’s solution was initially put forward in the context of Particle Physics. However,
in the recent decades, it has been proposed that it could appear in condensed matter systems,
where such solutions are called Majorana Bound States, since these are usually confined to
discontinuities or impurities in the system. In the context of condensed matter, Eq. (2.14) is
usually interpreted as a superposition of an electron and a hole in a given material, while the
reality condition for Majorana Bound States is written as

γ̂ = γ̂†. (2.16)

Notice how the operators associated with Majorana fermions are thus Hermitian, blurring
the distinction between creation and annihilation operators. As an important remark, this
condition is not in general satisfied by the whole time-dependant field. Described in terms of
stationary solutions, the contributions from each energy eigenstate would evolve differently on
each side of the above equation. The only way around this is if the Majorana fermions themselves
are stationary solutions with zero energy. This way, both sides of the equation evolve trivially
without picking up any phase and the Majorana condition can be satisfied for all times.

This is a crucial point. Even though any fermionic mode can be described in the Majorana
representation, and perhaps even initialized in a state satisfying the Majorana condition, the
particle and anti-particle contributions evolve differently with time, breaking the condition soon
after it is satisfied. It is only for this specific zero energy case that we could, in principle, observe
these Majorana fermions for discrete amounts of time. For this reason, realizations of Majorana
fermions in condensed matter physics are also often referred to as Majorana Zero Modes.

Having all of this in mind, we are now ready to understand a landmark proposed implemen-
tation of Majorana states in condensed matter, the Kitaev toy model.

7



2.3 The Kitaev Model

In the turning of the century, A. Kitaev showed that the Majorana condition can be satisfied
by many-body states, named Majorana Bound States (MBSs), in special types of superconduc-
tors [26]. As we will see, these states appear after a quantum phase transition of a topological
character. At this transition the superconducting gap closes, dividing the parameter space into
a trivial region and a topological one. We will also see how the spectrum of the latter nests
MBSs below the superconducting gap. All these phenomena are described a relatively simple
model put forward by Kitaev.

The Kitaev model describes a 1-dimensional lattice with a superconducting coupling of a
special kind, named p-wave superconductivity. As proposed by Kitaev, the system presents
only terms for an on-site energy and a hopping between next neighbors, as usual of tight-
binding models, besides a non-charge-conserving coupling between two creation (or annihilation)
operators of neighboring sites. The system’s Hamiltonian reads

ĤKitaev = −µ
N∑
j=1

(ĉ†j ĉj −
1

2
) +

N−1∑
j=1

[
−t(ĉ†j ĉj+1 + ĉ†j+1ĉj) + ∆(ĉj ĉj+1 + ĉ†j+1ĉ

†
j)
]
, (2.17)

where µ, t and ∆ are all constants and ĉ†j creates a fermion at the j-th site. This Hamiltonian
has two interesting peculiarities. First, notice how the spin index is suppressed. This is because
the fermions this model describes (electrons in a 1D chain) are assumed to be spin-less. In
practical terms, this can mean that the chain is spin-polarized (by applying a strong magnetic
field, for example) such that the electron spins are all aligned and there is a great energy barrier
separating the two different spin projections. This way, the spin degree of freedom can be
disregarded in the low-energy regime.

The second peculiarity this model shows is that the superconducting term pairs electrons
from different sites, in a manner similar to the hopping term. The specific way it does this
(by pairing electrons in neighboring sites) is called a p-wave pairing because it obeys the same
symmetries as the p-orbitals in a hydrogen atom.

In order to study this system it is convenient to make a Bogoliubov transformation. Inspired
by the Majorana fermions we just discussed, let us combine same-site creation and annihilation
operators in order to define

γ̂Aj = ĉj + ĉ†j

γ̂Bj = −i(ĉj − ĉ†j). (2.18)

This way, the anti-commutation relations for these new operators are given by

{γ̂Cj , γ̂C
′

j′ } = 2δjj′δCC′ , C, C ′ = A,B. (2.19)

Moreover, these operators also obey the properties (γ̂Cj )2 = 1 and (γ̂Cj )† = γ̂Cj . This last
property should ring a bell by now: it is the Majorana condition! But before looking deeper into
this, let us first write the Hamiltonian using these new operators. By defining ω± = t± |∆|, we
get

Ĥ = − iµ
2

N∑
j=1

γ̂Aj γ̂
B
j +

i

2

N−1∑
j=1

[
ω+γ̂

B
j γ̂

A
j+1 + ω−γ̂

A
j γ̂

B
j+1

]
. (2.20)

The picture that we have now is that for every site we have two kinds of quasi-particles,
γ̂Aj and γ̂Bj , and that only quasi-particles of different kinds are coupled together. Moreover, we
see that three different types of couplings arise. The first term is just the chemical potential
term and it couples quasi-particles on the same site, as depicted in Fig. 2.2(a). The second
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Figure 2.2: Representation of the three types of couplings present in the Kitaev model. The red

dot represents Majorana operators of the type A, while the type B is represented by the dark

blue dots. The cyan ellipses represent a fermionic site and the dashed line shows the coupling

being represented.

term, shown in Fig. 2.2(b), couples quasi-particles of the type B to their A counterparts on its
adjacent site to the right. Similarly, the last term describes couplings of A particles with their
B neighbors to the right, as shown in Fig. 2.2(c). It is now instructive to study particular cases
of this Hamiltonian.

Setting the chemical potential to a finite value while keeping ω± equal to zero results in a
rather trivial and boring example. The only coupling left is between same-site Majoranas, which
is just the usual on-site energies of charged fermions on a background potential.

If we instead set the chemical potential µ to zero and consider a hopping amplitude t equal
to the order parameter ∆ (so that ω+ = 2t and ω− = 0), we get that only the second term from
Eq. (2.20) remains finite,

Ĥ =
iω+

2

N−1∑
j=1

γ̂Bj γ̂
A
j+1. (2.21)

We then notice that, interestingly, the operators γ̂A1 and γ̂BN do not appear in the Hamilto-

nian. Using the anti-commutation relations we can also check that [Ĥ, γ̂A1 ] = [Ĥ, γ̂BN ] = 0. This
necessarily means that given the many-body groundstate of this model, |Φ0〉, the states γ̂A1 |Φ0〉
and γ̂BN |Φ0〉 are also eigenstates with the same energy, so that the groundstate of the system is
degenerate.

The γ̂Cj operators do not have a well defined charge associated to them because they are
combinations of creations and annihilation operators. We can, however, define a fermionic
operator

f̂ =
1

2
(γ̂A1 + iγ̂BN ) (2.22)

that has the same expected value for the charge as an electron and still commutes with the
Hamiltonian. This new operator can thus be regarded as a zero-energy fermionic excitation and
it has the interesting property of being non-local, since it is located at both ends of the chain
and is denominated a Majorana Bound State.

Although the zero-energy property of this state stems from the vanishing of certain parame-
ters in the Hamiltonian, the existence of a non-local state located at both ends of the nanowire
requires only that those parameters are kept within a finite range [26]. What then happens is
that the wavefunction of this fermionic state decays exponentially into the bulk of the chain.
Because of this, the tails of the peaks from both ends overlap in the middle of the chain and
this gives the state a finite energy. As a consequence, this energy split decreases exponentially
with the length of the chain [26], with its approximate value given by

E ≈ 2µ̃∆̃√
µ̃− (∆̃/2)2

e−∆̃L/2| sin(

√
µ̃− (∆̃/2)2L)|+O(e−3∆̃L/2). (2.23)
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A sketch of the proof for this expression is given in Appendix A.3. This result is achieved
from the Ansatz that the wavefunctions for the edge states can be approximately described
by evanescent waves, that is, plane waves with complex momenta. Also, it follows from this
that the wavefunction not only decays exponentially, but it does so in an oscillating manner as
well. We can conclude from this that for long enough chains the edge states can be regarded
approximately as Majorana Zero Modes. As we have seen in the previous subsection, this means
that the Majorana condition can be satisfied for a finite amount of time, the duration of it being
increased as we consider longer chains. Long chains, on their turn, call for the study of the
system through another lens, which will also enable us to see a phenomenon we have already
mentioned: the topological phase transition of the Kitaev model.

2.3.1 Bulk properties and the topological phase transition

So far, we have considered only finite sized systems, where we can study the edge states. If we
consider, on the other hand, a periodic chain or an infinite system, we can define a wavenumber
for all single-particle excitations on the groundstate. The Kitaev Hamiltonian in this case can
be written as [23]

ĤBulk =
∑
k

ξk(ĉ
†ĉ− 1

2
)−

∑
k

t cos(ka) + ∆
∑
k

(ĉ†k ĉ
†
−ke

ika + ĉ−k ĉke
−ika), (2.24)

where ξk = −(µ + 2t cos(ka)), a is the inter-site distance and k is the wavenumber. We can
subsequently diagonalize this as a function of the wavenumber k, but in order to do so it is
convenient to use the Bogoliubov-De Gennes (BdG) formalism. It consists of rewriting the
Hamiltonian as a matrix HBdG, which here is 2× 2, sandwiched between two spinors, as

ĤBulk =
1

2

∑
k

(
ĉ†k, ĉ−k

)
HBdG

(
ĉk
ĉ†−k

)
. (2.25)

The matrix HBdG is called the Bogoliubov-De Gennes Hamiltonian and the task of diag-
onalizing our initial Hamiltonian reduces to diagonalizing this simpler one. A more detailed
description of the formalism is given in Appendix B.1. For the Kitaev model, the BdG Hamil-
tonian is given by [23]

HBdG = ξkσz − 2∆ sin(ka)σy. (2.26)

Through direct diagonalization, we finally find an expression for the energy eigenvalues,

Ek,± = ±
√

(µ+ 2t cos(ka))2 + 4∆2 sin2(ka). (2.27)

Notice that for a finite order parameter ∆ the energy goes to zero if and only if one of the
two pair of conditions below are satisfied:

µ = −2t and k = 0 (2.28a)

or

µ = 2t and k = ±π/a. (2.28b)

When the energy does go to zero, the upper and lower bands touch at the corresponding
value of k. This is called a gap closing, since the gap between the two bands has indeed closed,
and it signals a phase transition has happened in the superconducting system. In this particular
system, it signals a topological phase transition. This means that when the chemical potential is
in the intermediate region defined by |µ| < 2t the ground-state of the chain has one topology or
configuration, while it changes to another one when the system leaves this parameter range. The
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Figure 2.3: Trajectory of the Hamiltonians along the Bloch circle. Two distinct classes of paths

can be seen. a) Trivial: trajectories can be deformed into a point. b) Non-trivial: Trajectories

cannot be deformed into a point without closing the gap. Figure from Ref. [27]

two particular examples we saw for the finite chain case are instances of two different topological
phases.

One way to better understand this phase transition is to picture the BdG Hamiltonian of
Eq. (2.26) through a representation in a Bloch circle. This is done by associating each Pauli
matrix with an axis in a Cartesian plane, using the coefficient of each matrix as a position
along the corresponding axis and tracing out the trajectory followed by the Hamiltonian as the
wavenumber covers the first Brillouin Zone. In addition, we normalize the parametrization,
such that the trajectory is constrained inside a circle. It is easy to see, then, that the trajectory
endpoints are the in the same postion. We also see, as depicted in Fig. 2.3, that there are
essentially two classes of trajectories. When in the |µ| > 2t regime, the trajectory oscillates
around the staring point as a pendulum, so that it passes through the

(
1, 0

)
point three times

in total. More importantly, the trajectory for this class of Hamiltonians can be contracted to a
single point without closing the gap, that is, without passing through the point

(
0, 0

)
where

HBdG = 0. Because of this, this parameter region is often referred to as the trivial one, and the
phase it represents is called the trivial phase.

On the other hand, when we look to the |µ| < 2t parameter range, we find a very peculiar
result. Exactly at the transition point the gap closes, as we just saw, so that the trajectory must
be traversing the origin point of the Cartesian plane. At this point the parametrization cannot
be normalized, but as soon as we traverse it we find that the trajectory now orbits around the
origin completely. This means it can no longer be deformed into a point without closing the
gap. We have entered a distinct class of Hamiltonians. In opposition to the trivial one, this
parameter region is called the topological region and its phase the topological phase. As a final
point to this discussion, let us connect these ideas with what we have seen for finite systems.

It turns out that, because of a so-called bulk-edge correspondence [28, 29], a topological
change in the bulk of the system is manifest also by a change in the behaviour of localized edge
states in the system. Because of this, the appearance of the Majorana Bound States we saw in
the finite chain should be tied to one of the topological phases we just discussed. The phase
where the Majoranas appear is then called the topological phase, while the other is named the
trivial phase. Also, because in the particular, simplified case where we saw the emergence of the
Majorana Bound State the system was inside the |µ| < 2t region (since we had µ = 0), we can
conclude that this is the topological phase of the system.

Now that we have a practical example of how Majorana fermions can appear, we can get a
glimpse of how they can present the promised property of anyonic and non-Abelian statistics.
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Let us take a look at one of the simplest ways this can be done.

2.4 MBSs as non-Abelian anyons

Arguably, one of the main interesting prospects of implementing Majorana fermions is the
possibility of observing and making use of its non-Abelian statistics. As we have discussed on
Sec.2.1, 1-dimensional systems such as the Kitaev model are rather boring in this respect, since
statistics aren’t well defined when you can’t exchange two particles around (at least not without
they crossing each other). What we’ve failed to consider so far, though, is an intermediate case
between 1 and 2 dimensions, when several 1-dimensional wires are connected together. In this
scenario, particle exchange becomes possible through a simple, but clever manipulation of the
particle positions. A pedagogical explanation on the subject is found in Ref. [30].

