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Resumo

Apesar de recentes estudos experimentais parecerem estar cada vez mais próximos
de obterem informações sobre a interação Λn, até hoje, nenhum dado de espalhamento
Λn foi publicado. A informação disponı́vel sobre o sistema é obtida por meio de mode-
los fenomenológicos, como o Nijmegen model D. Através deles, é possı́vel obter números
para os parâmetros de espalhamento de dois corpos como o comprimento de espalhamento
a2 e o alcance efetivo r2. Mais informações sobre essa interação de dois corpos é im-
portante, tendo em vista que, nos últimos anos, estudos experimentais apontam para a
existência de um estado de três corpos Λnn. Estudos teóricos são categóricos em apontar
que é bastante improvável a existência de um estado ligado Λnn. No entanto, a existência
de um estado ressonante Λnn parece ser mais plausı́vel de ser formado usando os escas-
sos dados fenomenológicos sobre a interação Λn. No presente trabalho, nós focamos em
procurar ressonâncias no sistema Λnn. Utilizamos a teoria de campos efetiva chamada pi-
onless EFT (̸πEFT), na qual é baseada em interações de contato e assume expansões per-
turbativas na razão r2/a2, e o modelo fenomenológico baseado em potenciais separáveis,
o qual não depende de que r2/a2 seja pequeno. Utilizamos os valores do Nijmegen model
D para os parâmetros de espalhamento. A fim de obter as trajetórias dos polos, nós uti-
lizamos fatores de escalonamento que multiplicam a interação Λn. Obtemos as trajetórias
dos polos escalonando os comprimentos de espalhamento de dois corpos (as(Λn) e at(Λn))
e a intensidade da força de três corpos (g(Λ)), para a abordagem com teoria efetiva, e
escalonamos a intensidade do potencial Λn para o modelo de potencial separável. Com
o último, achamos ressonâncias fı́sicas apenas em um intervalo limitado, e com valores
relativamente altos, do fator de escalonamento.

Palavras-chave: fı́sica nuclear, teoria de campos efetiva, ressonâncias, fı́sica de baixas
energias.



Abstract

Although recent experimental studies seem to be closer to constrain the Λn interac-
tion, until now, no scattering data from Λn have been published. The available infor-
mation for this system comes from phenomenological potential models, such as the Ni-
jmegen Λn interaction. From that, one gets numbers for scattering parameters such as the
two-body scattering length a2 and effective range r2. More information on this two-body
interaction is important, specifically, given some experimental signs in recent years about
the existence of a three-body Λnn state. From the theoretical side, a couple of studies
consistently assures that a bound Λnn state is very unlikely to exist. However, a Λnn

resonant state could be more prone to be formed from the poorly available phenomeno-
logical information about the Λn interaction. In the present work we focus on searching
for resonances in the Λnn system. We use pionless effective field theory (̸πEFT), which
is based on contact interactions and assumes a perturbative expansion in the ratio r2/a2,
and a phenomenological model based on rank-one separable potentials, which does not
necessarily assume r2/a2 to be small. We use the Nijmegen model D values as scatter-
ing parameters. In order to obtain the pole trajectories, we resort to scaling factors that
multiplies the two-body Λn interaction. We obtain pole trajectories by scaling the two-
body scattering lengths (as(Λn) and at(Λn)) and the three-body strength (g(Λ)) in the EFT
approach, and scaling the strength of the Λn potential in the separable potential model.
With the latter, one finds resonances only in a limited interval and with relatively large
values of the scaling factor.

Keywords: nuclear physics, effective field theory, resonances, low-energy physics.
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Chapter 1

Introduction

In 1954 Yang and Mills, influenced by the development and success of quantum electro-
dynamics (QED) [1], proposed a theory for the strong interactions with two different types
of charges [2]. The corresponding SU(2) symmetry parallels the isospin symmetry of the
strong interactions and the idea would be gauging the symmetry the same way as the elec-
tromagnetic interactions, inspired by Weyl’s ideas [3]. The virtue of the Yang-Mills theory
was to generate self-interactions of the gauge fields that could emulate the strong force.
However, more ingredients were necessary to match the theory with the observed aspects
of the strong interactions, in particular the asymptotic freedom at high energies. After a
strong theoretical effort of the scientific community it was realized that gauge fields cou-
pled to nearly massless fermions (partons) in the SU(3) gauge group provided not only
qualitative but quantitative description of high-energy phenomena [4, 5, 6]. Meanwhile, in
1964, Gell-Mann postulated the existence of the up, down and strange quarks [7]. These,
among others efforts, resulted in the birth, development, and nowadays, confirmation
of quantum chromodynamics (QCD) as the theory of the strong interactions. QCD is a
non-Abelian gauge theory respecting the SU(3) color symmetry. The theory is a quantum
field theory of elementary spin-1/2 fermions named quarks, interacting via the elementary
gauge bosons of the theory, named gluons. The coupling g that describes the interactions
between a quark and a gluon, and among gluons themselves, is parametrized in terms of
the so-called running (strong) coupling constant αs = g2/4π. Due to the non-Abelian
aspect of the theory, αs is large at relatively low energies and goes to zero as the ener-
gies involved go to infinity. The latter is known as asymptotic freedom while the former
leads to the phenomenon of confinement. This behavior is shown in Figure 1.1. Since the
decreasing of αs is logarithmic with increasing energy, αs cannot be small enough with
available experimental energies to allow quarks and gluons to be detected as free parti-
cles. Thus, quarks and gluons remain confined within composed particles called hadrons.
Hadrons are formally classified into baryons (particles containing an odd number of va-
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lence quarks, at least three) and mesons (particles containing an even number of valence
quarks, at least two).

Figure 1.1: The coupling αs as a function of the energy. Taken from [8]

A central challenge for the theory of strongly interacting systems is that we cannot
solve (yet) the dynamics of QCD at hadronic scales. This is mainly due to confinement—
at low energies QCD is highly non-perturbative due to the increasing of αs. Some features
of QCD in this regime have been lately achieved by lattice QCD, for instance, masses
of baryons and mesons [9, 10, 11, 12, 13] for pion masses close to its physical value
(mπ ∼ 140 MeV). However, most of these observables are static ones, and real scattering
situations are still quite challenging despite some progress in this direction [14, 15, 16].
Although phenomenological models have been used to describe hadronic properties and
interactions [17, 18], effective field theories (EFTs) present a controlled and model-
independent description of strongly-interacting systems, based on an expansion in the
ratio of short- and long-distance scales. In the last three decades, there is still an on-
going dedicated effort with the purpose of obtaining an increasingly refined interaction
among hadrons from the fundamental symmetries of QCD [19, 20, 21, 22, 23, 24]. One
key ingredient is the spontaneous breaking of chiral symmetry, which is well-known from
several studies in the 1970s to play a major role in the description of hadron dynamics at
low energies. The effective field theory that incorporates chiral symmetry (present in the
QCD Lagragian), its spontaneous and explicit breaking, and phenomenological implica-
tions, is known as Chiral Effective Field Theory (χEFT). The main aspect of this theory is
the pion identified as the Goldstone boson of the spontaneous chiral symmetry breaking.
Regarding the nuclear scenario, pionic interactions are extremely predominant at large
distances, but non-perturbative aspects characteristic of nuclear bound states need to be
accounted for. These non-perturbative aspects are not necessarily due to the long-range
pion exchanges, but as seen in Chapter 3 due to the large two-body scattering length com-
pared to the range of interactions. If one tries to describe such non-perturbative physics
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in a limited range of energy, where pion interactions can be considered short-ranged, pion
dynamics become “frozen” as heavy degrees of freedom, and their effects are condensed
into simpler contact interactions of another effective theory. This theory with only con-
tact interactions, commonly referred to as pionless EFT, has been applied with success
to several nucleon-nucleon processes at momenta below ∼ 40 MeV, as well as to light
nuclei with up to A ∼ 6 (for a review, see Refs. [68, 61]). Throughout this work, pionless
EFT is applied, which is convenient when treating few-body systems with large scattering
lengths for momenta below the energy/momentum scale set by the pion mass.

Regarding systems with strangeness, up to now, no Λn scattering data exist. This is
due to the difficulty in obtaining both Λ and/or n stable targets/beams experimentally, with
good intensities and interaction cross sections (both are electrically neutral). In 2013, the
HypHI Collaboration [25] had reported a 3

Λn or Λnn bound state. It was measured in the
scattering of 6Li on graphite

6Li + C→

· · ·+ π− + d

· · ·+ π− + t
(1.1)

which means, that a peak obeserved in the invariant mass of π− + d and π− + t. Ac-
tually, the peak in the π− + d and π− + t invariant mass is approximately at mΛ + mn

and mΛ + 2mn, respectively. This highly suggests the existence of such bound state, also
because of their comparable lifetimes. This would put strong constraints upon the Λn

interaction. The possible existence of a Λnn bound state was investigated by different
theoretical approaches. Dalitz and Downs, in the 1950s, investigated the possibility of
a hypernuclear bound state using variational methods [26, 27, 28]. Garcilazo solved the
Fadeev equations using both a separable model and full-fledged calculation with realistic
baryon-baryon interactions [29, 30]. Hiyama studied the system by taking the ΛN −ΣN

coupling explicitly into account [31], and Gal derived constraints from several hypernu-
clear systems with full consideration of ΛN ←→ ΣN coupling [32]. The conclusions were
all consistent: no Λnn bound state could be determined. To understand this, one can think
of a system where Λ is just barely bound to a deuteron, the 3

ΛH or Λnp (hypertriton). When
comparing 3

ΛH with 3
Λn, there is a replacement of a np interaction, which supports a bound

state (the deuteron) by an nn interaction, which is unbound. Although the existence of a
bound state seems to be almost impossible, theoretical studies have predicted Λnn reso-
nances [34, 35] and also addressed that using a 3H(e, e′K+)3Λ electro-production reaction
at JLab would be an ideal experiment in order to explore such system. A recent publica-
tion from JLab facility could not see any clear peak in the missing mass distribution of
the Λnn [33]. In 2022, the Hall A Collaboration published a work reporting a possible

8



Λnn resonance [36]. This resonance could be used to constrain the Λn interaction.
The main formalism used in this work is effective field theory, specifically the pion-

less EFT, which is based on contact interactions due to the low energies compared with
the pion mass mπ, and assumes as expansion parameter the ratio between the two-body
effective range and scattering length, r2/a2. However, based on the numbers of a2 ∼ 2 fm
and r2 ∼ 3 fm from the phenomenological Nijmegen model D [37] for the Λn interac-
tions, it is not possible to expand the amplitudes in powers of r2/a2 as this ratio is greater
than 1. Nevertheless, we assume that we can use r2/a2 ≪ 1, and apply the pionless EFT,
regardless the phenomenological information from [37]. We solve the three-body homo-
geneous integral equation and look for poles for the S-matrix. In order to trace the pole
trajectory, we scale our Λn scattering length a2(Λn) in both triplet and singlet channels by
a scaling factor, sEFT , while the three-body force strength g(Λ) = 0. We also considered
variyng the three-body force strength g(Λ) maintaining the scaling factor sEFT = 1.

Since there is no clear power counting in pionless EFT for the case r2/a2 > 1, to
cover this possibility, we employ a phonomenological rank-one separable potential with
Yamaguchi form factors. As in the previous case, we solve a homogeneous integral equa-
tion and search for the poles of the S-matrix, scaling the strength of the potential by a
factor s.

The work is structured in the following way. Chapter 2 is a review about some of
the basic concepts in scattering theory, which will be applied in the following Chapters.
The pole structure (bound states, resonances and virtual states) is presented using the
complex momentum- and energy-plane and the Lippmann-Schwinger equation is derived.
In Chapter 3 there is a brief introduction to the idea of an effective field theory. Using
pionless EFT, two- and three-body sectors at very low energies are explored. The three-
boson system is detailed in order to present some key ideas of the Efimov physics. nd
system is unraveled in both quartet and doublet channels, in order to define the spin-
isospin projectors. In Chapter 4 we present the EFT formalism necessary to solve the
three-body integral equation for the Λnn system. Chapter 5 presents the results using
both formalisms, EFT and Yamaguchi potentials. Also, the formalism used to solve the
phenomenological model is described in this Chapter. In Chapter 6 we summarize the
present work and discuss future perspectives.
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Chapter 2

Scattering Theory

This chapter reviews some of the basic concepts of scattering theory. These concepts
permeate through the structure of latter-developed theories such as the analytic S-matrix,
quantum field theory, and lately, effective field theory.

Consider two non-relativistic particles with mass m interacting, for simplicity, via a
short-range potential V (r) [38, 39]. Also, consider only elastic scattering. The process
is better described at the center-of-mass reference frame, with the particles with opposite
momentum ±k and kinetic energy E = k2/m (consider from now on ℏ = c = 1). The
solution must respect the time-independent Schrödinger equation,[

−∇⃗
2

2m
+ V (r)

]
ψ(r) = Eψ(r) . (2.1)

The asymptotic (r −→ ∞) wave function ψ(r) that is a solution of the Schrödinger
equation is given by

ψ(r) = ψ(r)incident + ψ(r)scattered

= eikz + f(θ, ϕ)
eikr

r
, (2.2)

i.e., an incident plane wave with energy E (in our choice, traveling in the z direction)
summed with an outgoing spherical wave.

The quantity f(θ, ϕ) is called scattering amplitude and can be understood as a three
dimensional generalisation of the transmission and reflection coefficients. For our pur-
poses, we will consider just the case where the potential is central, V (r) = V (r) and
then, there is no dependence on the variable ϕ, f = f(θ). The main goal of scattering
theory is to compute the scattering amplitude.

Now one defines a quantity that is called cross-section. Consider the infinitesimal area
dσ. It can be described using the impact parameter b and the angle ϕ

10



Figure 2.1: The green areas represent infinitesimal cross-sectional areas. Taken from
reference [38]

dσ = b db dϕ. (2.3)

After passing through the area dσ the particle flux crosses the area delimited by the
cone with solid angle dΩ

dΩ = sin θdθdϕ. (2.4)

In this sense, the differential cross-section is defined as

dσ

dΩ
=

b

sin θ

db

dθ
. (2.5)

It is common to use the concept of flux of particles to define the differential cross-
section as

dσ

dΩ
=

Scattered flux
Incident flux

. (2.6)

The connection between the cross section and the scattering amplitude is established
with the help of the probability current J

J = − i

2m
[ψ∗∇ψ − (∇ψ∗)ψ] . (2.7)
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The incident and scattered probability currents are

Jincident =
k

m
ẑ, (2.8)

Jscattered =
k

m

1

r2
|f(θ)|2r̂ +O

(
1

r3

)
. (2.9)

The flux of the scattered particles through an area dA implied by the solid angle dΩ
as r →∞ becomes

Jscattered · r̂dA =
k

m
|f(θ)|2dΩ. (2.10)

Thus the differential cross section is given by

dσ

dΩ
=

k
m
|f(θ)|2

k
m

= |f(θ)|2 , (2.11)

and the total cross section is obtained by integrating over dΩ,

σT =

∫
dΩ|f(θ)|2. (2.12)

We can express the scattering amplitude f(θ) in terms of its partial waves using

f(θ) =
∞∑
ℓ=0

(2ℓ+ 1)fℓ(θ)Pℓ(cos θ). (2.13)

Knowing that the probability must be conserved as the process occurs, which is known
as unitarity. One can look at r −→∞ in Eq. (2.2)

ψ(r) =
1

(2π)3/2

[
eikz + f(θ)

eikr

r

]
=

1

(2π)3/2

∞∑
ℓ=0

(2ℓ+ 1)Pℓ(cos θ)

(
eikr − e−i(kr−ℓπ)

2ikr

)
+

∞∑
ℓ=0

(2ℓ+ 1)fℓ(θ)Pℓ(cos θ)
eikr

r
,

=
1

(2π)3/2

∞∑
ℓ=0

(2ℓ+ 1)
Pℓ(cos θ)

2ik

{
[1 + 2ikfℓ(θ)]

eikr

r
− e−i(kr−ℓπ)

r

}
.

(2.14)

The first line of Eq. (2.14) is the spherical (partial) wave expansion of the plane wave
while the second line is the r →∞ behavior of the scattering amplitude. The sum on the
third line is interpreted as an incoming spherical wave with coefficient−1 and an outgoing
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spherical wave with coefficient [1 + 2ikfℓ(θ)]. This is to be compared with the pure
plane wave in the first line of Eq. (2.14), with coefficients −1 and +1 for the incoming
and outgoing spherical waves, respectively. As we are dealing with elastic scattering,
conservation of the flux of particles must hold. That implies that the coefficients of each
spherical wave must have the same modulus. For the outgoing spherical waves, that means
|1 + 2ikfℓ(θ)| = 1. One can define the partial-wave S-matrix,

Sℓ(k) = 1 + 2ikfℓ(θ), (2.15)

which satisfies the partial wave unitarity relation |Sℓ(k)| = 1.
That allows one to write Sℓ(k) as

Sℓ(k) = e2iδℓ ⇒ fℓ(θ) =
1

2i
(e2iδℓ − 1) = eiδℓ sin δℓ, (2.16)

where the factor 2 on the definition of Sℓ(k) is a convention. The quantity δℓ is called
the phase-shift for the partial wave ℓ. Using the partial wave expansion one can solve the
scattering amplitude in terms of its orbital angular momentum contributions,

f(θ) =
1

k

∞∑
ℓ=0

(2ℓ+ 1)
e2iδℓ − 1

2i
Pℓ(cos θ),

=
1

k

∞∑
ℓ=0

(2ℓ+ 1)eiδℓ(k) sin δℓ(k)Pℓ(cos θ)

=
∞∑
ℓ=0

2ℓ+ 1

k cot δℓ(k)− ik
Pℓ(cos θ). (2.17)

All the information about the scattering process is now encoded in the so-called phase

shifts δℓ(k). At sufficiently low energies, the S-wave (ℓ = 0) phase shift can be expanded
in powers of k2, leading to the famous effective range expansion (ERE),

k cot δ0(k) = −
1

a0
+

1

2
r0k

2 − 1

4
P0k

4 + . . . , (2.18)

with a0 being the S-wave scattering length, r0 the S-wave effective range and P0 the S-
wave shape parameter.

It is also possible to generalize to higher partial waves and write

k2ℓ+1 cot δℓ(k) = −
1

aℓ
+

1

2
rℓk

2 − 1

4
Pℓk

4 + . . . . (2.19)
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The partial-wave scattering length aℓ can be obtained through the low-energy limit

lim
k→0

fℓ(θ)

k2ℓ
= −aℓ. (2.20)

Substituting equation (2.17) into (2.12) and using the Legendre polynomials orthogo-
nality relation, ∫ 1

−1

dxPr(x)Ps(x) =
2

2ℓ+ 1
δrs, (2.21)

one can find an expression for the differential cross section

σT =
4π

k2

∑
ℓ

(2ℓ+ 1) sin2 δℓ. (2.22)

As said before, Sℓ(k) is the ℓth diagonal element of a matrix called S-matrix, some-
times refered to as the scattering matrix,

S = 1+ iT. (2.23)

Comparing Eqs. (2.15) and (2.23), and assuming that Tℓ(E) is the ℓth diagonal element
of the T-matrix, called transition matrix,

Tℓ(k) =
4π

m
fℓ(θ), (2.24)

leads to
Sℓ(k) = 1 + i

mk

2π
Tℓ(k). (2.25)

The low-energy limit, given by Eq. (2.20), makes all but ℓ = 0 partial waves unimpor-
tant in this energy regime1. In such cases, the transition matrix is given by

T0(k) =
4π

m

1

k cot δ0(k)− ik
. (2.26)

The unitarity of the S-matrix (or, equivalently, Sℓ(k)) holds for the physical situation
when k is real. The S-matrix can, however, be analytically extended to complex k. This
analytic continuation hinges on causality and its analytic properties allow one to handle
resonances and non-scattering states such as bound and virtual states as poles of the S-
matrix. Once the poles are located in the complex k plane, one can name them according
to relevant states, i.e., bound states, resonant states or virtual states. The poles contained
in the complex momentum plane are mapped into the complex energy plane, and vice-

1Exceptions are the presence of low-energy poles (bound/virtual states or resonances) in specific partial
waves other than S-waves.
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versa, through the non-relativistic dispersion relation E = k2/2m. Given this quadratic
relation with k, each half complex-k plane maps to a whole distinct, complex-E Riemann
sheet—the upper momentum half-plane maps onto EI (”physical” sheet) and the lower
momentum half-plane maps onto EII (”unphysical” sheet), both sheets are connected at
the positive real axis E > 0, as Figure 2.2 shows.

The specific location of poles in the complex momentum plane (complex-energy man-
ifold) is: for bound-states they appear as singularities in the positive imaginary k-axis
k0 = +i|k| (will be mapped onto the negative real E-axis of EI), for virtual-states the
singularities are located at the negative imaginary k-axis k1 = −i|k| (also mapped onto
the negative real E-axis, but now onto the ”unphysical” sheet EII), and for resonant
states they are located at the lower half-plane, always appear in pairs k2 = kR − ikI and
k′2 = −kR − ikI (mapped onto the lower half-plane of EII), both kR and kI are real posi-
tive, and kI ≪ kR [40].

