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ABSTRACT

The Baryon Acoustic Oscillations (BAO) from Integrated Neutral Gas
Observations (BINGO) radio telescope will use the neutral Hydrogen
emission line to map the Universe in the redshift range 0.127 ≤ z ≤ 0.449,
with the main goal of probing BAO. In addition, the instrument optical
design and hardware configuration support the search for FastRadio Bursts
(FRBs).

In this Master thesis, we propose the use of a BINGO Interferometry
System (BIS) including new auxiliary, smaller, radio telescopes (hereafter
outriggers). The interferometric approach makes it possible to pinpoint
the FRB sources in the sky. We present here the results of several BIS
configurations combining BINGO horns with and without mirrors (4 m, 5
m, and 6 m) and 5, 7, 9, or 10 for single horns.

We developed a new Python package, the FRBlip, which generates syn-
thetic FRB mock catalogs and computes, based on a telescope model, the
observed signal-to-noise ratio (S/N) that we used to compute numerically
the detection rates of the telescopes and how many interferometry pairs
of telescopes (baselines) can observe an FRB. FRBs observed by more
than one baseline are the ones whose location can be determined. We thus
evaluate the performance of BIS regarding FRB localization.

We found that BIS will be able to localize 23 FRBs yearly with single horn
outriggers in the best configuration (using 10 outriggers of 6 m mirrors), with
redshift z ≤ 0.96; the full localization capability depends on the number
and the type of the outriggers. Wider beams are best to pinpoint FRB
sources because potential candidates will be observed by more baselines,
while narrow beams look deep in redshift. 6 m stations, for example,

The BIS can be a powerful extension of the regular BINGO telescope,
dedicated to observing hundreds of FRBs during Phase 1. Many of them
will be well localized with single horn + 6 m dish as outriggers.

Keywords: Fast Radio Bursts; Radio Astronomy; Interferometry; BINGO
telescope.



RESUMO

O radiotelescópio Baryon Acoustic Oscillations (BAO) from Integrated
Neutral Gas Observations (BINGO) usará a linha de emissão de hidrogênio
neutro para mapear o Universo na faixa de redshift 0.127 ≤ z ≤ 0.449, com
o objetivo principal de investigar as BAO. Além disso, o design óptico e a
configuração do hardware do instrumento suportam a busca por rajadas
rápidas de rádio (FRBs; sigla em inglês para Fast Radio Bursts).

Nesta dissertação, é proposto o uso do Sistema de Interferometria do BINGO
(BIS; sigla em inglês para BINGO Interferometry System) incluindo novos
radiotelescópios auxiliares menores (doravante chamados de outriggers).
A abordagem interferométrica torna posśıvel localizar as fontes de FRB
no céu. Apresenta-se aqui os resultados de várias configurações do BIS
combinando as cornetas do BINGO com e sem espelhos (4 m, 5 m e 6 m) e
5, 7, 9 ou 10 cornetas individuais.

Foi desenvolvido um novo pacote Python, o FRBlip, que gera catálogos
sintéticos de FRB e calcula, com base em um modelo de telescópio, a razão
sinal-rúıdo observada (S/N), usada para calcular as taxas de detecção dos
telescópios e quantos pares de telescópios de interferometria (baselines)
podem observar um FRB. FRBs observados por mais de uma baseline
são aqueles cuja localização pode ser determinada. Avalia-se assim o
desempenho do BIS em relação à localização de FRB.

Descobrimos que o BIS será capaz de localizar 23 FRBs por ano com
outriggers de corneta única na melhor configuração (usando 10 outriggers
de espelhos de 6 m), com redshift z ≤ 0, 96; a capacidade completa de
localização depende do número e do tipo de outriggers. Feixes mais amplos
são melhores para localizar fontes de FRB porque os candidatos potenciais
serão observados por mais baselines, enquanto feixes estreitos olham pro-
fundamente no redshift. Estações de 6 m, por exemplo, são ideais para este
propósito.

O BIS pode ser uma poderosa extensão do telescópio BINGO regular,
dedicado a observar centenas de FRBs durante a Fase 1. Muitos deles serão
bem localizados com cornetas individuais + disco de 6 m como outriggers.

Palavras-chave: Fast Radio Bursts; Radioastronomia; Interferometria;
Telescópio BINGO.
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Chapter 1

Introduction

Fast radio bursts (FRBs) are brief bursts of radio waves lasting from microseconds

to milliseconds. They become dispersed as they pass through the ionized plasma of

the interstellar and intergalactic medium. They were first classified as extragalactic

because they were dispersed by more plasma than expected in the line-of-sight towards

the source unless the source was in a high-column density environment within the

Milky Way. However, it is possible that an FRB could exist within our galaxy1.

Due to their impulsive nature and extragalactic origin, FRBs possess extraordinary

brightness temperatures, making them unique radio transients. Additionally, FRBs

are promising tools for studying the unseen Universe and cosmology since their signals

contain information about their interactions with the intervening medium during their

journey from the source to the observer. Recent reviews on this topic can be found in

Katz (2018), Cordes & Chatterjee (2019), Petroff et al. (2019a), and Zhang (2022).

Only a few hundred FRBs had been detected and published up to the writing of this

thesis in 20222 (Gal-Yam 2021), despite an expected rate of about a thousand per sky

per day above modern radio telescope detection thresholds. The limited field of view

and sensitivity of most radio telescopes were the main reasons for this low detection

1On 28 April 2020, astronomers at the CHIME telescope, reported the detection of a bright radio
burst from the direction of the Galactic magnetar SGR 1935+2154 about 30,000 light-years away in
the Vulpecula constellation (inside Milky-Way; Scholz & Chime/Frb Collaboration 2020).

2The Transient Name Server (TNS) https://www.wis-tns.org/ contains all up-to-date tally of
FRBs.

https://www.wis-tns.org/
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rate. At the time of the first FRB discovery in 2007, using archival data from the Parkes

telescope (Lorimer Burst; FRB 010724; Lorimer et al. 2007), there were no wide-field

and sensitive radio telescopes suitable for FRB surveys. This led to skepticism among

astronomers regarding the existence of these extragalactic radio bursts. However, in

2013, the existence of the phenomenon was confirmed in observations from the Parkes

telescope, which eliminated most doubts about FRBs (Thornton et al. 2013). The

discovery of the first FRB at a different site, the Arecibo observatory, in 2014, further

demonstrated that the source of FRBs was not limited to the Parkes telescope (Spitler

et al. 2014).

After the discovery of FRBs, instruments, and surveys were developed specifically

to detect this new phenomenon. Since then, several surveys have been launched

worldwide, including the UTMOST experiment (Bailes et al. 2017) in Australia, which

detected its first FRB in 2016, the Commensal Real-time ASKAP Fast Transients

survey (CRAFT; Macquart et al. 2010) in Australia, which detected its first FRB in

2017, on the Canadian Hydrogen Mapping Experiment (CHIME; Amiri et al. 2018)

in Canada detected its first FRB in 2018 (Pleunis 2021) 3, and the Deep Synoptic

Array 10-dish prototype (DSA-10; Kocz et al. 2019) in the United States, as well

as the ALERT survey (van Leeuwen et al. 2023) using the new Apertif feeds on the

Westerbork telescopes in the Netherlands, both of which detected their first FRBs in

2019. These are just some examples of experiments designed specifically for detecting

FRBs. However, surveys at the Parkes (Australia; Champion et al. 2016), GBT

(United States; Masui et al. 2015), Pushchino (Russia; Fedorova & Rodin 2019),

Arecibo (Puerto Rico; Patel et al. 2018), and FAST (China; Zhu et al. 2020) telescopes

have also detected FRBs after the initial discoveries mentioned above.

The first FRB discovered through the Arecibo telescope was also the first observed

to repeat (Spitler et al. 2016). It has since become evident that there is a population of

repeating FRB sources, and their number is growing. It is possible that all FRBs repeat

3See Pleunis (2021) Ph.D. thesis for a complete description of FRB detection strategies used in
CHIME telescope.
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but on varying time and energy scales. Moreover, the number of known catastrophic

events in the universe appears insufficient to justify the rate at which FRBs are being

detected, unless some or all FRB sources repeat (Ravi et al. 2019). Despite numerous

observational and theoretical endeavors (Platts et al. 2019), the origin of FRBs remains

elusive4.

Brazil is also joining the field of the hunt for FRBs with the Baryon Acoustic

Oscillations from Integrated Neutral Gas Observations (BINGO; Abdalla et al. 2022a).

Being built originally to measure Baryon Acoustic Oscillations (BAO) through 21 cm

radiation, the BINGO Collaboration is aiming to improve the telescope instruments

to also detect FRBs (dos Santos et al. in prep.; see Chapter 3). This is going to

substantially improve the amount and diversity of FRBs detected since BINGO is

a southern sky survey, and the vast majority of the telescopes are bounded to the

northern sky.

In general, surveys for FRBs and other radio transients may be designed with the

aim of detecting a few transients that can be analyzed in-depth or numerous transients

for population studies. This master thesis will present a simulation analysis of several

possible improvements to BINGO’s instruments to establish the telescope as a strong

FRB detector. The upcoming sections of this chapter will give a concise overview of

radio transients in general (§1.1), with a specific focus on FRBs (§1.2). The chapter

concludes by presenting an outline of this thesis (§1.3).

1.1 Radio transients

1.1.1 Phase space

In the Rayleigh-Jeans limit of the Planck distribution, radio transients can be parame-

terized based on the burst or pulse width, W , and the pseudo-luminosity, Sνd
2
A, of a

source with brightness temperature, TB. This relationship is given by

4An overview of FRB models is summarized and regularly updated at https://frbtheorycat.
org/.

https://frbtheorycat.org/
https://frbtheorycat.org/
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TB =
1

2πkB

Sνd
2
L

(νW )2
, (1.1)

where Sν is the observed flux density for a given emission frequency ν, dL is the

luminosity distance, and kB is Boltzmann’s constant. Cordes et al. (2004), Keane

(2010) and Zhang (2020) have shown that this equation forms a phase space of radio

transients in terms of their Sνd
2
L and νW , as depicted in Fig. 1.1. The νW parameter

is introduced by expressing the size of the emitting region as the light travel time in a

causally connected region. FRBs are a remarkable class of sources in this space as they

are the most luminous short-duration transients currently known.

The emission mechanism responsible for FRBs must be non-thermal and coherent

since their brightness temperature TB exceeds 1012 K. This temperature limit is due

to the inverse Compton cooling of relativistic electrons, as noted by Kellermann &

Pauliny-Toth (1969). To avoid causality violations, the emitting area of any transient

must be smaller than the light travel time cW , which means the FRB emitting region

must be less than 300 km for 1-ms bursts and 3 km for 10-µs bursts, disregarding

geometric and/or relativistic effects. However, if the emitting region R is moving

towards the observer with a Lorentz factor γ, the observer sees a smaller region of R/γ,

and the constraint on the emitting region becomes less strict.

Electrically charged particles emit non-thermal electromagnetic waves when they

are accelerated, either incoherently or coherently. The total power emitted is propor-

tional to the number of particles, n, and to n2 for incoherent and coherent processes,

respectively. Consequently, coherent emission processes can achieve higher effective

TB than incoherent processes. As can be seen in Fig. 1.1 there are multiple classes of

radio transients that emit coherently.
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Figure 1.1: The plot depicts the phase space of radio transients, with pseudo-luminosity on
the y-axis and the product of emission frequency and burst width on the x-axis. Diagonal
dashed lines indicate constant effective brightness temperature, with TB ≈ 1012 K roughly
distinguishing incoherent and coherent emission processes (as explained in the main text).
FRBs are notably distinct from other radio transients in terms of their luminosity. A
noticeable gap in the phase space between Galactic pulsars and RRATs and extragalactic
FRBs has recently been bridged by the detection of a bright radio burst from the Galactic
magnetar SGR 1935+2154. The figure was created by Keane (2018).
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1.1.2 Propagation effects

As radio signals travel through space, they interact with the plasma that fills the

interstellar medium (ISM) of the Milky Way. Although the ISM is almost a vacuum,

it contains a small number of free electrons, resulting in a non-zero current density

(indeed, their mean density ne ≈ 0.03 cm−3; Draine 2010). These electrons affect the

velocity of the radio waves, causing lower frequencies to arrive later than higher ones.

Despite the small electron density, this effect can be measured because of the long

distances that the waves travel. Additionally, the presence of magnetic fields causes

a difference in the phase velocity of right- and left-circularly polarized radio waves,

resulting in a Faraday rotation of the plane of polarization of linearly polarized radio

waves. Inhomogeneities in the plasma also lead to scintillation and scattering of the

radio waves. The study of these effects provides valuable information about the density

structure of the ISM (Cordes & Chatterjee 2019).

Dispersion

The electrons in the ISM make up a cold plasma with a refractive index

µ =

[
1−

(νp
ν

)2]1/2
, (1.2)

where ν is the frequency of the radio waves and νp is the plasma frequency. The plasma

frequency is given by5

νp =

√
e2ne

meϵ0
, (1.3)

where ne is the number density of electrons, e is the electric charge, me is the effective

mass of the electron, and ϵ0 is the permittivity of free space.

