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Resumo
Nos magnetos geometricamente frustrados, a competição entre interaçōes magnéticas, em

conjunto com a geometria da rede, inibem o estabelecimento de uma ordem de longo

alcance. O arranjo tetraédrico dos ı́ons magneticos R nos pirocloros R2M2O7 tem apre-

sentado interessantes estados magnéticos, e muitos deles tem sido discutidos vastamente

na literatura. Entretanto, as propriedades f́ısicas dos ı́ons R nos magnetos frustrados são

fortemente modificadas na presença de desordem estrutural. Recentemente, a inclusão de

desordem tem providenciado novas perspectivas no estudo dos pirocloros XY, nos gelos

de spin e nos ĺıquidos de spin. Neste trabalho, nós estudamos a diluição da subrede não

magnética de M (Ti/Sn) nos pirocloros Er2Ti2−xSnxO7 (x = 0− 2), e as fluoritas desor-

denadas R2Zr2O7 (R = Dy, Ho e Tb), que possuem seus ı́ons R e Zr localizados aleatoria-

mente na mesma subrede. Os compostos de érbio apresentam uma anisotropia planar de

spin, nós estudamos a evolução do momento magnético, começando no estado ψ2, até a

configuração Palmer–Chalker para diferentes valores x do Er2Ti2−xSnxO7, usando dados

de calor espećıfico. Experimentos de susceptibilidade magnética ac e de calor espećıfico

foram realizados nas fluoritas desordenadas R2Zr2O7; interaçōes antiferromagnéticas e

valores de momento magnéticos parecidos foram determinados no Dy2Zr2O7 e Ho2Zr2O7,

divergindo das interaçōes ferromagnéticas nos gelos de spin Dy2Ti2O7 e Ho2Ti2O7. A

contribuição magnética ao calor espećıfico apresenta um máximo associado a correlaçōes

em 2 K nas fluoritas desordenadas e uma ausência da entropia residual, de maneira oposta

aos pirocloros gelos de spin. A desordem estrutural nas fluoritas exclui a possibilidade de

correlaçōes do tipo gelo de spin; esses compostos exibem flutuaçōes de spin, junto com

uma considerável quantidade de susceptibilidade, sem apresentar um estado canônico de

vidro de spin. Espalhamento de nêutrons no Dy2Zr2O7 confirmam a ausência de ordem

de longo alcance e a existência de correlaçōes magnéticas que se mantêm dinâmicas em

40 mK; essas correlaçōes se estendem por 6.6 Å e na presença de campo magnético de

4 T, elas crescem até 23.6 Å. Tb2Zr2O7 não apresenta ordem de longo alcance e temos

flutuaçōes de spin abaixo de 100 mK. Medidas dinâmicas apresentam um máximo com

dependência na frequência aplicada. A mudança da posiçãoo do máximo foi ajustada

usando diferentes modelos, mostrando uma transição para um estado canônico de vidro

de spin em 2.2 K.

Palavras–chave: Magnetos Geometricamente Frustrados, Pirocloros, Fluoritas Desor-

denadas.
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Abstract
In the geometrically frustrated magnets, competing magnetic interactions together with

the lattice structure inhibit the system of establishing long range order. The tetrahedral

arrangement of the magnetic R ions in the pyrochlores R2M2O7 manifests the develop-

ment of intriguing magnetic states which have been investigated vastly in the literature.

However, the physical properties of the R ions in frustrated magnets are strongly affected

when structural disorder is introduced. Recently, research probing disorder has provided

interesting insights in XY pyrochlores, spin ices and spin liquids. In this work, we study

the dilution of the nonmagnetic sublattice of M (Ti/Sn) in the pyrochlores Er2Ti2−xSnxO7

(x = 0− 2), and the defect–fluorites R2Zr2O7 (R = Dy, Ho and Tb), in which the R mo-

ments randomly reside on a sublattice together with the nonmagnetic Zr ions. The erbium

compounds possess a strong local planar anisotropy, and with the dilution of the M sub-

lattice, we study the evolution of the magnetic moment for all the x compositions starting

from the ψ2 state to the Palmer–Chalker configuration trough a specific–heat analysis.

In–field experiments suppress the long–range order transition and the H–T phase dia-

gram exhibits two different trends for small and high x values. ac magnetic susceptibility

and specific heat studies have been performed in the disordered fluorites R2Zr2O7; anti-

ferromagnetic correlations and similar magnetic moment were determined in Dy2Zr2O7

and Ho2Zr2O7, different from the ferromagnetic interactions in spin ices Dy2Ti2O7 and

Ho2Ti2O7. Magnetic specific heat revealed a correlation broad peak around 2 K for the

disordered fluorites as well as no Pauling’s residual entropy was observed, contrary to the

pyrochlore spin ices. Disorder in both fluorites preclude the development of spin–ice cor-

relations and exhibit fluctuating spins; with a significant amount of susceptibility, which

do not freeze into a canonical spin glass. Neutron scattering studies in Dy2Zr2O7 confirm

no long–range order and antiferromagnetic correlations which remain dynamic down to

40 mK. These correlations extend over the length of 6.6 Å and with an external field of 4

T expand to 23.6 Å. Tb2Zr2O7 presents no long-range order and exhibits spin fluctuations

down to 100 mK. Dynamic measurements display a frequency–dependent maximum and

different models to its shift temperature reveal a canonical spin-glass transition around

2.2 K.

Keywords: Geometrically Frustrated Magnetism, Pyrochlores, Disordered Fluorites.
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Chapter 1
Introduction

Geometrically frustrated magnetism is a central topic in modern condensed matter physics

for giving rise to a diverse set of highly correlated magnetic phases. This rich phenomenol-

ogy in possible materials has attracted enormous interest and extensive investigations over

the last twenty years [1, 2]. The competition between nearest–neighbour and further in-

teractions, in together with the arrangement of the magnetic sites play an important role

selecting the magnetic ground states or spin configurations, but also can lead to perpetu-

ally dynamic magnetism [1–3]. Frustrated systems cannot minimize the energy of all their

interactions simultaneously, and this could lead to a large degeneracy of ground states

even at extremely low temperatures [1,2]. The concept of frustration is fundamental out-

side of magnetism in the study of negative thermal expansion of materials, soft matter

and protein folding kinetics [2, 4].

Geometrically frustrated magnets are often based on triangular or tetrahedral lattices.

Experimental realizations are the pyrochlores with the chemical formula R2M2O7 in which

R3+ is a magnetic rare–earth ion (e.g., Tb, Ho, Dy, Er, Gd) and M4+ is a transition–metal

ion (e.g., Ti, Sn, Zr, Ge). Both cations reside on two distinct lattices of corner–sharing

tetrahedra and if either R or M is magnetic, frustration can develop. The rare–earth series

of pyrochlore titanates; R2Ti2O7, have displayed a remarkable broad range of phenomena

including the spin liquid Tb2Ti2O7 [5, 6], the spin ices Ho2Ti2O7 and Dy2Ti2O7 [7, 8],

the long–range magnetic ordering induced by fluctuations in Er2Ti2O7 [9], the partial

magnetic ordering in Gd2Ti2O7 [10–12] among others [2].

Besides the pyrochlore titanates mentioned above, research on isostructural examples

has also been discussed on the pyrochlore stannates, R2Sn2O7. The substitution of Ti4+
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by Sn4+ can dramatically alter the magnetic properties of the system down to low temper-

atures. For example, Tb2Ti2O7 remains in a dynamic cooperative magnetic state down

to 0.05 K while Tb2Sn2O7 develops long–range order below 0.87 K driven by antiferro-

magnetic and ferromagnetic correlations. Gd2Ti2O7 orders antiferromagnetically through

two magnetic transitions leading to partial ordering, and Gd2Sn2O7 possesses only one

transition and classical long-range order. On the other hand, the spin–ice state appear to

be very robust to the substitution of Ti by Sn. For Er2Sn2O7, long–range order is devel-

oped [13, 14] and the magnetic ground state was reported to be Palmer-Chake type [15].

In this work, we study the erbium based pyrochlores Er2Ti2−xSnxO7.

To understand the wealth phenomena in R2M2O7, researchers have begun to look be-

yond the typical non–magnetic M site. Recently, several groups have been working on

geometrically frustrated hafnates (R2Hf2O7) and zirconates (R2Zr2O7). The R2M2O7

compounds could also crystallize in the disordered defect–fluorite structure for small

lanthanide elements. This structure depends strongly of the ratio between ionic radii

rR/rM [2]. In the defect–fluorite, the cations R and M occupy a single site becoming

disordered in the lattice. For the rare–earth zirconates R2Zr2O7, the ones with light–rare–

earth R cation have attracted much interest for their particular electronic properties. For

example, in Pr2Zr2O7 spin–ice–like correlations and quantum fluctuations of magnetic

monopoles were reported [16]. For Nd2Zr2O7, neutron–scattering results revealed the co-

existence of a fluctuating Coulomb phase with an ordered one [17]. Another examples are

Tb2Hf2O7 and Pr2Hf2O7 in which long–range ordered ground states are prevented down

to 100 mK [18,19].

In Chapter 2, we present the fundamentals of the magnetic interactions in spin systems.

We also study how frustration is involved with magnetic systems. We study the crystal

structures of the pyrochlore and of the disordered–fluorite materials which are the focus of

this thesis. We review previous results concerning the low–temperature magnetic phases

of the pyrochlore compounds that have the same rare earth in R2M2O7 as the compounds

studied in this work. For example, Er2Ti2O7, Er2Sn2O7, the spin ices Dy2Ti2O7 and

Ho2Ti2O7 and the spin liquid Tb2Ti2O7. The proposed magnetic states are studied from

magnetic, thermal, and neutron diffraction results of the literature.

In Chapter 3, we study the physical phenomena and operating concerning the exper-

iments used in this work. We detailed the synthesis employed to prepare polycrystalline
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powder of Er2Ti2−xSnxO7, Dy2Zr2O7, Ho2Zr2O7 and Tb2Zr2O7. The structural analysis

was carried out by performing x–ray powder diffraction. We present the basics of neutron

diffraction to determine magnetic structures and their correlations. Magnetic measure-

ments were studied using an adiabatic demagnetization refrigerator, an ac home–made

susceptometer, a superconducting quantum interference device SQUID, while thermal ex-

periments were performed by using a commercial calorimeter and a dilution refrigerator.

In Chapter 4, we study the family of XY pyrochlores erbium based Er2Ti2−xSnxO7

with x = 0 to 2. For Er2Ti2O7 (x = 2) the magnetic moment of Er3+ is proposed to exhibit

XY anisotropy, in which the spins are constrained to lie in the plane perpendicular to their

local [111] axis [20]. However, for Er2Sn2O7 the magnetic state observed is reported as

Palmer-Chake state [13, 14]. We present an analysis of experimental thermal results at

very low temperature including evidence that there is a change of spin anisotropy trough

the series Er2Ti2−xSnxO7.

In Chapter 5 and Chapter 6 we discuss about the low–temperature magnetic and ther-

mal behaviour of the zirconates Dy2Zr2O7 and Ho2Zr2O7, respectively. These compounds

has the same rare earth on the site R as the pyrochlores Dy2Ti2O7 and Ho2Ti2O7, but

displays a different disordered structure. Dy2Ti2O7 and Ho2Ti2O7 are remarkable exam-

ples of spin ices in which the spin configuration satisfies the 2–in 2–out ice rules, with

a strong anisotropy of the type Ising–like spin [7, 8]. AC susceptibility experiments give

insights in the dynamics of Dy2Zr2O7 and Ho2Zr2O7. Specific heat experiments found

short–range correlations for both compounds and recovered entropy values different from

spin ices. Neutron experiments in Dy2Zr2O7 reveal the nature of these correlations and

its length on the lattice.

In Chapter 7, we discuss about the low–temperature magnetism of the Tb2Zr2O7

compound. We present results of the dynamic susceptibility and specific heat. We perform

different analysis to the ac susceptibility to probe its spin glass character. The analysis

of the specific heat suggest the presence of fluctuations.

Finally, in Conclusions we will sum up the most important results of this thesis and

we will mention the work concerning future perspectives.
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Chapter 2
Magnetism and Frustration

This chapter is an introduction to the main themes of my work which are magnetism and

geometric frustration. First, we study the concept of magnetic moment, the interactions

between magnetic moments, and how they are modified by their local environment in

a crystal. Afterwards, we deal with how the combination of the local moments and

interactions leads to ordered phases. We define the concept of geometrical frustration and

its implications on exotic magnetic phases, and then we describe the crystal structure of

experimental realizations subject to frustration. Finally, we summarize results covering

examples of rare–earth frustrated systems which are the focus of this thesis as the XY

pyrochlores Er2Ti2O7 and Er2Sn2O7, the spin ices Dy2Ti2O7 and Ho2Ti2O7, and the spin

liquid Tb2Ti2O7.

2.1 Magnetic moment

The magnetic moment of atoms is a contribution of the motion of electrons and the

intrinsic spin, and it occurs in compounds that have atoms with unfilled electronic shells.

Examples in nature are the rare earth elements with partially filled 4f shells and the

3d ions of the transition metal series. Classically, a magnetic moment is pictured as a

circulating current loop. For a moving particle in a loop with charge e, mass me, and

angular momentum L, the magnetic moment µ can be expressed as

µ = − e~
2me

L, (2.1)

where L is the orbital angular momentum and e~/2me is the unit of the magnetic

moment size named the Bohr magneton µB with a value of 9.274×10−24 A.m2. Electrons
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have also spin angular momentum and then its magnetic moment is given by

µs = −gs
µB
~
S, (2.2)

where S is the spin of the electron and g is the spin g–factor, which for an electron is

nearly equal to 2. The total magnetic moment at each atom is associated with its total

angular moment J = L + S which is a sum of the orbital and spin degrees of freedom,

then

µJ = −gJ
µB
~
J , (2.3)

where the constant gJ is the Landé g–factor; which for atoms with the approximation

gs = 2, is defined as

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
. (2.4)

Due to the quantized nature of the angular momentum, the magnitude of the total

magnetic moment is given by

µJ = gJµB
√
J(J + 1). (2.5)

The values of the quantum numbers L, S, and J for the ground state configuration of

a many–electrons system is determined by the Hund’s rules. The first one establishes that

the largest total spin number S is the lowest in energy. For a spin configuration selected

by the first rule, the second one dictates that the ground state maximize the value of the

orbital quantum number L. For the values selected of L and S, the total quantum number

J favours the value |L− S| for less than half–filled shells and the maximum value L+ S

for more than half–filled shells. The many–electron ground configuration is represented

by the term symbol 2S+1LJ , where the total orbital quantum number is denoted by the

letters S, P,D, F,G,H, etc. The Hund’s rules are well satisfied by the rare–earth ions

since their outer 4f shell electrons are confined in the space lying deep the 5s and 5p

shells. Therefore, they are usually treated as free ions.

2.2 Magnetic interactions

In many–electron systems, each magnetic moment of the electrons influences its neigh-

bours trough different magnetic interactions. We will study some of these interactions

between magnetic moments.
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2.2.1 Magnetic dipolar interactions

The dipolar interaction is the most familiar one on a macroscopic scale as it gives rise

to observable magnetic fields. In the case of small magnetic moments, this interaction is

weak and is usually the contribution of least importance for magnetic order. The energy

for the dipolar interaction, for two magnetic spins Si and Sj, separated by rij is given

by,

Hdip = (gµB)2
∑
ij

[
Si · Sj

r3
ij

− 3
(Si · rij)(Sj · rij)

r5
ij

]
, (2.6)

where g is the electron spin g–factor and µB is the Bohr magneton. This interaction is

generally insignificant since it is much weaker than the exchange interaction. However, it

can play an important role in materials that order at milliKelvin temperatures with large

moments, such in the rare–earth magnets.

2.2.2 The Heisenberg and Ising models

The Heisenberg model describes the interaction between neighbouring spins and the

Hamiltonian for this model, written in terms of the Heisenberg exchange Jij and the

spin operators Si at sites i, has the form

H = −
∑
ij

JijSi · Sj, (2.7)

where the sum runs over nearest–neighbour pairs at sites ij. The spins Si are treated

as three–dimensional vectors since there is no constraint to them, so they are allowed

to point in any direction in the three–dimensional space. While the Hamiltonian above

provides a suitable starting point for understanding the properties of many geometrically

frustrated magnets, for a more realistic model various additional terms to the Hamiltonian

are required [1].

In the Ising model, the spins posses only two discrete orientations that is can only

point up or down. In other words, we restrict to the z component of the spin. The

Hamiltonian of the Ising model is

H = −
∑
ij

JijS
z
i · Sz

j , (2.8)

here the spins Si are taken as one–dimensional vectors (the spins are only allowed to

point along ±z). A simple configuration is when the Ising spins are placed on a linear
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chain, as shown in figure 2.1. If we assume Jij < 0, the ground state is obtained by

having antiparallel collinear spin alignments meaning antiferromagnetic correlations. On

the other hand for Jij > 0, a parallel spin alignment favours the ground state.

Figure 2.1: Spins on a linear arrangement illustrating its ground state corresponding to

antiferromagnetic interactions.

2.2.3 Crystal–field interaction

Now we consider the effect of the local environment surrounding an ion on its energy

levels. In the simplest picture, a central ion is surrounded by point charges that lie

on neighboring sites. The electrostatic field known as the crystal electric field (CEF)

produces an additional Coulomb energy that must be taken into account. For example,

in 4f electrons of the rare–earth ions, this effect can be considered as a perturbation since

its energy scale is usually smaller than the energy of Hund’s rules. On the other hand,

for 3d electrons of the transition metals, the order of magnitude of the CEF levels can

be stronger than the spin–orbit coupling. Then, the total angular momentum J does not

work as good quantum number in these ions. In addition, the measured moment can

only be explained if the values L = 0 and J = S are assumed, which is known as the

quenching of the angular momentum. Quenching results of the symmetry lowering of the

effective electronic potential due to the charges around the magnetic ion. As an example,

we show in figure 2.2 from [23] some computed and experimental CEF energy levels of

the compounds R2Ti2O7 where R is a rare–earth ion.
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Figure 2.2: CEF levels for the rare–earth ions R in the pyrochlores R2Ti2O7. The com-

puted and experimental levels are presented as solid and dashed lines, respectively. Solid

thin and thick lines denote single and doublet states. Figure taken from [23].

2.3 Specific heat

The specific heat C being a thermodynamic quantity is defined by the amount of heat

required to raise the temperature of a unit mass by a temperature unit degree. C can be

expressed by the equation:

C =

(
dQ

dT

)
, (2.9)

where dQ is the applied heat, and dT is the resultant change in temperature. For

most bulk measurements, C experiments are carried on at constant pressure.