Figure 2.2: Complex momentum plane and energy manifold. Based on reference [40]

2.1 Lippmann-Schwinger Equation

When dealing with two-body scattering problems the Lippmann-Schwinger equation plays
a central role. It consists of an integral equation for the scattering amplitude, either in
momentum or position representation, with the appropriate asymptotic conditions, whose
solution provides information not only for the physical scattering problem in question,
but also for bound, virtual, and resonant states via analytic continuation. Sometimes one
can even formally solve the scattering amplitude, as for the so-called separable potentials.

15



For sufficiently weak potentials unable to hold a bound state, the Lippmann-Schwinger is
susceptible to approximation methods, like the Born series.

The starting point is the Schrodinger equation,

H |ψ⟩ = E |ψ⟩ , (2.27)

whereH = H0+V ,H0 stands for the free particle kinetic energy operator with eigenvalue
p2

2m
, and V is the potential operator.
The equation one needs to manipulate is

(H0 + V ) |ψ⟩ = E |ψ⟩ . (2.28)

An important fact that may be considered is that, in the limit V → 0, the equation must
reduce to the well-known free particle Schrodinger equation. With that in mind, the solu-
tion must include a free Hamiltonian eigenket H0 |ϕ⟩ = E |ϕ⟩,

|ψ⟩ = 1

E −H0

V |ψ⟩+ |ϕ⟩ . (2.29)

As one may notice, the operator (E − H0)
−1 is singular and the energy must be slightly

complex in order to avoid the singulatity. With that in hand, the Lippmann Schwinger
equation can be written as

∣∣ψ±〉 = |ϕ⟩+ 1

E −H0 ± iϵ
V
∣∣ψ±〉 . (2.30)

The sign of the imaginary term iϵ in the regularized operator (E −H0 ± iϵ)−1 leads for-
mally to two distinct solutions |ψ±⟩, both with different interpretations. The +iϵ solution
corresponds to the physically meaningful solution, with a plane-wave incident plus an
outgoing spherical wave, while the −iϵ solution contains, instead, an incoming spherical
wave. Both solutions are related to each other via time-reversal [42]. Mathematically, the
iϵ term fixes the asymptotic boundary condition of the solution in the integral equation.

So far, Eq. (2.30) is generic enough to be used in whatever basis of the Hilbert space
we choose. Here we use the plane-wave momentum basis, which is more convenient for
scattering processes. Multiplying Eq. (2.30) from the left by ⟨p′|,

〈
p′∣∣ψ±

p

〉
= ⟨p′|ϕp⟩+

1

E − p2/2m± iϵ
〈
p′∣∣V ∣∣ψ±

p

〉
, (2.31)
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and making use of the identity I =
∫ d3q

(2π)3
|q⟩ ⟨q|, one arrives at

Ψ(p′,p) = Φ(p′,p) +
1

E − p2/2m± iϵ

∫
dq3

(2π)3
V (p′,q)Ψ(q,p) , (2.32)

which is the Lippmann-Schwinger equation for the scattering wave function.
In scattering theory, the transition operator T is defined as

T± |ϕp⟩ = V
∣∣ψ±

p

〉
, (2.33)

while the scattering amplitude is the matrix element of T between the initial and final
states. Multiplying Eq. (2.30) from the left by ⟨p′|V leads to [41, 42]

〈
p′∣∣V ∣∣ψ±

p

〉
= ⟨p′|V |ϕp⟩+

∫
dq3

(2π)3
⟨p′|V |q⟩ 1

E − q2/2m± iϵ
⟨q|V |ψp⟩ ,

T (p′,p) = V (p′,p) +
∫

dq3

(2π)3
V (p′,q)

1

E − q2/2m± iϵ
T (q,p). (2.34)

The above Lippmann-Schwinger equation for the scattering amplitude can be schemati-
cally expanded, in the spirit of the Born series, as

T = V +

∫
V GT = V +

∫
V GV + . . . , (2.35)

with G being the non-relativistic two-particle propagator, or two-particle Green’s func-
tions.

Solving Eq. (2.34) is usually technically hard as it involves a three-dimensional inte-
gral equation. There are, however, many situations, especially at low energies, where a
converged partial wave expansion holds. For a generic function F of two vectors p′ and
p, the partial wave expansion [43]

F (p′,p) =
∑
ℓ′,m′

∑
ℓ,m

(4π)Y ∗
ℓ′m′(Ωp′)Yℓm(Ωp)fℓ′m′ℓm(p

′, p), (2.36)

has the inverse relation

fℓ′m′ℓm(p
′, p) =

1

4π

∫
dΩp′

∫
dΩpYℓ′m′(Ωp′)Y

∗
ℓm(Ωp)F (p′,p). (2.37)
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Applying the above expansion to Eq. (2.34) yields

tℓ′m′ℓm(p
′, p) = vℓ′m′ℓm(p

′, p) +
1

4π

∫
dΩp′

∫
dΩpYℓ′m′(Ωp′)Y

∗
ℓm(Ωp)∫ ∞

0

dq q2

(2π)3
1

E − q2/2m+ iϵ

∫
Ωq

[∑
a′,b′

∑
a,b

(4π)Y ∗
a′b′(Ωp′)Yab(Ωq)va′b′ab(p

′, q)

]

×
[∑
c′,d′

∑
c,d

(4π)Y ∗
c′d′(Ωq)Ycd(Ωp)tc′d′cd(q, p)

]
, (2.38)

with dΩ = sin θdθdϕ. The orthonormality condition,∫
dΩpY

∗
ℓ′m′(Ωp)Yℓm(Ωp) = δℓ′ℓδm′m , (2.39)

allows one to rewrite Eq. (2.38) as

tℓ′m′ℓm(p
′, p) = vℓ′m′ℓm(p

′, p) +
∑
c′,d′

∫ ∞

0

dq q2

2π2

vℓ′m′c′d′(p
′, q)tc′d′ℓm(q, p)

E − q2/2m+ iϵ
. (2.40)

For simpler situations, for instance, central potentials or spinless particles, orbital
angular momentum ℓ is a good conserved quantum number, and the above equation sim-
plifies to

tℓ(p
′, p) = vℓ(p

′, p) +

∫ ∞

0

dq q2

2π2

vℓ(p
′, q)tℓ(q, p)

E − q2/2m+ iϵ
, (2.41)

which is the Lippmann-Schwinger equation for the ℓ-th component of the scattering am-
plitude. In practical situations, one is interested in only a few specific partial waves, and
for each, one needs to solve a much simpler one-dimensional integral equation.
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Chapter 3

Effective Field Theories

Suppose a theory that could describe phenomena from all different energy scales, and
name it as the most fundamental theory. This theory should be valid in any range of
energy. But, in fact, one should not expect to solve the dynamics of this theory, since
solving the fundamental theory in all energy scales might be impracticable, if not im-
possible. A situation similar to the underlying theory of the strong interactions, QCD.
Instead of solving the dynamics for the most fundamental theory, one could be interested
in reproducing the exact same physics as the fundamental one, but in a very specific range
of validity. This defines what one calls an effective field theory (EFT). Only active and
relevant degrees of freedom (effective fields) are necessary to describe this theory. The
effective theory needs to include the symmetries of the underlying theory that are impor-
tant in that specific range of energy. The interactions among effective fields are limited by
the symmetries of a given system and in general, these interactions are organized by a set
of rules called power counting, which assigns the scaling of the operators in the effective
Lagrangian in terms of an expansion parameter. This expansion parameter is the ratio
of the typical low-energy momentum within the validity of the EFT and the high-energy
momentum that characterizes its breakdown. However, such expansion generates diver-
gences, such ultraviolet divergences, that require special treatment.

Ultraviolet divergences is the technical expression given to certain infinities that ap-
pear in the formalism of quantum field theory (QFT). During the early days of formu-
lation of QFT, such infinities were regarded as indication that QFT is ill-defined and
incomplete. Perhaps the second point still holds, but concerning the first point, nowa-
days the origin of such infinities has a more robust physical interpretation. Basic quan-
tum mechanics teaches us that quantum fluctuations, unless forbidden by certain sym-
metries, must be summed over all their possible states, more pragmatically, over all their
energy/momentum eigenmodes. Ultraviolet divergences appear when such sum (i.e., inte-
gration) fails to converge towards the high-energy modes. From the uncertainty principle,
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higher energy modes correspond to shorter distances. Thus the failure to achieve a conver-
gent sum in the ultraviolet is, in general, due to a failure of the theory (and/or QFT itself)
to provide a reliable description of arbitrarily short distance physics [44]. The predictabil-
ity of QFT is rescued through the process of renormalization—unreliable short-distance
physics that lead to ultraviolet divergences cannot be distinguishable from contact inter-
actions among fields that constitute the coupling constants of the given theory, as long
as one remains in its energy range of validity. Renormalization provides the mathemat-
ical prescription for assembling the ultraviolet divergences and the unknown, unreliable
short-distance physics in the coupling constants in such a way that they precisely cancel
each other, leaving only the physical value of these couplings.

The discussion above implies the existence of a momentum scale Λ that separates the
physical quantum modes from the unreliable, ultraviolet divergent modes of a field theory.
One of the most important, and physically robust studies of renormalization ideas is due to
Kenneth Wilson [45, 46, 47]. Though his original study was addressed to critical phenom-
ena in condensed-matter systems, the map of these ideas to QFT/particle physics can be
naively established by the uncertainty principle relation between short-distances and high-
energies. Translating to EFT (also to more general QFT, with appropriate adaptations),
what Wilson proposed was to separate the original fields of the underlying theory based
on the magnitudes of the respective momenta: high energy fields would be integrated out,
leaving us with an EFT containing only the low energy fields. Wilson’s renormalization
group method consists on identifying a momentum cutoff Λ that represents the highest
energy scale of the system. For the sake of simplicity, consider a generic field ϕ that can
be decomposed into high- and low-momentum modes, ϕ(k) = ϕh(k) + ϕℓ(k). The defi-
nitions for the modes are

ϕh(k) =

ϕ(k) for |k| > bΛ

0 for |k| ≤ bΛ
(3.1)

ϕl(k) =

0 for |k| > bΛ

ϕ(k) for |k| ≤ bΛ
(3.2)

with b an adimensional parameter with value ≲ 1. Renormalization group invariance
imposes that observables do not depend on the value of b.

Once separated there are two different regimes involved: the soft (k < Λ) and the hard
physics (k > Λ). The original interaction terms are Taylor-expanded in terms of the soft
fields, giving rise to the so-called LECs (low-energy constants), the couplings that con-
tain all the information one needs about the fundamental theory to calculate low-energy
observables. Of course, from such expansion rises an infinite number of LECs. However,
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an infinite number of couplings in a theory has no predictive power, therefore, the theory
is useless unless there is a scheme to classify them according to their relative importance.
Such a scheme is named “power counting” and, in practice, consists in organizing the
LECs/operators according to their powers in the ratio Q/Λ, where Q stands for a typi-
cal low-momentum scale around which one is interested in working with the respective
effective theory. In the lagrangian formalism, powers of Q are related to the number of
derivative operators acting on the low-energy fields, the reason why this is also known
as a derivative expansion. The power counting connects the order of the expansion and
the number of terms one must keep in the effective Lagrangian. That leads to a finite
number of constants up to a given order in Q/Λ. These constants can be determined from
some experimental data or some model. Perhaps, one might be aware that there are no
guarantee that for every system a proper power counting can be found [48]. As expected,
increasing the power of Q/Λ improves the precision, but also increases the number of
LECs to be determined from different physical observables.

After this brief introduction, one now focus the discussion on effective field theories
applied to the strong (nuclear) force. Nowadays it is a consensus that the underlying
theory of the strong interactions is quantum chromodynamics (QCD), a quantum field
theory of quarks and gluons as elementary fields. Due to the aspect of confinement at low
energies and asymptotic freedom at high energies, quark and gluon degrees of freedom
can only be probed at the latter energy regime, but imprisoned within hadrons at the
former. Therefore, for energies below the chiral scale (Λχ ∼ 4πΛQCD ∼ 1 GeV) the only
relevant degrees of freedom are the hadrons themselves (pions, nucleons, lambdas, etc.).
As the EFT for the strong interactions must reproduce the QCD results in the appropriate
low-energy domain, one must ensure that the effective Lagrangian incorporates all the
relevant symmetries of the underlying theory. The first step, as mentioned before, is to
identify the relevant degrees of freedom at the energy range of interest, namely, hadron
fields generically represented by ψ. Then, construct the most general Lagrangian using
the pertinent fields ψ constrained by the symmetries of QCD,

L =
∑
i

ci(ML,MH ,Λ)Oi(ψ), (3.3)

with ML the typical EFT low-energy scale, MH the EFT high-energy breakdown scale,
Oi(ψ) the effective operators involving fields at the same spacetime point, but with an
arbitrary number of derivatives, and ci(ML,MH ,Λ) the LECs.

The first nuclear EFT was developed in the early 90’s and is best known as Chiral

Effective Field Theory, or χEFT for short [49, 50, 51, 52], with typical momentum scale
of the order of the pion mass. It was the first successful attempt to extend the ideas
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of Chiral Perturbation Theory (χPT) [53, 54, 55] for two and more nucleon systems,
A ≥ 2. It is worth mentioning a fundamental difference between χPT and χEFT, namely,
that in the former all interactions of the effective lagrangian are perturbative, while in
the latter, due to the presence of a shallow bound state of two nucleons (the deuteron),
non-perturbative physics takes place. Weinberg’s proposal [49, 50], pushed forward by
van Kolck and collaborators [51, 52, 19] and other authors [20, 21, 22, 23, 24], was to
apply the perturbative χPT rules to the effective potential, defined as all two-nucleon-
irreducible Feynmann diagrams, and then iterate the potential in a dynamical equation
like the Lippmann-Schwinger equation. This prescription is known in the literature as the
Weinberg power counting (WPC).

However, a couple of years later, questions arouse regarding the consistency of the
WPC. The main argument against WPC goes as follows: the one-pion exchange potential
at leading order has an ultraviolet singularity due to its tensor force (in position space,
this singularity is related to the −1/r3 behavior at the origin). Renormalization thus
impose the existence of a two-nucleon contact interaction to absorb such divergences.
The inconsistency appears in the scaling of these two terms of the potential—the one-
pion exchange diagram scales as (Q/Λ)0 while the contact interaction, due to the presence
of a shallow bound state, scales as (Q/Λ)−1. From the EFT perspective, divergences at a
certain order cancelled by operators from a different order do indicate an ill-defined power
counting, and thus predictability of such EFT is put to question. This issue still remains
controversial [58, 59, 60, 61], with intense discussions and interesting alternatives [58,
60, 62].

The first attempt to resolve the WPC inconsistencies were proposed by Kaplan, Sav-
age, and Wise [58]. In the so-called KSW power counting, the leading order (LO) two-
nucleon non-derivative contact interaction C0

1 with scaling (Q/Λ)−1, fine-tuned to re-
produce the deuteron, is summed non-perturbatively to all orders, while pion exchanges
and higher-derivative contact interactions are taken into account in perturbation theory.
The KSW power counting restores, in principle, consistency of the nuclear EFT, at least
formally. A shortcoming of KSW is that, with pions, the theory fails to converge in the en-
ergy domain where it is supposed to work, Q ∼ mπ ∼ 100-200 MeV [63]. Nevertheless,
the ideas seeded in the KSW work survived in a different type of EFT, named short-range
EFT, EFT with contact interactions, or mostly well-known as pionless EFT (̸πEFT).

EFT with contact interactions is the more inclusive name for such type of EFT as it
allows applications to a couple of distinct systems. It is named ̸ πEFT when applied to
systems with only nucleons [64, 65, 74, 75], halo/cluster EFT for weakly-bound exotic

1In fact, due to the spin-isospin structure of two nucleons, there are two LO contact interactions, CT

and CS for the tensor and spin-spin components, respectively.
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nuclei [66, 67, 68],XEFT for heavy charmed exotic mesons [69, 70], and the generic EFT
with contact interactions when applied to dilute ultracold atoms [39, 79, 78]. Even though
with different names and, in principle, quite different quantum systems, the mentioned
EFTs share the same lagrangian structure, symmetries, and at the two-body level it is
equivalent to the Bethe’s effective range expansion (ERE) theory [71]. These similarities
among different systems constitute what is called universality of short-range interactions
and lead to interesting phenomena like the Efimov effect (discussed below).

An intuitive way of understanding contact interactions can be grasped, for instance, in
a top-down approach from a more microscopic χEFT to a lower resolution ̸πEFT. In the
path-integral formalism, operators that link two nucleons via pion exchanges are shrunk
to two-nucleon contact interactions when pion fields are integrated out. This operation
in practice can be seen in Fig. 3.1. Disregarding technical complications involving each
nucleon operators in the lagrangian, the left-hand side of the figure is proportional to the
pion propagator. However, when the energy and momentum of the exchanged pion are
much smaller than its mass, q2 ≪ m2

π, it is legitimate to Taylor-expand the propagator as

1

q2 −m2
π

≈ − 1

m2
π

[
1 +

q2

m2
π

+

(
q2

m2
π

)2

+ · · ·

]
, (3.4)

which represents a series of two-nucleon contact interactions with zero, two, four, etc.,
derivatives. Such expansion is similar to the expansion of the W± and Z0 gauge boson
propagators in the full electroweak theory leading to the old Fermi contact effective theory
for weak interactions. One can also work with expansions like these in SMEFT (Standard
Model Effective Field Thoery).

Figure 3.1: At very low-energies the interactions shrink to a point. Taken from reference
[61].

The typical length scale that governs the quantum behavior is the de Broglie wave-
length given by λ = 2π/p, with p being the momentum of the particle. But if the momen-
tum p of each of the two particles is small enough, their de Broglie wavelengths are larger
then the sizes of the particles themselves, which preclude them to resolve each other’s
internal structure.
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The task at hand is to write an effective Lagrangian with contact interactions among
nucleons and that respect their symmetries. These symmetries consist of, basically, in-
variance under small Lorentz boosts, rotations and isospin. There are also time rever-
sal and parity, which are both discrete symmetries. It is also important to note that, as
most of the nuclear EFTs, calculations are made in the non-relativistic limit, respecting
Galilean invariance while relativistic corrections are accounted for at higher orders in the
Q/mN ∼ Q/Λ expansion.

In general, the fundamental parameters of a given effective theory have a scaling
driven by the high energy scale Mhi of the theory. In other words, the sizes of scat-
tering parameters with length dimensions (such as the two-body scattering length a2 and
the effective range r2) should scale with the range of the interaction R, which on the other
hand scales with 1/Mhi (from now on, the subindex 2 in a2 and r2 refers to the two-body
system). In this scenario, the low-energy amplitudes reduce to a perturbative expansion
in kR, with k being the low-energy momentum. In nuclear physics, the case of interest
is different. The two-body scattering length a2 is much larger than the range of the two-
body interaction (a2 ≫ R and R ∼ r2). This is due to the fine-tuning of the interactions,
leading to a two-body shallow bound state. It would be possible to keep a perturbative
expansion of the amplitude in this case, as long as k ≪ 1/a2, but that would miss the
important physics of shallow bound states. In order to keep an EFT with a perturbative
expansion valid for all k ≪ 1/R, it was shown [73, 58] that is enough to sum only two-
body interactions that are momentum independent to all orders. Such infinite sum keeps
the correct analytic dependence of the amplitude on the product ka2 while contact inter-
actions with higher derivative operators are well accounted for in perturbation theory.

3.1 2-body sector

As a simpler example, let’s consider a two-boson system interacting at very low energies
with large scattering length. The Lagrangian for this system can be written, at leading
order (LO), as [39]

L = ψ†
(
i∂0 +

∇2

2m

)
ψ − g2

4

(
ψ†ψ

)2
, (3.5)

with ψ the field representing each boson. The LEC g2 of this EFT ought to be determined
by fitting to a LO low-energy observable, in this case, the scattering length a2. To calculate
the scattering amplitude A in terms of the EFT parameters (in this example, only g2),
and later be able to match with the observable a2, one proceeds with the usual tools of
QFT, namely, obtain the 4-point Green’s function ⟨0|T (ψψψ†ψ†) |0⟩ through Feynman
diagrams. In general, the 4-point Green’s function allows one to obtain the totally off-shell
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amplitude, that is, each external leg associated with each field of the 4-point function does
not necessarily obey the non-relativistic dispersion relation E = k2/2m. In the center-of-
mass (c.m.) frame, the amplitude depends on the (generally off-shell) incoming momenta
k and −k and outgoing momenta p and −p, besides the total c.m. energy E. A half
off-shell amplitude means that either one of the c.m. momenta k, p obeys the on-shell
condition. The on-shell amplitude, the only condition with physical significance, satisfies

T (k) = A(k2 = p2 = 2mE) . (3.6)

This ought to be compared with Eqs. (2.20) and (2.24),

fℓ(θ) =
m

4π
A(E = k2/2m) ,

a2 = −
m

4π
A(0). (3.7)

(Reinforcing that the subindex 2 in a2 refers to the two-body subsystem.) The above
relation allows one to relate the coupling g2 with the observable a2. We now proceed with
the calculation of the scattering amplitude A using the Feynman rules for the processes
depicted in Figure 3.2. In the figure, the first line is a graphical representation of the
amplitude assuming a perturbative/iterative expansion from Feynman diagrams, while the
second line is the same amplitude obtained via an integral equation. The latter is an
alternative way of performing the infinite sum in the former.