Within the ISM, ne ≈ 0.03 cm−3, therefore, νp ≈ 1.5 kHz. Radio waves cannot

travel through the ISM if their frequency ν is lower than the plasma frequency νp. The

group velocity of the waves that can propagate is µc, where µ is less than 1, and c

5Note that the above formula is derived under the approximation that the ion mass is infinite.
This is generally a good approximation, as the electrons are so much lighter than ions.
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is the speed of light. As a result, there is a frequency-dependent dispersion delay in

the arrival time ∆t of the waves. Upon observing between two frequencies, ν1 and ν2

(where ν is much greater than νp), such a delay occurs. This is the case for FRBs,

since according to the TNS catalog, the vast majority were detected between 800 MHz

and 8 GHz (much larger than νp ≈ 1.5 kHz). The delay ∆t is given by

∆t = kDMDM
(
ν−2
1 − ν−2

2

)
ms , (1.4)

where ν1 and ν2 are used in MHz and DM is the dispersion measure given in pc cm−3.

The dispersion measure is the integrated column density of free electrons between the

source and the observer, that is

DM =

d∫
0

ne dℓ , (1.5)

where d is the distance through the plasma and ne the free electron density. The

definition of the constant kDM is

kDM =
1

8π2

e2

ϵ0mec
× parsec ≈ 4149.38 GHz2 cm3 pc−1 s . (1.6)

The dispersion measure DM is not only affected by free electrons but also by ions

and is sensitive to the plasma temperature, meaning that it is not strictly related to

only the column density of free electrons (although the additional effects are negligible).

The observed DM is the total sum of all the line integrals of ionized plasma that a

burst encountered,

DMobs = DMMW +DMMW,halo +DMcosmic(z) + DMhost , (1.7)

where DMMW and DMMW,halo are the contributions from the ISM and halo of the

Milky Way, DMcosmic(z) is the contribution from the intergalactic medium (IGM) in

the redshift z, and DMhost is the contribution from the interstellar medium and halo
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from the host galaxy of a source. It is possible to break down DMhost into a galaxy and

halo component, and an additional DM component may be present due to interactions

with intervening galaxies or halos in the IGM.

FRBs are defined by their DMs exceeding the contribution from our Galaxy along

their lines of sight. Therefore, distinguishing between FRBs and bursts or pulses from

Galactic RRATs or pulsars requires a thorough understanding of the Galactic DM

contribution (Keane et al. 2016). Two available models for the distribution of free

electrons in our Galaxy are NE2001 (Cordes & Lazio 2002) and YMW16 (Yao et al.

2017), which are based on modeling various Galaxy components and are calibrated to

pulsars with independently measured distances.

The estimates for DMMW,halo vary significantly, ranging from a few units to ap-

proximately 50 pc cm−3, as reported by Prochaska & Zheng (2019a), Keating & Pen

(2020), and Platts et al. (2020). To determine DMcosmic(z), assumptions must be made

regarding the ionization fractions of the baryons in the IGM and the electron-to-baryon

fraction (Ioka 2003; Inoue 2004; Zhang 2018a). The Macquart relation, or DM-z

relation, has been measured for the first time using a sample of well-localized ASKAP

FRBs (Macquart et al. 2020b). A useful approximation is DMcosmic(z) ≈ 1000 z pc

cm−3. The value of DMhost depends heavily on the host galaxy’s type and its viewing

angle relative to Earth, meaning that if the FRB travels through a face-on galaxy, it

will likely encounter less material than if it passes through an edge-on galaxy.

1.2 Fast radio bursts

The fundamental characteristics of FRBs were established following the discovery of

the first burst (Lorimer et al. 2007). FRBs are observable as transient events lasting

approximately a few milliseconds from distances around a few billion parsecs. This

indicates that they possess extremely high brightness temperatures of around ∼ 1036 K,

release vast amounts of energy of about ∼ 1033 J, and originate from compact objects

with a size ≲ 103 km. These features suggest that FRBs arise from coherent emission.
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Contemporary radio telescopes can detect about one thousand FRBs per day above

their sensitivity threshold of a few Jy ms. Initial attempts to explain the origin of

FRBs were mostly theoretical, involving speculative scenarios that could satisfy these

broad constraints.

The discovery of a repeating source of FRBs revealed another important property

(Spitler et al. 2016). This finding prompted the classification of FRBs into two

categories: one-off bursts and repeaters. Although some FRBs have been observed for

hundreds of hours without any signs of repetition, it is not yet clear if all FRBs repeat

at different times and energy scales. The non-repeating bursts are sometimes referred

to as apparent non-repeaters or so-far-non-repeaters. The existence of at least some

FRB sources that repeat has led to a surge of general models that meet the previously

established constraints without being cataclysmic, which means they do not destroy

the FRB production site in the process (see §1.2.3 below).

There are many hypothesized progenitors of FRBs that have been proposed, and

we have access to numerous additional observables beyond the order-of-magnitude

constraints. These observables can help in falsifying each of the proposed models until

only one or a few remain viable. However, it’s important to keep expectations in check,

for instance: we still do not fully understand why pulsars emit radiation, despite more

than fifty years of research since their discovery.

1.2.1 Observables

What follows is a list of observables for individual FRBs and their most common

units, with observed ranges of values from https://www.wis-tns.org/ (Gal-Yam

2021) unless other citations are provided.

• Dispersion measure DM [pc cm−3]: As defined in §1.1.2, the DM of an FRB

is determined by optimizing the dispersion delay correction of the burst. This

is typically achieved by testing a range of trial DMs and selecting the DM that

maximizes the signal-to-noise ratio or burst structure. Currently, FRBs have

 https://www.wis-tns.org/
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been observed with DMs of up to approximately 3000 pc cm−3.

• Burst width [ms]: This is measured as either the observed or intrinsic (modeled)

width. The intrinsic width is broadened due to propagation effects such as

dispersion smearing and scattering. The width serves as a crucial constraint on

potential progenitors and emission mechanisms.

• Dispersion index: The dispersion delay of a cold and tenuous plasma ∝ ν−2 (cf.

Eq. (1.4), and any deviations from the −2 index point to additional dispersive

effects either at the source or in the intervening plasma. The dispersion index

can be constrained by fitting a delay ∝ να to a burst. No significant deviations

have been observed so far.

• Scattering timescale [ms]: The plasma in which the pulsar travels contains

irregularities that result in the multi-path propagation of FRBs. This phenomenon

leads to scattering tails that resemble exponential functions. The impact of this

effect varies significantly with frequency, typically following a ∝ ν−4 relationship.

By measuring the burst width at various frequencies, researchers can deduce

information about the environment that the FRB has traversed.

• Scattering index: by adjusting the scattering timescale index, which is typical

∝ ν−4, researchers can gain insight into how the inhomogeneities in the plasma

scale contribute to the scattering effect. For pulsars observed at around 150

MHz using LOFAR, the measured scattering indices range from −1.5 to −4, as

reported by Geyer et al. (2017). Meanwhile, for the few FRBs where indices are

available (though somewhat imprecise), the range spans approximately −2.5 to

−6.

• Flux [Jy = 10−26 W m−2 Hz−1]: The peak intensity of an FRB serves as a

benchmark for the amount of energy that any proposed theoretical model must

account for. These bursts exhibit fluxes ranging from O(10−2) to O(102) Jy,

but because the exact sky locations of most FRBs are not well-defined, flux
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measurements are typically lower limits. This is because they assume the FRB

was detected at the center of the telescope’s beam, rather than accounting for

the sensitivity of the beam towards the FRB’s (uncertain) position in the sky.

• Fluence [Jy ms]: The total energy released during an FRB event provides a

comprehensive energy scale that any theoretical model must account for. These

events typically exhibit integrated fluxes ranging from O(10−1) to O(102) Jy ms.

However, it’s worth noting that most of these values represent lower limits, just

like flux measurements, since the precise sky position of many FRBs is not yet

known.

• Spectrum: This refers to the scope and shape of FRB spectra. FRBs have

been observed at frequencies ranging from 300 MHz (Chawla et al. 2020) to

8 GHz (Gajjar et al. 2018a). Typically, the spectra of bursts that span the

full bandwidth of a receiver are characterized by a power-law function ∝ να,

where α is the spectral index. In the case of ASKAP bursts, their mean and

median spectra appear to be well-fit by a power law with an index of -1.6 or

-1.4, respectively (Macquart et al. 2019a). For narrower-band bursts, the spectral

extent is commonly defined as the burst bandwidth’s full width at half-maximum

(FWHM) or full width at tenth-maximum (FWTM). In addition to the broad

structure of FRB spectra, finer-scale structures such as intensity modulation

caused by scintillation (e.g., Masui et al. (2015)) and fine structures that may

be due to the emission process (Farah et al. (2018); Shannon et al. (2018))

are observed. Furthermore, some FRBs consist of multiple sub-bursts that

occasionally drift down in frequency as time passes (see next item). Spectral

characteristics like those described here provide insight into emission mechanisms

and propagation effects.

• Drift rate [MHz ms−1]: The rate at which sub-bursts shift towards lower

frequencies in the ”sad trombone” bursts is of particular interest. Typically,

this drift is assumed to be linear and can be calculated by fitting a linear slope
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through the centroids of the sub-bursts or through the autocorrelation of the

burst dynamic spectrum. Measured drift rates range from a few to tens of MHz

ms−1 around 600 MHz up to almost a GHz ms−1 around 6.5 GHz (Caleb et al.

2020). The drifting phenomenon, as well as the observed drift rates, must be

accounted for by an emission mechanism or a propagation effect.

• Rotation measure [rad m−2]: RM, which was defined in §1.1.2, is measured

by fitting burst polarization as a function of wavelength for a range of possible

RM values and determining the best-fit value. The majority of observed FRB

RMs range from a few tens to a few hundreds of rad m−2. However, for FRB

121102, the RM was as high as 105 rad m−2, but it has since decreased (Michilli

et al. 2018).

• Linear polarization fraction: For many FRBs, the degree of linear polarization

has been observed to be near or at 100%. This provides a strong limitation on

the possible FRB emission mechanisms.

• Position angle evolution: The variation of the position angle (PA) of FRBs

with respect to individual bursts can offer valuable information regarding the

emission mechanism of FRBs. In some cases, the PAs remain constant, while in

others, they exhibit a swing-like pattern resembling the shape of the letter ”S”.

The latter indicates that the emission may originate from a rotating object, as

seen in pulsars (Radhakrishnan & Cooke 1969; Manchester et al. 1975). On the

other hand, a flat PA curve could imply a wide emission cone or emission that is

not associated with rotation.

• Redshift: Can be estimated from DMcosmic(z) by the Macquart relation (see

§1.1.2) or it can be measured by identifying spectral lines in the spectrum of the

host galaxy associated with the FRB.

• Sky position: Accurate determination can result in an association with a

host galaxy. However, for a clear and definitive association, detection using an
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interferometer with extremely long baselines is typically required (more on this

in §3).

• Multi-wavelength counterparts: If an electromagnetic, astroparticle, or

gravitational wave detection occurs simultaneously and in the same location as

an FRB, it can offer valuable insights into the origin of the FRB source.

For repeating sources of FRBs this list is further extended.

• Repeat rate: The number of bursts observed above a certain sensitivity threshold

per unit of time is known as the repeat rate, which may vary depending on the

frequency. This rate serves as a useful metric for scheduling follow-up observations

and also acts as a constraint on repeater models.

• Wait time: The typical time between subsequent bursts informs models for

repeaters.

• Energy distribution: The way in which the number of bursts with a particular

energy is spread out can reveal valuable insights about progenitor models, while

the ratio of brighter to dimmer events can guide decisions on follow-up observation

approaches.

• Periodicity: If the arrival times of bursts exhibit a consistent and precise

pattern, it indicates that the FRB-producing (compact) object is rotating. Al-

ternatively, the sources may display periodic behaviors with intermittent bursts,

suggesting that some binary interaction is causing the FRBs or that the presence

of intrabinary material is either enhancing (e.g., via plasma lensing) or hindering

(e.g., via absorption) the FRB emission. These longer timescale periodicities may

point to orbital motion.

Then, for the full population, the important observables are as follows.

• Sky distribution: The distribution of FRBs across the sky can provide insight

into their isotropic distribution across the cosmos, their adherence to large-scale
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structure (as demonstrated by Rafiei-Ravandi et al. 2020), and the potential

influence of Galactic latitude on their detection (as explored by Petroff et al.

2014).

• Redshift distribution: Such analysis can aid in identifying the cosmological

population responsible for generating FRBs. For instance, if the frequency of

FRBs aligns with the documented history of star formation in the cosmos (as

suggested by Niino 2018), it can offer clues regarding the FRBs’ source.

• Volumetric distribution: The sky and redshift distribution of FRBs can enable

the calculation of the frequency of FRBs per unit volume. This information

can then be utilized to restrict progenitor models (as demonstrated by Ravi

2019b). For instance, if a hypothesis posits core-collapse supernovae (CCSNe)

as the source of FRBs, the number of CCSNe occurring in a given volume must

correspond to the deduced rate of FRBs.

