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Resumo

Contextualidade generalizada corresponde a uma hipótese sobre as descrições on-

tológicas de resultados experimentais. Um modelo ontológico que descreve tabelas de

dados é considerado não contextual quando operações equivalentes do ponto de vista ope-

racional possuem a mesma representação no modelo. Quando esses modelos não podem

ser constrúıdos, dizemos que há contextualidade. A teoria quântica é o mais importante

exemplo de uma teoria f́ısica contextual. Neste trabalho descrevemos como contextu-

alidade pode ser entendida dentro do formalismo de teorias de recurso com aplicações

para tarefas quânticas, desenvolvendo um método geral para o estudo de descrições ex-

perimentais, chamadas de cenários. Em particular, discutimos três tarefas de informação

distintas: comunicação com restrição de paridade, discriminação entre duas hipóteses e

clonagem. Nós conclúımos, usando ferramentas da teoria de recursos e de algoritmos para

obtenção de desigualdades de não-contextualidade, que nessas tarefas existem vantagens

devido à contextualidade da teoria quântica em relação a quaisquer protocolos clássicos

análogos.

Palavras chave: contextualidade, teoria de recursos, teoria quântica,

modelos ontológicos, clonagem quântica, discriminação de estados.



Abstract

Generalized contextuality constitutes the following definition: for a given set of

experimental procedures, any ontological explanation for the probability distributions ob-

tained will need to distinguish between operationally equivalent procedures. We name

such models as contextual and consider a notion of classicality that does not allow that to

happen, namely, a notion of classicality that arises from noncontextual ontological models

for experiments. Quantum theory is the most important of physical theories that have

such a property. In this work, we have studied the notion of generalized contextuality,

rooted in the philosophy of science, but that has shown to be particularly useful for solv-

ing experimental loopholes present in the Kochen-Specker formulation of contextuality.

We have also studied the resource theory framework, developing new tools for witness-

ing quantum contextuality in prepare-and-measure scenarios focusing on already known

contextuality scenarios in the literature.

Keywords: contextuality, resource theory, ontological models, quan-

tum cloning, minimum error state discrimination, parity oblivious.



Acknowledgements

I want to start thanking my supervisor Bárbara Amaral. 400 days ago, we started

the project that concludes with this dissertation; I will be forever thankful for her guidance

and patience. She has now become a model for me, both as a researcher and as a professor.

I would also like to thank Roberto Baldijão, for all the help and attention. I would also

like to thank Alisson Tezzin for all the discussions, the help with the algebraic formalism

of quantum statistical mechanics, for the kindness and patience.

I would like to thank all my friends Renan, Thiago, Gabriel, Fernanda, Pedros,

Mariana Cipolla, Leo, Marina, Giulio, Brenda, Silvio, Ari, for all the good moments,

chats, and funny encounters. My friends Geeh, Xii, Theo, Mai, Cris, Cat, Maya, Cae,

Lucas, for all the Star Wars previews and friendship in all these years. A super special
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1
Introduction

When we talk of an interpretation, this means that, even if we find it

hard or impossible to identify the ontological basis, the mere assumption that

one might exist suffices to help us understand what the quantum mechanical

expressions normally employed in physics, are actually standing for, and how

a physical reality underlying them can be imagined.

(Hooft, 2016, Gerard’t, pg. 34)

The belief in an external world independent of the perceiving subject is the

basis of all natural science.1

(Einstein, 1960, pg. 266)

Since the beginning of the twentieth century, experimental facts about the de-

scription of quantum mechanics were in conflict with current interpretations of what does

it mean for a physical theory that aspires to describe reality, to be complete. Einstein,

Podolsky, and Rosen (Einstein et al., 1935) argued that for a theory to be considered com-

plete, it needs to have an accurate description of the elements of reality (Howard, 1985).

Seen from this perspective, quantum mechanics would not be complete. Consequently, to

describe the physical reality entirely, some new hidden structure in the formalism must

exist since quantum mechanics correctly predicted all known low-energy experiments.

The effort to formulating an interpretation of quantum theory by completing it with new

variables has been named realism2 since this was considered a “desperado” attempt to

bring classical notions of reality into the quantum formalism. However, the realistic in-

terpretation was not the only one considered; throughout the century, other explanations

1Taken from (Landsman, 2005, pg. 10); since the author is fluent in German he mentions the original
sentence: Der Glaube an eine vom wahrnehmenden Subjekt unabhängige Auβenwelt liegt aller Naturwis-
senschaft zugrunde, from (Einstein, 1934).

2Nowadays, realism is a term used for a much larger group of attempts at interpreting quantum theory.
The one here could be better defined as hidden-variable realism. As an example, among many others,
the author in (Hooft, 2016) construct a realist approach to quantum theory by relaxing the Free Will
argument in Bell’s theorem.
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CHAPTER 1. INTRODUCTION

for the strangeness of quantum mechanics emerged. A wide variety of explanations were

presented to comprehend the strange facts observed by the quantum theory - entangle-

ment and steering being the most notable examples of strange effects that have baffled

early realists - which created a conflict with the more classically minded interpretations,

represented by the realistic approach; Nowadays, we study that spectrum of explanations

in the field of research of foundations of quantum theory. The seminal works of (Kochen

and Specker, 1975), (Bell, 1964) and (Bell, 1966), had a profound impact on that field as

they have set rigorous mathematical proofs that ruled out some realistic interpretations of

quantum mechanics. Their work led to a better understanding of the theory and helped to

develop useful ideas that converged, for example, to the use of entanglement as a resource

for quantum information (Nielsen and Chuang, 2002), (Wilde, 2013), (Horodecki et al.,

2009).

In his work, Bell derived upper bounds on probabilistic correlations that any

local hidden-variable model of quantum theory would need to satisfy, under the following

assumptions, (Hermens, 2010, pg. 38), (Amaral, 2020, 10:30),

1. Realism: Measurement procedures only reveal pre-defined results. Therefore there

exists a state of the system that determines the measurement events.

2. Locality: Any choice made by one side of a two-party experiment does not affect

the other side. We could further specify this in terms of the following assumptions:

(a) Outcome Independence: Measurement events do not depend simultane-

ously on other measurement events made far away.

(b) Context Independence: Measurement events do not depend on the experi-

mental setup of the party located far away.

3. Free will: Each party has free will to choose which measurement they will perform.

And under these considerations, Bell later showed that the quantum formalism allows for a

violation of these bounds. These violations were the mathematical proof that the quantum

formalism indeed permits an instance of nonlocality. In a later work, Kochen and Specker

demonstrated an unusual feature about quantum probability theory that comprises Bell’s

earlier results: Quantum theory is intrinsically context-dependent. In other words, no

hidden variable model, for which the value assignments do not depend on which context

the measurements are performed, can adequately describe statistical data gathered by

every quantum experiment. This theoretical fact, contextuality of quantum probability

theory, discovered by Kochen and Specker (so-called KS-contextuality) between measure-

ment procedures is a necessary condition for any interpretation of quantum data assuming

realism. Nevertheless, there are experimentally restrictive constraints considered in KS-

contextuality, e.g., the measurements are always represented by orthogonal projections,

which are never experimentally implemented because of noise effects.
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CHAPTER 1. INTRODUCTION

In (Spekkens, 2005), the author proposes a generalized notion of contextuality for

operational theories suitable for noise, and that recovers KS-contextuality as a particular

case. This new paradigm implemented a notion of contextuality not only for measurement

procedures but also for preparations and transformations that one can perform in a quan-

tum system; included other physical, operational models beyond quantum theory and

relaxed the constraints on measurement procedures to allow noisy protocols that better

describe non-idealized measurements in the laboratory.

Given that we have rigorously established that quantum theory constitutes an

utterly different overview of physical reality, the following question remains: can we make

direct technological usage of these discoveries? Following this path, researchers have

shown entanglement to be a successful resource for applying several quantum information

protocols, which paved the way for searching similar results associated with other effects

such as quantum steering, Bell nonlocality, quantum thermodynamics, asymmetry, to

name a few. The name quantum resource theory (Coecke et al., 2016), stands for the

general framework of constructing tools built upon these quantum effects.

In this project, we want to study the resource theory for generalized contextuality

developed in (Duarte and Amaral, 2018). The guiding question for this dissertation was:

Can generalized contextuality be a resource for quantum information theory?

If so, would it be possible to formulate a framework to witness both the resource

and the advantage it provides for general experimental situations?

By reviewing the literature, we answer the first question positively: Generalized

contextuality represents a fundamental resource for the advantage of some quantum in-

formation protocols. We present proof of advantage for a large class of oblivious protocols

and two quantum information protocols: binary minimum error state discrimination and

state-dependent quantum cloning. For the second question, we developed two resource

theory frameworks to witness nonclassicality: one framework that uses pre/post-processes

and another one that might be useful to engineer complex scenarios with an embedded

contextuality structure, but without exponentially increasing the computational com-

plexity for obtaining noncontextuality inequalities. These two frameworks can witness

the resource, but they do not serve as general proofs of advantage for protocols.

This dissertation’s structure is as follows: We start providing a review of general-

ized contextuality in chapter 2, from the first breakthrough by Robert Spekkens, and up

to more recent perspectives. We continue to describe experimental scenarios that fit the

prepare-and-measure description, and to present, in chapter 3 an algorithm that obtains

all the noncontextuality inequalities for any scenario with finite procedures. We then

present the resource theory we work with, together with our main results, in chapter 4.

We finish in chapters 5 and 6 by applying the resource theory framework and drawing our

main conclusions.

3



2
Generalized Contextuality Framework

For me, I am in a sense a realist, but what is important to my mind about

Realism - maybe I don’t even need to be committed to the term Realism -

the thing that is unsatisfactory about Instrumentalism, to my mind, is that

it fails to provide causal explanations; I am committed to providing causal

explanations of quantum phenomena.

- (Spekkens, 2016, 19:55-20:15)

Our research’s primary goal is to understand better how quantum contextuality

à la Spekkens provides useful tools for quantum information protocols. Since the pio-

neering work of (Hardy, 2001), one of the paths towards understanding quantum physics

at its core is to find axioms for generalized probabilistic theories, henceforth mentioned

as GPT framework, that recover quantum probability theory. This perspective lies upon

the assumption that physical processes can always be described operationally by some

probabilistic formalism; from a very empiricist perspective, what we can infer from the

laboratory is always, at most, how can we proceed experimentally to obtain raw statistical

data in the form of probability of occurrence of the phenomena. In essence, we call this

an operational theory framework.

To interpret experimental results, we attempt to explain how we perceive (philo-

sophically) the world through the lenses of physical experience; we give a meaning to

the acquired probabilities by the operational theory. To engage in such a meaning corre-

sponds to engage with an ontological commitment (Bricker, 2016). This commitment is

not always related with an underlying ontological explanation in the terms we will con-

sider throughout this dissertation, but generally speaking, it is natural to give meanings

to probabilities as if they show some aspect of the nature of the processes in question.

Hence, treating operationally any experimental procedure should give an overview

of how we can generally approach theory building, since, a priori, we do not give any inter-

pretation to the probabilities obtained - a job for the ontological models we build. From

this, we can make powerful assertions about abstract ideas; rigorously by writing no-go

4



CHAPTER 2. GENERALIZED CONTEXTUALITY FRAMEWORK

theorems, technically by deriving noncontextuality inequalities that can be implemented,

and finally, foundationally by searching principles1, or axioms, that are representatives of

the theory.

We can view quantum mechanics as an operational theory, and one can consider

the following question: How can we provide an ontological model that describes such

an operational theory? Standard quantum mechanics2 is just one possible ontological

description. Re-framing this question using ontological models: Consider any ontological

description that can adequately describe the probabilistic features of quantum mechanics

as evaluated/measured in the laboratory. By making some set of restrictions - in our case,

an assumption that is both philosophically and experimentally motivated: Spekkens notion

of contextuality - what can we infer?

In what follows, we proceed to describe the abstract theory, properly defining

what we mean by an operational theory and an ontological model. For a clear exposi-

tion of the concepts not directly related to the physics community, we refer the reader to

appendix A. The notion of contextuality we will formulate is going to be described as a

hypothesis over the interplay between the concepts mentioned above. We shall call this

Spekkens contextuality, generalized contextuality or, if no confusion arises, just contextu-

ality. We finish this chapter with comment on its philosophical roots: Leibniz principle

of indiscernibles.

2.1 Operational-probabilistic theories

We call an operational-probabilistic framework, a set of laboratory prescriptions

to obtain probabilistic data. We will see that even committing to such a description

can be understood as committing oneself to some physically relevant assumptions. For

example, we are already committing to the fact that the operational theory is capable of

assigning probability distributions. Many of the quantities we will work with could be

studied in more general terms as a somewhat pure operational theory. In this dissertation

we only consider operational-probabilistic theories, therefore, for us, we drop the term

probabilistic for the rest of this dissertation.

First of all, we need the concept of state, or behavior, which is related to the notion

of a physical description of some part of nature that we want to delineate experimentally.

For instance, take a particle that we characterize as having intrinsic angular momentum.

The particle and its momentum are a small aspect of nature that we call a system and,

1As an example, a known proposal for a principle that could represent a fundamental feature of
quantum theory is the exclusivity principle, since this principle forbids a set of correlations larger then
the quantum set (Amaral et al., 2014).

2Standard here does not mean the ideas present by Bohr, Heisenberg and Pauli, also commonly known
as the Copenhagen interpretation. By standard we mean the set of rules used by physicists to obtain
experimental results, such as the Born rule. For a discussion relating the different interpretations among
the mentioned physicists, and also about the measurement problem, see (Janssen, 2008).

5



CHAPTER 2. GENERALIZED CONTEXTUALITY FRAMEWORK

suppose that we would like to understand better how this system behaves when exposed

by a magnetic field without making any further assumptions, such as its relationship with

other systems, its inner complexity, and other possible degrees of freedom. Then we must,

operationally, come up with a set of rules, or better, a list of instructions that we will use

to obtain information from the system. We define two different procedures that achieve

this goal: preparations and operations.

A preparation procedure will leave the system in its “primary configuration” —

for example, a free particle in a configuration of fixed intrinsic angular momentum. In

general terms, we consider a valid preparation procedure to be any initial configuration

of the system being studied; e.g., once a given tissue has absorbed radiation, we can

consider that tissue a prepared state of the system. It is now clear what is the point

of such description: an operation will be generically any possible interaction, including

non-local, strongly correlated ones, acting on a prepared system. In this work, we will

consider operations as measurements and, in some sections, we refer to the notion of

transformation procedures, also representing operations, since including transformations

in the framework is particularly interesting to study abstract aspects of quantum theory

(Baldijão et al., 2020), despite one can always - as can be seen by the generality of our

considerations - consider a transformation as part of a measurement, or as part of a

preparation procedure. Measurements are operations essentially different from the others

since the scientist obtain information about the system.

Following (Amaral, 2015) and (Barrett, 2007) we make an assumption here that

is fundamental for any operational theory framework:

Assumption 1. Every preparation or operation can be repeated to produce a probability

of occurrence of outcomes when subject to the measurement operations.

This assumption has significant importance: it assumes that one could, for in-

stance, perform enough laboratory experiments in order to build a data table, representing

a set of probabilities of occurrences. For instance, consider an operational setting that

wants to describe the state of some system experimentally: define the set S of sources

S ∈ S where each S represents a source of a finite set VS of different preparations, and

we consider that S is the set of all such possible sources for some operational theory.

The assumption considers that a preparation event [s|S], which means that the source S

has prepared s ∈ VS, can be repeated indefinitely.

We also notice that assumption 1 does not express how many preparations or

operations one should perform to reproduce the final probabilistic data representing the

actual behavior of the system. That is a crucial point that can be considered an essential

loophole of having probability distributions be the essential underlying features of the

theory.

All the ingredients of the operational framework are now settled. We will rep-
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resent the set of all possible measurements procedures by M = {Mi}i∈I , the set of all

source settings S = {Sj}j∈J and, to be complete, in the description given by (Spekkens,

2005), it is also mentioned the set of all transformation procedures T = {Tq}q∈Q, for

I, J,Q arbitrary set of indices. In our work, we focus on prepare-and-measure exper-

iments; therefore, scenarios where only preparations and measurements are performed.

We denote the set of all possible outcomes within the scenario as OM = {k}k∈K , where

K is also an arbitrary set of indices. Furthermore, we denote the set VS := {s}s∈S of

possible source values related to a setting S. Every pair [s|S] represents a preparation

procedure P[s|S], that we refer to as a preparation event. Whenever it is convenient, we

will represent these procedures graphically, as depicted in 2.1.

Example 1. It is possible to consider quantum mechanics as an operational theory.

In such a description, we have the generalized notions of states, transformations (also

called channels in the quantum information literature), and measurements. States are

trace-class positive operators ρ ∈ B(Hin)+3 with Tr(ρ) = 1, transformations are CP-

maps T : B(Hin) → B(Hout) and measurements are positive partitions of the unit

B(Hout) ⊃ {Ek}k∈K , for an arbitrary set of indices K.4

Preparation
ρ

Transformation

T (ρ)

Measurement

Figure 2.1: Quantum theory as an operational theory.

4

What we will mean by a state, or more commonly as a behavior, it was first

introduced in (Hardy, 2001), (Barrett, 2007) as:

Definition 1. A state, also known in the literature by a behavior, a data table, a black-

box correlation or a prepare-and-measure statistics, constitutes a list of probabilities of

outcomes

B := {p(k|Mi, Tq, Pj)}k∈K,i∈I,q∈Q,j∈J (2.1)

given that the specific preparations followed by the transformations and measurements

were performed on that system a sufficiently large number of times. ♦
3This is the set of bounded positive, ρ ≥ 0, operators acting on the Hilbert space Hin.
4In (Werner, 2019, Lecture 1, 8:04), professor R. Werner says: “I’ve learned this way of representing

things from my thesis advisor Günther Ludwig, so we call them Ludwig boxes”, which is the best historical
quote from the birth of such operational description we could find.
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If we consider a prepare-and-measure experiment, then we write the behavior

corresponding to the system as B = {p(k|Mi, Pj)}k∈K,i∈I,j∈J . When the sets of operations

are finite, we will change the notation from calligraphic, e.g., S , to bold S. We will mainly

use the behaviors as described by (2.1), without the transformations, and we present

a discussion about the recently introduced construction by (Kunjwal, 2019), following

previous work (Kunjwal and Spekkens, 2015) that brings attention to the formulation

in terms of sources S . See, for example, the discussion following definition 17 and how

graph invariants connecting KS-contextuality and robust noncontextuality inequalities for

generalized contextuality can be formulated via preparation events (Kunjwal, 2019).

In definition 1 the notion of behavior of a system suffers from a practical difficulty.

Suppose that in an experiment, we would like to describe the state of a qubit. There are

infinitely many measurements that one can perform on a qubit relative to every point in

the Bloch sphere. This implies that to describe all possible behaviors arising from the

system would only be possible given that an infinite number of measurements have been

performed, which is experimentally unreasonable. The tomographic assumption takes

care of such a problem, and we will see that this gives rise to a meaningful discussion on

the experimental perspective of testing noncontextuality for (quantum) models regarding

theoretical loopholes.

Assumption 2. (Amaral, 2015) A set of operations is called tomographic if the list of

probabilities for the outcomes of these operations completely specifies the state of the

system. We call a set of measurements tomographically complete, or fiducial, if, in this

set, there is the minimum number of measurement procedures necessary for the behavior

to be completely specified.

This assumption supports the following observation: in our qubit case, one needs

only to obtain the statistics of three different measurements along the defined axis that

corresponds to the Pauli matrices. These three measurements fully characterize the state,

and so the set {σx, σy, σz} can be considered a fiducial set of measurements for the qubit.

Hence, assumption 2 solves the operational problem of the necessity of an infinitely large

number of measurements to find the correct finite set of measurement procedures that fully

characterize the state. We will only consider procedures with a finite set of outcomes, and

experimental scenarios that admit a finite set of tomographically complete procedures.

The process of finding a state given such a finite set of measurements is called tomography.

Definition of the operational quantities

We consider a set S to be the set of all source settings S. A source setting

is composed of possible sources s ∈ VS, each representing a possible preparation event.

To the pair [s|S] we associate (p(s|S), P[s|S]), the probability that one chooses s ∈ VS

therefore making the preparation procedure P[s|S]. In the rest of this work, P always stand

8



CHAPTER 2. GENERALIZED CONTEXTUALITY FRAMEWORK

for preparations, while p stands for probabilities. The conditional probability associated

with choosing a source s ∈ S does not necessarily needs to be a free parameter, it may

be controlled by the apparatus (such as flipping weighted coins to chose between sources)

or it can also be a source of randomness unconstrained. Whenever we make changes in

notation such as VS → VS, it represents that we are considering finite sets of sources.

Example 2. Consider a common quantum information protocol were we have a laser

pump and a beta barium borate (BBO) nonlinear crystal responsible for generating en-

tangled photons. This is a setting S ∈ S ⊆ S .5 Each pair crystal + laser beam of photons

represents a source S. The setting s corresponds to the laser states that can be prepared,

such as a label representing different wavelengths, among all choices VS depending on the

number of material resources one might have in the laboratory. This setting S is one of

all possible settings S available that can generate pairs of entangled photons. The pair

[s|S] is the operational event of choosing a specific crystal + laser preparation procedure

P[s|S] with probability p(s|S). 4

We cannot implement every element of S since this set is infinite. Usually we

speak about an operational framework via finite sets S ⊆ S , making use of assumption

2 by expecting S to be tomographically complete. If our operational description is valid

for S , in what follows, we say that the assumptions are valid for the theory. If it is only

valid for S we call it a model. When S is tomographically complete, we hypothesize that

the assumptions made about the operational description are valid for the entire set S .

For transformations, the situation is simple: there is no notion of “transforma-

tion event” since, in some sense, transformations are not fundamental in the operational

framework. They can always be embedded in the preparation procedures if necessary, as

mentioned before. For measurements, we have a similar situation, as described above.

Hopefully, our intuitions are sufficiently clear to be summarized in a definition.

Definition 2. There are two notions of operational events: an operational event of a

preparation procedure and an operational event of a measurement procedure. We denote

them [s|S] and [k|M ], respectively.