This process goes as follows. First an intersection between an endpoint of a wire and a
middle region of another wire is found, which we call a T-junction. Then two particles are
selected to be exchanged and moved through the wires such that each is placed on a different
side of the T-junction. Afterwards, one of the particles is moved to the empty ending of the
junction, opening way for the other particle to take its place. Finally, the particle that had
entered the empty ending takes the other particle’s place.

Figure 2.4: Two Majorana fermions exchange places in a network of 1-dimensional wires.

Extracted from Ref. [30].

We need to point out that this of course requires a way to move the particles around. The
practical way this can be done (if it even can) depends on the specific system the particles were
implemented in. In the case of the Kitaev toy model this is possible by controllable, spatially
varying parameters, such as the chemical potential. We haven’t seen it yet, but the idea that
the Majorana fermions appear only at the ends of the chain is not necessarily true for non-
uniform parameters. What happens in this case is that different parts of the material can be in
different phases and the MBSs appear at the borders between these different regions. When the
parameters along the chain change adiabatically, the borders between the different topological
phases can move, carrying the MBSs with them.
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Another subtlety regarding this whole process is what the microscopic situation in the T-
junction is. In the case such a junction has two terminals in the topological regime, with the
remaining terminal in the trivial one, there emerges a domain wall right at the junction. Since
domain walls are where the MBSs are located in these systems, one could naively expect that
a lone MBS would arise. This would contradict the principle that MBSs always come in pairs,
and so it cannot happen. What does happen at this point is that a pair of MBSs are created
and hybridize, generating an ordinary fermion with finite energy. Further discussions on this
subject can be found in Refs. [31, 32].

With these objections out of the way, we can attempt a heuristic analysis of the exchange
process described above. This adiabatic transformation can be represented as a unitary matrix
acting on the Hilbert space of the groundstate manifold of the system. The states of this manifold
are characterized, as we have seen, by the presence of approximately zero-energy excitations,
which can be counted using a parity operator. For concreteness, let’s examine the case of three
pairs of Majorana fermions, naming them from left to right along the chain as γ1, ..., γ6 and
choosing γn and γm to take part on the exchange. We can then define the relevant parity
operators as

P12 = iγ1γ2,

P34 = iγ3γ4,

P56 = iγ5γ6. (2.29)

In general, studying the adiabatic evolution of such a system would require knowing Ĥ(t) and
working from there. However, in this case we can bypass this part and still find an expression for
Unm. Following the arguments of Ref. [30], we first note that the adiabatic exchange preserves the
fermion parity of the system (since it does not create or destroy electrons), so that [Unm, Ptot] =
0. Secondly, we make the reasonable assumption that Unm should not depend on any Majorana
fermions which do not take part on the exchange. This means Unm can only depend on γn and
γm and, since it must preserve fermion parity, the only way it can do it is through the product
γnγm or, equivalently, γmγn. The parity operators are already unitary, but they are not the most
general unitary operators that can be constructed with this product. A more general expression
is given by

Unm = exp(βγnγm)

= cos(β) + γnγm sin(β). (2.30)

By requiring that the two Majoranas must exchange places after the transformation,

UnmγnU
†
nm = γm, (2.31)

UnmγmU
†
nm = γn, (2.32)

one finds the constraint β = ±π/4, which ultimately leads to

Unm =
1√
2

(1± γnγm). (2.33)

The ambiguity on the sign is due to the possibility of exchanging the particles in a clockwise
or counter-clockwise fashion. Already from this point one can see that the whole process cannot
be represented by a single complex phase. If we now study how two subsequent exchanges are
represented, we arrive at our desired result. Consider two exchanges with only one Majorana
in common, Unm and Unm′ , with m 6= m′. Let us consider they both to happen in the same
direction of rotation so that both Us are defined with a positive sign. There are two ways these
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exchanges can happen back to back. We can let Unm′ happen first,

UnmUnm′ =
1

2
(1 + γnγm)(1 + γnγm′)

=
1

2
(1 + γnγm + γnγm′ + γnγmγnγm′)

=
1

2
(1 + γnγm + γnγm′ − γmγm′), (2.34)

or the other way around,

Unm′Unm =
1

2
(1 + γnγm′ + γnγm − γm′γm). (2.35)

It is easy to see that these two orders are not equivalent. On the contrary, we have that

[Unm, Unm′ ] = UnmUnm′ − Unm′Unm

= −γmγm′ . (2.36)

We see then that these Majorana fermions must have a non-Abelian statistics and that this
could, at least in principle, be verified using a network of 1-dimensional topological wires. This
is the core property that attracted interest towards Majorana fermions and which led to several
proposals on its use in topological quantum computation. This concludes the introductory and
motivational part of this work.

We have seen how the Kitaev chain presents a topological phase transition and how its
topological phase hosts Majorana Bound States localized at both ends of the chain. From this
we could get a glimpse of the non-Abelian statistics of these bound states. As illustrating as
this toy model is, it is still a theoretical tool. Implementing a similar system experimentally has
been a challenging task in the last two decades. This is because the p-wave superconductivity
required for it is extremely rare in nature. Fortunately, it has been shown that this kind of
pairing can be artificially creating using simpler, more common ingredients. We will see how in
the next chapter.
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Chapter 3

Majoranas in nanowires with Rashba
spin-orbit coupling

Put forward in 2001, the Kitaev model we have studied in the last chapter is an idealization.
No p-wave superconductor has ever been found in nature. For years this had kept the idea of a
topological superconductor hosting Majorana fermions just a dream. It was only a decade after
that it was brought into the realm of the possible through a pair of publications by Oreg et al.[2]
and Lutchyn et al.[3], when it was discovered that this unconventional type superconductivity
could be artificially created in a material by combining different relatively common ingredients.
One of these is the Rashba spin-orbit coupling, hence the platforms for this proposal becoming
known as Rashba nanowires. Another property the nanowire should present is a relatively
strong coupling to a Zeeman field. This coupling plays an important role, as the transition of
the nanowire into a topological phase could be accomplished by driving up the external field.
Lastly, the nanowire should also present ordinary s-wave superconductivity, and together these
requirements led to a race towards finding the best material for the job [33].

Figure 3.1: The basic setup for implementing Majorana fermions in Rashba nanowires. We

see that the nanowire itself, which is not intrinsically superconducting, is placed on top of an

ordinary superconductor, transferring superconductivity through the proximity effect. The spin-

orbit axis of the nanowire and the axis of the Zeeman field (along the wire) are also indicated

in the picture. Figure from Ref. [34].

15



As the requirement list is extensive, some compromises had to be made. The nanowires
usually considered as platforms for Majorana fermions are not intrinsically superconducting.
Instead, they are considered to acquire superconductivity by a proximity effect after being put
next to an ordinary superconductor, such as an Al coating. We depict such a scenario in Fig. 3.1,
where the Rashba nanowire is deposited on top of the superconductor. In this figure we can also
see the Rashba coupling axis and the presence of the external Zeeman field along the nanowire.
Other experimental variations include a partial or even a full shell surrounding the nanowire
made of the superconducting material [35].

In the next sections we will ignore the details of this proximity effect and assume the su-
perconducting pairing in the Hamiltonian of the nanowire itself. As we will see, this leads to a
relatively simple model that can be treated analytically. First, however, we must introduce in
mathematical detail the other ingredients and understand how they affect the system.

3.1 Rashba nanowires

A material with Rashba spin-orbit coupling in the presence of an external magnetic field is
described by the Hamiltonian

H = HKin +HRashba +HExt

= (
p2

2m∗
− µ) +

αR
h̄

(σ × p) · α̂R +B(σ · B̂). (3.1)

Here HKin is the Kinetic term, HRashba is the spin-orbit coupling of the Rashba type and
HExt is the coupling to the external field, also called the Zeeman term, with p, µ and m∗ being
the momentum, the chemical potential and the effective mass of the electron. Also here, α̂R and
αR are the spin-orbit coupling direction and strength, B̂ and B are the external field coupling
direction and strength, and σ is a vector of Pauli matrices acting on the space of spin, all
respectively. It is important to clarify that B is not the magnetic field magnitude B, but is
related to it by B = gµBB/2, where g is the material’s g-factor and µB is Bohr’s magneton.

We intend to discuss, however, nanowires made out of such materials. In these systems the
dimensions of the device along all except one direction are sufficiently small for all movement
along them to be suppressed. Such systems with the properties of the above Hamiltonian have
been produced for a long time now [36] and they commonly consist of epitaxially grown InAs or
InSb. For these 1D systems, the Hamiltonian can be simplified to be

HNW = (
p2
x

2m∗
− µ)− αR

h̄
σypx +Bσx, (3.2)

where we have set the external field to be along the nanowire axis, x̂ and the Rashba axis to be
perpendicular to that, along the ẑ direction. Placing the Rashba axis on any other direction not
perpendicular to the nanowire would only amount to a re-scaling of the coupling strength, since
the momentum along radial and azimuthal directions is being neglected. The consequences of
an external field not fully perpendicular to the Rashba axis, on the other hand, is explored in
the Appendix of Ref. [34].

If we now consider an eigenvalue equation with the Hamiltonian of Eq. (3.2), we arrive at a
set of ordinary second order differential equations, whose solutions must be linear combinations
of plane waves. We can further separate the spatial and spin degrees of freedom by making the
Ansatz Φk(x) = φke

ikx, such that eigenvalue problem simplifies to

εφk =

[(
h̄2k2

2m∗
− µ

)
− αRkσy +Bσx

]
φk. (3.3)
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We can then diagonalize the matrix on the right hand side of the equation to find the
dispersion relation for this system,

ε±(k) =
h̄2k2

2m∗
− µ±

√
B2 + α2

Rk
2, (3.4)

as well as the spin part of the eigenstates,

φk,± =
1√
2

(
±γk

1

)
, (3.5)

where γk = iαRk+B√
B2+α2

Rk
2

is a complex phase.

The dispersion above is shown as a function of the wavenumber k in Fig. 3.2. What we see
is that we have two bands which are split by the term in the square root. When the Rashba
and external field couplings are turned off, both bands become degenerate and parabolic, as
in Fig. 3.2(a), and the separation between the bottom of the bands and the zero energy line is
merely the chemical potential. The effect of turning on the field is of splitting the bands in energy
without affecting their shape or position with respect to the wavenumber axis, which can be
seen in Fig. 3.2(b). This happens because the external field is the only term that couples to spin,
since we have not considered the spin-orbit coupling yet. This means that the spin projection
along the field axis is a good quantum number and the electrons can be either parallel or anti-
parallel to it. By then choosing an appropriate basis and taking a look at the eigenstates one can
identify each band to a spin projection. In this panel we choose the x−axis, such that the band
in red represents electrons with spin parallel to the field, while the blue one represents electrons
anti-parallel to the field. This can also be seen in the expression for the eigenstates of Eq. 3.5,
where the limit of no Rashba coupling leads to real states of symmetric and anti-symmetric
nature.

If we turn the field off again and make the Rashba coupling finite, what we get are the
bands of Fig. 3.2(c), where the parabolas are split in the wavenumber axis instead of energy.
To understand why this is so, we can turn again towards the spin projection. Since we still
have that only one term couples to spin, the spin projection is still a good quantum number.
This time, however, the appropriate spin basis that diagonalizes the Hamiltonian is along the
Rashba axis (y − axis) instead of the field one, as is done in the plot, with red and blue still
representing parallel and anti-parallel spins. This can be seen through the eigenstates as they
become eigenstates of σy for this case. We see, also, that the two bands have their corresponding
minima at ±kSO = ±mαR/h̄2. What this all means is that the spin has been tied to the
momentum, such that electrons going in one direction minimize their energy with a certain spin
projection and vice-versa. The energy at the bottom of the bands is now given not only by
the chemical potential, but is also affected by the above described effect, such that its value is
E(kSO) = −(µ + ESO), where ESO = m∗α2

R/2h̄
2. Lastly, we can see that the two bands cross

only at k = 0, where the energy equals the chemical potential.
Next, we can analyze what happens when both terms are present. As we can see from

Fig. 3.2(d), the crossing at k = 0 we just mentioned becomes an anti-crossing as the two
bands hybridize. This happens because we now have two different Pauli matrices entering the
Hamiltonian with different dependencies on the wavenumber. In more detail, since the Rashba
coupling is linear in momentum while the Zeeman coupling is momentum independent, there is
no longer one single spin basis which diagonalizes the energy for all wavenumber values. Instead,
for each value of k one can find an appropriate spin basis. As a visualization aid, we color each
point in the plot according to the projection of the eigenstate on a σx basis, such that red and
blue show that on those points that basis works adequately, while shades of purple show regions
where the energy eigenstates are superpositions of the σx spin eigenstates. From Eq. (3.5) we
see this happening as γk takes any value of a complex phase, varying the state between σx and

17



Figure 3.2: The dispersion relation for a Rashba nanowires in external fields. Panel (a) repre-

sents the case of no spin-orbit coupling and no external field. In (b) and (c) we then present

a finite field and spin-orbit coupling, respectively. We observe that while the field splits the

parabolas vertically, the spin-orbit coupling does so horizontally. In both these cases we can

still assign a spin to each band, which we represent by different colors. Note that the axis on

which we project the spin differs on each case and is specified on each panel. Finally, in panel

(d) we combine the two ingredients and observe that the two bands hybridize, tying spin and

momentum together. The parameters used were µ = 0.5meV , B = 0.025 and α = 20nm.meV .

σy eigenstates. As another consequence of the hybridization, we see that the lower band has
two minima, while the upper one has only one.