• Dispersion measure distribution: In addition to its correlation with the

redshift distribution of FRBs (via the Macquart dispersion measure-redshift rela-

tion), the dispersion measure distribution presents an opportunity for identifying

the epoch of helium reionization, given the detection of numerous FRBs within

the 3 < z < 5 range (Macquart & Ekers 2018; Caleb et al. 2019; Linder 2020).

1.2.2 Host Galaxies

Establishing the connection between an FRB and its host galaxy not only offers insight

into its redshift but also facilitates the identification of FRB progenitors, as certain

progenitor types may be more prevalent in specific galaxy types. However, the precision

of this association is dependent on factors such as the localization uncertainty region,

DM/redshift, and the brightness of galaxies within the localization region. As redshift

increases, there is greater ambiguity within a given sky area, and the likelihood of

discovering a brighter galaxy in that area is reduced compared to that of a fainter

galaxy (Eftekhari & Berger 2017).
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By achieving sub-arcsecond localization for nine of the roughly 110 published FRBs,

the identification of their host galaxies has verified their cosmological origin, placing

them at redshifts ranging from 0.03 to 0.66 (Chatterjee et al. 2017; Bannister et al.

2019; Ravi 2019a; Prochaska & Zheng 2019b; Marcote et al. 2020; Macquart et al.

2020a). Host galaxies of one-off FRBs vary from star-forming spiral galaxies (e.g., FRB

190608, as reported by Chittidi et al. (2021)) to early-type spirals (e.g., FRB 180924,

as documented by Bannister et al. (2019)). The first localized repeater, FRB 121102,

is situated within an irregular, low-metallicity dwarf galaxy, linking it to known hosts

of superluminous supernovae (SLSNe, per Bassa et al. (2017)). However, the second

repeater is situated in the star-forming region of a massive spiral galaxy (Marcote et al.

2020).

According to Bhandari et al. (2020), a comparison of host galaxies of FRBs reveals

that those localized by ASKAP are usually situated at the edges of their host galaxies,

effectively ruling out progenitor models involving active galactic nuclei. Furthermore,

the stellar populations of the hosts of ASKAP FRBs are dissimilar to those of FRB

121102, thereby making it improbable that those FRBs are also associated with

remnants of SLSNe.

The small sample size of host galaxies for both one-off and repeater FRBs demon-

strates a range of diversity, indicating a distinction between the two categories. Never-

theless, to establish definitive conclusions, further associations are essential given the

limited number of observations.

1.2.3 Possible progenitors

Astronomers are actively seeking to identify the sources of FRBs, determine their

energy sources, and understand how they form. In order to develop a viable FRB

progenitor model, it must be capable of explaining the observed burst characteristics,

such as their duration (ranging from a few tens of microseconds to a few milliseconds),

energetics (up to approximately 1043 erg s−1 for isotropic emission), and a burst rate

of around 1.7× 103 FRBs per sky per day above a flux density of approximately 2 Jy
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(Bhandari et al. 2018). The goal is to develop a comprehensive understanding of the

nature of FRBs and the mechanisms that drive them.

To develop a viable FRB progenitor model, it is crucial to consider the dynamical

time scales that match observed burst durations, as argued by Lu & Kumar (2018).

If the FRB is believed to originate from a stellar collapse or accretion event, then

the free-fall time tff ∼ (R3/GM)1/2 governed by gravity, for an object of radius R

and mass M , is a relevant timescale. For a neutron star (NS) or black hole (BH;

RSchwarzschild = 2MG/c2), with typical values of M ≈ 1.4M⊙ and R ≈ 10 km, the

free-fall time is approximate ∼ 0.1 ms. On the other hand, for a white dwarf (WD)

with M ≈ M⊙ and R ≈ 7000 km, the free-fall time is much longer at ∼ 10 s. Therefore,

any model involving dynamics around a WD is less likely. In the case of accretion

from a disk, the relevant timescale is the viscous timescale tvis ∼ ρR2/η̄, where ρ is

the density and η̄ is the average shear viscosity in the disk. However, this timescale is

typically much longer than the free-fall timescale.

The light crossing time of an emitting region with size R is what links causality to

the minimum burst duration, which can be expressed as R/c ∼ 30(R/109 cm) ms. This

constraint disfavors the possibility of WD as progenitors unless the emission is confined

to a smaller region on the surface or in the magnetosphere of the WD. However, the

constraint can be relaxed by a factor of ∼ 2γ2 when the emitting plasma is moving

relativistically towards the observer with a Lorentz factor γ ≫ 1. Such plasma can

only be launched by a neutron star or black hole. Therefore, based on burst duration

considerations alone, it is difficult to imagine any other progenitor than an NS or BH

(Katz 2018).

Possible progenitor models can be categorized into two groups: cataclysmic models,

which are ruled out for repeating FRBs, and models that allow for repetition. The

latter group can be further subdivided into compact object models and exotic models.

Within the compact object models, there are three subcategories: pulsar-like models,

which rely on tapping into the rotational energy of the compact object; magnetar-like

models, which rely on tapping into the magnetostatic energy of the compact object;
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and interaction models, which rely on energy extraction from the interaction with a

binary companion or a nearby object that is not necessarily gravitationally bound to

the compact object.

Pulsar-like progenitors

According to Lorimer et al. (2005), the spin-down luminosity Lsd of an NS and its

rate of rotational energy loss is ∝ P−3Ṗ , where P is the spin period and Ṗ is the spin

period derivative. In order to account for the energetics of FRBs, a pulsar must have a

fast spin period (≲ 10 ms) and be spinning down rapidly. As a result, young pulsars

(≲ 1000 yrs) with Crab-like giant pulses are the most likely candidates for FRBs

(Cordes & Wasserman 2016; Lyutikov et al. 2016; Munoz et al. 2020). The supernova

remnant (SNeR) left over from the pulsar’s explosion is expected to be opaque to FRB

emission for approximately the first 10 years, but the pulsar’s embedding in the SNR at

later times could explain observed RM values in the 100-1000 rad m−2 range (Connor

et al. 2016). If a strict periodicity is detected in the arrival times of bursts and/or the

DM/RM evolution of sources matches those calculated from models of SNeRs (Piro &

Gaensler 2018), these models will gain more credibility.

Magnetar-like progenitors

The large magnetic energy reservoir of magnetars makes them a feasible origin for

FRBs, as supported by Kaspi & Beloborodov (2017). Additionally, the association of

FRBs 121102, 180916.J0158+65, and 190608 with star-forming regions in their host

galaxies (where short-lived magnetars are located), along with a magnetar birth rate

that matches the observed FRB rate (Nicholl et al. 2017) and the recent detection

of a bright radio burst from the Galactic magnetar SGR 1935+2154 (Lu et al. 2020;

Margalit et al. 2020), further support this link. Many models have been proposed in

which FRBs are generated from the flaring activity of magnetars (Popov & Postnov

2013; Kulkarni et al. 2014; Lyubarsky 2014; Katz 2016; Beloborodov 2017; Kumar

et al. 2017; Metzger et al. 2017; Margalit & Metzger 2018). These models suggest that
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the FRBs either originate near the magnetosphere of the neutron star or further out,

with various emission mechanisms proposed (for a clear overview of different magnetar

models for FRBs, see Margalit et al. 2020).

Interaction models

Several models propose that single or repeating FRBs can be created by the catas-

trophic or repetitive interaction of two objects. For instance, the merger of two WDs

(Kashiyama et al. 2013), two NSs (Totani 2013), two BHs (Zhang 2016), a BH and an

NS (using a ”black hole battery”; Mingarelli et al. 2015) could provide the necessary

energy and conditions to generate FRBs for a brief period or accretion events between

NSs and WDs have been proposed (Gu et al. 2016) as a more extended FRBs generator.

An alternative approach to generating repeating FRBs involves the interaction

between a pulsar and a smaller celestial body, such as a planet, asteroid, or white dwarf.

These systems can produce repeating FRBs in a stable burst-generating configuration

or through repeated interactions with an asteroid belt, for example. Models focusing

on asteroids have received significant attention from researchers (Geng & Huang 2015;

Dai et al. 2016; Bagchi 2017). A more energetically favorable approach to generating

FRBs is through the interaction between a pulsar and a plasma stream from a nearby

source, such as an AGN, a GRB, or a supernova (Zhang 2017, 2018b).

1.2.4 Possible emission mechanisms

In order to be a viable model for FRB emission, the mechanism must account for the

observed radio luminosity, spectra, and polarization of the bursts, as described in §1.2.

Additionally, the model must be connected to a progenitor model that can supply the

required energy and magnetic field to drive the emission. Since FRBs are commonly

detected at GHz frequencies, the emission mechanism must peak around this frequency

range.

As previously mentioned, the observed brightness temperature of FRBs exceeds

the maximum temperature of a blackbody, which implies that FRB emission must be
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non-thermal. This means that the emission process does not depend on temperature

and can be either incoherent or coherent. In the case of incoherent emission, the

radiated power is proportional to the number of particles (n) and the power per particle

(Psingle), while in the case of coherent emission, the radiated power is proportional to

the square of the number of particles (n2) and the power per particle (Psingle). To

account for the high brightness temperatures observed in FRBs, a coherent emission

process is necessary.

Several coherent emission mechanisms were developed to explain pulsar emission,

including antennas, reactive, and maser instabilities. A review by Melrose (2017)

covers these mechanisms. As for FRBs, curvature radiation and synchrotron maser

emission appear to be possible mechanisms, as suggested by studies by Cordes &

Wasserman (2016), Kumar et al. (2017), Ghisellini, Gabriele & Locatelli, Nicola

(2018), Lu & Kumar (2018), Waxman (2017), Gruzinov & Levin (2019), Metzger et al.

(2019), Beloborodov (2020). However, detailed simulations, such as those conducted by

Plotnikov & Sironi (2019), will be necessary to determine the feasibility of any emission

mechanism.

1.3 Outline of thesis

It is evident that a multitude of significant inquiries surrounding FRBs remains

unresolved. These include but are not limited to, the repetition of all FRBs, the

presence of multiple classes of FRBs, the progenitor responsible for FRB emission,

and the underlying mechanism driving the FRB phenomenon. In an effort to shed

light on these and other critical questions, the BINGO telescope experiment has been

developed with the objective of detecting a large number of FRBs.

In this Master’s thesis, I investigated the performance of the BINGO telescope in

detecting FRBs. Additionally, the feasibility of using a set of outriggers to localize the

FRBs in the sky through the BINGO Interferometric System (BIS) was explored. The

investigation involved evaluating the detection capabilities of a single, naked horn as
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well as three different mirror sizes for the outriggers. Specifically, the study considered

5, 7, 9, and 10 outriggers, each equipped with a single horn. To generate synthetic

FRBs and calculate detection rates, I used and helped to develop the code FRBlip,

reaching ∼ 180 localized FRBs by at least 3 baselines with redshifts up to 1.3.

Using various techniques for defining detection and localization through baselines,

it has been estimated that the BINGO telescope alone will be capable of observing

dozens of Fast FRBs per year. Specifically, around 50 FRBs with a signal-to-noise

ratio (S/N) of at least 5 and 20 with S/N of at least 15 (in certain circumstances to

be discussed) can be detected, which is consistent with prior calculations presented in

Abdalla et al. (2022a). The inclusion of outriggers can improve the overall detection

rate by approximately 20% with 9 outriggers.

The remainder of this thesis is organized as follows: Chapter 2 is a review of basic

radio astronomy with concepts and definitions that are going to be used in the whole

thesis; Chapter 3 describes the BINGO telescope and in particular presents the BINGO

Interferometry System with and corresponding simulations; Chapter 4 I present the

different outrigger configurations, compare their performances, and discuss the different

criteria to define the detection and localization of an FRB; Chapter 5 is reserved for

conclusions including some directions for future research and other contributions I have

participated in these two years of work.
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Radio Astronomy Basics

This chapter reviews the necessary concepts of radio astronomy that will be used in

the whole thesis, especially the assumptions made to model the BINGO telescope and

to create the FRB mocks. The description presented here is based on Rohlfs & Wilson

(2013).

2.1 Basic definitions

The electromagnetic radiation in the radio window is a wave phenomenon. The BINGO

radio window is from 23.79 cm to 30.59 cm and its main and secondary diameters are

respectively 40.0 m and 35.6 m (more on this in Chapter 3). Since the scale of the

system is much larger than the wavelength, we can consider the radiation to travel in

straight lines called rays. This is common to a vast majority of radio telescopes.

2.1.1 Brightness and flux density

We start by establishing the definition of the brightness Iν (also known as intensity or

specific intensity), that is (see Fig. 2.1)

dP = Iν cos θ dΩdσ dν , (2.1)
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Figure 2.1: A sketch to illustrate the definition of brightness.

where dP , dσ, dν, dΩ and θ are respectively the infinitesimal power in watts, infinites-

imal area of the surface in cm2, infinitesimal bandwidth in Hz, infinitesimal solid angle

element and the angle between the normal to dσ and the direction to dΩ. The units of

Iν is W m−2 Hz−1 sr−1.