1. To S ∈ S ⊂ S we associate {(p(s|S), P[s|S]))}s∈VS were VS is the finite set of possible

settings in S. The preparation P[s|S] is obtained once [s|S] happens.

2. The complete coarse-graining over {[s|S]}s∈VS
corresponds to the effective event

[T|ST]. This preparation event we write as P[T|ST], since by definition |VST
| = 1.

[T|ST] :=
∑
s

[s|S] (2.2)

5Examples can be found in (Yu et al., 2019, Fig. 1, pg. 3), (Zhan et al., 2020, Fig. 4, pg. 5), (Bian
et al., 2020, Fig. 2, pg. 3) and many others. This is a common preparation procedure in quantum optics.
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3. To the event [k|M ] we mean that measurement procedure M ∈ M ⊂ M was per-

formed and we have obtained outcome k ∈ OM .6

♦

S

S S S S S S S

p(s1|S)

p(s2|S)

M
−1 0 +1

M M M

Figure 2.2: Representation of a prepare-and-measure scenario: Given S we experimentally
choose to utilize the blue source S that can prepare P[s1|S] with probability p(s1|S). VS =
{s1, s2} and OM = {−1, 0,+1}. In the figure, p(+1|s1, S,M) 6= 0.

This is the core of what we mean by an operational framework. There are left

some comments on it: The completely coarse-grained event was defined by (Kunjwal,

2019), after working in the years before on the perspective of preparation events with

application to new graph invariants, such as the Corr quantity.7 With these new tech-

niques, the graph invariant for preparation procedures Corr was used to witness quantum

contextuality (Mazurek et al., 2016). The notion of preparation event [s|S] is relatively

new in the generalized contextuality literature, and for applying many of the techniques

that we present in this dissertation, it is still unknown the methodology to be used. For

example, it is not clear how to apply the techniques we will discuss in chapter 3 to a

prepare-and-measure scenario described in terms of preparation events.

Nevertheless, we think it is worth presenting this as a more general framework

that we specify in future chapters for our case studies.

6The summation in (2.2) represents the logical “or”. So this means that [T|ST] is the procedure that
prepares [0|S1] or [1|S1], for example.

7See also (Kunjwal and Spekkens, 2015). The definition and study of the quantity Corr can be found
in (Kunjwal, 2019).
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S

p(0|S)

p(1|S)

T

ST

Figure 2.3: Representation of a complete coarse-graining of the source events. Source
event [T|ST] = [0|S] + [1|S].

In what follows, we make observations relevant to someone starting in the field

to help read the past fifteen years of literature. After the seminal paper, (Spekkens,

2005), presenting the notion of generalized contextuality, much of the way we approach

the discussion has changed, and we try to give a brief account of these changes8. We also

define the last ingredients needed for a complete picture in our theoretical treatment that

will be necessary to define contextuality properly.

Operational equivalences: evolution of a concept

Since a behavior is described by how the probabilities that represent a system

correspond to different preparations and measurements, it is possible that in a given

system, we can obtain the same statistics ~B for different experimental procedures. In

what follows, we will try to formalize such a situation and argue about its importance.

We follow the example given in (Spekkens, 2005) to study photon polarization scenarios:

Example 3. Take P to be a preparation defined by a homogeneous beam of photons

and let M1,M2 be two measurement procedures described as polaroid oriented to pass

vertically polarized light, M1, and in some different skewed direction, M2, both followed by

a photodetector. Let now M3,M4 be a pair of birefringent crystals that are also oriented

to transmit vertical, M3, and skewed light, M4, again followed by a photodetector. We

notice that the behavior of the system does not change if we perform the procedure

M1 or M3 for the same preparation P . The same happens for M2 and M4. Such a

description is deeply connected with the notion of generalized contextuality. By saying

that the system does not change, we mean that we cannot perceive any difference in the

8A more state-of-the-art approach considers our boxes as processes in a certain category framework.
See (Schmid et al., 2020c) and references therein for an overview of such ideas.
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statistics obtained from the experimental procedures. Therefore, we have in mind the

idea of empirical indistinguishability, where two different sets of procedures provide the

same statistical description for the process. 4

We will define such property of the behavior in the operational theory by an

equivalence between measurements. In (Spekkens, 2005), this notion is defined as follows:

Definition 3. Let P, P ′ ∈ P. Then we say that P is operationally equivalent, or just

equivalent to P ′, if

∀M ∈M , p(k|M,P ) = p(k|M,P ′). (2.3)

Similarly, for every pairM,M ′ and T, T ′ we consider that they are operationally equivalent

if, respectively,

∀P ∈P, p(k|M,P ) = p(k|M ′, P ), (2.4)

∀P ∈P,∀M ∈M p(k|M,T, P ) = p(k|M,T ′, P ). (2.5)

We denote the equivalences between procedures by writing P ' P ′. ♦

Studying the works that came after the seminal paper of (Spekkens, 2005), we

can see that there has been an evolution of such a concept of operational equivalences.

Equation (2.4) has a conceptual issue: it does not allow the outcomes to vary. It seams

like a small difference to write, for example, p(k′|P,M ′) = p(k|P,M) but we give an

example to clarify its importance.

Example 4. Let us consider two measurement procedures in the operational quantum

formalism, with M1 and M2 given by

M1 = {|0〉〈0|, 1− |0〉〈0|} =


1 0 0

0 0 0

0 0 0

 ,

0 0 0

0 1 0

0 0 1


 , (2.6)

and

M2 = {|0〉〈0|, |1〉〈1|, | − 1〉〈−1|} =


1 0 0

0 0 0

0 0 0

 ,

0 0 0

0 1 0

0 0 0

 ,

0 0 0

0 0 0

0 0 1


 , (2.7)

where we have written the measurement procedures in the M2 basis, each measurement

procedure is here denoted as a set of operators. We are using a generalization of the

quantum measurements: POVM’s. Now we can see that, for instance, the events [0|M1]

and [0|M2] should be operationally related since they both have the same probability of

occurrence given a preparation of any state associated with the finite dimensional Hilbert

space in case. Given any preparation P that we relate to the state ρ:
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p(0|M1) = Tr(|0〉〈0|ρ) = p(0|M2)

We can recognize that with respect to (2.4) the two measurement procedures M1

and M2 are not operationally equivalent.

p(k = −1|M2, P ) 6= 0, p(k = −1|M1, P ) := 0.

Since we have understood that there are events that cannot be distinguished operationally

among the measurement procedures we consider, we should improve the definition through

defining events [k|M ] to be operationally equivalent instead of just the measurements M .

This, for example, accounts for measurement procedures with a different num-

ber of outcomes (in this formalism, a different number of possible events), and we can

understand that correspondence noting that in the operational framework, we cannot dis-

tinguish between the event [0|M1] if we coarse-grain the measurement M2, as depicted in

figure 2.4. 4

P

P P P P

M̃1

0 1

M2

-1 0 1

Figure 2.4: Operational representation of the equivalence between M1 and a coarse-
graining of M2 into M̃1. The first box represents a set P of preparations of different
colors; each button above with a different color represents a different preparation proce-
dure. On the right side of the picture, each box is now a measurement procedure itself,
and we represent the possible outcomes of the measurements M2 and the coarse-graining
M̃1. However, we note that in the light of the operational theory, we do not have the
means to differentiate between M1 and M̃1.

This example shows that equation (2.4) is not the end of the story. We im-

prove the definition by noticing that if we consider not only the measurement M but the

event [k|M ], then our example has [0|M1] ' [0|M2]. Hence we make an improvement on

definition 3:

Definition 4. Let the pair [k|M ] represent a measurement event. Then we say that a
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pair of measurement events [k|M ] and [k′|M ′] are operationally equivalent if

∀P ∈P, p(k|M,P ) = p(k′|M ′, P ), (2.8)

and we say that [k|M ] ' [k′|M ′] or also [k|Mi] ' [k′|M ′
i ], given a set of indices I. ♦

Hence, equivalent measurement events are indistinguishable with respect to the

probabilities arising in the operational framework. This change is present in the works

(Duarte and Amaral, 2018), (Schmid and Spekkens, 2018) and (Schmid et al., 2018). The

latest improvement for the notion was made in (Kunjwal, 2019) were we also recognize

the operational equivalences between the preparation events. We provide a full definition

with all such characteristics.

Definition 5. 1. Let [k|M ] a measurement event with k ∈ OM and M ∈ M . Then,

we have that two measurement events are operationally equivalent iff

∀[s|S], s ∈ VS, S ∈ S , p(k, s|M,S) = p(k′, s|M ′, S) (2.9)

where the full operational probabilities are described by the behaviors

B := {p(k|M,S, s)p(s|S)}s∈VS ,k∈OM ,M∈M,S∈S = {p(k, s|M,S)}s∈VS ,k∈OM ,M∈M,S∈S,

and they were constructed by writing the probabilities in the operational description

of the behavior in definition 1 with the notions in definition 2.

2. Let [s|S] and [s′|S ′] be two source events, we say that these are operationally equiv-

alent iff

∀[k|M ], k ∈ OM ,M ∈M , p(k, s|M,S) = p(k, s′|M,S ′) (2.10)

3. If we have a complete coarse-graining in the possible source events, we will effec-

tively have only one preparation procedure, and we consider that two preparation

procedures P and P ′ are equivalent iff,

∀[k|M ], k ∈ OM ,M ∈M , p(k|P,M) = p(k|P ′,M). (2.11)

4. For transformation procedures we have the same definition as stated before, with

the obvious changes exemplified by the last item.

♦

Prepare-and-measure scenario

The framework of operational theories is now defined, and we can construct the

fundamental structure we work with, having in mind general experimental implementa-

14



CHAPTER 2. GENERALIZED CONTEXTUALITY FRAMEWORK

tions. This fundamental structure we call a prepare-and-measure scenario.

Definition 6. We specify operational equivalences between preparation procedures Pj,

with j ∈ J a finite set of indices, as a set EP of pairs (α, β) ∈ R|S|×|S|, with |EP | being the

number of equivalence relations of the type

|S|∑
j=1

αajPj '
|S|∑
j=1

βajPj (2.12)

with a = 1, . . . , |ES|, 0 ≤ αaj , β
a
j ≤ 1, and

∑
j α

a
j =

∑
j β

a
j = 1 for any fixed a. The

sums represent convex combination of preparations, and the alphas or betas are just the

probabilities of the type p(s|S). These convex combinations define new valid procedures.

Similarly, we specify operational equivalences between measurement events [k|Mi], for

k ∈ K and i ∈ I finite sets of indices, as a set EM of pairs (α, β) ∈ R2|OM |×|M|

|OM |∑
k=1

|M|∑
i=1

αb[k|Mi]
[k|Mi] =

|OM |∑
k=1

|M|∑
i=1

βb[mk|Mi]
[k|Mi] (2.13)

where these sums represent convex combinations of measurement events as before. ♦

It is vital to notice that in this definition, we are not considering the inner struc-

ture of the equivalences in the source setting perspective. This means that there are

different ways that the preparation procedures could be interpreted as sources, given

some source setting, which could provide the same operational equivalences.

Example 5. Suppose that we have S1 = {s1
1, s

1
2} and S2 = {s2

1, s
2
2}. Consider the following

equivalence:
1

2
P1 +

1

2
P2 =

1

2
P3 +

1

2
P4 (2.14)

which could come from letting p(s1
1|S1) = p(s1

2|S1) = p(s2
1|S2) = p(s2

2|S2) = 1
2

and

p(s1
1|S1)P[s11|S1] + p(s1

2|S1)P[s12|S1] = p(s2
1|S2)P[s21|S2] + p(s2

2|S2)P[s22|S2] (2.15)

but we could also have S = {s1, s2, s3, s4}, and p(s1|S) = 1
2

leading to the same operational

equivalence,

p(s1|S)P[s1|S] + p(s2|S)P[s2|S] = p(s3|S)P[s3|S] + p(s4|S)P[s4|S]. (2.16)

4

The last example shows that different scenarios might have the same preparation

equivalence. Making a connection that will help build the noncontextuality polytope in

the next chapter, we define:

15



CHAPTER 2. GENERALIZED CONTEXTUALITY FRAMEWORK

Definition 7. Consider a set S such that we are only interested in the preparation

procedure structure of the prepare-and-measure scenario. Then, we define the set P to be

the set of all preparation events:

P ∈ P ⇐⇒ P = P[s|S] (2.17)

for some event [s|S]. ♦

This definition is not a fundamental one, but we present it mostly due to technical

calculations that are to come. Different realizations of operational equivalences might lead

to interesting new work, both theoretically and experimentally. We have followed (Duarte

and Amaral, 2018) and (Kunjwal, 2019), and we notice that the work of (Kunjwal, 2019)

lead to richer equivalences as in definition 5, but this last definition will be more practical

in what follows on chapters 3, 5.

Definition 8. A prepare-and-measure scenario,

B := (S,M,VS,OM ,ES,EM) (2.18)

consists of a finite set of source settings S, a finite set of measurement procedures M, a

finite set of outcomes related to each measurement procedure OM , a finite set of values

corresponding to a specific source VS and two finite sets of operational equivalences: one

with respect to source settings ES,

|VM |∑
s=1

|S|∑
j=1

αb[s|Sj ][s|Sj] =

|VM |∑
s=1

|S|∑
j=1

βb[s|Sj ][s|Sj] (2.19)

and the other with respect to measurements EM . We assume that there is a list of in-

structions which assigns a probability distribution p(s,m|S,M). The set of all conditional

probabilities arising in such a way, we call a behavior B of the scenario B. ♦

The definition of a prepare-and-measure scenario takes into account the works of

(Duarte and Amaral, 2018), (Hermens, 2019) and (Leifer, 2014). We have then a complete

prescription of an operational prepare-and-measure scenario, which will be fundamental

for our future considerations.

In our definition of a prepare-and-measure scenario it is also important to notice

that the new procedures defined by convex combinations of the elements in M, for exam-

ple, are not defined in the scenario, but are only hypothetical procedures that could be

performed (Chaturvedi et al., 2020). In this way we do not include the entire set of con-

vex combinations of procedures in the prepare-and-measure scenario, which is a relevant

specification for treating the numerical problems in chapter 3, since the convex hull of

procedures would have an infinite number of new procedures.
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Another important aspect in our scenarios is that we consider only the convex

combinations that are fixed by the pair of weights γP := (α, β). Although this is not nec-

essarily the most general definition of scenario that could be proposed, because we could

define the operational equivalences in terms of equivalent classes, this also constitutes a

specific choice to be made in order to study numerically some scenarios. This is why we

refer to the scenarios B as finitely defined, with fixed operational equivalences.

Example 6 (Simplest scenario). We will construct the simplest possible scenario in this

framework, following (Pusey, 2018) and (Schmid et al., 2018). This scenario constitutes

of four preparation events P1 = [s1
1|S1], P2 = [s1

2|S1], P3 = [s2
1|S2], P4 = [s2

2|S2]. The prob-

abilities p(s|S) = 1/2 for all s ∈ S and all S. We also have two binary measurements that

are deterministic in its outcomes, M1,M2 ∈ M, and OMi
= {0, 1}. We have no operational

equivalences between measurements but we do have one operational equivalence between

the complete coarse-graining of preparation procedures, that we write:

1

2
P1 +

1

2
P2 =

1

2
P3 +

1

2
P4 (2.20)

corresponding to the vector (since |ES| = 1):

(α, β) = (α1, α2, α3, α4; β1, β2, β3, β4) =

(
1

2
,
1

2
, 0, 0; 0, 0,

1

2
,
1

2

)
,

hence, the simplest scenario will be defined as

Bsi :=

(
{S1, S2, S3, S4}, {M1,M2}, {0, 1}, {s1

1, s
2
1, s

1
2, s

2
2}, ∅,

{(
1

2
,
1

2
, 0, 0; 0, 0,

1

2
,
1

2

)})
(2.21)

or simply,

Bsi =

(
{P1, P2, P3, P4}, {M1,M2}, {0, 1}, ∅,

{(
1

2
,
1

2
, 0, 0; 0, 0,

1

2
,
1

2

)})
. (2.22)

It is also common in the literature, such as (Chaturvedi et al., 2020), that for brevity we

write simply Bsi = (4, 2, 2, ∅,EP ) whenever everything in this notation is clear. 4

This scenario is specially important for our purposes, since is the simplest scenario

allowing for quantum contextuality for preparation procedures, as we prove in the next

chapter. But also, this same structure of preparation contextuality will appear in other

experimental scenarios, see chapter 5. It is in general the scenario used as safety checks

regarding developments in numerical estimation (Ambainis et al., 2016), or application

of new tools such as the recently described ones of (Chaturvedi et al., 2020), where the

authors studied Bsi and variations of this scenario by varying the convex weights (α, β).

The simplest scenario is also important from the point of view of Bell inequalities since
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the scenario Bsi is isomorphic to the Bell scenario of CHSH9, see (Schmid et al., 2018) for

a detailed discussion of this aspect.

Vector Characterization

As a side note, whenever our scenario is characterized by finite sets of the primitive

operations, it is possible to define an order between the conditional probabilities. This

defines a n = |OM | × |M| × |P| dimensional vector ~B ∈ Rn. The notation | · | stands for

cardinality of a set.

~B :=
(
p(1|M1, P1), . . . , p(|OM ||M|M|, P|P|)

)
∈ Rn, (2.23)

Since every p is a probability distribution we must have that a generalized behavior, i.e.,

any general element ~B ∈ C(B) ⊂ Rn, needs to satisfy the following set of constraints∑
k

p(k|Mi, Pj) = 1, p(k|Mi, Pj) ≥ 0, (2.24)

and the equations associated with the operational equivalences defined in the specific

scenario where ~B lives. These equations are the H-representation for the polytope of the

behaviors in Rn.

2.2 Ontological models

The operational framework cannot provide a physical description of the reality

embedded in experiments. As far as an abstract framework, it can only provide insights

into the experiments: what the experimentalist can or cannot do. The operationalist per-

spective only provides lists and answers to questions of the form: how are the probabilities

describing the state of a system? An ontological model is of fundamental difference; the

main idea of an ontological model is to provide answers of the type: why some operational

theory prescription is experimentally successful? But not only this, an ontological model

supposes that there are aspects of reality, in a small part of nature (system), that have

their existence independently of experimental verification (Spekkens, 2005, sec. II, pg. 2),

having existing attributes, representatives of the reality as a thing.

The ontological model description of a system supposes the existence of states λ

that fully characterize the representing the system. Here, λ is not a hidden variable on

its own but an ontic state. Ontic states are the complete state of affairs concerning the

9This acronym stands for the experimental scenario described by Clauser-Horne-Shimony-Holt in
(Clauser et al., 1969). In fact, the discussions from (Schmid et al., 2018) allow the conclusion that
any scenario with one operational equivalence, such as the one described in the simplest scenario, is
isomorphic to some Bell scenario. For a description of Bell scenarios see (Amaral and Terra Cunha, 2018)
and (Santos, 2018).
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system. Considering that a system exists independently of the way with respect to the

experiments are performed, an ontological model hypothesizes about a complete set of

variables that can fully describe and specify the state of the system. A hidden variable is

not necessarily something that is experimentally hidden, but something that is imposed

to specify the ontic state completely.

The philosophical notions and discussions on the ontological concept are presented

in appendix A. Here we will consider the mathematical definitions connected to such

philosophical ideas.

Definition 9. Every physical system has associated with it a set Λ of possible ontic states

λ ∈ Λ. Each ontic state fully describes the system. ♦

Since an ontological model provides meaning to operational probabilities, we

have to understand how the operational approach and the ontological description are

mathematically connected. Each operational primitive has an ontological counterpart.

We will present here the ontological models’ framework, following (Hermens, 2019) and

(Leifer, 2014). An ontological model constitutes then constructing a pair (Λ,Σ) and the

ontological counterparts for the operational primitives (Π,Θ).

Definition 10. Let B ∈ B be a behavior described by the conditional probabilities

{p(k|Mi, Pj)}. An ontological model that tries to explain the probabilities obtained by

the operational framework is constituted by of a measurable space (Λ,Σ) were Λ is the

set of all ontic states, and Σ is a σ-algebra related to the events of the system being in

the ontic state λ, and also of a pair (Π,Θ) defined as the set of ontological counterparts

of the operational primitives.

The set Π corresponds to the set of probability measures µPj associated with the

preparation procedures {Pj}j∈J in the operational framework. Hence, for each system

that is prepared according to Pj, the ontic state λ is prepared and its epistemic state,

that we interpret as the best prediction about the preparation of λ, will be some µPj ∈
ΠPj ⊂ Π, where we allow the set ΠPj to have several different possible measures. Each

triple (Λ,Σ, µPj) constitutes a probability space.

The set Θ is the set of measurable functions, such that for every M there exists

ΘM ⊂ Θ that is a subset of functions ξM associated to the measurement events of that

operational description. For some state λ ∈ Λ of the system, the probability that a

measurement event [k|M ] occurs is given by ξ[k|M ](λ) = ξ(k|λ,M). We require that these

functions are normalized with respect to the outcomes k ∈ K,∑
k

ξ[k|M ](λ) = 1,∀λ ∈ Λ. (2.25)

Finally, the probabilities of the operational framework are described in the ontological
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model as

∀[k|Mi], ∀Pj, p(k|Mi, Pj) =

∫
Λ

ξ[k|Mi](λ)dµPj(λ). (2.26)

♦

We have then that our data B ∈ B admits an ontological model whenever the

quadruple (Λ,Σ,Π,Θ) as in definition 10 exists, providing an ontological explanation for

the behavior B. The interpretation of µPj is important since these are intended to be

only epistemic states, hence, they do not need to represent deterministic responses of the

system to the ontic state λ, but instead, they represent only the amount of (probabilistic)

knowledge we can have of the state λ via the model.

Given equation (2.26), we say that there exists an ontological model for the be-

havior. Changing P→P, M→M represent that this ontological model could represent

any procedure allowed in the entire theory : every possible procedure in the operational

framework (Kunjwal, 2019, pg. 7).