Another important feature present in this case is the energy separation between the two
bands. As in the Zeeman-only case, they do not touch each other and by tuning the parameters
one can increase the gap between them. A feasible way to do so, in this case, is to control the ratio
between chemical potential and the Zeeman energy. We see that when the later is smaller, as
shown in Fig. 3.3(a), the upper band dips below zero energy, meaning that it will have occupied
states even at zero temperature. What we have, then, is that we can find electrons with all four
possible combinations of movement direction and spin projection at the Fermi energy. This is
because there are four Fermi points in this regime, two in the upper band and two in the lower
band. As we increase the Zeeman energy, we find that the dip eventually recedes, as shown in
Fig. 3.3(b). This happens when B > µ and it leaves the upper band completely empty, so that
there are only two Fermi points in the system. The system then acquires a fixed relationship
between spin and momentum at the Fermi level, which is dictated by the lower band. This
phenomenon is sometimes called spin-momentum locking and the physical state it is related to
is named a helical state. An important note must be made here that the axis on which the spin
is projected in order to observe this locking is not the direction of movement, usually associated
with helicity, but the spin axis of the Rashba coupling, associated with σy. It is, in a sense, an
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Figure 3.3: The competition between the chemical potential and an external field on the spec-

trum of a Rashba nanowire. We see on panel (a) that when the chemical potential is smaller

than the Zeeman energy the upper band crosses the Fermi energy and thus is partially occu-

pied. When the Zeeman energy becomes dominant, as shown in panel (b), the upper band never

crosses the Fermi energy and is not occupied. The colors represent the Spin projection along

the y − axis. This is referred to as a Helical regime [2], in the sense that the spin-projection

is locked to momentum. The parameters used were µ = 0.03meV and α = 20nm.meV , with

B = 0.0006meV for (a) and B = 0.0012meV for (b).

abuse of notation to call these states helical.
As an interesting consequence of this regime transition, the system now occupies only one

band. For this reason, it is sometimes said to be spin polarized. The helicity and spin-polarization
are essential properties for both the topological nanowires and the more complex hybrid systems
we will construct starting from the Rashba nanowire. Because of these properties shown by the
non-superconducting Rashba nanowire, its eigenstates as described in Eq. (3.5) form what will
refer to as the Helical basis. As an abuse of language, this is used even when outside of the
Helical regime. As we will see, the helical basis is extremely useful when studying these systems.
Now that we have gathered some understanding of how these properties arise, let us add the
next ingredient into the mix, conventional s-wave superconductivity.

3.2 Superconducting Rashba nanowires: bulk prop-

erties

The ingredients required to build a topological superconductor out of nanowires with Rashba
spin-orbit coupling are many. This not only complicates the theoretical study of this system, but
makes the task of finding suitable materials for practical implementation an extremely difficult
challenge. This is because the different materials we can make nanowires out of have many
properties fixed. The strength of the spin-orbit coupling αR and the Zeeman coupling g, for
example, are material-dependent and finding a material that has high values for both quantities
is quite hard. If we then were to restrict ourselves to intrinsically superconducting materials,
we would be bound to fail.

Fortunately, intrinsic superconductivity is not the only way for a material to present Cooper
pairing in its effective Hamiltonian. It has been known for a very long time [37, 38] that placing a
superconductor close to an ordinary conductor allows for the tunneling of Cooper pairs from the
former into the later. This is called proximity-induced superconductivity and many proposed
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implementations of the Kitaev model make use of it [2, 3]. In our case, the proximity effect would
allow one to generate superconductivity in a Rashba nanowire by placing it on top of an ordinary
superconductor, as depicted in Fig. 3.1. For a more in-depth discussion on the proximity-effect
in Rashba nanowires we direct the reader to Refs. [39, 40, 41]. Although, as discussed in these
references, non-intrinsic superconductivity would be weaker and could generate side effects, we
shall in this work neglect this fact and insert the usual pairing ”by hand” on the Hamiltonian
for the sole reason of making the problem more tractable mathematically.

So we can treat this problem, it is also convenient to introduce the so-called Bogoliubov-
De Gennes formalism. It consists in doubling the degrees of freedom of the ordinary second-
quantized spinor, such that both creation and annihilation operators are present. This allows
for combinations of alike operators in the Hamiltonian, as is required by superconductivity. The
spinors Ψ̂† then sandwich a 4× 4 Hermitian matrix, denominated the BdG Hamiltonian, which
satisfies particle-hole symmetry. This procedure is explained in more detail in Sec. B.1 and leads
to the final Hamiltonian of the system having the form

H =
1

2

∑
k

Ψ̂†(k)HBdG(k)Ψ̂(k), (3.6)

where the coefficient 1/2 accounts for the double counting caused by doubling the degrees of
freedom. In order to apply this to our case, we must first find how the different terms of the non-
superconducting Rashba nanowire are expressed as BdG Hamiltonians. We begin by choosing
a spinor basis, such as

Ψ̂†(k) =
(
ĉ†k↑, ĉ†k↓, ĉ−k↑, ĉ−k↓

)
, (3.7)

and then rewriting the Hamiltonian HNW from Eq. (3.2) as a function of the wavenumber of
such spinors,

HNW (k) =
h̄2k2

2m∗
− µ− αRkσy +Bσx. (3.8)

From the above matrix we can construct the second-quantized Hamiltonian for the system
and subsequently rearrange part of the operators in order to make evident the particle-hole
symmetry of the system. Following the procedures described in the appendix, we can then write
down the corresponding BdG matrix, which must be

H
(0)
BdG(k) =

(
HNW(k) 0

0 −H∗NW(−k)

)
. (3.9)

Another way to derive such a result would be by first finding out the particle-hole symmetry
operator associated with the spinor basis of Eq. (3.7). It is easy to see that the spin degree
of freedom must be left untouched, while the particle-hole sector is swapped through σx, the
creation and annihilation operators interchanged through complex conjugation and the momenta
through a change of sign. The symmetry must then be accomplished through the operator
P = (τx⊗ σ0)SkK, where τ acts on particle-hole space, σ acts on spin, Sk changes sign of k and
K acts as complex conjugation. As a sanity check, it is easy to see that applying this symmetry
on the BdG Hamiltonian above leads to

PHBdGP
−1 = −HBdG. (3.10)

This means that our expression for the particle-hole symmetry is indeed connecting energy
eigenstates with opposite eigenvalues, as it should. Now we proceed to open up the expression
to find a more explicit form for the BdG Hamiltonian.

With some simple calculation one finds that the spin-orbit term get a sign from both complex
conjugation and the swapping of the wavenumber sign, such that they cancel each other. The
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kinetic and Zeeman terms, on the other hand, are left untouched by these operations. The
explicit minus sign of the hole block in Eq. (3.9) then makes the whole Hamiltonian behave as

τz in particle-hole space, such that H
(0)
BdG(k) = τz ⊗HNW(k)

Finally, we can add s-wave superconductivity to our system. Conventional s-wave pairing is
described by operators of the type

Ĥs-wave(k) = ∆(ĉ†k↑ĉ
†
−k↓ + ĉ−k↓ĉk↑). (3.11)

In the spinor basis we are currently using, the BdG Hamiltonian that represents this pairing

H
(s-wave)
BdG = ∆τy ⊗ σy. By combining this to the BdG Hamiltonian of the non-superconducting

Rashba nanowire, we find the full BdG Hamiltonian of the system.

HBdG(k) =

(
h̄2k2

2m∗
− µ

)
(τz ⊗ σ0)− αRk(τz ⊗ σy) +B(τz ⊗ σx) + ∆(τy ⊗ σy). (3.12)

From this, one can obtain the energy spectrum of the system by diagonalizing the above
matrix. By defining the free electron energy ξk = h̄2k2/2m∗−µ for shorthand notation, we find
that the energy eigenvalues are given by

E±,±(k) = ±
[
ξ2
k + α2

Rk
2 +B2 + ∆2 ± 2

√
B2∆2 + (B2 + α2

Rk
2)ξ2

k

]1/2

. (3.13)

As a first comment on the spectrum, we point out that we see four non-degenerate bands
on the general case, as should be expected due to the doubling of degrees of freedom required
by the BdG formalism. We also would like to point out how the spectrum is symmetric around
zero. This is a consequence of the particle-hole symmetry we enforced on the system, and
the states with opposite energies are connected to each other through this symmetry. We also
salient that the expression above is a bit more complicated than the dispersion we found for the
non-superconducting case, but we can begin to understand it by again looking at limiting cases.

Firstly, we notice how when all ingredients but the kinetic term are turned off the dispersion
becomes parabolic, as one would expect. If we plot it, as we do in Fig. 3.4(a), we find that
the two upper bands are degenerate between themselves (as are the bottom ones), and that for
positive values of the chemical potential the two groups of bands cross. From the crossing we
see that the lower bands are not fully occupied and the upper ones are not completely empty
even at zero temperature. The degeneracy, on its turn is due to the lack of terms that affect the
spin degree of freedom. This is the same we saw in the non-superconducting case, and we can
follow the same steps we did there to find more similarities.

By turning on the spin-orbit coupling, which we do in Fig. 3.4(b), we observe again the
sideways shift on the parabolic bands. This time, though, the particle-hole symmetry imposes
several band crossings that were not there in the other case, as pointed out in the plot. A similar
thing would happen if we instead considered a finite Zeeman coupling, but with the split being
vertical instead of horizontal. Also, because the energy minimum of some bands decreases in
both cases, it is possible that a finite value of the couplings causes the particle and hole bands
to cross even if the chemical potential was not high enough to cause the crossing. Moving on,
we can then consider what happens if both the spin-orbit and the Zeeman terms are finite. As
we can see in Fig. 3.4(c), the new crossings between particle and hole bands are still present,
but the hybridization between bands of the same type make them anti-cross, just as in the
non-superconducting case. In terms of the expression in Eq. (3.13), we see that the presence of
any or both these ingredients causes the square root term to be non-vanishing, hence breaking
the spin degeneracy.

Finally, some drastic changes happen when we consider a finite order parameter ∆. So
far, we saw how a positive chemical potential (or a negative one with sufficiently strong other
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Figure 3.4: The dispersion relation for nanowires in the BdG formalism. In panel (a) we see

mirroring parabolas representing the electron and hole bands. In panel (b) we see that the spin-

orbit effect shifts the bands of electrons and holes of equal to the same side and many different

band crossings appear. In panel (c) we can see that an external field hybridizes some of those

crossings, but not all. Finally, in panel (d) we can see how the presence of superconductivity

hybridizes the remaining crossings, so that we now have four non-intersecting bands and a

gap opens around the Fermi energy. The parameters used were µ = 0.5meV , B = 0.05Bc,

α = 20nm.meV and ∆ = 0.25meV .

couplings) leads to a gapless spectrum, which in a particle-hole symmetric system requires the
presence of band crossings at zero energy. Superconductivity puts that to an end by hybridizing
particle and hole bans together. Mathematically, this happens because we are coupling together
operators of the same type (creation or annihilation ones). The consequences of this can easily
be seen in Fig. 3.4(d), where there is an energy interval around zero in which no possible states
exist. This is a common result for superconductors and the size of the energy gap is usually tied
to the formation of Cooper pairs.

Having these basic properties of the system in mind, we can start turning ourselves towards
a deeper analysis and remember what was our goal with this system. As was mentioned above,
the superconducting Rashba nanowire is expected to develop a different quantum phase, of a
topological nature, under certain circumstances. It is in this phase we expect to find MBSs, but
we must first discover how to get to this phase by finding the correct range of parameters. We
must now find signs of phase transition happening as we tune the different couplings. With this
objective, it is relevant to notice how the superconducting gap discussed above still exists when
the other terms are neglected.
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3.3 Superconducting Rashba nanowires: phase tran-

sition

A gap closing is, in other words, the zeroing of the energy eigenvalues for a set of parameters
and wavenumber. Since the dispersion relation of this system is symmetric by a sign inversion
of the wavenumber, if we want for the gap to close at only one point at a time, we must consider
the wavenumber to be zero. Inserting this constraint into Eq. (3.4) and simplifying a bit we find
that

E±(0) = |B ±
√

∆2 + µ2|. (3.14)

It is clear now that there are two points at which the gap closes at zero momentum. They
both correspond to a Zeeman energy magnitude of

Bc =
√

∆2 + µ2, (3.15)

with each case representing a field in opposite direction. Because it is precisely at this Zeeman
energy that the gap closes, this field value is called the critical field and it marks a transition
in the behaviour of the system, as we will see. We can now see how this gap closing happens as
we drive the field from zero up to a value higher than the critical one.

Figure 3.5: The effective gap in the dispersion relation of a superconducting Rashba nanowire

as a function of the Zeeman energy. We see that this gap monotonically decreases to zero as the

field approaches the critical value. At this critical point the gap is said to have closed and it

signals a phase transition. As the field increases again, the gap reopens and increases linearly.

The different curves represent different values of the spin-orbit coupling and we observe that

they all behave the same for fields higher than the critical one.

This is depicted in Fig. 3.5, where we plot the energy of the lowest of the upper bands as a
function of the field. We see that the energy does indeed go to zero at the critical field, while it
is finite everywhere else. This phenomenon is an evidence that a phase transition in happening
in the system. In order to discuss this further, let us take a look at these ideas from a different
perspective by rewriting the BdG Hamiltonian in a different basis.