For the insulating frustrated magnets, the total specific heat C can be separated in

different contributions as:

C = Cp + Ce + CN , (2.10)

where Cp is the specific heat due to the phonons or lattice, Ce is the electronic magnetic

contribution, and CN is the nuclear magnetic contribution.

First, we describe the lattice contribution Cp to the specific heat total. The Debye

model provides an excellent fit to the low temperature specific heat of the phonons of

many solids [24]. In the low–temperature regime, the lattice contribution to the specific

heat is given by [24]

Cp =
12π4

5
nkB

(
T

ΘD

)3

= βT 3. (2.11)

where ΘD is the Debye characteristic temperature, n is the atom concentration in the

solid, and kB is the Boltzmann constant.
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The electronic magnetic specific heat Ce is computed by considering magnons or spin

waves, which are collective spin excitations. For example, the procedure proposed in [9]

for the pyrochlore antiferromagnet Er2Ti2O7 assumes that the dispersion relation ~ω(q)

for low–energy magnons can be approximated at small wave vectors as

~2ω2(q) = ~2ω2(q) = 42 + ~2v2
swq

2, (2.12)

where 4 is the gap energy of the spectrum at the zone center and vsw is the magnon

velocity. Then, the expected electronic magnetic contribution Ce is derived [9]:

Ce(T ) = Av

 15

16π4

∫ ∞
0

dX
X2 (X2 + (∆/T )2)

sinh2

(√
X2+(∆/T )2)

2

)
T 3 (2.13)

with

Av =
π2

120
NA

k4
Ba

3

~3v3
= 1534.5

a3

v3
, (2.14)

where ∆ is the gap energy of the magnon spectrum at the zone center, NA is the

Avogadro’s number, a is the lattice constant ∼ 10 Å, and v is the magnon velocity. The

expression for Ce(T ) could be written as:

Ce(T ) = Av.I∆(T ).T 3. (2.15)

Finally, we will discuss the case of the nuclear magnetic contribution CN to the specific

heat. This contribution arises from the combination of a nuclear electric quadrupole

interaction, and a nuclear magnetic hyperfine interaction of the magnetic atoms. Then,

the nuclear specific heat is given by [25]

CN =
R

(kBT )2

∑
i,j

(W 2
i −WiWj) exp[−(Wi +Wj)/kBT ]∑
i,j

exp[−(Wi +Wj)/kBT ]
, (2.16)

where i,j = -I, -I+1, ...,I with I the number of spin nuclear, and Wi the nuclear energy

of the i level.

An additional contribution to the specific heat that we will or is known as the Schottky

anomaly. This anomaly occurs in systems with quantized energy levels and is reflected

in the specific heat by the presence of a maximum. For example, for a spin S there are

2S+1 possible orientations of the spin; in a magnetic field, there are a number of discrete

energy levels. So, when the temperature is comparable to the energy separation there is
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a broad peak in the specific heat due to a large change in entropy for a small change in

temperature. For a system with two energy levels the Schottky specific heat CSch at a

temperature T is given by [26]

CSch = R

(
∆ε

kBT

)2
g0

g1

exp(∆ε/kBT )

[1 + (g0/g1) exp(∆ε/kBT )]2
, (2.17)

where g0 and g1 are the degeneracies of the two energy levels, ∆ε is the excitation gap,

and R = 8.314 J.K−1.mol−1 is the gas constant.

2.4 Magnetic models

A ferromagnet material has a spontaneous magnetization or density of magnetic moments

even in the absence of an applied field. The magnetic moments could lie along a single

unique direction, being this the effect of exchange interactions. For a ferromagnet in an

applied magnetic field B, the Hamiltonian of interaction is:

H = −
∑
(ij)

JijSi · Sj − gµB
∑
(i)

Si ·B, (2.18)

where the exchange constants for nearest neighbours will be positive (negative) to

ensure ferromagnetic (antiferromagnetic) alignment. The first and second terms on the

right are the Heisenberg exchange energy and the Zeeman energy, respectively.

2.4.1 The Weiss model of a ferromagnet–antiferromagnet

In order to discuss the transition temperature to a ferromagnetic state, it is introduced

the Weiss model [22]. This procedure requires to define the effective mean (or molecular)

field at the i–site given by [22]

Bmf =
2

gµB

∑
i

JijSi. (2.19)

By looking at the ith spin in (2.18), we have that its energy is due to an exchange

part and a Zeeman part −gµBSi ·B. The total exchange interaction between the ith spin

and its neighbours is −2
∑
j

JijSi · Sj and then can be written as

− 2Si

∑
j

Jij · Sj = −gµBSi ·Bmf . (2.20)
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The exchange interaction is replaced by the effective mean field Bmf produced by the

neighbouring spins. In this approach all magnetic ions experience an identical mean field.

The effective Hamiltonian (2.21) can now be written as

H = −gµB
∑
i

Si · (Bmf + B) (2.21)

which can be picture as the Hamiltonian for a magnet in a magnetic field Bmf + B.

For a ferromagnet the mean field will act to align neighbouring magnetic moments, and

for an antiferromagnet it will establish an antiparallel alignment. The mean field measures

the effect of the ordering of the system, it is assumed that

Bmf = λM , (2.22)

where λ is a constant for parametrizing the intensity of the mean field as a function

of the magnetization. For the case of a ferromagnet λ > 0.

In ferromagnets, below the Curie temperature TC the magnet orders spontaneously

and gives rise to bulk magnetism. The Curie temperature is the point at which the

susceptibility presents an anomaly, and is given by [22]

TC =
gµB(J + 1)λMs

3kB

=
nλµ2

eff

3kB

, (2.23)

where λ is the parameter representing the mean field, Ms is the saturation magneti-

zation, µeff = gµB
√
J(J + 1) the effective magnetic moment, J total quantum number,

g Landé g–factor, µB the Bohr magneton and kB = 1.38062× 10−23 J.K −1 Boltzmann’s

constant. The order parameter λ is related to the exchange constant J by [22]:

λ =
2zJ

ng2µ2
B

, (2.24)

where z is the number of nearest neighbours of an ion. By substituting λ in (2.23), the

Curie temperature TC can be written in terms of the exchange constant J:

TC =
2zJ

3kB

J(J + 1). (2.25)

2.4.2 Magnetic susceptibility

The magnetic susceptibility χ as a function of the temperature is described by the Curie–

Weiss law [22]:

χ =
C

T − θCW

, (2.26)

11
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where θCW is the Curie–Weiss temperature and the Curie constant is C = nµ2
eff/3kB

with n the spin concentration, µeff = gµB

√
J(J + 1) the effective magnetic moment, J

the total quantum number, and kB is the Boltzmann constant. This result comprises

the magnetic susceptibility for a paramagnet, ferromagnet, and antiferromagnet in the

mean field approximation [22]. Thus, if the material is a paramagnet, θCW = 0. For a

ferromagnet, θCW > 0 and it is expected that θCW = TC. The behaviour of the inverse of

susceptibility 1/χ versus temperature is shown in figure 2.3.

Figure 2.3: Inverse of magnetic susceptibility versus temperature graphs for θCW = 0

(paramagnet), θCW = Θ > 0 (ferromagnet) and θCW = Θ < 0 (antiferromagnet). Figure

taken from [22].

From (2.26) the inverse magnetic susceptibility is:

χ−1 =
T

C
− θCW

C
(2.27)

and
θCW
C

=
3kBθCW

n g2µ2
BJ(J + 1)

. (2.28)

2.5 Geometrically frustrated magnetism

Geometric frustration is present in systems with competing interactions among the com-

ponents. It is defined as a system’s inability to minimize its energy because of the spatial

arrangement of the components [3]. This phenomenon is the core for exotic magnetic phe-

nomena present in the pyrochlores. In many magnetic spin systems, nearest–neighbour

Heisenberg exchange interaction dominates. For a simple liner chain, minimising the

nearest–neighbour exchange interaction (antiferromagnetic or ferromagnetic) specifies a

12
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unique ground state. However, novel magnetic ground states arises when those interac-

tions compete in more complex lattices. The inability of frustrated systems to satisfy all

pairs of interactions leads to an extensive degeneracy [27].

The canonical example of a geometrically frustrated lattice is the equilateral triangle

in which the spins lie at the vertices as shown in figure 2.4. For Ising spins, interacting

via nearest–neighbour antiferromagnetic exchange we see that it is impossible for the

three spins to satisfy each bond simultaneously. This is because once two of the spins

are antialigned to satisfy their antiferromagnetic interaction, the third one can no longer

point in a direction opposite to both other spins. Also, the lowest energy state of these

three spins is not unique, but six equal energy states exist. If we consider the tetrahedron

as shown in figure 2.4, it can be seen that if the bondings are antiferromagnetic the same

situation arises as all the pairwise interactions cannot be simultaneously satisfied.

?

AF

AF AF

?

?

Figure 2.4: Spins with antiferromagnetic exchange arranged on a triangle or tetrahedron

are geometrically frustrated.

Figure 2.5 shows some examples of geometrically frustrated lattices that are based on

the canonical equilateral triangle, which include the edge shared triangular lattice (a),

and the corner shared triangular lattice known as Kagomé (b).

Figure 2.5: Geometrically frustrated lattices: edge–sharing triangular (a), and corner–

sharing triangular or Kagomé, (b). Figure taken from [28].

Experimentally, we can identify geometrically frustrated magnets because their mag-

netic susceptibility has a characteristic behaviour. In this way, the inverse susceptibility

13
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χ−1 follows the usual Curie–Weiss law down to temperatures well below the expected

transition temperature θCW, and at some low temperature T ′ � θCW the values of χ−1

exhibit a substantial deviations from the linear behaviour. This denotes a transition to

a state that depends of the material which could be ordered or glassy [1]. Figure 2.6

displays the temperature dependence of χ−1 for an antiferromagnet, a ferromagnet and

a frustrated magnet. The level of frustration of is defined as the ratio f ′ ≡ |θCW|/T ′

between the Curie–Weiss temperature and the transition temperature. Large values of f ′

in magnetic systems are a signature of frustration [3].

Antiferromagnet

Frustrated
Magnet

Ferromagnet

T

χ−1

θCW−θCW T ′

Figure 2.6: Characteristic behaviour of χ−1(T ) for an antiferromagnet, a ferromagnet and

a geometrically frustrated magnet (blue line).

2.6 Geometrically frustrated lattices

In this section we describe the pyrochlore structure, which is a lattice subject to geometric

frustration. Materials with this geometry have a general formula R2M2O7, where R is a

trivalent rare earth, R3+, which includes the rare earth (Gd, Tb, Dy, Ho, Er, Yb), and

M is either a transition metal or a p–block metal ion (Ti, Sn, Mn, Mo, Pb) with valence

M4+. Pyrochlores R2M2O7 are oxides that crystallize in the space group Fd3m. The

standard method to study the crystal structure of pyrochlores is to formulate them as

R2M2O6O′ and to place the M ion at 16c, R at 16d, O at 48f and O′ at 8b [2].

Both the R site and the M site, independently, reside on a network of corner–sharing

tetrahedra, as shown in the left side of figure 2.7. Also, the two pyrochlore lattices of

the cations R3+ and M4+ are displaced from each other by a translation along the cubic

diagonal [111]. From figure 2.7, there are two types of tetrahedra in the pyrochlores, which
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are labeled as the down tetrahedra and the up tetrahedra. For the rare earth pyrochlores

the length of a unit cell is approximately a0 ≈ 10 Å. From the perspective of chemical

bonding, the pyrochlore structure can be described as an ordered defect fluorite (CaF2).

Figure 2.7: Left : The R (blue) and M (red) sites of the pyrochlore latice R2M2O7. Right :

The R site is surrounded by eight oxygen anions (yellow). Spin (red arrow) with XY

anisotropy are confined in the plane perpendicular to their local [111] axis. Figures taken

from [29].

The disordered fluorite lattice is also subject to geometrical frustration. This structure

is found for example in zirconates R2Zr2O7 where R/M site mixing is observed [2], as

shown in figure 2.8. The disordered–fluorite structure can be described by a conversion

from the pyrochlore lattice. Here, the cations R and M lying on two crystallographic

different sites of the pyrochlore (16d and 16c) become disordered and equally distributed

on the single 4a site of the fluorite structure. Also, the oxygen anions on the 48f and

8b sites of the pyrochlore shift to occupy a higher symmetry position on the 4a of the

fluorite. This oxygen 4a site is 7/8 occupied. The oxygen coordination around the cations

is changed from eight and six for the R and M sites, respectively, in the pyrochlore to an

oxygen coordination of seven for the disordered cations in the fluorite lattice.
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Figure 2.8: Fluorite structure showing the mixing of the R and M cations. Figure from

[30].

2.7 Magnetic ground states in pyrochlores

Compounds with the pyrochlore structure studied before could enter in the magnetic

phases of long–range order, spin ice, spin liquids or spin glass [2]. In order to understand

compounds with similar compositions R2M2O7 to the pyrochlores and same rare–earth

magnetic ion, we will review a few results of the literature relevant to this thesis. First, we

discuss about the long–range XY ordering and proposed magnetic structures in Er2Ti2O7

and Er2Sn2O7, next we move on to the spin–ice phases in Dy2Ti2O7 and Ho2Ti2O7, then

we study results of the spin liquid Tb2Ti2O7, and finally present the spin–glass phase.

2.7.1 Er2Ti2O7 and Er2Sn2O7

Since a decade, extensive research about the magnetic structures in the XY pyrochlores

has been considered with much interest. Here, the magnetic cation Er3+ is proposed to ex-

hibit XY anisotropy in which the spins are constrained to lie in the plane perpendicular to

their local [111] axis [20], as shown in the right side of figure 2.7. Specific heat data shows

that Er2Ti2O7 undergoes a phase transition towards an antiferromagnetic non collinear

phase at TN 1.2 K [31], as shown in figure 2.9. The magnetic structure is described by

the ψ2 phase [20], shown in the left side of figure 2.10. In Er2Ti2O7, there is a difference

of ∼ 80 K between the ground states and their first excited crystal state by [29]. Then,

the entropy variation is expected to be for an isolated doublet state R ln2 [31].

The role of disorder in Er2Ti2O7 has been studied by magnetic dilution of the erbium

sublattice by yttrium [32]. In Er2−xYxTi2O7 a crossover of the state ψ2 and an additional
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Figure 2.9: Specific heat versus temperature of Er2Ti2O7 for different external fields. The

transition peak vanishes for fields above 1.7 T. Figure taken from [31].

magnetic structure was identified [32]. In XY pyrochlores it is also proposed that the

introduction of large levels of random disorder induce spin–glass domains [33]. The non–

magnetic dilution of the Ti sublattice on Er2Ti2O7 has been studied by our group in [13].

Here, results obtained from specific–heat experiments for the Er2Ti2−xSnxO7 series under

zero magnetic field were reported. All compositions present clear transition peaks associ-

ated with long–range magnetic ordering at temperatures TN below 1 K. The long–range

ordering and the magnetic ground states were confirmed by neutron studies [13]. Besides

temperature, other factor as pressure, magnetic field, or doping level can constraint the

order transition, and then a quantum phase transition can occur even at T = 0. The

presence of a quantum critical point around the composition x = 1.7 is suggested in [13]

but more experiments are required.

The compound Er2Sn2O7 seems to belong to the family of the XY pyrochlores. As

reported by neutron diffraction experiments at very low temperatures ≈ 68 mK, it enters

to an antiferromagnetic Palmer–Chalker (PC) state [13,14], which is in the boundary with

the magnetic phase ψ2 of Er2Ti2O7. Er2Sn2O7 has an ordering temperature close to 100

mK, as reported by ac magnetic susceptibility and specific heat measurements [13,14]. The

Palmer–Chalker state embraces the problem of the pyrochlore antiferromagnet including

dipole–dipole interactions [15]. For spins on a pyrochlore lattice is shown in the right side

of figure 2.10. Here, all the spins lie on a plane, and form pairs of antiparallel spins that

are parallel to the opposite edge of the tetrahedron they belong to [15]. The ground state

for the full pyrochlore lattice is a periodic repetition of that for a pair of tetrahedra.

17



CHAPTER 2. Magnetism and Frustration

Figure 2.10: Left : Antiferromagnetic ψ2 phase of Er2Ti2O7. Right : The Palmer–Chalker

state for Er2Sn2O7. Figure taken from [29].

2.7.2 Dy2Ti2O7 and Ho2Ti2O7

The spin–ice state has been studied extensively in the rare earth pyrochlore Dy2Ti2O7,

as well in Ho2Ti2O7. In these spin ices, the lattice geometry leads to frustration of

ferromagnetic and dipolar interactions [8]. The single–ion electronic ground states of Dy3+

and Ho3+ are described by the terms 6H15/2 and 5I8, respectively. Because of the strong

crystal field acting on these cations it stabilises a ground–state doublet of states [34],

giving rise to a classical Ising spin with easy–axis along the local 〈111〉 direction [2, 28].

With this constraint on a tetrahedron, a spin can only point “in” toward the centre of

the tetrahedron, or point “out” of the tetrahedron. Regarding the problem of the ground

state, it was discussed that this ground state or spin configuration could be mapped onto

the problem of the proton (hydrogen) positions in water ice studied by Pauling [35]. Thus,

the spin configuration; minimizing the dipole and ferromagnetic exchange interactions, is

“two spins in, two spins out” called the ground state of spin ice [36]. The spin–ice rule is

illustrated on the left side of figure 2.11.

Figure 2.11: Ising spins decorating the vertices of a tetrahedron with the ice rule, oriented

along their local easy–axis 〈111〉, and the analogy with the arrangement of protons (red

circles) about oxygen (blue circles) in water ice. Figure adapted from [37].
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Figure 2.11 displays how the spins with local 〈111〉 direction pointing inside (outside)

the tetrahedron correspond to short covalent bonds (long H–bond) for water ice [37].

Pauling showed that for water ice there is a large degeneracy of the ground state, and

there is therefore an extensive or residual entropy of the ground state. The value of this

residual entropy was calculated by Pauling as S0 = R
2
ln(3

2
) [35]. The first experimental

verification of the spin ice in Dy2Ti2O7 was provided by Ramirez et al . in [7]. They

observed from the electronic or magnetic specific heat Cm(T ) shown in figure 2.12(a) that

the residual entropy in Dy2Ti2O7 approached the Pauling value for water ice [7]. The

entropy removed δS1,2 upon cooling between temperatures T1 and T2 can be determined

from the specific heat measurements using the thermodynamic relationship:

δS1,2 ≡
∫ T2

T1

C(T )

T
dT. (2.29)

The entropy S = kB ln(Ω) for a magnetic system of N Ising spins (two spin orienta-

tions) is determined from its total number of microstates Ω = 2N , so the expected entropy

is S = NkBln2. Then, the total entropy per mol is R ln(2). Figure 2.12(b) shows that

the entropy recovered at 10 K is 3.9 J.K−1.mol−1, a value that is less than the expected

R ln2 = 5.76 J.K−1.mol−1. The difference of entropies, 1.86 J.K−1.mol−1, is very close

to Pauling’s estimate for the residual extensive entropy of water ice, S0 = R
2
ln(3

2
) =

1.68 J.K−1.mol−1, thus with this result Ramirez et al. proved that Dy2Ti2O7 carries an

extensive entropy close to S0 and obeys the ice rules [7].