Definition 11. Let (Λ,Σ, µPj) be a probability space. When Λ is a set of finite cardi-

nality we consider Σ := 2Λ and we simply write µPj({λ}) ≡ µPj(λ) for the probability

distribution µPj , for all λ ∈ Λ. ♦

In the work of (Spekkens, 2005), the author provides the definitions by consid-

ering µPj the probability density functions over the set of ontic states Λ. In (Kunjwal

and Spekkens, 2015), the authors notice that for finitely defined prepare-and-measure

scenarios, the set Λ always has finite cardinality, and therefore he only considers a dis-

crete version of definition 10. In (Morris, 2009) and (Hermens, 2019), the authors notice

that there exists a formal and general approach for defining the ontological description

for the operational primitives for arbitrary sets Λ: for the measurement procedures, we

associate Markov kernels, or also, fuzzy indicator functions; and for the epistemic states,

they construct measures µ associated with each preparation procedure.

2.3 Generalized contextuality

The notion of contextuality in Spekkens formulation that we denote as generalized

contextuality will be a hypothesis based upon the fact that one has equivalent ways of

describing the probabilities obtained in the operational description. These equivalences

are the operational equivalences of definition 5. They say that the implementations give

rise to the same probability distributions, as far as the operational theory can tell.

Within an operational framework, noticing that there are no procedures that

can be done to properly prescript operational differences between two procedures, say P1

and P2, this should mean that these procedures are equivalent descriptions of physical
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reality, assuming some sort of Leibniz principle (Spekkens, 2019)10. We will discuss this

principle later with detail. However, note that here it is fundamental that no matter

what measurements we perform, these measurements cannot distinguish between one or

the other, concerning the way the system behaves, given by the set B. We define the

generalized notion of contextuality as follows:

Definition 12. Given two different measurement events [k|M ], [k′|M ′] we consider the

measurement noncontextuality hypothesis as,

[k|M ] ' [k′|M ′] =⇒ ξ[k|M ] = ξ[k′|M ′] (2.27)

♦

Definition 13. Given two different preparation events [s|S], [s′|S ′] we consider the prepa-

ration noncontextuality hypothesis as,

[s|S] ' [s′|S ′] =⇒ µ[s|S] = µ[s′|S′] (2.28)

For two equivalent events [T|ST], [T|S ′T] the noncontextuality hypothesis reads as

[T|ST] ' [T|S ′T] =⇒ µS = µS′ (2.29)

Hence, for preparation procedures we will always write, when P ' P ′

P ' P ′ =⇒ µP = µP ′ . (2.30)

♦

Notice that in definition 5 all the operational equivalences are defined with re-

spect to the sets M and S meaning that the noncontextuality hypothesis is taking into

account the fact that no other primitive of the operational theory can be used in order to

differentiate between the equivalent operations. We can also define what we mean by a

context in the Spekkens formalism, such that we can compare it later with other notions

of contextuality. We proceed here in the spirit of (Kunjwal, 2019).

Definition 14. A generalized-context is every distinction of labels between equivalent

operational quantities. ♦

Example 7. Take P1 ' P2. This means that P1 and P2 are operationally equivalent,

but since we make a distinction of labels between those two preparations, P1 ∈ C S
1 and

P2 ∈ C S
2 for two different Spekkens-contexts C S

1 and C S
2 . 4

10Or maybe also supposing some instance of a fine tuning argument. For a discussion of fine tuning
arguments see (Landsman, 2015).
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Example 8. For quantum theory, every state ρ represents a context because it represents

an equivalence class of prepared states. Hence, we denote C S
ρ as the Spekkens-context

associated with the class ρ. We then call the model contextual if there are two different

contexts C S
1 ρ,C

S
2 ρ such that µρ(Ω|C S

1 ρ) 6= µρ(Ω|C S
2 ρ) for any Ω ∈ Σ. 4

Leibniz principle of indiscernibles

Although in the remaining chapters of this work we will not make direct use of the

discussions present in this section, we find helpful to present an argument regarding the

relevance of Leibniz principle, for different reasons: It is important for the completeness of

our work; a dissertation about generalized contextuality that does not mentions Leibniz

principle is unimaginable, given the importance it plays for the contextuality literature.

It is also relevant for new students that might read these notions for the first time, but

that have no background on the connections between foundations of quantum theory

and philosophy of science. Overall, this principle is constantly at stake when utilizing

the contextuality hypothesis, posing itself as the essential methodology used for treating

generalized contextuality in a generalized probability theory framework.

The notion of noncontextuality has its philosophical background in the work of

Leibniz. His work attempted to prescribe, among other things, several general principles

of knowledge. In (Leibniz, 1765), the author develops a complicated net of criticism

to (Locke, 2001) and defines the notions of innate ideas. The perception of reality by

sensations, the complexity of human thoughts, some in-depth discussions about essence of

God, among many others, are present topics in (Leibniz, 1765). In his writings, Spekkens,

in (Spekkens, 2019), argues that among all these Leibniz principles, one is of relevance

for constructing physical theories: the principle of indiscernibles.

Leibniz had at least four principles in his philosophy. The principle of reason, the

principle of the best, the principle of continuity, and the principle of the indiscernibles.

This last principle concerns an axiomatic property of real objects. The idea is that he

wanted to adequately define what is meant for two objects to be identical, as much, two

objects are said to be indiscernible if and only if for every property that one object obeys,

the other will also obey. We can write this idea as the equation

∀F : (Fx ⇐⇒ Fy) =⇒ x = y (2.31)

where, given two objects x and y, no matter what property F is satisfied by x then y must

also satisfy the same property, and vice-versa; we then conclude that the two objects are

one and the same thing x = y.

We build the notion of Spekkens’ noncontextuality, noticing that we can rewrite

the principle of indiscernibles as follows: if two objects simultaneously have the same

property - operational equivalent -, then these two objects must be indiscernible from one
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another - at the ontological model. Indiscernible objects at the operational level should

be explained in the same way at the ontological level.

Such a philosophical notion is actually so powerful that in (Spekkens, 2019) it is

proposed as a methodological principle for theory building. Several essential points about

the Spekkens notion of noncontextuality are present in (Spekkens, 2019). We focus here

in the answer for the immediate criticism towards such methodology: It seems that such a

method is based on some strong notion of empirical indiscernibility, that would be tied to

momentary technological capabilities or even tied to the imaginative human capacity to

propose better explanations, but not tied to truly intrinsic aspects of the physical system.

Spekkens response to such criticism is that this notion of empirical indiscernibility is based

on the generality of viable procedures - as well as viable ontological explanations - that are

physically possible, and not to only those that are executable by human experimentation

(in this dissertation, this reflects the difference between the sets M and M).

“Some commentators suggest that the Leibnizian methodological principle,

though useful as a means of selecting among competing ontological theories,

should not be taken as a constraint on theory construction. This is the posi-

tion that is suggested by Maudlin’s discussion of the Newton-Leibniz debate.

(...) Although he opines that “one should be made at least uncomfortable by

the postulation of empirically inaccessible physical facts”, and consequently

that “[other things being equal], one would prefer a theory without them”, he

nonetheless grants that theories violating the Leibnizian methodological prin-

ciple are still viable on the grounds that “Man is not a measure of all things,

and there is no reason to believe that all real properties must fall within the

power of human observation.” I do not find this argument persuasive because

the Leibnizian methodological principle does not appeal to a parochial kind of

empirical indiscernibility, judged relative to the particular in-born capabilities

of humans or their particular technological capabilities at a given historical

moment, but rather to the in-principle variety of empirical indiscernibility.

This variety of indiscernibility must be understood as indiscernibility for any

system that might be considered an agent within the universe. This is because

(...) the only in-principle limits to human capabilities are the limits imposed

by physics, and therefore the only limits on our capabilities are the limits on

the capabilities of any system embedded in the universe and subject to its

physical laws.” (Spekkens, 2019, Sec. 3, pg. 7)

We also note that, for Spekkens, this kind of observational indiscernibility leads

to both an improvement to the ontological view, such as its understanding, and towards

the proposal of new ontological models. However, instead of arguing that such (method-

ology) notion of noncontextuality implies that the quantum theory should be contextual,
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implying that this principle does not lead to a better understanding to the physical reality

of the quantum processes, Spekkens takes the position of maintaining the principle as a

methodological tool and questioning the ontological models’ framework itself.

“(...) skeptics of the principle could take the fact that quantum theory does not

admit of a generalized-noncontextual ontological model as evidence against the

principle of generalized noncontextuality and hence also as evidence against

the Leibnizian methodological principle. To see that the argument need not

lead one to having scepticism of the principle, it suffices to note that gener-

alized noncontextuality is not the only assumption of the no-go theorem and

consequently that one can preserve generalized noncontextuality (and hence

the Leibnizian methodological principle) by giving up a different assumption.

In my opinion, this is in fact the right attitude to take towards the no-go

result. Specifically, I believe that it is the framework of ontological models

that must be abandoned, and that it is a fruitful research program to seek an

alternative to this framework that provides causal explanations of quantum

statistics while strictly respecting the Leibnizian methodological principle.”

(Spekkens, 2019, pg. 12)

It is also worth pointing that, in the light of ψ-epistemic considerations (a notion

presented in several works (Spekkens, 2007), (Leifer, 2014) or also (Liang et al., 2011)) the

usage of Leibniz methodological principle in the construction of the generalized notion of

noncontextuality is based more upon an indistinguishably of the knowledge about physical

responses then the empirical facts themselves.

“(...) to properly understand the principle of generalized noncontextuality

as a special case of the Leibnizian methodological principle, it is necessary

to reconceive the latter at the level of epistemology. That is, rather than

conceiving of it as an inference from the indiscernibility of empirical facts to

the identity of ontological facts, one must conceive of it as an inference from

the indiscernibility of states of knowledge about empirical facts to the identity

of states of knowledge about ontological facts.” (Spekkens, 2019, pg. 12)

Providing a physical hypothesis, the generalized noncontextual one, as a par-

ticular instance of the Leibnizian principle but equipped with a ψ-epistemic quantum

foundational consideration, one constructs ontological descriptions for experimental inves-

tigation. Notice that in general, the literature considers the noncontextuality hypothesis

as the arrows from definitions 12 and 13. From the above discussion, a stronger version of

noncontextuality would be that equivalence in the ontological description, for all possible

models, would imply operational equivalence at the operational level. This philosophical

definition is known as indiscernibility of the identicals.11 We will refer to this notion as

11We can write this as the equation x = y =⇒ ∀F : (Fx ⇐⇒ Fy).
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Leibniz-noncontextuality:

Definition 15. An ontological model is Leibniz-noncontextual if, for equivalent opera-

tional procedures, we have

P ' P ′ ⇐⇒ µP = µP ′ ,

and similarly for measurement and preparation events. ♦

This means that equivalent operations are ontologically equivalent and that when-

ever two procedures have the same ontological explanations, they cannot be distinguished

by operational procedures. Such a notion of noncontextuality was considered in (Lilly-

stone et al., 2019). This notion of Leibniz-noncontextuality is not equivalent to new

notions of classicality described by Leibnizianity. The notion of Leibnizianity is a recent

notion regarding equivalences in causal-inferential models, for an introduction of these

ideas see (Schmid et al., 2020d).
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3
Noncontextuality inequalities

What is proved by impossibility proofs is lack of imagination.

- (Bell, 1982, pg. 997)

Historically the discussion of classicality that emerged from the famous Einstein-

Bohr debate (Landsman, 2005), arises from purely conceptual discussions, such as those

present in (Einstein et al., 1935), to theoretically concrete grounds in the work of (Bell,

1964) by means of setting better logical definitions in the discussion, and from these

definitions making use of the non-signaling hypothesis to build inequalities. Such seminal

work represented an enormous breakthrough that converged to strong abstract results,

opened a railway of experimental challenges, and nowadays, some of these experimental

developments are already technological realities, for example in entanglement theory (Yin

et al., 2020), (Ren et al., 2017), (Liao et al., 2017). In the field of quantum information, it is

vital to develop both no-go theorems that will represent possible advantages of quantum-

over-classical systems, and robust inequalities that can be experimentally verified and

used in new technologies.

Following such a successful program, in this chapter we study noncontextuality

by showing abstract results in the form of no-go theorems in section 3.1. Then we proceed

to construct a full linear characterization of the noncontextuality scenario and develop all

noncontextuality inequalities for general finite prepare-and-measure scenarios in sections

3.2 and 3.3. These inequalities are robust, meaning that they can be experimentally

tested. We conclude with a numerical implementation of such construction. In chapter 4

we will make use of the resource theory framework to draw some conclusions of general

polytope descriptions for prepare-and-measure scenarios. In chapter 5 we make use of

noncontextuality inequalities obtained in this chapter to prove quantum advantages.
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3.1 No-go theorems

The result of Bell’s theorem fits into a class of abstract statements known as

no-go theorems (see appendix A). Specifically, Bell’s theorem implies that there can be

no hidden-variable model that, simultaneously, respects the criteria present in chapter

1 1 and predicts the results of quantum mechanics. Not only that, but actually, Bell’s

theorem does not allow for an epistemic account of pre-determined values, meaning that

although the values associated with measurement procedures have an a priori existence,

the experimenter at best obtains partial knowledge of reality - epistemic states of reality.2

Historically, Bell has constructed such no-go theorem providing an inequality that needs

to be respected under these assumptions. But we should address that what goes under the

name of Bell inequalities in the modern literature should be understood more as robust

Bell-type inequalities and the inequalities that Bell first presented represent, in general, a

no-go result (Schmid and Spekkens, 2018). The main difference is that Bell inequalities

should be experimentally testable and, hence, make no reference to idealizations or the

quantum formalism. In this work, we follow such convention and only consider robust non-

contextuality inequalities. Kochen-Specker noncontextuality inequalities (Araújo, 2012),

(Araújo et al., 2013) are, then, understood as certain types of no-go results such as Bell

inequalities, since there are strong idealizations at play.

No-go results are fundamental results setting the grounds for two classes of fur-

ther investigations: First, by drawing attention towards possible experimental resources,

and second, by introducing new competing foundational ideas. For example, we have

several competing notions of noncontextuality (generalized, extended, Kochen-Specker),

such as competing ways for how to construct useful resource theories (for Bell nonlocality,

as an example, we have competing ideas between two resource theories: one consider-

ing LOCC3 operations and the other considering LOSR4 operations, see (Schmid et al.,

2020a)). Research in foundations of quantum theory usually uses no-go results as essential

breakthroughs, such as Spekkens’ proposal of abandoning the ontological models’ frame-

work, or at least, to state sound and thoughtful physical principles that would increase

our comprehension of the theory.

As stated before, the generalized noncontextuality paradigm introduces new fea-

tures for a system to produce classical probability distributions; preparation noncon-

textuality. Preparation noncontextuality is an important novelty, with respect to KS-

noncontextuality. It could be the case that quantum theory is noncontextual regarding

preparations, since the Kochen-Specker theorem only treats measurement procedures.

1Realism, Locality and Free will.
2This is sometimes known as Bell’s theorem for stochastic hidden variables, see (Hermens, 2010).
3Local Operations and Classical Communication.
4Local Operations and Shared Randomness. The difference is that instead of communicating the

parties are only supposed to share a common source of classical variables.
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The following no-go results will prove the opposite.

Some assumptions over noncontextual ontological models

There are two critical considerations heavily used in the demonstrations that fol-

low: Distinguishable procedures and Operational convexity implying ontological convexity.

The status of these features about ontological models can be considered as definitions for

what preparation noncontextuality in the Spekkens sense means, or more generally, of

what ontological models of operational theories should obey. Models that do not obey

such characteristics, such as Meyer-Kent-Clifton models (Hermens, 2011)5 can then be

viewed as preparation noncontextual models. These were first introduced in (Spekkens,

2005).

Definition 16 (Distinguishable procedures). Let B ∈ B be a behavior. If two preparation

procedures, P, P ′ ∈ P are distinguishable with certainty in a single-shot measurement, then

their associated probability distributions µP and µP ′ are non-overlapping:

µP (Ω)µP ′(Ω) = 0, ∀Ω ∈ Σ, (3.1)

for any noncontextual ontological model constructed for B. ♦

We make use of this definition in appendix B. Figure 3.1 clarifies the idea; sup-

pose that one has two preparation procedures that are distinguishable and with associated

probability distributions overlapping in a small region around λ0 ∈ Λ. When the ontic

state falls within the overlapping region, one could never distinguish between the two

preparations since they both assign nonzero values to the same ontic state. Hence the

distributions must satisfy the criteria (3.1); otherwise, the procedures could not be dis-

tinguishable.

5And references therein for an account of MKC-models. See also (Hermens, 2010) for a comprehen-
sive discussion on the topic of nullifying the Kochen-Specker theorem. The original articles to propose
noncontextual models for quantum theory, from arguments based on the finite precision loophole, were
(Meyer, 1999) and (Clifton and Kent, 2000).
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λ0

µP (λ) µP ′(λ)1

Λ

µ

Figure 3.1: Overlapping probability distributions over ontic space Λ. If the ontic state
is in the overlapping region a single-shot measurement could not distinguish between the
two preparations. Here we abuse notation and denote the probability densities over Λ = R
with the same symbol as the probability measures.

This discussion is related with the ψ-ontic/ψ-epistemic debate over the reality of

the quantum states ψ. We say that an ontological model for quantum theory is ψ-ontic

whenever any two different pure quantum states P1 → ρ1, P2 → ρ2, ρ1 6= ρ2, are also

ontologically distinct. As stated in (Leifer, 2014), this definition captures the idea from

figure 3.1, where distinct pure states have non-overlaping probability measures. Here, we

suppose that definition 3.1 is always valid for noncontextual ontological models.

Definition 17 (Convex implies convex). A convex combination of procedures (prepa-

rations or measurements) is represented within an ontological model by the associated

convex combination of probability distributions. ♦

Such aspect is of direct importance given the formalism we introduced in chapter

2 where preparations P[s|S] correspond to source events [s|S] occurring with probability

p(s|S). In the ontological model this should correspond to p(s|S)µ[s|S](λ). This means

that:

1. We assume that the coarse-graining represented in the operational framework should

be represented equivalently in the ontological model description.

2. We allow probabilistic mixtures of procedures to define new procedures within M

and S , in the sense that the operational theory is convex, in the sense of definition

17.

In the class of operational mixtures we highlight coarse-grainings because of their

experimental relevance.

Definition 18 (Coarse-graining of measurements). Let M be the coarse graining of M̃ ,

represented by

[k|M ] =
∑
k̃

p(k|k̃)[k̃|M̃ ] (3.2)
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defined for all k, k̃ such that p(k|k̃) ∈ {0, 1} and
∑

k p(k|k̃) = 1. Each M constructed in

this way corresponds to a new procedure. We can represent this coarse-graining in the

operational framework as

∀[s|S], s ∈ VS, S ∈ S : p(k, s|M,S) =
∑
k̃

p(m|k̃)p(k̃, s|M̃, S) (3.3)

and in the ontological model as,

ξ[k|M ] =
∑
k̃

p(k|k̃)ξ[k̃|M̃ ]. (3.4)

♦

Notice how the convexity of operational quantities is translated into the onto-

logical prescription by means of such a coarse-graining notion. This is an assumption

consistent with quantum theory since the linearity present in the Born rule implies that

convex operations are represented by convex quantum prescriptions. But we note that

procedure M is not operationally equivalent with respect to independent measurement

events, M defines a new procedure in equation (3.2). We assume the two procedures are

then related at the operational level by equation (3.3), and equation (3.4) follows from

convexity at the ontological level. These definitions do not suppose operational equivalent

procedures, according to (Kunjwal, 2019).

Definition 19 (Coarse-graining of preparations6). Let Pj be the coarse-graining of {P̃j̃}j̃∈J ,

represented by

Pj =
∑
j̃

p(j|j̃)P̃j̃ (3.5)

such that for all j, j̃: p(j|j̃) ∈ {0, 1} and
∑

j p(j|j̃) = 1. Each Pj constructed in this way

constitutes a new procedure. We represent this in the operational framework as

∀[m|M ],m ∈ OM ,M ∈M , p(m|Pj,M) =
∑
j̃

p(j|j̃)p(m|Pj̃,M) (3.6)

and in the ontological model as

µPj =
∑
j̃

p(j|j̃)µPj̃ . (3.7)

♦
6Here we abandon the notation present in (Kunjwal, 2019) for clarity and for the following devel-

opments of the chapter. For a definition in terms of preparation events see equations (16) and (17) of
(Kunjwal, 2019).
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Hence, definition 17 implies the following: Given a preparation procedure P that

can be understood as the probabilistic mixture of {P1, P2} by means of

P = pP1 + (1− p)P2, p ∈ [0, 1]

with the interpretation that P corresponds to preparing P1 with probability p and P2

with probability 1 − p, we get that such preparation P is a new preparation, defined by

means of {P1, P2}, that can be represented in the ontological model framework as

µP = pµP1 + (1− p)µP2 , (3.8)

Definition 17 is of fundamental importance for the proof of contextuality and for

experimental tests related to it. Actually, such a construction is not only fundamental for

the notion of Spekkens contextuality but also, an ontological model that respect coarse-

graining relations is also fundamental for the notion of KS-noncontextuality (Kunjwal,

2019, Appendix B, pg. 37).

Non-convexity at the ontological model implies failure of KS-contextuality

Consider the following criticism, (Hermens, 2011): Suppose we translate (3.8)

into preparations of quantum states, and we prepare state ρ using {p, 1 − p}. Hence

ρ = pρ1 + (1 − p)ρ2, but, is ρ operationally equivalent to pρ1 + (1 − p)ρ2? If we cannot

control the random bit {p, 1− p}, there can be no measurement capable of distinguishing

between these two, but, if we have control, the situation is not the same; in other words,

if the experimenter has control over the bit, he could check the value of the random

variable, therefore distinguishing between these two preparations. Notice that this is

not a criticism towards convex operational theories, like general GPT’s, but towards the

ontological identification of such convexity.

We could understand this as a criticism of the notion of generalized contextuality.

Supposing that we do not have control over the bit {p, 1−p} would imply a contradiction,

as we see above. On the other hand, suppose that we do have control over the bit, meaning

that we knew that there is a weighted coin inside the preparation box of figure 2.3. Once

we open the box, we could distinguish between the procedures, and therefore we would

not have contextuality. Although we do not consider this debate finished, we present two

different appealing responses.