Figure 3.2: Scattering amplitude A diagramatically represented. Taken from reference
[39].

Using the Feynman rules for the effective Lagrangian (3.5), one obtains the scattering
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amplitude both in perturbative and integral equation forms,

A(E) ≈ −g2 − ig22
∫

d3q

(2π)3

∫
dq0
2π

1

E/2− q0 − q2/2m+ iϵ

1

E/2 + q0 − q2/2m+ iϵ
+ · · · ,

(3.8)

A(E) = −g2 − ig2
∫

d3q

(2π)3

∫
dq0
2π

1

E/2− q0 − q2/2m+ iϵ

1

E/2 + q0 − q2/2m+ iϵ
A(E).

(3.9)

Focusing on the one-loop integral in Eq. (3.8), the q0 integral can be evaluated using
countour integration:

I0 = −i
∫

d3q

(2π)3
(−2πi)
2π

1

E − q2/m+ iϵ
,

=

∫
d3q

(2π)3
m

q2 −mE − iϵ
,

=
1

2π2

∫ ∞

0

dq q2
m

q2 −mE − iϵ
. (3.10)

The integral I0 diverges, so it can be regularized by imposing a momentum cutoff Λ

I0 =
1

2π2

∫ Λ

0

dq q2
m

q2 −mE − iϵ
,

=
m

2π2

[
q −
√
−mE − iϵ tan−1

(
q√

−mE − iϵ

)] ∣∣∣∣Λ→∞

0

,

≈ m

2π2

[
Λ−
√
−mE − iϵ

(
π

2
−
√
−mE − iϵ

Λ

)]
. (3.11)

Taking the limit Λ≫
√
−mE − iϵ, the amplitude to one loop can be expressed as

A(E) ≈ −g2 +
mg22
2π2

(
Λ− π

2

√
−mE − iϵ

)
. (3.12)
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Applying the Feynman rules to the diagrams with two and more loops it is easy to notice
that they can be written as multiples of the one loop integral I0. The sum on the first line
of Figure 3.2 is thus a geometric series, whose sum becomes

A(E) = −g2 [1 + g2I0]
−1 ,

= −g2
[
1 +

mg2
2π2

(
Λ− π

2

√
−mE − iϵ

)]−1

. (3.13)

On the other hand, if one starts the calculation with the integral form (3.9), and the fact
that under the integral the on-shell amplitude A(E) does not depend on the integration
variable, the remaining integral is precisely I0 already calculated. Thus,

A(E) = −g2 +
mg2
2π2

(
Λ− π

2

√
−mE − iϵ

)
A(E) (3.14)

gives the same result as Eq. (3.13).
Renormalization can be implemented by eliminating the LEC g2 in favor of the scat-

tering length a2. We can use (3.7) to write

a2 =
m

4π
g2

(
1 +

mΛ

2π2
g2

)−1

. (3.15)

Inverting the above relation to solve for g2,

g2 =
4π

m
a2

(
1− 2a2Λ

π

)−1

=
4π

m

1

1/a2 − 2Λ
π

. (3.16)

We write the nonperturbative on-shell amplitude eliminating g2 as

A(E) = 4π

m

1

−1/a2 +
√
−mE − iϵ

. (3.17)

The amplitude for the two-body system is independent of the momentum cutoff Λ, as
one would, naively, expect. However, when dealing with effective field theories, observ-
ables may have a smooth dependence on the renormalization scale (in this case, the cutoff
Λ), which cannot happen if such dependence is logarithmic or positive powers with Λ.
Thus, in EFT, a way to check if proper renormalization holds is to take the limit Λ→∞
and to observe if the Λ-dependence of observables vanish as inverse powers of Λ.

In calculating the on-shell amplitude, one recovers the well-known expression for
the scattering amplitude from quantum mechanics at LO (considering just the scattering
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length a2) Eq (2.26)

f0(θ) =
m

4π
A(E) = 1

−1/a2 − ik
. (3.18)

The on-shell amplitude A(E) presents a pole at k = 1/a2 or, equivalently, E = −1/a22.
If a2 > 0 the pole gives rise to a bound-state, since in the complex momentum plane it
is located on the positive imaginary axis. The other possibility, a2 < 0, is located on the
negative imaginary axis in the momentum plane, therefore, in the unphysical Riemann
sheet. In the complex energy plane, this corresponds to a pole at E = e3πi/a2, which
defines a virtual state.

3.2 3-body sector

Now consider three bosons interacting at very low energies. The most general Lagrangian
contains two- and three-body terms

L = ψ†
(
i∂0 +

∇2

2m

)
ψ − g2

2
(ψ†ψ)2 − g3

6
(ψ†ψ)3 , (3.19)

with ψ the field representing each boson and g2 and g3 the two- and three-body LO low-
energy constants.

The Feynman rule for the three-particle vertex reads

were the number 6 comes from the symmetry factor. The perturbative expansion in powers
of g2 and g3 leads to a T -matrix that can be expanded in powers of the three-particle scat-
tering energyE. There are several Feynman diagrams that contribute perturbatively to the
three-body scattering, a few of them are illustrated in Figure 3.3. The three-body informa-
tion about observables is encoded in the 6-point Green’s function ⟨0|T (ψψψψ†ψ†ψ†) |0⟩.

Dimer field

A convenient way of performing the three-body calculations is to introduce an auxiliary
field with the appropriate quantum numbers of two particles, namely, a dimer field d [72].
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Figure 3.3: Diagrams that contributes to terms E−1, E−1/2 and ln (E). Taken from refer-
ence [39].

The mass of such field is 2m + ∆, where ∆ accounts for the two-particle binding en-
ergy. Essentially, the dimer replaces the two-body contact interaction by the s-channel
(ℓ = 0) propagation of the bare dimer field. The two-body amplitude is completely de-
termined by the full dimer propagator, which accounts for the propagation of the bare
dimer dressed by two-particle loops. In the dimer formalism, the three-body interac-
tions are replaced by dimer-particle interactions. Note that solving the 4-point (dimer-
particle) Green’s function ⟨0|T (dψd†ψ†) |0⟩ is equivalent to solving the 6-point function
⟨0|T (ψψψψ†ψ†ψ†) |0⟩. The Lagrangian with the dimer field equivalent to (3.19) is given
by

L = ψ†
(
i∂0 +

∇2

2m

)
ψ + d†

(
i∂0 +

∇2

4m
−∆

)
d− y√

2
(d†ψ2 + ψ†2d) + h(d†dψ†ψ).

(3.20)
The residual mass ∆, with dimensions of mass, would naively scale as Λ, leading to a
“natural” scattering length of size a2 ∼ 1/Λ. However, the case of unnaturally large scat-
tering length a2 ∼ 1/Q enforces a fine tuning of this coupling to ∆ ∼ Q, a suppression
of order Q/Λ. One notices that, even with such suppression, the kinetic term of the dimer

field, d†
(
i∂0 +

∇2

4m

)
d ∼ Q2

Λ
, is of higher order compared to ∆, and therefore, the bare

dimer propagator is given by iD0 = −i/∆.
One can check the equivalence of the dimer field formalism and the original one with
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only boson fields at the lagrangian level. If one solves the equation of motion for the d†

field
d =

y

∆+ hψ†ψ
ψ2, (3.21)

and by substituting the field d on the Lagrangian, we write

L = ψ†
(
i∂0 +

∇2

2m

)
ψ +

y2

∆+ hψ†ψ
(ψ†ψ)2. (3.22)

Taylor-expanding the interaction term in powers of ψ†ψ we arrive at LO at the same
Lagrangian as (3.19). We match the respective LECs as g2 = y2/∆ and g3 = −3y2h/∆2.

The Feynman rule for the bare dimer propagator is depicted in Figure 3.4.

Figure 3.4: The dimer bare propagator.

In order to obtain the full propagation, we need to dress the dimer propagator. We
need to sum the bubble contribution as shown in Figure 3.5.

Figure 3.5: The dressed dimer propagator which is represented as an infinite sum of
bubble diagrams. Taken from [39].

Using the usual Feynman rules, the expression for the dressed propagator, which forms a
geometric series, is

D(p0;p) = D0 +D0I0D0 +D0I0D0I0D0 + . . . ,

=
D0

1−D0I0
,

=
1

D−1
0 − I0

,

=
1

−∆− I0
. (3.23)

The integral I0 is the same as discussed in the previous section. We can absorb the di-
vergent piece Λ into y2/∆ [74] and we can write the renormalized ratio y2ren/∆ren =

4πa2/m. The total energy is E = p0 − p2/4m. Thus, the expression for the full dimer
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propagator is

iD(p0;p) =
i

−∆+ my2

4π

√
−mp0 + p2/4− iϵ− iϵ

. (3.24)

The final expression for the renormalized dressed dimer propagator is

iD(p0;p) =
4π

y2m

i

−1/a2 +
√

p2

4
−mp0 − iϵ− iϵ

. (3.25)

This dimer propagator has a pole at p0 = −1/ma22 + p2/4m, which corresponds to a
two-boson with binding energy Ed = 1/ma22.

3.2.1 3-boson integral equation

Here we solve the three-boson spinless system in detail. The Feynman rules derived
from Eq. (3.20) are illustrated in Figure 3.6. The integral equation can be diagramatically
represented by

Figure 3.6: Feynman rules for the Lagrangian 3.20.

We set the kinematics as incoming 4-momenta on the energy shell (k2/2m,−k)
for the particle and (k2/4m − Bd,k) for the dimer, and outgoing 4-momenta off-shell
(k2/2m−ε,−p) for the particle and (k2/4m−Bd+ε,p) for the dimer. The on-shell point
has ε = k2/2m−p2/2m and p = k. The total energy for the system is E = 3k2/4m−Bd
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[74]. The integral equation from Figure 3.2.1 gives

iT (p,k; ε) = (−i
√
2y)2iS(−k2/4m−Bd + ε;k + p) + ih

+

∫
d4q

(2π)4
iS(k2/2m− ε− q0; q)

[
(−i
√
2y)2iS(−k2/4m−Bd + 2ε+ q0;p+ q) + ih

]
× iD(k2/4m−Bd + ε+ q0; q)iT (q,k; ε+ q0), (3.26)

resulting in

T (p,k; ε) =
−2y2

−k2/4m−Bd + ε− (k + p)/2m+ iϵ
+ h

− i
∫

d4q

(2π)4
1

k2/2m− ε− q0 − q2/2m+ iϵ

×
[

−2y2

−k2/4m−Bd + 2ε+ q0 − (p+ q)2/2m+ iϵ
+ h

]
× 1

−1/a2 +
√
q2/4− k2/4 +mBd −mε−mq0 − iϵ− iϵ

T (q,k)). (3.27)

One solves the q0 integral by residues. One has q0 = k2/2m − ε − q2/2m and, with the
on-shell condition ε = k2/2m−p2/2m, the q0 integration gives (from now on, we assume
T (p,k, k2/2m− p2/2m) = T (p,k)

T (p,k) =
−2my2

−k2/4−mBd − p2 − k · p
+ h

−
∫

d3q

(2π)3
1

−1/a2 +
√
q2/4−mE

[
−2my2

mE − q2 − p2 − p · q
+ h

]
T (q,k) , (3.28)

where omit the iϵ prescription to simplify the notation. Replacing y2 = 4π
m

leads to

T (p,k) =
2my2

k2 + p2 −mE + k · p
+ h

+ 8π

∫
d3q

(2π)3
1

−1/a2 +
√
q2/4−mE

[
1

q2 + p2 −mE + p · q
+

h

2my2

]
T (q,k)

= 2my2B(p,k) + h+ 8π

∫
d3q

(2π)3

[
B(p, q) +

h

2my2

]
D(E; q)T (q,k). (3.29)

We are interested in the three-body state with total angular momentum zero. One ex-
pands the above equation in partial waves and select ℓ = 0. Note that the angular de-
pendence is on the scalar product k · p = |k||p| cos θkp.. First we multiply both sides by
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1

2

∫ 1

−1

d(cos θpk)Pℓ(cos θpk), use the angular addition theorem

Pℓ(cos θpk) =
4π

2ℓ+ 1

ℓ∑
m=−ℓ

Y ∗
ℓm(Ωpq)Yℓm(Ωqk), (3.30)

and also

Pℓ(cos θ) =

√
4π

2ℓ+ 1
Yℓ0(Ω). (3.31)

From the partial wave expansion,

A(p,k) =
∞∑
ℓ=0

(2ℓ+ 1)Pℓ(x)aℓ(p, k)

⇒ aℓ(p, k) =
1

2

∫ 1

−1

dxPℓ(x)A(p,k). (3.32)

Defining B(p,k) = (p2 + k2 −mE + pkx)−1 one arrives at [82]

bℓ(p, k) =
1

2

∫ 1

−1

dxPℓ(x)
1

p2 + k2 −mE + kpx
,

=
(−1)ℓ

pk
Qℓ

(
p2 + k2 −mE

pk

)
. (3.33)

We choose the the z-axis along p, thus only the m = 0 projection contributes,

tℓ(p, k) = 2my2 bℓ(p, k) + h +
1

π2

1

2

∫ 1

−1

d(cos θpk)Pℓ(cos θpk)

∫ ∞

0

dq q2

×
∫
dΩpq

∞∑
ℓ′=0

(2ℓ′ + 1)Pℓ′(cos θpq)

[
bℓ′(p, q) +

h

2my2

]
D(E; q)

×
∞∑

ℓ′′=0

(2ℓ′′ + 1)Pℓ′′(cos θqk)tℓ′′(q, k),

= 2my2 bℓ(p, k) + h +
1

π2

1

2

∫ 1

−1

d(cos θpk)Pℓ(cos θpk)

∫ ∞

0

dq q2

×
∫
dΩpq

∞∑
ℓ′,ℓ′′=0

√
4π(2ℓ′ + 1)Yℓ′0(Ωpq)

[
bℓ′(p, q) +

h

2my2

]
D(E; q)

× 4π
ℓ′′∑

m=−ℓ′′

Y ∗
ℓ′′m(Ωpq)Yℓ′′m(Ωpk)tℓ′′(q, k). (3.34)
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Since ∫
dΩpqYℓ′0(Ωpq)Y

∗
ℓ′′m(Ωpq) = δℓ′ℓ′′δm0, (3.35)

we have

tℓ(p, k) = 2my2 bℓ(p, k) + h +
1

π2

∫ 1

−1

=dΩpk︷ ︸︸ ︷
d(cos θpk)2π Pℓ(cos θpk)

∫ ∞

0

dq q2

×
∞∑

ℓ′=0

√
4π(2ℓ′ + 1)

[
bℓ′(p, q) +

h

2my2

]
D(E; q)Yℓ′0(Ωpk)tℓ′(q, k). (3.36)

When there is no dependence on the azimuthal angle φ → m = 0 and Y ∗
ℓ0 = Yℓ0. Using

Eq. (3.31), ∫
dΩpkY

∗
ℓ0(Ωpk)Yℓ′0(Ωpk) = δℓℓ′ , (3.37)

tℓ(p, k) = 2my2 bℓ(p, k) + h +
1

π2

∫ ∞

0

dq q2
√

4π
4π(2ℓ′ + 1)

2ℓ+ 1

×
[
bℓ′(p, q) +

h

2my2

]
D(E; q)δℓℓ′tℓ′(q, k). (3.38)

Finally,

tℓ(p, k) = 2my2bℓ(p, k) + h+
4

π

∫ Λ

0

dq q2
[
bℓ(p, q) +

h

2my2

]
D(E; q)tℓ(q, k). (3.39)

we set the integration limited to a sharp cutoff Λ in order to regularize the integral. We
are interested only in S-waves, then, we set ℓ = 0, leading to [43]

Q0(x) =


1

2
ln

1 + x

1− x
, −1 < x < 1,

1

2
ln
x+ 1

x− 1
, outside this range.

(3.40)

The Born term is written as

b0(p, k) =
1

2pk
ln

(
p2 + k2 −mE + pk

p2 + k2 −mE − pk

)
. (3.41)
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The final expression for the three spinless bosons integral equation is given by

t0(p, k) =
my2

pk
ln

(
p2 + k2 −mE + pk

p2 + k2 −mE − pk

)
+ h

+
2

π

∫ Λ

0

dq q2
1

−1/a2 +
√
q2/4−mE

[
1

pq
ln

(
p2 + k2 −mE + pk

p2 + k2 −mE − pk

)
+

h

my2

]
t0(q, k).

(3.42)

This integral equation can be solved numerically by different methods. Methods used in
this work are described in details in Appendix E.

3.2.2 Efimov Physics

A peculiar phenomenon arises when studying three-particle systems with large scattering
length. This is called the Efimov effect and was first theoretically predicted by Vitaly
Efimov in 1970 [76, 77]. Efimov studied three particles interacting via a short-range
attractive potential that can almost or barely support a two-body bound state. A short-
range interaction is characterised by decaying faster than 1/r3, r being the interparticle
distance [78]. Systems that present at least two of the three pairs with s-wave scattering
length much larger than the range of the interaction (r2) show this effect [39, 79].

It was shown by Efimov that an effective long-range three-body attraction appears
and it supports infinitely many three-body bound states, which are called Efimov states.
Actually, these states are roughly geometrically spaced by a multiplicative factor eπ/|s0|,
where s0 depends on the statistics and the mass ratios of the particles. For the case of the
3-boson, s0 = 1.00624 and eπ/|s0| ≈ 22.7.

The formal explanation for the s0 value comes from solving the time independent
three-body wave equation. We are not going to properly solve with all details, but using
the hyper-spherical coordinates it is possible to write an equation for the hyper-radial
functions Fn(R) (with R being the hyper-radius)(

− ∂2

∂R2
− 1

R

∂

∂R
+
s2n
R2
− k2

)
Fn(R) = 0, (3.43)

with total energy E = k2/m, leading to a one-dimensional Schrödinger equation for the

hyper-radial potential Vn(R) =
s2n − 1/4

R2
,

(
− ∂2

∂R2
+ Vn(R)− k2

)√
RFn(R) = 0. (3.44)

There is only one solution for sn in equation (3.44) that is not real, that is, for n = 0. It
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is purely imaginary and assumes the value s0 ≈ ±1.00624i. The corresponding potential
is attractive. Any other value of n leads to a repulsive potential. This non-intuitive result
for the s-channel (n = 0) is called Efimov attraction.

The multiplicative factor λ0 = eπ/|s0| ≈ 22.7 is the one that makes the solution of
(3.43) invariant, R → λn0R. This is called the discrete scale invariance. Then, if there
is a solution for E < 0, there is also n-solutions for E/λ2n0 < 0 and the scaling factor is
λ20 ≈ 515. This discrete scale invariance is shown on Figure 3.7, the so-called ”Efimov
plot”.

The three-body bound states actually present some universal features that were also
studied by Vitaly Efimov [80]. These universal properties are insensitive to the details of
the two-body interaction that occurs in short distances. One of the universal properties is
that the ratio between successive bound states are fixed

B
(n+1)
3 /B

(n)
3 −→ e−2π/|s0| as n→∞ for a2 = ±∞. (3.45)

For instance, for three bosons this universal number is approximately 1/515.
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Figure 3.7: The Efimov plot showing the discrete scale invariance for the three-boson
system.

In Figure 3.7 we show the spectrum of the Efimov states. The x-axis shows the inverse
of the two-body scattering length a2 and the y-axis is the sgn(E)

√
m|E|. All three-body

bound states show the same trajectory up to a universal scaling factor, λ ≈ 22.7. The limit
where 1/a2 → 0 (or a2 → ±∞) is called the unitary limit or unitarity and is related to the
unitarity of the S-matrix as described in Chapter 2. Near the unitary limit, the scattering
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length a2 is the only parameter that governs the two-body physics. Although the Efimov
states are defined only at the unitarity, where the discrete symmetry scale is exact, one
can notice that the plot has an approximate symmetry for 1/a2 > 0 and 1/a2 < 0. The
whole spectrum shows the so-called Efimov physics. One can parcel out the spectrum into
regions that have some important physical meaning. In the lower right region of the plot,
going to the right (increasing 1/a2) one notices that each curve ends at points forming
a straight line with inclination of 45◦. Physically that means that the three-body energy
reaches its continuum threshold and turns into a two-body bound state and a boson. In
other words, when 1/a2 > 0 there is a true two-boson bound state plus a bound third
boson, forming a three-body bound state—this state is sometimes called an all-bound
three-body state. And as long as the curve reaches the threshold, the two-body (dimer)
system remains bounded but the third boson unbinds, going to the continuum (boson-
dimer scattering states). Regarding the left region of the figure, when 1/a2 < 0, there
is not a true two-body bound state, but a virtual two-body state which binds to the third
boson. This state is called a borromean state. As one moves towards the left (increases
1/|a2|) the curves cross the y = 0 axis and go to the continuum states, i.e., states with
energy Re[E] > 0. These states correspond to resonances and we can capture the physics
of the resonances for the three-boson system in the Efimov plot by adapting our bound
state codes. For bound states, we numerically solve a homogeneous version of Eq. (3.42),
written as

t0(p, k) =
2

π

∫ Λ

0

dq q2
1

−1/a+
√
q2/4−mE

×
[
1

pq
ln

(
p2 + k2 −mE + pk

p2 + k2 −mE − pk

)
+

h

my2

]
t0(q, k) . (3.46)

The true three-body bound state solutions, with E < b2 (with b2 the two-body bound
state energy), result in a kernel that is purely real. The homogeneous equation can be
expressed as a simple equation of the form (I−K)t0 = 0 and search for the zeroes of the
determinant of (I−K), where I is the identity matrix. When searching for resonances, we
also need to solve Eq. (3.46), however the code needs to be adapted as the kernel of the
integral equation assumes complex values. Differently from the bound state code, where
the search is on the real axis, resonances require a two-dimensional search, as we need
to determine both real and imaginary parts. The details of the search algorithm can be
seen in Appendix (E). It is also important to stress that it is not our intention to reproduce
any particular physical system when describing the three-boson system. All values are
fictitious, our aim is just to illustrate the Efimov physics.
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3.3 A more realistic case: nd system

The reason for studying the nd system is guided by the fact that working with fermions
demand the introduction of the formalism of spin and isospin. This leads to the study of
the projectors, which will be used when describing the Λnn system. It was also important
to check our codes for coupled integral equations and the nd system has vast results in the
literature [56, 81]. The neutron-deuteron system consists of a neutron interacting with a
neutron-proton pair, this pair forms a bound-state called deuteron. There are two possible
S-wave channels for the nd system. Namely, the quartet channel 3S1 (in the spectroscopic
notation 2S+1LJ ) (S = 3/2), in which the spins of the three nucleons are aligned, and
the doublet channel 1S0 (S = 1/2), that is more complicated because the interaction
might occur in either 3S1 and 1S0 waves, leading to a bound-state, the triton. As the latter
channel is a coupled-channel, we need to solve a coupled integral equation [81]. The
Lagrangian that describes the system is

L = L0 + LI + L3B. (3.47)

The first piece is the kinematic term, we need to add another dimer field describing
both spin-singlet (dineutron) and -triplet (deuteron) channels. Note that, we use the con-
vention greek letters stand for spin indices and roman letters for isospin. Then,

L0 = N †
(
i∂0 +

∇2

2mN

)
N + s†j

(
i∂0 +

∇2

4mN

−∆s

)
sj + t†α

(
i∂0 +

∇2

4mN

−∆t

)
tα.