As we have seen in Chapter 3, the helical basis constitutes a more natural way of describing
this system. In order to get back to it, we define a new spinor basis,

Φ̂†(k) =
(
φ̂†k+, φ̂†k−, φ̂−k+, φ̂−k−

)
, (3.16)
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where φ̂†k± (φ̂k±) creates (annihilates) an electron at the φ±(k) state described by the Helical

basis of Eq. (3.5). Because those states are related to the ordinary operators ĉ†kσ (ĉkσ) through a
unitary transformation, the newly defined spinor is also related to the spinor of Eq. (3.7) through
a unitary transformation. In this new basis, the BdG Hamiltonian of the superconducting
Rashba nanowire becomes

H
(Helical)
BdG =


ε+(k) 0 ∆++(k) ∆+−(k)

0 ε−(k) −∆+−(k) ∆−−(k)

∆†++(k) −∆†+−(k) −ε+(−k) 0

∆†+−(k) ∆†−−(k) 0 −ε−(−k)

 , (3.17)

where ε±(k) are the energies of the non-superconducting case found in Eq. (3.4). We have also
just defined the quantities

∆−−,++(k) =
±iαRk∆√
B2 + (αRk)2

and ∆+−(k) =
B∆√

B2 + (αRk)2
. (3.18)

By doing this, we diagonalize the particle and hole blocks of the Hamiltonian straight away,
leaving only the superconducting terms outside the main diagonal. These, however, become
more complex, as we see appear two different types of couplings.

One of them, ∆+−, couples particles and holes of opposite momenta from different bands.
This is analogous to the s-wave pairing we saw in the first basis, with the detail that now the
bands being paired together are not of free electrons of opposite spins, but of helical states with
different helicity. For this reason, it’s called an inter-band pairing. Its strength is proportional
to the order parameter ∆ that controlled the s-wave pairing, but is also scaled by the Zeeman
and spin-orbit terms. The Zeeman dependence is rather weak for large fields and the spin-
orbit coupling suppresses superconductivity in the opposite regime. With the exception of these
details, not much new behaviour is found in this term.

The ∆−− and ∆++ pairings, on the other hand, show some very unique physics. One can
see from the BdG matrix that these terms are coupling together electrons and holes of the
same band. This is dubbed intra-band superconductivity and is drastically different from usual
superconductivity. Moreover, these pairings are not only proportional to the order parameter,
but are also approximately linear in the wavenumber for large enough fields. Since its general
form is odd in k, it possesses the same symmetries as of p atomic orbitals. For this reason, this
kind of coupling is termed p-wave superconductivity. As one can recall, this is the same type
of paring that appears in the Hamiltonian of the Kitaev toy model. Not only that, but it is a
crucial factor for the emergence of the topological phase and the Majorana states in that system.

Although we do not show here, the Kitaev model can be derived from our Rashba system
through perturbation theory for high fields in the small momentum regime. Outside this scope,
however, We have many extra terms in our Rashba Hamiltonian that obscure and shuffle the
spectrum. Part of it grants our system a different and perhaps even more rich behaviour, and
cannot be thrown out. Another part, as will see, is not essential and can be made negligible by
tuning the system parameters correctly.

In order to see this we must take a look at how the bands evolve as we tune the field. The
reason we still insist in using this parameter as control is that it is more easily controllable in
experiments and we have already found a simple expression of the critical point associated with
it, Bc. In Fig. 3.6 we plot the dispersion relation for fixed parameters and increasing values of
the field. In Fig. 3.6(a) we see how the superconducting system behaves in the absence of a field,
with a superconducting gap present. We again see the horizontal separation of the bands due
to spin-orbit coupling, such that each band can be tied to a spin projection. If we increase the
field to a finite but small value, as we do in Fig. 3.6(b) we find that the band crossings hybridize
due to spin not being a good quantum number anymore. All this has been seen and discussed
already, but a new phenomena appears when we tune the field up to the critical value, Bc.
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Figure 3.6: The dispersion relation of a superconducting Rashba nanowire at different field

magnitudes. (a): at zero field we observe two bands with well-defined spin, which we represent

with different colors. We mark with a black dashed line the superconducting gap, which coincides

in value with the order parameter ∆. (b): as the field increases to the helical regime the two

bands hybridize, locking spin to momentum, as can be seen by the bands becoming multicolored.

We also note that the gap decreases. (c): at the critical field the gap closes at zero momentum,

signaling a phase transition. (d): as the field increases further the gap reopens and the system

enters in a topological regime. Parameters used: µ = 0.5meV , α = 20nm.meV and ∆ =

0.25meV .

As we can see in Fig. 3.6(c), at this point the lower band of the positive spectrum has dipped
in energy in the low momentum region up to the point of touching its hole counterpart exactly
at k = 0. The band touching guarantees there are states at every energy value, even the ones
close to zero. This is the gap closing we have been looking for and its signaling that a transition
in happening in the system. By further increasing the field we see that the bands separate,
opening the gap one more time. This is depicted in Fig. 3.6(c) and the system is then in a
topologically different phase.

The aspects of the phase transition we have discussed so far are all pertaining to the bulk
of the system. From the bulk-edge correspondence, however, we expect that a change in the
topology of the bulk will result in the appearance of edge states [28]. In order to see those states
we must turn ourselves to finite systems, which we do in the next sections.

3.4 The tight-binding formalism

As we have seen, the bulk of Rashba nanowires shows evidence of a topological phase transi-
tion and the development of a topological phase. We will now demonstrate that in a finite sized
system, this topological phase is characterized by the presence of MBSs, which are exponentially
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localized on the edges of the nanowire [26].
By using a finite nanowire, the translational symmetry is broken, rendering k-space ineffective

as a tool. Therefore we move on to the tight-binding approach. We shall not derive this formalism
here, but rather just translate the expressions we had for the continuum case into the tight-
binding language. In practice, this consists of discretizing real space so that the Hamiltonian
can ultimately be written as a finite-dimensional matrix. Then, only a set of discrete positions
xi become allowed and, because of this, the derivatives are now performed through the method
of finite differences. They are given by

∂

∂x
ĉ(x)→ δ

δxi
ĉi ≡

ĉi+1 − ĉi−1

2a
, (3.19a)

∂2

∂x2
ĉ(x)→ δ2

δx2
i

ĉi ≡
ĉi+1 − 2ĉi + ĉi−1

a2
, (3.19b)

where we just introduced the notation ĉi = ĉ(xi) and a is the discretization step, the distance
in real space between two fermionic sites i and i+ 1.

From the definitions above we can find out how to represent the different terms in the
Hamiltonian. Starting with the kinetic term, one finds that it becomes

ĤKin =
∑
i,σ

[
(2t− µ)ĉ†i,σ ĉi,σ − t (ĉ†i,σ ĉi+1,σ + ĉ†i,σ ĉi−1,σ)

]
, (3.20)

where we just defined the quantity t = h̄2/2m∗a2. The spin-orbit term, on its turn, becomes

ĤSO =
∑
i

tSO

[
ĉ†i,↑(ĉi+1,↓ − ĉi−1,↓)− ĉ†i,↓(ĉi+1,↑ − ĉi−1,↑)

]
, (3.21)

where tSO = αR/2a, while the Zeeman term is found to be

ĤZ =
∑
i

B
(
ĉ†i,↑ĉi,↓ + ĉ†i,↓ĉi,↑

)
, (3.22)

where B is again the Zeeman energy. Finally, for an order parameter of ∆, we find that the
s-wave pairing in the tight-binding description is given by

ĤSC =
1

2

∑
i

[
∆
(
ĉ†i,↑ĉ

†
i,↓ − ĉ

†
i,↓ĉ
†
i,↑

)
+ h.c.

]
. (3.23)

Having these expressions, the next natural step would be to construct the corresponding BdG
Hamiltonian. It is important to notice, however, that our basis for the BdG matrix can no longer
be parametrized by the wavenumber, since that is not a good quantum number anymore. This
means we can no longer parametrize the BdG Hamiltonians with respect to k as well. Instead,
we must construct one big matrix that takes all fermionic sites into account and diagonalize it
all at once. From a practical perspective, this matrix will have dimensions 4N × 4N , where
the factors of 4 take the spin and particle-hole degrees of freedom into account. Likewise, the
corresponding basis should have dimension 4N and we can construct it as

Ψ̂† =
(
ĉ†1,↑, ĉ†1,↓, ĉ†2,↑, ..., ĉ†N,↓, ĉ1,↑, ĉ1,↓, ĉ2,↑, ..., ĉN,↓

)
. (3.24)

If we now define the building block matrices

h =

(
2t− µ B
B 2t− µ

)
, v =

(
−t tSO

−tSO −t

)
, δ =

(
0 ∆
−∆ 0

)
, (3.25)
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the final form of the BdG Hamiltonian will be

HBdG =



h v 0 .. δ 0 0 ..
v† h v .. 0 δ 0 ..
0 v† h .. 0 0 δ ..
: : : : : : : :
δ† 0 0 .. −h∗ −v∗ 0 ..
0 δ† 0 .. −vT −h∗ −v∗ ..
0 0 δ† .. 0 −vT −h∗ ..
: : : : : : : :


. (3.26)

It is fitting at this point to add a side note. For the matrix above we have chosen open
boundary conditions, which correspond to a finite wire with its ends isolated from any leads or
from each other. If we had instead chosen periodic boundary conditions we could emulate an
infinite wire or at least a wire with both its ends connected. The only modification necessary
for this would be to insert the elements v and v† at the end points of the anti-diagonal of
the first diagonal block and −v∗ and −vT for the second diagonal block. By inserting these
elements alongside a phase eikL one could recover wavenumber as a parameter and find the
same results we discussed for the bulk system. As that has been already done, we shall not
dwell on this subject any longer. Instead, we shall turn to what is left, that is, to implement
the open-boundary matrix above numerically, so we can finally find the spectrum of a finite
superconducting Rashba nanowire, where the MBSs should be present.

3.5 Superconducting Rashba nanowires: edge prop-

erties

Having introduced the tools to study discrete systems, we now implement the discussed
model numerically and diagonalize the matrices with respect to parameters of interest. This
yields us the spectrum of these systems, where we expect to find the MBSs as low-energy states
emerging in the topological phase. The low energy spectrum yielded by this method is not only
useful to understand the emergence of MBSs, but allows for transport based studies, as done in
Ref. [42]. As with the study of the bulk, we shall use the Zeeman field to tune our system into
the different topological phases. In Fig. 3.7 we plot the energy levels as a function of the Zeeman
field in units of the critical field Bc. A new parameter we have control of, in comparison to the
bulk analysis, is the length of the system we are considering. This can be tuned by changing
either the lattice distance a or the number of sites we consider in the space discretization.

In Fig. 3.7(a) we show the spectrum of a relatively short nanowire, 2000nm long. The first
thing we should point out is that we observe a hard gap for low field values, characterized by a
significant energy separation between the least energetic positive state and the most energetic
negative state. This gap remains open for a considerable range of parameters, but its size
decreases as the field increases. When the field eventually reaches its critical value Bc we find
that the gap closes, which we mark with a green stripe on the plot. This was expected, as we saw
the same thing happening for the bulk of this system and this observation can be interpreted as
the magnetic field killing the Cooper pairs, a phenomenon that is well consolidated in literature
[43]. As we increase the field further, we see that the gap reopens. As we discussed, the closing
and reopening of the gap is a sign that a phase transition is underway, but this time it is
accompanied by another interesting piece of evidence: the emergence of a pair of low-energy
states, which we point out with a red arrow. After emerging, these states oscillate in energy
with the field, crossing themselves a few times and they represent precursors of MBSs in our
system.

We can start to see this by looking at how they behave with respect to system length. In
Fig. 3.7(b) we make the same kind of plot for a longer nanowire, 8000nm long. We see many
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Figure 3.7: The spectrum of finite Rashba nanowires as a function of the Zeeman field. In

panel (a) the wire is 2000nm long and we notice that a gap is present for low field values. As

the field increases this gap decreases, reaching zero at the critical point (which we mark with a

green stripe) and then reopening. This is compatible with what we saw in the analysis of the

bulk. We also notice the emergence of a pair of low-energy states in the topological regime that

oscillate in energy with respect to the field and which we highlight with arrows. If we turn to a

longer nanowire, as in panel (b), where L = 8000nm, we see that these oscillations disappear as

the states become pinned to zero energy. This behaviour points to some non-local property and

evidences these states might be MBSs. The parameters used were µ = 0.5meV , α = 20nm.meV

and ∆ = 0.25meV .

of the main features are still there: a hard gap at low fields, a gap closing and reopening and
the emergence of low-energy states after the transition. The main difference we notice, however,
is that the energy of the emerging states has been greatly suppressed, to the point where the
oscillations cannot be seen anymore at this energy scale. The reason for this, as it turns out, is
that these states are localized at the edges of the nanowire and their finite energy comes from
an overlap of the peaks from each edge.

One way to check these claims is by finding the energies for systems of different sizes. This
is shown in Fig. 3.8, where the energy of the lowest state is calculated as a function of the lattice
distance a. One can see that the energy does decrease, as we expected, but not monotonically.
This is very similar to what we saw in the Kitaev model, where the energy split due to the
finiteness of the chain had a modulated exponential behaviour. Although our system now is
much more complicated, one sees that the same expression we used for the Kitaev model in
Eq. (2.23) still works as an approximation as we fit that into the data with the black curve.

A more direct way to observe the edge-localization and the variation of overlap with system
length is by plotting their wavefunctions. We do so in Fig. 3.9, where the wavefunction amplitude
|Ψ| of the least energetic positive state is shown as a function of the position along the nanowire.
We show in blue a state in the topological regime, with B = 1.5Bc. We see in this case that
the state concentrates around the edges of the system and its presence in the middle region is
significantly suppressed. This is in stark contrast with what we would expect for a free electron,
where the wavefunction is completely delocalized and which is closer to the behaviour of the zero
field case, shown in red. We can then compare the cases of a shorter system as of Fig. 3.9(a)
with a longer one such as of Fig. 3.9(b). We observe that they are very similar, but the edge-
localization of the longer nanowire in the topological regime is even more pronounced, with the
presence in the bulk being negligible. Hence, we can conclude that by making a longer nanowire
the peaks are placed further apart so that the overlap, and hence the energy, decreases.
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Figure 3.8: The energy of the lowest-lying state for various regimes as a function of the length

of the system. We see that for low-fields (red and orange), the least energetic state has a weak

dependence on length, specially for nanowires longer than 2000nm. In the topological regime

(blue), on the other hand, the lowest-lying states have an oscillatory and exponential dependence

on length, becoming zero energy states in the limit of long systems. This is characteristic of

MBSs and is well matched by the expression for the Majorana’s energies of the Kitaev model of

Eq. 2.23, as shown by the dashed black curve. Parameters used: µ = 0.5meV , α = 20nm.meV

and ∆ = 0.25meV .