In (Leifer, 2014, section 5.3, pg. 91-92), the author considers reasonable such a

definition as 17 because the randomness present in the variable {p, 1−p} can be indepen-

dent of the system under investigation, so that the ontic states would not need to have

any dependence with the bit. Another appealing response is the one presented by Ravi

Kunjwal in terms of the Kochen-Specker theorem.
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Theorem 1. (Kunjwal, 2019) If operational convexity does not imply ontological convex-

ity, in the terms of definitions 17, and 18, then, the Klyachko-Can-Biniciŏglu-Shumovsky

scenario7 assumes a KS-noncontextual ontological model.

Proof. We will follow the proof from (Kunjwal, 2019). Let M := {Mi}5
i=1, each measure-

ment procedure heaving three outcomes k ∈ {0, 1, 2} =: K.

Now, suppose that Mi, for each i ∈ {1, . . . , 5} = I5, corresponds to a coarse-

graining of measurement procedures M ′
i and M ′′

i , and

[0′|M ′
i ] ≡ [0|Mi], (3.9)

[1′|M ′
i ] ≡ [1|Mi] + [2|Mi], (3.10)

[0′′|M ′′
i ] ≡ [2|Mi], (3.11)

[1′′|M ′′
i ] ≡ [0|Mi] + [1|Mi]. (3.12)

Each binary-outcome measurement procedure M ′
i ,M

′′
i constitutes, in itself, new proce-

dures8. These coarse-graining operations can be understood, operationally, as that for

any preparation procedure P ∈ P, the following set of equations is true,

p(0′|M ′
i , P ) ≡ p(0|Mi, P ), (3.13)

p(1′|M ′
i , P ) ≡ p(1|Mi, P ) + p(2|Mi, P ), (3.14)

p(0′′|M ′′
i , P ) ≡ p(2|Mi, P ), (3.15)

p(1′′|M ′′
i , P ) ≡ p(0|Mi, P ) + p(1|Mi, P ). (3.16)

And, as an assumption given by the theorem, we do not impose that these relations are

respected for the ontological model constructions, i.e., for the functions ξ[·|Mi](λ), given

λ ∈ Λ. The operational equivalences for the scenario KCBS are, [0′′|M ′′
i ] ≡ [0′|M ′

i+51]

for all i ∈ I5, with +5 addition module 5. A Kochen-Specker noncontextual ontological

model requires that we have,

χ[0′′|M ′′i ](λ) = χ[0′|M ′i+51
](λ),∀λ ∈ Λ. (3.17)

Where we use represent the functions ξ ≡ χ since for KS-models we have outcome de-

terminism as an ontological requirement. An ontological model for the KCBS scenario

must therefore specify the response functions associated with the measurement events in

question.

7This is the experimental scenario described first in (Klyachko et al., 2008). See also (Cabello et al.,
2014) for a description in terms of the graph approach to Kochen-Specker contextuality. The KCBS sce-
nario is associated with the 5-cycle graph, and represents an example of existence of quantum correlations
that violate KS-noncontextuality inequalities.

8See definitions 3.2.
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Since there are no constraints from coarse-graining relations that must be re-

spected by the functions χ we can assign arbitrary functions for {M ′
i ,M

′′
i }i∈I5 , in such a

way that these functions will respect only the KS-noncontextuality condition,

∀λ ∈ Λ, χ[0′′|M ′′i ](λ) = χ[0′|M ′i+51
](λ). (3.18)

Remember that for Kochen-Specker, the functions χ are idempotent. We can,

therefore, construct an ontological model that is KS-noncontextual for the KCBS scenario,

given that the functions χ do not respect the same coarse-graining relations of their

associated operational events. �

We think that this theorem is an interesting response to the criticism mentioned

above, regarding definition 17. This is so because, supposing that we do not have convexity

at the ontological level, many results that are already known from KS-noncontextuality

would not be valid.

As it is demonstrated in (Morris, 2009), convexity for ontological models is not

a fundamental restriction that a model should satisfy to represent a physically relevant

theory. In (Morris, 2009, Section 2.4.3, pg. 39) the author constructs a non-convex onto-

logical model for 2-level quantum system. Therefore, non-convex models are allowed by

the definition of ontological models we give in chapter 2. The issue is that constructing

a non-convex ontological model for a convex operational theory imply strange physical

interpretations. Given his non-convex model, the author writes, after some early consid-

erations, the following problematic feature of a non-convex model:

“(...), a non-convex model could potentially imply a dependence of the ontic

state on whether or not a preparation takes place within a probabilistic en-

semble of preparations or not. This does not seem like a desirable property

for an ontological model.” (Morris, 2009, pg. 40)

We can argue that, convex ontological models are a necessary condition for the

notion of generalized noncontextuality to hold. Without this feature one can construct

noncontextual ontological models for quantum theory, but also heaving to deal with prob-

lems surrounding the interpretation concerning such non-convex ontological models. An

argument linking convexity at the ontological level with experimental verification’s is still

lacking in the literature. In other words, there is still the need that an experimental

verification of quantum contextuality is such that no non-convex ontological model could

reproduce the gathered statistics.

Preparation contextuality for quantum theory

The most fundamental no-go theorems for our work are the fact that quantum

theory is both preparation and measurement contextual.
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Theorem 2. (Spekkens, 2005) The maximally mixed state of a qubit is preparation-

contextual.

Interestingly, one can obtain such a notion of preparation contextuality in more

general situations. A stronger result that was later shown makes the preparation contex-

tuality (and as a whole, the ontological models’ framework) a much more useful concept.

The fact that any mixed state of a qubit, and not only the maximally mixed one, has

generalized contextuality.

Theorem 3. (Banik et al., 2014) Any mixed state of a qubit is preparation contextual.

Hence, employing these last theorems, we have that quantum theory for finite-

dimensional Hilbert spaces has an experimentally testable preparation contextual struc-

ture - and this is the most crucial aspect for the construction of resource framework for

generalized noncontextuality with applications in quantum information processes - apart

from theoretical loopholes such as the the finite precision and the tomography loopholes.

Up to our knowledge, another significant result in the field is still lacking: a more

general proof of quantum contextuality considering arbitrary separable Hilbert spaces.

Measurement contextuality for quantum theory

Since we already have a notion of measurement contextuality from (Kochen and

Specker, 1975), the contribution of generalized contextuality is to obtain a no-go result

for unsharp measurements. We have the ’unsharpness’ in the proof provided by POVMs.

In fact, we see in the proof of measurement contextuality for quantum theory how ab-

stract, i.e., including a relatively wide range of possible generalized contexts, the notion

of generalized contextuality is when we consider contexts such as:

“(...) the equivalence class of measurement procedures that contains M9 also

contains the “measurement” procedure M̃ that completely ignores the system

and just flips a fair coin to determine the outcome.” (Spekkens, 2005, pg. 9)

Where M̃ completely ignores the system, be it quantum or classical, and it still

represents a Spekkens-context. Therefore we see how vast is the notion of a generalized

context. We will not focus on these details in this work, but arguably a fundamental

question is whether such a notion for context is too broad. The essential result is the

following:

Theorem 4. (Spekkens, 2005) Quantum theory is contextual for unsharp measurements.

In the proof, we have outcome determinism for sharp measurements but outcome

indeterminism associated with a generalized quantum measurement: a POVM M . The

full proof is given in appendix B.

9For the definition of the measurement M that Spekkens is mentioning here see the appendix B
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Definition 20. (Morris, 2009) An ontological model respects outcome determinism when

the functions ξ[·|Mi](λ) : OM → [0, 1] associated with the measurements Mi are idempotent:

ξ2
[k|Mi]

= ξ[k|Mi]. For idempotent effects we will often write ξ as χ. ♦

Outcome determinism is so relevant for this discussion that we formulate it as an

assumption.

Assumption 3. Any ontological model for quantum theory has to satisfy outcome de-

terminism for sharp measurements.

One could criticize the proof of theorem 4 from two aspects (Spekkens, 2005):

1. Both sharp and unsharp measurements should respect outcome-determinism or,

2. that both, sharp and unsharp measurements, can be outcome indeterministic.

Outcome-determinism for unsharp measurements is inconsistent with assuming

(generalized) measurement noncontextuality. By considering M = {1/2, 1/2} and gener-

alized noncontextuality this imply that M must be represented in an ontological model

by {1/2, 1/2} which are not idempotent indicator functions, thus cannot be outcome-

deterministic (Spekkens, 2005, pg. 12). That is the response given by Spekkens to the

first criticism. Now the second one comes in the form of a theorem:

Theorem 5. (Spekkens, 2005) Preparation noncontextuality implies outcome-determinism

for sharp measurements in quantum theory.

Proof. We will follow both (Schmid and Spekkens, 2018) and (Lostaglio and Senno, 2020).

Let M correspond to a sharp measurement procedure, which using quantum theory we

refer to as a set of projective measurements M := {Ek}k∈K ≡ {|k〉 〈k|}k∈K . Suppose

that we have a corresponding basis of pure states Pj := ρj ≡ |j〉 〈j|, for j ∈ J = K. We

have therefore that the probabilities p(k|M,Pj) = Tr (Ekρj) = δkj, with δkj the Kronecker

delta. We denote these two objects with different notations because they are represented

differently at the ontological models level.

Let (Λ,Σ) be the ontic space. To each ρj we associate µj over Λ, and to M we

associate the object ξ[·|M ](λ), for all λ ∈ Λ, as we have seen. Therefore we have that,∫
Λ

ξ[k|M ](λ)dµj(λ) = δkj.

It follows then that,

ξ[k|M ](λ) =

{
1, λ ∈ supp(µk)

0, λ ∈ supp(µj 6=k)
(3.19)
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where this is true almost everywhere in the supports.10 Every ρj appears in some decom-

position of the maximally mixed state 1
d
1, where d is the dimension of the Hilbert space

ρ ∈ B(H ) 'H B(Cd), with 'H here meaning Hilbert space isomorphic. In a prepa-

ration noncontextual ontological model, every such decomposition is associated with the

same measure µ 1
d

1 over the ontic states. We conclude that, for all λ ∈ supp(µj) the same

ontic state also satisfy λ ∈ supp(µ 1
d

1). Since {ρj}j∈J is a basis, we get that

1

d

∑
j∈J

ρj =
1

d
1. (3.20)

Preparation noncontextuality implies that,

1

d

∑
j∈J

µj = µ 1
d

1. (3.21)

And we might conclude that,

Λ = supp
(
µ 1
d

1

)
= supp

(
1

d

∑
j∈J

µj

)
=
⋃
j∈J

supp(µj). (3.22)

We can then write the (measurable) function ξk|M as,

ξ[k|M ](λ) =

{
1, λ ∈ supp(µk)

0, otherwise
(3.23)

Concluding that this function is now defined for all λ ∈ Λ, and that ξ2
[k|M ] = ξ[k|M ],

concluding that we have outcome determinism for the ontological model. �

Notice that in some sense, one should recover measurement contextuality in the

Kochen-Specker perspective if one re-write the Kochen-Specker theorem in the ontological

models’ framework and assumes outcome determinism of measurements. A demonstration

of the KS theorem in the ontological models’ framework can found in (Leifer, 2014),

(Kunjwal, 2016).

Transformation noncontextuality

Even though we are working with prepare-and-measure scenarios, there are no-go

theorems applied to quantum transformations in the generalized formalism:

Theorem 6. (Spekkens, 2005) Quantum theory is contextual with respect to transforma-

tion procedures.

10This means, for example, that ξk|M (λ) = 1 almost everywhere on supp(µk), in the sense that this is
true disregarding sets of measure zero.
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We avoid explicit remarks about transformation procedures in the experimental

scenarios because we assume a quantum result: The equivalence between Schrödinger

and Heisenberg pictures. This means that one can treat either a preparation followed by

a transformation P + T → P̃ as a new preparation, or a transformation followed by a

measurement T +M → M̃ as a new measurement. This is possible because the quantum

probabilities do not change by changing the pictures: suppose we consider a state prepared

in ρ ∈ B(H ) for some Hilbert space H . Then the map T∗ : B(H ) → B(H ) is the

quantum channel, consisting of a completely positive trace-preserving map; we can think

of T∗(ρ) ∈ B(H ) as the effective preparation, considering the system as viewed in the

Schrödinger picture. On the other hand, T : B(H ) → B(H ) can be viewed as a

quantum channel acting on the POVM’s, so that for every Ek of some POVM, the map

T (Ek) ∈ B(H ) can be considered as a new POVM element, since T (Ek) is positive-

definite for all k and ∑
k

T (Ek) = T

(∑
k

Ek

)
= T (1) = 1,

where we required T to be unital11. This is known as the Heisenberg picture. We then

just make the following consideration about the maps discussed from the pictures above:

T = (T∗)
∗ 12. This means that the maps in the Schrödinger and Heisenberg pictures are

the adjoint with respect to each other and, since T is the adjoint of a CPTP map, we

have that T must be unital. And also, we get that

p(k|P, T (M)) = Tr(ρT (Ek)) = 〈ρ, T (Ek)〉HS = 〈T∗(ρ), Ek〉HS = Tr(T∗(ρ)Ek)

where the last term is just p(k|T∗(P ),M) and hence both pictures yield the same statistics

in the quantum formalism13. Note that there are two very important remarks to make

here. The first is that the noncontextual polytope can differ for the different pictures, since

the equivalences in a prepare-and-measure scenario might change, for different choices of

P + T → T∗(P ) or T +M → T (M). Hence, if one constructs the operational description

of a prepare-and-measure scenario, it is crucial not to change the pictures in later calcu-

lations/manipulations of the behaviors. Second is that such a description is firmly based

upon quantum theory. Hence, for applications of generalized noncontextuality outside

quantum theory, this consideration might also lead to errors in the analysis.

We conclude by noting that there are in the literature discussions of general-

ized noncontextuality beyond the prepare-and-measure scenarios, e.g., (Mansfield and

11Such a request covers a lot of quantum transformations such as unitary transformations and deco-
herence processes (Binder et al., 2018).

12See (Werner, 2019) or (Keyl and Werner, 2016). Here we consider T ∗ as the adjoint with respect to
the Hilbert-Schmidt inner product. The space (B(H ), ‖ · ‖HS) is a Hilbert space.

13We assume that p(k|P, T,M) = p(k|T∗(P ),M) = p(k|P, T (M)) given that T is known a priori. We
need to be extra careful here, since this is not necessary when dealing with a more general operational
framework without having quantum theory in mind.
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Kashefi, 2018). In some cases, there are quite incredible results that arise from consid-

ering transformations and noncontextuality from it (Lostaglio, 2020). In other works, it

seems that the notion of transformation noncontextuality is a notion too weak, making

quantum theory contextual even for scenarios that were understood to be noncontextual

for Kochen-Specker (Lillystone et al., 2019). This might suggest that for a notion of clas-

sicality, generalized noncontextuality is general and well suited for quantum theory but

maybe too broad for some specific questions, such as being the fundamental resource for

powering the speed-up of quantum computations.

3.2 Noncontextual measurement-assignment polytope

Knowing that noncontextual ontological models cannot describe quantum theory,

we look now to develop noncontextuality inequalities that provide tools for experimental

verification of this fact. We follow (Schmid et al., 2018), in order to present a method

that obtains all the noncontextuality inequalities that define the universal noncontextual

polytope for a prepare-and-measure scenario. The results of (Schmid et al., 2018) are of

profound importance, since for any scenario, the full set of noncontextuality inequalities

is provided. Obtaining the full set of noncontextuality inequalities for different notions,

such as the Kochen-Specker notion, is known to be an extremely difficult task, and only

classes of scenarios have a complete characterization of the noncontextual polytope in

KS-contextuality. 14.

Remember that a behavior B can be understood as a vector ~B ∈ Rn with compo-

nents given by the resulting statistics p(k|Pj,Mi), as stated in (2.23). Following (Schmid

et al., 2018) we will ignore the source structure present in definition 8 so that we can

write just a simplified description of prepare-and-measure scenarios:

B := (P,M,OM ,EP ,EM) , (3.24)

so that given a scenario, defined by (3.24), the goal is to find all the inequalities that must

be satisfied by a behavior ~B that has a noncontextual ontological model. Hence, our goal

is to find a set of inequalities of size |H| such that for all ~B that can be described by an

universally noncontextual ontological model, its statistics must obey∑
k,i,j

γhk,i,jp(k|Mi, Pj) + γho ≥ 0 (3.25)

for all h ∈ H. If such a thing happens we shall say that ~B ∈ NC(B), where NC(B) is

14But of course, there are general results of similar relevance such as the Lovász bound for the com-
patibility graph approach (Amaral and Terra Cunha, 2018). The Kochen-Specker scenarios that can be
described by a cycle graph have a full description in terms of tight noncontextuality inequalities.
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the noncontextual polytope, i.e, the set of all behaviors that satisfy (3.25). The set of all

possible behaviors ~B in the scenario B, that we will call C(B), also forms a polytope since

every behavior must respect (2.24) and the equations that follow from the operational

equivalences EP ,EM .

~B ∈ C(B) :⇐⇒


p(k|Mi, Pj) ≥ 0, ∀k, i, j∑
k p(k|Mi, Pj) = 1, ∀i, j

+Operational equivalences

(3.26)

We have then, by construction, that

NC(B) ⊂ C(B), (3.27)

and we will later use the convex structure of these polytopes to develop tools for treating

noncontextuality as a resource.

The first step towards (3.25) is to define the linear characterization of the non-

contextual measurement-assignment polytope. If we restrict the attention just to the op-

erational description of measurements we note that any noncontextual ontological model

representing the statistics, as we defined in chapter 2, must have the functions ξ[k|Mi]

satisfying the equations

∀k, i : ξ[k|Mi](λ) ≥ 0, (3.28)

∀i :
∑
k

ξ[k|Mi](λ) = 1, (3.29)

∀b :
∑
k,i

(αb[k|Mi]
− βb[k|Mi]

)ξ[k|Mi](λ) = 0 (3.30)

for any ontic state λ ∈ Λ fixed. Hence, for every fixed ontic state we have that equations

(3.28)-(3.30) define a polytope for the linear characterization

~ξ(λ) =
(
ξ[1|M1](λ), ξ[2|M1](λ), . . . , ξ[d|M1](λ), ξ[1|M2](λ), . . . , ξ[d|M|M|](λ)

)
, (3.31)

where just for now we set

d := |OM |.

Given such a description, the next step is to solve the vertex enumeration problem for

that polytope. We use the command traf from PORTA for such an operation. As a

step-by-step construction, we will consider two case studies for such a vertex enumeration

task: the scenario from (2.21) and the scenario for the fair-coin-flip, which is a scenario

with a non-trivial measurement assignment polytope. For the fair-coin-flip scenario we

have M = {M1,M2,M3}, P = {P1, . . . , P6}, OM = {0, 1} and the following operational
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equivalences for the preparation procedures:

1

2
P1 +

1

2
P2 '

1

2
P3 +

1

2
P4 =⇒

(
1

2
,
1

2
, 0, 0, 0, 0; 0, 0,

1

2
,
1

2
, 0, 0

)
∈ EP (3.32)

1

2
P1 +

1

2
P2 '

1

2
P5 +

1

2
P6 =⇒

(
1

2
,
1

2
, 0, 0, 0, 0; 0, 0, 0, 0,

1

2
,
1

2

)
∈ EP (3.33)

1

2
P3 +

1

2
P4 '

1

2
P5 +

1

2
P6 =⇒

(
0, 0,

1

2
,
1

2
, 0, 0; 0, 0, 0, 0,

1

2
,
1

2

)
∈ EP (3.34)

And for the measurement events we have the following equivalences,

1

3
[0|M1] +

1

3
[0|M2] +

1

3
[0|M3] ' 1

3
[1|M1] +

1

3
[1|M2] +

1

3
[1|M3],

equivalent to the following element in EM(
1

3
, 0,

1

3
, 0,

1

3
, 0; 0,

1

3
, 0,

1

3
, 0,

1

3

)
∈ EM . (3.35)

We denote such a scenario as Bfcf . Note that for the simplest scenario, we have that the

vertices are just the deterministic assignments with 0’s and 1’s, but for the fair-coin-flip

scenario, we have that there are indeterministic assignments for the vertices, as we can

see from the results of (C.1)-(C.11). The numerical evaluation of the vertices is presented

in detail in appendix C.

3.3 Prepare-and-measure noncontextuality inequali-

ties

Once we were able to find the full set of vertices of the measurement-assignment

polytope, it is now important that we describe every point in this polytope as a convex

mixture of the vertices. This is possible since NC(B) is a convex polytope. We define the

measurement assignments of the vertices by the vectors ξ̃(κ), where κ is the label for the

vertices. The definition goes as:

ξ̃(κ) :=
(
ξ̃[1|M1](κ), . . . , ξ̃[d|M1](κ), . . . , ξ̃[d|M|M|](κ)

)
(3.36)
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For example, in Bsi one of the vertices is κ1, given by (C.1), which implies that

ξ̃(κ1) =
(
ξ̃[0|M1](κ1), ξ̃[1|M1](κ1), ξ̃[0|M2](κ1), ξ̃[1|M2](κ1)

)
= (1, 0, 0, 1).

We write then that, for any ~ξ(λ), there exists a convex mixture of the vectors ξ̃(κ),

summed over all vertices κ, such that

∀k, i : ξ[k|Mi](λ) =
∑
κ

w(κ|λ)ξ̃[k|Mi](κ) (3.37)

where w(κ|λ) are convex weights. Considering that we can re-write, for every (fixed) ontic

state λ the effects via the vertices of the noncontextual measurement-assignment polytope,

we can write the ontological description of the operational probabilities p(k|Mi, Pj) as,

p(k|Mi, Pj) =

∫
Λ

ξ[k|Mi](λ)dµPj(λ) =

∫
Λ

[∑
κ

w(κ|λ)ξ̃[k|Mi](κ)

]
dµPj(λ) (3.38)

=
∑
κ

ξ̃[k|Mi](κ)

[∫
Λ

w(κ|λ)dµPj(λ)

]
︸ ︷︷ ︸

=: νPj (κ)

=
∑
κ

ξ̃[k|Mi](κ)νPj(κ) (3.39)

For every vertex κ we note that νPj(κ) ≥ 0, and if we sum over κ we get

∑
k

νPj(κ) =

∫
Λ

∑
κ

w(κ|λ)dµPj(λ) =

∫
Λ

dµPj(λ) = 1.