Spin ices Dy2Ti2O7 and Ho2Ti2O7, with ions Dy3+ and Ho3+, carries a sizeable mag-

netic moment µ ≈ 10 µB which leads to dipolar interactions that are not negligible [2,37].

For both ions the dipolar interactions are on the same energy scale as the exchange inter-

action [2]. The minimal model of Hamiltonian for the dipole spin ice [8], which includes

the terms of nearest–neighbour exchange and magnetic dipole interactions, is

H = −J
∑
(ij)

Si · Sj + Dr3
nn

∑
i>j

[
Si · Sj

|rij|3
− 3(Si · rij)(Sj · rij)

|rij|5

]
, (2.30)

where J, D and rnn ≈ 3.5 Å are, respectively, the antiferromagnetic exchange coupling,

the dipole–dipole coupling and the nearest neighbour distance between rare earth ions,

which has been shown to provide a comprehensive quantitative description of spin ice

materials [8].
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Figure 2.12: Dy2Ti2O7: (a) Specific heat and (b) entropy as a function of the temperature

reported by [7]. The residual entropy of Dy2Ti2O7, 1.86 J.K−1.mol−1, is in agreement with

Pauling’s entropy, R
2
ln(3

2
) = 1.68 J.K−1.mol−1 [7]. (a) and (b) also show a comparison

with Monte Carlo simulations (MC data) of [8]. This figure was taken from [7].

As reported in [38, 39], measurements of the ac magnetic susceptibility versus tem-

perature of Dy2Ti2O7 exhibit two maxima in ac susceptibility, at 2.5 K and 19 K. The

maximum at 2.5 K is related to the developing of the spin ice [38]. It was also observed

that the maximum at 19 K possesses a frequency dependence related to a freezing of the

system [38,39].

2.7.3 Tb2Ti2O7

In the family of pyrochlore compounds, some of them exhibit a more dynamic magnetic

behaviour named spin liquid. Their existence in these materials are favoured by frustrated

interaction for which there is a large ground state degeneracy. The spin–liquid phase is

known for having spins that continue to fluctuate and evade order even at the lowest

temperature observed [40], resembling the constant motion of molecules within a liquid.

Such a spin liquid is an unusual phenomenon since it has a non–magnetic ground state,
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Figure 2.13: ac susceptibility versus temperature at different frequencies. Figure from [38].

even though of their well–defined local magnetic moments [40]. This highly correlated

state was first proposed by Anderson in 1973 [41] and since then their theoretical picture

is still an open discussion.

One frustrated magnet which stands outs among pyrochlore oxides is Tb2Ti2O7. The

vast interest in this material lies in that the Tb3+ spins remains dynamic without de-

veloping long–range order to temperatures as low as 50 mK. This occurs despite of its

antiferromagnetic Curie–Weiss temperature ΘCW = -19 K [5,21], and strong magnetic cor-

relations present at low temperatures, as reported by neutron studies [42]. It is proposed

to entering into a classical spin–liquid state. The magnetic Tb3+ in Tb2Ti2O7 possesses a

strong Ising–like CEF anisotropy [21] analogous to one along the local 〈111〉 axes reported

for the spin ices Dy2Ti2O7 [7, 43] and Ho2Ti2O7 [44, 45]. For Tb2Ti2O7 the energy of its

CEF states lies in orders of magnitude many hundred times smaller when compared to

spin ices, and then the doublet ground state permits an admixing with excited CEF states.

Even though the Tb3+ ground state is Ising–like, fluctuations of the ground–state mo-

ment appear after spin interactions are taken into account [46]. Tb2Ti2O7 is also proposed

to be a kind of a quantum spin–ice system where the spin–ice–like correlations remain

hidden down to 0.5 K [27, 46]. Inelastic neutron studies reveal magnetoelastic modes in

Tb2Ti2O7 suggesting a Coulomb phase with bosonic excitations [47]. Experimental ev-

idence for spin–lattice coupling has also been reported by studies that found magnetic

long–range order in Tb2Ti2O7 driven by pressure and structural distortions induced by
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field [48, 49]. ac and dc susceptibility measurements in zero field showed spin–glass state

signatures close to 300 mK [6,50]. In presence of magnetic fields, ac susceptibility (χac) ex-

periments by Ueland et al. revealed frequency dependent peaks on the real and imaginary

parts of χac indicating unexpected slow spin relaxations [51]. Measurements of specific

heat reveal a high sample dependence and notorious changes in different crystals which

display different thermal data of their broad peaks below 1 K, as shown in figure 2.14.

Figure 2.14: Specific heat versus temperature for different samples of Tb2Ti2O7. Figure

from [52] which displays data from [21], [53] and [54].

2.7.4 Spin Glasses

The competing interactions in frustrated, the magnetic anisotropy, and the degree of sen-

sitivity to dilute disorder are responsible for selecting the ground states of these materials.

The mentioned mechanisms can work together to develop a ground state or a set of states

which could or could not result in long–range ordered states. In the framework of non–

ordered states, the spin glass is a state with their magnetic moments frozen in random

configurations [55]. The configuration of a spin glass consists of spins frozen under a

established rule from a dynamic state at freezing temperature T ′. A given ground state is

determined by the experimental conditions from a large set of frozen states. Experimen-

tally observed transitions to the spin–glass state are characterized by some signatures as

a diverging non–linear susceptibility, the frequency dependence of the ac susceptibility or

the line shape in muon spin relaxation [2,55]. An example of spin glass in the pyrochlore

lattice is Y2Mo2O7 in which the magnetic ion is the transition metal Mo4+ [2, 56]. Neu-
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tron scattering experiments evidence a broad peak at 1.8 K which suggest short–range

correlations for four different sublattices in the structure [56], as shown in figure 2.15.

Figure 2.15: Neutron scattering of Y2Mo2O7 at 1.8 K. Inset: the four sublattices corre-

spond to different colors in the vertices of the tetrahedra. Figure from [56].
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Chapter 3
Experimental Methods

In this chapter we describe the growth of our samples using two synthesis methods. Next,

we review the basics of x–ray and neutron diffraction techniques employed to determine

the crystalline and magnetic structure of our samples. Finally, we describe the operation of

the experiments for magnetic and thermal studies which were carried out on an adiabatic

demagnetization refrigerator, a home–made susceptometer, a superconducting quantum

interference device, and a calorimeter Physical Property Measurement System.

3.1 Sample preparation

For the preparation of our samples two different synthesis route have been used. The

Er2Ti2−xSnxO7 (x = 0 − 2) series were prepared by solid–state reaction at high tem-

perature, and the zirconates Dy2Zr2O7, Ho2Zr2O7, and Tb2Zr2O7 were prepared by the

soft–chemistry sol–gel method. All samples used for experiments in this work are poly-

crystalline powder samples.

3.1.1 Solid–state reaction

A method widely used to prepare polycrystalline powder erbium samples Er2Ti2O7 and

Er2Sn2O7 is the solid–state reaction method [57, 58]. Using this standard technique, a

single phase polycrystalline sample of Er2Ti2O7 is prepared by mixing and grinding sto-

ichiometric ratios of the oxides Er2O3 and TiO2. The mixture of the oxides is heated

several times up to 1350◦C with intermediate grindings for more than 24 hours, as de-

tailed in Ref. [57]. The set of different compositions (x = 0.5, 1, 1.5, 1.7, 1.8, 2) of the
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Er2Ti2−xSnxO7 series were made by the same technique, but reacting stoichiometric

amounts of Er2O3, TiO2, and SnO2. Er2Ti2−xSnxO7 samples used in this thesis were

prepared by Prof. Jorge Lago from Páıs Vasco University.

3.1.2 Sol–gel method

To produce polycrystalline powder samples of Dy2Zr2O7, Ho2Zr2O7, and Tb2Zr2O7 we

use an alternative process named the sol–gel method. This technique appears to be very

promising since it provides a simpler route to synthesize oxides at lower temperatures

and in shorter times than usual solid–state reactions. The sol–gel method outstands

by the advantage of producing high purity and homogenization of the powder sample,

achieved by an excellent molecular level mixing [60–62]. Materials properties as hardness,

porosity, and a great control over particles morphology and size can be produced by this

process [62].

In this work the starting materials used for the synthesis were: Dy2O3, Ho2O3 and

Tb4O7. The rare–earth (R) oxide and tetrabutyl zirconate, C16H36O4Zr, were employed as

precursors of two dissolutions of the cations R3+ and Zr4+, respectively. For the first one,

a stoichiometric amount of the rare–earth powder was dissolved into a non–stoichiometric

quantity of nitric acid HNO3 (65%, Sigma–Aldrich) with some drops of water, and with a

molar rate of R/Zr = 1. The excessive HNO3 was evaporated by slow heating and stirring

at 80◦C. For the second dissolution, powder citric acid C6H8O7 (Merck) was dissolved into

ethanol C2H5OH (Sigma–Aldrich) with a stoichiometric amount of C16H36O4Zr, maintain-

ing the magnetic stirring vigorously. The molar quantity of citric acid was 2.5 times the

mol of the R ion and Zr. The mixture of both dissolutions was maintained in magnetic

stirring for 12 hours at 80◦C until it changed into a gel (right panel of 3.1). Finally, the

resulting gel was calcinated at 950◦C for 24 hours and turn into a white powder (left

panel of 3.1), as detailed in [60–63]. We also prepared the isotopically enriched compound

162Dy2Zr2O7 which is suited for our neutron scattering experiments due to the small ab-

sorption cross section of 162Dy. The same method was employed for preparing Dy2Ti2O7,

Ho2Ti2O7, and the nonmagnetics Lu2Ti2O7 and Lu2Zr2O7 used for specific–heat anal-

ysis. Dy2Zr2O7, 162Dy2Zr2O7, Dy2Ti2O7, Ho2Ti2O7, Lu2Ti2O7 and Lu2Zr2O7 samples

were prepared in collaboration with Prof. Flavio Vichi and Dr. Marina Leite from the

Institute of Chemistry, USP. Ho2Zr2O7 and Tb2Zr2O7 samples were prepared by me and
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undergraduate student Pedro Oliviera at the laboratory of our group.

Figure 3.1: Right: Dried gel of Ho2Zr2O7 after magnetic stirring at 80◦C. Left: White

powder of Ho2Zr2O7 after heat treatment of 950◦C. Photo credits to P. Oliviera.

3.2 X–ray diffraction

Diffraction of photons, neutrons and electrons are the most powerful methods for evalu-

ating crystal and magnetic structures. Diffraction occurs when an incident radiation is

scattered by the periodic arrangement of atoms or magnetic moments in the solid, pro-

ducing constructive interference at specific angles without changing its wavelength. For

photons, the varying electric field accelerates the electrons in the atoms which then radi-

ate photons of the same wavelength. The x–ray wavelength (0.1 to 100 Å) is similar to

typical atomic distances, being an excellent probe of the microscopic structure [24].

Bragg’s law is fundamental to the physics of diffraction. For crystallographic planes

of atoms shined by an incoming beam, Bragg’s law establishes the relationship between

the wavelength of the beams and the differences of the pathways of the beams:

nλ = 2d sinθ, (3.1)

where n is an integer, λ is the wavelength of the radiation, d is the spacing between two

planes, and θ is the scattered angle, as shown in figure 3.2. Bragg peaks occurs only when

the difference in path length of the x-rays is an integer number of wavelengths combining

constructively.

Powder x–ray diffraction is an extremely functional technique used in this thesis to

assess the phase, crystallinity, composition of our compounds, and to perform a detailed
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Figure 3.2: Bragg diffraction representation showing the incoming x–ray scattering from

the atoms within the crystallographic planes. The path length difference is 2d sinθ.

structural analysis. In this technique a single wavelength of incident x–rays is employed,

and the diffraction angle 2θ is varied. If the sample is in crystal form, it is ground into

a powder, composed of individual crystallites randomly oriented. Then, the diffraction

pattern is averaged over all crystallographic directions. Figure 3.3 shows a schema of

the diffractometer with the x–ray tube as the source of the beam, and the detector of

the diffracted x–rays. Figure 3.3 also displays the Bragg–Brentano geometry for powder–

diffraction experiments, which is one of the most commom systems used [65]. The incident

and diffracted beams are focussed at fixed distances from the sample position, and the

diffraction angle 2θ is defined between the incident beam and the detector [65]. The

incident angle θ is defined between the x–ray source and the sample, being the half of

the diffraction angle 2θ. X–ray powder–diffraction experiments were performed using a

Bruker AXS D8 Discover diffractometer from the Laboratory of Crystallography of the

Physics Institute, USP. The Bragg–Brentano geometry and copper Kα1 radiation (1.5406

Å) were used. In next Chapters we present the x–ray patterns of our samples and their

respective structural analysis.
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Figure 3.3: Schematic image of the Bragg–Brentano diffractometer. The detector in the 2θ

position measures the diffraction peaks of the incident angle θ. Figure modified from [65].

3.3 Neutron diffraction

X–ray and neutron diffraction work together as complementary techniques due to the

different nature of the atomic scattering. In the range of the interatomic distances in

solids is the de Broglie wavelength for thermal neutrons (1.8 Å), being then suitable for

probe crystalline structures. Their energy on the order of 10 meV makes them useful

for determine phonons, magnons and crystal field excitations. One advantage over other

scattering probes is the zero charge of the neutron which makes its interaction with matter

very weak. The absence of the Coulomb interaction allows the neutron to penetrate deeply

into the sample and if the neutron pass close enough to the nuclei of atoms, they interact

via short–range strong forces. The neutron also carries a magnetic dipole moment of

µ = 1.91µN , where µN is the nuclear magneton. Therefore it can be used to explore

the crystal magnetism by interacting with its unpaired electrons through magnetic dipole

forces. This way neutrons are ideal for studying the crystal and magnetic structures of

materials.

In a scattering experiment, a neutron with incident momentum ki and energy Ei is

scattered by the sample, leaving with final momentum kf and energy Ef . The distribution

of momentum and energy of the neutrons scattered are then measured. The scattering
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process is described by the momentum and energy transfer which follow as

Q = ki − kf (3.2)

~ω = Ei − Ef =
~2

2mn

(ki
2 − kf

2) (3.3)

where Q and ~ω are the momentum and energy gained by the sample. If the energy

transfer ~ω = 0, the scattering is named elastic and otherwise inelastic. The fundamental

quantity measured during a neutron scattering experiment is the partial differential cross

section. It describes the change of the neutron–sample system from the initial state ki to

the final state kf and is defined as [66]

d2σ

dΩdE
=
kf
ki

(mn

2π~

)2

| 〈kf |V (r)|ki〉 |2δ(~ω + Ei − Ef ). (3.4)

This expression is described by the Fermi golden rule and is based on first–order

perturbation theory. V (r) is the potential of the nuclear and magnetic interactions that

the neutron experiences. The scattering of both potentials are treated separately, since

there are no interference terms between them.

The strong force interaction can be approximated as pointlike, and is characterized

by the single parameter b named the scattering length. This parameter can be complex

and its imaginary component corresponds to the absorption cross section. The potential

is the given by V (r) = (2π/mn)
∑

i bi δ(r − ri), where ri and bi are the position of the i

nucleus in the lattice and its scattering length, respectively. Using this potential along

with 3.4, the partial differential cross section becomes [66]

d2σnucl
dΩdE

= N
kf
ki

1

4π
[σcS(Q) + σiSi(Q)] , (3.5)

where N is the number of nuclei and the total scattering cross section for the nucleus

is separated in the coherent σc and incoherent σi parts. The incoherent scattering is

due to not all nuclear scatterers are identical and arises from a random distribution of

the scattering lengths from their mean value b. σi is proportional to the variance of the

scattering lengths present. σc is due to coherent scattering which is as if all the scattering

lengths of the nuclei are equal to b. It is proportional to the square of the mean scattering

length |b|2. S(Q) is the dynamic nuclear structure factor given by

S(Q) ∝
∑
i

bie
−iQ.r (3.6)
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which is an important quantity in crystallographic studies since the intensity of the

Bragg peaks or number of neutrons counted is proportional to S(Q)2.

For the magnetic interaction involving the spin of the neutron σ, the potential term in

(3.4) is substituted by | 〈kf , σf |V (r)|ki, σi〉 |. The magnetic potential is given by V (r) =

−γµNσ.B(r), where B is the magnetic induction. This interaction arises from the spin and

orbital motion of an electron. For the elastic scattering case, the cross section becomes [66]

dσ

dΩ
=
(mn

2π~

)2

| 〈kf , σf |V (r)|ki, σi〉 |2. (3.7)

Integrating over all r; with no specification of the nuclear spin σ (unpolarized neu-

trons), and solving for the magnetic potential returns a dependence with the sample

magnetization that is perpendicular to the scattering vector Q [66]

〈kf |V (r)|ki〉 =

∫
V (r)eiQ.r · dr = M⊥(Q), (3.8)

and by substituting in (3.7)

dσmag
dΩ

= 〈M∗
⊥(Q)〉 〈M⊥(Q)〉 . (3.9)

Neutron scattering therefore probes the components of the sample magnetization M⊥

that are perpendicular to the neutron’s momentum transfer Q. In this way the mag-

netic correlations are measured. The two cross sections above are summed together, and

then the magnetic scattering can be isolated by a subtraction of the nuclear component.

The nuclear scattering can be considered as a background and it is isolated by running

experiments at a temperature above the energy scale of their magnetic correlations.

Neutron are produced by spallation or reactor sources, and they can provide a wide

range of wavelengths. In elastic diffraction experiments, the instruments are designed

with a fixed momentum and the outgoing momentum is assumed to be the same. Figure

3.4 shows a diagram of a simple diffractometer. First, a polychromatic beam is guided to

the instrument from the neutron source. Then, a single crystal called a monochromator

is used to reflect and select the required wavelength towards the sample by satisfying

the Bragg’s law. Around the perimeter of a circle centred on the sample, 3He position–

sensitive detector tubes measure scattering from the sample in specific directions. These

cylindrical detectors are based on 3He since they have a large absorption cross section.

By rotating the sample it is possible to map out a large region of the reciprocal space in

Q.
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Figure 3.4: Schematic diagram of a diffractometer. Figure modified from [67].