Figure 3.9: The wavefunction amplitudes of least energetic states in the zero-field (red) and

topological (blue) regimes. In panel (a) we can see in blue that the non-local property of the

MBS is already present for a 2000nm long nanowire, as the wavefunction is clearly peaked at

both ends of the system, with little presence in the center. As we move to a longer wire in panel

(b) we see these peaks become even more prominent and the presence in the center become

negligible. For comparison, in both panels we also present, in red, the least-energetic state of

the zero field regime, which is seen to be completely delocalized.

This is one of the main properties presented by the MBSs we saw in the Kitaev model and it
is no coincidence. At this point we can affirm we have indeed a pair of MBSs in the system, but
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some insight is needed in order to find them. Another fundamental characteristic of Majorana
states is the fact that they are their own anti-particles. The antiparticles in the context of
condensed matter can be understood as the hole counterpart of the state, which in the BdG
formalism is simply found by making a particle-hole transformation. Here, this transformation
is given by P = (τx⊗σ0)K and one can check that our Hamiltonian of Eq. (3.26) anti-commutes
with it. By applying the transformation to the energy eigenstates, one sees then that it takes the
positive energy states into their counterparts of negative energy and vice-versa. This includes
the low-energy states we have been discussing so far and hence we see they cannot be Majorana
states as they are.

We point out, however, that in long nanowires they form an approximately degenerate man-
ifold, since their energy is near-zero. Because of this, it makes sense to consider superpositions
of those states, and by making symmetric and anti-symmetric combinations we find that we
can build eigenstates of the particle-hole symmetry operator, satisfying the Majorana condi-
tion. These states are the celebrated Majorana Bound States we have been looking for. These
states, of course, are not exact eigenstates of the energy, so we should expect them to evolve
non-trivially. However, as long as the nanowire is long enough and we can initialize the system
in one of these states, we could remain close to it for arbitrarily amounts of time. For a 8000nm
long nanowire with the realistic parameter we have been using so far, for example, we find that
the energy for these states stays peaks at around 0.2µeV for a field close to 2Bc, while it can
be two orders of magnitude smaller at fields just above Bc, which is compatible with literature
[44]. This results in a period of around 20nm to 2µs for the time oscillations. The energy can
be further decreased by tuning the field to a node, increasing the period even further.

We saw, then, that in much the same way one needs to make a change of basis to go from
the Dirac to the Majorana representation in the Dirac equation, we also need to change the
basis to find the MBSs in Rashba nanowires. Another interesting result is gained from this
if we take a look at the wavefunctions in this new basis. One finds that through symmetric
and anti-symmetric combinations the energy eigenstates cancel each other out at one end or
another. What this means is that the MBSs of our system are each localized at one end of
the wire, just as in the Kitaev model, and in Fig. 3.10 we plot their wavefunctions along the
wire, with the symmetric state in orange and the anti-symmetric in green. The localization
of those states, as it turns out, can be quantified by approximating them as evanescent waves
ψ(x) ≈ e−x/xiM e±ikF x and finding the appropriate values for their coherence length ξM and
Fermi wavenumber kF . Since their wavefunctions are real, we actually look for symmetric or
anti-symmetric combinations of states with both signs of kF . The best fitting curve is shown
in Fig. 3.10 by the dashed lines and their corresponding values are ξM = 185(3)nm and kF =
2.427(3) 10−2nm−1.

We have seen in this section first how helical states can arise in Rashba nanowires. We
then saw how, with the introduction of conventional superconductivity, the system presents a
topological phase transition marked by a gap closing, and we used the helical states we found
to make evident the emergence of p-wave superconductivity. Finally, we saw how after this
transition the system presents a pair of low-energy states from which we were able to construct
MBSs that satisfy the Majorana condition and are localized at the edges of the system. Although
all of these results are interesting by themselves and could be more deeply analyzed, we will now
change our focus to more complex systems, where the Rashba nanowire will serve as a building
block. In the next section we will study hybrid junctions and see the emerging MBSs interact
with a different environment.

3.6 A connection to experiments

In the last decade, many reviews have been written not only on the theoretical development
of platforms for Majorana Bound States, but also on the experimental implementation of such
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Figure 3.10: The wavefunction of the MBSs in the Majorana basis. We see that the peaks can

indeed be separated through this transformation and their wavefunction can be then modeled

by and oscillatory exponential, as shown by the dashed black curve.

platforms. An up-to-date example of the later is Ref. [45], where experiments involving spec-
troscopy and transport measurement of hybrid semiconductor-superconductor structures are
discussed. We list here a few examples of such experiments that have relevance to this work.

One of the first publications of experimental results on the detection of signatures of Majo-
rana Bound States on nanowires is that of Mourik et al [46]. In this 2012 paper we already see
one of the most discussed evidences of these states, that is, the zero-bias conductance peaks. The
idea behind the search for these peaks is that the MBSs, having a peculiar zero energy, should
generate a distinct increase in conductance for voltage-biased transport experiments when this
voltage is close to zero. The peaks, which were measured by the authors and by many other
subsequent experiments, generated much excitement in the community. However, this was even-
tually met with skepticism. Although these are experimental signatures we expect and need to
observe in a system with MBSs, it was later shown that they can be reproduced in these types
of systems by many non-topological mechanisms.

This has led to much discussion, where experimental results which once had been interpreted
as proof for the detection of MBSs were put into question. This is most clearly represented in
the recent developments regarding a 2018 Nature paper by Zhang et al [47], where the authors
had claimed to have detected yet another MBS signature, the quantization of conductance in
these zero-bias peaks. After much debate and scrutiny, a replacement to the original paper was
released in pre-print form [48] and the authors claim a retraction note is under preparation. The
discussion is still lively, but the general consensus seems to be that this episode has made clear
the need for the detection of more than only one signature.

In light of these recent developments, we also present here other studies and accomplish-
ments of the last decade. A wide range of systems have been experimentally studied through
spectroscopy by several groups, such as ferromagnetic atomic chains [49], hybrid nanowires with
quantum dots [50] and pure nanowires with a focus on the splitting of Andreev Bound States
[51]. Many other experimental studies have also been made on transport measurements, some of
which are as the observation of a magnetically-driven supercurrent enhancement [52], gate tun-
ability [53], multiple Andreev Reflections in highly transparent junctions [54], multiple Andreev
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Bound States [55], and quantum dot parity effects [56]. The quality and techniques employed
in the making of these platforms have also seen improvement, as exemplified by Ref. [35], where
the authors were able to produce and experiment on nanowires fully enclosed in a supercon-
ducting shell, in contrast with the primitive idea showed earlier on this chapter, where the
semiconducting part is simply deposited on the superconducting one.

Finally, we would also like to make a special mention to recent publications which have
focused on the concomitant measurement of different MBS signatures [57], and the measurement
of correlation of states at both ends of the nanowire, exploiting the non-local property of the
MBSs [58].

Having seen that recent developments have been made not only on the theoretical side of the
search for Majorana fermions, we will now end this chapter by taking a look at another point
of view on the subject and study a particular application for these systems that has been only
recently proposed.

3.7 Applications on Topological Quantum Computa-

tion

A very important problem faced today in the field of quantum computation is that of scala-
bility: the capacity to increase a system in size at feasible and reasonable cost. This is a problem
that is present in all sorts of platforms and the Rashba nanowire, with its fields, axes alignments
and contact surfaces, is no exception. Among the proposed solutions to this problem are the
ones by Karzig et al in Ref. [59], which we will briefly present and discuss here. In order to
deal with these more complex problems where there are many topological nanowires involved we
must turn to a minimal model, where we take the presence of the MBSs at the edges for granted
and consider its interactions to neighboring structures through tunneling amplitudes. At this
level of abstraction we can then study networks of nanowires where braiding can be performed.

Figure 3.11: An example of a scalable hexon architecture. Figure from Ref [59].

An important part for achieving scalability is having building blocks for the system, which
can be copied and wired together. The main block proposed in Karzig’s work is represented in
Fig. 3.11. As we can see, the hexon, as it was named by the authors, is comprised of six parallel
nanowires (grey) which are joined together by a superconducting backbone (blue). Because of the
parallel arrangement, a common axis exists for all nanowires along which a magnetic field can
be placed and used to drive the system into the topological phase. In this phase it is expected
that MBSs will arise at zero energy at the edges away from the backbone, while the ones close
to it will hybridize. Only the zero energy modes (red) participate in the braiding protocols of
this system and they are connected to each other through semiconductors (orange) while the
coupling constants are controlled by gate voltages. The semiconductors are embedded with
quantum dots which also take part in braiding. Finally, both the superconducting island and
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the quantum dots are Coulomb-blockaded in order to prevent quasi-particle poisoning. Also,
the quantum-dots are taken to be spin-polarized, thanks to the dominating magnetic field.

An important difference from this design to other proposed computational architectures is
that instead of relying on adiabatic processes to perform braiding, Karzig’s proposal makes use
of the idea of forced measurements [1]. Closely related to the quantum Zeno effect [60], the idea
behind this procedure is that by making repetitive measurements in non-compatible bases one
can force the result of a measurement after a random but reasonably short amount of trials and
errors. The measurement that is aimed to be forced in this architecture is that of the fermion
parity associated with pairs of MBSs, since this could then be used for performing braiding
operations. In order to make this measurements the author’s proposal is to couple the pair of
MBSs together through a quantum dot. This allows the MBSs to hybridize and causes a split
in energy that is not compatible with the parity quantum number, meaning energy can serve as
a second basis for the procedure. The authors then propose different methods to perform the
actual measurement of the quantum numbers, such as spectroscopy, quantum dot occupation
and differential capacitance. Whatever method used, the intended result is that at the end of a
forced measurement the MBS parity can be set to even or odd, as wished.

A forced measurement procedure for MBSs i and j is mathematically represented by the
projector

Π
(jk)
0 =

1− iγjγk
2

(3.27)

With these projectors defined, the authors then show how a sequence of such measurements
can lead to a braiding of two MBSs on the same island. In particular, they show that the
exchange operation between MBSs 1 and 2, which is given by R(12) = (1+γ1γ2)/

√
2, is obtained

after performing the sequence Π
(34)
0 , Π

(23)
0 , Π

(13)
0 and Π

(34)
0 . All that is left for interpreting this

as a quantum logic gate is to define the computational basis. The authors define the qubit basis
states as

|0〉 = |p12 = p16 = −1〉 (3.28)

|1〉 = |p12 = p16 = +1〉. (3.29)

In this basis the operation R(12) described above and a similar exchange R(25) between MBSs
2 and 5 are written as

R(12) =

(
1 0
0 −i

)
, (3.30)

R(25) =
1√
2

(
1 i
i 1

)
. (3.31)

The Hadamard gate is then expressed in terms of these two: H = R(12)R(25)R(12). We note
here that although MBSs 4 and 5 are involved in the measurements for all these operations, they
are disregarded in the computational basis. This is because they are used only as an ancillary
pair and encode no information. Thus, although a superconducting island hosts three pairs of
MBSs, only two pairs are used to store the qubit information.

By connecting different islands one is able to perform multi-qubit gates, such as the two-bit
entangling Clifford gate

W =


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

 , (3.32)
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which is performed through the sequence Π
(34)
0 , Π

(35)
0 , Π

(5678)
0 , Π

(45)
0 and Π

(34)
0 . Combined,

all these gates form a multi-qubit Clifford-complete gate set. The authors finally discuss how
this set combined with a single non-Clifford gate would enable the system to perform universal
quantum computation, such as a T gate. As stated by the authors, the ability to perform such
a gate is equivalent to the ability of creating so-called ”magic states”

1√
2

(
|0〉+ eiπ|1〉

)
, (3.33)

which the authors then claim that these states could be created in their system since they can
be distilled using only Clifford operations [61].

With this we conclude our review on this interesting proposal. Many other approaches for
the application of MBSs on quantum computation have been proposed and much work remains
to be done. An ubiquitous theme among these proposal is that of hybrid structures comprised
of both superconducting and semiconducting parts. Motivated by this and by our previous
discussions about MBS signature detection we will now turn to relatively more simple systems,
but with strong experimental relevance and which can be studied in more detail: junctions with
Rashba nanowires.
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Chapter 4

Superconductor-semiconductor
junctions in Rashba nanowires

So far we have considered homogeneous systems, where the parameters are constant through-
out the whole nanowire. Many interesting phenomena involving Rashba nanowires, however, ap-
pear when considering hybrid structures [23]. These can be constructed by considering nanowires
with spatially dependent parameters. For example, part of the nanowire can have its super-
conductivity taken away by removing the s-wave superconductor around it. These regions are
denominated normal or normal-metal regions and we will use them to construct junctions. From
the implementation point of view, this is done by simply setting δ in Eq. (3.26) to zero for the
corresponding sites.

In this chapter we will consider two geometries. The first one, depicted in Fig. 4.1(a), is
the NS junction, which is comprised of a normal (N) region on one end of the nanowire next
to a superconducting (S) region. One interesting new phenomenon that occurs already in this
configuration is that an electron traveling in the N region and hitting the NS interface may get
reflected as a hole instead of a usual electron. This process is called the Andreev reflection and
it transfers a Cooper pair from the N into the S region [62, 63].