Hence we have that νPj is a probability distribution over the vertices. For the noncon-

textuality assumption over the operational equivalences of (2.12), we have that when µPj
satisfy the operational equivalences for preparation procedures, this implies that νPj also

respects them: For any κ,

∑
j

(αaj − βaj )µPj = 0 =⇒
∫

Λ

∑
j

(αaj − βaj )w(κ|λ)dµPj(λ) = 0

and hence νPj(κ) satisfy the operational equivalences as well, for all vertices κ15. The

above calculations can be summarized in a lemma.

Lemma 1. (Schmid et al., 2018) If any noncontextual ontological model over Λ exists for

a scenario B, there must also exist a noncontextual model with an ontic state space Λ′ :=⋃
κ{κ} of finite cardinality. The latter model is constructed by identifying every ontic

state λ with each extremal noncontextual measurement assignment, and then imagining

15For the purposes we have in mind, it suffices to consider µPj as a probability density. The RHS of
this implication is then an equation valid for all values λ for the function µPj

and we suppose we can
write dµPj

= µPj
(λ)dλ. Then the LHS holds.
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every preparation as a probability distribution over those ontic states, as νPj(κ).

We have then the final formulation of a universally noncontextual model over the

set Λ′. A data-table B := {p(k|Mi, Pj)}k,i,j has a universally noncontextual ontological

model if, and only if, there are {νPj(κ)}j,k such that,

∀k, j : νPj(κ) ≥ 0, (3.40)

∀j :
∑
κ

νPj(κ) = 1, (3.41)

∀κ, a :
∑
j

(αaj − βaj )νPj(κ) = 0, (3.42)

∀k, i, j :
∑
κ

ξ̃[k|Mi](κ)νPj(κ) = p(k|Mi, Pj) (3.43)

were κ ranges over the vertices and the ξ̃[k|Mi](κ) are the known measurement assignments

over the vertices. Since the only unknown quantities from the equations (3.40)-(3.43)

are the probabilities {νPj(κ)}, the final step towards the formulation (3.25) is to use

Fourier-Motzkin elimination over {νPj(κ)}j,k so that we finally have linear inequalities of

the form (3.25) over the statistics of the data-table. Hence the theoretical formulation is

now complete and the method is settled since the equations (3.40)-(3.43) are necessary

and sufficient conditions for generalized noncontextuality with respect to any prepare-

and-measure scenario.

In appendix C.2 we provide the full construction of the tight noncontextuality

inequalities present in (Schmid et al., 2018) for the simplest scenario Bsi, see for instance

equations (C.14)-(C.22).

Note that the amount of inequalities grows extremely fast with the dimensionality

of the scenario, and in some sense, it very easily enters the realm of being not useful

anymore to derive the full set inequalities. Already for the scenario Bfcf we find 1596

inequalities. In appendix D, we discuss how to use linear programming techniques to

overcome such practical difficulty, again following (Schmid et al., 2018).

We conclude this chapter with the following lemma:

Lemma 2. (Pusey, 2018) The scenario Bsi is indeed the simplest scenario that has non-

trivial operational equivalences that presents contextual behaviors.

Proof. Let us suppose any scenario with less operational structure then the scenario

Bsi. For instance, consider a scenario that has only one measurement procedure. Then,

there always exists a noncontextual ontological model for the behaviors in this scenario

by letting the ontic states encode the outcomes.

ξ[k|M ](λ) = δkλ (3.44)
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If we let µPj(λ) := p(k|M,Pj) = p(λ|M,Pj) then we obtain that

p(k|M,Pj) =
∑
λ

ξ[k|M ](λ)µPj(λ)

and any operational equivalences in the preparation procedures will be satisfied by µPj(λ).

For two binary measurement procedures the operational probabilities for each

preparation procedure Pj is defined by

~Pj := (p(0|M0, Pj)− p(1|M0, Pj), p(0|M1, Pj)− p(1|M1, Pj)),

where j ∈ J labels all procedures. If J = {1, 2, 3} or less, the convex hull of these two-

dimensional vectors form a simplex. Every point in a simplex has one, and only one

decomposition in terms of the vertices. Therefore, we can consider every ontic state λ as

encoding the vertices in these convex hull, that we denote ~λ, and the epistemic states as

the unique decomposition of the behaviors in the simplex,

~Pj =
∑
λ

µPj(λ)~λ.

For the effects ξ[k|M ](λ) we define such that the following equality holds,

~λ = (ξ[0|M0](λ)− ξ[1|M0](λ), ξ[0|M1](λ)− ξ[1|M1](λ)).

Such a model reproduces the operational probabilities and the operational equivalences

for preparation procedures are satisfied, since they imply∑
j

αjµPj(λ)~λ =
∑
j

βjµPj(λ)~λ

and the uniqueness of decomposition implies
∑

j(αj − βj)µPj(λ) = 0. We then conclude

that Bsi is indeed the simplest scenario with contextuality. �
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4
Resource Theory for Generalized

Contextuality

What we are really looking for is a better understanding of the connections

between information processing and physical principles in general.

- (Barrett, 2007, Jonathan, pg. 1)

As is natural to every quantum process with no direct classical analog, an exciting

question for technological developments is: How can we use these effects? We have

mentioned before, a possible approach to formally address this question is the so-called

resource theory framework, where we choose an effect and build a formalism to understand

how to use the chosen effect as a resource. The word use from our question usually is

only limited by the amount of creativity in the development of the resource framework,

or the no-go theorems one can prove therein.

We will see that the intuition behind using the resource will be made precise.

But the idea is clear: some processes can only take place if the resource is present. Here,

resource is truly anything that fits a mathematical description, having in mind that we

would like to understand if it is possible to find processes where the resource is essential.

Take the example of a car moving. This is a process that can only happen given that

some resource exists: fuel. We want to show, using this formalism, that in a very similar

way, some quantum information protocols have their success provided by a specific fuel:

generalized contextuality.

In this chapter we will introduce our framework and prove the fundamental as-

pects that a resource theory should respect, in section 4.1. We then proceed to define the

resource monotones in section 4.2, that shall quantify the resource. We then describe a

new formalism to witness generalized contextuality in section 4.3, that is associated with

quantum simulation and pre/post selection boxes. We will learn that this formalism is

consistent with claims of experimental verification of quantum contextuality in the liter-

ature. We will also argue that the contextuality monotones might be useful to impose

bounds of noise in experimental implementation of contextuality scenarios. We will finish
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the chapter by describing a new resource theory map in section 4.4 that will be useful in

chapter 5.

4.1 Resource Theory framework

The most general structure adapted to our study of the resource theory framework

is the following:

Definition 21. A resource theory is defined by a quadruple (C ,N C ,⊗,F ): A set C of

objects, a set of free objects N C , a binary operation ⊗ between the objects C(B), a set

F of free operations acting on the objects. ♦

Throughout this chapter we will mainly consider the discussions present in (Duarte

and Amaral, 2018). For a mathematical description of general resource theories from the

point of view of category theory see (Coecke et al., 2016). For a description of a general

framework of convertibility relations between resources see (Fritz, 2015). For a study of

quantum affine resource theories see (Gour, 2017).

As the notation of definition 21 suggests, we construct a resource theory for

generalized contextuality where, given any prepare-and-measure scenario B, the objects

are the behaviors from C(B). The free objects will be the behaviors in the noncontextual

polytope associated with B. We chose elements in NC(B) to be the free objects of our

resource theory because they can be interpreted as the objects that have no resource.

There are noncontextual ontological models that reproduce the statistics of elements in

NC(B), by definition.

We will consider two different binary operations. The first one we define here,

and for the second one we will devote a later section.

Definition 22. Given two behaviors B1 ∈ C(B1) and B2 ∈ C(B2), the juxtaposition of B1

and B2, is the behavior obtained by independently choosing preparation and measurement

procedures for B1 and B2. That is, the preparations in B1 ⊗ B2 correspond to a pair of

preparations (Pj1 , Pj2), j1 ∈ J1,j2 ∈ J2 and analogously for measurement procedures. The

data-table corresponding to the behavior B1 ⊗B2 is then given by the probabilities:

B1 ⊗B2 = {p ((k1, k2)|(Mi1 ,Mi2), (Pj1 , Pj2))} = {p(k1|Mi1 , Pj1)p(k2|Mi2 , Pj2)}.

Where we are considering the set of labels associated with the respective scenarios I1,I2,

for measurement procedures, K1,K2, for outcomes, and J1,J2, for preparation procedures,

as described before. ♦

By far, the most critical definition to be made within a resource theory framework

is one of the free operations over the objects. These free operations induce order into the
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set of objects. In essence, the way one defines such ordering, or equivalently, the free

operations over the objects, will objectively influence how useful a resource theory might

be. Our proposal for free operations will use the following maps.

Definition 23. A stochastic map from the left q : I → Ĩ between two finite set of indices

is a map that satisfies the two constraints:∑
i∈I

q(̃i|i) = 1 (4.1)

q(̃i|i) ≥ 0, (4.2)

∀ĩ ∈ Ĩ, i.e., the rows of q sum to one. Similarly, a stochastic map from the right is defined

in the same way but switching i with ĩ in the matrices q(̃i|i) to q(i|̃i), i.e., the columns

sum to one. These free operations are defined with respect to the following stochastic

matrices: ♦

The interpretation is that a stochastic matrix Q can be understood as a (stochas-

tic) dynamics over some matrix A. Consider that we have A→ B in some Markov chain.

Then for a left stochastic map we have B = QA where B is the final state, and the

columns add to one, and for a right stochastic map we have B = AQ, where the rows

add to one. With this definition, we consider relevant the following definition for free

operations,

Definition 24. Given a scenario B we define the set of free operations F as the set of

maps f : C(B)→ C(f(B)) such that

f : {p(k|Mi, Pj)}k∈K,i∈I,j∈J 7→

{∑
i,j,k

qiO(k̃|k)p(k|Mi, Pj)qM(i|̃i)qP (j|j̃)

}
k̃∈K̃,̃i∈Ĩ,j̃∈J̃

, (4.3)

where qiO : K → K̃, qM : Ĩ → I, qP : J̃ → J are stochastic maps between index sets

corresponding to operational primitives in the different scenarios defined by B and f(B).

♦
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P

P P P P

M
-1 1

M1 M2 M3

M1̃ M3̃

Figure 4.1: Example of a free operation: pre-processing box for the measurement proce-
dures in an experimental scenario.

Suppose that we have the following: the experimental scenario with the primary

primitives in figure 4.1 is composed of the boxes, P and M. The measurement box M

has three measurement procedures M1,M2 and M3. As an example, we can consider a

free operation acting on the measurement procedures (pre-processing) as follows: for all

outcomes of M1̃, we activate the measurement M1; the same for M3̃. We then conclude

that effectively, the procedure M3 is never performed, so that the effective scenario under

consideration has only to measurement procedures: {M1̃,M3̃}. This corresponds to a free

operation f between two different scenarios, where f(B) is the scenario with only two

procedures.

Example 9 (Coarse-grainings are free-operations). Under this description, coarse-grainings

can be understood as free operations. Let M̃ be a measurement procedure, with mea-

surement events [k̃|M̃ ], k̃ ∈ OM̃ . Then, we define the events [k̃|M̃ ] as a coarse-graining of

other events [k|M ] as in equation (3.2),

[k̃|M̃ ] =
∑
k

p(k̃|k)[k|M ],

which can be understood as post-processing the outcomes of M̃ (Kunjwal, 2019),

p(k̃|M̃, P ) =
∑
k

p(k̃|k)p(k|M, P̃ ).

For all procedures P . Therefore, in general we might let qiO(k̃|k) = p(k̃|k), for each

measurement procedure i ∈ I in the scenario, and the other matrices qM , qP to be the

identity. 4

Example 10 (Convex combinations are free operations). Let P := {Pj}j∈J be a set of

preparation procedures, and we suppose that we produce secondary procedures by convex
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combinations of all elements from P, such as in (Mazurek et al., 2016, Table III, pg. 16),

Pj̃ =
∑
j

p(j|j̃)Pj,

where p(j|j̃) is the probability of implementing Pj given that the secondary procedure is

Pj̃. As we can infer from the definition of a free operation, at the level of behaviors this

relation reads

p(k|M,Pj̃) =
∑
j

p(j|j̃)p(k|M,Pj),

for all [k|M ]. We let qP (j|j̃) = p(j|j̃) and, in the case of convex combinations of the

procedures, the procedures j̃ ∈ J̃ satisfy that |J | = |J̃ |. 4

It is important to stress that the scenarios B and f(B) are different, because the

transformations f will in general change the operational equivalences. We write Ef(P ) and

Ef(M) for the new operational equivalences, and also Of(M) the new outcomes. Since f(B)

is a new operational scenario, it is related with a new polytope C(f(B)). In fact we can

see by construction how the new operational equivalences should be uplifted in the new

scenarios.

Let EP with respect to B that can be written as, for a fixed element s,∑
j∈J

(αsj − βsj )Pj = 0,

by defining, for every j ∈ J , the vectors α̃s
j̃

and β̃s
j̃
,

αsj =
∑
j̃∈J̃

α̃s
j̃
qP (j|j̃) (4.4)

βsj =
∑
j̃∈J̃

β̃s
j̃
qP (j|j̃) (4.5)

we get ∑
j∈J

(αsj − βsj )Pj =
∑
j,j̃

(α̃s
j̃
− β̃s

j̃
)qP (j|j̃)Pj =

∑
j̃∈J̃

(α̃s
j̃
− β̃s

j̃
)Pj̃ = 0

where the new set of preparations are defined within to the new scenario f(B).

It is fundamental that a free operation does not create resource out of a resource-

less object. In our formalism, this means that a free operation must send noncontextual

behaviors in B to noncontextual behaviors f(B). We state such a result as a theorem:

Theorem 7. (Duarte and Amaral, 2018) Let B be any prepare-and-measure scenario.

Every free operation f ∈ F sends noncontextual behaviors in NC(B) to noncontextual

behaviors in NC(f(B)).

48



CHAPTER 4. RESOURCE THEORY FOR GENERALIZED CONTEXTUALITY

Proof. Let B ∈ NC(B). Hence, from definition 10 there exists an ontic space (Λ,Σ)

and a pair (Π,Θ), such that every function from Θ satisfies the operational equivalences

EM and every epistemic state from Π satisfies, similarly, EP , by definition of the linear

characterization of a noncontextual behavior.

For any behavior in f(B), we get, for all ĩ ∈ Ĩ , j̃ ∈ J̃ , k̃ ∈ K̃ as in the definition

24, that the following holds1,

p(k̃|Mĩ, Pj̃) =
∑
i,j,k

qjO(k̃|k)p(k|Mi, Pj)qM(i|̃i)qP (j|j̃) (4.6)

=
∑
i,j,k

qiO(k̃|k)

(∑
λ∈Λ

ξ[k|Mi](λ)µPj(λ)

)
qM(i|̃i)qP (j|j̃) (4.7)

=
∑
λ∈Λ

(∑
k,j

qiO(k̃|k)ξ[k|Mi](λ)qM(i|̃i)

)(∑
j

µPj(λ)qP (j|j̃)

)
(4.8)

=
∑
λ∈Λ

ξ[k̃|Mĩ]
(λ)µPj̃(λ), (4.9)

where we see that µPj̃ correspond to an epistemic state related to the new preparations

from f(B) that respects the new operational equivalences from (4.1). The same holds for

the new effects ξ[k̃|Mĩ]
, where they correspond to valid effects since

∑
k̃

ξ[k̃|Mĩ]
(λ) =

∑
k̃,k,i

qiO(k̃|k)ξ[k|Mi]qM(i|̃i) (4.10)

=
∑
k̃,i

(∑
k

qiO(k̃|k)ξ[k|Mi](λ)

)
︸ ︷︷ ︸

=:qλ(k̃|i)

qM(i|̃i) (4.11)

=
∑
k̃

(∑
i

qλ(k̃|i)qM(i|̃i)

)
︸ ︷︷ ︸

=:qλ(k̃|̃i)

=
∑
k̃

qλ(k̃|j̃) = 1. (4.12)

We proceed with obtaining Ef(P ), where we define the novel set of weights associated with

1The tildes refer to the transformed set of labels, under the transformation given by the stochastic
maps defined in the free operation.

49



CHAPTER 4. RESOURCE THEORY FOR GENERALIZED CONTEXTUALITY

the operational equivalences in the scenario f(B) by α̃[k̃|Mĩ]
and β̃[k̃|Mĩ]

with

αs[k|Mi]
=
∑
k̃,̃i

qiO(k̃, k)α̃[k̃|Mĩ]
qM(i|̃i) (4.13)

βs[k|Mi]
=
∑
k̃,̃i

qiO(k̃|k)β̃[k̃|Mĩ]
qM(i|̃i) (4.14)

so that for any s labeling the elements of the operational set EM we have

0 =
∑
k,i

(α[k|Mi] − β[k|Mi])[k|Mi] =
∑
k,i,k̃,̃i

(α̃[k̃|Mĩ]
− β̃[k̃|Mĩ]

)qiO(k̃|k)qM(i|̃i)[k|Mi] (4.15)

=
∑
k̃,̃i

(α̃[k̃|Mĩ]
− β̃[k̃|Mĩ]

)[k̃|Mĩ] =⇒ 0 =
∑
k̃,̃i

(α̃[k̃|Mĩ]
− β̃[k̃|Mĩ]

)ξ[k̃|Mĩ]
(λ),∀λ (4.16)

since ξ[k̃|Mĩ]
(λ) are the direct ontological descriptions for [k̃|Mĩ]. A very similar thing is

valid for the epistemic states. Then f(B) is in the noncontextual polytope NC(f(B)).

We conclude that any free operation f is such that

B ∈ NC(B) =⇒ f(B) ∈ NC(f(B)), (4.17)

as we wanted to show. �

As a corollary, we have the following lemma:

Lemma 3. Let F 3 f : B → f(B). If we consider contextual behaviors B ∈ C(B) \
NC(B), then,

f(B) ∈ C(f(B)) \NC(f(B)) =⇒ B ∈ C(B) \NC(B). (4.18)

Proof. This is not truly a lemma, but a different way of reading the definition of a free

operation defined by the resource theory. Suppose that f(B) ∈ C(f(B)) \ NC(f(B)).

If B was a noncontextual behavior, we would have that f(B) is also a noncontextual

behavior, since f is a free operation. Therefore, we conclude that B cannot be a point in

the noncontextual polytope NC(B). �

With this result we have constructed a resource theory for generalized contextu-

ality. Remember that the resource theory is defined by the quadruple (C ,N C ,⊗,F ).

We know the set of objects as the set of all behaviors in a given finitely defined prepare-

and-measure scenario,

C := {B ∈ C(B) : B is some prepare-and-measure scenario} (4.19)
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and free objects as,

N C := {B ∈ NC(B) : B is some prepare-and-measure scenario}. (4.20)

A relation (map) ⊗ that acts between the objects, and a set of free operations over

the allowed objects. Remember that all prepare-and-measure scenarios have their, possi-

bly different, operational characterizations in terms of the vectors γa(b), i.e., in terms of

the operational equivalences between convexly generated hypothetical procedures. With

this structure we have developed the background for producing reasonable questions of

the type: Is this operation free? Does this data-table has the resource? Have I lost re-

source by performing a specific transformation? There exists a noncontextual ontological

model for this data-table obtained by coarse-graining?

We also have that, by linearity of the map f and by convexity of the noncontextual

polytope, the lemma:

Lemma 4. For any f ∈ F we have that the following equality holds:

f(πB1 + (1− π)B2) = πf(B1) + (1− π)f(B2) (4.21)

for all B1, B2 ∈ C(B) and π ∈ [0, 1].

Proof. Let B1, B2 ∈ C(B) be any two behaviors, described by

B1 := (p(1)(k|Mi, Pj))k∈K,i∈I,j∈J

B2 := (p(2)(k|Mi, Pj))k∈K,i∈I,j∈J .

In this definition, K, I, J are the sets of labels for the procedures in B. We use the

notation (p(s))s∈S ≡ (p(s1), . . . , p(s|S|)). Then, by definition, we have that each element

of the behavior f(πB1 + (1− π)B2) is described by∑
i,j,k

qjO(k̃|k)
(
πp(1)(k|Mi, Pj) + (1− π)p(2)(k|Mi, Pj)

)
qM(i|̃i)qP (j|j̃) =

+ π

(∑
i,j,k

qjO(k̃|k)p(1)(k|Mi, Pj)qM(i|̃i)qP (j|j̃)

)
+

+(1− π)

(∑
i,j,k

qjO(k̃|k)p(2)(k|Mi, Pj)qM(i|̃i)qP (j|j̃)

)

which proves the lemma. �
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4.2 Quantifiers

Now that we have defined the resource theory structure, we can introduce some

quantifiers to give meaning for questions of the type: How much resource does a given

object has? As in our framework, this means to attempt at measuring how contextual is

a given behavior from a scenario. The choice of quantifier might largely depend on the

important aspects the researcher is interested in for specific purposes; here, we consider

those most relevant for our formalism. Formally, a quantifier will be generally described

as a function from the objects of the theory, in our case the behaviors, towards positive

real numbers. The order ≤ structure present in the set of real numbers will corresponds

to the amount of resource, under the quantifier.

The class of functions that are helpful in this discussion for defining a quantifier,

essentially, obey two inequalities:

1. Let q be a quantifier. Then we expect that for all objects q(f(B)) ≤ q(B), f ∈ F .

2. Let q be a quantifier. Then for every pair of objects B1, B2 we have that q(B1⊗B2) ≤
q(B1) + q(B2).

The first requirement reflects the fact that a free operation should not increase the re-

source, in other words, a free operation cannot increase the amount of contextuality

present in the behavior, in a sense provided by the quantifier q. The second requirement

is that we cannot increase contextuality using the binary operation ⊗. This would be a

rather strange situation since, a priori, the binary operation ⊗ can refer to completely

independent scenarios.

Definition 25. Consider B to be any prepare-and-measure scenario, and consider the set

of objects C(B) ⊂ C . Let qB : C(B)→ R+ defines a family of functions, for each B fixed,

such that:

1. ∀B1 ∈ C(B1), B2 ∈ C(B2) we have

q⊗(B1,B2)(B1 ⊗B2) ≤ qB1(B1) + qB2(B2), (4.22)

where ⊗(B1,B2) ≡ B1 ⊗ B2 is the prepare-and-measure scenario defined by the

product ⊗ considered in the specific resource theory.