Structural diffraction experiments on the isotopically enriched 162Dy2Zr2O7 were car-

ried out at the high–resolution ECHIDNA [68] at the Australian Nuclear Science and

Technology Organization (ANSTO, Sydney). We use a germanium monochromator at

140 degrees take-off angle and the sample was placed in a vanadium can for measurements

at room temperature. Magnetic diffraction studies were performed at the high–intensity

neutron diffractometer WOMBAT [69] at ANSTO using 4.744 Åneutrons. We uses a

pyrolitic graphite monochromator at 90 degrees take-off angle [69]. The 162Dy2Zr2O7

sample of 300 mg was loaded in an oxygen–free cooper container and mounted to the end

of a Kelvinox dilution insert from Oxford Instruments to reach a temperature of 40 mK.

In–field experiments employed a 12 T magnet by Oxford Instruments. Experiments at

ANSTO were performed by Jason Gardner and Chin–Wei Wang.

3.4 Rietveld refinement

The structural analysis was conducted by the Rietveld refinement which is an excellent

method to validate the structure to which a material belongs [70]. The Rietveld method

is a refinement process in which an initial profile of the crystal structure is required [71].

Information of the structure and chemistry such the space group, lattice constant, atom
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positions, and thermal paramaters are detailed in the model. The analysis was done by

using the software FULLPROF [72] together with its graphical interface WINPLOTR.

The Rietveld refinement employs an algorithm which minimizes the difference between

the experimental data and a model, evaluated on a least–squares approach. In the anal-

ysis, a background can be accounted with a polynomial or by specifying a number of

interpolated points. Additional parameters can also be specified including as the peak

broadening, absorption, geometry, or anisotropic temperature factors. The quality of the

fitting is determined by the factors χ2, Rwp and Rexp. χ
2 is the square ratio of Rwp and

Rexp, Rwp is the residual taking into account weights in intensity and Rexp is the expected

residual value. The refinement continues until convergence is reached with the value of

the goodness–of–fit χ2 approaching 1. The factors below are defined as follow:

Rwp =

[∑n
i=1wi(yi − yc,i)2∑n

i=1wiy
2
i

]1/2

(3.10)

Rexp =

[
n− p∑n
i=1wiy

2
i

]1/2

(3.11)

χ2 =

(
Rwp

Rexp

)2

, (3.12)

where wi is the variance of the intensity measured yi, yc,i is the calculated value of

y at the i position, n is the total number of data points and p is the number of refined

parameters.

Common peak–shape functions to model the intensity of the Bragg reflections include

the Gaussian, Lorentzian and Pseudo-Voigt. The profile function used in this thesis is the

Pseudo-Voigt V (x) which is defined as the sum of a Gaussian peak G(x) and a Lorentzian

peak L(x), weighted by a parameter η with values between 0 and 1.

V (x) = (1− η)G(x) + ηL(x) (3.13)

There is a wide spectre of complicated functions that are possible, including the ones

that allow for asymmetric broadening at low scattered angle. The broadening of peak

reflections can be due to strain in the sample or to the crystallite size forming in the

material, which can also be incorporated in the refinement model. The crystal size, D,

are modelled following the Scherrer equation:

D =
Kλ

βcosθ
, (3.14)
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where K is a dimensionless factor of value 0.9, λ is the wavelength, β is the full width

at half maximum, and θ is the Bragg angle.

3.5 Magnetic measurements

3.5.1 Adiabatic demagnetization refrigerator

The measurements of the ac magnetic susceptibility χac were carried using a susceptometer

consisted of an adiabatic demagnetization refrigerator (ADR, Cambridge Cryogenics),

inserted at a liquid–helium cryostat.

In an ac susceptometer, a modulation field hac = h0 cos(ωt) is produced by a coil and

applied to the sample. Then, the ac magnetic susceptibility χ is measured by a secondary

coil and is given by [76]

χ =
dM

dhac
, (3.15)

where M is the magnetization of the sample. The ac magnetic susceptibility is studied

as a complex number and separates in two components: χ′ac + iχ′′ac. We usually focus on

the real component of the susceptibility χ′ac that represents the part of χac that is in phase

with the applied ac field. The imaginary component χ′′ac is related to the energy losses.

The magnetic refrigerator provides a 50 mK base temperature, and it is configured

to reach this temperature operating with a 9 T coil. The cooling of the ADR is due to

a paramagnetic salt pill. A simple example of an ADR system consists of a paramagnet

connected to the sample to be cooled and via a thermal switch to a heat sink. A simplified

diagram of the ADR setup is shown in figure 3.5, which was taken from [74]. The ADR

system is cyclic, and in the first part of the cycle, the paramagnetic solid is thermally

linked to a 1 K bath and a magnetic field is applied to the solid. As the field is increased,

the magnetic regions in the solid start to align and the paramagnet heats up. Next, the

thermal switch is connected, and heat is transferred from the solid to the heat sink while

the magnetic field is held constant. This reduces the temperature of the paramagnet, back

to near its starting point. The thermal switch is now open, isolating the paramagnetic

pill and the magnetic field is now reduced. This is the adiabatic demagnetization portion

of the cycle. As the magnetic field is reduced the paramagnetic regions become more

disordered and absorb entropy from the thermal vibrations resulting in a cooling of the

paramagnetic material and of the object being cooled.
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Figure 3.5: Left : Magnetic refrigerator. Figure taken from [74]. Right : Cross–section of

the liquid–helium magnet cryostat with the magnetic refrigerator inserted in its operating

position.

The ac susceptibility data were collected using the ADR with an amplitude and phase

compensator circuit over a wide range of frequencies from 2 Hz to 10 kHz in a modulation

field of 0.5 Oe.

3.5.2 Home–made ac susceptometer

The measurements of the dynamic susceptibility were also carried out at a home–made

ac susceptometer. It consists of a pumped–helium (4He or 3He) cryostat; as seen in figure

3.6; and of a mutual inductance bridge. The ac susceptometer reaches a temperature of

1.1 K using 4He liquid and a minimum of 0.35 K using 3He liquid. The ac susceptometer

uses pickup coils to detect changes in the magnetic flux due to the sample.

To start experiments within the pumped 4He cryostat, it is required to cool down

first the space of the superconducting coil with liquid nitrogen (77 K). When the system

reaches the thermal equilibrium, the liquid nitrogen is pumped out and the helium (4.2

K) is transferred into the superconducting coil space. To cool down the sample space at
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Figure 3.6: Schematic diagram of the susceptometer inside the pumped 4He cryostat.

Figure adapted from [75].

lower temperatures, 4He is transferred to the antidewar region which allows the thermal

contact with the inner chamber of the sample space. By pumping the antidewar region,

the 4He gas of the sample space is liquefied. To reach temperatures down to 4.2 K, it is

used a vacuum pump in the sample space allowing a minimum temperature of 1.1 K. In

the sample space we can also use 3He liquid to measure in temperatures below 1.26 K,

and with the help of a vacuum pump it reaches a minimum of 0.35 K.

We used together with the cryostat a mutual inductance bridge for determining the

χac values. The sample is placed between two coupled coils known as the primary and

secondary coils. A diagram of this configuration is shown in figure 3.7. The secondary

coils are two identical pickup coils positioned symmetrically inside the primary coil. Both

are connected in opposition in order to cancel the voltages induced by the modulation

field itself or external sources. To collect the χac data, we used a typical setup as detailed

in reference [76]. By measuring the induced voltage with a lock–in amplifier, the real

and the imaginary parts of the susceptibility can be separated. The ac modulation signal

produced by the primary coil is applied to the sample and the sample induces a signal

on the secondary coils. The induced signal which is proportional to the susceptibility is
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then measured. The magnetic susceptibility of the sample is obtained from the difference

between the values of inductance of the bridge with the sample and without the sample.

Figure 3.7: Setup configuration of the primary and secondary pickup coils.

Experiments were performed with a modulation field hac = 1 Oe and a drive frequency

of 155 Hz. The setup of our home–made susceptometer provides a superconducting coil

able to generate fields up to 7.5 T.

3.5.3 Superconducting quantum interference device

The signal induced in magnetometers is due to change of magnetic flux. Nowdays, the

most sensitive instrument for measuring flux is the superconducting quantum interference

device (SQUID) which is able to probe extremely low fields up to a magnitude order

of 10−14 T [77]. SQUID devices make use of the quantisation of magnetic flux in a

superconducting ring in combination with the Josephson–effect [78,79].

The SQUID is a magnetometer that measures magnetic flux and a output voltage

signal. From the output signal, the magnetic moment of a material and consequently

its magnetization is determined. The SQUID consists of a superconducting ring with

Josephson junctions or insulating barriers at two points of the ring, as shown in figure

3.8. The basis of its operation is described by a current I flowing through the SQUID

and the Josephson Effect. This effect occurs when a current carrying Cooper pairs can

tunnel through the junctions until a critical current Ic is reached. After Ic is exceed, the

SQUID permits the tunnelling of single electrons trough the barriers and a output voltage

U starts to appear.
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Figure 3.8: Diagram of the SQUID showing the Josephson junctions; denoted with X,

and the superconducting ring. Φ is the magnetic flux, I is the current through the loop

and U is the measured voltage.

The application of a magnetic flux to a SQUID can penetrate the device trough its

Josephson junctions. The change in the flux inside the ring (Φ) generates a measurable

change in the current or output voltage through the Josephson junction. In supercon-

ducting loops, the amount of Φ is quantised to multiples of the magnetic flux quantum

φ0 [78]. Due to this quantisation condition, the voltage between the two junctions is a

periodic function with the magnetic flux inside the loop or φ0 [80].

Figure 3.9 shows a diagram for the detection of the output signal and the SQUID

device. It is shown the pickup coils to detect the signal and the sample. The sample is

positioned at the center of two pickup coils and then a magnetic field is applied. The

external field induces a current in the pickup coils that goes through the loop which is

inductively coupled to the SQUID device. On the bottom right side, it is displayed the

SQUID device which works as explained above.

Figure 3.9: Diagram of the detection setup of the SQUID. The pickup coils, the sample,

and the detection loop are shown as well. Figure adapted from [77].
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Measurements of the dc magnetization were carried out on a commercial MPMS XL7

SQUID magnetometer of the Quantum Design, operating at a cryostat of 4He in the

interval of temperatures from 2 to 300 K and static external fields up to 7 T.

3.6 Thermal measurements

3.6.1 Physical Property Measurement System

The specific heat experiments were conducted on the calorimeter Physical Property Mea-

surement System (PPMS) from Quantum Design. The calorimeter is a closed–cycle sys-

tem and is equipped with a 9 T superconducting magnet for application of external fields.

This instrument measures the heat capacity or specific heat of a material at constant

pressure with a relaxation technique.

Figure 3.10: Inner components of the calorimeter puck of the PPMS. Figure adapted

from [81].

Figure 3.10 shows a diagram of the calorimeter puck which is placed into a high

vacuum PPMS cryostat for experiments. Before the measurement can be started, the

sample must first be kept at a stable baseline temperature. During the measurement of

one point, a known amount of heat P is applied at constant power for a fixed time with a
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heater. The heating period is followed by a cooling period of relaxation during the same

or longer times [81]. The PPMS consists of a platform heater and platform thermometer

which are attached to the bottom side of the platform. Small wires provide electrical

connection to the thermometer and heater as well as the thermal connection and support

for the platform. The sample is mounted to the platform by using a thin layer of vacuum

Apiezon grease which maintains the required thermal contact even at low temperatures.

In the relaxation technique, after each measurement cycle, the response of the temper-

ature of the whole sample platform is fitted to a theoretical model. This model measures

the total specific heat C by accounting the thermal relaxation of the sample platform to

the bath temperature, and the relaxation between the sample platform and the sample

itself [81]. A simple expression for the temperature T of the platform as a function of

time t is written as follows [81]

C
dT

dt
= P (t)−Kw(T − Tb), (3.16)

where P (t) is the power applied by the heater. The second term express heat loss

between platform and the puck. Here, Kw is the thermal conductance of the supporting

wires and Tb is the temperature of the thermal bath or puck frame. The heater power

P (t) is equal to P0 during the heating period of the measurement and is reduced to zero

during the cooling period [81]. The solution of this equation is given by an exponential

function with a characteristic time constant τ equal to C/Kw [81].

By fitting the measured T (t) dependence to the solution of equation 3.16 provides

the C value. We are interested only in the specific heat of the sample and in order to

isolate it, we must subtract the specific heat of the platform and Apiezon grease (named

as addenda) Cadd. Experiments are carried out by first measuring the specific heat of

the addenda. Then, we put the sample on the addenda and run experiments again. The

difference C − Cadd accounts only the specific heat of the sample. Since the amount of

Apiezon grease is constantly changed for each sample mounted on the platform, this is

a more precise way to measure specific heat than using the puck calibration files of the

PPMS software. The thermal data were collected in the temperature region from 2 to

300 K using the heat capacity option of the PPMS.
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Dilution refrigerator

To further lower the temperature down to 50 mK and perform specific heat experiments,

we use the PPMS equipped with a dilution refrigerator insert.

The dilution refrigerator employs a mixture of the two isotopes 3He and 4He to cool to

50 mK. The opposite quantum nature of the isotopes makes them immiscible below about

0.87 K, and they spontaneously separate into two phases [82]. One phase called the dilute

phase consists of 6% 3He and 94% 4He and the other one named the concentrated phase

is almost entirely 3He. The interface between the two is called the phase boundary. Since

3He is lighter than 4He, the 3He–rich phase sits on top of the dilute phase. Figure 3.11

shows the mixing chamber containing the liquid. The phase boundary is located near to

the vertical center of the mixing chamber. The dilute phase extends from the bottom of

the mixing chamber through the counter–flow heat exchanger and partially fills the still.

By pumping continuously on the still using a turbo pump, it reduces its temperature near

to 0.6 K and decreases the 3He concentration in the still. Osmotic pressure conduct 3He

up the dilute side of the counter–flow heat exchanger from the mixing chamber into the

still. To replace 3He in the dilute phase, 3He atoms cross the phase boundary from the

concentrated phase into the dilute phase. The 3He atoms doing so by absorbing heat, and

providing cooling power.

The 3He gas exiting from the turbo pump is circulated back into the condenser of the

dilution refrigerator for liquefaction. The 3He transports down through a flow impedance

into the still heat exchanger, and then down the concentrated side of the heat exchanger. A

flow impedance ensure that the returning gas is at a low enough temperature when it enters

the concentrated phase of the mixing chamber. The liquid 3He then crosses the phase

boundary again, completing the circulation path. This way the mixture continuously

circulates to provide cooling to the sample and to maintain a temperature of 50 mK.
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Figure 3.11: Schematic of the dilution refrigerator. Figure adapted from [83].

The dilution refrigerator operates using two cooling modes to allow temperatures down

to order of millikelvin. In the mode of dilution cooling, measurements are conducted in

the interval of 50 mK to 1.1 K. The refrigerator runs with its full capacity of the 3He

– 4He mixture and keeping a helium liquid level in the still. By forcing 3He across the

phase boundary or mixing of the two phases requires energy, which is taken from the

walls of the mixing chamber and creating its cooling power. The second mode is called

the evaporating cooling which is employed for temperatures between 1 and 4 K. Here, the

system operates with mostly 4He in circulation with the helium liquid level down in the

mixing chamber. The amount of mixture left is isolated in the tank on its gas–handling

system [83]. To achieve this cooling mode, the liquid 3He is first distilled and then stored

in the tank so that almost pure 4He is left to circulate.

AC measurement system option

We also use the PPMS for ac susceptibility experiments carried out using its ac suscep-

tometer option (ACMS). It operates by using a detection coil set that inductively responds

to both the sample magnetic moment and an excitation field [84]. A diagram of the ACMS

is shown in figure 3.12. The measurement method is called the extraction method and
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it is the same that commercial magnetometers use, as discussed in the previous section.

During measurements, an ac field is applied to the measurement region and the sample is

located at the center of two detection pickup coils. The signal induced in the detection

coils indicates variations on the applied field caused by the presence of the sample.

Figure 3.12: Schematic of the ACMS insert. Figure adapted from [84].

Dynamic measurements were completed at the Central Experimental Multiusuário

(CEM) facilities of the Universidade Federal do ABC (UFABC). We run experiments

with an excitation field of 1 Oe in the frequency range from 10 Hz to 10 kHz.
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Er2Ti2−xSnxO7

In this chapter we discuss about the change of anisotropy of the magnetic ground state of

Er3+ in the pyrochlore Er2Ti2O7 when we introduce Sn ions on the sublattice of Ti. By

using the zero–field specific–heat measurements of the Er2Ti2−xSnxO7 series (x = 0− 2),

we perform a different specific–heat analysis from the one reported by our group in [13],

and our computation of the contribution terms to the thermal data allow us to gain

information about the ground magnetic state of Er3+ for each composition in the series.

We study physical quantities linked to the electronic magnetic field of Er3+ obtained from

specific–heat experiments. We collect the in–field specific–heat data of the Er2Ti2−xSnxO7

series in order to discuss the evolution of the long–range order transition and magnetic

excitations.

4.1 Structural analysis

To verify the synthesized polycrystalline phase via the solid-state reaction is indeed

R2M2O7, we performed x–ray powder diffraction experiments. We collected the data

at room temperature only for the Er2Ti2O7 sample (x = 0) since it was the unique of

the series that was provided to us in a required amount for x–ray studies. In figure 4.1,

the diffraction data found the sample to be single phase, with no additional impurities

detected. By carrying out a Rietveld refinement, and modelling the data with the cubic

space group, Fd3m, consistent with the pyrochlore structure resulted in an excellent fit

(red solid line) with a goodness–of–fit value χ2 close to one. We found a refined cubic

lattice parameter of value a0 = 10.09 Å. As reported in [13], the value of a0 in the series
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increases linearly with the Sn content, x, due to the larger ionic radius of Sn compared

to Ti.

Figure 4.1: X–ray powder diffraction pattern for the x = 0 composition. Peak positions

of the pyrochlore structure are marked with small vertical lines. The line at the bottom

shows the difference between the data and the refinement model.

4.2 Specific heat

Specific–heat experiments were performed down to 50 mK for all the investigated compo-

sitions (x = 0, 0.5, 1, 1.5, 1.7, 1.8, 2), and the measurements are presented in two sets. The

first one presents a thermal analysis including low–temperature fittings to the zero–field

specific–heat data which results in direct information about the type of ordering of the

magnetic moments of Er3+ for each composition. The second set presents the change and

the competition of the long–range order magnetic transition and the Schottky anomaly

under an external magnetic field up to µ0H = 2 T.