We can obtain the total flux density of a source by integrating (2.1) over the total

solid angle Ωs subtended by the source as

Sν =

∫
Ωs

Iν(θ, φ) cos θ dΩ . (2.2)

The flux density is measured in units of W m−2 Hz−1. It is quite often to write the

flux in Jansky (Jy) units, where 1 Jy = 10−26 W m−2 Hz−1 = 10−26 erg s−1 cm−2 Hz−1.

This is done because the flux density of radio sources is usually very small, rarely being

as bright as 1 Jy.

Now we consider a sphere with uniform brightness Iν with radius R (see Fig. 2.2).

The total flux density received by an observer at the distance r then is, according to

(2.2),

Sν =

∫
Ωs

Iν cos θ dΩ = Iν

2π∫
0

θc∫
0

sin θ cos θ dθ dφ , (2.3)



2.1 Basic definitions 23

where

sin θc =
R

r
(2.4)

defines the angle θc that the radius of the sphere subtends at r. We obtain

Sν = π Iν sin2 θc , (2.5)

or

Sν = Iν
πR2

r2
= Iν ∆Ω , (2.6)

where ∆Ω is defined as the area subtended by an object at a distance r. Of course, the

total flux density, Sν , shows the expected dependence of 1/r2.

Figure 2.2: Total flux received at a point P from a uniformly bright sphere.

2.1.2 Radiative transfer

The brightness is a property of the source. In free space, Iν remains independent of

the distance along a ray. It will change only if radiation is absorbed or emitted. This

change of Iν is described by the equation of transfer. Let us adopt a macroscopic

approach here. For a change in Iν along the line of sight, a loss term dIν− and a gain

dIν+ are introduced, and we adopt the form

dIν− = −κν Iν ds , (2.7)

dIν+ = ενds , (2.8)
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where κν and εν are, respectively, the linear absorption and the emission coefficients.

The change in a slab of material of the thickness ds is

[Iν(s+ ds) − Iν(s)] dσ dΩdν = [−κν Iν + εν ] dσ dΩdν , (2.9)

resulting in the equation of transfer

dIν
ds

= −κν Iν + εν . (2.10)

There are several limiting cases for which the solution of the differential equation

(2.10) is especially simple. We are interested in the thermodynamic equilibrium situation.

If the radiation is in complete equilibrium with its surroundings, the temperature T

totally describes the brightness distribution through the Planck function, that is

dIν
ds

= 0 , Iν = Bν(T ) =
εν
κν

, (2.11)

Bν(T ) =
2hν3

c2
1

ehν/kBT − 1
. (2.12)

where h, c, and kB stand for respectively the Planck’s constant, the speed of light in

vacuum, and the Boltzmann constant.

2.1.3 Brightness temperature

The Eq. (2.12) gives us the spectral distribution of the radiation of a black body in

thermodynamic equilibrium. Let us integrate (2.12) with respect to the frequency ν to

obtain the total brightness B(T ) of a black body,

B(T ) =
2h

c2

∞∫
0

ν3

ehν/kBT − 1
dν . (2.13)
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Substituting

x =
hν

kBT
, (2.14)

we get

B(T ) =
2h

c2

(
kBT

h

)4
∞∫
0

x3

ex − 1
dx . (2.15)

This integral amounts to π4/15. Thus,

B(T ) = σT 4 , σ =
2π4k4

B

15c2h3
= 1.8047× 10−5 erg cm−2 s−1K−4 , (2.16)

which is the Stefan-Boltzmann law.

The frequency that maximizes the distribution in (2.12) can be easily found by

doing ∂Bν/∂ν = 0

2h

c2
∂

∂ν

(
ν3

ehν/kBT − 1

)
= 0 , (2.17)

in which, substituting the constant values we find that

( νmax

GHz

)
= 58.789

(
T

K

)
. (2.18)

The same analysis can be done in the wavelength λ space, resulting in

(
λmax

cm

)(
T

K

)
= 0.28978 . (2.19)

Equations (2.18) and (2.19) are both known as Wien’s displacement law. If (2.14)

is far from the maximum, the distribution (2.12) can be approximated by simpler

expressions.

Let us investigate the case where hν ≪ kBT . This will lead us to the Rayleigh-Jeans

law. An expansion of the exponential

ehν/kBT ≈ 1 +
hν

kBT
+ . . . , (2.20)
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applied to (2.12) results in

BRJ(ν, T ) =
2ν2

c2
kBT . (2.21)

This is the classical limit of the Planck law since it does not contain Planck’s constant.

We can easily find the regime where this result is valid by inserting the numerical

values for kB and h into hν ≪ kBT . This will give us that the Rayleigh-Jeans relation

holds for frequencies

ν

GHz
≪ 21

(
T

K

)
. (2.22)

This means that the Eq. (2.21) can be used for all thermal radio sources (with some

exceptions). Eq. (2.21) can be used for studies of cosmic sources at centimeters and

longer wavelengths. Since the BINGO radio window is inside this regime, this result is

particularly relevant to the analysis of FRBs presented in this dissertation.

Now, note that we can compare Eq. (2.11) and (2.21) to get one of the main

features of the Rayleigh-Jeans law: the fact that in this radio window, the brightness

and the thermodynamic temperature of the black body that emits this radiation are

strictly proportional,

Iν =
2ν2

c2
kBT . (2.23)

In radio astronomy, it is used to measure the brightness of an extended source by its

brightness temperature TB. This is the temperature that would result in the given

brightness if inserted into the Rayleigh-Jeans law,

TB =
c2

2kBν2
Iν =

λ2

2kB
Iν . (2.24)

Putting Eq. (2.24) into (2.6), we have

Sν =
2kBν

2

c2
TB∆Ω , (2.25)
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In terms of the flux Sν , the brightness temperature can be written as

TB =
c2

2kBν2

Sν

∆Ω
. (2.26)

For very brief transient signals such as FRBs, we can approximate ∆Ω by introducing

the parameter cW where W is the burst or pulse width. This parameter expresses

the size of the emitting region as the light travel time in a causally connected region.

Furthermore, the area of the causally connected region is π(cW )2, thus the solid angle

∆Ω for a transient is

∆Ω ≈ π(cW )2

dL2

, (2.27)

where dL is the angular diameter distance. So, the brightness temperature for a

transient radio signal is

TB =
1

2πkB

Sνd
2
L

(νW )2
, (2.28)

which is equation 1.1, that creates a phase space for these signals.

2.1.4 The Nyquist theorem

The thermal motion of the electrons in the resistor will produce a current i(t) which

forms a random input to the amplifier. Though the mean value of this current will be

zero, its RMS value will not. Since ⟨i2⟩ ≠ 0 represents power, the resistor provides a

power input to the amplifier. This is the Johnson noise, which was investigated by H.

Nyquist in 1929 and can be compared to the random walk of a particle in Brownian

motion with the addition of a friction term.

The average power per unit bandwidth produced by the resistor R in the circuit

shown in Fig. 2.3 is

Pν = ⟨iv⟩ = ⟨v2⟩
2R

=
1

4R
⟨v2N⟩ , (2.29)

where v(t) is the voltage that is produced by i across R, and ⟨. . . ⟩ indicates a time

average. The first factor 1/2 arises from the need to transfer maximum power to the

element on the right. This condition is met by setting Rx = R; then i = v/2R. The
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second factor 1/2 arises from the time average of v2. An analysis of the random walk

process now shows that

⟨v2N⟩ = 4RkBT . (2.30)

Inserting such expression into (2.29), we obtain

Pv = kBT . (2.31)

Then, the available noise power of a resistor is proportional to its temperature, the

noise temperature TN, and independent of the value of R.

Figure 2.3: A sketch of a circuit containing a resistor R, to illustrate the origin of Johnson
noise. The resistor R, on the left, at a temperature T , provides a power kBT to a matched
load RX, on the right.

2.2 Descriptive Antenna Parameters

We shall now introduce some other basic concepts, but this time related to antenna

parameters. In general, most antenna systems, especially those with high gain and

directivity used in radio astronomy and communications must be analyzed using

detailed numerical models such as GRASP since there is blockage by support structures.

The following sections will present a simple description of antenna properties, which

allows one to characterize the antenna properties based on astronomical measurements.
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2.2.1 Power pattern

We introduce the concept of power pattern P (θ, φ) of an antenna. The power pattern

refers to the directional (angular) dependence of the power of the radio waves from the

antenna or other source. Often, one measures the normalized power pattern Pn(θ, φ),

not the power pattern,

Pn(θ, φ) =
1

Pmax

P (θ, φ), (2.32)

where Pmax stands for the maximum value of P (θ, φ).

It is also useful to define the gain (or directive gain, or even directivity) G(θ, φ).

Consider the power pattern of the antenna used as a transmitter. If the total spectral

power, Pν in [W Hz−1] is fed into a lossless isotropic antenna, this would transmit P

power units per solid angle per Hertz. Then the total radiated power at frequency ν is

4πPν . In a realistic, but still, lossless antenna, a Power P (θ, φ) per unit solid angle is

radiated in the direction (θ, φ). We, then, define the gain G(θ, φ) as the

P (θ, φ) = G(θ, φ)P , (2.33)

or

G(θ, φ) =
4πP (θ, φ)∫∫
P (θ, φ) dΩ

. (2.34)

Thus, the gain is also a normalized power pattern to (2.32), but with the difference

that the normalizing factor is
∫∫

P (θ, φ) dΩ/4π. This is the gain relative to a lossless

isotropic source.

2.2.2 Main beam solid angle

The beam solid angle ΩA of an antenna is given by

ΩA =

∫∫
4π

Pn(θ, φ) dΩ =

2π∫
0

π∫
0

Pn(θ, φ) sin θ dθ dφ , (2.35)
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which is measured in steradians (sr). The integration is performed over the entire

surface of a sphere, such that ΩA represents the solid angle of an ideal antenna with

Pn = 1 across ΩA and Pn = 0 elsewhere. However, such an antenna does not exist in

reality. Most antennas have a normalized power pattern that is much larger within

a certain range of angles than for the rest of the sphere. This range is known as the

antenna’s main beam or main lobe, while the other parts are called side lobes or back

lobes (see Fig. 2.4). These properties are well-defined for actual situations up to the

shortest operating wavelengths. However, much of the power may enter through side

lobes at the shortest wavelength, even though there is still a main beam. Moreover,

the efficiency of the main beam may vary significantly depending on the elevation.

Therefore, accurately calibrating a radio telescope at the shortest wavelengths can be

challenging. In analogy to (2.35) we define the main beam solid angle ΩMB by

ΩMB =

∫∫
main lobe

Pn(θ, φ) dΩ . (2.36)

Figure 2.4: A polar power pattern showing the main beam, and near and far side lobes. The
weaker far side lobes have been combined to form the “stray pattern”.
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The effectiveness of an antenna as a device for measuring direction depends on how

much of the power pattern is concentrated in the main beam. If a significant portion of

the received power comes from the side lobes instead, measurements can be difficult to

perform. It is appropriate to define a main beam efficiency or (usually) beam efficiency,

ηB, by

ηB =
ΩMB

ΩA

. (2.37)

The angular size of the main beam has no bearing on the main beam efficiency. In

fact, a small antenna with a broad main beam can have a high beam efficiency. The

beam efficiency ηB represents the proportion of power concentrated in the main beam

and can be adjusted. This can be achieved simply by choosing appropriate primary

feeds and foci. When the full width at half power (FWHP) beam width is well-defined,

the position of an isolated source can be accurately determined by dividing the FWHP

by the signal-to-noise (S/N) ratio. Therefore, it is possible to determine positions with

precision to a small fraction of the FWHP beam width.

Substituting (2.35) into (2.34) where Pn = 1 it is easy to see that the maximum

directive gain Gmax or directivity D can be expressed as

D = Gmax =
4π

ΩA

. (2.38)

The half-power beam width (HPBW) is typically used to describe the angular range of

the main beam, which refers to the angle between the points on the main beam where

the normalized power pattern drops to half of its maximum value. This measurement

is also known as the full-width to half-power (FWHP). Although less common, other

measures include the beam width between the first nulls (BWFN) or the equivalent

width of the main beam (EWMB), which is defined as follows:

EWMB =

√
12

π
ΩMB . (2.39)
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When dealing with elliptical main beams, it is necessary to determine the widths in

both orthogonal directions. The beam width is influenced by the antenna’s geometric

size and the wavelength utilized, and the specific beam size is dependent on the grading

functions and illumination.

2.2.3 Effective aperture

Assume an antenna intercepts a plane wave with power density |⟨S⟩|. The antenna

extracts a specific amount of power Pe from this wave. We will then call the fraction

Aeff =
Pe

|⟨S⟩|
(2.40)

as the effective aperture of the antenna Aeff. Such quantity can be likened to a cross-

section in particle physics, with units of m2. By comparing this to the geometric

aperture Ag, we can establish the aperture efficiency ηA using the formula

Aeff = ηAAg . (2.41)

For a calculation of the effective aperture, the peak value of Ae is used; this is the

direction of the telescope axis. The directivity is related to Ae by

D = Gmax =
4πAeff

λ2
, (2.42)

which according to (2.38) is equivalent to

AeffΩA = λ2 . (2.43)

Eq. 2.43 is known as the antenna theorem.
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2.2.4 Antenna temperature

If a normalized power pattern Pn(θ, φ) is directed towards a brightness distribution

Bν(θ, φ) in the sky using a receiving antenna, then the output terminals of the antenna

will have a total power per unit bandwidth, Pν given by

Pν =
1

2
Aeff

∫∫
Bν(θ, φ) Pn(θ, φ) dΩ =

1

2
Aeff Sν . (2.44)

In the Rayleigh-Jeans limit, the brightness distribution can be replaced by an

equivalent distribution of brightness temperature, as per the definition. By applying

the Nyquist theorem (2.31), we can introduce an equivalent antenna temperature,

denoted as TA by

Pν = kBTA , (2.45)

or

TA =
1

2kB
Aeff

∫∫
Bν(θ, φ) Pn(θ, φ) dΩ =

1

2kB
Aeff Sν . (2.46)

The definition of antenna temperature establishes a connection between the an-

tenna’s output and the power from a matched resistor. The temperature of the resistor

is considered as the antenna temperature when the power levels of both are identical.