(3.48)
The second piece is the interaction term, that gives rise for the vertices. Here appears

a object called projector P , that will be derived in the next subsection. It is given by

LI = −gs
[
s†j(N

TPj
sN) + H.c.

]
− gt

[
t†α(N

TPα
t N) + H.c.

]
. (3.49)

The third piece is about the three-body force term

L3B = ϕ†

[
Ω−

∞∑
ℓ=1

h2ℓ

(
i∂0 +

∇2

6mN

+
γ2t
mN

)ℓ
]
ϕ− g3√

3
{ϕ†[(σαN)tα−(τ jN)sj]+H.c.}.

(3.50)
with ϕ representing a trimer field. The trimer is similar to the dimer, but instead of being
a mathematical trick representing two fields, it represents three fields, in this case, it has
the quantum numbers of the triton. The trimer propagator is proportional to 1/Ω. One can
write the Lagrangian using only dimers by a Gaussian integration. The reason we chose
to write in this manner is to simplify the contractions.
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3.3.1 Projectors

Since we are dealing with nucleons, spin (and also isospin) plays an important role. The
way we account the spin contribution is adding a projector, that relates a channel with
spin A into a channel with spin B. Of course, we will also need to add the spin of the
two-particle system with the another particle spin, which will be given in the next section.

Nucleons can be understood as a doublet of isospin. The proton represents the ”up”
projection of the third component of the isospin I3 = +1/2 and the neutron represents
the ”down” projections, I3 = −1/2. Both proton and neutron have spin-1/2. We can
represent the nucleon as a vector

N =

(
p

n

)
. (3.51)

In the isospin space, we write

proton =

(
1

0

)
, neutron =

(
0

1

)
. (3.52)

In the same way, in the spin space, we represent

|↑⟩ =

(
1

0

)
, |↓⟩ =

(
0

1

)
. (3.53)

Two-nucleon

Although we will start by deriving the expressions for the projectors using the spin space,
there is no differences when working in the isospin space. The addition of two nucle-
ons is the addition of two particles with spin-1/2. This results in a triplet and a singlet.
Using |↑⟩ as the positive projection of the third component of the spin m = +1/2 and
|↓⟩ as the negative projection, m = −1/2, we write all possible spin combinations as
|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩.

They sum up to spin-1 in three different combinations (normalized)

Triplet


|↑↑⟩ ,
1√
2
[|↑↓⟩+ |↓↑⟩] ,

|↓↓⟩ .

(3.54)
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And only one combination gives spin-0

Singlet

{
1√
2
[|↑↓⟩ − |↓↑⟩] . (3.55)

Let us introduce the same states written in matrix form

|↑↑⟩ = (↑, ↓)

(
1 0

0 0

)(
↑
↓

)
, (3.56)

1√
2
[|↑↓⟩+ |↓↑⟩] = 1√

2
(↑, ↓)

(
0 1

1 0

)(
↑
↓

)
,

1√
2
[|↑↓⟩ − |↓↑⟩] = 1√

2
(↑, ↓)

(
0 1

−1 0

)(
↑
↓

)
,

|↓↓⟩ = (↑, ↓)

(
0 0

0 1

)(
↑
↓

)
. (3.57)

Writing in matrix form explicit the intrinsic nature of a projector. These four matrices
are projectorsP that project two-nucleon states (NTPN) into spin-triplet and spin-singlet
channels. Now, if we use the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, σ0 =

(
1 0

0 1

)
, (3.58)

to write the projectors and call them by T (m) for triplet and S(0) for singlet

T (+1) =

(
1 0

0 0

)
=

1

2
(σ0 + σ3), T (−1) =

(
0 0

0 1

)
=

1

2
(σ0 − σ3), (3.59)

T (0) =
1√
2

(
0 1

1 0

)
=

1√
2
σ1, S(0) =

1√
2

(
0 1

−1 0

)
=

i√
2
σ2. (3.60)

Then, we can identify T (0) as the third spin-component T (3) in the Cartesian repre-
sentation. Naturally, the third spin-component is proportional to σ3, then using σiσj =

δijσ0 + iεijkσk

T (0) = T (3) = − i√
2
σ2σ3. (3.61)
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With the same prefactor the other components become

T (+1) = − i√
2
σ2

1√
2
(iσ2 − σ1), T (−1) = − i√

2
σ2

1√
2
(iσ2 + σ1). (3.62)

Defining the Cartesian components as

T (j) = − i√
2
σ2σj. (3.63)

In terms of them, we write

T (+1) =
1√
2
(iT (2) − T (1)), T (0) = T (3), T (−1) =

1√
2
(iT (2) + T (1)). (3.64)

The generalisation is straightforward to derive in the isospin space. Analysing the
neutron-deuteron system, a spin-triplet (S = 1) must be a isospin-singlet (I = 0), while
a spin-singlet (S = 0) must be a isospin-triplet (I = 1). The projectors are the direct
products |S = 1⟩ ⊗ |I = 0⟩ and |S = 0⟩ ⊗ |I = 1⟩. These information lead to the final
expression for the projectors, denoting by τ the same Pauli matrices but in the isospin
space

Pα
t =

1

2
τ2σ2σ

α, P i
s =

1

2
σ2τ2τ

i. (3.65)

with Pα
t projecting into a spin-triplet (isospin-singlet) channel and P i

s into spin-singlet
(isospin-triplet) channel. In the literature, one can find a 1/

√
8 factor in the definition

of the the projector instead of the 1/2. This comes from absorbing the 1/
√
2 from the

coupling from the Lagrangian density, as in Eq. (3.49).

Three-nucleon

Our task is to include another nucleon, in order to properly account the third particle in
the system. First, we might note that there are three possible spin-states emerging from
the three-nucleon system: (i) two nucleons in the singlet channel (j1 = 0) combining
with another one (j2 = 1/2) to form a spin-doublet channel (J = 1/2); (ii) two nucleons
in the triplet channel (j1 = 1) combined with another nucleon (j2 = 1/2) forming a spin-
doublet (J = 1/2) and the last one (iii) two nucleons on the triplet channel combining
with another one forming a spin-quartet (J = 3/2).

For the addition of two particles, we write

|JM⟩ = |j1m1, j2m2⟩ . (3.66)
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Then, our previous notation now reads

|11⟩ = |↑↑⟩ =
∣∣∣∣12 12 , 12 12

〉
, (3.67)

|10⟩ = 1√
2
[|↑↓⟩+ |↓↑⟩] = 1√

2

[∣∣∣∣12 12 , 12
(
−1

2

)〉
+

∣∣∣∣12
(
−1

2

)
,
1

2

1

2

〉]
,

|1(−1)⟩ = |↓↓⟩ =
∣∣∣∣12
(
−1

2

)
,
1

2

(
−1

2

)〉
,

|00⟩ = 1√
2
[|↑↓⟩ − |↓↑⟩] = 1√

2

[∣∣∣∣12 12 , 12
(
−1

2

)〉
−
∣∣∣∣12
(
−1

2

)
,
1

2

1

2

〉]
.

Adding the third particle according to the notation

|j1, j2; JM⟩ = CJM
j1m1,j2m2

|j1m1, j2m2⟩ . (3.68)

with CJM
j1m1,j2m2

the Clebsch-Gordan coefficients.
The possible three-particle states are, then, given by

Quartet



∣∣∣∣112; 32 , 32
〉

=

∣∣∣∣11, 12 12
〉
,∣∣∣∣112; 32 , 12

〉
=

√
2

3

∣∣∣∣10, 12 12
〉
+

√
1

3

∣∣∣∣11, 12
(
−1

2

)〉
,∣∣∣∣112; 32 ,

(
−1

2

)〉
=

√
1

3

∣∣∣∣1(−1), 12 12
〉
+

√
2

3

∣∣∣∣10, 12
(
−1

2

)〉
,∣∣∣∣112; 32 ,

(
−3

2

)〉
=

∣∣∣∣1(−1), 12
(
−1

2

)〉
.

(3.69)

Doublet


∣∣∣∣112; 12 , 12

〉
=

√
1

3

∣∣∣∣10, 12 12
〉
−
√

2

3

∣∣∣∣11, 12
(
−1

2

)〉
,∣∣∣∣112; 12 ,

(
−1

2

)〉
=

√
2

3

∣∣∣∣1(−1), 12 12
〉
−
√

1

3

∣∣∣∣10, 12
(
−1

2

)〉
.

(3.70)
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Doublet


∣∣∣∣012 , 12 12

〉
=

∣∣∣∣00, 12 12
〉
,∣∣∣∣012 , 12

(
−1

2

)〉
=

∣∣∣∣00, 12
(
−1

2

)〉
.

(3.71)

To write the expressions for the projectors for the doublet and quartet channels one
needs to know what matrices relates a two-nucleon state and a nucleon to a three-nucleon
state. For the doublets, we write(

d+

d−

)
=
∑
j

[
NTPjN

]
F (j)

(
n+

n−

)
=
∑
j

[
NTPjN

](f (j)
11 f

(j)
12

f
(j)
21 f

(j)
22

)(
n+

n−

)
. (3.72)

For the quartet
q++

q+

q−

q−−

 =
∑
j

[
NTPjN

]
G(j)

(
n+

n−

)
=
∑
j

[
NTPjN

]

g
(j)
11 g

(j)
12

g
(j)
21 g

(j)
22

g
(j)
31 g

(j)
32

g
(j)
41 g

(j)
42


(
n+

n−

)
. (3.73)

Here F (j) and G(j) are transition matrices that relates a two-nucleon state with Carte-
sian component j and a third nucleon with spin components n+(up) and n− (down). The
components of both matrices can be determined by the Clebsch-Gordan coefficients [83].
In order to follow Grießhammer’s notation [82], we use the same sign convention. Using
the three-particle states as written above, we start by considering: (i) two nucleons in the
singlet channel combined with another nucleon to form a spin-doublet channel (J = 1/2).

The projector for this channel is simply Pj = S(0), then

d+ =

∣∣∣∣00, 12 12
〉
n+, (3.74)

d− =

∣∣∣∣00, 12
(
−1

2

)〉
n−.

d+ = NTS(0)Nn+, (3.75)

d− = NTS(0)Nn−.

Leading to

F (0) =

(
1 0

0 1

)
. (3.76)

The next case is: (ii) two nucleons in the triplet channel combined with another nu-
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cleon forming a spin-doublet

d+ =

√
1

3

∣∣∣∣10, 12 12
〉
n+ −

√
2

3

∣∣∣∣11, 12
(
−1

2

)〉
n−, (3.77)

d− =

√
2

3

∣∣∣∣1(−1), 12 12
〉
n+ −

√
1

3

∣∣∣∣10, 12
(
−1

2

)〉
n−.

By knowing the spin projection, we can match with the two-nucleon projectors that
have been derived above and write

d+ =

√
1

3

(
NTT (0)N

)
n+ −

√
2

3

(
NTT (+1)N

)
n−, (3.78)

d− =

√
2

3

(
NTT (−1)N

)
n+ −

√
1

3

(
NTT (0)N

)
n−.

As the F (j) matrices relates the Cartesian component j, we need to use Eq. (3.64) to
write

d+ =

√
1

3

(
NTT (3)N

)
n+ −

√
1

3

[
NT

(
iT (2) − T (1)

)
N
]
n−, (3.79)

d− =

√
1

3

[
NT

(
iT (2) + T (1)

)
N
]
n+ −

√
1

3

(
NTT (3)N

)
n−.

Leading to

F (1) =
1√
3

(
0 1

1 0

)
=

σ1√
3
, F (2) =

1√
3

(
0 −i
i 0

)
=

σ2√
3
, (3.80)

F (3) =
1√
3

(
1 0

0 −1

)
=

σ3√
3
.

In a more compact way, one can write the expression for the projector as

Pj
d =

1√
3
σj. (3.81)

Note that, as we extend for the isospin space in the 2-nucleon projector, we can do so
here and write the projector as

P ij
d =

1√
3

(
σi 0

0 τ j

)
. (3.82)
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Now, for the quartet channel

q++ =

∣∣∣∣11, 12 12
〉
n+, (3.83)

q+ =

√
2

3

∣∣∣∣10, 12 12
〉
n+ +

√
1

3

∣∣∣∣11, 12
(
−1

2

)〉
n−,

q− =

√
1

3

∣∣∣∣1(−1), 12 12
〉
n+ +

√
2

3

∣∣∣∣10, 12
(
−1

2

)〉
n−,

q−− =

∣∣∣∣1(−1), 12
(
−1

2

)〉
n−

In terms of the two-nucleon projectors

q++ = =
1√
2

[
NT

(
iT (2) − T (1)

)
N
]
n+, (3.84)

q+ = =

√
2

3

(
NTT (3)N

)
n+ +

1√
6

[
NT

(
iT (2) − T (1)

)
N
]
n−,

q− =
1√
6

[
NT

(
iT (2) + T (1)

)
N
]
n+ +

√
2

3

(
NTT (3)N

)
n−,

q−− =
1√
2

[
NT

(
iT (2) + T (1)

)
N
]
n−.

Then, the G(j) matrices are

G(1) =
1√
6


−
√
3 0

0 −1
1 0

0
√
3

 , G(2) =
i√
6


√
3 0

0 1

1 0

0
√
3

 , (3.85)

G(3) =
2√
6


0 0

1 0

0 1

0 0

 .

These matrices obey some relations

G(i)†G(j) =
2

3
δij −

i

3
εijkσk, (3.86)

G(i)G(j)† =
3

4
δij −

1

6
{Ji, Jj}+

i

3
ϵijkJk, (3.87)

G(i)σj −G(j)σi = −iεijkG(k), (3.88)
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i
∑
i,j

εijkG
(i)σj = G(k). (3.89)

where Ji are the generators of spin-3/2, derived in the Appendix A. The above relations
of G(i) matrices are derived in Appendix B.

3.3.2 Born Term

We now proceed using the results that are given in details in Appendix C. The Born term
is given by

iBβα
ji (di → dj) = (−igdj)(−igdi)

∫
d4xd4y ⟨0|T{dj(∞)Nβ(∞)

[
d†k(y)Nγ(y)Pk

γδNδ(y)
]

×
[
N †

ϵ (x)Ps†

ϵσN
†
σ(x)ds(x)

]
d†i (−∞)N †

α(−∞)} |0⟩ .

(3.90)

The contractions are given in Appendix C. The final expression for the Born term can be
written as

iBji
βα = (−igdj)(−igdi)

(
−1

2
OiOj

)
βα

iSN(kd0 −Bd − kn0 + ε;p+ k),

= i
gdjgdi
2

(OiOj)βα

kd0 −Bd − kn0 + ε− (p+k)2

2mN
+ iϵ

, (3.91)

where we used the kinematics described in Figure 3.8. And the factor OiOj stands for
combinations of Pauli matrices σi (spin) and τ i (isospin). Bd is the binding energy of the
deuteron. The integral equation, then, reads

Figure 3.8: The kinematics for the integral equation for the nd system.

T
ji

βα(ε;p,k) = Bji
βα(kd0 − kn0 −Bd + ε;p+ k) +Hji

βα(ε;p,k). (3.92)
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The homogeneous term Hji
βα(ε;p,k) is given by

Hji
βα(ε;p,k) =

∑
f=s,t

∫
d4q

(2π)4
iBjℓ

βγ(kd0 − kn0 −Bd + 2ε+ q0;p+ q)iDf (kd0 −Bd + ε+ q0; q)

× iSN(kn0 − ε− q0;−q)iT
ℓi

γα(ε+ q0; q,k),

=
∑
f=s,t

∫
d4q

(2π)4
Bjℓ

βγ(kd0 − kn0 −Bd + 2ε+ q0;p+ q)Df (kd0 −Bd + ε+ q0; q)

1

kn0 − ε− q0 − q2

2mN
+ iϵ

T
ℓi

γα(ε+ q0; q,k), (3.93)

where the sum is over the singlet and triplet states. Integrating q0 by contour integration
setting q0 = kn0 − ε− q2

2mN
+ iϵ, one arrives at

Hji
βα(ε;p,k) = −i

∑
f=s,t

∫
d3q

(2π)3
Bjℓ

βγ(kd0 −Bd + ε− q2/2mN ;p+ q)

×Df (kd0 + kn0 −Bd − q2/2mN ; q)T
ℓi

γα(kn0 − q2/2mN ; q,k).

(3.94)

Returning to the full equation

T
ji

βα(ε;p,k) = Bji
βα(kd0 − kn0 −Bd + ε;p+ k)−

∑
f=s,t

∫
d3q

(2π)3

×Bjℓ
βγ(kd0 −Bd + ε− q2/2mN ;p+ q)Df (kd0 + kn0 −Bd − q2/2mN ; q)

× T
ℓi

γα(kn0 − q2/2mN ; q,k),

=
gdjgdi
2

(OiOj)βα

kd0 −Bd − kn0 + ε− (p+k)2

2mN
+ iϵ

−
∑
f=s,t

∫
d3q

(2π)3
gdjgdℓ
2

(OℓOj)βγ

kd0 −Bd + ε− q2

2mN
− (p+k)2

2mN
+ iϵ

×Df (kd0 + kn0 −Bd − q2/2mN ; q)T
ℓi

γα(kn0 − q2/2mN ; q,k),
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=
gdjgdi
2

mN(OiOj)βα

mN(kd0 −Bd − kn0 + ε)− (p+k)2

2
+ iϵ

+
∑
f=s,t

gdjgdi
2

∫
d3q

(2π)3

(
−gdℓ
gdi

)
mN(OℓOj)βγ

mN(kd0 −Bd + ε)− q2

2
− (p+k)2

2
+ iϵ

×
(
− 4π

mNg2dℓ

)
Df (kd0 + kn0 −Bd − q2/2mN ; q)T

ℓi

γα(kn0 − q2/2mN ; q,k),

(3.95)

where we used that Df (p0;p) =

(
− 4π

mNg2dℓ

)
Df (p0;p).

=
mNgdjgdi

2

{
(OiOj)βα

mN(kd0 −Bd − kn0 + ε)− (p+k)2

2
+ iϵ

+ 2π
∑
f=s,t

∫
d3q

(2π)3
(OℓOj)βγ

mN(kd0 −Bd + ε)− q2

2
− (p+k)2

2
+ iϵ

×Df (kd0 + kn0 −Bd − q2/2mN ; q)

(
2

mNgdℓgdi

)
T

ℓi

γα(kn0 − q2/2mN ; q,k)

}
.

(3.96)

Then, defining T
ji

βα(p0;p) ≡
mNgdjgdi

2
T ji
βα(p0;p) and setting ε = kn0 − p2/2mN and

the initial particles on-shell, kn0 = k2/2mN and kd0 = k2/4mN . We calculate the half
off-shell amplitude as

T ji
βα(p,k) =

(OiOj)βα

mNE − p2 − k2 − p · k

+ 2π
∑
f=s,t

∫
d3q

(2π)3
(OℓOj)βγ

mNE − p2 − q2 − p · q
Df (E − q2/2mN ; q)T

ℓi
γα(q,k),

(3.97)

assuming E = kd0 + kn0 −Bd =
3k2

4mN

−Bd.