4.2.1 Zero field specific heat

In figure 4.2, we present the published data of our group for the temperature dependence

of the total specific heat (C) for the Er2Ti2−xSnxO7 series (x = 0, 0.5, 1, 1.5, 1.7, 1.8, 2)

measured under zero magnetic field. The total specific heat arises from three terms:

the contribution of the lattice Cp, then from the magnetic moment of the nuclei at low

temperature CN , and from the electronic contribution with magnetic origins Ce. As a start

we estimate the lattice term Cp for the Er2Ti2−xSnxO7 series. After isolating the nuclear
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and electronic terms (CN +Ce), we perform fittings to the data with some parameters in

play as we detail later. The fittings parameters are physical properties directly correlated

to the ground magnetic state of Er3+ in the series.

Figure 4.2: Temperature dependence of the total specific heat of Er2Ti2−xSnxO7 (x =

0− 2). The red points shows the estimated lattice contribution Cp.

Figure 4.3 displays the variation of the height of the transition peak Cpeak, and the

transition temperatures TN of the series as reported in [13]. The ordering transitions

occur at decreasing temperatures TN when the x content is increased and the observed

peak becomes smaller and broader. A linear decrease of TN for 0 ≤ x ≤ 1.5 is observed.

Around x = 1.7, it is still an open question if exists an interval between 1.7 ≤ x ≤ 2

where the series goes trough a quantum phase transition at TN = 0.

Figure 4.3: Height peak of specific heat Cpeak and transition temperature TN versus the

x content.
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In the accounting for the lattice term is important to state that there is no unique

method to do this, and some approximations have to be made. For example, Cp can be

estimated as the specific heat of an isomorphic nonmagnetic compound, or as propor-

tional to T 3 in the Debye approach. These methods are constantly used in the literature;

however, for our data they result in lattice terms with larger values than the total spe-

cific heat. For temperatures above 10 K, the data of the Er2Ti2−xSnxO7 samples present

very slight variations, and for simplicity we consider the lattice terms of the series as

constant and equal to the lattice term of Er2Ti2O7. We use the scaling method which has

been successfully used in pyrochlores [31,87]. By measuring the specific–heat data of the

nonmagnetic Lu2Ti2O7, Cp was estimated using the scaling law [88]

Cp(T ) = CLu2Ti2O7(T/r), (4.1)

where r is the ratio of the Debye temperatures θ for Er2Ti2O7 and Lu2Ti2O7. Since

the Debye temperature θ is inversely proportional to the square root of the molecular

weight M̄ (θ ∝ M̄−1/2) [26]:

r =
θEr2Ti2O7

θLu2Ti2O7

=

(
M̄Er2Ti2O7

M̄Lu2Ti2O7

)−1/2

, (4.2)

leading to a value of r = 1.014. Using this scaling for all the compositions results in

differences less than 10% of r, confirming the use of the lattice term of Er2Ti2O7 for the

series. Figure 4.2 shows the values of the accounted Cp. After subtracting Cp to C, the

sum of the terms Ce + CN is displayed in figure 4.4. We named this sum the magnetic

specific heat Cm.

The second step of our analysis of the specific–heat data consists in compute the

nuclear (CN) and the electronic (Ce) contributions. The nuclear term arises from the

nuclear magnetic moment of the only isotope 167Er with spin (I = 7/2). CN is determined

from the nuclear Hamiltonian H which counts the contact hyperfine HHyp and the electric

quadrupolar HQua interactions, written as

HHyp = −~γ167 I.B (4.3)

and

HQua = P
[
I2
z − 1

3
I(I + 1)

]
, (4.4)

where ~ is the Planck constant, γ167 = −0.772× 107 rad s−1 T−1 is the gyromagnetic

ratio of 167Er [85], I is the spin operator, B is the effective magnetic field due to the Er3+

ordered magnetic moments, and P depends of the quadrupole moment Q of 167Er.
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Figure 4.4: Temperature dependence of the magnetic specific heat of Er2Ti2−xSnxO7

(x = 0− 2).

Due to the XY anisotropy of the ordered moments as reported previously [31], we

consider equal the x and y components of B (Bx = By). Then,

H = −~γ167 I.B + P
[
I2
z − 1

3
I(I + 1)

]
(4.5)

is:

H = −~γ167 [Bx(Ix + Iy) +BzIz] + P
[
I2
z − 1

3
I(I + 1)

]
, (4.6)

depends of the parameters Bx and Bz. For example, using values reported in [31],

for Bx = 215.7 T and Bz = 0 we obtain eight energy nuclear energy levels EN : -0.09,

-0.07, -0.04, -0.01, 0.02, 0.04, 0.06 and 0.08 K. The nuclear partition function is given by

Z =
∑8

i=1 e−βENi , and the calculation of the nuclear contribution to the specific heat is

direct.

The electronic contribution Ce to the specific heat arises from magnons. The theory

of this contribution has been detailed in the literature [9]. As we present in Chapter 2,

for low–energy magnons in Er2Ti2O7, the expected electronic contribution Ce is [9]:

Ce(T ) = Av.I∆(T ).T 3, (4.7)

with

Av = 1534.5

(
a0

3

v3

)
. (4.8)

Then, Ce depends of the parameters ∆; which is the gap energy of the magnons, and

v; is the magnon velocity. a0 is the lattice parameter.
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The fits were made numerically by implementing a code in Python language, as shown

in Appendix A, since the complexity of the integral I∆(T ), and the matricial nature of

the spin operators Ix , Iy, and Iz.

Having establish the background of the contributions to the specific heat, we perform

the data analysis. Figure 4.5(a) presents the low temperature magnetic specific heat

of the Er2Ti2−xSnxO7 series. For x = 0, 0.5, and 1, the nuclear contribution becomes

apparent (below 0.1 K) and it seems to prevail on the specific heat; however, in this

region temperature we can not neglect the electronic term. On the other hand, for x =

1.5, 1, 7, 1.8 and 2 the data does not extend to lower temperatures than 50 mK allowing

us to see the nuclear contribution; however, for these compositions the data was measured

just after the magnetic transitions in which the electronic contribution dominates. The

magnetic specific heat (Cm) for each composition was fitted to the sum of the terms

CN +Ce in the temperature region below the transition peaks. The sum CN +Ce depends

on four parameters Bx, Bz, ∆, and v. Figure 4.5(b) shows the best computed fits for all

the investigated compositions.
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Figure 4.5: (a) The low–temperature magnetic specific heat of the series Er2Ti2−xSnxO7

(x = 0 − 2). (b) The solid lines result from fitting the data to the sum CN + Ce, as

explained in the text.

We now report the best parameters obtained from the fits to Cm. The hyperfine

components Bx and Bz of each composition tell us about the XY symmetry present and

from it we can obtain information about the ordered magnetic moment. By using the ratio

between the hyperfine field and the moment which is 87.2 T/µB; as reported by Mössbauer

experiments [89], the moment can be estimated. Figure 4.6(a) shows the values of the

fitting parameters across the Er2Ti2−xSnxO7 series. The values of the magnetic moments

µx (red points) decrease trough the series from a value of 3.44 µB (x = 0) to 2.01 µB

(x = 2). This behaviour is consistent with the decrease of the component µx of the

magnetic moments obtained from neutron diffraction experiments (blue points) reported

in [13]. For samples with x = 0 and 0.5, the best fits are provided when the component

Bz or µz is zero in contrast with samples with a higher x content (green area). These
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results evidence that the system is changing its anisotropy from XY symmetry in Er2Ti2O7

(x = 0) to having a strong magnetic component µz in Er2Sn2O7 (x = 2). In figure 4.6(b)

we show the values of the magnetic moment in the plane XY; µxy =
√

2µx, and of the

component µz, trough the different compositions. It exhibits the crossover of the curves

approximately at x = 1.7 in agreement to the reported curves of the magnetic moments

µxy and µz [13].

Figure 4.6: (a) Variation in the magnetic moment µx with the x content in Er2Ti2−xSnxO7

obtained from specific heat (SH), which occurs for values of µz zero (white area) and non–

zero (green area). The values of the magnetic moments reported in [13] and obtained from

magnetic neutron diffraction (ND) are included. (b) µxy and µz versus the x content.

50



CHAPTER 4. Er2Ti2−xSnxO7

From the fits we also compute the values of the spin wave energy gap (∆) and magnon

velocity (v) across the Er2Ti2−xSnxO7 series. Figure 4.7 shows that the energy gap ∆

decreases with x. For Er2Sn2O7 it is almost negligible ∆ ∼ 0.0001 K. A similar decrease

is present in the values of v (orange points) followed by a slight increase at x = 1.8. This

occurs in analogue trend to what occurs with the transition temperatures TN reported

in [13].

Figure 4.7: Variation in the energy gap ∆ and magnon velocity v with the x content in

Er2Ti2−xSnxO7.

We finish this section by computing the recovered entropy of the different compositions

of Er2Ti2−xSnxO7 using our specific–heat data C. We isolate the electronic specific heat Ce

by subtracting the contributions from the lattice and nuclear moments to C. We use the

estimated lattice term (Cp) and the nuclear term (CN) of each composition computed from

the obtained parameters and fittings presented above in this section. The resulting Ce

data is displayed in figure 4.8(a). The recovered electronic entropy ∆Se(T ) is obtained by

integrating Ce(T )/T from 50 mK to 10 K. Figure 4.8(b) shows that the values of ∆Se(T )

for the Er2Ti2−xSnxO7 series reach the expected R ln(2), which is the value for a system

with a doublet ground state, at approximately 10 K. For x = 1.7, the recovered entropy

saturates at a smaller value than R ln(2). This discrepancy is reasonable considering the

limited amount of Ce data in the temperature range below the magnetic transition where

low–energy spin excitations dominate.
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Figure 4.8: (a) Temperature dependence of the electronic specific heat Ce of the

Er2Ti2−xSnxO7 series. (b) The recovered electronic entropy ∆Se as a function of the

temperature. The dashed line R ln(2) denotes the expected value for a doublet ground

state.
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4.2.2 In field specific heat

Specific–heat measurements for the Er2Ti2−xSnxO7 series (x = 0 − 2) were taken up in

various applied magnetic fields, and the results are presented in this section. Figure 4.9

shows the temperature dependence of the specific heat C for x = 0, 0.5, 1.0, 1.5, 1.7 and

1.8. The application of a magnetic field (µ0H) causes the ordering–transition peaks at

TN to shift monotonically to lower temperature and to decrease in amplitude. For all

compositions, the sharp peak positionated at TN is followed by a broad Schottky anomaly

on the high–temperature side. This broad feature centered at ∼ 2 K becomes evident

for x ≥ 0.5. For the x = 1.7 and 1.8 samples, the peak seen in the zero–field C curves

is replaced by a much broader feature in modest values of fields, and also the Schottky

anomaly developed at ∼ 2 K becomes rapidly visible. For fields above 1.5 T there are

no sharp features in the data and the magnitude of C decreases rapidly with increasing

µ0H. This is consistent with the critical field value µ0Hc = 1.5 T reported in Er2Ti2O7

for which the sharp peak dissapears suggesting a quantum critical point [31, 92]. For all

compositions x = 0− 2, the specific heat converges to the same temperature dependence

around 10 K and then lattice contribution which dominates at this temperature range is

clearly independent of applied field. At the lowest temperature an upturn in the specific

heat is attributed to nuclear contributions from the Er atoms. [86].
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Figure 4.9: Specific heat of Er2Ti2−xSnxO7 (x = 0, 0.5, 1.0, 1.5, 1.7 and 1.8) for different

applied magnetic fields. TN marks the temperature of the ordering transition at zero field.
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Figure 4.10(a) shows the temperature dependence of C for Er2Sn2O7 (x = 2) in

different magnetic fields. The sharp peak in the specific heat at TN = 0.130 K decreases

rapidly in magnitude and broadens with increasing fields. The position of the peak does

not change monotonically with the applied field, the peak first shifts to higher temperature

in fields up to 0.5 T, then it moves to lower temperature in the field range of 0.6–0.7 T,

and finally it shifts back again to higher temperature in a field of 1 T. Data measured

in fields above 1.3 T revealed no sharp features but instead a broad Schottky anomaly

centered at 2 K associated with in–field excited levels. Figure 4.10(b) shows that the

Schottky anomaly moves to higher temperature and its magnitude increases rapidly with

fields higher than 1.5 T. The values of C at temperatures above 10 K are once again

attributed to the lattice term which is observed to be independent of the applied field.

Figure 4.10: Temperature dependence of the specific heat of Er2Sn2O7 for different mag-

netic fields. TN marks the temperature of the ordering transition at zero field.

We now construct the field–temperature (H−T ) phase diagram for the Er2Ti2−xSnxO7

series using the specific–heat data shown in figures 4.9 and 4.10. The temperature in

which occurs the sharp peak versus the field intensity is displayed in figure 4.11. Our

results for x = 0 are in agreement with the published work in single crystals of Er2Ti2O7

[31, 91, 92]. For x = 0.5, the same delineated tendency is maintained but shifted to low

temperature. The H−T diagram displays two clear trends marked by the dashed arrows:

for samples with x = 0, 0.5, and 1.0 the maximum of the specific–heat peak moves to lower

temperatures as the field increases, and for x = 1.5, 1.7, 1.8, and 2.0 the specific–heat peak

does the opposite behaviour. These different trends can be associated to the two different

magnetic phases developed.
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Figure 4.11: The phase diagram of the Er2Ti2−xSnxO7 series (x = 0 − 2) derived from

specific–heat measurements in different magnetic fields. The open symbols show exper-

imental data from Dalmas de Réotier et al. [31]. The lines connecting the symbols are

guides to the eye.

Upon increasing the field the single sharp peak of the specific heat for each composition

is progressively suppressed and the Schottky anomaly moves to higher temperatures.

These features are indications of a excitation gap increasing monotonically with external

field. In order to measure this trend we compare the data to the behaviour expected

for a system with an excited level at energy ∆ε above the ground state using equation

2.17. This equation was fitted to the in–field measured data in the temperature range

up to the broad peak maximum and avoiding the transition–peak part where magnetic

contributions are seen. Before fitting the data, the lattice contribution Cp was subtracted

from the total specific heat C.

Figure 4.12 shows the temperature dependence of the specific heat divided by tem-

perature, C/T , for x = 0, 0.5, 1, 1.5, 1.7 and 1.8 and their respective fits to equation 2.17.

For fields smaller than 1.5 T, we observe that the C data can be described by equation

2.17 in the temperature region above 2 K. Around 10 K, the solid line of the fits do not

reproduce well the data since in small fields the Schottky anomaly is not entirely visible.

For x = 0.5 we have measured the C curves in fields higher than 2 T, and here the fit

encompasses the values of the entire Schottky maximum showing that the excitations can

be in fact modelled as two–level systems with a field–dependent gap ∆ε.
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Figure 4.12: Temperature dependence of C/T of Er2Ti2−xSnxO7 (x = 0, 0.5, 1, 1.5, 1.7 and

1.8) measured in different applied magnetic fields. Red solid lines show fits of C to the

equation 2.17.

57



CHAPTER 4. Er2Ti2−xSnxO7

Figure 4.13 shows the temperature dependence of the C/T data for small–field and

high–field values of Er2Sn2O7 (x = 2). For fields smaller than 1.5 T, we observe that C

can be described by equation 2.17 in the temperature region between 1 and 5 K, as shown

in figure 4.13(a). In fields higher than 2 T, the Schottky maximum of the C curves can

be described again as two–level systems with the presence of a gap energy.

Figure 4.13: Temperature dependence of C/T of Er2Sn2O7 (x = 2) in different applied

magnetic fields.

The field dependence of the gap values ∆ε is presented in figure 4.14. The ∆ε values

for x = 0 are consistent with the ones obtained from Schottky fits to in–field specific heat

studies of Er2Ti2O7 [91]. Our measurements for x = 0.5 and 2 in the field region above 2

T show the same linear field–dependence and values of the gap ∆ε as observed for x = 0.

This could suggest the same linear behaviour across the series. For fields smaller than the

critical point of 1.5 T, the values of ∆ε across the series present a slow but monotonically

increase in applied field. In this field interval, ∆ε takes values between 3 and 5 K.
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Figure 4.14: Gap values ∆ε determined from fitting the in–field data to equation 2.17.

The open symbols show experimental data from Sosin et al. [91].

4.3 Discussion

Results from the fitting of the low temperature specific heat to the sum proposed CN +Ce;

for Er2Ti2−xSnxO7, confirm that the XY ground state is present for x = 0, as reported

in the literature [20], but also for small contents of x. This result indicates robustness

of the ground state and it is similar to the behaviour observed in [32] for which the

ground state ψ2 is preserved at small levels of dilution (around 20 %). For samples with

composition x between 1.5 and 2, we observe that it starts to develop a component of the

magnetic moment µz, which remains almost constant (see figure 4.6(a)). The change in

the magnetic ground state is consistent with the Palmer–Chalker state in Er2Sn2O7, as

reported by neutron scattering in [13,14].

From the TN plot of figure 4.3, its linear behaviour followed by a small increase in TN

is similar to what occurs with the magnon velocity (see figure 4.7), meaning a decrease

in the antiferromagnetic exchange constant trough the Er2Ti2−xSnxO7 series.

The electronic specific heat of the Er2Ti2−xSnxO7 samples for fields above 1.5 T, show

no peak observed analogue to Er2Ti2O7 [31]. The phase diagram of figure 4.11 resuming

these results suggest that there is a possible quantum critical point driven by field. From

the two dashed arrows shown in figure 4.11, it seems that small levels of dilution from

the first and final members of the series maintain the magnetic phases induced by field.

However, for the x = 1.5 and 1.7 compositions, we found that the peak vanishes even at

a lower magnetic field than 1 T.
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In this chapter we cover results concerning our study of the dysprosium zirconate Dy2Zr2O7

trough low–temperature thermodynamic experiments and neutron diffraction, and discuss

its magnetic and structural properties. The trivalent magnetic Dy ion together with the Zr

ion in the R2M2O7 compounds is known to favour a disordered defect–fluorite structure,

unlike the pyrochlore spin ice Dy2Ti2O7. We compare the two dysprosium compounds,

and discuss the similarities present in their thermodynamics. However, the spin–ice be-

haviour is absent in Dy2Zr2O7 and we instead find spin–liquid features with very dynamic

and short–range antiferromagnetic correlations below 10 K.

5.1 Structural analysis

We present the x–ray powder diffraction (XPD) and neutron powder diffraction (NPD)

data collected at room temperature for Dy2Zr2O7 and 162Dy2Zr2O7, respectively. All the

peaks of both patterns could be indexed according to the calculated profile for the defect–

fluorite structure with Fm3m space group, with no additional phases detected, as seen

in figures 5.1(a) and 5.1(b). Summary of the employed model and refined parameters for

the Dy2Zr2O7 and 162Dy2Zr2O7 samples are presented in table 5.1. The calculated profile

returned a lattice parameter a0 = 5.238(2) Å consistent with previous results [93–95],

and the overall quality of the fit to the XPD data; as shown by the weighted Rwp–factor

and χ2, is excellent. For the NPD data, the Rwp and χ2 values are larger than expected

but this is due to the poor statistics and sample size of 162Dy2Zr2O7. The refinement

reveals that the total occupancy of the 4a site of Dy/Zr is close to one (100%) as well
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for the occupancy of the 8c oxygen, excluding possibility of vacancies on both sites. In

the defect–fluorite lattice 7 oxygen atoms surround locally to the rare–earth cations,

distinct from the pyrochlore lattice in which the environment of the rare–earth is formed

by 8 oxygen anions lying on two different crystallographically sites. The local rare earth

environment in the defect–fluorites suggests a different scenario on the CEF levels from

their pyrochlore–related ones.