Instead of the effective aperture Aeff we can introduce the beam solid angle ΩA using

(2.43). In this case, (2.44) becomes

TA(θ0, φ0) =

∫
TB(θ, φ)Pn(θ − θ0, φ− φ0) sin θ dθ dφ∫

Pn(θ, φ) dΩ
, (2.47)

which is the convolution of the brightness temperature with the beam pattern of

the telescope. The brightness temperature TB is equivalent to the thermodynamic

temperature of the radiating material, but only when it pertains to thermal radiation

in the Rayleigh-Jeans limit originating from an optically thick source. In all other

instances, TB is merely a useful parameter that is generally dependent on frequency. It

is possible to reconstruct the layout of extended sources, all the way down to the beam
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size. This process is comparable to the “Inverse Problem” in various fields, including

image processing. To obtain the desired quantity TB, equation (2.47) must be inverted,

as TA is the quantity that is actually measured. This equation is a first-kind integral

equation that, in theory, can be solved if the full range of TA and Pn is known. However,

in practice, the inversion can only be performed approximately, as both TA and Pn

are typically only known for a limited range of values, and the measured data is not

error-free. Therefore, only an approximate deconvolution is usually carried out. A

special case arises when the source distribution TB(θ, φ) has a small extent relative

to the telescope beam, which is known as a “point source”. In such cases, the best

estimate for the upper limit of the actual full width at half maximum (FWHM) source

size is half the FWHM of the telescope beam. The challenge is that even minor errors

in either the beam shape or the measurement can result in significant errors in the

resulting source distribution.

2.3 The Radiometer Equation

To work properly, a receiver must be able to detect weak signals even in the presence

of noise, which requires a high degree of sensitivity. However, every measuring device

has its limits when it comes to sensitivity due to the influence of noise on both the

receiver input and the device itself. This limit can be expressed as a function of

receiver parameters. Even when no external input is connected to a receiver, there

will still be an output signal due to thermal noise generated by the device, which is

then amplified along with the signal. Since both the signal and noise share similar

statistical characteristics, they cannot be differentiated from one another. Before going

further on this topic, I will briefly explain how a receiving system works to establish

the jargon that I will be using.
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2.3.1 Receiving systems

Fig. 2.5 shows a super-heterodyne receiving system very similar to what is used in

most radio telescopes today. Its main components are:

• A low noise amplifier (LNA) and filter. When dealing with frequencies higher than

approximately 300 MHz, it is common practice to cool the LNA cryogenically to

a temperature of around 15 K.

• A mixer is utilized to convert νRF, which represents the central frequency of

the desired frequency band ∆νRF, to an intermediate frequency νIF that is more

convenient for all receiving systems on the telescope. The local oscillation signal

is typically phase-locked to the observatory’s master oscillator, which is commonly

a hydrogen maser frequency standard. RF and IF stand for received frequency

and intermediate frequency respectively.

• An intermediate frequency amplifier and filter which limits the bandwidth to

∆νIF.

• A square law detector (i.e. its output voltage is proportional to the input power)

followed by an integrator which averages the detector output for ∆τ seconds.

Figure 2.5: A schematic diagram of a super-heterodyne receiving system.

In this receiving system, the ability to detect minor variations in power at the

output terminals of our telescope caused by a radio source with antenna temperature

TA is determined by several factors. These factors include the level of additive noise
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power, typically represented as a temperature, known as the system noise temperature

Tsys, the pre-detection bandwidth ∆νIF, and the post-detection integration time ∆τ .

Since the noise contributions from sources such as atmosphere, ground, and receiver

(Ti) are additive, Tsys can be written as

Tsys =
∑

Ti . (2.48)

Now, we shall return to the question of how we detect the presence of the power due

to a radio source as represented by TA, in the presence of the additive noise power

represented by Tsys?

2.3.2 Minimum detectable flux

After passing through the integrator (refer to Fig. 2.6), the voltage at the output is

directly proportional to the sum of the input power from the source and the additive

noise, which are in turn proportional to TA and Tsys, respectively. In order for this to

hold, it is necessary that the input voltage resulting from TA and Tsys is uncorrelated,

what is consistently true. Consequently, the expected value of the integrator’s output

voltage attributed to the source is given by

⟨vA(t)⟩ = GTA , (2.49)

where G stands for the total gain between the input signal and the output of the

receiver and ⟨ ⟩ denotes the time-averaged value of the output. Moreover, the expected

value due to the mean noise power is

⟨vn(t)⟩ = GTsys , (2.50)

where the gain for (2.49) and (2.50) are the same since both signals are passing through

the same circuit components inside the receiver.
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Figure 2.6: A schematic diagram showing the last two stages of the receiver system.

The signal-to-noise ratio (SNR) at the output of the receiver is given by

SNR =
⟨vA(t)⟩
⟨vn(t)⟩

=
GTA

GTsys

=
TA

Tsys

. (2.51)

The SNR is a measure that compares the level of a desired signal to the level of noise.

It is a way to express how much a signal can be distinguished from noise in a particular

system or application. A high SNR indicates that the signal is stronger than the noise,

making it easier to detect and interpret. A low SNR, on the other hand, indicates

that the noise level is high compared to the signal, what can lead to errors or loss of

information in the communication system. Therefore, a higher SNR is generally desired

in most communication applications, as it can improve the quality and reliability of

the transmitted signal, the same in radio astronomy.

The determining factor for our ability to detect the average power source ⟨vA(t)⟩ in

the presence of ⟨vn(t)⟩ is not the mean value of ⟨vn(t)⟩, but rather its level of fluctuation

measured by its root mean square (RMS) or standard deviation. The desired quantity

is

σn = [⟨v2n(t)⟩ − ⟨vn(t)⟩2]1/2 . (2.52)

I will be using an intuitive method to derive σn. A rigorous derivation can be found in

Rohlfs & Wilson (2013). The integrator operates as an averaging device, combining n

independent estimates of the output voltage from the square law detector to compute

the mean value. The standard deviation of this mean, denoted as σn, can be expressed

as σ/
√
n (e.g. Papoulis & Unnikrishna Pillai, 2002), where σ represents the standard

deviation of the output voltage from the square law detector. To determine σn

accurately, the values of n and σ must be known.
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When the input to the square law detector is a noise-like voltage following Gaussian

statistics, the standard deviation of the output voltage, vd(t), from the square law

detector is equal to its mean value. This relationship is described, for example, in

Ulaby et al. (1981). Hence, we have that,

σ = ⟨vd(t)⟩ = GTsys . (2.53)

What is n? A signal with a bandwidth ∆ν can fluctuate on a time scale, ∆t, given by

∆ν∆t = 1 . (2.54)

Voltage samples separated by time ∆t can be regarded as independent. Therefore, the

number of independent samples, n, averaged by the integrator is

n =
∆τ

∆t
= ∆τ∆νIF . (2.55)

The signal-to-r.m.s. noise ratio (the Radiometer Equation; henceforward simply

signal-to-noise ratio) SNRRMS can now be written as:

SNRRMS =
⟨vA(t)⟩
σn

=
⟨vA(t)⟩

σ

√
n =

TA

Tsys

√
∆τ∆νIF . (2.56)

For unity SNRRMS, the equivalent fluctuation in the antenna temperature is given by

∆TA =
Tsys√

∆τ∆νIF
. (2.57)

Equations (2.56) and (2.57) represent the fundamental relation between system

noise, bandwidth, integration time, and RMS fluctuations: for a given system, the

improvement in the RMS noise cannot be better than given in Eq. (2.57). Systematic

errors will only increase ∆TA, although the time behavior may follow relation (2.57).

To emphasize, I repeat that ∆Tsys is the noise from the entire system. That is, it

includes the noise from the receiver, atmosphere, ground, and source. Therefore ∆TA
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will be larger for an intense source.

By inserting equation (2.46) into (2.57) we can substitute the antenna temperature

by the source flux to find the minimum detectable flux in a given frequency Sν,min by a

telescope’s receiver. We have then,

Sν,min =
2kBTsys

Aeff

√
∆τ∆νIF

, (2.58)

known as sensitivity. Since the sensitivity is better in the maximum of the telescope

power pattern, we also may define the forward gain as

G =
Aeff

2kB
, (2.59)

which represents the ratio of the signal transmitted in the maximum direction to the

signal in reference or standard antenna direction.

Equations (2.56), (2.57) (2.58) still need two corrections. The first is for the number

of independent samples n. If the receiver is detecting more than one polarization, n

is going to be multiplied by the number of polarizations np. The second is the noise

performance K which depends on the receiver type. Hence, these three relations can

be written as

SNRRMS =
TA

√
np∆τ∆νIF

KTsys

, (2.60)

∆TA =
KTsys√
np∆τ∆νIF

, (2.61)

and

Sν,min =
KTsys

G
√
np∆τ∆νIF

. (2.62)

With these relations, I conclude this chapter. I have presented all the necessary

background in radio astronomy to push forward in the discussion of this thesis. We

now shall discuss BINGO and the BINGO Interferometry System.





Chapter 3

The BINGO Interferometry System

In this chapter, I will be covering some of BINGO’s technical details that will be

relevant to the scope of assumptions made at the length of this thesis. Further details

of the telescope can be found in the BINGO’s series of papers (I to VII respectively):

Abdalla et al. (2022a), Wuensche et al. (2022), Abdalla et al. (2022b), Liccardo et al.

(2022), Fornazier et al. (2022), Zhang et al. (2022) and Costa et al. (2022). After this

brief exposure, I will present the BINGO Interferometry System (BIS), and its setups

to search for FRBs followed by how we are simulating the telescope’s performance.

3.1 Baryon Acoustic Oscillations from Integrated

Neutral Gas Observations

The BINGO project1, which stands for Baryon Acoustic Oscillations (BAO) from

Integrated Neutral Gas Observations, is a radio telescope project centered around a

single dish telescope. Its primary objective is to observe the 21-cm line, which is the

hyperfine interaction of atomic hydrogen. The project will cover a sky area of 6000

square degrees within a redshift range of 0.127 to 0.449 (corresponding to a frequency

1BINGO is funded by several Brazilian and Chinese agencies. From the Brazilian side, the major
supporters are FAPESP and the Government of Paráıba. China is the main partner, both in terms
of funding as well as in terms of scientific personnel. Brazilian and Chinese companies are working
for the BINGO construction, mainly Alltec and IBRTEL from Brazilian side, and CETC54 from the
Chinese counterpart.
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span of 980 to 1260 MHz) with an angular resolution of around 40 arcmin. In phase 1,

the project will have 28 feed horns and receivers with dual polarization and is designed

to achieve a system temperature of about 70 K. Final numbers will depend on financial

and technical achievements. For phase 2, the project aims to increase the number of

feed horns up to 56 and update the receivers to achieve a smaller system temperature.

Given its abundance, hydrogen is considered to be a representative element for

mapping (through the neutral hydrogen radiation) the overall matter content in the

Universe, without any bias. Using the technique of Intensity Mapping (IM; Madau

et al. 1997; Bharadwaj & Sethi 2001), BINGO will provide detailed maps of the matter

distribution in its redshift range, enabling the extraction of BAO measurements that

can be compared to those obtained through optical observations Eisenstein et al. (2005).

Additionally, owing to the telescope’s characteristics, BINGO can study phenomena

at very short timescales, making it an intriguing tool for researching pulsars and the

primary focus of this thesis: FRBs. Fig. 3.1 shows a full-sky map for extragalactic HI

indicating BINGO’s survey area from declination approximately −22.5o < δ < −10.0o.

Figure 3.1: Full-sky maps of the cosmological signal of extragalactic HI for a frequency slice
ν ≈ 1.1 GHz. The stripe defined by the white solid lines is the sky region covered by BINGO.
Temperature is given in K. Equatorial coordinates. Credits: Liccardo et al. (2022).
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The BINGO telescope is currently under construction in a remote location in

Aguiar, Paráıba, northeastern Brazil (latitude: 7◦2′29′′ S, longitude: 38◦16′5′′ W; Fig.

3.2). The site is situated amidst hills, has a very small population nearby, and hardly

any mobile signal coverage in the surrounding areas. To maintain radio silence, the

project has requested a “radio-quiet” zone from the local authorities and ANATEL, the

Brazilian regulator agency for telecommunications. The process of selecting the site

and measuring Radio Frequency Interference (RFI) is described in Peel et al. (2019),

and an artist’s view of the telescope can be seen in Fig. 3.3. I will now give a brief

description of the optical design of the telescope.