Figure 4.1: A sketch of the junctions considered and the important phenomena supported by

them. In (a) is the NS junction and below it the Andreev reflection is depicted. In (b) we show

a SNS junction with the cycle of Andreev reflections that generate an Andreev Bound State and

a net transfer of Cooper pairs between the S regions, which generates the Josephson current.

In a different case we instead remove the proximitized s-wave superconductor from a middle
region of the nanowire, leaving two separate S regions. This forms a SNS junction, Fig. 4.1(b),
which also possesses interfaces between N and S regions, thus supporting Andreev reflections.
Moreover, the hole generated in one of such reflections can hit the other interface and, with
the reverse process, be reflected back as an electron. Multiple Andreev reflections result in
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the formation of an Andreev Bound State (ABS) [64, 65]. This cycle of Andreev reflections
is modulated by the superconducting phase and can result in a net current of Cooper pairs
denominated a supercurrent [66], giving the ABSs an important role in transport dynamics in
SNS junctions, as we will discuss in a later section of this chapter. Both these geometries were
already studied in literature (see [34]) and most of this chapter is a review of those results, with
a small original contribution at the end.

4.1 NS junctions

It is important to understand the interactions between the 1D topological superconductors
we have seen and non-superconducting N regions, as shown in Fig. 4.1(a), because these are
present in the experimental settings related to the measurement of MBSs, such as the studies
of zero bias conductance peaks [23]. That is why we briefly study here the behaviour of the
NS junctions. Several studies have been made in the subject in the last decade, including
transport-based ones [67, 42, 68, 69] and cases where the N region is treated as a quantum dot
[70, 71]

A NS junction can be modeled by putting the superconducting parameter to zero in one
outer region of the nanowire while keeping the rest of the parameters constant. As we will
see, the size of this region has significant effect on the energy levels of the system. However,
as a starting point, let us consider the case of a nanowire with regions of equal proportions.
By applying the above mentioned changes to the Hamiltonian of the system and numerically
diagonalizing it for a 4000 nm long NS junction of equally sized regions we obtain the results
shown in Fig. 4.2.

Figure 4.2: Panel (a): spectrum as a function of the Zeeman field, with the critical field

marked in green. Panel (b): the wavefunctions of the lowest lying states for zero field (red) and

1.5Bc (blue). We have marked with stripes the field values for these states in the spectrum for

reference. We point out that the subgap state represented for the zero field case is bound to the

N region. Additionally, we see that in the topological phase there is one Majorana peak in the

outer edge of the S region, but the other peak is not present, what can be interpreted as the

other Majorana leaking into the N region. The parameters used were µ = 0.5 meV and αR = 20

nm.meV for the whole system with ∆ = 0.25 meV in the S region and ∆ = 0 in the N region.

In Fig. 4.2(a) we show the energy spectrum as a function of the Zeeman field. As in the
simple nanowire case we observe a gap closing and reopening at Bc, marked with a green stripe,
with the emergence of low energy oscillating states at higher fields. This suggests that there is
still a topological phase transition happening in the system. The main differing features from the
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previous case are a smaller gap for higher fields and the presence of trivial finite-energy subgap
states for low fields. These states originate from the N region, where the lack of superconductivity
implies the lack of a gap. This can be checked by looking at the localization of such states, which
we do in Fig. 4.2(b). In red we plot the wavefunction amplitude distribution across the system
for the least energetic state at zero field. We verify that it is indeed bound to the N region
(left half of the structure) being virtually not present inside the S region (right half). A similar
profile is found for the other subgap states at low fields. In blue, on the other hand, we have
plotted the wavefunction of the MBS at 1.1Bc. We see that the outermost peak is still present
and decaying exponentially towards the bulk, but the other peak, which we expected to find at
the other end of the S region, is not there. This can be understood as the Majorana leaking into
the N region, as was already observed in Refs. [72, 71], and is a sign that the topological states
are significantly influenced by the surroundings of the nanowire. This should be kept in mind
when studying transport properties of these systems.

Keeping these newfound properties in mind, we can then study how different proportions of
the N and S regions affect the spectrum of NS junctions. It is important, though, to recall that
the spectrum of a S region by itself depends on its length LS , particularly in the topological
regime, as we have seen in the previous chapter. In order to factor out these changes, we vary
the length of a NS junction while keeping the LS fixed at a value that allows for the emergence
of the MBSs.

From a practical standpoint, this can be done in two ways. One possibility is to add more
sites to the N region, increasing the total number of sites n in the tight-binding model. The
second one would be to keep the number of sites fixed while converting sites at the interface
from the S region to the N region by setting their local order parameter to zero and changing
the inter-site distance a such as to keep LS = nS a constant. We have compared the results of
both methods and found no significant difference. The energy spectrum obtained for the first
method are shown in Fig. 4.3, where we plot the energy of the lowest lying levels as a function
of LN for two values of the field.

Figure 4.3: Spectrum as a function of the length of the N region for a junction with for zero

field (a) and a topological value of 1.5Bc (b) values of the field. Here LS = 3000nm. We can

see that the trivial subgap states of panel (a) are present even for very small N regions, but

the number of states increases as the junction gets longer. In panel (b) we see that the energy

distance between the MBSs and the next least-energetic states decreases with LN .

Fig. 4.3(a) corresponds to the zero field case and in it we see that the number of subgap
states increases with the size of the N region, seemingly tending to a continuum of states in the
limit LS/LN →∞. This behaviour of the spacing between energy levels is the one expected for
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a confined particle and so this is a new indicative that these subgap states are bound to the N
region, as we had already pointed out in Fig. 4.2(b). A very similar behaviour is found for the
system in the topological regime, as depicted in Fig. 4.3(b). The main difference we see in this
other case is the robust presence of the MBSs at near-zero energy and of a set of states forming
a pseudo-gap, just as we have seen for a sole superconducting nanowire. These later states do
not depend on LN and are bound to the S region, in contrast to the converging states bound to
the N region.

We conclude our analysis of the NS junction by pointing out that although the profile of
the MBSs wavefunctions differs from the simple nanowire case on one side of the junction,
the transformation to the Majorana basis in order to obtain an isolated peak still works. The
symmetric and anti-symmetric combinations of the lowest energy eigenstates are localized on
opposite edges of the nanowire, as we can see in Fig. 4.4. We see that the state corresponding
to the Majorana far away from the interface has a behaviour equivalent to that of the simple
nanowire case. On the other hand, the state located at the interface does have a seemingly
exponential decay into the bulk of the superconducting region, but is also spread through the N
region. Because energies of the original states are also approximately zero for sufficiently long
S regions, our discussions regarding the validity of these linear combinations are also applicable
here.

Figure 4.4: Wavefunction amplitude of the MBS of a NS junctions in the Majorana basis. We

can see that the Majorana peak that is away from the NS interface behaves as usual and can

be modeled by the same curve as before. In contrast, the peak at the interface leaks into the N

region, where it becomes completely delocalized.

Having then seen that there is an important interplay between a Rashba nanowire in the
topological phase and its neighboring non-superconducting regions, we move on to study a
slightly more complex hybrid structure, the SNS junction.

4.2 SNS junctions

Differently from the structures discussed so far, SNS junctions present not only one S region,
but two (see Fig. 4.1(b)). This gives importance to a parameter we have been ignoring so far:
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the superconducting phase. The superconducting order parameter is in principle a complex
quantity and its complex phase can be adjusted experimentally. By defining this phase for a
given superconductor region labeled i as ϕi = Arg(∆i), the phase difference between the right
and left S regions in a SNS junction is

φ = ϕR − ϕL. (4.1)

It is important here to remark that although the superconducting phase is defined up to a
global phase, this phase difference is invariant under a change in this global quantity. Having
this in mind, we can pick a reference frame and proceed to make the same kind of analysis we
have done on our systems so far, which we do in Fig. 4.5. As a starting point, we study the
cases of ϕ = 0, π in the top and bottom panels, respectively, and plot their energy as a function
of the Zeeman field on the left panels and the wavefunction amplitudes of their least energetic
states on the right panels.

Figure 4.5: The low-energy spectrum and wavefunction amplitude for a SNS junction. (a) and

(b): ϕ = 0 case. The MBSs appear only at the outer edges of the S regions. (c) and (d): ϕ = π

case. The MBS peaks appear at both the outer edges and at the interfaces. Closer inspection

shows there are two pairs of MBSs at zero energy in this case. For both values of ϕ we see that

the lowest-lying state of the trivial regime is bound to the N region. As we will see later, these

are Andreev Bound States.

We have considered very long S regions, 3970nm each, and a comparatively very short N
region of 60nm. From the spectrum of Fig. 4.5(a), for zero phase difference, we can see a phase
transition present in the same way as the previous cases, with a gap closing and reopening at the
critical field followed by the emergence of the near zero energy states. We can check that these
states still behave as MBSs by looking at their wavefunctions. In Fig. 4.5(b) we plot in blue the
wavefunction amplitude of one of these states and verify that it is indeed located at the outer
ends of the nanowire, similarly to the simple nanowire case. Since a topological SNS junction
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can be seen as two separate topological wires divided by a N region, one could naively expect to
also see MBSs at the interfaces, but this is not the case. As we have seen in the NS junctions,
the MBS peaks can leak into the normal region. This can in part explain why we don’t see the
peaks in the S regions, but since we also don’t see a presence of the wavefunction inside the
N region, there must be another important mechanism dictating the behaviour of these MBSs.
Before we discuss this further, it is useful to point out another similarity to the NS junctions,
that is, the presence of subgap states both in the trivial and topological regimes. These states,
which we indicate in the spectrum with red and green arrows, respectively, are bound to the N
region, as can be seen in the wavefunction plot for the trivial case (red). As we will see, these
states can be interpreted as ABSs in the SNS junction and, as it turns out, one of these states
is what has become of the missing MBS peaks of the topological regime.

In much the same way a short nanowire leads to the hybridization of the precursors of
the MBSs, the proximity between the edges of the S regions, combined to the leaking of their
localization into the the other regions, leads to these states acquiring a finite energy. Because of
this, an ordinary transformation to the Majorana basis is not meaningful anymore, and the only
true MBSs of the system are the ones located at the outer edges. As we will see later, this energy
remains finite when the phase is changed to a finite value. Interestingly, the only exception to
this observation occurs when we set ϕ = π. As can be seen in Fig. 4.5(c), in this case these
states seem to disappear, but upon closer inspection one finds that they have become degenerate
with the outer MBSs. By then looking at their wavefunction amplitude in Fig. 4.5(d), we can
see that each of these zero energy states presents a profile with peaks at both the outer ends of
the nanowire and around the N region.

Figure 4.6: The wavefunction amplitude of the MBSs of an SNS junction in the Majorana basis

for ϕ = π. We see peaks at both the outer edges and at the interface. The peaks at the interface

have their peaks and troughs aligned, preventing hybridization. They also significantly leak into

the opposite S region.

We now point out that the degeneracy allows for a Majorana transformation to be meaningful
again and through it we are able to split the wavefunctions into separate peaks, finding well-
localized Majorana fermions. This is depicted in Fig. 4.6, where each colored curve corresponds
to a different linear combination of the original energy eigenstates. We observe that the inner
Majoranas, that is, the ones located near the interfaces, seem to overlap significantly because
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of leaking into the N region and the opposite S region. Upon closer inspection, however, one
finds that their peaks and troughs are aligned and that the phase difference of π is somehow
preventing them from acquiring energy. To understand this, we can turn to the the point of
view of the Kitaev model, where the nanowire has been separated into two distinct topological
domains, each with MBS peaks at its edges. The phase difference has inverted the coupling
order between Majoranas on the right superconductor, so that the two chains cannot be linked
together. The neighboring MBSs at the interfaces do not hybridize because they are of equal
types. The takeaway message here is that at this value of ϕ a SNS junction can indeed host two
pairs of MBSs, at least for wires with the right dimensions.

In order to understand why this is the case, we now study how the spectrum of a slightly
shorter SNS junctions depends on this phase difference. In Fig. 4.7 we present results for
a junction with an extremely short N region of 20 nm length by fixing the Zeeman field to
different values. For panels (a-d) we use outer S regions 2000 nm long. In Fig. 4.7(a) we see
the energy spectrum with respect to the phase difference in the absence of Zeeman field. We
observe a gap compatible with the size of the superconducting parameter throughout all the
range of φ, but also a distinct subgap state. This state is close to the bulk in energy when φ is
zero, but dips as this parameter increases, reaching a minimum close to zero energy at φ = π.
The strong energy dependence on ϕ evidences that these states are indeed the before mentioned
ABSs because the phase difference modulates the coherence of multiple Andreev reflections on
the interfaces [64, 65]. As we will see in a moment, these states play an important role in the
transport dynamics of SNS junctions.

For now, in Fig. 4.7(b) we show the case for a field of 0.5Bc. Here we observe that the ABS we
just discussed was actually degenerate and the presence of a Zeeman field split both curves, the
bottom one dipping enough in energy to cross its electron-hole symmetric counterpart. Moreover
we point out that there are two different gaps in the system, pointed by the black arrows. If
we increase the field further up to its critical value 1Bc we obtain the results in Fig. 4.7(c). We
see the closing of one of the gaps, just as in the previous systems, but also the presence of a
phase-dependent state reaching a minimum at φ = π. We also point out that the upper gap
never closes and is not related to the topological phase transition. By driving the field up to
1.5Bc, Fig. 4.7(d), we enter the topological regime and see a gap reopening, with a near zero
energy state emerging, the MBS. Moreover, we see another subgap state appearing, with a shape
similar to the ABS, and we observe this state pulls the MBS away from zero energy at φ = π
and the two bands touch.