Figure 5.1: XPD pattern for Dy2Zr2O7 (a), NPD pattern for 162Dy2Zr2O7 (b), and their

respective calculated profiles. Peak positions of the fluorite structure are marked with

small vertical lines. The solid blue lines show the difference between the data and the

refinement model.
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Dy2Zr2O7
162Dy2Zr2O7

Space group Fm3m Fm3m

Lattice parameter (Å) 5.238(2) 5.223(2)

Occ. Dy3+: 4a 0.50 0.49

Occ. Zr4+: 4a 0.50 0.50

Occ. O2−: 8c 1 0.96

Rwp (%) 14.9 33.2

χ2 1.46 4.26

Table 5.1: Refined structural parameters for Dy2Zr2O7 and 162Dy2Zr2O7.

5.2 DC magnetization

We performed measurements of the temperature dependence of magnetization, M , in

a static magnetic field µ0H = 0.01 T for Dy2Zr2O7 using a Quantum Design SQUID

magnetometer. In figure 5.2(a) we display the inverse of the dc susceptibility (1/χ =

µ0H/M) versus temperature and its fit to the Curie–Weiss law. The values of 1/χ develop

linearly within a large temperature range down to 10 K. The fit in the regime between

10 and 100 K yields a negative Curie–Weiss temperature ΘCW = −3.2 K indicating

the dominance of antiferromagnetic interactions. The effective magnetic moment was

found to be µeff = 10.5µB/Dy ion in agreement to the expected 10.6µB/Dy ion for free

Dy3+. Using the mean–field approximation, the nearest–neighbour exchange interaction

is estimated from the Curie–Weiss temperature ΘCW by J = 3ΘCW/zJ(J + 1) = 0.03 K,

where z = 6 is the number of nearest neighbours. A ferromagnetic ΘCW = +0.5 K and

a effective coupling constant J = 1.1 K were reported for the spin ice Dy2Ti2O7 [8]. The

saturation magnetization as a function of magnetic field of Dy2Zr2O7 was also measured,

as shown in figure 5.2(b). For the free Dy3+ ion, the saturation moment is expected to be

10 µB/Dy ion. At 2 K, we found that the saturation moment at 7 T is close to 5 µB/Dy

ion similar to Dy2Ti2O7. Fukazawa et al. [96] stated that for Dy2Ti2O7 the crystal–

field–induced anisotropy reduces the saturation moment to be half the free–ion value.

These magnetization results indicate that Dy2Zr2O7 presents dominant antiferromagnetic

interactions and a possible easy–axis anisotropy.
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Figure 5.2: (a) Inverse susceptibility versus temperature and Curie–Weiss fit to the lowest

temperature. The inset shows the data measured in an extended temperature range. (b)

Saturation magnetization as a function of the applied field shows a saturation moment at

a value of approximately 5 µB/Dy (dashed line).

5.3 AC magnetic susceptibility

In order to examine the spin dynamics in Dy2Zr2O7, we study the real part of its ac

magnetic susceptibility (χ′ac). Down to 50 mK, experiments were carried out using an

adiabatic demagnetization refrigerator (ADR) inside a 4He cryostat. The temperature

dependence of χ′ac reveals a frequency–dependent maximum at T ′ ≈ 1 K, as shown in

figure 5.3. The shape and height of these maxima are similar to the ones reported in

the pyrochlore spin ice Dy2Ti2O7 [38, 39]. The drop in χ′ac below T ′ indicates that the

spins response is slowed that they cannot respond to the time–varying field. Contrary

to what is observed in Dy2Ti2O7, the values of χ′ac do not drop to zero even at 0.5 K.
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χ′ac measurements up to 50 K show that in Dy2Zr2O7 there is no maximum appearing at

temperature ≈ 19 K as reported for Dy2Ti2O7 in [38, 39].

Figure 5.3: Real part of the ac magnetic susceptibility χ′ac versus temperature for different

frequencies in zero magnetic field for Dy2Zr2O7 and Dy2Ti2O7.

As the frequency of the ac measurement increases, the maximum close to 1 K shifts

toward higher temperatures and becomes broader. We can characterize the dynamics of

Dy2Zr2O7 by fitting the frequency, f , versus the temperature, T ′, of the maximum in χ′ac

to an Arrehenius law f = f0 exp(−Eb/kBT ′), where Eb is the energy barrier. The f and

T ′ values are reported in table 5.2. We plotted them in figure 5.4 and observed that the

Arrhenius law gives a good description of the entire temperature and frequency range

data. We estimated a single characteristic relaxation time of τ0 = 1/2πf0 = 4.5× 10−5 s

and an energy barrier Eb = 8 K. Our obtained values are close to the parameters reported

in Dy2Ti2O7 below 1 K in the spin–ice phase, which are an energy barrier Eb ≈ 10 K

and a relaxation time on the order of 10−7 s [37–39]. The frequency shift of the χ′ac

maximum per decade frequency δT ′ = ∆T ′/(T ′∆logf) is a signature of a canonical spin

glass behaviour for δT ′ = 0.005 − 0.01 [55]. By using the values of table 5.2, we find an

average value δT ′ ≈ 0.21 indicating a slower dynamics than in typical spin glasses.
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Figure 5.4: Frequency of the measurement (f) versus the inverse of the temperature of

the maximum in χ′ac (1/T ′) with a fit to the Arrhenius law.

f (Hz) T ′ (K) δT ′

2a 1.00a 0.21†

10b 1.15b 0.15‡

155 1.23 –

173 1.39 –

193c 1.37c 0.28∗

1000d 1.64d –

2500 1.64 –

3500 1.70 –

6500 1.79 –

Table 5.2: Frequency f , the temperature T ′, and the δT ′ values for Dy2Zr2O7. † results

from the values marked with a and b, ‡ comes from the values labelled with b and c, and

∗ results from the values marked with c and d.

Before finishing this section, we note another similarity in the low–temperature regime

between this antiferromagnetic fluorite Dy2Zr2O7 and the ferromagnetic pyrochlore spin

ice Dy2Ti2O7 which is the characteristic spin–relaxation time τ . Figure 5.5 shows the

temperature dependence of τ , obtained from the ac susceptibility and taken as the inverse

of the measuring frequency at the maximum temperature. Below 2 K, we know that spin–
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spin correlations are present from our next neutron–diffraction results, and we observe

that the temperature dependence and values of the characteristic timescale match that

of Dy2Ti2O7 reported in [97]. The values of τ within Dy2Zr2O7 increase rapidly and

extend down to the spin–ice state of Dy2Ti2O7 where monopole excitations are created

and propagate through the lattice. Between 2 and 10 K, no plateau regime associated to

quantum tunnelling was observed in Dy2Zr2O7, as reported for Dy2Ti2O7 [98, 99].

Figure 5.5: Characteristic spin–relaxation time τ as a function of temperature in Dy2Zr2O7

and Dy2Ti2O7 (digitalized from Snyder et al. [97]).

5.4 Specific heat

Specific heat measurements down to 70 mK for Dy2Zr2O7 and Dy2Ti2O7 were obtained

using a Quantum Design PPMS calorimeter equipped with a 3He–4He dilution refrigerator.

Figure 5.6 shows the temperature dependence of the total specific heat (C) measured in

zero field. The C data of Dy2Zr2O7 display a broad peak at about 1.5 K, similar to our data

of the spin ice Dy2Ti2O7 and reminiscent of the results from Ramirez et al. [7], and could be

associated with short–range magnetic correlations. Above 10 K, the lattice contribution

is sizeable and was accounted for each compound as the measured specific heat of the

nonmagnetic fluorite Lu2Zr2O7 (Cp1) or of the pyrochlore Lu2Ti2O7 (Cp2). Below 0.2 K,

the nuclear contribution CN dominates and arises from the nonspinless isotopes present

in our compound, namely, 161Dy and 163Dy, with nuclear spin I = 5/2 and hyperfine

and quadrupole interactions. For Dy2Zr2O7 and Dy2Ti2O7, CN was calculated using a

set of interaction parameters reported for metallic Dy [100], as detailed in Appendix A.
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The C data of Dy2Ti2O7 appears to be smaller than CN below 0.2 K but this could be

due that there is a difference on the specific–heat values of Dy2Ti2O7 if measurements

are thermally equilibrated as reported by Pomaranski et al. [101]. We also collected

data for the isotopically enriched 162Dy2Zr2O7 which displays the same high temperature

behaviour above 10 K and a broad peak around 1 K as the former dysprosium samples.

We observe a total absence of the nuclear contribution below 0.5 K since the isotope 162Dy

is a spin I = 0.

Figure 5.6: Temperature dependence of the total specific heat for Dy2Zr2O7, Dy2Ti2O7,

and 162Dy2Zr2O7 at zero field. The lattice terms (Cp1 and Cp2) and the nuclear specific

heat (CN) are displayed.

After subtracting Cp and CN to the total specific heat C, we obtain the electronic

contribution Ce which is displayed in figure 5.7(a). The Ce curves show values close to

zero above and below temperatures of the peak, and then our subtraction approximation

is reliable. By fitting Ce to the two–level Schottky equation (2.17), we found excellent

descriptions of the data for all samples in the temperature interval of 0.5 to 12 K. The

energy gaps (∆ε) obtained from the fits are very close to each other with values of ∆ε ≈

3.3 K for our three dysprosium compounds. These results agree with the doublet ground

state reported for Dy2Ti2O7 in the literature [23, 102]. By integrating Ce(T )/T from the

minimum measured to the temperature T , we computed the recovered electronic entropy

∆Se. Figure 5.7(b) shows that the values of ∆Se are close to the expected R ln2 for a

system with only two discrete orientations, at approximately 8 K. This indicates that the

residual entropy left as T goes to zero is small, if not negligible, and considerable less
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than the Pauling entropy R [ln2− (1/2)ln3/2] found in spin ices (Dy2Ti2O7) and water

ice [103].

Figure 5.7: (a) Electronic specific heat Ce(T ) at zero field. Solid lines are the two–

level Schottky fits using equation (2.17). (b) Recovered electronic entropy ∆Se versus

temperature. The dashed lines denote the expected values of entropy for a two–level

system (R ln2) and spin ices.
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5.5 Neutron diffraction

Neutron powder–diffraction experiments were carried out on the WOMBAT instrument at

ANSTO for our well–characterized isotopically enriched 162Dy2Zr2O7. The experimental

details are outlined in Chapter 3. Figure 5.8(a) shows the magnetic diffraction pattern

obtained from the difference of the 40 mK dataset and the 10 K background. We observe

that there is no sharp diffraction features and consequently no long–range magnetic order

down to 40 mK. The data revealed instead a broad diffuse peak, liquidlike, at |Q| =

1.15(7) Å−1 associated with correlated spins. Figure 5.8(b) shows the data collected at 10

K which display sharp and resolution–limited Bragg peaks due to the crystalline structure.

The 10 K dataset was used as a background and subtracted from the lower–temperature

spectrum to remove structural contributions and enhance the magnetic data.

Figure 5.8: (a) Magnetic neutron diffraction for 162Dy2Zr2O7 measured at 40 mK. (b)

Neutron powder diffraction pattern at 10 K displays structural Bragg peaks.
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For clarity, a subset of the data is shown in figure 5.9. The broad distribution of diffuse

magnetic scattering centered at approximately 1.2 Å−1 is characteristic of antiferromag-

netically coupled Ising spins on the corner–sharing tetrahedral lattice [5,6,11,18,42,105].

The absence of scattering data near |Q| = 0 is associated to the absence of ferromagnetic

correlations and is in agreement with the negative Curie–Weiss temperature obtained from

dc magnetization. The data start to increase above 2 Å−1 and appear to reach a second

maximum. The net intensity of the data have been corrected for the |Q| dependence due

to the Dy3+ magnetic form factor in order to compare models of possible spin structures.

To understand the correlations in Dy2Zr2O7 further, the first choices are the models for

the diffuse scattering of the Dy spin ice and of the highly correlated Tb spin liquid [42].

These models for the analysis of the data were implemented by Jason Gardner coauthor

of our work [106]. We plot together the calculated powder–averaged dipolar spin–ice

model and that for the near–neighbour antiferromagnetic correlations on the pyrochlore

lattice [42]. The latter one so–called Gardner–Berlinsky model has been used to describe

the magnetic correlations in the disordered pyrochlore Tb2Hf2O7 [18] and first used to

model the spin liquid Tb2Ti2O7 [42]. Comparing the two models plotted, clearly spin–ice

correlations are not present in the Dy2Zr2O7 fluorite.

Figure 5.9: Magnetic neutron diffraction for 162Dy2Zr2O7 at 40 mK. The powder–averaged

dipolar spin–ice model and the Gardner–Berlinsky model are plotted.

Now we present the in–field neutron–diffraction dataset for 162Dy2Zr2O7 at 40 mK

which was also subtracted from the background data at 10 K. Figure 5.10(a) shows that

in the presence of magnetic field, the shape of the data visibly changed in two aspects.
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First, when the applied field is increased strong Bragg peaks are evident at ≈ 2.1 and 2.5

Å−1. Second, the low–angle broad scattering sharpens up, but remain centered at |Q| =

1.2 Å−1. The two in–field peaks can be indexed to (111) and (200) and associated to a

underlying magnetic structure. This development of long–range order occurs after 0.2 T

and our data shows that it extends to field values of 5 T. The diffraction data remains

the same for fields higher than 3 T with an increasing intensity of the (111) and (200)

peaks. Figure 5.10(b) shows in detail the evolution of the low–angle broad peak between

0 and 1.2 T.

Figure 5.10: (a) Magnetic neutron diffraction for 162Dy2Zr2O7 at 40 mK in different

applied fields. (b) The broad diffraction peak at 1.15 Å−1 for field values up to 1.2 T.

The dataset in both panels are offset for clarity.

In order to calculate the mean magnetic correlation length, the peak of antiferromag-

netic correlations of wave vector 1.2 Å−1 is fitted to a Gaussian function. The correlation
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length is calculated from the full width at half maximum of the broad diffuse scattering,

and it is basically the inverse of the peak width 2π/|Q|. Figure 5.11(a) shows the data

and the fits for 0 and 1 T as examples. We plot the correlation length as a function of the

applied field figure 5.11(b). The observed short–range spin–spin correlations lengthen in

a field, but appear to saturate above 1.5 T. This indicates the existence of a plateau that

extends to 5 T but more studies at higher fields are required. Within this field region the

correlations extend to 23.6(8) Å, the length of approximately six nearest neighbours or

five unit cells (a0 = 5.24 Å).

Figure 5.11: (a) Magnetic diffraction at 0 and 1 T plotted with their respective Gaussian

fits. (b) Field dependence of the correlation length determined from the Gaussian width

of the broad maxima see around 1.2 Å−1.
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5.6 Discussion

The results of the refinement model for the x–ray and neutron diffraction data presented

in figure 5.1 show that Dy2Zr2O7 and 162Dy2Zr2O7 posses a disordered fluorite structure.

Here, the mixing of the Dy and Zr prevents of having the ion Dy3+ in all the vertices of

a tetrahedron but they are equally distributed.

From our ac magnetic susceptibility measurements, we found that the maxima close to

1.5 K on Dy2Zr2O7 is similar in height and shape with the maxima found in Dy2Ti2O7 at

2 K. The similarity between Dy2Zr2O7 and Dy2Ti2O7 in the values of the spin–relaxation

time τ extends deep into the spin–ice regime. This behaviour of the time evolution and

dynamics found in Dy2Zr2O7 is also analogous to that exhibited in the antiferromagnetic

Er3+–based spinels, CdEr2X4 (X = Se, S), which has been interpreted as the existence of

monopole dynamics [107,108].

Specific heat measurements show maxima around 1 K for Dy2Zr2O7 and 162Dy2Zr2O7

in agreement with Dy2Ti2O7. However, the computed electronic entropy evidences that

the fluorites are consistent with a doublet ground state (R ln2), and they do not present

residual entropy at all. This result says that there is no spin ice correlations in the fluorites.

The maxima to the electronic specific heat is well described by a doublet ground state

as shown in figure 5.7(a). It suggests that the ground state keeps robust even of the

disordered in the lattice, this doublet is similar to the ground energy levels found in

spin–ice Dy2Ti2O7 which are smaller in 300 K from the first excited levels.

The observations described for the neutron data including the broad distribution of

the magnetic scattering and the absence of ferromagnetic correlations are reminiscent of

those from the pyrochlore Tb2Mo2O7 [105] in which an antiparallel alignment of adjacent

spins is observed on both the R and the M sublattice and the disordered pyrochlore

CsNiCrF6. At first glance, the data are described well by the GB model; however, the

poor statistics makes it difficult to precisely model the high–|Q| data where the model

predicts a second peak closer to 3 Å−1. More experiments are required to analyse better

the diffuse neutron scattering.
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The following chapter continues our study of the total substitution of Ti by Zr in the

pyrochlore spin ices. This significant amount of disorder favours the fluorite structure

which with its intrinsic disorder lattice and same R2M2O7 composition are modelled to be

excellent probes of dynamics in pyrochlores. We perform thermodynamic measurements

of the holmium zirconate, Ho2Zr2O7, and discuss its low temperature magnetism. Our

results evidence a significant spin dynamics in the order of mK temperatures and an

absence of residual entropy; contrary to what it is observed in spin ice Ho2Ti2O7. This

behaviour resemblances to that exhibited one in Dy2Zr2O7, which we reported as having

no long–ranged order and developing very short antiferromagnetic spin correlations.

6.1 Structural analysis

Literature on the synthesis of rare–earth zirconates, R2Zr2O7, has reported that these

materials undergo a transition from the disordered fluorite to the pyrochlore structure at

temperatures higher than 1400 ◦C [93, 109]. To avoid introducing additional phases, the

polycrystalline powder of Ho2Zr2O7 was prepared by using the sol–gel method at different

calcination temperatures from 600 to 950◦C. Figure 6.1 shows the x–ray powder diffraction

patterns at 800, 875, and 950◦C as examples. The increasing of the temperature in the

synthesis improves vastly the sharp of the Bragg peaks associated to crystallinity of the

samples, and also their 2θ positions are similar to ones found in Dy2Zr2O7. By using

the Scherrer equation (3.14), we found an increasing in the crystal sizes from 5 to 30 nm

for ascendant temperatures of the synthesis. The structural analysis and thermodynamic
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experiments above were performed on the Ho2Zr2O7 sample synthesized at 900◦C which

possesses the best sharp peaks on its XPD pattern and higher crystallite size.