2. For any f ∈ F , and every B ∈ C(B), if we denote the image of the free operation

f as f(B) then,

qf(B)(f(B)) ≤ qB(B). (4.23)

We call such map a noncontextual monotone, or also a quantifier for the resource theory.

If the scenario in question is clear, we simplify the notation qB ≡ q. ♦
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Because of the polytope structure of NC(B), arising from the linear characteri-

zation,

behavior B ≡ point in RN , for someN ∈ N,

with respect to equations (3.40)-(3.43), the first obvious definitions of quantifiers that are

meaningful relate the amount of resource with the convex-polytope structure. For Kochen-

Specker contextuality a very interesting quantifier, the so called contextual fraction, from

(Abramsky et al., 2017) has a direct analog for generalized contextuality.

Definition 26. (Duarte and Amaral, 2018) Let B be any prepare-and-measure scenario.

Let f : C(B)→ [0, 1] defined by,

f(B) := 1− max
ω∈[0,1]

{
ω | B = ωBNC + (1− ω)B′, BNC ∈ NC(B), B′ ∈ C(B)

}
. (4.24)

We call f the contextual fraction. ♦

Since C(B) and NC(B) ⊆ C(B) are convex polytopes, they are compact closed

sets of points in R|J |×|I|×|K|. If C(B) = NC(B), f(B) = 0, for all B ∈ C(B). Whenever

C(B) 6= NC(B) we have that the max is unique and, therefore, f is well-defined.

Another important contextuality measure is defined as a class of measures, asso-

ciated with distances between points.

Definition 27. Let D be any distance defined for R|K|, given a set of alphabet for out-

comes K, that is associated with the scenario description B := (|J |, |I|, |K|,EP ,EM).

Then, given two data-tables B,B′ ∈ B we define that

D(B,B′) := max
i∈I,j∈J

D(p(·|Mi, Pj), p
′(·|Mi, Pj)).

With this, we define the D-contextuality distance as:

d(B) := min
B′∈NC(B)

D(B,B′) (4.25)

of special importance is the case when D is the l1-distance:

D1(x, y) =
∑
k

|xk − yk|. (4.26)

♦

Both the functions f and d are quantifiers for generalized contextuality.

Theorem 8. (Duarte and Amaral, 2018) Both the contextual fraction f and the l1-

contextuality distance d are resource monotones with respect to the free operations.

The proof of this theorem can be found in (Duarte and Amaral, 2018, pg. 9-10,

pg. 13-14).
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Applying the monotones

Although we could not find any actual application for the monotones, such as the

one known for the Kochen-Specker contextual fraction in measurement-based quantum

computation, we mention a few initial attempts of using the monotones for practical

applications.

For the monotone d, we mention, in section 5.2, how we can think about d when

considering an idealized behavior for the quantum task of state discrimination. We could

use this monotone for obtaining lower bounds for optimal quantum contextual behaviors.

In the ideal case we treat, this would be a rather silly choice since calculus tools would

suffice: the optimal quantum bounds are known. However, we still present it, since it

could lead to a generalized version for searching optimal contextual behaviors for more

complex experimental scenarios.

We also note that the monotone d might be related in some way with the l1-

measure over epistemic states µ. Let suppose we can write the epistemic states as prob-

ability densities µPj over Λ = R. We would then have that, allowing the probabilities

p(k|Mi, Pj) to have an ontological model,

|p(k|Mi, Pj)− p(k|Mi, Pj′)| =
∣∣∣∣∫

Λ

(µPj(λ)− µPj′ (λ))ξ[k|i](λ)dλ

∣∣∣∣
≤
∫

Λ

|µj(λ)− µj′(λ)| ξ[k|i](λ)dλ,

so ∑
k

|p(k|i, j)− p(k|i, j′)| ≤
∫

Λ

|µj(λ)− µj′(λ)| dλ = ‖µj − µj′‖l1 . (4.27)

We see that the LHS of equation (4.27) is D1(p(·|Mi, Pj), p(·|Mi, Pj′)), which is related to

the l1-distance monotone d. The RHS is the l1-norm over the ontological quantities that

are of importance for proving noncontextual bounds for quantum cloning, see (Lostaglio

and Senno, 2020), and quantum state discrimination, see (Schmid and Spekkens, 2018).

This induces us to speculate that the operational quantity d could provide bounds for the

ontological description of the epistemic states, which in itself might represent a clue for

increasing our understanding of scenarios with preparation contextuality.

We describe how to obtain the contextual fraction f for general scenarios in ap-

pendix D.2. In our research, we attempted to use this monotone as a tool for obtain-

ing maximally contextual behaviors, i.e., behaviors Bmax such that ∀B ∈ Q(B), f(B) ≤
f(Bmax), where Q(B) is the set of quantum behaviors in the generalized formalism, that

reproduce the statistics of the general prepare-and-measure scenario B. The idea was

to develop an algorithm that would approach the maximally contextual behavior, from

within the quantum set, by using the tools from (Ambainis et al., 2016) and (Schmid

et al., 2018), hence obtaining a lower bound for Bmax. Let Bfacet ∈ C(B) be a point that
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lies in one of the facets of the convex polytope C(B), but that is also a contextual behavior

(not necessarily in Q(B)). Then, minimizing ‖BQ − Bfacet‖ for BQ ∈ Q(B) corresponds

to a quadratic semidefinite programming problem, once we fix either the set of quantum

states associated with the quantum behavior, {ρj}j∈J , or the set of measurement events,

{Ek
i }k∈K,i∈I . From a geometric perspective, it is clear that we are trying to find the quan-

tum behavior closer to Bfacet, but we need to find good candidates for Bfacet, and this is

where the contextual fraction can be relevantly applied. The solutions of the minimiza-

tion 26, represented as B′ for the contextual part, lie in the facets of the polytope C(B).

Therefore, we can try to use f(B) as a step in an algorithm that would indicate both

the growth in contextuality and new candidates for the minimization problem. We have

found numerical evidence that this procedure finds the optimal quantum behavior in the

simplest scenario, but there is still much to know for significant results in this direction.

4.3 Witnessing contextuality with the free operations

In light of the theory we presented, we propose a framework for witnessing con-

textuality that uses free operations. The essential aspects are, first, noticing the validity of

lemma 3, and second, realizing that there exists a connection between pre/post-processing

and simulation of quantum measurement and quantum correlations. An initial glance into

such a field of research can be found in the following literature: (Guerini et al., 2017),

(Oszmaniec et al., 2017), (Guerini, 2018), (Heinosaari et al., 2008).

We consider the following change in jargon: Let M̃ be a generalized quantum

measurement corresponding to a POVM, as usual. We say that the measurement M̃ =

{Ek̃}k̃∈K̃ can be simulated by a set of POVMs R := {Ri}i∈I , with each Ri = {Ri
k}k∈K a

POVM, if there exists pre/post processing maps, defined as qM , qO, such that,

Ek̃ =
∑
i,k

qiO(k̃|k)Ri
kqM(i|M̃). (4.28)

Notice that with respect to the jargon from the last section, equation (4.28) reads

as “there exists a free operation that takes the POVM’s R towards M̃”. Whenever this

happens, we say that M̃ is R-simulable. The idea behind this is that for any state ρ, the

probabilities obtained by M̃ are the same as the probabilities obtained by the simulated

version, and therefore an experimenter would not need to have the specific procedure M̃

available, but he/she could simply have R and pre/post-process the data-table:

p(k̃|ρ) := Tr (Ek̃ρ) = Tr

(∑
i,k

qiO(k̃|k)Ri
kρqM(i|M̃)

)
, (4.29)

which is extremely convenient for our purposes since we are analyzing data-tables in the
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search for quantum contextuality. Next, we consider the following lemmas from (Guerini

et al., 2017), and (Davies, 1976):

Lemma 5. (Guerini et al., 2017) For any dimension of the system (Hilbert space of

states), any 2-outcome POVM is projective-simulable. If the dimension of the system is

two, binary-outcome simulability is equivalent to projective-simulability.

Lemma 6. (Oszmaniec et al., 2017) For two dimensional Hilbert spaces, projective mea-

surements can simulate arbitrary two-outcome measurements.

Now, this means that for any binary-outcome measurement M̃ , there always

exists a set R of projective measurements that can simulate M̃ . Hence, suppose we have

a set of binary-outcome measurement procedures M̃ = {Mĩ}ĩ∈Ĩ . Each Mĩ is simulable by

a set of projective measurements Ri. In terms of our scenario discussion we write that

for any k̃, E ĩ
k̃
∈Mĩ ∈ M we have that

E ĩ
k̃

=
∑
i,k

qiO(k̃|k)Ri
kqM(i|̃i), (4.30)

so that each Mĩ is Ri-simulable for some set Ri of projective measurements. Hence, if we

consider any scenario B̃ containing M̃ and another scenario Bproj containing M =
⋃
i Ri we

have that there exists a free operation f ∈ F such that

C(B)
f→ C(B̃). (4.31)

And notice that, up to now, our discussion considered POVM simulation, so

that the free operations f ∈ F are free operations over measurement procedures in the

scenario, leaving the preparation procedures the same.

Clarification of the tilde notation

For clarifying the tildes: remember that in definition 24 we consider that the

data-table f(B) has the associated set of labels with the tildes. Therefore, if I labels the

measurements in the scenario of the domain, Ĩ labels the measurements in the scenario

from the codomain. Since we are looking at simulations of quantum processes, as we can

see from equation (4.31), we have the following relationship between free operations and

simulability:

M̃ is simulated by M ≡ ∃f free operation from M to M̃.

Therefore, the tildes are an attempt to maintain a coherent presentation with

respect to the resource theory formalism.
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The simulations witness contextuality in prepare-and-measure scenarios

Having the lemmas from before, we can notice that the following is true.

Lemma 7. Let M1, . . . ,M|I| be a set of two-outcome measurement procedures. Then,

there is always some stochastic maps qO : K → K̃ = K, qM : Ĩ → I that sends these

POVMs {Ei
k} to the following ones:

E 1̃
1̃

=
1

(1− v)2 + 1

(
(1− v)2 1− v

1− v 1

)
(4.32)

E 1̃
2̃

=
1

(1 + v)2 + 1

(
(1 + v)2 1 + v

1 + v 1

)
(4.33)

E 2̃
1̃

=
1

(1 + v)2 + 1

(
(−1− v)2 −1− v
−1− v 1

)
(4.34)

E 2̃
2̃

=
1

(1− v)2 + 1

(
(−1 + v)2 −1 + v

−1 + v 1

)
(4.35)

where v =
√

2, for at least some quantum realization of the measurements {Mi}i∈I .
We call this set of measurements in the target scenario a quantum realization of M̃ :=

{M1̃,M2̃}. As we will see in section 5.1, this is a set of POVM’s that obtain the optimal

quantum contextual behavior for the simplest scenario.

Proof. This lemma follows directly from the fact that we might trivially consider M̃ ∪
{Mi}i=3,...,|I| to simulate M̃. Here, {Mi}i=3,...,|I| can be any sharp quantum realization of

measurement procedures. �

This is always possible and, at this point, seams to be a fairly trivial statement.

We have then showed that any set of binary outcome measurement procedures M have

some quantum realization with the property of simulating the quantum realization of M̃

from the above lemma. In the jargon of the resource theory for generalized contextuality,

this shows that there exists a free operation f ∈ F , acting only in the measurement

procedures, with

M
f→ M̃. (4.36)

But from these results, we can construct the following example:

Example 11. There is always a quantum behavior B ∈ B and a free operation f ∈ F
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towards Bsi when we have that the scenario B to be of the form:

P = {P1, P2, P3, P4} (4.37)

M = {M1, . . . ,MI} (4.38)

OM = {0, 1} (4.39)

EM = ∅ (4.40)

EP :⇐⇒ 1

2
P1 +

1

2
P2 '

1

2
P3 +

1

2
P4 (4.41)

such that f(B) ∈ Bsi is a quantum contextual behavior. In other words, every prepare-

and-measure scenario B will present quantum contextual statistics for some data-table

arising from such scenario. 4

Proof. Let a quantum realization of the measurement procedures M = {Mi} from the

scenario B be such that each measurement is a projective measurement. This means that,

by lemma 7 we have that the quantum realization of M̃ is M-simulable, for some quantum

realization of M. We conclude that for the quantum measurements E ĩ
k̃

from Mĩ ∈ M̃, we

have that there exists maps qiO, qM such that,

E ĩ
k̃

=
∑
i,k

qiO(k̃|k)Ei
kqM(i|̃i). (4.42)

Let the quantum realization of the preparation procedures in B be (5.13)-(5.16). Then, if

we define the free operation f using the maps in equation (4.42),

p(k|Mi, Pj) = Tr
(
Ei
kρ

j
) f→

=
∑
i,k

qiO(k̃|k)Tr
(
Ei
kρ

j
)
qM(i|̃i)

= Tr

(∑
i,k

qiO(k̃|k)Ei
kqM(i|̃i)ρj

)
= Tr

(
E ĩ
k̃
ρj
)

= p(k̃|Mĩ, Pj),

where E ĩ
k̃

are defined by (5.10)-(5.12). Hence, we get that f leads to a behavior B̃ ∈ Bsi
that is described by table 5.2, which is a contextual behavior. Since f is a free operation

we have that the quantum realization by means of the projections over B cannot be

noncontextual (see lemma 3). So we conclude that it is a quantum contextual behavior

from B. �

This result can be stated as follows. If we consider the scenario B := (4, |I|, 2,EP , ∅)
where EP is the same set of operational equivalences as in Bsi := (4, 2, 2,EP , ∅). This sce-

nario B will have quantum contextual behaviors for any |I| ≥ 3. We notice therefore that
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the resource theory uses simple arguments to prove the following intuitive result: increas-

ing the number of measurement procedures does not affect (preparation) contextuality.

We conclude that any scenario with the same operational structure for prepara-

tion procedures and any number of measurements will present generalized contextuality.

The important aspect in the framework is not that by inserting any amount of measure-

ments, a scenario with preparation contextuality will still have preparation contextuality

for granted. The novelty is that since the class of simulations for quantum operations

can be studied with semi-definite programming (Guerini et al., 2017) we can use them

for witnessing contextuality in any scenario, by trying to simulate quantum contextual

behaviors in scenarios with a more straightforward operational structure. We formulate

this result as a proposition:

Proposition 1. Let B,Bknown be two finitely defined prepare-and-measure scenarios, with

Bknown a scenario that has known realizations of quantum contextual behaviors BQ
known.

Let Q(B) be the set of quantum behaviors inside the polytope C(B). Then, if there exist

quantum preparations and measurements generating the statistics BQ ∈ Q(B) that is

capable of simulating a contextual behavior Bknown, then, we have that BQ is a contextual

behavior from B. We would conclude, in this case, that the scenario B presents quantum

contextual correlations.

Ontological relevance of free operations

One of the issues with verifying (quantum) contextuality experimentally can be

described as the problem of operational inequalities. We describe the problem as follows:

Any operational scenario B has ideal operational equivalences EP or EM , but, in any

experimental implementation of the procedures, due to errors the equivalences are not

necessarily verified for the data-table. The procedures that satisfy the operational equiv-

alences might be considered ideal procedures. The ones that are truly implemented in the

laboratory we name as real procedures. We can state the problem as,

How can we witness generalized contextuality for the ideal data-table, obtained

with respect to ideal procedures, if the experimental data-table relates to real

procedures, and does not respect the operational equivalences of the scenario?
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Figure 4.2: Solving the problem of operational inequalities using free operations, as de-
scribed in (Mazurek et al., 2016), (Schmid and Spekkens, 2018). In figure 4.2a we consider
that there are ideal procedures, that satisfy the operational equivalences described by the
vertical and horizontal dashed lines, and that we would like to implement (denoted as
{P ideal

j }4
j=1). Due to noise, the experiment implements the real procedures (denoted by

{P ideal
j }4

j=1) that may fail to respect the operational equivalences. In figure 4.2b we use
a free operation defining secondary procedures (denoted as {P sec

j }4
j=1) that respect the

operational equivalences.

The proposal of (Mazurek et al., 2016) to solve this problem is to make a pre-

processing of the real procedures, towards secondary procedures. We then understand the

contextuality present in the secondary behavior (the pre-processed data-table obtained).

In this way we can conclude the following, using the resource theory:

Theorem 9. Let B be a prepare-and-measure scenario, that has the ideal operational

equivalences. Let Bre ∈ Bre. This behavior is to be interpreted as the behavior obtained in

the experiment, associated with the real procedures that were implemented. Then, if there

exists a free operation F 3 f : Bre → f(Bre) = B, we can conclude that,

f(Bre) ∈ C(B) \NC(B) =⇒ Bre ∈ C(Bre) \NC(Bre) (4.43)

In other words, generalized contextuality for the secondary behaviors imply generalized

contextuality for the real behaviors.

Proof. The procedures of a real data-table Bre ∈ Bre that we consider due to errors in

a GPT formalism lie inside the convex hull of the procedures associated with the ideal

scenario (see figure 4.2). Any procedure inside this convex hull can be simulated by the

procedures in the vertices. Therefore, there are free operations f ∈ F , towards secondary
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procedures, such that f(Bre) ∈ B lies in the ideal scenario B. If f(Bre) is contextual, from

lemma 3 we conclude contextuality of Bre. �

It could be that, in fact, we could never access the contextuality of the real

procedures, and only access the contextuality of the secondary procedures. One could

then argue that the notion of generalized contextuality is consistent only with a notion of

reality that depends on the pre-processing of the experimental data-table obtained. The

resource theory demonstrates that this is not the case. In fact, using the same argument

applied to the real procedures with respect to the ideal procedures, the resource theory

guarantees that the ideal behaviors are contextual; notice from figure 4.2a that the real

procedures can be simulated by the ideal procedures, meaning that there exists a free

operation F 3 g : B→ Bre, implying,

f(Bre) ∈ C(B) \NC(B)⇒ Bre︸︷︷︸
g(Bideal)

∈ C(Bre) \NC(Bre)⇒ Bideal ∈ C(B) \NC(B)

Our result strengthens the conclusions of (Mazurek et al., 2016), that generalized

(quantum) contextuality was indeed verified, since we can conclude that we experimentally

witnessing contextuality for the “real” procedures. There are other theoretical results

reinforcing the claims of (Mazurek et al., 2016), such as (Schmid et al., 2020b). 2

Moreover, the resource theory is capable of describing bounds of how much noisy

can we allow in our experiment, so that the secondary procedures will still witness con-

textuality of the real procedures.

Example 12. Let us consider the simplest scenario Bsi, and we define Q(B) ⊆ C(B)

as the set of behaviors that are accessible with standard quantum theory. We known

that, the optimal quantum contextual realizations, obtained with operators in B(C2),

are such that the contextual fraction f(B ∈ Q(Bsi)) ≈ 0.42, see appendix D.2. We can

conclude then that, one could use the contextual fraction as a tool to define a bound over

the amount of noise allowed to still infer generalized contextuality, let the transformed

behavior f(Bre) be called as the secondary behavior Bsec, then

f(Bsec) ∈ (0, 0.42] =⇒ Bideal ∈ C(Bsi) \NC(Bsi). (4.44)

There are other proposals in the literature for bounding the amount of noise

allowed to witness contextuality, see (Kunjwal, 2019).

4
2For a detailed discussion of how to witness the set of tomographic complete procedures from the GPT

framework, and obtaining bounds of experimental verification of generalized contextuality see (Mazurek
et al., 2019).
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4.4 Box product

We have already defined a binary operation for the resource theory in definition

22, we think that the product ⊗ is reasonably interesting to work with and useful in any

situation. However, we propose and study another binary operation between generalized

scenarios that has a computational advantage and does not restrict the behaviors.

Definition 28. Given two behaviors B1 ∈ B1 and B2 ∈ B2 we define the binary operation

� : B1 × B2 → B as the union,

B1 �B2 := {p(k1|Mi1 , Pj1)} ∪ {p(k2|Mi2 , Pj2)} (4.45)

With i1 ∈ I1, |I1| = |M1| and similarly for all other labels. The target scenario B ≡ B1�B2

has the operational equivalences of both scenarios defined as, for {a} := {a1} ∪ {a2},

γaP ∈ EB1�B2
P , γaP :=

{
(αa1 ,~0; βa1 ,~0), a = a1

(~0, αa2 ,~0; βa2), a = a2

, (4.46)

And the same definition for the operational equivalences for measurement events. As an

operational constraint, the target scenario does not considers the probabilities of the form

p(k1|Mi1 , Pj2), p(k2|Mi1 , Pj1) /∈ B1 �B2, (4.47)

for all the behaviors in the scenario B1 � B2. ♦

With the product given by equation (4.45) we are essentially thinking of the linear

characterization of the behaviors Bi, i = 1, 2 from C(B1) ⊂ Rn,C(B2) ⊂ Rm, to the larger

one,

B1 �B2 ≡
(
~B1, ~B2

)
∈ Rn+m, (4.48)

in terms of the polytope structure. With this definition, it is possible to prove that,

Theorem 10. The binary operation � preserves the resource:

B1 ∈ NC(B1), B2 ∈ NC(B2)⇔ B1 �B2 ∈ NC(B1 � B2).

Proof. Let B1 ∈ NC(B1), B2 ∈ NC(B2). Hence, there are (Σ(i),Λ(i),Π(i),Θ(i)) where

Π(i) and Θ(i), i = 1, 2, respect the operational equivalences at the ontological model level

respectively for each scenario. For sets of labels we define Ki, Ii, Ji, {ai}, {bi} as before

(see definition 28), for their respective operational primitives from Bi. The scenarios are

finite and the operational equivalences are fixed and finite as well, so each set ranges over
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a finite set of labels.