3.3.3 Quartet channel

Only the 3S1 channel contributes, this leads to a single integral equation. Using Eq. (3.102),
one can project into quartet channel using the G(i) matrices. This projection is given by

G(j)σiσjG(i)† = G(j)(δij+iϵijkσk)G
(i)† = (G(i)+iϵjkiG

(j)σk)G
(i)† = 2G(i)G(i)†, (3.98)
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where we used Eq. (3.89). And remembering that J2
i |j,m⟩ = j(j + 1) |j,m⟩ and using

(3.87)

2G(i)G(i)† = 2

[
3

4

3∑
i=1

δii −
1

6
(J2

i + J2
i )

]
= 2

[
9

4
− 1

3

3

2

(
3

2
+ 1

)]
= 2. (3.99)

Using the partial wave expansion and the angular addition theorem in order to integrate
over the angle variables leads us to our final expression. As there the procedure is the
same as done before, we stress that the only difference is the prefactor 2π instead of the
8π for the previous case. Knowing this, we can write

tℓ(p, k) = 2bℓ(p, k) +
2

π

∫ ∞

0

dq q2bℓ(p, q)Dt(E − q2/2mN ; q)tℓ(q, k), (3.100)

with the same definition for bℓ(p, k).

bℓ(p, k) =
1

2

∫ 1

−1

dxPℓ(x)
1

p2 + k2 −mNE + kpx
,

=
(−1)ℓ

pk
Qℓ

(
p2 + k2 −mNE

pk

)
. (3.101)

3.3.4 Doublet channel

The doublet channel presents a more complicated scenario as either 3S1 and 1S0 channels
contribute. The difference is the appearance of a coupled integral equation, specifically,
two coupled integral equations. When deriving the equations, we will use Grießhammer’s
notation [82] and the Born term can be expressed as a 2×2 matrix in cluster-configuration
space,(

T ji
t→t(p,k) T ji

t→s(p,k)

T ji
s→t(p,k) T ji

s→s(p,k)

)
= − 1

p2 + k2 −mNE + p · k

(
σiσj τ iσj

σiτ j τ iτ j

)

−
∫

d3q

(2π)2
1

p2 + q2 −mNE + p · q

(
σℓσj τ ℓσj

σℓτ j τ ℓτ j

)
(
Dt(E − q2/2mN ; q) 0

0 Ds(E − q2/2mN ; q)

)(
T ℓi
t→t(q,k) T ℓi

t→s(q,k)

T ℓi
s→t(q,k) T ℓi

s→s(q,k)

)
.

(3.102)
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Projecting into initial and final spin-doublet states using Eq. (3.82),

1√
3

(
σj 0

0 τ j

)(
T ji
t→t(p,k) T ji

t→s(p,k)

T ji
s→t(p,k) T ji

s→s(p,k)

)
1√
3

(
σi 0

0 τ i

)
=

(
Tt→t(p,k) Tt→s(p,k)

Ts→t(p,k) Ts→s(p,k)

)
.

(3.103)

We use these identities

σjτ kσj = σj(δkj + iϵkjℓσ
ℓ) = σk + iϵkjℓ(δjℓ+iϵjℓrσr) = σk − (δℓℓδkr − δℓrδkℓ)︸ ︷︷ ︸

=2δkr

σr = −σk,

σjτ kσj = 3τ k, τ jσkτ j = 3σk, τ jτ kτ j = −τ k. (3.104)

Thus, we write

1√
3

(
σj 0

0 τ j

)(
σiσj τ iσj

σiτ j τ iτ j

)
=

1√
3

(
−σi 3τ i

3σi −τ i

)
=

(
−1 3

3 −1

)
1√
3

(
σi 0

0 τ i

)
.

(3.105)
Which leads to(

Tt→t(p,k) Tt→s(p,k)

Ts→t(p,k) Ts→s(p,k)

)
=

1

p2 + k2 −mNE + p · k

(
1 −3
−3 1

)

+

∫
d3q

(2π)2
1

p2 + q2 −mNE + p · q

(
1 −3
−3 1

)

×
(
Dt(E − q2/2mN ; q) 0

0 Ds(E − q2/2mN ; q)

)(
Tt→t(q,k) Tt→s(q,k)

Ts→t(q,k) Ts→s(q,k)

)
.

(3.106)

The projection into partial waves is done using the same procedure as before. We use the
partial wave expansion and the angular addition theorem. Thus, we arrive at

tℓ(p, k) = bℓ(p, k)

(
1 −3
−3 1

)
+

∫ ∞

0

dq q2

π
bℓ(p, q)

(
1 −3
−3 1

)

×
(
D̃t(E; q) 0

0 D̃s(E; q)

)
tℓ(q, k), (3.107)

with bℓ(p, k) as defined earlier, D̃(E; q) ≡ Ds(E−q2/2mN ; q) and the amplitude tℓ(p, k) =(
tℓt→t(p, k) tℓt→s(p, k)

tℓs→t(p, k) tℓs→s(p, k)

)
.

We need to account the three-body term in the Lagrangian (3.50). The Born term for
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the three-body force is written as

iB3B(di → dj) = ±
(
−i g3√

3

)2 ∫
d4xd4y (3.108)

× ⟨0|T{dj(∞)Nβ(∞)
[
d†kN

†
γOk

γδϕδ

]
y

[
ϕ†
ϵOℓ†

ϵσNσdℓ

]
x
d†i (−∞)N †

α(−∞)} |0⟩ ,

where the sign depends on the initial and final dimeron states. There is only one possible
contraction and is given by

⟨0|T{dj(∞)Nβ(∞)[d†kN
†
γOk

γδϕδ]y[ϕ
†
ϵOℓ

ϵσNσdℓ]xd
†
i (−∞)N †

α(−∞)} |0⟩ (3.109)

= δjkiDdj(∞− y)δβγiSN(∞− x)δℓiiDdi(x+∞)δσαiSN(y +∞)δδϵiT (y − x)Ok
γδOℓ

ϵσ

= −iDdj(∞− y)iSN(∞− x)iDdi(x+∞)iSN(y +∞)iT (y − x)Oj
βϵO

i
ϵα, (3.110)

with iT (z) = i/Ω being the trimer propagator and Oj
αβ = (σα − τ j)β . Then, the am-

putaded Born amplitudes are

iBji
3B = i

2

mNgdjgdi
B

ji

3B = −i 2g23
mNgdjgdiΩ

1

3

(
σjσi −σjτ i

−τ jσi τ jτ i

)
= i
H
3

(
σjσi −σjτ i

−τ jσi τ jτ i

)
.

(3.111)
Then, we project into the doublet channel

B3B =
1√
3

(
σj 0

0 τ j

)
Bji

3B

1√
3

(
σi 0

0 τ i

)
= H

(
1 −1
−1 1

)
. (3.112)

(Note that the three body force does not contribute to the quartet channel since
∑

iG
(i)σi =

0.)
Finally, we can write the doublet channel integral equation

tℓ(p, k) = bℓ(p, k)

(
1 −3
−3 1

)
+ δℓ0H

(
1 −1
−1 1

)

+

∫ ∞

0

dq q2

π

[
bℓ(p, q)

(
1 −3
−3 1

)
+ δℓ0H

(
1 −1
−1 1

)](
D̃t(E; q) 0

0 D̃s(E; q)

)
tℓ(q, k).

(3.113)

Note that we need to solve both coupled equations simultaneously, as a matrix equation,
in order to properly solve the problem. The doublet channel is the one that exhibits
the Efimov physics—the kernel of this channel does not vanish sufficiently fast in the
ultraviolet, forcing us to introduce a momentum cutoff Λ as the upper limit of integration
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in (3.113). In the absence of a three-body interaction, parametrized by H, the solution
of the integral equation is quite sensitive to the value of Λ [75, 74, 81]. In the spirit of
EFT, proper renormalization of the problem requires an explicit Λ-dependence on H in
order to absorb the Λ-dependence of the remaining kernel. In position space, the latter is
equivalent to the−1/R2 divergence at the origin in Eq. (3.44) for n = 0, while the former
is equivalent to the boundary condition near R = 0 that fixes the energy of the deepest
(ground) bound state. The quartet channel does not exhibit such phenomenon, since in
this channel the Pauli exclusion principle precludes the spins to be all aligned at the same
position in space.

We reproduced the triton binding energy by solving numerically the homogeneous
version of the coupled integral equations in Eq. (3.113). Regardless of being interested
mainly in the homogeneous integral equations, we also solved the nd non-homogeneous
equations calculating scattering observables (phase shifts) and comparing with refer-
ence [82]. This study of the nd system, reproducing well-known results in the literature,
gives us confidence to move forward and address the Λnn system, described in the next
chapters.
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Chapter 4

Λnn system

The Λnn system can be described mathematically in an analogous way as the nd system,
and that is the main reason we described explicitly this system in the previous section.
The Λnn is composed by two different particles: the neutron (S = 1/2, I = 1/2) and the
Λ (S = 1/2, I = 0). Note that the isospin dependence will come just from the neutrons.
And, for all possible channels, will be fixed (I = 1). The Λnn is a hypernucleus, due
to the Λ particle being a hyperon (a particle containing strange quarks, but no charm,
bottom or top quarks [84]). There are three possible channels that contribute to the system:
1S0(nn) (singlet), 1S0(Λn) (singlet) and 3S1(Λn) (triplet).

The Lagrangian that describes the system is given by [85]

L = L0 + LI + L3B, (4.1)

L0 = ϕ†
n

(
i∂0 +

∇2

2mn

)
ϕn + ϕ†

Λ

(
i∂0 +

∇2

2mΛ

)
ϕΛ

+ σs(nn)s
†
nn

(
i∂0 +

∇2

4mn

+∆s(nn)

)
snn

+ σs(Λn)s
†
Λn

(
i∂0 +

∇2

2(mn +mΛ)
+ ∆s(Λn)

)
sΛn

+ σt(Λn)t
†
Λn

(
i∂0 +

∇2

2(mn +mΛ)
+ ∆t(Λn)

)
tΛn + . . . , (4.2)

LI = −ys(nn)
[
s†nn(ϕ

T
nPs(nn)ϕn) +H.c.

]
− ys(Λn)

[
s†Λn(ϕ

T
nPs(Λn)ϕΛ) +H.c.

]
− yt(Λn)

[
t†kΛn(ϕ

T
nPk

t(Λn)ϕΛ) +H.c.
]
+ . . . , (4.3)

L3B = −1

6
mΛy

2
t(Λn)

g(Λ)

Λ2
t†iΛnϕ

†
nσ

iσjϕnt
j
Λn + . . . , (4.4)

where ϕn and ϕΛ being the neutron and Λ fields, respectively; snn, sΛn and tΛn are the
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dibaryon fields for the 1S0(nn), 1S0(Λn) and 3S1(Λn) channels, respectively. The σs(nn),
σs(Λn) and σt(Λn) are sign factors. ∆s(nn), ∆s(Λn) and ∆t(Λn) are the mass differences
between the dibaryon and the elemetary constituent particle and the couplings ys(nn),
ys(Λn) and yt(Λn). The . . . stands for higher order operators. The projectors here are
different because we do not need to consider isospin projections, then, we write

Ps(nn) = −
i

2
σ2, Ps(Λn) = −

i√
2
σ2, Pk

t(Λn) = −
i√
2
σ2σ

k. (4.5)

The difference between the prefactors of Ps(nn) and Ps(Λn) is due to the fact that we
have two identical particles in 1S0(nn). Note that, the three-body force Lagrangian only
accounts the triplet channel interactions, this is due to the nonexistence of data for the
Λn interaction and we could not estimate the others couplings. Nonetheless, in principle,
these terms exist and should be considered.

4.1 Integral equation

In order to write the integral equation, one needs to calculate the Feynman rules for La-
grangian (4.1). The propagators are exactly the same as before, except by the fact that we
do need to care about the reduced mass for the 2-body system Λn. Resulting in

• Fermions
iSn(E; q) =

i

E − q2/2mn + iϵ
, (4.6)

iSΛ(E; q) =
i

E − q2/2mΛ + iϵ
. (4.7)

• Dibaryons (renormalized)

iDs(nn)(E, q) =
4π

y2s(nn)mn

i

1
ann
−
√

1
4
q2 −mnE − iϵ− iϵ

. (4.8)

For both 1S0(Λn) and 3S1(Λn) channels the total energy is given by ET = E −
q2/2(mn +mΛ), hence, the renormalized dimer propagators are written as

iDs(nn)(E, q) =
2π

y2s(Λn)µ(Λn)

i

1
as(Λn)

−
√
−2µ(Λn)

(
E − q2

2(mn+mΛ)
− iϵ)

)
− iϵ

,

(4.9)
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iDs(nn)(E, q) =
2π

y2t(Λn)µ(Λn)

i

1
at(Λn)

−
√
−2µ(Λn)

(
E − q2

2(mn+mΛ)
− iϵ)

)
− iϵ

.

(4.10)

As in [86, 87, 88] the sign factors σs(nn), σs(Λn) and σt(Λn) are equal to −1. Here, we omit
the subindex 2 on the scattering lengths, nonetheless all scattering lengths in this chapter
stands for the two-body subsystem.

The possible contractions for the Born terms are given in Appendix C. Thus, we pro-
ceed defining our operators as 3× 3 matrices as

T
ji
=

T
ji

t(Λn)→t(Λn) T
ji

s(Λn)→t(Λn) T
ji

s(nn)→t(Λn)

T
ji

t(Λn)→s(Λn) T
ji

s(Λn)→s(Λn) T
ji

s(nn)→s(Λn)

T
ji

t(Λn)→s(nn) T
ji

s(Λn)→s(nn) 0

 , D =

Dt(Λn) 0 0

0 Ds(Λn) 0

0 0 Ds(nn)

 ,

S =

SΛ 0 0

0 SΛ 0

0 0 Sn

 , B
ji
=


y2t(Λn)

σiσj

2
SΛ ys(Λn)yt(Λn)

σj

2
SΛ ys(nn)yt(Λn)

σi

√
2
Sn

yt(Λn)ys(Λn)
σi

2
SΛ y2s(Λn)

1

2
SΛ ys(nn)ys(Λn)

1√
2
Sn

yt(Λn)yt(nn)
σj

√
2
Sn ys(Λn)ys(nn)

1√
2
Sn 0

 .

(4.11)
Writing the integral equation with all operators in the unrenormalized form and using the
kinematics in Figure 4.1

iT
ji
(ε;p,k) = iB

ji
(Ki0 − ki0 −Bi0 + ε;p+ k) +

∫
d4q

(2π)4

× iB
jℓ
(Ki0 − ki0 −Bi0 + 2ε+ q0;p+ q)iD(Ki0 −Bi0 + ε+ q0; q)

× iS(ki0 − ε− q0;−q)iT
ℓi
(ε+ q0; q,k), (4.12)

with Ki0 =
k2

2(mj +mk)
, ki0 =

k2

2mi

and Bi0 is the binding energy related to the dimer

field i. Note that both Ki0 and ki0 are matrix dependent elements.

Figure 4.1: The kinematics for the integral equation for the Λnn system.

We project into doublet channel using the projection operator we derived in Chapter 3
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as long as we write the projector as

Pj = diag(σj/
√
3, 1, 1)

due to the right projection into singlet and triplet states and neglecting isospin. The pro-
jection is given by PjOijPi, with Oij the operators in B

ji
. Noting that the projection

given by PjB
ji
= B

jiPi, the Born term gives

B =


−1

2
y2t(Λn)SΛ −

√
3

2
ys(Λn)yt(Λn)SΛ −

√
3

2
ys(nn)yt(Λn)Sn

−
√
3

2
yt(Λn)ys(Λn)SΛ

1

2
y2s(Λn)SΛ

1√
2
ys(nn)ys(Λn)Sn

−
√

3

2
yt(Λn)yt(nn)Sn

1√
2
ys(Λn)ys(nn)Sn 0

 . (4.13)

After projecting into doublet channel, the integral equation reads

T (ε;p,k) = B(Ki0 − ki0 −Bi0 + ε;p+ k)− i
∫

d4q

(2π)4

×B(Ki0 − ki0 −Bi0 + 2ε+ q0;p+ q)D(Ki0 −Bi0 + ε+ q0; q)

× S(ki0 − ε− q0;−q)T (ε+ q0; q,k). (4.14)

Explicitly, the elements of Eq. 4.14 are given by

T ba(ε;p,k) = Bba(Ka0 − ka0 −Ba0 + ε;p+ k)

− i
∫

d4q

(2π)4
Bbc(Ka0 − ka0 −Ba0 + 2ε+ q0;p+ q)

×Dc(Ka0 −Ba0 + ε+ q0; q)Sc(ka0 − ε− q0;−q)T ca(ε+ q0; q,k),

(4.15)

= yaybχbafbajSj(Ka0 − ka0 −Ba0 + ε;p+ k)

− i
3∑

c=1

∫
d4q

(2π)4
ycybχbcfbciSi(Ka0 − ka0 −Ba0 + 2ε+ q0;p+ q)

×Dc(Ka0 −Ba0 + ε+ q0; q)Sc(ka0 − ε− q0;−q)T ca(ε+ q0; q,k),

(4.16)

with fijk = |ϵijk|+ δij(1− δjk)δk3, the Born term Bba = yaybχba

∑3
c=1 fbacSc, assuming
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S1 = S2 = Sn and S3 = SΛ and χba is the coefficients matrix written as

χ =


−1

2
−
√
3

2
−
√

3

2

−
√
3

2

1

2

1√
2

−
√

3

2

1√
2

0

 , (4.17)

T ba(ε;p,k) = yayb

{
χbafbajSj(Ka0 − ka0 −Ba0 + ε;p+ k)

−i
3∑

c=1

(
yc
ya

)∫
d4q

(2π)4
χbcfbciSi(Ka0 − ka0 −Ba0 + 2ε+ q0;p+ q)

×
(

2π

y2cµc

)
Dc(Ka0 −Ba0 + ε+ q0; q)Sc(ka0 − ε− q0;−q)T ca(ε+ q0; q,k)

}
,

= yaybµb

{
1

µb

χbafbajSj(Ka0 − ka0 −Ba0 + ε;p+ k)

−i
3∑

c=1

2π

∫
d4q

(2π)4
1

µb

χbcfbciSi(Ka0 − ka0 −Ba0 + 2ε+ q0;p+ q)

×Dc(Ka0 −Ba0 + ε+ q0; q)Sc(ka0 − ε− q0;−q)
1

yaycµc

T ca(ε+ q0; q,k)

}
.

(4.18)

We define the renormalized amplitude as Tba(ε;p,k) ≡
1

yaybµb

T ba(ε;p,k), leading to

Tba(ε;p,k) =
1

µb

χbafbajSj(Ka0 − ka0 −Ba0 + ε;p+ k)

− i
3∑

c=1

2π

∫
d4q

(2π)4
1

µb

χbcfbciSi(Ka0 − ka0 −Ba0 + 2ε+ q0;p+ q)

×Dc(Ka0 −Ba0 + ε+ q0; q)Sc(ka0 − ε− q0;−q)Tca(ε+ q0; q,k).

(4.19)
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We can integrate q0 via residues and write

Tba(ε;p,k) =
1

µb

χbafbaj
1

Ka0 − ka0 −Ba0 + ε− (p+ k)2/2mj + iϵ

−
3∑

c=1

2π

∫
d3q

(2π)3
1

µb

χbcfbci
1

Ka0 −Ba0 + ε− q2/2mc − (p+ q)2/2mi + iϵ

×Dc(Ka0 + ka0 −Ba0 − q2/2mc; q)Tca(ka0 − q2/2mc; q,k).