Figure 6.1: X–ray powder diffraction patterns of Ho2Zr2O7 synthesized at different tem-

peratures. Vertical lines denote the peaks of the fluorite structure.

By using the Rietveld refinement, an excellent fit was obtained by modelling the data

with the fluorite structure and space group, Fm3m, as shown in figure 6.2. We obtained

a goodness–of–fit χ2 = 7.2 and a weighted Rwp–factor = 10. The value of the lattice

constant a0 = 5.216(2) Å is consistent with the reported ones for disordered fluorites

[93–95, 106]. We refined the occupations of the ions on the 4a and 8c Wyckoff positions.

The values of the occupations of the Ho and Zr cations are in excellent agreement with

half occupancy of the 4a site each, excluding the possibility of vacancies on these sites.

For the 8c site of the O ion, the obtained occupation agrees with the expected value. The

Ho2Zr2O7 sample is stoichiometric with an experimental error of the occupations smaller

than 1%.
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Figure 6.2: X–ray diffraction pattern and calculated profile data for Ho2Zr2O7. The

difference between the experimental and calculated data is showed in blue. Peak positions

of the fluorite structure are marked with small vertical lines.

6.2 DC magnetization

In order to compare the magnetic behaviour of the fluorite Ho2Zr2O7 to the spin–ice py-

rochlore Ho2Ti2O7 followed experiments using a Quantum Design SQUID magnetometer.

Results for the inverse of the magnetic susceptibility versus temperature, and the Curie-

Weiss fits are shown in figure 6.3(a). Fitting in the linear regime between 10 and 100 K

yields an antiferromagnetic Curie–Weiss temperature ΘCW = -2.4 K for Ho2Zr2O7, and a

ferromagnetic ΘCW = +0.3 K for Ho2Ti2O7. The effective moments µeff = 9.2 and 10.2

µB for Ho2Zr2O7 and Ho2Ti2O7; respectively, compare well to the accepted 10.6 µB for

free Ho3+ ion. For Ho2Zr2O7, in the mean–field approximation, the nearest–neighbour

exchange interaction is estimated by using J = 3ΘCW/zJ(J + 1) = 0.02 K, where z = 6

is the number of nearest spin neighbours. For the spin ice Ho2Ti2O7, Bramwell et al. [45]

reported a ferromagnetic ΘCW = +1.9 K and a effective coupling constant J = 1.8 K.

Figure 6.3(b) shows the saturation magnetization as a function of the applied field. The

saturation moments for both holmium compounds remain closer to 5 µB/Ho ion. As re-

ported in [96,110], for the pyrochlores Ho2Ti2O7 and Dy2Ti2O7 their crystal–field–induced

anisotropy reduces the saturation moment to be half the free ion value of 10 µB/Ho ion.

This same anisotropy could be the case for Ho2Zr2O7; however, the moment start to in-

crease for fields higher than 4 T and possibly reaching a different saturation than 5 µB/Ho
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ion.

Figure 6.3: (a) Temperature dependence of the inverse susceptibility and Curie–Weiss fits

for Ho2Zr2O7 and Ho2Ti2O7. (b) Saturation magnetization versus the applied magnetic

field shows a saturation moment close to 5 µB/Ho ion (dashed line).

6.3 AC magnetic susceptibility

To investigate the dynamic response of Ho2Zr2O7, ac susceptibility measurements were

performed on an adiabatic demagnetization refrigerator inside a 4He cryostat down to 50

mK. Figure 6.4 shows the real part of the ac susceptibility, χ′ac, mesured at several frequen-

cies and at zero field. The χ′ac values follows a monotonically rising as the temperature is

decreased down to T ′ ≈ 1 K, where occurs a maximum dependent of the frequency of the

measurement. It shares some resemblance in its broad and height features to the max-

ima of the ac susceptibility curves of Ho2Ti2O7, Dy2Zr2O7, and Dy2Ti2O7 [106,111,112].

Similar to what is observed in Dy2Zr2O7, the susceptibility of Ho2Zr2O7 do not vanish
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below 0.5 K revealing an incomplete spin freezing and high spin dynamics again in the

disordered fluorites.

Figure 6.4: Temperature dependence of the real part of the ac susceptibility χ′ac for

different frequencies in zero applied field for Ho2Zr2O7 and Ho2Ti2O7.

Increasing values of the frequency up to 5 kHz causes the maximum close to 1 K shifts

toward higher temperatures and becomes broader. The dynamics of Ho2Zr2O7 is char-

acterized by fitting the frequency, f(1/T ′) to an Arrehenius law f = f0 exp(−Eb/kBT ′),

where Eb is the energy barrier. The f and T ′ data are reported in table 6.1 and we

plotted them in figure 6.5. We observed that the Arrhenius law reproduces well the

1/T ′ dependence of the frequency f , and we estimated an energy barrier Eb = 26 K, a

characteristic frequency f0 = 2 × 1011 Hz, and a single characteristic relaxation time of

τ0 = 1/2πf0 = 8× 10−13 s. Our values are close to the parameters reported in Ho2Ti2O7

below 1 K in the spin–ice phase, which are an energy barrier Eb ≈ 28 K and a relaxation

time τ0 on the order of 2× 10−14 s [111, 112]. We estimate the frequency shift of the χ′ac

maximum per decade frequency δT ′ = ∆T ′/(T ′∆logf) which is δT ′ ≈ 0.11. This param-

eter is one order of magnitude higher that the reported ones for canonical spin glasses

(0.005− 0.01) [55] indicating a sluggish glass dynamics in Ho2Zr2O7.
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Figure 6.5: Frequency of the measurement (f) versus the inverse of the temperature of

the maximum in χ′ac (1/T ′) with a fit to the Arrhenius law for Ho2Zr2O7. Digitalized data

of Matsuhira et al. [111] and Quilliam et al. [112] for Ho2Ti2O7 are also displayed.

f (Hz) T ′ (K) δT ′

2a 0.99a 0.05†

10b 1.028b 0.11‡

155c 1.16c 0.16∗

500 1.22 –

1000d 1.19d –

5000 1.35 –

6500 1.47 –

Table 6.1: Frequency f , the temperature T ′, and the δT ′ values for Ho2Zr2O7. † results

from the values marked with a and b, ‡ comes from the values labelled with b and c, and

∗ results from the values marked with c and d.
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6.4 Specific heat

The specific–heat data for Ho2Zr2O7 was collected using a Quantum Design PPMS calorime-

ter, operating with a 3He–4He dilution refrigerator insert for the lowest temperatures. Fig-

ure 6.6 shows the temperature dependence of the total specific heat, C, down to 150 mK

measured at zero field. Experimental data of Ho2Ti2O7 taken from Lau et al. [30] are also

plotted for comparison. The lattice Cp and nuclear CN contributions are considerable only

above 5 K and below approximately 0.5 K, respectively. For Ho2Zr2O7, its lattice term Cp1

was accounted from the measured values of the nonmagnetic Lu2Zr2O7, which crystallizes

in the fluorite structure. For Ho2Ti2O7, its term Cp2 was obtained from measurements on

the pyrochlore Lu2Ti2O7. For the two holmium compounds, CN was estimated as the cal-

culated nuclear specific heat of holmium metal arising from the hyperfine and quadrupolar

Hamiltonians of the single isotope of holmium 165Ho (I = 7/2) [113, 114], as detailed in

appendix A. At high and low temperatures, the thermal data of both holmium samples

converge to the same temperature dependence. However, between 1 and 10 K there is a

noticeable change. The C values of Ho2Zr2O7 show no sharp or broad features differing

from the shoulder found at about 2 K in the spin ice Ho2Ti2O7 [30, 45].

Figure 6.6: Temperature dependence of the total specific heat C of Ho2Zr2O7 at zero

field. The C data of Lau et al. [30] for Ho2Ti2O7 are displayed. The specific heat of the

isostructural nonmagnetics Lu2Zr2O7 (Cp1) and Lu2Ti2O7 (Cp2), and the nuclear specific

heat computed as explained in the text are shown.

The electronic magnetic specific heat Ce can be extracted by subtracting the lattice

and nuclear contributions to the total specific heat. Figure 6.7(a) shows the Ce values
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for both holmium compounds. For Ho2Zr2O7, we observed a broad peak at around 3

K. The position, the shape and the width of the this peak differs from the typical spin

ice shape found in pyrochlores Ho2Ti2O7 and Dy2Ti2O7, and also is distant from the

peak found in our fluorite Dy2Zr2O7 (see figure 5.7(a)). We fit the datasets to the two–

level Schottky equation (2.17). We found that for Ho2Zr2O7 the fit does not reproduced

well the data, different from the excellent result obtained on Ho2Ti2O7. However, the

deduced energy gap values (∆ε) from the fit are very close to each other with ∆ε = 6

and 5 K for Ho2Zr2O7 and Ho2Ti2O7, respectively. The recovered electronic magnetic

entropy ∆Se(T ) was determined by integrating Ce(T )/T from the lowest measured to

the temperature T . Figure 6.7(b) shows the ∆Se(T ) for Ho2Zr2O7 which reach a value

of R ln2 at approximately 15 K as expected for doublet ground states. The ∆Se values

increase rapidly at a high rate above 6 K but this is mainly due to errors introduced by the

approximation of the lattice subtraction. In addition, ∆Se seems not to be fully saturated

at 15 K and this suggests the idea of more excited levels in play at this temperature regime.

For Ho2Zr2O7, our data show once again that there is no residual entropy left as T goes

to zero as we reported first for Dy2Zr2O7. This result differs totally from the Pauling

entropy found in pyrochlore spin ices Ho2Ti2O7 and Dy2Ti2O7.
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Figure 6.7: (a) The electronic specific heat Ce versus temperature of Ho2Zr2O7 at zero

field. The Ce values of Ho2Ti2O7 were obtained by subtracting Cp2 and CN to the dataset

of Lau et al. [30]. The two–level Schottky fits using equation (2.17) are shown as solid

lines. (b) The electronic magnetic entropy ∆Se versus temperature. The dashed lines

denote R ln2 for a two–level spin system and the presence of residual entropy for spin

ices.

In–field specific–heat experiments were performed for Ho2Zr2O7, and results are shown

in figure 6.8(a). We observe that the application of a magnetic field causes the merging of

a peak at about 2.5 K which is absent in zero field. As the intensity of the field is increased

further, this single peak shifts to higher temperature and around 1 T the peak becomes

visible and much broader in temperature. By using the two–level Schottky equation to

fit the in–field Ce, we found a description that lacks of reproducing the broad feature of

the peaks, as shown in figure 6.8(b). The obtained gaps ∆ε show a linear dependence

with the applied field H which follows the Zeeman separation ∆ε = (gµB/kB)H for spin
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S = 1/2, as seen in 6.8(c). We found a value for the g–factor of 6.8(1) smaller than the

factor along the local 〈111〉 axis g‖ = 19.6 reported for Ho2Ti2O7 by Bertin et al. [23].

Figure 6.8: (a) The temperature dependence of C for Ho2Zr2O7 in different applied mag-

netic fields. Gray solid lines are guides to the eyes. (b) The Ce curves versus temperature

and their respective two–level Schottky fits using equation (2.17), shown as solid lines.

(c) The linear dependence of the energy gaps ∆ε as a function of the applied field H.
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6.5 Discussion

Our results show that the recovered entropy in the disordered fluorite Ho2Zr2O7 reach a

value of R ln2 corresponding to ground–state doublet. The application of a field open this

doublet with a factor g = 6.8 which is much smaller than the g‖ = 19.6 along the Ising

axis in Ho2Ti2O7 [23]. This allows us to recognize a type of anisotropy in Ho2Zr2O7 that

diverge from the pure Ising of spin ices. Surprisingly, the g–factor is close to the planar

g⊥–factor of Er2Ti2O7 (7.7) which present a strong XY anisotropy. These considerations

suggest in Ho2Zr2O7 a low–temperature ground–state doublet with non Ising anisotropy.

A rough schema of the CEF in Ho2Zr2O7 can be thought if we compare it to the one of

Er2Ti2O7. By looking at the recovered entropy above 15 K, we found values that continue

increasing above R ln2 just as reported in Er2Ti2O7 [31] which also possesses a doublet

state. The values higher than R ln2 can be associated to excited CEF levels as reported

similarly to Er2Ti2O7 with excited levels around 80 K by Dalmas et al. [31]. Also, the

CEF energy schema of Er2Ti2O7 presents energy levels less spaced and of an order of

magnitude lower than the 300 K of spin ices Ho2Ti2O7 and Dy2Ti2O7 [23, 115]. Due to

the possible XY anisotropy in Ho2Zr2O7, we could suggest a picture of its first excited

CEF levels as closer ones to each other and with energy scales lower than spin ices.
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In this chapter we discuss the structural and thermomagnetic measurements of the ter-

bium zirconate Tb2Zr2O7. Even though there is an extensive disorder on the lattice of

Tb2Zr2O7, it still provides valuable insights when compared with the classical spin liquid

Tb2Ti2O7. We observe thermodynamic similarities as the dominant antiferromagnetic

interactions, the glassy character of its spin dynamics, the presence of fluctuations on the

electronic magnetic moment of Tb, and the convergence of the recovered entropy to R ln4.

Our results suggest a form of collective spin–glass–type behaviour in which it is induced

a slow spin relaxation.

7.1 Structural analysis

Polycrystaline powder samples of Tb2Zr2O7 were prepared at different temperatures from

600 to 950◦C by using the sol–gel method. Figure 7.1 shows the x–ray powder diffraction

spectra for the Tb2Zr2O7 samples synthesized at 800◦C, 875◦C, and 950◦C as examples.

The increasing of the temperature in the synthesis improves the crystallinity of the samples

and their crystal size from 6 to 21 nm, as estimated from the Scherrer equation (3.14). Our

experimental study and results above were carried on the Tb2Zr2O7 sample synthesized

at 950◦C which possesses the sharpest Bragg peaks and larger crystal size.
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Figure 7.1: X–ray powder diffraction for heat-treated samples of Tb2Zr2O7 at different

temperatures.

The Rietveld refinement of the x–ray data with the fluorite structure and space group,

Fm3m, resulted in an excellent fit as shown in figure 7.2. The lattice constant a0 =

5.232(2) Å is consistent with the values of Ho2Zr2O7 and Dy2Zr2O7 [106]. The defect–

fluorite structure has one cation site (4a) and one oxygen site (8c) that is 7/8 occupied.

The attempt to refine the degree of Tb/Zr occupancies of the 4a site results in values

of 50% of occupancy for each cation. The oxygen content found excludes the possibility

of vacancies on the 8c site. From the refinement, our Tb2Zr2O7 sample is stoichiometric

to within the experimental error of 1%. The different environment surrounding Tb in

fluorites causes; specially at low temperatures, that its single-ion magnetic properties are

expected to change in Tb2Zr2O7 when compared to Tb in Tb2Ti2O7, in which the CEF

levels are ruled by two non-Kramers doublets [23,116].
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Figure 7.2: X–ray diffraction pattern and calculated profile data for Tb2Zr2O7. The

difference between the experimental and calculated data is showed in blue. Peak positions

of the fluorite structure are marked with small vertical lines.

7.2 DC magnetization

The inverse of the measured magnetic susceptibility versus temperature, and the Curie-

Weiss fit of the data for Tb2Zr2O7 are shown in figure 7.3(a). The linear fit above 10 K

yields negative Curie–Weiss temperatures, ΘCW = -15 K, close to the reported value of

-19 K for Tb2Ti2O7 [21], indicating the dominance of antiferromagnetic interactions. The

effective magnetic moment µeff = 9 µB is also in agreement to the expected 9.6 µB for

free Tb3+ ion. We observe a slight deviation from the Curie–Weiss law close to 50 K which

could be associated to short–range magnetic correlations similar to the ones present up

to this temperature in Tb2Ti2O7 [5]. Figure 7.3(b) shows the saturation magnetization

as a function of the applied field at the temperature T = 2 K. The saturation moment for

Tb2Zr2O7 reaches 5 µB/Tb ion at 7 T, consistent with measurements in Tb2Ti2O7 [117],

and correspond to the predicted ground state moment for the Tb3+ ion [21].
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Figure 7.3: (a) Temperature dependence of the inverse susceptibility and Curie–Weiss

fit for Tb2Zr2O7. (b) Saturation magnetization versus the applied magnetic field for

Tb2Zr2O7 shows a saturation moment close to 5 µB/Tb ion.

7.3 AC magnetic susceptibility

AC susceptibility experiments were carried out for Tb2Zr2O7 on an Physical Property

Measurement System of the Quantum Design using its ac susceptometer option down to

2 K. Below 2 K, the ac magnetic susceptibility χac was measured on a home–made ac

susceptometer using a mutual inductance bridge at the single frequency of 155 Hz and

modulation field of 0.5 Oe. Figure 7.4 shows both real χ′ac and imaginary χ′′ac parts of

the susceptibility versus temperature in zero magnetic field. At 155 Hz, our data reveal a

broad maximum at T ′ ≈ 2.5 K, with values of χ′ac that decrease monotonically but do not

zero below 0.7 K suggesting a slowing down of spin dynamics. The maximum occurs at a

temperature of one order of magnitude higher than the glassy–like transition at about 0.25
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K reported for the pyrochlore Tb2Ti2O7 [6, 54]. The maxima in χ′ac and χ′′ac coincide on

their temperature positions. Both present a non–negligible shift to higher temperatures

with increasing frequency which is a recognizable feature of a spin–glass transition [55].

The χ′′ac curves display two different regime below and above 2 kHz (curved dashed arrow),

and they also present long tails going to zero values of susceptibility at temperatures above

3 K different from the real part of the χac curves.

Figure 7.4: (a) Real Part of the ac susceptibility χ′ac as a function of the temperature in

zero magnetic field for Tb2Zr2O7. (b) Imaginary Part of the ac susceptibility χ′′ac as a

function of the temperature in zero magnetic field for Tb2Zr2O7.

The analysis of the frequency–dependent shift of the χ′ac maximum was attempted as

estimated for canonical spin glasses. By using the values of table 7.1, the maximum shift

per decade of frequency δT ′ = ∆T ′/(T ′∆logf) = 0.064 for our fluorite Tb2Zr2O7. This

value is similar to the δT ′ found in terbium pyrochlores such as Tb2Ti2O7 and Tb2Hf2O7,

with both values around 0.06 [117, 118], and to the ones reported for typical spin glasses
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(δT ′ = 0.005− 0.01) [55].

f (Hz) T ′ (K) δT ′

15a 2.4a 0.062†

75 2.51 –

155b 2.55b 0.063‡

500 2.63 –

1000c 2.68c 0.067∗

2000 2.73 –

4000 2.78 –

6000 2.82 –

10000d 2.86d –

Table 7.1: Frequency f , the temperature T ′, and the δT ′ values for Tb2Zr2O7. † results

from the values marked with a and b, ‡ comes from the values labelled with b and c, ∗

results from the values marked with c and d.