K := K1 ∪K2,

I := I1 ∪ I2,

J := J1 ∪ J2,

{a} := {a1} ∪ {a2},

{b} := {b1} ∪ {b2},

By definition of noncontextuality at the ontological model level, we have the equations,

p(k1|i1, j1) =
∑
λ1∈Λ1

ξ[k1|i1](λ1)µj1(λ1), (4.49)

p(k2|i2, j2) =
∑
λ2∈Λ2

ξ[k2|i2](λ2)µj2(λ2), (4.50)∑
j1

(αa1j1 − β
a1
j1

)µj1(Ω1) = 0, ∀a1,∀Ω1 ∈ Σ1 (4.51)∑
j2

(αa2j2 − β
a2
j2

)µj1(Ω2) = 0, ∀a2,∀Ω2 ∈ Σ2 (4.52)∑
k1,i1

(αb1i1 − β
b1
i1

)ξ[k1|i1](λ1) = 0, ∀λ1, b1, (4.53)∑
k2,i2

(αb2i2 − β
b2
i2

)ξ[k2|i2](λ2) = 0, ∀λ2, b2. (4.54)

In (4.51)-(4.54), ξ[·|i1] ∈ Θ(1), µj1 ∈ Π(1), and similarly for the rest of ontology measures.

If we consider the product between the behaviors, B1�B2, we get that for the ontological

description it is possible to set Λ := Λ(1) t Λ(2) the disjoint union between the two sets.

We then define ξ̃[k|i] : Λ→ [0, 1] as,

ξ̃[k|i](λ) :=

{
ξ[k1|i1](λ1), λ = (λ1, 1)

ξ[k2|i2](λ2), λ = (λ2, 2)

∀λ ∈ Λ,
∑
k∈K

ξ̃[k|i](λ) =

{∑
k∈K ξ̃[k|i1](λ), if i ∈ I1∑
k∈K ξ̃[k|i2](λ), if i ∈ I2

=

{∑
k1∈K1

ξ̃[k1|i1](λ), if i ∈ I1∑
k1∈K1

ξ̃[k1|i2](λ), if i ∈ I2

=

{
1,

1

So that the extended functions are normalized in the ontic space Λ. We have

considered that, whenever i ∈ I1 ∩ I2 any function ξ[k1|i1] or ξ[k2|i2] will serve, we then just

need to pick one and use it for our noncontextual ontological model. This means that if we

have two scenarios if the same procedures (not only same labels), {M1,M2}, {M1,M2} →
{M11 ,M21 ,M12 ,M22} ≡ {M1,M2}. Therefore we can recognize if two procedures are just

simply the same. In this sense, we can have that the number of procedures in Bsi and B�n
si
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are the same, so that we simplify the scenario. This is a specific case when we consider

how the different scenarios talk with one another.

For µ̃j, the ontic spaces are finite and we write µ̃j({λ}) ≡ µ̃j(λ). Let j ∈ J , we

define that, if j ∈ J1

µ̃j(λ) :=

{
µj1(λ), if λ = (λ1, 1)

0, if λ = (λ2, 2)

and similarly if j ∈ J2. Again, when j ∈ J1 ∩ J2 we choose one of the ontological

descriptions as our fixed definition for the preparation procedure associated with it. With

this definition we have that, for any j ∈ J , we will have that

∑
λ∈Λ

µ̃j(λ) =
∑

λ=(λ1,1)∈Λ

µ̃j(λ) +
∑

λ=(λ2,2)∈Λ

µ̃j(λ)

and, whenever j ∈ J1 or j ∈ J2 we recover the normalization condition from the already

defined distributions in the parts. We then obtain that for any p(k|i, j) ∈ B1 �B2 we will

have that this probability comes from one of the two behaviors, in this sense,

∑
λ∈Λ1tΛ2

ξ̃[k|i](λ)µ̃j(λ) =

{∑
λ∈Λ ξ̃[k1|i1](λ)µ̃j1(λ), if k, i, j ∈ K1, I1, J1∑
λ∈Λ ξ̃[k2|i2](λ)µ̃j2(λ), if k, i, j ∈ K2, I2, J2

=

{∑
λ1∈Λ1

ξ[k1|i1](λ1)µj1(λ1), if k, i, j ∈ K1, I1, J1∑
λ2∈Λ2

ξ[k2|i2](λ2)µj2(λ2), if k, i, j ∈ K2, I2, J2

=

{
p(k1|i1, j1), if k, i, j ∈ K1, I1, J1

p(k2|i2, j2), if k, i, j ∈ K2, I2, J2

= B1 �B2

Notice that in the new scenario B1 � B2 it is at play our operational constraint

that the preparations of the parts do not interact with the measurements of one another.

We will later discuss these assumptions and possible relaxations thereof that might be

applicable and useful. The operational equivalences defined in the scenario B1 � B2 are

the ones from (4.46), so we need to study the following objects:∑
j

(αaj − βaj )µ̃j(λ), ∀λ ∈ Λ1 t Λ2, a ∈ {a1} ∪ {a2}, (4.55)

where we can write an arbitrary order of {a} = {a1}∪{a2} as a = 1, . . . , a1, a1+1, . . . , a1+

a2. So that for {a} - see definition 28 if a clarification is needed, essentially {a} labels

the number of operational equivalences we have - it will be true, for all λ ∈ Λ1 t Λ2, the

following holds,
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∑
j

(αaj − βaj )µ̃j(λ)
(4.51),(4.52)

=
∑
j1

(αa1j1 − β
a1
j1

)µ̃j1(λ)︸ ︷︷ ︸
=0

+

J1+J2∑
j=J1+1

(αa1j − β
a1
j )µ̃j2(λ)

+
∑
j1

(αa2j1 − β
a2
j1

)µ̃j1(λ) +

J1+J2∑
j=J1+1

(αa2j − β
a2
j )µ̃j2(λ)︸ ︷︷ ︸

=0

=
∑
j1

(αa2j1 − β
a2
j1

)µ̃j1(λ) +

J1+J2∑
j=J1+1

(αa1j − β
a1
j )µ̃j2(λ)

(4.46)
= 0.

And for all λ ∈ Λ1 t Λ2 we also have,

∑
k,i

(αb[k|i] − βb[k|i])ξ̃[k|i](λ) =
∑
k1,i1

(αb1[k1|i1] − β
b1
[k1|i1])ξ̃[k1|i1](λ1) +

∑
k2,i2

(αb1[k2|i2] − β
b1
[k2|i2])ξ̃[k2|i2](λ2)

+
∑
k1,i1

(αb2[k1|i1] − β
b2
[k1|i1])ξ̃[k1|i1](λ1) +

∑
k2,i2

(αb2[k2|i2] − β
b2
[k2|i2])ξ̃[k2|i2](λ2) = 0

Remembering that whenever we write the vectors (αa1 ,~0; βa1 ,~0) ∈ EB1�B2
P we have

that the following is meant:

γa1P = (αa11 , α
a1
2 , . . . , α

a1
J1
, 0, . . . , 0︸ ︷︷ ︸
J2 times

, βa11 , . . . , β
a1
J1
, 0, . . . , 0︸ ︷︷ ︸
J2 times

),

so that we get
J1+J2∑
j=J1+1

(αa1j − β
a1
j )µ̃j2(λ) = 0

by construction. We have the same for measurement procedures. This proves that the

ontological model constructed is noncontextual for the behavior B1 �B2 whenever B1, B2

are also noncontextual behaviors.

For the (⇐) part of the proof, suppose that the behavior B1 �B2 has a noncon-

textual ontological model (Σ,Λ,Π,Θ). We know that this B1 � B2 scenario has the same

operational equivalences as both the scenarios B1 and B2 divided, by means of the weight

vectors, e.g., (αa11 , α
a1
2 , . . . , α

a1
j1
, 0, . . . , 0). Hence, there exists an ontological model for B1

inherited from B1 �B2 using the operational equivalences:∑
j

(αaj − βaj )µj(λ) = 0,∀λ =⇒
∑
j1

(αaj1 − β
a
j1

)µj1(λ) = 0, ∀λ,∀γaP ∈ EB1�B2
P ,

where we can restrict {a} to some set of labels {a1} and reduced vectors γa1P by cutting
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the zeros. We get the same for the behavior B2. The ontological description of the

probabilities we get immediately:

p(k1|i1, j1) :=
∑
λ∈Λ

ξ[k=k1|i=i1](λ)µj=j1(λ), (4.56)

for any k1, i1, j1 ∈ K1, I1, J1, and similarly,

p(k2|i2, j2) :=
∑
λ∈Λ

ξ[k=k2|i=i2](λ)µj=j2(λ). (4.57)

Therefore, we get the wanted result,

B1 �B2 ∈ NC(B1 � B2)⇔ B1 ∈ NC(B1), B2 ∈ NC(B2)

�

We notice that an important feature of such construction is that we do not re-

quire that the probability distributions associated with the behaviors B1, B2 need to be

independent, for the construction of B1 �B2 contrasted with definition 22. In particular,

the product � preserves the quantum contextual structure,

B1 �B2 ∈ QC(B1 � B2) ⇐⇒ B1 ∈ QC(B1), B2 ∈ QC(B2), (4.58)

where QC(B) := Q(B) \NC(B) and Q(B) is the set of data-tables realizable by quantum

operational prescriptions. More generally, we get that the quantum descriptions are pre-

served. Such a thing gives us the possibility to see noncontextuality as a building block

feature, where one might have these blocks B of scenarios that are defined operationally

in a prepare-and-measure sense implying that scenarios with higher complexity can be

constructed and still present quantum contextuality. For example, for any number N

of scenarios, we will have B1 � · · · � BN is again a prepare-and-measure scenario with

unknown quantum contextuality, but, employing the last theorem, the scenario

Bsi � B1 � · · ·� BN

is guaranteed to allow for quantum contextual behaviors, inherited from the quantum

contextuality of Bsi.

Notice that what we are effectively doing is the following procedure: let B1 ∈
NC(B1) and B2 ∈ NC(B2). Then, by a suitable choice of labeling the entries associated

with the polytope, we have that B1�B2 →
(
~B1, ~B2

)
∈ NC(B1�B2). Such a construction

is actually a well-known relation between convex polytopes.

Lemma 8. (Henk et al., 2004) Let P ⊂ Rn, Q ⊂ Rm be two convex polytopes. Then, the

66



CHAPTER 4. RESOURCE THEORY FOR GENERALIZED CONTEXTUALITY

product defined by

P ×Q :=

{(
p

q

)
: p ∈ P, q ∈ Q

}
⊂ Rn+m, (4.59)

is again a convex polytope. Let |V (P )| and |V (Q)| represent the number of vertices of each

of the convex polytopes P and Q, then, we also have that |V (P × Q)| = |V (P )| · |V (Q)|.
Let |F (P )| define the number of facets of the convex polytope P , and similarly for the

convex polytope Q. Then, we have that |F (P ×Q)| = |F (P )|+ |F (Q)|.

As we can see from lemma 8, we can know the number of vertices and the number

of facets associated with the new larger polytope. As we see from the proof below, we

can know these numbers because we can describe all the facets and all the vertices. This

feature, looking at our noncontextual polytopes, represents a significant computational

advantage for finding the tight noncontextuality inequalities associated with the larger

scenarios B1 � · · ·� B2.

Proof. Let P and Q be two convex polytopes. Let the full characterization of these

convex polytopes be defined by the tight inequalities MPp ≤ bP and MQq ≤ bq, with ≤
here representing element-wise ordering for real numbers.

p ∈ P ⇐⇒ MPp ≤ bP , (4.60)

q ∈ Q ⇐⇒ MQq ≤ bq. (4.61)

We call such representation of the convex polytopes as the H-representation. Now, the

H-representation for the product polytope P ×Q follows from (4.60)-(4.61), by making

MP×Q :=

(
MP 0P
0Q MQ

)
(4.62)

where 0P is a matrix with zeros and the same dimensionality as MP , and similarly for

0Q. We then have that (
p

q

)
∈ P ×Q ⇐⇒ MP×Q

(
p

q

)
≤

(
bp

bq

)
(4.63)

where (⇔) follows from (4.60)-(4.61). We have then proved that |F (P ×Q)| = |F (P )|+
|F (Q)| since each tight inequality defines a facet of the convex polytope. The equation

for the vertices follows from the same reasoning. Let {pv}v be the set of vertices defining

P . The convex hull of {pv}v can fully describe the convex polytope, known as the V-

representation. Since there exists a fundamental duality theorem between the V and H

representation of a polytope (Brondsted, 2012), we might write that P ×Q is the convex
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hull of {(pv, qv)}v, (Paffenholz, 2006, page 3):

P ×Q = conv (V (P ×Q)) = conv ({(pv, qv) : pv ∈ V (P ), qv ∈ V (Q)}) (4.64)

where we denote conv(·) as the convex hull for all the vertices. With this we show the

equation from the lemma for the number of vertices in the product polytope. �

Noticing that the map � has the same structural effect over the polytopes that

are constructed from the scenario, we conclude as a corollary that,

Lemma 9. Let B1,B2 be two operational scenarios. Let C(Bi) and NC(Bi) for i = 1, 2

be, respectivelly, the polytope of all behaviors and the noncontextual polytope. Since by

theorem 10 the map � preserves the noncontextual structure,

NC(B1 � B2) = NC(B1)×NC(B2) (4.65)

where we are strongly using the update in the operational structure given by definition

28. Suppose that one knows the tight noncontextuality inequalities that define each part

NC(B1) and NC(B2). Then, from lemma 8 we know the tight noncontextuality inequalities

defining the polytope NC(B1 � B2).

As we will see in the next chapter, lemma 9 represents a great simplification asso-

ciated with obtaining noncontextuality inequalities whenever the inner polytope structure

of the scenario is understood. We can use the resource theory to obtain noncontextual-

ity inequalities that are then robust, operationally described without assuming quantum

theory and are related to quantum tasks.

Our results also sugest that generalized contextuality is a good resource to have

in mind whenever thinking about complex scenarios. Suppose that we construct an op-

erational task that has the following characterization: B := Bsi � B1 � · · · � BN , for any

N ≥ 1. Since we know that Bsi has quantum contextual correlations, no matter how

large N will be, and no matter how the scenarios {Bi}i=1,...,N are described, because of

theorem 10 we must have that B have quantum contextual realizations. This means that

no matter how complex our scenarios are, we can engineer new operational scenarios that

are guaranteed to have the resource. In figure 4.3 we have tried to provide an intuitive

view of this fact.
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NC

Q

×

Figure 4.3: Representation of the polytope structure arising from the product scenario.
We stress that it is not clear how should be the new form of the quantum set Q(B), even
though it is clear the polytope structure for both NC and the larger polytope of statistics.
In this picture we have used the fact that NC(B) ⊆ Q(B). From the convex nature of
Q(B), the product scenario must have a quantum contextual set that is at least of the
form given by curve 1, but it could also be given by curve 2 and the study of maximal
violations for noncontextuality inequalities shall answer such questions (Ambainis et al.,
2016),(Chailloux et al., 2016).

In figure 4.3 we have the visual description of the product between two polytopes,

defined by the same set of vertices B1,2 = conv{0, 1}, that imply the new set of vertices

B1 �B2 = conv ({(0, 0), (0, 1), (1, 0), (1, 1)}). If we suppose that in blue we have quantum

behaviors, we an intuitive description of, supposing that we have quantum behaviors

outside the noncontextual set, depicted by the blue vertices, they will still be outside

the noncontextual vertice of the larger dimensional polytope, constructed with the box

product. As we have shown in figure 4.3 we have no idea of how the quantum set will

behave, despite the fact that this is a convex set, and we have depicted that letting the

quantum set to be a litle bit round.
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5
Quantum Information tasks

(...) quantum computing is transitioning from a research topic to a tech-

nology that unlocks new computational capabilities. We are only one creative

algorithm away from valuable near-term applications.

- (Arute et al., 2019)

We now look further the applicability of the theoretical developments made so

far. Contextuality has been shown to represent statistical contextual correlations for

quantum information prepare-and-measure protocols. In what follows we present the

protocols and their relevance for quantum information theory, as well as their quantum

advantage witnessed by generalized contextuality.

In this chapter we will study a classical information task in section 5.1, the n-

bit parity oblivious multiplexing task, and we will learn that quantum theory offers an

essential improvement of its success rate. Then, we will proceed to study two quantum

information tasks, quantum state discrimination in section 5.2 and state-dependent quan-

tum cloning in section 5.3. These two tasks are known to be related. We will witness

quantum contextuality in the experimental scenario describing these tasks, and under-

stand the role generalized contextuality play.

5.1 Parity Oblivious Multiplexing

The first proof that quantum contextuality is advantageous was provided for an

information protocol called n-bit parity-oblivious multiplexing (Spekkens et al., 2009a),

which is a class of communication protocols, also called sometimes as oblivious commu-

nication (Saha and Chaturvedi, 2019; Saha et al., 2019). The protocol is described in

the following way: consider that Alice has an n-bit string produced uniformly at random.

She then sends a system to Bob that stores some information about her bit string, with

the counterpart that there is a constraint to be respected; Bob then generates a random

number between 1 and n, so that the task of Bob is, given that he generates number
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y ∈ {1, . . . , n}, he guesses what is the bit in the y position of the string. The constraint

imposed on the amount of information Alice can send gives the name of the protocol;

Alice cannot inform the parity of the string to Bob. Mathematically this reads as follows

(Spekkens et al., 2009a): let Par be the set defined by,

Par :=

{
r
∣∣∣r ∈ {0, 1}n,∑

i

ri ≥ 2

}
(5.1)

For n = 3 we have for example (1, 1, 0) ∈ Par. For n = 2 the only string in Par is (1, 1).

Then, Alice cannot send information about the products of her bit string with elements

of Par.

x · r =
⊕
i

xiri (5.2)

Were ⊕ represents sum module 2. Putted in other words, the parity constraint

implies that any measurement procedure performed by Bob cannot gather statistical in-

formation about the result of product x · r; hence the statistics obtained from the mea-

surements that give x · r = 1 or x · r = 0 need to be exactly the same:

∀r ∈ Par,∀M, ∀k :
∑

x|x·r=0

p(k|M,Px) =
∑

x|x·r=1

p(k|M,Px) (5.3)

In other words, the restriction is not over one parity message. The restriction is

over all possible parity checks, described in terms of the strings in the set Par, that could

be performed by Bob, given an n-bit string.

For the 2-bit task we have the following operational restriction:

∀M,∀k : p(k|M,P(0,0)) + p(k|M,P(1,1)) = p(k|M,P(0,1)) + p(k|M,P(1,0)). (5.4)

The description for an arbitrary operational protocol fits perfectly the prepare-

and-measure scenario description from before. In fact, for a 2-bit protocol, the equivalent

scenario corresponds to the simplest scenario from equation (2.21), with the noncontextual

polytope given by (C.14)-(C.22).
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P

P(0,0)P(1,0)
P(0,1)P(1,1)

M
0 1

M0
M1

Figure 5.1: Operational description of 2-bit parity-oblivious multiplexing prepare-and-
measure scenario. Alice generates a random string x ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}, while
Bob generates a number y ∈ {0, 1}. Corresponding to each of these outcomes we have
some probability that Bob guesses the bit correctly.

From an operational perspective we have that the probability of success for Bob

is given by,

p(g = xy) =
1

2 · 22

∑
y

∑
x

p(g = xy|My, Px), (5.5)

This means that in general, the task given by Bob of predicting the y-th bit

of Alice can be described as a function that takes operational behaviors B ∈ Bsi, for

2-bit oblivious communication, and sends it towards p(g = xy) by means of (5.5). The

goal is then to understand what is the connection of noncontextuality with the best way

one can construct probabilities and shuffle the behaviors from Bsi with the appropriate

normalization given by (5.5), so that the success strategy is maximal.

Noncontextual bound

It is shown in (Spekkens et al., 2009a) that the best strategy for Bob to guess

correctly the bit in a noncontextual ontological model is given by p such that p ≤ (n +

1)/2n. For the 2-bit case we have that p ≤ 0.75.

Theorem 11. (Spekkens et al., 2009a) For any noncontextual ontological model describing

the probability of success for n-bit parity oblivious multiplexing communication task, the

upper bound over the guessing strategy is given by

p(g = xy) ≤
n+ 1

2n
. (5.6)

Then, by choosing the contextual behavior from table 5.2 with the labels P(0,1) =

P1, P(1,0) = P2, P(0,0) = P3, P(1,1) = P4 we get that the probability of success for Bob

in such quantum realization is of p(q = xy) = 0.8535 > 0.75. What this shows is

that the behavior 5.2 will present better strategies for the quantum task, by means of the

quantum realizations, then any noncontextual one. That represents a proof that quantum

contextuality is providing the advantage over classical analogs. A proof of theorem 11

can be found in appendix E. In what follows we provide a quantum contextual behavior
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that provides p(g = xy) = 0.85 and we also prove that this is the best bound that can be

achieved by quantum theory.

Quantum realization in the simplest scenario

As a concrete useful example, the so called simplest scenarios Bsi from (2.21)

represents operationally the 2-bit parity oblivious multiplexing protocol - were we drop

the setting description, with definition 7, defining the scenario in the form of (3.24)1

Bsi = (P,M,OM ,EP ,EM) . (5.7)

A possible quantum realization within the simplest scenario is given by (Pusey, 2018),

were we simply consider that M1,M2 be given by,

M1 =
1√
2

(σX + σZ),M2 =
1√
2

(σX − σZ), (5.8)

defined by the following effects M1 = {E1
1 , E

1
2}, M2 = {E2

1 , E
2
2}:

E1
1 =

1

(1− v)2 + 1

(
(1− v)2 1− v

1− v 1

)
= |v1〉 〈v1| , (5.9)

E1
2 =

1

(1 + v)2 + 1

(
(1 + v)2 1 + v

1 + v 1

)
= |v2〉 〈v2| , (5.10)

E2
1 =

1

(1 + v)2 + 1

(
(−1− v)2 −1− v
−1− v 1

)
= |v′1〉 〈v′1| , (5.11)

E2
2 =

1

(1− v)2 + 1

(
(−1 + v)2 −1 + v

−1 + v 1

)
= |v′2〉 〈v′2| , (5.12)

where v =
√

2. The choice is such that |v1〉 , |v2〉 be the eigenvectors of 1√
2
(σX + σZ) and

|v′1〉 , |v′2〉 the eigenvectors of 1√
2
(σX − σZ). This POVM represent a quantum realization

for the simplest scenario. For the preparations we can simply have, as is usual, the

preparations to be equivalent to

ρ1 = |0〉 〈0| (5.13)

ρ2 = |1〉 〈1| (5.14)

ρ3 = |+〉 〈+| (5.15)

ρ4 = |−〉 〈−| (5.16)

1Remembering that EP :⇐⇒ 1
2P1 + 1

2P2 ' 1
2P3 + 1

2P4., described by the linear characterization from
(2.21)
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such that this realization gives rize imediatly to the correct operational equivalences for

preparation procedures from Bsi. Such quantum realization gives rise to the following

quantum behavior:

ρ1 ρ2 ρ3 ρ4

E1
1

(
1−v√

(1−v)2+1

)2 (
1√

(1−v)2+1

)2 (
2−v√

2((1−v)2+1)

)2 (
−v√

2((1−v)2+1)

)2

E2
1

(
|−1−v|√
(1+v)2+1

)2 (
1√

(1+v)2+1

)2 (
v√

2((1+v)2+1)

)2 (
−2−v√

2((1+v)2+1)

)2

Table 5.1: Quantum Behavior for the simplest scenario.

