• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.43.2022.tde-18032022-165805
Document
Auteur
Nom complet
Felipe Manoel de Sousa Freitas
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2022
Directeur
Jury
Rivelles, Victor de Oliveira (Président)
Dalmazi, Denis
Ferrari, Alysson Fabio
Titre en portugais
Teoria de gauge para partículas de spin contínuo e altos spins.
Mots-clés en portugais
grupo de Poincaré
partículas de spin contínuo
representações unitárias
táquions
Teoria de grupos
vértice.
Resumé en portugais
Nesta dissertação apresentamos um estudo sistemático sobre a Teoria das Partículas de Spin Contínuos (CSPs) e dos Táquions de Spin Contínuos (CSTs) pelo uso de métodos de Teoria de Grupos e Teoria de Campos. Para este fim, realizamos uma breve revisão sobre Teoria de Grupos, especializando-nos nos Grupos de Lorentz e Poincaré, no qual CSPs e CSTs aparecem como Representações Unitárias Irredutíveis (UIRs). Então, revisamos amplitudes de emissão soft para CSPs, onde pode-se discutir a possibilidade de que interações de longo alcance serem intermediadas por CSPs, ao invés de apenas partículas sem massa de baixa helicidade (fóton e gráviton). Depois, analizamos a teoria de campos para CSTs, em que é discutido simetrias globais e locais da ação e calculamos os autovalores dos operadores de Casimir quadrático e quártico. Depois, investigamos os graus de liberdade físicos propagados pelo campo e analisamos o vértice cúbico com um CST e duas partículas massivas escalares, em que exploramos uma corrente externa adequada que obedece uma lei de conservação generalizada. Finalizamos tomando o limite de massa zero deste vértice para obter o vértice cúbico para uma CSP e duas partículas escalares massivas, onde estudamos suas propriedades tanto no espaço de Minkowski quanto no espaço Euclideano. Mostramos que o propagador obtido no espaço Euclideano é similar ao encontrado no contexto da teoria de Partículas de Altos Spins (HSPs).
Titre en anglais
Gauge field theory for continuous spin particles and high spins.
Mots-clés en anglais
continuous spin particles
Group theory
Poincaré group
soft amplitudes, vertex.
tachyons
unitary representations
Resumé en anglais
In this dissertation, we present a systematic study of the theory of Continuous Spin Particles (CSPs) and Continuous Spin Tachyons (CSTs) using both Group Theory and Field Theory approach. To do so, we make a brief review of Group Theory specializing ourselves on Lorentz and Poincaré Groups, where both CSPs and CSTs appear as Unitary Irreducible Representation (UIR). Then, we review soft amplitudes for CSPs, where one can discuss the possibility of long-range interactions intermediated by CSPs, instead of just massless low-helicity particles (photon and graviton). After that, we enter the realm of CST field theory, where is discussed global and local symmetries of the action and we compute the eigenvalues of the quadratic and quartic Casimir operators. Then, we investigate the physical degrees of freedom propagated by the field and analyze cubic vertices for one CST and two massive scalar particles, where we explore a suitable current that obeys a generalized conservation law. We end up by taking the massless limit of this vertex to get a CSP vertex for one CSP and two massive scalar particles, where it is studied its properties in both Lorentz and Euclidean signatures. We show that the propagator obtained in Euclidean space is closely related to the one encountered in the context of the theory of Higher Spin Particles (HSPs).
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2022-03-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.