Figure 7.5(a) shows the Arrhenius law f = f0 exp(−Eb/T ′) used to describe a ther-

mally activated process with a single energy barrier Eb. According to Mydosh [55], this

frequency dependence of the χ′ac maximum is not followed by canonical spin glasses and

fits to the data return unphysical values. We obtained an energy barrier Eb = 98 K,

a characteristic frequency f0 = 1019 Hz, and a single characteristic relaxation time of

τ0 = 1/2πf0 = 2 × 10−20 s. Even though the fit reproduces well the data, the obtained

frequency value is unphysical favouring the spin–glass behaviour in Tb2Zr2O7.

In spin glasses, a first model used to describe the f dependence of the χ′ac cusp

is the dynamic scaling law or power–law divergence of the critical slowing down τ =

τ0 ((T ′ − Tc)/Tc)−zυ, where τ is the relaxation time and Tc is the peak position as f → 0

which was approximated as 2.2 K. By fitting the data of ln τ to this model, as seen in

figure 7.5(b). We determined the values of τ0 = 2× 10−8 s and zυ = 5.8, with the latter

one in agreement with spin glasses (zυ = 4− 12) [55]. The second model employed is the

phenomenological Vogel–Fulcher law τ = τ0 exp [−E/(T ′ − T0)]. Results from the fit to

the data are shown in figure 7.5(c). We obtained the values τ0 = 1 × 10−10 s, E = 15.8

K and T0 = 1.6 K. This value of T0 is smaller than T ′ ≈ 2.5 K, different to the expected
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T0 ≈ T ′ for canonical spin glasses [55]. Both models result in excellent fits of the τ values

suggesting the presence of a spin–glass state.

Following the same study for the glassy behaviour reported in Tb2Ti2O7 [117], the f de-

pendence of T ′ was analysed by a power law of the Arrhenius relation τ = τ0 exp [(−E/T ′)σ].

The fit provides an excellent description of the data, as displayed in figure 7.5(d). The

fit results in values of τ0 = 1 × 10−10 E = 7.8 K and σ = 2.5. For Tb2Ti2O7, such law

yielded τ0 = 1.1× 10−9 s, E = 0.91 K and σ = 2.

Figure 7.5: (a) Frequency of the measurement (f) versus the inverse of the temperature of

the maximum in χ′ac (1/T ′) with a fit to the Arrhenius law. Logarithmic spin–relaxation

time (ln τ) fitted to the dynamic scaling law (b), to the Vogel–Fulcher law (c) and to the

equation τ = τ0 exp [(−E/T ′)σ] (d).
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In figure 7.6 we show the real part χ′ac of the ac susceptibility at 1 kHz and 10 kHz

frequencies in presence of different magnetic fields. We observe a peak at ≈ 25 K in χ′ac

for fields µ0H > 5 T, which shifts to higher temperatures with increasing field. This

in–field peak is due to the saturation of the magnetic moment of Tb3+ which causes

that the susceptibility associated with spin fluctuations must approach to zero at high

temperatures and as we reach 0 K in the presence of a strong enough field. The data

appears to exhibit a very slight frequency dependence at the 25 K peak suggesting a

unusual slow spin relaxation character similar to Tb2Ti2O7 [51]. The in–field data of the

imaginary part χ′′ac (not shown) is too noisy to be discussed.

Figure 7.6: The temperature dependence of χ′ac for Tb2Zr2O7 at different frequencies in

various applied fields.

7.4 Specific heat

Specific heat experiments were performed on the defect–fluorite Tb2Zr2O7 using a Quan-

tum Design PPMS calorimeter and its 3He–4He dilution–refrigerator option. Figure 7.7

shows the temperature dependence of the total specific heat, C, measured in zero mag-

netic field. The data does not display sharp features that would arise from a long–range

ordering but exhibit a broad peak centered at about 5 K similar to the one observed

in Tb2Ti2O7 [21, 54]. There are also two maxima at temperatures around 0.4 and 1 K

reported for the pyrochlore [21,54] that are absent for our fluorite. The upturn of C below

0.5 K is attributed to the nuclear specific heat CN . It was accounted for by calculating

the nuclear specific heat of terbium metal (CTbMet) with its nuclear spin I = 3/2 of the
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isotope 159Tb, hyperfine constant a = 0.15 K and quadrupole coupling constant P = 0.021

K [119] (see Appendix A). For avoiding inconsistent results, we use the reduced nuclear

specific heat CN = f × CTbMet (f = 0.6), as we explained below in the text. The lattice

term Cp was approximated by measuring the specific heat of the nonmagnetic fluorite

Lu2Zr2O7.

Figure 7.7: Specific heat C as a function of temperature for Tb2Zr2O7 in zero field. The

specific heat of the isostructural nonmagnetic Lu2Zr2O7 (Cp) and the computed nuclear

specific heat (CN) are displayed.

Now we detail our considerations employed in the analysis of the low–temperature

region of the data. In figure 7.8 we plotted the computed values for the metallic Tb

(CTbMet) and two estimations for the nuclear specific heat (CN and CN1). Clearly, CTbMet

is not suitable for our approximation since it has higher values than our data below 0.5

K and a predicted height maximum of around 5 (J/(K mol Tb)). The nuclear specific

heat CN = f × CTbMet; where f is a reduction factor, overcome this inconsistence. The

value of f is less than one and represents the fraction of Tb spins with full magnetic

moment (µTb = 10 µB). This method has been sucessfully employed in thermal analyses

for praseodymium pyrochlores in the literature [16, 120]. The second estimation for the

nuclear term (CN1) was done for reduced magnetic moments of 0.55µTb (see Appendix A).

This reduction is due to electronic magnetic moments smaller than the saturated value are

acting on the nuclear moments reflecting spin fluctuations [121,122]. We choosed CN since

it converges exactly to the C values below 0.2 K and because its predicted peak appears

to be below the data. We also show the specific heat of the hydroxide Tb(OH)3 [123] for
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which its nuclear term becomes prevalent below 0.5 K as in our fluorite compound case.

However, we did not use it for being larger than the experimental points.

Figure 7.8: Specific heat C versus temperature for Tb2Zr2O7 in the low–temperature

regime. The estimations for the specific heat CTbMet and nuclear contributions CN and

CN1 are displayed. We show for comparison the nuclear term of the compound Tb(OH)3.

In figure 7.9(a) we plot the electronic specific heat Ce for Tb2Zr2O7 obtained from

subtracting the lattice and nuclear contributions to the total specific heat. We also dis-

play the Schottky fit for a two–level system which approximates reasonably the width and

the position of the peak. At zero field, the obtained energy gap ∆ε = 10.3 K is of the

same order of magnitude compared with the gap between the two non–Kramers doublets

separated 17 K in Tb2Ti2O7 [5,21,23]. The recovered electronic magnetic entropy ∆Se(T )

was determined by integrating Ce(T )/T from the minimum measured to the temperature

T . Figure 7.9(b) shows that the value of ∆Se(T ) at zero field is close to R ln4 at approx-

imately 18 K, as reported for Tb2Ti2O7 and associated to the doublets of the two lowest

energy levels [21, 54].
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Figure 7.9: (a) The electronic specific heat Ce(T ) of Tb2Zr2O7 at zero field and the two–

level Schottky fit using equation (2.17) (solid line). (b) The electronic magnetic entropy

∆Se(T ) for Tb2Zr2O7. The dashed lines denote the entropy for a two level system (R ln2)

and the entropy reported for Tb2Ti2O7 (R ln4) [21, 54].

In–field specific–heat experiments were performed for Tb2Zr2O7, and results are shown

in figure 7.10(a). The application of a magnetic field causes the single peak shifts to higher

temperatures, and around a 3.5 T field the peak becomes much broader in temperature.

Using the two–level Schottky equation to model the in–field Ce data reproduced fairly

datasets below and above the maxima, as shown in figure 7.10(b); however, the amplitude

of the maxima cannot be reached by this equation. Figure 7.10(c) shows the linear

dependence of the energy gap with the applied magnetic field (H). The data was fitted

using the expression for the Zeeman separation ∆ε = (gµB/kB)H for an effective spin

S = 1/2, where the g–factor is a fitting parameter. The obtained g = 2.3(1) is almost a

quarter of the factor parallel to the 〈111〉 direction g‖ = 9.6 found in Tb2Ti2O7 [23].
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Figure 7.10: (a) The total specific heat C(T ) for Tb2Zr2O7 in different applied magnetic

fields. Gray solid lines are guides to the eyes. (b) The electronic specific heat Ce(T ) in

fields up to 6 T. Solid lines are the two–level Schottky fits using equation 2.17. (c) Gap

values ∆ε determined from the Schottky fit as a function of the applied field H.
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7.5 Discussion

In the disordered fluorite Tb2Zr2O7, we found that the cations of Tb and Zr are well mixed

on the 4a site each one with a 50 % of occupancy. In this structure, the oxygen ions form

a perfect cube around the 4a site with an average local coordination of 7. If compared to

the pyrochlore Tb2Ti2O7, the change in the local environment of the Tb should result in

a strong modification to the CEF levels; affecting their local magnetism. Then, we could

gain some important insights about the CEF of Tb2Zr2O7 if we look at a compound with

similar neighbourhood around Tb. For example, for the non–Kramer Tb2Hf2O7 is found

a phase at the boundary of the pyrochlore/defect–fluorite structures [18, 118]. Its unit

cell has been reported as a perfect arrangement of the Tb cations in a pyrochlore lattice

together with a considerable number of oxygen Frenkel pair defects [18]. The local defects

are described by an empty site (48f) and an interstitial oxygen (8a). Due to the presence

of the Frenkel defect, the neighbour environment of Tb has an oxygen coordination of

seven [18]. This occurs for around 50 % of the Tb cations randomly in the lattice [18].

In the fluorite, the Tb/Zr tetrahedra still exist, even though disordered. The oxygen

coordination around Tb, the tetrahedral arrangement on the lattices and the disorder

for Tb2Zr2O7 and Tb2Hf2O7 provide a wealth of similarities on their low–temperature

properties as we confirm below.

The value of zυ lies between 4 and 12 supporting the spin–glass character of Tb2Zr2O7.

Our results also reveal evidence for a spin freezing below 2.5 K which is support by the

real χ′ac and the imaginary χ′′ac susceptibilities measured for frequencies between 15 Hz

and 10 kHz. The δT ′ ≈ 0.06 is typical to values of spin glasses. The large number of non–

magnetic defects or of disorder in the lattice leads to an spin glass at higher temperature

than Tb2Hf2O7. Without features of long–range magnetic order in the specific heat of

Tb2Zr2O7, it could be also a spin–liquid candidate. This an interesting result since the

presence of these glassy features together with the intrisic disorder of the lattice can host

localized fractional excitations [124].

By looking at the estimation for the nuclear component CN1 could have another in-

terpretation (dashed line of figure 7.8) in which it is modeled as considering a model

of reduced moments and associated to quantum spin fluctuations affecting the nuclear

spins [121,122]. This is also revealed by the large values of susceptibility χ′ac at the lowest

temperature measured. These previous results suggesting a frozen moment together with
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fluctuations characterized the theory proposed for topological spin glasses [124].

The two–level analysis of the maxima in electronic specific heat (figure 7.9(a)) reveals

that the first crystal electric field splitting of Tb2Zr2O7 is around ∆ε = 10 K very similar

to the energy scale of the broad maxima, and then its origin is the thermal population

of CEF levels. The obtained gap is close to the splitting of 17 K in Tb2Ti2O7 suggesting

similar energy distribution of levels. The broad anomaly around 5 K for Tb2Zr2O7 with

its reduce amplitude shares some resemblance to the Tb2Ti2O7 reported in [21] however

this broad feature is exhibited in lower temperatures around 2 K and another in high

temperature around 50 K for Tb2Hf2O7.

We found that the average factor g = 2.3 is close to the values of the g factors reported

for XY pyrochlores: Er2Ti2O7 (g‖ = 1.8) and Yb2Ti2O7 (g‖ = 2.04) [23] known for having

a strong planar CEF anisotropy. Our g result for Tb2Zr2O7 is much smaller if compared

to the factor along the trigonal Ising axis g‖ = 9.6 for Tb2Ti2O7. In addition, as reported

by Anand et al., fittings to the magnetic diffuse neutron scattering of Tb2Hf2O7 rule out

Tb3+ spins with Ising anisotropy but a quality fit was obtained by considering planar

anisotropy [118]. These observations indicate that a potential first model to fit diffuse

neutron scattering data in Tb2Zr2O7 could be spins with an easy–planar anisotropy with

antiferromagnetic correlations. If this correlations extend over many tetrahedra, we could

be possible entering to a spin configuration in which phase competitions are present as

observed in XY pyrochlores [29]. This picture of the ground state for Tb2Zr2O7 is support

by the presence of a broad specific heat anomaly together with no magnetic ordering in

lower temperatures as reported similarly for XY pyrochlores by Hallas et al. [29].
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The series of compounds of Er2Ti2−xSnxO7 for x = 0 − 2 were successfully synthesized

by using the solid–state reaction method. We have also used low–temperature annealing

to prepare disordered fluorites of Dy2Zr2O7, Ho2Zr2O7 and Tb2Zr2O7. The analysis of

the structure by x–ray and neutron powder diffraction revealed non–stoichiometries and

equal distribution of the rare–earth ions and of Zr on the two interpenetrating sublattices

of corner–sharing tetrahedra.

The Er2Ti2−xSnxO7 series present a change of the XY anisotropy of its magnetic

ground state, which starts to develop around the composition x = 1.5. For 1.5 < x < 2,

we found decreasing values of the magnetic moments in XY; µxy, while a increasing of the

moment perpendicular to this plane; µz consistent with the ground state in Er2Sn2O7.

In–field experiments show the ausence of long–range features around 1.5 T. This result

obtained from a specific heat analysis is in agreement with neutron experiment results

reported in the literature [13, 14].

In this work it is been shown that the fluorite compounds Dy2Zr2O7 and Ho2Zr2O7,

with its disordered lattice, but similar magnetic moment size, near–neighbour distance and

short–magnetic correlations do not develop the spin–ice state. Both are suspect to be spin–

liquid candidates in which the presence of a different glassy state is also possible. Different

from the classical spin ices, ac susceptibility and specific heat revealed a significant spin

dynamics and the absence of residual entropy. Neutron diffraction and specific heat in

Dy2Zr2O7 confirm the presence of short–range spin–spin correlations below 2 K, and no

long–range order down to 40 mK. The correlations found are antiferromagnetic and extend

over next–nearest neighbours only with a length around 6.6 Å.

99



CHAPTER 8. Conclusion

Terbium pyrochlore oxides Tb2Ti2O7 and Tb2Hf2O7 have both shown spin glass char-

acter and no long–range magnetic order down to 100 mK [118]. We have shown in

Tb2Zr2O7 from its time correlations and parameters obtained from spin–glass models to

ac susceptibility a glass transition around 2.5 K. Specific heat revealed no long–range order

and the presence of spin fluctuations in the mK scale. In–field specific heat in Ho2Zr2O7

and Tb2Zr2O7 suggest roughly a planar anisotropy of the magnetic ion different from the

strong Ising anisotropy found in Ho2Ti2O7 and Tb2Ti2O7.

8.1 Future work

Future work concerns to study CEF excitations and the environment of the rare earth in

the disordered fluorites by means of inelastic neutron scattering. Experimental studies

on the CEF levels of Ho2Zr2O7 were performed at ISIS Neutron & Muon Source facilities

(Rutherford Appleton Laboratory/Oxfordshire, U.K.) but the analysed data was not on

time for this manuscript. Also, to prepare crystal samples of the disordered fluorites

and to study them by using high energy x–ray experiments to improve our structural

analysis about the local surroundings of the rare–earth ions. To study the relaxation of

the magnetization and ac susceptibility observed in spin glasses for Tb2Zr2O7.
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Appendix A
Nuclear specific heat

The hyperfine Hamiltonian has two contributions arising from different interactions. The

first one is due to the coupling between nuclear magnetic moments and the effective

electronic magnetic field (Zeeman term). The second one results from the electric field

gradient ∇V (r) originated by the electrostatic potential V (r) at the nucleus that interact

with the quadrupole moment of the nucleus. The nuclear Hamiltonian is given by

H = −~γ I.B + P
[
I2
z − 1

3
I(I + 1)

]
, (A.1)

where ~ is the Planck constant, γ is the gyromagnetic ratio of the isotope of a rare–

earth R3+, I is the nuclear spin operator, B is the effective magnetic field due to the

R3+ magnetic moments, and P depends of the quadrupole moment Q of the rare–earth

element.

In Chapter 2 we use the Hamiltonian (A.1) for computing the nuclear energy levels

since the planar anisotropy nature of the Er3+. Follow the programs employed to fit the

low–temperature specific heat of the Er2Ti2−xSnxO7 series to the sum of the nuclear and

electronic contributions:

108



APPENDIX A. Nuclear specific heat

Figure A.1: Program implemented in Python for the account of the nuclear specific heat

of the Er2Ti2−xSnxO7 series.
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APPENDIX A. Nuclear specific heat

Figure A.2: Program implemented in Python for the account of the electronic specific

heat of the Er2Ti2−xSnxO7 series.

The Hamiltonian in case of axial symmetry as in the cases of metallic rare–earth

elements is

H = aIz + P

[
I2
z −

1

3
I(I + 1)

]
, (A.2)

where Iz = −I,−I + 1, ..., I − 1, I are the values of the projections of the nuclear

spin I, a is the magnetic hyperfine constant and P is the electric quadrupole coupling

constant. In Chapter 5 and 6, we use the Hamiltonian (A.2) since we approximate the

nuclear specific heat in Dy2Zr2O7 and Ho2Zr2O7 as the nuclear specific heat of metallic

Dy and Ho, respectively. In Chapter 7, we account spin electronic fluctuations in the

nuclear computed specific heat CN of Tb2Zr2O7 by multiplying by a factor f . This factor

is introduced in the Zeeman contribution as f × aIz. The program employed is detailed

in figure A.3.
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APPENDIX A. Nuclear specific heat

Figure A.3: Program implemented in Wolfram Mathematica 12.0 for the account of the

nuclear specific heat of the disordered fluorites. As an example is shown the nuclear

specific heat of metallic Tb used in the analysis of Tb2Zr2O7.
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