Figure 3.2: Map of BINGO location. Left: Paráıba state, marked by the red rectangle, is
on the northeastern Brazilian coast. Brazil area, in yellow, is depicted on the map of South
America. Right: Paráıba state map, with county subdivisions, with João Pessoa (the capital),
Campina Grande (the headquarters of Universidade Federal de Campina Grande), and Aguiar
counties highlighted.
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Figure 3.3: Artist’s view of the telescope.
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3.1.1 Optics

The optical system is designed based on the off-axis, crossed-Dragone configuration

(Dragone 1978). It consists of a primary offset paraboloid reflector with a semi-major

axis of 25.5 m and a secondary offset hyperboloid reflector with a semi-major axis

of 18.3 m. The primary reflector has a total area of 1602 m2 and an effective area

of approximately 1120 m2. The telescope has a focal length of 63.2 m and points to

a declination of δ = −15o. The secondary reflector is illuminated by the focal plane

array, providing an instantaneous field-of-view of 88 square degrees with an angular

resolution (FWHM; full width at half maximum) of approximately 0.67o.

Figs. 3.4, 3.5 and 3.6 provide a summary of the optical design and engineering

efforts for the entire telescope, along with its placement on the site. Additionally, Fig.

3.6 illustrates the topographical features of the area, highlighting how the hill on the

western side of the terrain serves as a barrier, effectively minimizing radio frequency

interference (RFI) contamination.

Figure 3.4: BINGO optics schematics: the primary mirror is in the center, facing north
pointing to δ = −15o. All dimensions are in millimeters.

The final design ensures minimal optical aberration and beam ellipticity, even for

beams located at the outer edge of the focal plane. The horn distribution across the

focal plane ensures that each horn independently observes a distinct patch of the sky
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in terms of declination, as indicated by the distances presented in Fig. 3.7. This

horn distribution corresponds to the optimal configuration of the beam pattern, as

displayed in Fig. 3.8, and represents the most favorable arrangement of horns in terms

of the uniformity of sky coverage. Please note the inverted positioning of the figures in

relation to one another, which is due to the method used to map the sky. A schematic

view of a horn in the hexagon cage can be seen in Fig. 3.9.

 8,9m 

 3,35m 

Produto educacional do SOLIDWORKS. Somente para fins de instrução.

Figure 3.5: Engineering design based upon the dimensions and angles shown in Fig. 3.4.
We note that the exact positions for the support structure foundations have already been
calculated

Figure 3.6: Plan view of the site, with the structure in Fig. 3.5 highlighted in blue, red,
and green. The top of the figure points to the north. The control cabin is located on the
southwestern part of the terrain, behind a hill and off the main view of the telescope.
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Figure 3.7: Horn arrangement in the
focal plane for BINGO Phase 1. All
dimensions are in millimeters

Figure 3.8: Beam pattern response in the fo-
cal plane, as looking at the sky in equatorial
coordinates. The color scale on the right is the
total intensity normalized to the peak ampli-
tude.

Figure 3.9: Hexagonal cage for the horn with dimensions 6500 mm(length) × 2400 mm(height)
× 2600 mm(width). The horn is attached to a U-shaped support by the ring crossing its
center of mass, for pivoting and vertical displacement, and to another structure connected to
the end of the polarizer, on the opposite side of the horn mouth. The U-shaped support and
the back structure are mounted on top of a cart that allows for longitudinal positioning of
the horn.
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3.2 The BINGO Interferometry System

The task of determining the redshift of the host galaxy is still a hard one. Indeed,

to determine the distance one should localize the events with arcsecond precision.

We can use other surveys to find their optical counterpart (Tendulkar et al. 2017;

Bhandari et al. 2022). Localizing an FRB event is very important to understand the

origin and environment of its progenitor, as well as to use its redshift determination

to attack a few open problems in cosmology. The precise localization of the events

is possible using interferometric techniques, where the data from different antennas

are cross-correlated, pinpointing the origin of the emission. We want to correlate the

data from a main telescope with data from its outriggers, which, in this context, are

auxiliary smaller radio telescopes. Fig. 3.10 shows a BINGO outrigger (named BINGO

Uirapuru) already installed in Campina Grande aiming for BINGO tests.

Figure 3.10: The BINGO Uirapuru is a radio telescope mounted with a prototype of
the BINGO radio telescope’s horn antenna. It is hosted at the Metrology Laboratory of
the Electrical Engineering Department at the Federal University of Campina Grande at
coordinates 7◦12′41.9′′S 35◦54′29.5′′W.
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To improve BINGO’s capability to detect and localize FRBs, outrigger units are

being planned and designed. The instrumental requirements and capabilities of these

outriggers are being determined using a combination of mock FRB catalogs, simulations

of events, and detection forecasting. Aiming for the best performance to localize FRBs,

a second kind of outrigger is also being considered. By coupling a mirror to the

outrigger we can increase its directivity thus increasing the FRBs localization rate. Fig

3.11 shows a schematic with the mechanism. Hereafter I will refer to the outrigger

without a mirror as a “naked horn”.

Figure 3.11: Scheme showing how the mirror is fixed in the outrigger to increase its directivity.

For the outriggers we choose four different types: the first one is simply a BINGO

naked horn, and the other three consist of a horn with different mirror diameters (4

m, 5 m, 6 m). Besides being in different locations on Earth to perform interferometry,

the outriggers should point to equivalent positions in the sky compared to the main

telescope focal plane seen in Fig. 3.8. In this analysis, I will consider a perfect time

delay, so the distance between the telescopes can be neglected (more on this in §3.2.1).
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Each type of outrigger is pointed to the sky in four different ways, shown in Fig. 3.12,

in a total of sixteen configurations (each setup for each mirror size and the naked horn).
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Figure 3.12: BINGO beams on the sky and outriggers, and four different outriggers pointing.
Note that for the 10 outriggers, we have 2 outriggers pointing in exact same direction as a
BINGO horn.

In this analysis, we suppose that radio telescopes are well characterized by only

seven quantities: system temperature (Tsys), forward gain (G), sensitivity constant (K,

depends on the receiver type), number of polarizations (np), the frequency bandwidth
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(∆ν = ν2 − ν1), a reference frequency (ν1 < νref < ν2), and sampling time (τ). An

important derived quantity is the instrument noise

S
(0)
min =

K Tsys

G
√
np∆ν τ

, (3.1)

known as sensitivity, which roughly defines the minimum detectable flux density

assessed by a given instrument (Kraus et al. 1986). In BINGO’s paper I, (Abdalla

et al. 2022a) we assumed the telescope beam as being a top hat function, constant

inside a given radius. Now, we assume a (more realistic) Gaussian beam pattern,

Pn(n) = exp

(
−4(log 2)

θ2

θ21/2

)
, (3.2)

where θ is the angular separation to the beam center. Here, θ1/2 is the FWHM, related

to G, and λref (c/νref) by

θ1/2 ≈
√

4 log 2

πkBG
λref . (3.3)

The forward gain G is related to the effective area (Aeff) as

G =
Aeff

2kB
. (3.4)

In this case, the signal of a point source, such as FRBs, will be contaminated by

instrument noise which depends on its sky position (n) as

Smin(n) =
S
(0)
min

Pn(n)
, (3.5)

which we name directional sensitivity. The normalized antenna pattern appears in the

denominator as a matter of convenience, because it will appear in the numerator of Eq.

(3.9).

The values of G, S
(0)
min, and θ1/2 for the 28 independent BINGO beams are shown in

Table 3.1 and for the outriggers in Table 3.2. For all telescopes we choose: Tsys = 70

K, ∆ν = ν2 − ν1 = 280 MHz, K =
√
2 and np = 2.
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Horn Aeff G S
(0)
min θ1/2

(m2) (mK/Jy) (mJy) (arcmin)

1 637.8 231.0 572.7 49.3

2 646.3 234.0 565.2 49.0

3 650.4 235.5 561.6 48.8

4 641.3 232.2 569.6 49.2

5 648.4 234.8 563.4 48.9

6 652.3 236.2 560.0 48.7

7 652.7 236.4 559.7 48.7

8 648.3 234.8 563.5 48.9

9 649.8 235.3 562.2 48.8

10 648.8 235.0 563.0 48.9

11 647.6 234.5 564.1 48.9

12 647.8 234.6 563.9 48.9

13 643.0 232.9 568.1 49.1

14 638.3 231.2 572.2 49.3

Horn Aeff G S
(0)
min θ1/2

(m2) (mK/Jy) (mJy) (arcmin)

15 634.1 229.6 576.0 49.4

16 640.1 231.8 570.7 49.2

17 626.4 226.9 583.1 49.7

18 617.8 223.7 591.3 50.1

19 610.4 221.1 598.4 50.4

20 620.5 224.7 588.7 50.0

21 602.7 218.3 606.1 50.7

22 590.9 214.0 618.2 51.2

23 583.2 211.2 626.3 51.5

24 596.4 216.0 612.5 51.0

25 571.9 207.1 638.7 52.1

26 554.3 200.7 659.0 52.9

27 531.6 192.5 687.1 54.0

28 560.8 203.1 651.4 52.6

Table 3.1: BINGO beams.

3.2.1 Interferometry and cross correlations

To recover the correct position of the source, the BINGO Interferometry System (BIS)

will perform cross-correlations between pairs of telescopes. Assuming a perfect time

delay compensation, with no taper and unity weighting function, each baseline works

as an individual telescope with sensitivity given by (Walker 1989; Thompson et al.

2017)

S
(0)
min, i×j =

√
S
(0)
min, iS

(0)
min, j

2
, (3.6)

while the antenna pattern is equal to

Pn, i×j(n) =

√
Pn, i(n)Pn, j(n)

2
. (3.7)

In a typical interferometry problem, the antenna pattern must be multiplied by an

interference factor (∝ cos(2πντ), where τ is the time delay between measurements of

two telescopes). Assuming a perfect time delay measurement we can compensate it
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Mirror Aeff G S
(0)
min θ1/2

(m) (m2) (mK/Jy) (mJy) (arcmin)

- 1.5 0.5 251.8 1034.1

4 9.8 3.6 37.1 396.9

5 15.4 5.6 23.8 317.5

6 22.9 8.3 15.9 259.9

Table 3.2: Outrigger types.

by substituting cos(2πντ) by cos(2πν(τ − τobs)); this procedure is called time delay

compensation and assuming that we can always set τ = τobs the cosine becomes equal

to one reducing to the form in Eq. (3.7).

The total directional sensitivity for a set of N telescopes is given by (Walker 1989)

1

S2
min(n)

=
N∑
i=1

1

S2
min, i(n)

+
N−1∑
i=1

N∑
j=i+1

Xij

S2
min, i×j(n)

, (3.8)

where Xij = 1 if the telescopes i and j are physically correlated, or Xij = 0 if they are

not.

3.3 Generating synthetic FRBs

To estimate the number of detections and localizations, we need to produce reliable

mock catalogs. Data in the synthetic catalog contain several physical quantities

randomly generated, following a probability distribution function (PDF) chosen by the

user. In this section, I will detail each of the physical quantities, following Luo et al.;

Luo et al. (2018; 2020) and present FRBlip, a Python code developed for this work.

Our simulations consider only non-repeaters and extragalactic FRBs.

For the single i-th FRB the observed signal-to-noise (S/N) ratio, measured by a

telescope of directional sensitivity Smin(n), is given by

(S/N)i =
Speak, i

Smin(ni)
, (3.9)
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where Speak is the peak density flux, given by (Lorimer et al. 2013)

Speak =
Lbol

4πdL(z)2
(1 + z)α+1

ν ′α+1
high − ν ′α+1

low

(
να+1
2 − να+1

1

ν2 − ν1

)
, (3.10)

where dL(z) is the luminosity distance, Lbol the bolometric luminosity, α the spectral

index, ν1 and ν2 the observed frequencies. ν ′
low and ν ′

high are the lowest and highest

frequencies over which the source emits, respectively, in the rest-frame of the source.

This restriction on the emission frequencies implies a range of redshift given by

zmin = max

[
0,

ν ′
low

ν2
− 1

]
(3.11)

and

zmax =
ν ′
high

ν1
− 1 . (3.12)

I use the results presented in Luo et al. (2020) to generate the FRBs, where the

constraints on the free parameters of the luminosity function were obtained assuming a

flat spectrum with intrinsic spectral width ∆ν0 = νLuo, high − νLuo, low = 1 GHz. Given

that the spectrum is restricted to this specific band, the corresponding luminosity is

not, strictly speaking, a bolometric luminosity. Therefore, as presented in appendix A,

the peak flux density that we will use is

Speak =
L

4πdL(z)2
1

να+1
Luo, high − να+1

Luo, low

(
να+1
2 − να+1

1

ν2 − ν1

)
, (3.13)

where νLuo, high and νLuo, low are now the highest and lowest frequencies, respectively, in

which the source emits as seen by the observer. While a flat spectrum was assumed

in Luo et al. (2020) because of the sample of detected FRBs around 1.4 GHz used,

we assume that the same distributions are valid for a general spectral index, at least

between zero and −1.5. The intrinsic spectral width of 1 GHz does not contain the

exact information about the frequencies νLuo, high and νLuo, low, however, we can take

values around 1.4 GHz, i.e. νLuo, high = 1.4 GHz and νLuo, low = 400 MHz. The BINGO
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bandwidth is located inside this frequency interval; other intervals were investigated in

the initial estimates presented in Abdalla et al. (2022a).