The energy splitting in the MBS bands at π is due to the finiteness of the S regions, as we
can see by looking at Fig. 4.7(e). Here we see that the spectrum for a junction with 4000 nm
long S regions does not present such a splitting, but instead the ABS-like bands cross at zero
energy. We are thus again presented with the degeneration of the ABSs with the zero energy
states. At ϕ = π the only hybridization between the states at the interface is suppressed and
the only way a finite energy can be acquired is through hybridization of these states with the
outer MBSs. As we just saw this can be prevented by simply considering a longer nanowire.

We have seen here that the presence of ABSs and the phase difference between the S regions
change significantly the behaviour of the low energy spectrum of hybrid structures based on
Rashba nanowires, and that some experimentally controllable parameters can allow for the
existence of two distinct pairs of MBSs. We will now see some consequences of this and, in
addition, showcase a method for measuring the presence of these states experimentally through
a phenomenon called the Josephson supercurrent.

4.3 Josephson supercurrent

The cycle of Andreev reflections implied in ABSs leads to the transference of Cooper pairs
from one S region to another, as is sketched in Fig. 4.1(b). In principle, the mirror symmetry of
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Figure 4.7: The energy spectrum of SNS junctions, in units of the superconducting parameter,

as a function of the phase difference, in units of π. For panels (a-d) we consider a system with

total length of 4000nm. (a): zero-field case. We observe the presence of a gap, but also of

a pair of strongly phase-dependent subgap states, denoted with arrows. These are ABSs and

they are bound to the N region. (b): intermediate field case. We see the ABS split as the spin

degeneracy is broken, with the lowest band crossing its hole counterpart. The superconducting

gap decreases. (c): critical field case. At this point the gap completely closes, although a

phase dependent state can be seen in the background. (d): topological regime. In this case we

observe a pair of states pinned to zero energy, which are MBSs located at the outer edges of

the nanowire. At ϕ = π, however, the ABSs come close to zero energy and hybridize with the

MBSs. (e): topological regime for a longer nanowire. In this case the S regions are long enough

so that hybridization is averted and the system presents 2 pairs of MBSs at ϕ = π.

a SNS junction would guarantee that this process happens as frequently as its inverse. However,
as we have seen in the last section, there is a parameter in the system that breaks this mirror
symmetry, the superconducting phase difference. As a consequence, this phase can give prefer-
ence to the flow of Cooper pairs in a certain direction. This is the well known DC Josephson
Effect [66] and leads to a measurable supercurrent across the junction. The AC Josephson effect
also exists and has been studied in Rashba nanowire junctions [73]. This supercurrent can, in
general, be calculated through [63]

I(φ) = − e
h

∑
p>0

dEp
dφ

, (4.2)

where Ep represents phase-dependent energy levels and the sum is over positive-valued states
only. For a regular SNS junction the Josephson supercurrent has a simple sinusoidal dependence
on ϕ, with nodes when this quantity is equal to a multiple of π. In our case, however, the presence
of the Zeeman and spin-orbit terms modifies the profile of the supercurrent significantly. This
can be seen by calculating the above expression for the supercurrent using the spectrum obtained
in the last section, which we do in Fig. 4.8. We then plot the supercurrent I as a function of the
phase difference for fixed values of the Zeeman field in Fig. 4.8(a), where we consider S regions
with a length of 2000 nm. For zero field (red) the supercurrent shows a sine-like behaviour
characteristic of the Josephson current, with a slight skewness towards the center node. As the
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field becomes finite and increases (black, green and blue) we observe a reduction of the current
amplitude, which is due to the decrease in effective superconductivity caused by the interplay
between Cooper pairs and magnetic fields. The only distinct feature observed is a step-like curve
for finite fields in the helical phase (black), which is due to the ABSs crossing observed in the
spectrum in Fig. 4.7(b). By recalling the variations with respect to the system lengths we saw
in the spectrum, a next natural step is to verify what effect they have in the supercurrent.

Figure 4.8: The supercurrent profile of SNS junctions with Rashba nanowires. (a): the su-

percurrent for different fields. Notice how the amplitude decreases with the field, but remains

finite even after the phase transition. The sharp peaks of the helical regime is due to the ABS

crossings. (b): supercurrent of the topological regime for different lengths of the S region. For

short S regions we observe a typical Josephson curve, while for larger ones the curve becomes

closer to a saw-tooth profile.

Although we don’t show it here, we have seen that the the general profiles for the different
cases remain the same independently from the characteristic lengths of the system, including
the step-like behaviour of the helical case. The only exception to this is the case of a field in
the topological regime (blue). For short S regions this case presents a profile almost identical to
the case of a critical field (green), which is essentially the same as the zero field case but with a
smaller amplitude. In Fig. 4.8(b) we plot the supercurrent profile in the topological regime for
different lengths of the S region. It is clear from these curves that as LS increases the skewness
of the profile also increases, becoming closer to two linear curves joined together by a sharp drop
in ϕ = π. When the S regions are long enough, the curve becomes what is known as a saw-tooth
profile [74]. The dependence on length is a sign that this is related to non-local phenomena.
Additionally, this transition happens around the same length for which a nanowire becomes
capable of hosting MBSs. Together, these hint to the possibility that the MBSs themselves
might be responsible for this signature in the supercurrent. We find out that this is indeed
the case when we analyze the individual contributions to the supercurrent in Fig. 4.9. First,
we see that the the outer MBSs (red) have virtually zero influence on the supercurrent, which
is expected, since their origin is unrelated to the ABSs responsible for supercurrent transport
across the junction. Next, the bulk, or quasi-continuum, states (green) have a small and negative
contribution, although some of them are localized in the N region. Finally, we see that the inner
MBSs (blue), that is, the ones localized at the junction, are responsible for the saw-tooth shape
and contribute the most to the total supercurrent (black).

What we can conclude from this is that although the supercurrent carries no significant
information on the MBSs at the outer edges of a SNS junction, it can signal the presence of
MBSs at the inner interfaces, thus serving as a detection tool for these elusive states. This is
extremely relevant because, as has been pointed out by recent literature [48], the transport-
based detection protocols commonly considered such as the ones involving zero-bias peaks have
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Figure 4.9: The contributions to the supercurrent as a function of phase difference for a SNS

junction with 4000 nm long S regions. We observe the contribution from the outer MBS (red)

is negligible, while the contributions from the bulk (green) is small and negative. We see that

the inner MBS (blue) contributes the most towards the total (black) and is responsible for the

saw-tooth shape.

difficulty discerning trivial zero energy states from topological ones. The supercurrent profile,
as we have seen, is capable of making this distinction already by qualitatively comparing the
curves. It is interesting, however, to have a more quantitative measure for the presence of
topological zero energy states. Considering that the main property of a saw-tooth profile is
arguably the sharp drop between consecutive linear sections, it is useful to study the derivative
of the supercurrent at this transition point. The idea behind it is that a sinusoidal curve with
amplitude Ic will yield a derivative of −Ic at this point, whereas a perfect saw-tooth profile
would yield a value of minus infinity. Thus, for comparative reasons, we start by calculating the
derivative of the supercurrents for different fields and nanowire lengths and plot it in Fig. 4.10.
Since we are only interested in the relative magnitude of the derivative at the nodal point with
respect to the curve and we have already seen that the Zeeman field and the system lengths can
affect the supercurrent amplitude, we have factored out this quantity.

We show how the profile changes for different field values in Fig. 4.10(a) for short S regions
and observe that the sharp transitions of the helical regime (black) translate into distinct peaks.
We also observe similar peaks appearing further away from ϕ = π at the critical field (green),
due to some small discontinuities in the profile that were harder to see in the previous plot. We
stress that these peaks are due to the crossing of the ABS bands in the spectrum and that this
crossing moves away from ϕ = π as the field increases, which is compatible with what we see
in the figure. We also observe that, interestingly, in the topological regime (blue) the system
behaves very closely to an ordinary Josephson junction as the derivative of the current is close
to a cosine curve. Lastly, we point out that the zero-field case (red) distances itself from this
cosine behaviour by presenting a bump around ϕ = π, which is due to the skewness we discussed
above. This is already a sign that peaks of the supercurrent derivative can appear in at this
point even in trivial regimes, a fact we must beware of.

If we now move on to study the dependence of the supercurrent derivative on the S length,
we see in Fig. 4.10(b) that as the S regions surpass a threshold of around 2000nm, a bump at
the nodal point also appears for the topological regime. As LS increases this bump gets taller
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Figure 4.10: The derivative of the supercurrent for SNS junctions. (a): comparing the curves

for different fields we see that for a short S region the zero-field regime (red) presents a bump

at ϕ = π, while the topological regime (blue) behaves as an ordinary Josephson junction. (b):

comparing the curves for different values of LS , we see that longer nanowires show peak at

ϕ = π, which gets sharper as the length increases.

and narrower, becoming a distinct peak. This is a consequence of the MBSs’ emergence, as we
have discussed before, but now put in a way that is more easily quantified. The height of the
peaks can be measured and compared, which we’ll do in a moment. However, before we do so
and in order to get an even clearer view of what changes are relevant and which ones are mere
fluctuation, we consider the logarithm of this quantity, defining what we will call the sharpness
of the junction:

S = ln

∣∣∣∣d(I/Ic)

dϕ
|ϕ=π

∣∣∣∣. (4.3)

With this objective and easily obtained measure of whether a SNS junction is closer to hosting
MBSs at the interfaces or behaving as an ordinary Josephson junction, we can subsequently study
how this quantity depends on the system lengths, which we do in Fig. 4.11.

Figure 4.11: The effect of system lengths on the sharpness of the junction for the zero-field

(red) and topological (blue) regimes. In panel (a) we can see that S increases linearly with LN
for the topological regime, while it remains constant for the zero-field one. In panel (b) we see

that a change in LN leads to strong oscillations in S for the zero-field case, but not for the

topological one.
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In order to vary the system lengths we have opted for adding sites to the corresponding region
in our tight-binding approximation. In Fig. 4.11(a) we have fixed the length of the N region
and varied the number of sites in the outer S regions, thus varying LS . We have considered two
values for LN : 60nm, which we plot in solid lines, and 3000nm, in dashed lines. We can see
from this data is that the zero field case (red) shows a S with little to no dependence on LS . We
see that it is distinguished from an ideal Josephson junction (green) only by a constant, which
is due to the already mentioned natural skewness of the system. The topological case (blue),
on the other hand, shows a distinguished dependence on LS , with a linear behaviour. We see
that for short S regions the junction behaves more like an ordinary Josephson junction, since
the wire is not capable of hosting MBSs. At some point around LS ≈ 2000 ∼ 3000nm, however,
the sharpness of the topological regime surpasses that of the trivial one and keeps increasing
linearly. Additionally, we also notice that although these observations are valid for both values
of LN considered, the two curves are slightly offset. This instigates an investigation on how the
sharpness depends on LN , which we do in Fig. 4.11(b).

Again, we see that the trivial regime (red), presents no large scale dependence, with fluctu-
ations only. These fluctuations are likely due to the addition of new sites caused by the method
chosen pushing around the other states. The dashed, dotted and solid curves represent different
values of LS and we see again that the trivial phase seems to behave the same independently
of this value. Interestingly, the curves representing the topological phase (blue) are very well
separated between themselves. We see that they have in general a flat behaviour, with a very
small S region of 750nm length (line) having a sharpness very similar to the Josephson refer-
ence, while a very long S region of 4500nm (solid) stays constant just above S = 3. We found,
however, that intermediate values of LS , such as the 3000nm case we present (dashed), slightly
deviate from this by showing some minor oscillations and a slow descent as LN increases. This
last feature is in accordance with the offset we saw between the curves for the topological phase
in panel (a) and here we see that this offset should vanish at large enough S regions.

A last very important observation that must be made from this data is that the sharpness
of the trivial regime oscillates very strongly and quickly with LN , reaching values comparable
to that of a very long junction. Just observing a saw-tooth-like profile for a given SNS junction
is not enough to conclude it is in the topological phase and hosting a pair of MBSs at the
interface. In order to distinguish between trivial and topological states using the above defined
sharpness we must consider its dependence on LS . As we saw, the supercurrent profile generated
by topological states becomes increasingly sharper as the S regions become longer because the
overlap between the inner and outer MBS peaks diminishes, allowing for the ABS at the junction
to reach zero energy. This doesn’t happen for the trivial regime, on the other hand, because its
spectrum doesn’t share the same non-locality properties and hence does not depend significantly
on LS .

We here conclude our study of junctions with Rashba nanowires. We have seen that in the
topological regime, the presence of a neighboring normal region causes a Majorana peak to leak
out of the S region, as in the NS junction. We then saw that when the N region is surrounded
by two different topological S regions, such as in an SNS junction, this leads in general to an
overlap of the Majorana peaks that form the Andreev Bound State, giving it a finite energy. It
is only when the phase difference across the junction equals to π that the overlap cancels out
and the state’s energy becomes zero. We also saw that still in this case the state can gain a
finite energy if the S regions are not long enough.