(4.20)

Defining the energy as Ei = Ki0 + ki0 − Bi0 + iϵ = k2/2Mi − Bi0 + iϵ, with Mi =
mi(mj +mk)

mi +mj +mk

, the amplitudes read

Tba(ε;p,k) =
1

µb

χbafbaj
1

Ea − 2ka0 + ε− (p+ k)2/2mj

−
3∑

c=1

2π

∫
d3q

(2π)3
1

µb

χbcfbci
1

Ea − ka0 + ε− q2/2mc − (p+ q)2/2mi

×Dc(Ea − q2/2mc; q)Tca(ka0 − q2/2mc; q,k). (4.21)

We can obtain the half off-shell amplitudes by setting ε = ka0 − p2/2mb = k2/2ma −
p2/2mb and then, Tba(p,k) ≡ Tba(k

2/2m)a− p2/2mb;p,k). With this, we arrive at

Tba(p,k) =
1

µb

χbafbaj
1

Ea − k2/2ma − p2/2mb − (p+ k)2/2mj

−
3∑

c=1

∫
d3q

4π2

1

µb

χbcfbci
1

Ea − p2/2mb − q2/2mc − (p+ q)2/2mi

×Dc(Ea − q2/2mc; q)Tca(q,k),

=
1

µb

χbafbaj
1

Ea − k2/2µb − p2/2µa − p · k/mj

−
3∑

c=1

∫
d3q

4π2

1

µb

χbcfbci
1

Ea − p2/2µc − q2/2µb − p · q/mi

×Dc(Ea − q2/2mc; q)Tca(q,k),

= −χbafbaj
µb

mj

pk

[
mj

pk
(k2/2µb + p2/2µa − Ea) + cos θpk

]
+

3∑
c=1

∫
d3q

4π2

χbcfbci
µb

mi

pq

[
mi

pq
(p2/2µc − q2/2µb − Ea) + cos θpq

]
×Dc(Ea − q2/2mc; q)Tca(q,k). (4.22)
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Expanding in partial waves, we write

Tba(p,k) =
∞∑
ℓ=0

(2ℓ+ 1)Pℓ(x)t
ℓ
ba(p, k),

⇒ tℓba(p, k) =
1

2

∫ 1

−1

dxPℓ(x)Tba(p,k). (4.23)

χbafbaj
µb

mj

pk

[
mj

pk
(k2/2µb + p2/2µa − Ea) + cos θpk

] =
∞∑
ℓ=0

(2ℓ+ 1)Pℓ(x)b
ℓ
ba(p, k),

⇒ bℓba(p, k) =
1

2

∫ 1

−1

dxPℓ(x)
χbafbaj
µb

mj

pk

[
mj

pk
(k2/2µb + p2/2µa − Ea) + cos θpk

] ,
= (−1)ℓχbafbajmj

µbpk
Qℓ

[
mj

pk

(
k2/2µb + p2/2µa − Ea

)]
. (4.24)

Using angular addition theorem, we write

tℓba(p, k) = −bℓba(p, k) +
3∑

c=1

∫ ∞

0

dq

π
q2Dc(Ea − q2/2mc; q)b

ℓ
bc(p, q)t

ℓ
ca(q, k),

= −(−1)ℓχbafbajmj

µbpk
Qℓ

[
mj

pk

(
k2/2µb + p2/2µa − Ea

)]
+

3∑
c=1

∫ ∞

0

(−1)ℓχbcfbcimi

µbpq
Qℓ

[
mi

pk

(
p2/2µc + q2/2µb − Ea

)]
×Dc(Ea − q2/2mc; q)t

ℓ
ca(q, k). (4.25)

The S-wave contribution (ℓ = 0) is given by

t0ba(p, k) = −
χbafbajmj

µb

1

2pk
ln

[
µb

µa
p2 + k2 − 2µbEa +

2µb

mj
pk

µb

µa
p2 + k2 − 2µbEa − 2µb

mj
pk

]

+
3∑

c=1

∫ ∞

0

χbcfbcimi

µb

1

2pq
ln

[
µb

µc
p2 + k2 − 2µbEa +

2µb

mi
pk

µb

µc
p2 + k2 − 2µbEa − 2µb

mi
pk

]
×Dc(Ea − q2/2mc; q)t

0
ca(q, k). (4.26)

We are interested in resonances, searching for them numerically, requires the calcu-
lation of a zero of the determinant of (I − K). Only the homogeneous integral equation
matters for this purpose, then, we can solve any column of the matrix of the amplitudes
T . We will consider the amplitudes A(p, k) (Tt(Λn)→t(Λn)), B(p, k) (Tt(Λn)→s(Λn)) and
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C(p, k) (Tt(Λn)→s(nn)), leading to eight homogeneous coupled integral equations

A(p, k) =− 1

2π

mΛ

µ(Λn)

∫ Λ

0

dq q2K1(p, q;E)
1

1

at(Λn)
−
√
µ(Λn)

MΛ

q2 − 2µ(Λn)E

A(q, k)

−
√
3

2π

mΛ

µ(Λn)

∫ Λ

0

dq q2K1(p, q;E)
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√
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√
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q2 −mnE
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(4.27)

B(p, k) =−
√
3

2π

mΛ

µ(Λn)

∫ Λ
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dq q2K1(p, q;E)
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1
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−
√
µ(Λn)

MΛ
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+
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2π

mΛ

µ(Λn)

∫ Λ

0
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−
√
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0
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1

1

as(nn)
−
√

mn

2Mn

q2 −mnE

C(q, k),

(4.28)

C(p, k) =−
√

3

2

1

π

mn

µ(Λn)

∫ Λ

0

dq q2K3(p, q;E)
1

1

at(Λn)
−
√
µ(Λn)

MΛ

q2 − 2µ(Λn)E

A(q, k)

+
1√
2π

mn

µ(Λn)

∫ Λ

0

dq q2K3(p, q;E)
1

1

as(Λn)
−
√
µ(Λn)

MΛ

q2 − 2µ(Λn)E

B(q, k).

(4.29)

with MΛ =
mn(mn +mΛ)

2mn +mΛ

and Mn =
2mnmΛ

2mn +mΛ

. And the kernels K1, K2 and K3 are
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given by

K1(p, k;E) =
1

2pk
ln

(
p2 + k2 − 2µ(Λn)E +

2µ(Λn)

mΛ
pk

p2 + k2 − 2µ(Λn)E −
2µ(Λn)

mΛ
pk

)
, (4.30)

K2(p, k;E) =
1

2pk
ln

( mn

2µ(Λn)
p2 + k2 −mnE + pk

mn

2µ(Λn)
p2 + k2 −mnE − pk

)
, (4.31)

K3(p, k;E) =
1

2pk
ln

(
p2 + mn

2µ(Λn)
k2 −mnE + pk

p2 + mn

2µ(Λn)
k2 −mnE − pk

)
. (4.32)

We introduced a sharp momentum cutoff Λ assuming E, k ∼ 1/ann ∼ 1/as,t(Λn) ≲

p≪ Λ. In order to obtain resonances, we run our codes with these coupled equations, the
results are presented in Chapter 5. The projection matrix we used in our codes is given by
the coefficients and the mass factors and is written as

χ =


− mΛ

µ(Λn)

1

2
− mΛ

µ(Λn)

√
3

2
− mn

µ(nn)

√
3

2

− mΛ

µ(Λn)

√
3

2

mΛ

µ(Λn)

1

2

mn

µ(nn)

1√
2

− mn

µ(Λn)

√
3

2

mn

µ(Λn)

1√
2

0


. (4.33)
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Chapter 5

Results

In this chapter, we present our numerical results. It is divided in two main sections:
the first one is based on results using the EFT described in Chapter 4, which consid-
ers only contact interactions at leading order and the last section presents results using
a phenomenological model based on [34], a model that is constructed using separable
potentials, specifically rank-one Yamaguchi potentials. The nn interaction is reasonably
well-known [89, 90, 91] but in contrast, the Λn interaction in poorly known. Efforts have
been made to determine a precise value for the Λn interaction using charge symmetry
breaking (CSB) in the data of bound states of a few Λ hypernuclei, specifically the 4

ΛH
and the 4

ΛHe, using the binding energy their of ground states to estimate the difference of
theses mirror hypernuclei [92]. However, recent publications have questioned the data of
4
ΛH and 4

ΛHe [93, 94].

5.1 EFT approach

All results in this section are obtained by solving the homogeneous Eqs. (4.27), (4.28),
and (4.29). As a first test, we compare our results for a possible Λnn bound state with
the ones from the literature. Although there are several theoretical works that exclude
the existence of a Λnn bound state [26, 27, 28, 29, 30, 31, 32], we wish to ensure that
our numbers are at least consistent with previous works. We compare our results with
the ones from Ref. [85], which also describes the bound Λnn system using ̸πEFT. They
can be seen in Figures 5.1 and 5.2. Figure 5.1 shows the binding energy of the Λnn

system as a function of the momentum cutoff Λ without contribution from the three-body
force. The first bound state appears at Λ ∼ 1.5 GeV and the second at Λ ∼ 80 GeV.
The results were in perfect agreement with reference [85]. Figure 5.2 presents the plot
of the strength of the three-body contact interaction, g(Λ) as a function of the cutoff Λ.
This plot is obtained with the binding energy value B = 0. It shows the universal discrete
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scaling factor g(Λn+1) = g(Λ1) = 0 for Λn+1 = Λ1e
nπ/s0 . Theoretical calculations give

s0 ≈ 0.803 and the values obtained from the plot are Λ1 ≈ 1.52 GeV and Λ2 ≈ 76.55

GeV, which gives s0 = π ln (Λ2/Λ1) ≈ 0.801. This result suggests a universal behavior
of the Λnn system. As both ours and Ref. [85] results are in good agreement, we adapted
our codes in order to search for resonances. In Appendix E, one can understand in details
the algorithm we used to search for resonances.
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Figure 5.1: Plot of the binding energy as a function of the cutoff Λ. There is no contribu-
tion from the three-body force in this plot, g(Λ) = 0.

The values for the scattering parameters used as input for the nn interaction are ann =

−18.9 ± 0.4 fm and rnn = 2.75 ± 0.11 fm [89]. As there are no experimental data for
the Λn interaction and, as pointed out by [34, 95], the difference between the Λp and the
Λn interaction might be substantially different, we avoid using the scattering parameters
from [85]. Instead, we opt to use numbers from the Nijmegen potential model D [37].
The scattering parameters are given in Table 5.1.

Λp Λn

as −1.77± 0.28 fm −2.03± 0.32 fm
rs 3.78± 0.35 fm 3.66± 0.32 fm
at −2.06± 0.12 fm −1.84± 0.10 fm
rt 3.18± 0.12 fm 3.32± 0.11 fm

Table 5.1: The effective range parameters for both singlet (as, rs) and triplet (at, rt)
channels of Λn given by the Nijmegen model D [37]. We present the values for the Λp
interaction just for completeness.
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Figure 5.2: The three-body force strength g(Λ) as a functions of the cutoff Λ. The binding
energy was set equal to zero, B = 0.

Although the values from Table 5.1 suggests that the condition r2/a2 ≪ 1 is not
satisfied, we will assume that it holds knowing that there are no experimental numbers
for these quantities and that the phenomenological numbers from [37] may not reproduce
these unknown physical values. It is important to note that the 1S0(nn) channel does
satisfy r2/a2 ≪ 1. Assuming all channels satisfy a perturbative expansion, we are allowed
to work with only the scattering length a2 (in their respective channels) at LO. In the next
section, we will consider a phenomenological model already used by [34], in which both
scattering parameters, a2 and r2 are effectively taken into account.

For the purpose of searching for the pole trajectory of the S-matrix, we artificially
multiply our scattering amplitude of both singlet and triplet channels of the Λn interaction
by a scaling factor sEFT . Our strategy is to set a momentum cutoff Λ that would return a
zero binding energy state for sEFT = 1.0. The value for such cutoff is Λ = 1357.5 MeV.
One then would expect to find resonances for decreasing values of sEFT < 1.0. The
contrary is also true, when one increases the value of the scaling factor sEFT > 1.0, deeper
bound states appear. We also use the strength of the three-body contact interaction g(Λ) as
a parameter. We expect that negative values of g(Λ) would lead to a more attractive state,
resulting in a deeper bound state, since we fix g(Λ) = 0 to the zero binding energy state.
On the other hand, positive values of g(Λ) would lead to resonances, as it adds a more
repulsive interaction. For all plots in this section, we use the contour rotation described
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in E.2 of type
∫ Λ

0
as we need to integrate over a finite cutoff within EFT.

5.1.1 Scattering length a2 as a parameter

Our first result is shown in Figure 5.3. For this plot, we set the effective range r2 in all
channels, as well as the strength of the three-body force g(Λ), to zero. The lowest value of
the scaling factor we consider is sEFT = 0.66. Points located at the negative real axis are
bound states with sEFT > 1.0, for instance, the point with energy E = −0.22−0.0iMeV
is obtained with sEFT = 1.05. The point with sEFT = 1.0 is located at E = −0.0006 −
0.0i MeV. In principle, by construction, at Λ = 1357.5 MeV the corresponding binding
energy would be zero. However, to the decimal precision we are working, a 0.1 MeV
smaller cutoff already gives us a resonance. As soon as the scaling factor decreases from
1.0, the first resonance appears, located at E = 0.02987 − 0.00282i MeV with sEFT =

0.99. A specific behavior is shown in this plot—for certain values of the resonance energy,
they become an accumulation point and jump to poles with almost the same imaginary
value, but with different real values of the energy. For instance, the point with energy
E = 1.3500− 0.6353i MeV has sEFT = 0.71. When sEFT is decreased to sEFT = 0.70,
the resonance energy moves to E = 1.6838−0.6363i MeV. For all sEFT values we could
investigate our poles have shown Re[E] > 0, and by definition, they are called physical
resonances. It is important to highlight that if Re[E] < 0 the respective pole lies below the
break-up threshold, therefore, it is called an unphysical pole. In Appendix F we provide
the numerical values of the energy poles in Table F.2.

5.1.2 Strength g(Λ) as a parameter

Before we proceed, an important information comes in order here. In Eq. (4.4) we con-
sider only a three-body interaction in the Λn triplet channel and neglect the others in the
singlet 1S0(nn) and the singlet 1S0(Λn) channels. As pointed out in Ref. [85], there
are not enough data to pin down all these (in principle) three couplings, and the choice
is based on the assumption that the triplet Λn channel ought to be phenomenologically
more important than the others.

Figure 5.4 shows the pole trajectory as a function of the strength of the three-body
interaction, g(Λ). For this plot, we varied g(Λ) from −0.3 to 1.6. The scaling factor is
fixed at sEFT = 1.0. As before, we set the effective range r2 to zero in all channels.
Negative values of g(Λ) produce a bound state, for instance, E = −0.135 − 0.0i MeV
with g(Λ) = −0.1. The point with g(Λ) = 0 is located at E = −0.0006 − 0.0i MeV.
For a value of g(Λ) slightly above 0, a resonance appears, for instance, at g(Λ) = 0.05

one gets a pole at the energy is E = 0.04452− 0.00657i MeV. The same pattern behavior
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Figure 5.3: Pole trajectory as a function of the scattering length a2.

observed in Figure 5.3 is also shown when we vary g(Λ), in Figure 5.4. In the latter, as in
the former, there are accumulation points of poles up to a specific value of g, and above
that, a considerable change in the real part, but not in the imaginary part, takes place. For
example, a pole with energyE = 0.6622−0.3521iMeV is obtained with g(Λ) = 1.0, and
when g changes to g(Λ) = 1.1, the pole moves abruptly to E = 0.8518 − 0.3581i MeV.
In Figure 5.4, all resonances are physical, in the sense that Re[E] > 0. In Appendix F we
provide the numerical values of the energy poles in Table F.3

When combining Figures 5.3 and 5.4 as shown in Figure 5.5, one can see not just a
similar behavior, but that both plots are in good agreement for small values of the reso-
nance energy Re[E] ∼ 0.4 MeV. As the energy increases they start to deviate from each
other, although, the general behavior is present.

We introduce another scaling factor that multiplies only the effective range r2(Λn),
both in the triplet and the singlet channels. This factor is fixed to sr2(Λn)

= 10−2. The
main reason for introducing this factor is trying to understand how a perturbative value of
r2(Λn) would change the previous results. For this case, we also vary the scattering length
a2, with the same scaling factor sEFT used previously. The effective range of the nn
interaction is fixed at r2(nn) = 0. The values assumed by sEFT are in the range [1.1, 0.79].
The results for a perturbative r2(Λn) in the Λn interaction, with varying a2, are shown in
Figure 5.6. One can notice that a value of r2(Λn) that is different from zero starts to deviate
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Figure 5.4: Pole trajectory as a function of the three-body strength g(Λ).
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Figure 5.5: Combined plot of Figure 5.3 and 5.4.
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for energies with Re[E] > 0.4 MeV from the case with r2(Λn) = 0. Nevertheless, such
deviations remain relatively small, given the fact that we keep sr2(Λn) = 10−2 well within
the perturbative regime.
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Figure 5.6: Combined plot of r2(Λn) perturbative and 5.3

5.2 Phenomenological approach: Separable potentials

In this section we approach the problem in a different way. If in Section 5.1, we wanted to
work in a perturbative scenario with r2/a2 ≪ 1, now we are going to properly include the
effective range into our calculations, even in the case where the assumption r2/a2 ≪ 1

fails. This justifies the use of this model, to describe the physics where possibly the EFT
assumptions fail. Appendix D presents the theory of the two-body sector of the separable
potentials. We need to solve the Faddeev equations for the three-body systems with the
abovementioned two-body separable potentials to obtain the pole trajectory.

For convenience, we collect the relevant two-body expressions for the rank-one sepa-
rable Yamaguchi potential [98]. It is given by

V (k′, k) = g(k′)Cg(k) with g(k) =
1

k2 + α2
, (5.1)

where C is the strength of the potential and α is the range of the interaction. Using
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Eqs. (D.6) and (D.9) from Appendix D, we match the scattering parameters with the
coefficients C and α, which gives

1

a2
=
α

2

(
1 +

2α3

πµC

)
and r2 =

1

α

(
1− 4α3

πµC

)
. (5.2)

Solving for α and C we get

α =
1

2r2

[
3 +

√
9− 16

r2
a2

]
and C =

4α3

πµ(1− αr2)
. (5.3)

The values of the parameters of the separable potential are given in Table 5.2 We write

αs(nn) 1.1574 fm−1

αs(Λn) 1.2503 fm−1

αt(Λn) 1.3786 fm−1

Cs(nn) −0.37986 fm−2

Cs(Λn) −0.2692 fm−2

Ct(Λn) −0.3608 fm−2

Table 5.2: The separable potential parameters determined in terms of the scattering pa-
rameters for channels 1S0(nn), 1S0(Λn) and 3S1(Λn).

the homogeneous Faddeev equation as [96]

Ti(p;E) =
∑
j

∫ ∞

0

dqKij(p, q;E)Tj(q;E), (5.4)

where the kernel of the integral equation is given by

Kij(p, q;E) = q2Bij(p, q;E)Sj(q;E − q2/2µ), (5.5)

with µ the reduced mass of the three-body system and Sj(q;E) being the quasiparticle
propagator written as

Sj(E
+) =

{
C−1

j −
πµ

2µE+ + α2
j

(
2µE+ − α2

j

2αj

− i
√

2µE+

)}−1

. (5.6)

The Born term Bij(p, q;E) reads

Bij(q, q
′;E) =

∫ 1

−1

dxCiCj
g(p)g(p′)Pℓ(x)

E − q2

2m1
− q′2

2m2
− (q+q′)2

2m3
+ iϵ

, (5.7)

with p = −q′ − m2

m2+m3
q and p′ = q − m1

m1+m3
q′. The subindices i and j stand for the

possible different channels. For each channel, we assume different ranges αs(nn), αs(Λn),
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and αt(Λn). The above expression contains an integral that can be solved analytically.
After integration one gets

Bij(p, q;E) = m3CiCj
(−1)ℓ+1

pq

[
1

(a− b)(a− c)
Qℓ

(
a

pq

)
+

1

(b− a)(b− c)
Qℓ

(
b

pq

)
+

1

(c− a)(c− b)
Qℓ

(
c

pq

)]
, (5.8)

where Qℓ(x) is the Legendre polynomials of the second kind, and

a =
q2

2ξ13
+

q′2

2ξ23
−m3(E + iϵ),

b = q′2 + ξ13q
2 + α2

2,

c = q2 + ξ23q
′2 + α2

1, (5.9)

with ξ13 = m1

m1+m3
and ξ23 = m2

m2+m3
.

It is important to mention that we use the same spin projection matrix as calculated
in Chapter 4 and used in our expressions of Section 5.1. The contour rotation described
in E.2 is of the type

∫∞
0

and we make the change of variable q ∼ x
1−x

to map the range
of integration from [0,∞[ to [0, 1]. That requires multiplying x/(1 − x) by a constant
with units of momentum. A convenient choice is the deuteron binding momentum, γd =

45.7169 MeV, as in the Λnn system one would not expect a typical momentum much far
from this value. The fixed contour deformation angle is θ = 60◦. In order to trace the
trajectory of the pole, we use a scaling factor s that multiplies the strength of the potential
in channels 1S0(Λn) and 3S1(Λn), i.e., we only scale the Λn interaction,

Cs(Λn) → sCs(Λn) Ct(Λn) → sCt(Λn). (5.10)

Figure 5.7 shows the pole trajectory of the Λnn system considering our phenomenological
model with Yamaguchi form factors. We start by setting the smallest value of s that
holds a bound state. We know that larger values of s generate tighter bound states, and
smaller enough values give rise to resonances. The deeper bound state shown in the
figure has the scaling factor of s = 1.8, with energy E = −0.23 − 0.0i MeV. The first
resonance energy appears at E = 0.001627 − 0.000360i MeV with scaling parameter
s = 1.725, which is also the closest that we get from the zero energy. The next pole that
is important to mention is the last resonance that is physical, whose energy is given by
E = 0.000119− 0.15i MeV for the scaling factor s = 1.625. Unphysical resonances, or
sometimes called subthreshold resonances, Re[E] < 0, are located at the third quadrant
of the complex energy plane. The smaller value for the scaling factor that we consider
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is s = 1.525, and that corresponds to an energy of E = −0.1915 − 0.3320i MeV. In
Appendix F we provide the numerical values of the poles in Figure 5.7 in Table F.4.

A value of s that is larger than 70% of the original parameters may provide unreal-
istic values for the scattering parameters of the Λn interaction. A possible way to over-
come the mismatch of the Λn interaction with the possible existence of a Λnn bound
state/resonance is to add a 3-body force g(Λ) in such a way that allows one to lower the
value of the scaling parameter s.
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Figure 5.7: Pole trajectory of the Λnn system using Yamaguchi form factors.