From Eq. (3.8) we conclude that the total S/N is given by:

Total[S/N ] =
√

Auto[S/N ]2 + Intf[S/N ]2 , (3.14)

where Auto[S/N ] is the total auto-correlation signal-to-noise ratio

Auto[S/N ] =

√√√√ N∑
i=1

(S/N)2i , (3.15)

and Intf[S/N ] is the total cross-correlation signal-to-noise ratio, given by

Intf[S/N ] =

√√√√N−1∑
i=1

N∑
j=i+1

Xij(S/N)2i×j . (3.16)

Therefore, the intrinsic quantities which must be simulated are z, L, α, and n.

3.3.1 Cosmological population

Redshift distribution

The FRB spatial distribution is not known yet due to the small number of measured

redshifts of the associated host galaxy (Heintz et al. 2020). Some redshift distributions

for FRBs have been considered over the years, e.g. a Poisson distribution P (z) =

ze−z motivated by the distribution of gamma-ray bursts (Zhou et al. 2014; Yang &

Zhang 2016) or a redshift distribution following the galaxy distribution P (z) = z2e−βz

(Hagstotz et al. 2022). The alternative possibility used here is a spatial distribution

uniform in comoving volume (Luo et al. 2018; Chawla et al. 2022)

fz(z) ≡
∂V

∂Ω∂z
=

c

1 + z

r2(z)

H(z)
, (3.17)
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where ∂V/(∂Ω∂z) is the differential comoving volume per unit solid angle per unit

redshift, c is the speed of light, r(z) is the comoving distance, and

H(z) = H0

√
Ωm(1 + z)3 + ΩΛ (3.18)

is the parameterized version of the first Friedmann-Lemâıtre equation. We use the

best-fit values from the Planck collaboration (Aghanim et al. 2020) for the matter

density parameter, Ωm = 0.31, dark energy density parameter, ΩΛ = 0.69, and Hubble

constant today, H0 = 67.4 km/s/Mpc. The term (1 + z) takes into account the

time dilation due to the cosmic expansion. The redshift is sampled according to the

distribution in Eq. (3.17) for up to the maximum value of zmax = 10.

3.3.2 Luminosity distribution

The luminosity function of FRBs is also still not well understood and although lognormal

or power-law distributions have previously been used (Caleb et al. 2016), the Schechter

function (Schechter 1976) opted in Luo et al.; Luo et al. (2018; 2020) seems to be

favored over the others (Petroff et al. 2019b). Thus, we assume here that it is given by

ϕ(L) = ϕ⋆

(
L

L⋆

)γ

e−L/L⋆

, (3.19)

where L⋆ is the upper cut-off luminosity, ϕ⋆ is a normalization constant and γ is the

power-law index. These parameters were constrained in Luo et al. (2020) using 46

FRBs: L∗ = 2.9× 1044erg s−1, ϕ∗ = 339 Gpc−3yr−1 and γ = −1.79.

Spectral index

The flux density of FRBs depends on the frequency as Sν ∝ να, where the spectral

index α can be positive or negative. In Luo et al. (2020) α = 0 was chosen inspired

by the apparently flat spectrum of FRB 121102 with 1 GHz of bandwidth (Gajjar

et al. 2018b). Chawla et al. (2017) reported a lack of FRB observations in the Green
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Bank Northern Celestial Cap survey at 350 MHz, indicating either a flat spectrum or

a spectral turnover at frequencies above 400 MHz. However, some works (e.g. Lorimer

et al. 2013) have assumed a spectral index similar to the one observed in pulsars

(α = −1.4; Bates et al. 2013). Such value is very close to the result obtained by

Macquart et al. (2019b) using 23 FRBs (α = −1.5). Based on these previous works,

we choose here to use two different values for the spectral index, α = 0 and α = −1.5.

Similar values are also used in frbpoppy in its different population setups (Gardenier

et al. 2019).

Number of sources

Several estimates of the all-sky rate of observable FRBs have been made. For instance,

Thornton et al. (2013) estimated a rate of 104 sky−1day−1 above a fluence of 3 Jy ms,

while CHIME recently inferred a sky rate of 820 sky−1day−1 above a fluence of 5 Jy

ms at 600 MHz (Amiri et al. 2021). Luo et al. (2020) found event rate densities of

3.5× 104 Gpc−3 yr−1 above a luminosity of 1042 erg s−1, 5.0× 103 Gpc−3 yr−1 above

1043 erg s−1 and 3.7× 102 Gpc−3 yr−1 above 1044 erg s−1. We estimate the rate per

day per sky of detectable FRBs using the following expression (Luo et al. 2020)

λ = 4π

∞∫
0

fz(z) dz

∞∫
L0

ϕ(L) dL , (3.20)

where fz(z) and ϕ(logL) are given by Equations (3.17) and (3.19), respectively, and

L0 is the intrinsic lower cut-off of the luminosity function inferred to be ≤ 9.1× 1041

erg s−1. Using Eq. (3.20) with the values of the minimum flux density and observed

pulse width for BINGO described in the next section, we estimate the total number of

cosmic FRBs to be generated by FRBlip to be ∼ 7× 104 per day of observation. In

the next sections, we will describe the methodology used to estimate the detection rate

for BINGO, which will be a fraction of this cosmic population.



58 The BINGO Interferometry System

3.3.3 Sensitivity Maps

The simplest way to estimate the detection rate is is to follow the approach adopted

by(Luo et al. 2020), also used in Abdalla et al. (2022a), through the equation

λα(n) =

zmax∫
zmin

fz(z) dz

∞∫
Lmin(z,n)

ϕ(L) dL . (3.21)

The difference between Equations (3.20) and (3.21) is that the former assumes an

all-sky rate, while the latter is going to be calculated for the BINGO field-of-view and

for redshift values bounded by the frequency range.

The minimum luminosity Lmin in the lower limit of integration is the maximum

function max[L0, Lthre], where Lthre depends on the spectral index α and the antenna

pattern

Lthre(z,n) = 4πdL(z)
2∆ν

(
να+1
Luo,high − να+1

Luo,low

να+1
2 − να+1

1

)
(S/N)Smin(n) , (3.22)

where ∆ν = ν2 − ν1 and Smin is the telescope minimum flux density defined in eq. 3.5).

The detection rate per unit of time is found integrating over the telescope field-of-view

λα =

∫
S2

λα(n)dΩ , (3.23)

where this angular integration is performed using HEALPix (Górski et al. 2005), through

astropy-healpix (Price-Whelan et al. 2018)

λα = Ωpix

npix∑
i=1

λα(ni) , (3.24)

where npix and Ωpix depend on the resolution (nside) of the HEALPix map. Detection

rate estimates for the BINGO configurations described previously are shown in Fig.

4.4. The limitation of the present approach lies in the fact that computing complex

quantities as the observation rates over the baselines is very costly. Indeed, to compute
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the detection rate of at least two baselines, we have to compute the sensitivity map

for all the possible pairs of baselines. For three baselines we must compute it for all

possible combinations of three baselines and so on.

3.3.4 FRBlip

To compute all quantities described in previous sections, we developed FRBlip2, a

new Python package which generates mock catalogs sorting the physical quantities as

random numbers, through the distributions described in section 3.3.1. The information

about the cosmic population is coded inside an object called FastRadioBursts, and

the telescopes in objects of the type RadioTelescope. The results of observations

come from the interaction between these two entities.

The dependencies of the FRBlip include traditional Python numerical libraries

such as Numpy (Harris et al. 2020), Scipy (Virtanen et al. 2020) and Pandas (pan-

das development team 2020); high performance collection libraries as Xarray (Hoyer &

Hamman 2017) and Sparse; the physical numerical libraries astropy (Price-Whelan

et al. 2018), HEALpix (Górski et al. 2005) and Pygedm (Price et al. 2021); and the

numerical computing packages for cosmology: CAMB (Lewis & Bridle 2002), and PyCCL

(Chisari et al. 2019).

2www.github.com/mvsantosdev/frblip

www.github.com/mvsantosdev/frblip




Chapter 4

Results

4.1 Detecting Bursts

We evaluate here a more accurate detection rate. For that, we generated cosmological

FRB mock catalogs and counted how many of those would be detected by the main

BINGO, the outriggers, and the total BIS in different scenarios. The key quantity is

the yearly rate.

The FRB mock catalogs were produced by first generating one day of cosmological

FRBs, then re-sampling the 1-day mock 365 times, to create a catalog for one year

of observations, but with sky positions (right ascension and declination) fixed. This

procedure is then repeated 1000 times until we have enough data to adequately fit

a Poisson distribution, which we did by using the statsmodels library (Seabold &

Perktold 2010).

We first investigate the detectability of individual telescopes. In Fig. 4.1 we show

the redshift distribution of the FRBs seen by the main BINGO alone (S/N ≥ 1)

during five years (purple histogram) compared with all the FRBs in the sky in one day

(gray histogram). This histogram is also compared with the exact distribution (purple

continuous curve), computed from the sensitivity maps (3.24). We can see that the

histogram is well bounded inside the 95% confidence level (C.L.) (represented by the
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purple-shaded region). The red dashed line is the power log-normal1 distribution fitted

on the complete 1000 years of simulation, which is in good agreement with the exact

value by 95% C.L.
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Figure 4.1: Redshift distribution of the observed FRBs, with S/N ≥ 1, by BINGO in five
years (purple histogram) compared with all the cosmic bursts in one day (grey histogram).
The exact cosmic distribution is the black dashed line, the exact distribution for the BINGO
is the solid purple distribution, and the shaded region is the exact 95% C.L. from the Poisson
distribution. The red dashed line is the power log-normal distribution fitted from 1000 years
of observation mock.

The number of FRBs increases with the redshift since the volume also increases until

it reaches a maximum value. After that, it starts decreasing because the luminosity

limit starts dominating. It reaches a maximum value at z ≃ 1.8, where the rate

becomes smaller than one. Therefore, we can interpret z = 1.8 = zeffmax, the maximum

effective redshift or the depth of the survey.

Fig. 4.2 shows how the detection rate of FRBs varies with the S/N for the different

telescope configurations described in Section 3.2. In all cases, we see that the zeffmax

values inferred from the power log-normal distribution, fitted from the mocks, are in

1docs.scipy.org/doc/scipy/reference/generated/scipy.stats.powerlognorm.html

docs.scipy.org/doc/scipy/reference/generated/scipy.stats.powerlognorm.html
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agreement with the exact value by 95% C.L. This alternative method to infer zeffmax is

important to determine the depth of the survey since we can not compute the exact

values from sensitivity maps as discussed in Section 3.3.3.
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Figure 4.2: Maximum effective redshift for different BINGO configurations, varying from
S/N ≥ 5 to S/N ≥ 15. Comparing the exact solution from sensitivity maps (solid lines),
with the fitted power log-normal distribution (dashed lines), we note that all of them are in
agreement with the exact solution in 95% C.L. (shaded regions). The red dashed line shows
the maximum redshift of the BINGO HI survey.
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Figure 4.3: Left : number of events as a function of the luminosity distribution. Right : same,
as a function of the density flux distribution. Estimates are for cosmic FBRs during 1 day
(gray) and observed FRBs, with S/N ≥ 1, during the 5 years of the BINGO Phase 1 mission
(purple).
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In Fig. 4.3 we show the luminosity (left) and density flux (right) distributions.

Fainter objects are more difficult to observe, as expected because it is more probable to

have a density flux smaller than the minimum S
(0)
min. In order to illustrate the fraction

of the distributions observed by BINGO, we compare the histograms of the cosmic

distributions in one day with the ones observed by BINGO in 5 years.

Finally, we show in Fig. 4.4 the detection rates obtained from mocks and the ones

computed by the sensitivity maps, evidencing the agreement between the methods.

The rates from individual outriggers (top panel) are less than one per year, however,

the interferometry system, which integrates nine of these telescopes, can increase the

BINGO detection rate by about 20%. For the case of interferometry, we have not

computed the exact distributions, due to the reasons discussed at the end of Section

3.3.3. Thus, we need an alternative method to infer the depth of these interferometric

cases.
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Figure 4.4: Detection rate estimates for BINGO. Top: mean detection rate for individual
outriggers with configuration as described in Sec. 3.2 and Table 3.2. Bottom: detection rate
for the complete BIS (main BINGO and outriggers). In both cases, we show the detection
rates computed by the two methods: sensitivity maps (solid lines) and mock catalogs created
with FRBlip (scatter).
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4.2 Localizing Bursts

We now evaluate the effectiveness of BIS to localize FRBs. We assume a perfect delay

compensation, i.e., the exact time delay between the telescopes that compose each

baseline is known. In this case, the accuracy of localizing an FRB increases with

the number of baselines that are used to observe it. Therefore, we have to select the

better BIS configuration between the two options: more outriggers with narrower beam

widths or fewer outriggers with wider beam widths.