Next, we have calculated from the spectrum the Josephson supercurrent generated by the
phase difference. We saw that in general the profile of such supercurrents are very similar to
those of an ordinary Josephson junction, but that a saw-tooth behaviour can emerge in certain
situations. We have introduced a quantity we have named the sharpness and shown how it can
quantify this behaviour and differentiate between trivial and topological states when the length
of the S regions is varied. This enables the use of the supercurrent profile as a signature detection
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of MBSs. Finally, we stress that the non-locality of the MBSs is an ubiquitous observation among
the phenomena we have studied here.
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Chapter 5

Conclusions and outlook

In this work we have reviewed studies on the low energy spectrum of Rashba nanowires. In
the non-superconducting case we saw how the interplay between the Rashba spin-orbit coupling
and an external field generates helical states, where spin and momentum are locked together.
We then used this knowledge to study superconducting nanowires, where we reproduced the
appearance of p-wave superconductivity in the helical bands. We then reviewed how, similarly
to the Kitaev model, this system also presents a topological phase transition characterized by
a gap closing and reopening. By moving to a tight-binding approach we were able to verify
that for a finite sized system the phase transition is accompanied by the emergence of non-
local edge-localized states, a phenomenon well-known in literature. The energy of these states
oscillates with respect to the Zeeman field and decrease exponentially with system length. For
long enough nanowires these states can be approximated as having zero energy, satisfying the
conditions of Majorana Bound States.

In the last Chapter, we have turned towards hybrid systems constructed with these nanowires,
namely NS and SNS junctions. We reproduced and discussed the new phenomena that has been
shown to arise in these scenarios. In the NS junctions we were able to see how the Majorana
peak located next to a normal region leaks into it, losing its exponential localization. In SNS
junctions we observed that this leads to a hybridization of the MBSs located near the NS in-
terfaces. We also saw that a superconducting phase of ϕ = π can prevent this hybridization, at
which point there are two pairs of true MBSs in the system. We have also made a connection
to the Andreev Bound State that is expected to arise in such junctions.

We have finally completed the discussion by calculating the Josephson current in these junc-
tions due to a finite phase difference. We saw that in many cases the profile of the supercurrent

Figure 5.1: Multiterminal geometry.

48



has a usual sinusoidal behaviour, but that in some regimes new behaviour appears. Particularly,
we saw how a saw-tooth profile always arises in the topological regime if the superconducting
regions are long enough. We also saw that a similar curve can be reproduced in certain instances
of the zero-field regime, which then led us to study the dependence of these with respect to the
system lengths. Although all of these results were already observed in literature, we have intro-
duced a new objective quantity to differentiate between the two main profile types, that, to the
best of our knowledge, had not been studied yet. We then verified that as we increase the length
of S regions, this quantity remains constant for the zero-field regime while it increases linearly
for the topological one. We thus propose this method as a valid procedure for distinguishing
topological from trivial states in systems with Rashba nanowires.

A next step that makes itself natural in this investigation would be the study of more complex
junctions, called multi-terminal junctions, which are comprised of more creative combinations of
N and S regions. One such system is the double Josephson junction, or SNSNS junction, depicted
in Fig. 5.1, which we are currently studying. These types of junctions have become prominent in
recent years due to the possible emergence of topology without intrinsically topological materials
[75, 76, 77, 78, 79].
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Appendix A

We show the proofs of some calculations regarding the Kitaev model.

A.1 Kitaev Hamiltonian in Majorana basis

Here we show how to derive the Kitaev Hamiltonian in the Majorana basis as in Eq. (2.20)
from the usual fermionic form presented in Eq. (2.17). In order to do so we calculate first the
inverse relation of Eq. (2.18), so we can express the original fermionic operators as

âj = e−i
θ
2

(γ̂Aj + iγ̂Bj )

2
,

â†j = e+i
θ
2

(γ̂Aj − iγ̂Bj )

2
. (A.1)

We now substitute these expressions in the Kitaev Hamiltonian and apply the anti-commutation
relations. In order to keep track of the calculations we do one term at a time. Starting with the
chemical potential part,

Ĥµ = −µ
∑
j

(â†j âj −
1
2)

= −µ
∑
j

((e+i
θ
2

(γ̂Aj − iγ̂Bj )

2
)(e−i

θ
2

(γ̂Aj + iγ̂Bj )

2
)− 1

2)

= −µ
4

∑
j

(
(γ̂Aj )2 − iγ̂Bj γ̂Aj + iγ̂Aj γ̂

B
j + (γ̂Bj )2 − 2

)
= −µ

2

∑
j

i γ̂Aj γ̂
B
j . (A.2)

The tunneling term evaluates to

Ĥt = −t
∑
j

(â†j âj+1 + â†j+1âj)

= − t
4

∑
j

(
(γ̂Aj − iγ̂Bj )(γ̂Aj+1 + iγ̂Bj+1) + (γ̂Aj+1 − iγ̂Bj+1)(γ̂Aj + iγ̂Bj )

)
= − t

4

∑
j

(γ̂Aj γ̂
A
j+1 − iγ̂Bj γ̂Aj+1 + iγ̂Aj γ̂

B
j+1 + γ̂Bj γ̂

B
j+1 + γ̂Aj+1γ̂

A
j − iγ̂Bj+1γ̂

A
j + iγ̂Aj+1γ̂

B
j + γ̂Bj+1γ̂

B
j )

= − t
4

∑
j

(−iγ̂Bj γ̂Aj+1 + iγ̂Aj γ̂
B
j+1 − iγ̂Bj+1γ̂

A
j + iγ̂Aj+1γ̂

B
j )

= − t
2

∑
j

i (γ̂Aj γ̂
B
j+1 − γ̂Bj γ̂Aj+1). (A.3)
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We then compute the first part of the superconducting term,

Ĥ∆ = ∆
∑
j

âj âj+1

=
∆

4

∑
j

e−iθ(γ̂Aj + iγ̂Bj )(γ̂Aj+1 + iγ̂Bj+1)

=
|∆|
4

∑
j

(γ̂Aj γ̂
A
j+1 + iγ̂Bj γ̂

A
j+1 + iγ̂Aj γ̂

B
j+1 − γ̂Bj γ̂Bj+1), (A.4)

and then add it to its Hermitian conjugate in order to obtain

ĤSC = Ĥ∆ + Ĥ†∆

=
|∆|
4

∑
j

(γ̂Aj γ̂
A
j+1 + iγ̂Bj γ̂

A
j+1 + iγ̂Aj γ̂

B
j+1 − γ̂Bj γ̂Bj+1 + γ̂Aj+1γ̂

A
j − iγ̂Aj+1γ̂

B
j − iγ̂Bj+1γ̂

A
j − γ̂Bj+1γ̂

B
j )

=
|∆|
2

∑
j

i(γ̂Aj γ̂
B
j+1 + γ̂Bj γ̂

A
j+1). (A.5)

Putting everything together, we finally obtain the desired expression:

Ĥ = Ĥµ + Ĥt + ĤSC

=
∑
j

[
− iµ

2
(γ̂Aj γ̂

B
j )− it

2
(γ̂Aj γ̂

B
j+1 − γ̂Bj γ̂Aj+1) +

i|∆|
2

(γ̂Aj γ̂
B
j+1 + γ̂Bj γ̂

A
j+1)

]
=
i

2

∑
j

[
−µ(γ̂Aj γ̂

B
j ) + (|∆|+ t)(γ̂Bj γ̂

A
j+1) + (|∆| − t)(γ̂Aj γ̂Bj+1)

]
. (A.6)

A.2 Expression for topological limit of the Kitaev

Hamiltonian

We show that the expression for the topological limit case of the Kitaev Hamiltonian in
Eq. (2.21) holds. We first invert the expression for b̂j in order to obtain

γ̂Aj+1 = −i(b̂j − b̂†j),

γ̂Bj = b̂†j + b̂j , (A.7)

so that, together with the anti-commutation relations of Eq. (2.19), the Hamiltonian of Eq. (2.21)
can be rewritten as

Ĥ
∣∣
µ=0,t=|∆| = i

N−1∑
j=1

t (γ̂Bj γ̂
A
j+1)

= it
N−1∑
j=1

(b̂j + b̂†j)(ib̂
†
j − ib̂j)

= t
N−1∑
j=1

(b̂2j + b̂†j b̂j − b̂j b̂
†
j − (b̂†j)

2)

= 2t

N−1∑
j=1

(
b̂†j b̂j −

1
2

)
. (A.8)
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A.3 Expression for Majorana finite size energy split-

ting

Here we outline a derivation of Eq. (2.23). We follow the route used in Ref. [80], where a
more thorough discussion is also found.

We start from the continuous form of the Bogoliubov-de Gennes Hamiltonian in momentum
space. We focus on the a� 1 regime, so that sin(ka) ≈ ka and cos(ka) ≈ 1− (ka)2/2, and from
it we transition to the position representation by making the transformation k → −i∂x, which
yields

HBdG(x) = (2t− ta2∂2
x − µ)τz + 2a∆(i∂x)τy. (A.9)

We then assume that the spatial and spinor degrees of freedom are decoupled in the general
solution, so that we can write it as φ(x) = φ̃(x)(ũ, ṽ)T . Moreover, we assume the particular
solutions have the form φ̃(x) ∝ eiλx, where λ is a complex constant. By inserting this guess into
the eigenvalue equation we get

E2 − (ta2λ2 + 2t− µ)2 − 4a2∆2λ2 = 0, ṽ = i
ta2λ2 + 2t− µ− E

2a∆λ
ũ. (A.10)

For short-hand notation, we shall now conveniently hide some terms by defining the variables
µ̃ = µ− 2t and ∆̃ = 2∆/

√
t. It turns out that this pair of equations yields low-energy solutions

only when both the real and imaginary parts of λ = k + iq are finite [80]. One of the possible
values they can have is

k =
1

a
√

2t
(
√
µ̃2 − E2 + µ̃− ∆̃2/2)

1
2 , q =

1

a
√

2t
(
√
µ̃2 − E2 − µ̃+ ∆̃2/2)

1
2 . (A.11)

Since the characteristic polynomial has real coefficients and only even power terms, if λ is
a solution of it, then −λ, λ∗ and −λ∗ are solutions as well. Also, note that k and q defined as
above are not real for some ranges of parameters, such as µ̃ < 0. It is assumed that µ̃ is positive
and greater than |E|. In the following calculations we are going to assume we are outside those
ranges. The general solution can then be expressed as a linear combination of the particular
solutions

φ1(x) = eiλx
(

1
−qα+ ikβ

)
ũ, φ2(x) = e−iλx

(
1

qα− ikβ

)
ũ, (A.12)

together with φ3(x) = φ∗1(x) and φ4(x) = φ∗2(x), and where

α =
1

∆̃

(
1 +

√
µ̃+ E

µ̃− E

)
, β =

1

∆̃

(
1−

√
µ̃+ E

µ̃− E

)
. (A.13)

We then construct a matrix

A =


[φ1(0)]1 [φ2(0)]1 [φ3(0)]1 [φ4(0)]1
[φ1(0)]2 [φ2(0)]2 [φ3(0)]2 [φ4(0)]2
[φ1(L)]1 [φ2(L)]1 [φ3(L)]1 [φ4(L)]1
[φ1(L)]2 [φ2(L)]2 [φ3(L)]2 [φ4(L)]2

 (A.14)

so that, by also defining X = (c1, c2, c3, c4)T and enforcing the boundary conditions φ(0) =
φ(L) = (0, 0)T , we arrive at the eigenvalue equation

AX = 0. (A.15)
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In order for A to have zero as an eigenvalue, we must have that det(A) = 0. After some
tedious but straightforward calculations, we find that

det(A) = 8
[
(qα sin(kL))2 + (kβ sinh(qL))2

]
|ũ|4. (A.16)

Since k, q, α, |ũ| > 0, this leads to the transcendental equation

qα| sin(kL)| = k|β| sinh(qL). (A.17)

Since we are interested only in the low-energy spectrum we can expand the variables k and
q in terms of E/µ� 1. It turns out the first order terms are zero, so that we can approximate
k ≈ k0 and q ≈ q0, where

k0 =
1

a
√

2t

√
µ̃− ∆̃2/4, q0 =

∆̃

2(a
√

2t)
(A.18)

We also expand the expressions for α and β such that

|β| ≈ E

2µ̃
|α|, (A.19)

and by plugging this in our transcendental equation we finally get

E ≈ 2µ̃q0

k0

| sin(k0L)|
sinh(q0L)

≈ 4µ̃q0

k0
e−q0L| sin(k0L)|+O(e−3q0L), (A.20)

where we have used the approximation sinh(x)−1 ≈ 2e−x +O(e−3x) for x� 1.
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Appendix B

A very brief introduction to the Bogoliubov-De Gennes formalism.

B.1 Bogoliubov-De Gennes formalism

A superconducting system can be described by a Hamiltonian with a quadratic part and
a quartic part [81]. The latter can be turned into a quadratic term through a mean-field
approximation, resulting in couplings that do not preserve fermion number, but preserve fermion
parity. These terms are products of two creation or two annihilation operators. In real-space
basis, the system Hamiltonian is then

H =

∫
dr

∑
σ,σ′

Hσ,σ′

0 (r)ĉ†σrĉσ′r + (∆(r)ĉ†↑rĉ
†
↓r + H.c.)

 . (B.1)

The so-called Bogoliubov-De Gennes formalism consists in defining a convenient spinor of
fermions [23]

Ψ̂T (r) =
(
ĉ↑r, ĉ↓r, ĉ†↑r, ĉ†↓r

)
, (B.2)

and a convenient matrix

HBdG =

(
H0(r) ∆(r)
∆∗(r) −H∗0 (r)

)
(B.3)

such that Eq. (B.1) can be rewritten as

H =
1

2

∫
dr Ψ̂†(r)HBdG(r)Ψ̂(r). (B.4)

By doing this, we reduce the problem of diagonalizing a system in Fock space to diagonalizing
a single-particle Hamiltonian. One can also at any point change the description to the basis of
momentum, using the appropriate spinor basis as well. The BdG formalism is very useful in the
study of superconducting systems. In this work we use it to describe a 1D semiconductor with
proximitized superconductivity where p-wave superconductivity and Majorana Bound States
can emerge.
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