As shown in Chapter 4, the three channels we consider so far involve each pairwise
angular momentum and total angular momentum of the three particles equal zero. How-
ever, in reference [34], a fourth channel was considered. This fourth channel consists
of all three-particle spins aligned (Stot = 3/2), with Λn in the triplet channel aligned
with the spin of the remaining neutron), coupled with relative orbital angular momen-
tum L = 2 (the angular momentum between a neutron and the center-of-mass of the
Λn pair). This channel also contributes to the spin-doublet channel, thought in EFT,
due to the higher angular momentum, it shall be considered a higher-order term. In or-
der to simulate such fourth channel, we naively add the same matrix elements of the
3S1(Λn) channel in the kernel of the integral equation. The results of introducing this
naive fourth channel is given in Figure 5.8. One can see that, with this fourth channel,
one needs smaller values of the scaling factor s to achieve a given pole as compared to
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Figure 5.7. The last bound state before zero binding energy is achieved with s = 1.45,
whose pole is located at E = −0.0125 − 0.0i MeV. The deeper bound state is located at
E = −0.3167− 0.0i MeV with s = 1.5. The first physical resonance appears with a pole
E = 0.04496 − 0.02188i MeV for a scaling factor s = 1.425. By decreasing the scaling
factor, the last physical resonance we could find is at s = 1.3 with energy pole given by
E = 0.05434 − 0.41311i MeV, since for s = 1.275, the real part of the corresponding
pole energy is already negative, E = −0.000105− 0.51666i MeV. The smaller value we
plot is with scaling factor s = 1.2, with pole energy E = −0.2965 − 0.8144i MeV. As
said before, we expect that introducing a fourth channel would be a higher order correc-
tion, however, from Figure 5.8 it appears that the addition of the fourth channel gives a
sizeable contribution. A attempt to match the EFT expectation and this phenomenolog-
ical calculation is to add a three-body force in the latter, that could simulate the bulk of
changes of the fourth channel within the original three-channel approach, and hopefully
making the fourth channel perturbative. More reliable calculations are needed to confirm
this speculation.
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Figure 5.8: Pole trajectory when adding a naive fourth channel and compared with the
three-channel plot.

Figure 5.9 compares our results with the naive fourth channel (shown in Figure 5.8)
and the trajectory of Afnan and Gibson [34]. For the sake of visualisation, we changed
the name of the scaling factor used by Afnan and Gibson to sA. In comparing our energy
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located at E = 0.04496 − 0.02189i MeV with s = 1.425 with the closest energy by the
authors at E = 0.043−0.014iMeV with sA = 1.325, we notice a difference of ∆s = 0.1.
When comparing their last bound state located at E = −0.158− 0.0i MeV with sA = 1.4

with our energy at E = −0.15− 0.0i MeV with s = 1.475, we notice that the difference
is smaller, around 7.5%. On the other hand, if we compare our unphysical resonance
located at E = −0.1773− 0.7116i MeV with s = 1.225 with their last (and actually, the
potential without any scaling factor, i.e., sA = 1.0) located at E = −0.154−0.753i MeV,
the difference is larger and around 22.5%. Therefore, the differences between our naive
four-channel and the four-channel approach of Ref. [34] appear to be more sensitive as
we decrease our scaling factor.

-0.8

-0.6

-0.4

-0.2

	0

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 	0 	0.05 	0.1 	0.15

sA=1.4

sA=1.1

sA=1.0

s=1.425

s=1.3

s=1.5

s=1.2

Im
[E
]	(
M
eV

)

Re[E]	(MeV)

Naive	4-channel
Afnan	and	Gibson

Figure 5.9: Combined plot of Figure 5.8 and reference [34].
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Chapter 6

Conclusions and perspectives

In this work, we studied the pole trajectory of Λnn system from bound to resonance states
by changing the Λn interaction. We present trajectories both in the EFT formalism, where
and expansion in r2/a2 is assumed, and using a phenomenological model that does not
have to assume such assumption.

In Chapter 4 we outlined the derivation of the three-body integral equations pertinent
to the Λnn system in effective field theory. The technical details are quite similar to the
one presented in more detail for the nd system in Section 3.3. The set of integral equations
are the same used in Ref. [85]. We reproduced the numerical results of this reference for
bound states and in this work we make an extension to explore the resonance regime.

Assuming the r2/a2 expansion, at LO we multiply the Λn scattering length (in both
3S1(Λn) triplet and 1S0(Λn) singlet channels) by a scaling factor sEFT . By decreasing
the scaling factor from 1.1 to 0.66 one could follow the pole trajectory from bound to
resonant states. Our LO results show a trajectory that remains in the fourth quadrant of
the complex energy plane, therefore, they correspond to physical resonant states. The
trajectory, however, shows a strange pattern—it does not seem to be a fully continuous,
but a piecewise continuous function as we change the scaling factor. For instance, in
Figure 5.3, changing the scaling factor from sEFT = 0.71 to sEFT = 0.70 nearly keeps
the imaginary part of the pole to ∼ −0.635i MeV, but changes the real part abruptly from
∼ 1.35 MeV to ∼ 1.68 MeV.

Still at LO, we keep the Λn scattering length fixed (sEFT = 1.0) and vary the three-
body parameter g(Λ) from −0.3 to 1.6. We observe a very similar pattern for the pole
trajectory as the previous case, where we varied the scaling factor sEFT .

We also consider perturbative corrections assuming r2/a2 ≪ 1. There is a short-
coming that, phenomenologically, r2/a2 is even larger than 1, although the scattering
parameters are barely determined experimentally beyond the scattering length. Thus our
perturbative expansion multiplies the phenomenological effective range by a factor of

74



sr2(Λn)
= 10−2. As can be seen in Figure 5.6, as expected, the NLO corrections are rel-

atively small for sEFT closer to 1.0, but the deviations start to increase as one decreases
sEFT . For an expansion parameter of the order of 1/100, the results with smaller sEFT

do not indicate the expected convergence pattern.
Given the fact that, phenomenologically, r2/a2 is slightly greater than 1, we also pro-

pose to study the Λnn system with a separable potential model. We use Yamaguchi form
factors, which allows us to relate the parameters of the potential with the scattering param-
eters (scattering length a2 and effective range r2). The projections into the three different
channels involved remain the same as derived in EFT. Similar as before, we introduce a
scaling factor s that multiplies the Λn potentials in both 3S1(Λn) and 1S0(Λn) channels.
The trajectory is given by Figure 5.7. Qualitatively, it shows a similar behavior as the
one from Ref [34]. In particular to this case, one goes from a bound state to a resonant
state by decreasing s around 1.725. Further decreasing s the poles remain in the fourth
quadrant of the energy plane up to s = 1.625, beyond that the real part of the energy pole
becomes negative (third quadrant), that is, it becomes an unphysical state. Therefore, in
this model, physical resonant states live in the small interval 1.725 ≳ s ≳ 1.625. Such
scaling factors increase considerably the two-body Λn interaction. However, it is possi-
ble that one can decrease the strength of the Λn interaction by adding a three-body force
(e.g., as it happens in the nd system). In the presence of a Λnn three-body force it should
be possible to keep a shallow bound or resonant state with a smaller scaling factor s. It
would be important to carry out explicit calculations to confirm these statements.

We also study the effect of introducing an extra channel in our three-body calculations.
We introduce a naive fourth channel described in Section 5.2, and compare the results with
Ref. [34]. With this naive fourth channel, our results get closer to the results of Ref. [34].
Besides, we get physical resonant states for 1.425 ≳ s ≳ 1.3, that is, smaller values and
wider range in s. To get a more reliable assessment of the effects of a fourth channel, a
more rigorous calculation of this channel in our separable potential is needed.

The main conclusions we can get from this study are as follows. In the EFT perspec-
tive, with only scattering lengths as LO parameters, we do not need two-body Λn scaling
parameters much different from 1.0 in order to get a bound or resonant Λnn system. In
other words, we do not need to change much the two-body interaction to get a physical
Λnn state. However, we do not know for sure whether the effective range r2 values are
amenable for a perturbative expansion. Phenomenological Λn potentials indicate that no,
with r2/a2 of the order of or greater than 1. From our phenomenological separable poten-
tial perspective, one cannot get a shallow or resonant Λnn state without multiplying the
Λn interaction by a considerable factor. In the three-channel approach this multiplication
factor is large, s around 1.6-1.7, while in the four channel approach this factor could be
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a bit smaller, s around 1.3-1.4. Nonetheless this phenomenological conclusion can be
substantially altered if one includes a three-body Λnn interaction. If that is the case, then
it is possible to obtain a shallow bound or resonant Λnn system with the Λn interaction
with a scaling factor s closer to 1.0. Therefore, a more robust calculation in this direction
is needed.

Our aim with this study is, in broader terms, to analyse how much the Λn interaction
ought to be changed in order to produce a bound or resonant Λnn state. The relevance of
this work hinges on the increasing experimental interest in the recent years [25, 33, 36].
An interesting and promising idea is to obtain information about these hard-to-measure
interactions by looking at particle correlations in relativistic heavy ions collisions, by
means of femtoscopy techniques, as done by the ALICE Collaboration for pΛ and ΛΛ

interactions [100, 101, 102].
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Appendix A

Generators of the angular momentum
3/2

One can obtain the Cartesian components of the angular momentum operator J⃗ for j =

3/2 using the matrix elements of the J± operators, which are given by

J± |jm⟩ =
√

(j ∓m)(j ±m+ 1) |j(m± 1)⟩ . (A.1)

We can also express the lowering and raising operators J± in terms of the Cartesian
components Ji as

J+ = J1 + iJ2, J− = J1 − iJ2. (A.2)

The inverse relation is

J1 =
1

2
(J+ + J−) , J2 = −

i

2
(J+ − J−) . (A.3)

For our case, we have j = 3/2, then the matrix elements read

〈
1
1

2
,
3

2
m′
∣∣∣∣ J± ∣∣∣∣112 , 32m

〉
=

√(
3

2
∓m

)(
5

2
±m

)
δm′,m±1. (A.4)

From now on, we omit indices that do not play a significant role and write

⟨m′| J1 |m⟩ =
1

2

[√(
3

2
−m

)(
5

2
+m

)
δm′,m+1 +

√(
3

2
+m

)(
5

2
−m

)
δm′,m−1

]
.

(A.5)
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⟨m′| J2 |m⟩ = −
i

2

[√(
3

2
−m

)(
5

2
+m

)
δm′,m+1 −

√(
3

2
+m

)(
5

2
−m

)
δm′,m−1

]
.

(A.6)

⟨m′| J3 |m⟩ = mδm′,m. (A.7)

By construction, the third Cartesian component forms a basis for the eigenstates of
spin-3/2 and is given by simply

J3 =
1

2


3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

 . (A.8)

Then, we can use (A.5) and (A.6) to calculate the elements of J1 and J2. The non-zero
elements are

• m′ = 3/2:

⟨m′| J1
∣∣1
2

〉
=

√
3

2
, ⟨m′| J2

∣∣1
2

〉
= −i

√
3

2
. (A.9)

• m′ = 1/2:

⟨m′| J1
∣∣3
2

〉
=

√
3

2
, ⟨m′| J1

∣∣−3
2

〉
= 1, (A.10)

⟨m′| J2
∣∣3
2

〉
=
i
√
3

2
, ⟨m′| J2

∣∣−3
2

〉
= −i.

• m′ = −1/2:

⟨m′| J1
∣∣1
2

〉
= 1, ⟨m′| J1

∣∣−1
2

〉
=

√
3

2
, (A.11)

⟨m′| J2
∣∣1
2

〉
= i, ⟨m′| J2

∣∣−1
2

〉
= −i

√
3

2
.

• m′ = −3/2:
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⟨m′| J1
∣∣−1

2

〉
=

√
3

2
, ⟨m′| J2

∣∣−1
2

〉
=
i
√
3

2
. (A.12)

Then, the Cartesian components is written as

J1 =
1

2


0
√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0

, J2 =
1

2


0 −i

√
3 0 0

i
√
3 0 −2i 0

0 2i 0 −i
√
3

0 0 i
√
3 0

 (A.13)

J3 =
1

2


3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

 .

Properties of Ji’s matrices

J1J2 =
1

4


3i 0 −2i

√
3 0

0 i 0 −2i
√
3

2i
√
3 0 −i 0

0 2i
√
3 0 −3i

 , J2J1 =
1

4


−3i 0 −2i

√
3 0

0 −i 0 −2i
√
3

2i
√
3 0 i 0

0 2i
√
3 0 3i

 ,

(A.14)

J2J3 =
1

4


0 −i

√
3 0 0

3i
√
3 0 2i 0

0 2i 0 3i
√
3

0 0 −i
√
3 0

 , J3J2 =
1

4


0 −3i

√
3 0 0

i
√
3 0 −2i 0

0 −2i 0 i
√
3

0 0 −3i
√
3 0

 ,

J3J1 =
1

4


0 3

√
3 0 0√

3 0 2 0

0 −2 0 −
√
3

0 0 −3
√
3 0

 , J1J3 =
1

4


0
√
3 0 0

3
√
3 0 −2 0

0 2 0 −3
√
3

0 0 −
√
3 0

 .

Leading to the algebra of the generators of spin-3/2

[Ji, Jj] = iεijkJk. (A.15)

There is also an important relation that will be useful when calculating the G(i) matri-

80



ces, the anti-commutation of Ji’s

{J1, J2} =


0 0 −i

√
3 0

0 0 0 −i
√
3

i
√
3 0 0 0

0 i
√
3 0 0

, {J2, J3} =


0 −i
√
3 0 0

i
√
3 0 0 0

0 0 0 i
√
3

0 0 −i
√
3 0

 ,

(A.16)

{J2, J3} =


0
√
3 0 0√

3 0 0 0

0 0 0 −
√
3

0 0 −
√
3 0

 .

And they squared

J2
1 =

1

4


3 0 2

√
3 0

0 7 0 2
√
3

2
√
3 0 7 0

02
√
3 0 3

, J2
2 =

1

4


3 0 −2

√
3 0

0 7 0 −2
√
3

−2
√
3 0 7 0

0− 2
√
3 0 3

 , (A.17)

J2
3 =

1

4


9 0 0 0

0 1 0 0

0 0 1 0

0 0 0 9

 .
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Appendix B

G(i) matrices and its properties

As derived in the text, the matrices are given by

G(1) =
1√
6


−
√
3 0

0 −1
1 0

0
√
3

 , G(2) =
i√
6


√
3 0

0 1

1 0

0
√
3

 , (B.1)

G(3) =
2√
6


0 0

1 0

0 1

0 0

 .

The Hermitian conjugate

G(1) =
1√
6

(
−
√
3 0 1 0

0 −1 0
√
3

)
, G(2) = − i√

6

(√
3 0 1 0

0 1 0
√
3

)
, (B.2)

G(3) =
2√
6

(
0 1 0 0

0 0 1 0

)
.
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Then, we can check explicitly their properties

G(1)†G(2) =
i

6

(
−2 0

0 2

)
= − i

3
σ3, G(2)†G(1) = − i

6

(
−2 0

0 2

)
=
i

3
σ3, (B.3)

G(2)†G(3) = − i
3

(
0 1

1 0

)
= − i

3
σ1, G(3)†G(2) =

i

3

(
0 1

1 0

)
=
i

3
σ1,

G(3)†G(1) =
1

3

(
0 −1
1 0

)
= − i

3
σ2, G(1)†G(3) =

1

3

(
0 1

−1 0

)
=
i

3
σ2,

G(1)†G(1) = G(2)†G(2) = G(3)†G(3) =
2

3
σ0. (B.4)

Which implies

G(i)†G(j) =
2

3
δij −

i

3
εijkσk.

G(1)G(2)† = − i
6


−3 0 −

√
3 0

0 −1 0 −
√
3√

3 0 1 0

0
√
3 0 3

 , G(2)G(1)† =
i

6


−3 0

√
3 0

0 −1 0
√
3

−
√
3 0 1 0

0 −
√
3 0 3

 ,

G(2)G(3)† =
i

3


0
√
3 0 0

0 0 1 0

0 1 0 0

0 0
√
3 0

 , G(3)G(2)† = − i
3


0 0 0 0√
3 0 1 0

0 1 0
√
3

0 0 0 0

 , (B.5)

G(3)G(1)† =
1

3


0 0 0 0

−
√
3 0 1 0

0 −1 0
√
3

0 0 0 0

 , G(1)G(3)† =
1

3


0 −

√
3 0 0

0 0 −1 0

0 1 0 0

0 0
√
3 0

 ,

G(1)G(1)† =
1

6


3 0 −

√
3 0

0 1 −
√
3 0

−
√
3 0 1 0

0 −
√
3 0 3

 , G(2)G(2)† =
1

6


3 0

√
3 0

0 1
√
3 0√

3 0 1 0

0
√
3 0 3

 ,

G(3)G(3)† =
2

3


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 .

Leading to
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G(i)G(j)† =
3

4
δij −

1

6
{Ji, Jj}+

i

3
ϵijkJk.

The next property says about multiplying G(i) and σj

G(1)σ2 =
i√
6


0
√
3

−1 0

0 −1√
3 0

 , G(2)σ3 =
i√
6


√
3 0

0 −1
1 0

0 −
√
3

 , G(3)σ1 =
2√
6


0 0

0 1

1 0

0 0

 ,

G(2)σ1 =
i√
6


0
√
3

1 0

0 1√
3 0

 , G(3)σ2 =
2i√
6


0 0

0 −1
1 0

0 0

 , G(1)σ3 =
1√
6


−
√
3 0

0 1

1 0

0 −
√
3

 ,

(B.6)

Then, we write

G(i)σj −G(j)σi = −iεijkG(k).

The last property can be evaluated algebrically using the last result we got

i
∑
i,j

εijn
(
G(i)σj −G(j)σi

)
= 2i

∑
i,j

εijnG
(i)σj,

=
∑
i,j

εijn(εijkG
(k)),

=
∑
j

(δjjδnk − δjkδjn)G(k) = 2δnkG
(k).

i
∑
i,j

εijkG
(i)σj = G(k).

where we used the identity
∑

i εijkεimn = δjmδkn − δjnδkm.
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Appendix C

Born terms

C.1 nd system

By definition, the particle and the dimer propagators are, respectively

iSαβ
N (y − x) = ⟨0|T{Nβ(y)N

†
α(x)} |0⟩ = δαβiSN(y − x), (C.1)

iDij
d (y − x) = ⟨0|T{dj(y)d

†
i (x)} |0⟩ = δijiDd(y − x). (C.2)

with T the time-ordered operator.

=(−igdj)(−igdi)
∫
d4xd4y (C.3)

⟨0|T{dj(∞)Nβ(∞)
[
d†k(y)Nγ(y)Pk

γδNδ(y)
] [
N †

ϵ (x)Ps†

ϵσN
†
σ(x)ds(x)

]
d†i (−∞)N †

α(−∞)} |0⟩ .

Then, we have four possible Wick contractions

1.

⟨0|T{dj(∞)Nβ(∞)[d†k(y)Nγ(y)Pk
γδN δ(y)][N

†
ϵ(x)Ps†

ϵσN
†
σ(x)ds(x)]d

†
i (−∞)N †

α(−∞)} |0⟩

= −δjkiDdj(∞− y)δβϵiSN(∞− x)δsiiDdi(x+∞)δδαiSN(y +∞)δγσiSN(y − x)Pk
γδPs†

ϵσ

= −iDdj(∞− y)iSN(∞− x)iDdi(x+∞)iSN(y +∞)iSN(y − x)Pj
γαP i†

βγ.

(C.4)
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2.

⟨0|T{dj(∞)Nβ(∞)[d†k(y)Nγ(y)Pk
γδN δ(y)][N

†
ϵ(x)Ps†

ϵσN
†
σ(x)ds(x)]d

†
i (−∞)N †

α(−∞)} |0⟩

= δjkiDdj(∞− y)δβσiSN(∞− x)δsiiDdi(x+∞)δδαiSN(y +∞)δγϵiSN(y − x)Pk
γδPs†

ϵσ

= iDdj(∞− y)iSN(∞− x)iDdi(x+∞)iSN(y +∞)iSN(y − x)Pj
γαP i†

γβ.

(C.5)

3.

⟨0|T{dj(∞)Nβ(∞)[d†k(y)Nγ(y)Pk
γδN δ(y)][N

†
ϵ(x)Ps†

ϵσN
†
σ(x)ds(x)]d

†
i (−∞)N †

α(−∞)} |0⟩

= δjkiDdj(∞− y)δβϵiSN(∞− x)δsiiDdi(x+∞)δγαiSN(y +∞)δδσiSN(y − x)Pk
γδPs†

ϵσ

= iDdj(∞− y)iSN(∞− x)iDdi(x+∞)iSN(y +∞)iSN(y − x)Pj
ασP i†

βσ.

(C.6)

4.

⟨0|T{dj(∞)Nβ(∞)[d†k(y)Nγ(y)Pk
γδN δ(y)][N

†
ϵ(x)Ps†

ϵσN
†
σ(x)ds(x)]d

†
i (−∞)N †

α(−∞)} |0⟩

= −δjkiDdj(∞− y)δβσiSN(∞− x)δsiiDdi(x+∞)δγαiSN(y +∞)δδϵiSN(y − x)Pk
γδPs†

ϵσ

= −iDdj(∞− y)iSN(∞− x)iDdi(x+∞)iSN(y +∞)iSN(y − x)Pj
αϵP i†

ϵβ.

(C.7)

Gathering all the contractions, we can write the amputaded (the terms in red) Born
amplitudes

iBβα(di → dj) ∝ iSN(y−x)
[
−(P i†)T (Pj)T + (P i†)(Pj)T + (P i†)T (Pj)− (P i†)(Pj)

]
βα
.