The number of FRBs detected by different baselines depends on the number of

outriggers used in the system and the size of the mirror. In Fig. 4.5 we show the

fraction of FRBs (with respect to the total BIS detections) observed by one, two,

or three baselines, varying with S/N, for different numbers of outriggers. While the

number of outriggers has a direct impact on the fraction of detected FRBs (i.e. more

outriggers increase the fraction of detected events), the mirror size does not play a

straightforward role in this fraction. In some situations, the larger the mirror the

greater the fraction of detected FRBs (a localization using one baseline for 5, 7, 9, or

10 outriggers). However, for localization using two baselines, smaller mirrors produce

better results (for 5 and 7 outriggers the best scenario is with a 4-m mirror, while for

9 (10) outriggers the best choice is a 5-m (6-m) mirror. For localization using three

baselines, a naked horn is the best choice for 5 outriggers, while a horn with a 4-m

mirror is better for 7, 9, and 10 outriggers. Ultimately, the choice of mirror size will

depend on the number of outriggers built and on the number of baselines needed to

detect the same FRB.

These results are not enough to decide which is the best configuration for a BIS

composed only of single-horn outriggers. To accurately answer this question we must

define the following points: (i) by how many baselines an FRB must be observed to

have its position well inferred; (ii) how many outriggers we can construct; and (iii)

which kind of outriggers will be constructed.

The answer to the first question depends only on how effective is the pipeline to
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Figure 4.5: Fraction of observed FRBs (by BIS) by one, two, or three baselines for S/N ≥ 5,
S/N ≥ 10, and S/N ≥ 15, for the sixteen different BIS configurations.
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infer the positions. Assuming that a minimum of two baselines is enough to pinpoint

the source position, from Fig. 4.6 we may infer the best type of outrigger for each

configuration.
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Figure 4.6: The fraction of observed bursts (S/N ≥ 10) as a function of baselines that
detected the same events, for the sixteen different BIS configurations.

For 5 outriggers, the best choice is the 4 m mirror, for 7 outriggers the performance

of 4 m and 5 m mirrors are almost the same, for 9 outriggers 4 m, 5 m, and 6 m

perform approximately equal, and for 10 outriggers the 6 m mirror is the best. If we

make it more restrictive, requiring at least 3 baselines the picture changes a bit. For

5 outriggers, for instance, now the horn with no mirror performs best, while for the

other configurations (7, 9, and 10 outriggers), the 4-m mirror produces the best result.

The number of outriggers would also depend on the number of baselines needed to

permit a good localization of the source. In order to understand how the number of

detections per baseline affects our results, we show in Fig. 4.6 the fraction of detected

FRBs as a function of the number of baselines that detected a given FRB. We set

the S/N to ten or higher. For this illustrative choice of S/N, we see that the fraction

of detected FRBs follows the same behavior in all 4 different panels. The outriggers
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with a 4-m size detect more (or at least the same number) events than the ones with

larger mirrors, with the exception of 10 outriggers with two baselines. However, if

more baselines detect the same FRB, then the naked horn is the best option for 5 or 7

outriggers, that is, for 5 outriggers the naked horn is better if the detections are made

by three baselines or more, for 7 outriggers the naked horn is better if the detections

are made by four baselines or more, and so forth.

So far we have estimated the detection rates considering that the baselines and

the auto-correlations have the same S/N threshold. However, this choice is arbitrary

and we may set a different approach, for instance, to first select a group of candidates

observed by the main BINGO, and then filter this group with a different choice of S/N

to define a detection in a baseline. In order to investigate how these different choices

affect our results, we defined a set of values for the S/N that will categorize an FRB as

a candidate, a detection, an interferometry detection (for the cross-correlation between

main BINGO and outriggers), and localizations in one, two or three baselines. This set

of definitions is shown in Table 4.1.

Label Condition

Candidate If a given event has S/N ≥ s1, either

for auto or cross-correlations

Detection Candidate with Total[S/N ] ≥ s2

Interferometric detection Detection with Intf[S/N ] ≥ s3

Localization/Baselines

Number of baselines that observed

the same FRB satisfying S/N ≥ s4

for an interferometry detection

Table 4.1: s1 = 2, s2 = 5, s3 = 3, and s4 = 2.

In Table 4.1, the condition s1, corresponding to the label “Candidates” and S/N ≥ 1,

is chosen to select the events that might be an actual FRB detection. Such S/N does

not need to be much larger than 1 and can occur either in auto or cross-correlation since

at this level we are simply looking for at least one baseline that received a potential

signal. For the label “Detection” (meaning an actual detection), we choose s2 = 5

in order to pick candidates that certainly would be detected by the telescope. The
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same occurs for s3 in the interferometric detection, although in this step we already

know that a detection occurred. Here we are selecting s3 = 3 because we are interested

in knowing if the FRBs would be clearly detected in interferometry nide, aiming to

pinpoint the source location. To precisely locate the FRB in the sky we need that each

baseline has a considerable S/N value per event, and for this, we have selected s4 = 2.

In Table 4.2 and in the top panel of Fig. 4.7 we show the results for the categoriza-

tion described in Table 4.1.

Number of Mirror size Candidates Detections Interferometry Localizations for Baselines

Outriggers (m) Detections 1 2 3

5

No dish 121.5 49.5 11.5 9.5 8.3 6.9

4 124.7 50.9 16.3 19.9 10.3 5.0

5 125.8 51.3 16.5 21.7 8.2 3.5

6 126.9 51.7 16.2 22.3 5.8 2.1

7

No dish 121.5 50.7 14.2 10.0 9.2 8.4

4 125.1 52.7 21.7 22.1 15.9 9.9

5 126.6 53.2 22.0 24.5 15.3 8.0

6 128.2 53.7 21.6 25.7 13.6 6.0

9

No dish 121.6 52.0 16.5 10.2 9.5 8.8

4 126.1 54.5 25.9 24.3 18.4 12.3

5 128.0 55.1 26.7 27.7 18.8 10.7

6 130.4 55.7 26.5 29.9 17.8 8.6

10

No dish 119.2 52.3 17.2 9.7 9.3 8.5

4 121.7 55.3 26.9 21.7 20.1 12.5

5 122.9 56.0 28.0 24.3 22.0 11.9

6 124.2 56.6 28.3 25.7 22.6 11.1

Table 4.2: (*) α = −1.5. Observation rates (per year) for categorization are described in
Table 4.1. Each set of outriggers (5, 7, 9, or 10) has four options of mirrors. The last
three columns present the number of FRBs detected simultaneously (and named here as
‘localizations’) by a different number of baselines.

The number of candidates increases slightly with the increase in the number of

outriggers and mirror sizes. On the other hand, the number of detections, interferometric

detections, and localizations using one baseline increases considerably with the number

of outriggers and mirror sizes. The localizations using two or three baselines, however,

are almost in all cases larger for a 4-m mirror with 5, 7, or 9 outriggers. The number of

localizations for a specific mirror size roughly increases with the number of outriggers.

However this does not mean always an increase in coverage area and the exception is

the scenario with 10 outriggers, where there are many overlaps between the outriggers’
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beams and main BINGO’s (as can be seen from Fig. 3.12), thus in practice the total

observed area is less than the area of the scenario with 5 outriggers case.
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Figure 4.7: Yearly detection rate (top) and effective maximum redshift (bottom), for pre-
scription described in Table 4.1, as a function of the mirror size for 5, 7, 9, and 10 outriggers.

As it can be seen in Table 4.3 and bottom panel of Fig. 4.7, the effective maximum

redshift is between 2 and 3 for candidates and detections, but it is reduced to generally

0.5− 1 for the localization.

We conclude from this analysis that narrow beams, i.e. horns with bigger mirrors,

can observe higher redshift values but an FRB can be observed by more beams with a

set composed of larger beams. This problem is compensated for by introducing more

telescopes to the BIS, which expands the observed area.

As can be seen in Table 4.2, the introduction of more outriggers can multiply

by many factors the detection rates. Regarding the localizations, the performance

saturates for 1, 2, or 3 baselines, reaching hundreds of localized bursts. We see similar

behavior in Table 4.3 for the redshift, where the outriggers improve the depth of the

survey.
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Number of Mirror size Candidates Detections Interferometry Baselines

Outriggers (m) Detections 1 2 3

5

No dish 2.40 2.08 0.67 0.66 0.64 0.63

4 2.43 2.12 0.89 0.92 0.75 0.60

5 2.44 2.25 0.91 0.95 0.71 0.54

6 2.45 2.13 0.81 0.85 0.70 0.48

7

No dish 2.40 2.08 0.73 0.69 0.68 0.67

4 2.43 2.13 0.98 0.98 0.92 0.74

5 2.44 2.13 0.88 0.90 0.92 0.69

6 2.45 2.14 0.88 0.90 0.79 0.63

9

No dish 2.39 2.12 0.77 0.72 0.71 0.71

4 2.43 2.14 0.89 0.89 0.86 0.88

5 2.68 2.14 0.92 0.93 0.88 0.84

6 2.46 2.15 0.93 0.95 0.93 0.70

10

No dish 2.37 2.08 0.79 0.74 0.72 0.69

4 2.40 2.11 0.93 0.91 0.90 0.82

5 2.40 2.11 0.95 0.94 0.94 0.88

6 2.41 2.12 0.99 0.96 0.96 0.78

Table 4.3: (*) α = −1.5. Similar to Table 4.2 but now presenting the effective maximum
redshift (zeffmax) from power log-normal distribution, for the categorization described in Table
4.1.

9 horns with 6m mirrors
Candidates (592)
Detections (256)
Intf. detections (118)

1 baseline (117)
2 baselines (76)
3 baselines (34)

10 horns with 6m mirrors
Candidates (756)
Detections (328)
Intf. detections (60)

1 baseline (56)
2 baselines (21)
3 baselines (21)

Figure 4.8: Distribution of candidates and detections for two outrigger configurations.





Chapter 5

Final Remarks

In this dissertation I have investigated the performance of the BINGO telescope to

search and detect FRBs, and how a set of outriggers can be used to localize the events

in the sky, through the BIS. I considered a single, naked horn plus three different mirror

sizes for the outriggers, all with single horns, for 5, 7, 9, and 10 outriggers. To produce

synthetic FRBs and calculate the detection rates, I used and helped to develop the

code FRBlip.

Using different methodologies to define detection and localization through baselines,

I estimate that BINGO alone will be able to observe dozens of FRB per year, around

50 with S/N ≥ 5 and 20 with S/N ≥ 15 (for α = 0, as used in Eq. 3.22), in agreement

to what was previously calculated in Abdalla et al. (2022a). The introduction of

outriggers can improve the total detection rate by about 20% with 9 outriggers (as can

be seen in Fig. 4.5).

Regarding the localization, if we use two baselines then the best scenario is when

outriggers have a 4-m mirror, and the estimates are improved from 10.3 events per

year (for 5 outriggers) to 15.9 events per year (for 7 outriggers), 18.4 events per year

(for 9 outriggers) or 20.1 events/year (for 10 outriggers), as seen in Table 4.2. On the

other hand, if the localization is through three baselines, the best case is for 7, 9, or 10

outriggers with a 4-m mirror, with 10− 12.5 events per year; with 5 outriggers, the

best option would be outriggers without mirrors, reaching 7 events per year.
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Appendix A

Relation between bolometric

luminosity and luminosity in Luo et

al. (2020)

The energy released per unit of frequency interval in the rest-frame, Eν′ , is given by

(Lorimer et al. 2013)

Eν′ = kν ′α , (A.1)

where k is a constant, α is the spectral index and ν ′ is the rest-frame frequency. The

bolometric luminosity is then obtained by integrating the energy over all possible

emitted frequencies

Lbol =

∞∫
0

dν ′Eν′ =
k(ν ′α+1

high − ν ′α+1
low )

α + 1
, (A.2)

where here we have omitted the top-hat pulse of width present in Lorimer et al. (2013)

and ν ′ = (1 + z)ν.

The luminosity in Luo et al. (2020), however, is a sub-part of the bolometric

luminosity, since the assumed spectral width is νLuo, high − νLuo, low = 1 GHz. We can

then write the “Luo” luminosity as

LLuo =

∞∫
0

dν ′Bν′Eν′ =
k
(
να+1
Luo,high − να+1

Luo, low

)
α + 1

(1 + z)α+1 , (A.3)

where Bν′ is a rectangular function defined as Bν′ = 1 for ν ′
Luo,low ≤ ν ′ ≤ ν ′

Luo,high and

Bν′ = 0 otherwise. Note that LLuo = Lbol if ν
′
high = ν ′

Luo, high and ν ′
low = ν ′

Luo, low.
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Using Equations (A.2) and (A.3) we obtain the relation between the two luminosities

Lbol

ν ′α+1
high − ν ′α+1

low

=
LLuo(

να+1
Luo, high − να+1

Luo, low

)
(1 + z)α+1

(A.4)

Therefore, using the above relation in Eq. (3.10) we obtain Eq. (3.13). The luminosities

used in Section 3.3.4 are the “Luo” luminosities LLuo, where we have removed the

subscript “Luo”.
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