(C.8)
And using the fact that (also holds for τ i)

(σ2)
T = −σ2, (σj)T = −σ2σjσ2 ⇒ (σ2σ

j)T = σ2σ
j, (σjσ2)

T = σjσ2. (C.9)
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• ti → tj:

1

8
[−(τ2σ2σi)†

T
(τ2σ2σ

j)T + (τ2σ2σ
i)†(τ2σ2σ

j)T

+ (τ2σ2σ
i)†

T
(τ2σ2σ

j)− (τ2σ2σ
i)†(τ2σ2σ

j)],

=
1

8
[−τT2 τT2 (σiσ2)

T (σ2σ
j)T + τ2τ

T
2 (σ

iσ2)(σ2σ
j)T

+ τT2 τ2(σ
iσ2)

T (σ2σ
j)− τ2τ2(σiσ2)(σ2σ

j)],

= −1

2
σiσj. (C.10)

• ti → sj:

1

8
[−(τ2σ2σi)†

T
(σ2τ2τ

j)T + (τ2σ2σ
i)†(σ2τ2τ

j)T

+ (τ2σ2σ
i)†

T
(σ2τ2τ

j)− (τ2σ2σ
i)†(σ2τ2τ

j)],

=
1

8
[−(σiσ2)

TσT τT2 (τ2τ
j)T + (σiσ2)σ

T
2 τ2(τ2τ

j)T

+ (σiσ2)
Tσ2τ

T
2 (τ2τ

j)− (σiσ2)σ2τ2(τ2τ
j)],

= −1

2
σiτ j. (C.11)

• si → tj:

1

8
[−(σ2τ2τ i)†

T
(τ2σ2σ

j)T + (σ2τ2τ
i)†(τ2σ2σ

j)T

+ (σ2τ2τ
i)†

T
(τ2σ2σ

j)− (σ2τ2τ
i)†(τ2σ2σ

j)],

=
1

8
[−(τ iτ2)T τT2 σT

2 (σ2σ
j)T + (τ iτ2)τ

T
2 σ2(σ2σ

j)T

+ (τ iτ2)
T τ2σ

T
2 (σ2σ

j)− (τ iτ2)τ2σ2(σ2σ
j)],

= −1

2
τ iσj. (C.12)
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• si → sj:

1

8
[−(σ2τ2τ i)†

T
(σ2τ2τ

j)T + (σ2τ2τ
i)†(σ2τ2τ

j)T

+ (σ2τ2τ
i)†

T
(σ2τ2τ

j)− (σ2τ2τ
i)†(σ2τ2τ

j)],

=
1

8
[−(σiσ2)

TσT τT2 (τ2τ
j)T + (σiσ2)σ

T
2 τ2(τ2τ

j)T

+ (σiσ2)
Tσ2τ

T
2 (τ2τ

j)− (σiσ2)σ2τ2(τ2τ
j)],

= −1

2
τ iτ j. (C.13)

Then, we can synthesize as

iBji
βα ∝ −

1

2
OiOj . (C.14)

The final expression for the Born amplitudes are given by

iBji
βα = (−igdj)(−igdi)

(
−1

2
OiOj

)
βα

iSN(kd0 −Bd − kn0 + ε;p+ k),

= i
gdjgdi
2

(OiOj)βα
1

kd0 −Bd − kn0 + ε− (p+k)2

2mN
+ iϵ

. (C.15)

C.2 Λnn system

By definition, the particles and the dimer propagators are, respectively

iSαβ
n (y − x) = ⟨0|T{ϕn

β(y)ϕ
n†
α (x)} |0⟩ = δαβiSn(y − x), (C.16)

iSαβ
Λ (y − x) = ⟨0|T{ϕΛ

β (y)ϕ
Λ†
α (x)} |0⟩ = δαβiSΛ(y − x), (C.17)

iDij
d (y − x) = ⟨0|T{dj(y)d

†
i (x)} |0⟩ = δijiDd(y − x). (C.18)

The Feynman diagram follows the same convention as before, the first diagram should
be the 1S0(nn) → 1S0(nn), which is not possible, then its contribution is zero, the other
contractions can be written as

1. 1S0(nn)→ 1S0(Λn) and 1S0(nn)→ 3S1(Λn)
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⟨0|T{sΛnj (∞)ϕn
β(∞)[sΛn†k ϕn

γP
(Λn)k
γδ ϕΛ

δ ]y[ϕ
n†
ϵ P(nn)s†

ϵσ ϕn†
σ s

nn
s ]xs

nn†
i (−∞)ϕΛ†

α (−∞)} |0⟩

= −δjkiD
Λn
(∞− y)δβϵiSn(∞− x)δsiiD

nn
(x+∞)δδαiSΛ(y +∞)δγσiSn(y − x)

× P(Λn)k
γδ P(nn)s†

ϵσ

= −iDΛn
(∞− y)iSn(∞− x)iD

nn
(x+∞)iSΛ(y +∞)iSn(y − x)P(Λn)j

γα P(nn)i†
βγ .

(C.19)

⟨0|T{sΛnj (∞)ϕn
β(∞)[sΛn†k ϕn

γP
(Λn)k
γδ ϕΛ

δ ]y[ϕ
n†
ϵ P(nn)s†

ϵσ ϕn†
σ s

nn
s ]xs

nn†
i (−∞)ϕΛ†

α (−∞)} |0⟩

= δjkiD
Λn
(∞− y)δβσiSn(∞− x)δsiiD

nn
(x+∞)δδαiSΛ(y +∞)δγϵiSn(y − x)

× P(Λn)k
γδ P(nn)s†

ϵσ

= iDΛn
(∞− y)iSn(∞− x)iD

nn
(x+∞)iSΛ(y +∞)iSn(y − x)P(Λn)j

σα P(nn)i†
σβ .

(C.20)

These Born terms are proportional to

iBβα(snni → s
s(Λn)
j ) ∝ iSn(y − x)

[
(P i†)TP j − P i†P j

]
βα
. (C.21)

2. 1S0(Λn)→ 3S1(Λn), 1S0(Λn)→ 1S0(Λn) and 3S1(Λn)→ 3S1(Λn)

⟨0|T{sΛnj (∞)ϕn
β(∞)[sΛn†k ϕn

γP
(Λn)k
γδ ϕΛ

δ ]y[ϕ
Λ†
ϵ P(Λn)s†

ϵσ ϕn†
σ s

Λn
s ]xs

Λn†
i (−∞)ϕn†

α (−∞)} |0⟩

= −δjkiD
Λn
(∞− y)δβσiSn(∞− x)δsiiD

Λn
(x+∞)δγαiSn(y +∞)δδϵiSΛ(y − x)

× P(Λn)k
γδ P(Λn)s†

ϵσ

= −iDΛn
(∞− y)iSn(∞− x)iD

nn
(x+∞)iSn(y +∞)iSΛ(y − x)P(Λn)j

αϵ P(Λn)i†
ϵβ .

(C.22)
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These Born terms are proportional to

iBβα(sΛni → s
s(Λn)
j ) ∝ −iSΛ(y − x)

[
(P i†)T (P j)T

]
βα
. (C.23)

The final Born term written in matrix form is given by

B
ji
=


y2t(Λn)

σiσj

2
SΛ −ys(Λn)yt(Λn)

σj

2
SΛ −ys(nn)yt(Λn)

σi

√
2
Sn

−yt(Λn)ys(Λn)
σi

2
SΛ y2s(Λn)

1

2
SΛ ys(nn)ys(Λn)

1√
2
Sn

−yt(Λn)yt(nn)
σj

√
2
Sn ys(Λn)ys(nn)

1√
2
Sn 0

 (C.24)
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Appendix D

Separable Potentials

When considering the two-body sector this model has an exact solution for the scattering
amplitude. In order to build the simplest system, he considered spinless particles interact-
ing via a separable potential V (p′,p). The form of the potential do not play an important
role here, in terms of form factors g(p) its given by [97]

V (p′,p) = λg(p′)g(p). (D.1)

Plugging into the Lippmann-Schwinger equation

T (p′,p) = λg(p′)g(p) +

∫
dq3

(2π)3
λg(p′)g(q)

E − q2/2µ+ iϵ
T (q,p),

= λg(p′)

[
g(p) +

∫
dq3

(2π)3
g(q)

E − q2/2µ+ iϵ
T (q,p)

]
,

= λg(p′) [g(p) +G(E;p)] . (D.2)

Once knowing an expression for the scattering amplitude T (p′,p), one can iterate the
expression to write

T (p′,p) = λg(p′)

[
g(p) +

∫
dq3

(2π)3
g(q)

E − q2/2µ+ iϵ
λg(q) [g(p) +G(E;p)]

]
,

= λg(p′)

[
g(p) + λ [g(p) +G(E;p)]

∫
dq3

(2π)3
g2(q)

E − q2/2µ+ iϵ

]
. (D.3)

Which leads to another relation

G(E;p) = λ [g(p) +G(E;p)] I(E), (D.4)

with I(E) =
∫

dq3

(2π)3
g2(q)

E − q2/2µ+ iϵ
an integral that depends only on the energy E and
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might be solved analytically.
Eq. (D.4) gives an expression for G(E;p)

G(E;p) =
λg(p)I(E)

1− λI(E)
, (D.5)

that leads to the final expression for the scattering amplitude

T (p′,p) = λg(p′)

[
g(p) +

λg(p)I(E)

1− λI(E)

]
,

= λg(p′)g(p)

[
1

1− λI(E)

]
. (D.6)

Which can be expressed in different forms

T (p′,p) =
V (p′,p)

1− λI(E)
,

=
g(p′)g(p)

λ−1 − I(E)
= τ(E)g(p′)g(p). (D.7)

For instance, if the choice for the form factors were

g(p) =
1

p2 + β2
, (D.8)

known as Yamaguchi form factors [98]. The integral I(E) becomes

I(E) = −
∫

dq3

(2π)3
2µ

(q2 − σ)(q2 + β2
1)(q

2 + β2
2)
,

= − µ

π2

π

2(β1 + β2)(β1 − i
√
σ)(β2 − i

√
σ)
, or

=
µ

π

1

4β(β − i
√
σ)2

, if β1 = β2 (D.9)

with σ = 2µE + iϵ
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Appendix E

Numerical Methods

In this appendix, we aim to explain the numerical procedures that were used in our rou-
tines. The main problem was to solve integral equations, that in most cases could be
written as an eigenvalue problem.

For instance, lets consider the integral equation given by

tℓ(p
′, p) = vℓ(p

′, p) +

∫ ∞

0

dq q2

2π2

vℓ(p
′, q)tℓ(q, p)

E − q2/2m+ iϵ
, (E.1)

The first step when one tries to understand how could this be solved numerically is
to discretize all the momentum space. Then, we can write all possible values for p =

p1, p2, . . . , pn, and set p′ = p. With these definitions, a function tℓ(p′, p) is essentially a
n× n matrix. Leading to a matrix equation

T = V+KT, (E.2)

where the kernel is defined as K =

∫ ∞

0

dq q2

2π2

V
E − q2/2m+ iϵ

.

But in most cases, we do not have the driving term V which simplifies to a homoge-
neous equation

T = KT,

(I−K)T = 0. (E.3)

This condition is satisfied when the determinant of (I−K) is equal to zero. Then, our
problem is simplified to calculating the zeroes of a determinant [99].
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E.1 Numerical Integration

Among all possible methods that one can implement to numerically solve an integral, we
chose to use Gaussian quadratures since it converge really fast. Choosing specifically
the Gauss-Legendre quadrature (where the weight function W (x) = 1), the integral is
approximated by ∫ b

a

f(x)dx ≈
N∑
j=1

f(xj)wj (E.4)

with xj being the abscissas and wj are the weights. The abscissas for this specific method
are the roots of the nth Legendre polynomial. The weights can be calculated using wj =

2

(1− x2j)[P ′
n(xj)]

2
.

The idea behind Gaussian quadratures is to choose not only the weighting coefficients,
but also the location of the abscissas. This gives to us twice the number of degrees of
freedom, which, in general if the integrand is smooth, for a given order n will give twice
the precision of other methods that numerically solve integrals [99].

E.2 Contour Rotation

Integrals of type
∫∞
0

In order to acess the second Riemann sheet (or the unphysical sheet), we need to deform
our integration contour. This can be done by setting

q → qe−iθ q′ → q′e−iθ, (E.5)

and θ > 0 is a fixed angle.
The exposed section of the second sheet is defined by the real angle and the ray

| arg(E)| = 2θ. The limitation of how large can θ assume is imposed by the singular-
ities of the kernel K. For our work, the only limitation is that θ < π

2
. It is very important

to ensure that there are not any singularities from deforming the original contour to the
rotated one, in order to properly use the Cauchy’s Theorem. Also important is the fact that
we can neglect the angular part of the closed contour, as we are evaluating the integrand
at∞.

The improper integrals were evaluated numerically using a changing of variables

x→ x

1− x
, (E.6)
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which changes the range of integration from [0,∞[ to [0, 1].

Integrals of type
∫ Λ

0

When working with EFTs, we need to perform the integration over a finite interval setting
a momentum cutoff Λ to be the upper limit of integration. In this case we cannot neglect
the angular part of the integral and to avoid a calculation of another integral, we perform
a different countour rotation that depends on the momentum cutoff Λ

q(Λ) = q + 4iγt

√1 +

(√
q

Λ
− 1

2

)2

−
√

5

4

 (E.7)

where γt is the binding momentum of the deuteron.
This contour was firstly used in [74].

E.3 Bound States

Once the determinant of (I − K) is calculated, determining bound states is simple. Note
also that, as they are located at the real axis, we do not need to worry about contour
rotating any code that calculates only bound states. Just remembering that, for bound
states B = −E, and only real values are allowed. When searching for them, one just
needs to pay attention on the changing of the determinant sign. This change means that
there were a zero, and that zero is the point we are looking for. As one finds the zero, we
change the range of integration to a smaller one, centered on the zero we found. And we
can confirm the value with precision.

One might be aware that the imaginary part of the determinant might be numerically
zero in order to properly reproduce a bound state. In Figure E.1 are depicted a typical
bound state plot, each value of B that the determinant are equally zero is a bound state.
Depending on the system and on the range of integration, it is possible to find more than
one bound state.

E.4 Resonances

The search for resonances are a bit more complicated, since we need to deal with both
real and imaginary parts of the energy. One might naively implement a Cartesian pa-
rameterization, but, numerically, the cost is bigger, because it involves a 2D search on a
n× n grid. A clever way to deal with this is using polar parameterization and write the
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Figure E.1: Plot of the det[(I−K)] vs the binding energy B

resonance energy E = ER − iΓ2 as Ẽ = ρe−iϕ. The correspondence is simply the polar
transformations

ER = ρ cosϕ

Γ

2
= ρ sinϕ (E.8)

It is important to mention that ϕ is different from θ, the contour rotation angle, that
is fixed. The angle ϕ sweeps the plane as a loop variable, and for better computational
results, we set the ϕ loop as the outer loop.

As we are dealing with a complex number, the best way to search for the zero of the
determinant is by searching for a zero of the absolute value of the determinant. Figure E.2
shows the minimum of a typical resonance plot. As the minimum is located, we change
the range of integration to a smaller one, centered on the minimum we found. And we
can confirm the value with precision.

E.5 Coupled Channel

A single channel integral equation can be solved very easily, in most cases. There is only
one amplitude to be calculated. For instance, the quartet channel in the nd system is a
single channel integral equation. Less trivial is the case when one tries to solve coupled
equations, but it turns out to be a simple generalisation.
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Figure E.2: Different angles of a given resonance plot. The minimum touches numerically
the zero, the precision is greater as we restrict the interval of integration.

Consider the nd system in the doublet channel. There are two integral equations and
the amplitudes are coupled. This means that one can completely describe its amplitudes
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by solving four different integral equations.
Using matrix notation, we can write the single channel integral equation as

t =


K11 . . . K1n

... . . . ...
Kn1 . . . Knn

 t (E.9)

The generalisations for an M -channel integral equation is straightforward

t =



K11 . . . K1n . . . K12n . . . K1Mn

... . . . ...

Kn1
. . . ...

... . . . ...

K2n1
. . . ...

... . . . ...
KMn1 . . . . . . . . . . . . . . . KMnMn


t (E.10)
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Appendix F

Tabulated Values

This Appendix contains the tabulated values of some important results given in Chapter 5.

sEFT E (MeV)

1.1 −0.295− 0.0i
1.05 −0.09− 0.0i
1.0 −0.0006− 0.0i
0.986 0.0396107− 0.00556692i
0.972 0.0874765− 0.0211628i
0.958 0.134165− 0.0399964i
0.944 0.169145− 0.0615636i
0.93 0.224358− 0.0852257i
0.916 0.255793− 0.113886i
0.902 0.342937− 0.138904i
0.888 0.370979− 0.17457i
0.874 0.483484− 0.191425i
0.86 0.522327− 0.228199i
0.846 0.546384− 0.271227i
0.832 0.70663− 0.279775i
0.818 0.746709− 0.313888i
0.804 0.766558− 0.367273i
0.8 0.771311− 0.380368i
0.79 0.998773− 0.389405i

Table F.1: Values for sr2(Λn)
= 10−2
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sEFT E (MeV)

1.1 −0.44− 0.0i
1.05 −0.22− 0.0i
1.0 −0.0006− 0.0i
0.99 0.0298669− 0.00282325i
0.98 0.0591066− 0.0103157i
0.97 0.0873645− 0.0216205i
0.96 0.124484− 0.0374655i
0.95 0.1511− 0.0526187i
0.94 0.197684− 0.070859i
0.93 0.222681− 0.0895171i
0.92 0.280168− 0.107266i
0.91 0.314119− 0.130112i
0.9 0.336417− 0.154024i
0.89 0.427549− 0.16971i
0.88 0.454549− 0.18828i
0.87 0.472044− 0.218115i
0.86 0.490054− 0.249695i
0.85 0.630929− 0.253632i
0.84 0.654523− 0.275136i
0.83 0.673639− 0.306285i
0.82 0.687291− 0.347176i
0.81 0.880825− 0.355876i
0.8 0.898094− 0.366506i
0.79 0.9403− 0.395266i
0.78 0.955839− 0.434594i
0.77 0.963786− 0.478427i
0.75 1.24683− 0.493655i
0.74 1.30733− 0.528195i
0.73 1.31223− 0.5733i
0.72 1.32375− 0.615868i
0.71 1.35− 0.635263i
0.7 1.6838− 0.636255i
0.687 1.69675− 0.68553i
0.68 1.77092− 0.715499i
0.67 1.79146− 0.775233i
0.66 1.81654− 0.812578i

Table F.2: Values plotted in Figure 5.3
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g(Λ) E (MeV)

−0.3 −0.54− 0.0i
−0.2 −0.305− 0.0i
−0.1 −0.135− 0.0i
0.0 −0.0006− 0.0i
0.05 0.0445173− 0.00657374i
0.1 0.0872885− 0.0219254i
0.15 0.128501− 0.041381i
0.2 0.179432− 0.0624847i
0.25 0.208543− 0.0844685i
0.3 0.227309− 0.10407i
0.32 0.27874− 0.110924i
0.33 0.292677− 0.11647i
0.35 0.304326− 0.127615i
0.4 0.325738− 0.153281i
0.45 0.335308− 0.16791i
0.47 0.416046− 0.171482i
0.5 0.431432− 0.181357i
0.55 0.450431− 0.205273i
0.6 0.449397− 0.219186i
0.62 0.467986− 0.237937i
0.65 0.478331− 0.250597i
0.7 0.5956− 0.255274i
0.75 0.607082− 0.258942i
0.8 0.637788− 0.278643i
0.85 0.654126− 0.300864i
0.9 0.657917− 0.320888i
1.0 0.662211− 0.352104i
1.1 0.851802− 0.358064i
1.2 0.855079− 0.380705i
1.3 0.898929− 0.400229i
1.35 0.8987− 0.415258i
1.4 0.898225− 0.430357i
1.5 0.892586− 0.450878i
1.55 0.902273− 0.475714i
1.6 0.915744− 0.47874i

Table F.3: Values plotted in Figure 5.4.
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s E (MeV)

1.8 −0.23− 0.0i
1.775 −0.125− 0.0i
1.75 −0.05− 0.0i
1.725 0.00162755− 0.000360534i
1.7 0.0215372− 0.0255286i
1.675 0.025263− 0.0609736i
1.65 0.0182763− 0.0983157i
1.625 0.000119449− 0.15i
1.6 −0.0346648− 0.196973i
1.575 −0.0751219− 0.238446i
1.55 −0.128907− 0.289278i
1.525 −0.191519− 0.332023i

Table F.4: Values plotted in Figure 5.7.

s E (MeV)

1.5 −0.316667− 0.0i
1.475 −0.15− 0.0i
1.45 −0.0125− 0.0i
1.425 0.0449569− 0.0218832i
1.4 0.0873177− 0.0773594i
1.375 0.107758− 0.148323i
1.35 0.109595− 0.224697i
1.325 0.0918899− 0.320418i
1.3 0.0543433− 0.413108i
1.275 −0.000105231− 0.516665i
1.25 −0.0858093− 0.610666i
1.225 −0.17731− 0.711582i
1.2 −0.296531− 0.814363i

Table F.5: Values plotted in Figure 5.8.
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