That for a sufficiently large number of repeated data collection give rise to the

following probabilistic data-table. Here we omit probabilities corresponding to 1 − p for

the events.

ρ1 ρ2 ρ3 ρ4

E1
1 0.1464 0.8535 0.1464 0.8535

E2
1 0.8535 0.1464 0.1464 0.8535

Table 5.2: Data-table for the final statistics obtained by quantum predictions.

But since we have a full characterization of the noncontextual polytope for such

scenario (Schmid et al., 2018) we notice that such a behavior is contextual by means of

(C.21).

p12 + p24 − p22 − p13 = 0.8535 + 0.8525− 0.1464− 0.1464 = 1.4132 > 1.

Other oblivious tasks and discussion

Parity oblivious multiplexing represents one restriction of a large class of com-

munication protocols known as oblivious communication. These class of communication

is extremely fundamental for beyond quantum protocols. For the class of n-bit quantum

parity oblivious scenarios there are known optimal quantum bounds (Ghorai and Pan,

2018; Chailloux et al., 2016), such that they achieve a probability of success given by

p(g = xy) =
1

2

(
1 +

1√
n

)
. (5.17)

One can achieve such result by using the relation of parity oblivious scenarios and the

Tsirelson bound for Kochen-Specker scnearios (Chailloux et al., 2016).
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Figure 5.2: Comparison between the optimal guessing strategy, p(g = xy), classical bound
provided by noncontextual models of n-bit parity oblivious multiplexing communication
protocol with respect to the optimal quantum strategy. We see that not only for the
scenarios corresponding to 2 and 3 bits, we have that quantum theory is advantageous, as
shown in (Spekkens et al., 2009a), also for any n-bit scenario, n ≥ 4 we have contextual
advantage.

Since best guessing strategy can be achieved by finite dimensional systems, the

question remains for what are the states that do achieve the optimal strategies. Because

the structure of the quantum set for Spekkens scenarios is not fully understood there are

still no direct algorithmic strategy to find maximal contextual behaviors. Nevertheless,

there are partial results obtained specifically for oblivious communications tasks, where

there has been considered the following approach (Ambainis et al., 2016):

1. First, since the guessing strategy is directly associated with contextuality simply

construct an SDP2 to find, dimensionally fixed, pure states and POVM’s that max-

imise the guess p(g = xy) for n-bits. Since this strategy looks for quantum states

within the scenario we will have a lower bound for quantum description.

2. Second, using an addaptation of NPA3 methods4 run an algorithm for as many

hierarchies possible. Using NPA process we can find an upper bound, and the

upper bound decreases as we increase the number of hierarchies considered.

This approach has been very successful for algorithmically finding close bounds

for lower dimensional systems, very close to the optimal quantum guessing strategy. The

cost is that see-saw lower bounds are very simple to obtain but NPA upper bounds are

computationally demanding as the number of dimensions of the system increases.

2Semidefinite programming.
3NPA is an acronym that stands for Navascués, Pironio and Aćın.
4NPA methods are convex optimization problems for finding the set of quantum correlations using a

hierarchy of programs. For each step in the hierarchy, the algorithm approaches the quantum set from
above: Qk+1 ⊂ Qk, where Qk is the quantum set after k steps, (Navascués et al., 2008).
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5.2 Quantum State Discrimination

Another important quantum information task that is directly associated with

generalized contextuality is quantum minimum error state discrimination (Schmid and

Spekkens, 2018). The ideas for detecting specific states, that represent the distinction

between two (or more) different hypothesis: system in state ρ0 corresponding to hypoth-

esis H0 or system in state ρ1 corresponding with hypothesis H1, and so on, are firstly

reviewed, and also to some extention introduced, in the work of (Helstrom, 1969). In full

generality, the estimation between states is a very difficult task that has been treated ana-

litically for some specific cases (Helstrom, 1969), and that has been structured by means

of linear programming and semi-definite programming techniques to obtain general opti-

mal strategies, providing known necessary and sufficient conditions for reaching optimal

discrimination between multiple hypothesis (Yuen et al., 1975; Barnett and Croke, 2008).

One of many quantum detection paradigms corresponds to minimizing the error associ-

ated with the choice of the wrong hypothesis. We will focus here on the simplest version

that has a known analytic solution: minimum error state discrimination between two

non-orthogonal pure quantum states prepared with equal a priori probability. Later we

relax the necessity of purity using techniques from the resource theory framework.

Quantum binary decision problem

We begin with a formal description of the quantum binary search as first pro-

vided by (Helstrom, 1969). It is normally said that the optimal quantum measurement

for minimum error discrimination is the Helstrom measurement. This measurement pro-

cedures should maximize the probability of guessing correctly between the two hypothesis

at stake. We describe the problem following the notation of (Schmid and Spekkens, 2018).

Let two nonorthogonal pure states |φ〉 and |ψ〉 be among the possible prepara-

tions. Suppose that the system prepares one of the two states with equal probability,

and the receiver would like to distinguish between one or the other. Let |φ̄〉 represent

the antipodal point in the Bloch sphere representation associated with the equatorial

description given by the space spanned by {|φ〉 〈φ| , |ψ〉 〈ψ|}. The states |φ〉 and |φ̄〉 are

orthogonal to one another, and a measurement over the φ basis can distinguish these two

states completely using the projective measurements Mφ := {|φ〉 〈φ| , |φ̄〉 〈φ̄|}. The same

thing is true for the measurements over the ψ basis, Mψ := {|ψ〉 〈ψ| , |ψ̄〉 〈ψ̄|}.
Whenever one implements Mψ over a state |φ〉 there exists a probability that a

nonzero outcome is obtained, creating a sort of misleading impression that the prepared

state was actually |ψ〉. The interpretation is that the state |φ〉 passes the test of being |ψ〉
and, because of that interpretation we refer to this quantity as the confusability, or also

the cost, cq, where the subscript q is the notation for explicitly describing the quantity in

terms of quantum theory. Later, we will provide a fully operational description for the
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task and therefore drop the subscript q (see the beginning of section 3.1 for a clarification

about such distinction in notation).

cq := Tr (|φ〉 〈φ| |ψ〉 〈ψ|) = |〈φ|ψ〉|2. (5.18)

If it is relevant we might write cqφψ as the confusability associated with guessing φ when

the true state is ψ. Although for our case this is irrelevant, such a notion is useful to

describe the problem in more general terms. In the case that cq = 0 we have that the two

states are completely distinguishable. If cq 6= 0 there can be no measurement procedure

that will perfectly distinguish between the two. Let a discrimination measurement be

defined as Md := {Egφ , Eqψ} for,

1. If Md results Egφ then we should guess that the prepared state is φ.

2. If Md results Egψ then we should guess that the prepared state is ψ.

Considering that the preparation performed is described as

P ' 1

2
Pψ +

1

2
Pφ

QM→ 1

2
|ψ〉 〈ψ|+ 1

2
|φ〉 〈φ| , (5.19)

the quantum probability of guessing correctly is given by

sq =
1

2
Tr
(
Egφ |φ〉 〈φ|

)
+

1

2
Tr
(
Egψ |ψ〉 〈ψ|

)
. (5.20)

The measurement scheme optimal for sq, the Helstrom measurement, is the mea-

surement Md described as follows. To refer to the optimality we write the results as a

theorem:

Theorem 12. (Ryan O’Donnel, 2015) Let sq be the optimal probability of guessing cor-

rectly between two states |ψ〉 〈ψ| and |φ〉 〈φ| is given by

sq =
1

2
+

1

2

(
1

2
‖ |ψ〉 〈ψ| − |φ〉 〈φ| ‖1

)
=

1

2

(
1 +

√
1− cq

)
(5.21)

where ‖ · ‖1 denotes the trace norm.
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Proof. First we notice that sq can be rewritten as,

sq =
1

2
Tr
(
Egφ |φ〉 〈φ|

)
+

1

2
Tr
(
Egψ |ψ〉 〈ψ|

)
=

1

4
Tr
(
Egφ |φ〉 〈φ|

)
+

1

4
Tr
(
Egψ |ψ〉 〈ψ|

)
+

1

4
Tr
(
Egφ |φ〉 〈φ|

)
+

1

4
Tr
(
Egψ |ψ〉 〈ψ|

)
+

1

4
Tr
(
Egφ |ψ〉 〈ψ|

)
− 1

4
Tr
(
Egφ |ψ〉 〈ψ|

)
+

1

4
Tr
(
Egψ |φ〉 〈φ|

)
− 1

4
Tr
(
Egψ |φ〉 〈φ|

)
=

1

4
Tr
(
(Egφ + Egψ)(|φ〉 〈φ|+ |ψ〉 〈ψ|)

)
+

1

4
Tr
(
(Egφ − Egψ)(|φ〉 〈φ| − |ψ〉 〈ψ|)

)
=:

1

2
T1 +

1

2
T2

Where we notice that T1 := 1 and that using the Hölder inequality for matrices,

Tr(AB) ≤ ‖A‖p‖B‖q, ∀p, q ∈ [1,∞],
1

p
+

1

q
= 1 (5.22)

for all A,B matrices, so that we have,

T2 =
1

2
Tr
(
(Egφ − Egψ)(|φ〉 〈φ| − |ψ〉 〈ψ|)

)
≤ 1

2
‖Egφ − Egψ‖∞‖ |φ〉 〈φ| − |ψ〉 〈ψ| ‖1 (5.23)

But we have that

‖Egφ − Egψ‖∞ = maxσ(Egφ − Egψ) = max(σ(Egφ) + σ(−Egψ))

= max(σ(Egφ)) + max(−σ(Egψ)) = max(σ(Egφ)) + min(σ(Egψ)) ≤ 1

and that therefore sq ≤ 1
2

+ 1
4
‖ |φ〉 〈φ| − |ψ〉 〈ψ| ‖1. The important point is that this

upper bound can be achieved. Let ∆ := |φ〉 〈φ| − |ψ〉 〈ψ|. Now, we consider σ(∆) ⊆
[−‖∆‖∞, ‖∆‖∞] separating the spectrum into nonegative and negative eigenvalues. Take

Egφ to be the projection into the eigenspace associated with the nonegative eigenvalues

and Egψ the projection into the eigenspace associated with the negative ones. In this

way we have that the eigenvalues of Egφ∆ are all the positive eigenvelues of ∆ and the

eigenvalues of Egψ∆ are the negative eigenvalues of ∆. This is the construction of the so-

called Helstrom measurement. We notice that these measurements hits the bound since

1

2
‖∆‖1 =

1

2

∑
e∈σ(∆)∩R+

0

e− 1

2

∑
e∈σ(∆)∩R−

e =
1

2
Tr(Egφ∆)− 1

2
Tr(Egψ∆) = T2. (5.24)

Now, let 〈φ|ψ〉 = 〈ψ|φ〉 = cos(θ). We have that ∆ has all eigenvalues equal to zero, but

two, that are associated with eigenvectors of the form |Ψ〉 = a |φ〉 + b |ψ〉. Let |Ψ〉 be an
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eigenvector of ∆ and then

∆ |Ψ〉 = ∆(a |φ〉+ b |ψ〉) = a∆ |φ〉+ b∆ |ψ〉

= a |φ〉 − a cos θ |ψ〉+ b cos(θ) |φ〉 − b |ψ〉

= (a+ b cos(θ)) |φ〉+ (−a cos(θ)− b) |ψ〉 ,

so that we have the eigenvalue problem to imply that, letting e to be the notation for the

eigenvalues, ∆ |Ψ〉 = e |Ψ〉

ea = a+ b cos(θ)

eb = −a cos(θ)− b.

Solving these equations for e we have that the only eigenvalue solutions are e = ± sin(θ)

and therefore we have that ‖∆‖1 = sin(θ) + sin(θ) = 2
√

1− cq. �

We have then that the Helstrom measurement as defined in the above theorem

reaches the optimal quantum success probability given by

sq =
1

2

(
1 +

√
1− cq

)
. (5.25)

Since we are interested not only in no-go results that will represent formal proofs

of contextual advantage for a task, but also in actual use of contextuality in experimental

setups we need to have optimal quantum bounds that allow for noisy measurements. These

robust bounds will express how much can a measurement be noisy and still represent a

contextual advantage, so that experimental implementations of the protocol will actually

be using the resource. In section 5.3 we will see that depending on the amount of noise

in the system, the experimenter cannot guarantee contextual advantage of the protocol.

We proceed then to analyse how we can introduce noise to the optimal bound given by

equation (5.25).

First we consider that the measurements Mφ,Mψ to be described by POVM

elements Eφ, Eφ̄, Eψ, Eψ̄ that are not necessarily projections onto φ, ψ. Then, suppose

that preparation of the state |φ〉, say Pφ, is such that whenever we make a measurement

procedure in the ideal case of the POVM Eφ we have, of course, 1. We attribute the noise

factor as much as possible to the measurement procedures that fail to decide weather

the correct hypothesis was chosen, and the remainder of the fluctuations we embed into

the confusability. In this way, if for example Pφ prepares the state |0〉 〈0| we would have

p(φ|Mφ, pφ) = 〈0|Eφ |0〉 = 1 − εφ, with εφ being the error estimation. In this way, we

would attribute the confusability to p(φ|Mφ, Pψ) = cψ. With this idea in mind, by means

of a suitable description of the best choice of the two states in question (Schmid and

Spekkens, 2018, Appendix C) and imposing the symmetries we will discuss in detail when
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a full description of the scenario is presented, we get the noisy optimal bound for the

average success probability of guessing the correct state as

sq =
1

2

(
1 +

√
1− ε+ 2

√
ε(1− ε)cq(1− cq) + cq(2ε− 1)

)
(5.26)

where we notice that ε→ 0 reduces to the noiseless result given by equation (5.25).

Scenario description

Now that we have understood the quantum task of minimum error state dis-

crimination, we would like to make a full description of the operational scenario in order

to answer what is the nonclassical aspect of this task, if any does exist. The fact that

one cannot distinguish between two nonorthogonal states cannot be viewed as essentially

nonclassical, taking the notion of classicality to be generalized noncontextuality. Simply

because as we have seen in figure 3.1 we might simply describe nonorthogonal states as

overlapping epistemic states. In the region they overlap we could not fully distinguish

between the two states of reality, but this event can still be described by a noncontextual

ontological model, hence classical.

As the discussion we have so far suggests, the nonclassicality of the task does not

arises as the impossibility to determine correctly the state, but in the dependence between

the success of the task, that we denote operationally as s, and the epistemic distributions

associated with the preparations.

Definition 29. Let Bsd be the scenario defined by four preparation procedures P1, . . . , P4

that satisfy the operational equivalences,

EP :⇐⇒ 1

2
P1 +

1

2
P2 '

1

2
P3 +

1

2
P4 (5.27)

and that the experimenter performs three binary-outcome tomographically complete mea-

surement procedures M := {M1,M2,Md}. This is the operational scenario that fits the

information task of minimum error state discrimination. ♦

We notice that in quantum terms the we simply have the measurements M1 =

Mφ = {Eφ
φ , E

φ

φ̄
},M2 = Mψ = {Eψ

ψ , E
ψ

ψ̄
}, M3 = Md, and that letting Pφ to be the prepa-

ration of the quantum state |φ〉 〈φ|, we have

1

2
|φ〉 〈φ|+ 1

2
|φ̄〉 〈φ̄| = 1

2
=

1

2
|ψ〉 〈ψ|+ 1

2
|ψ̄〉 〈ψ̄| (5.28)

and since M is chosen to be tomographically complete the probability, the Born rule can

never distinguish these two new procedures that were convexly defined in equation (5.28).
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Although the scenario Bsd has been fully described there are some symmetries

that can be imposed so that we reach the operational description given by the optimal

bounds in equations (5.25) and (5.26). We describe these symmetries as:

s = p(gφ|Md, Pφ) = p(gφ̄|Md, Pφ̄) = 1− p(gφ|Md, Pψ) = 1− p(gψ|Md, Pψ̄) (5.29a)

c = p(φ|Mφ, Pψ) = p(ψ|Mψ, Pφ) = p(φ̄|Mφ̄, Pψ̄) = p(ψ̄|Mψ̄, Pψ̄) (5.29b)

1− ε = p(ψ|Mψ, Pψ) = p(φ|Mφ, Pφ) = p(ψ̄|Mψ̄, Pψ̄) = p(φ̄|Mφ̄, Pφ̄) (5.29c)

These symmetries represent the fact that the average confusability does not vary if we

are confusing in one way, expressed by p(φ|Mφ, Pψ), or in the related one, denoted by

p(ψ|Mψ, Pφ). It is possible not to impose these symmetries to consider the full generality of

the process. For our discussion with the quantum case such description will be considered

as a special case of interest for a cleaner comparison with the quantum optimal bounds

given by (5.26) and (5.25). In this way, we will be able to describe the behavior with the

following data-table:

Pφ Pφ̄ Pψ Pψ̄
Eφ
φ p(φ|Mφ, Pφ) p(φ|Mφ, Pφ̄) p(φ|Mφ, Pψ) p(φ|Mφ, Pψ̄)

Eψ
ψ p(ψ|Mψ, Pφ) p(ψ|Mψ, Pφ̄) p(ψ|Mψ, Pψ) p(ψ|Mψ, Pψ̄)

Ed
gφ

p(gφ|Md, Pφ) p(gφ|Md, Pφ̄) p(gφ|Md, Pψ) p(gφ|Md, Pψ̄)

Table 5.3: Behavior representing the statistics of scenario Bsd.

And if we impose equations (5.29a)-(5.29c) we obtain the data-table represen-

tation of the operational results associated with minimum error state discrimination,

including the noise model that respects and average relation given by equation (5.29c).

Pφ Pφ̄ Pψ Pψ̄
Eφ
φ 1− ε ε c 1− c

Eψ
ψ c 1− c 1− ε ε

Ed
gφ

s 1− s 1− s s

Table 5.4: Behavior representing the operational description of the success rate s, the
confusability c and the noise ε of scenario Bsd. Here we consider the validity of (5.29a)-
(5.29c), but one could drop such constraints and simply work with the general behavior
description of table 5.3.

Justifying the operational equivalences

Since we do not require quantum mechanics as an a priori underlying description

of reality we need to justify that the operational equivalences defined by

1

2
Pφ +

1

2
Pφ̄ ' P 1

2
φ+ 1

2
φ̄ ' P 1

2
ψ+ 1

2
ψ̄ '

1

2
Pψ +

1

2
Pψ̄. (5.30)
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are physically relevant. Although these operational equivalences are satisfied by the quan-

tum minimum error state discrimination task, would it be reasonable to expect that gen-

eral classical protocols would also respect such equivalences?

In (Schmid and Spekkens, 2018) the authors discuss that although noisy experi-

ments will not necessarily satisfy neither the operational equivalences, neither the imposed

symmetries; by means of the free operations of the resource theory developed in chapter 4,

it is always possible to use post processing of the data-table obtained in order to force the

symmetries and the operational equivalences in the scenario. In this way we are allowing

for the experimentalist to verify contextuality, since the free operations cannot make any

data-table contextual, by definition. It is also useful that the symmetries can be imposed

with the free operations, since they greatly simplify the analysis for specific tasks. These

were the first evidences that the resource theory have a great significance, but they do

not notice that it could also be useful to witness contextuality itself as we have noticed

in section 4.3.

Therefore, the operational equivalences are robust, in the sense that we can main-

tain them in real noisy experiments. By this does not mean that they are physically ap-

pealling: remember that we have introduced preparation Pφ̄ because we need operational

equivalences to impose a noncontextuality assumption for the ontological model. It might

be simply a unreasonable trick to create nonclassicality by force: Criticism in this spirit

leads to completely new attempts to even define noncontextuality. But we would like to

make the following interpretation (Lostaglio and Senno, 2020): let Pφ̄ be a preparation

procedure such that,

p(φ|Mφ, Pφ̄) = 0 (5.31)

This way we will have that, for all measurement events [k|M ] we will have operationally

that,

p(k|M,Pφ) + p(k|M,Pφ̄) = p(k|M,Pψ) + p(k|M,Pψ̄) (5.32)

and we can summarize this as follows: let the symmetries (5.29a)-(5.29c) be imposed,

through considerations of the noise model and aproximations of average confusability and

success probability of the task. We are able to sustain these symmetries via the free

operations. Now, since we can perceive from table 5.4, making ε → 0, we have for any

measurement event that equation (5.32) holds, which can be understood operationally

by means of fair dice convex combination of the procedures associated with one another,

having condition p(φ|Mφ, Pφ̄) = ε → 0 as a reference. This establishes that the ideal

scenario with ε → 0 has a physical interpretation by acknowledging the existence of a

preparation such that p(φ|Mφ, Pφ̄) = ε → 0. As it was already pointed out, the noise

model will most likely destroy the operational equivalences, but using the free operations

we can restore them without loss of the argument.
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We notice that it is important to proceed in this way and bring an intuitive

physical interpretation here, differently to what we have done so far for the parity oblivious

tasks because the operational equivalences there were imposed by the task itself. In the

tasks of minimum error state discrimination and state-dependent quantum cloning we

need to introduce these somewhat indirect operational descriptions in orther to impose

the noncontextual hypothesis. Doing so, we provide with a case study a methodology

for application of generalized noncontextuality as a framework, for possibly new scenarios

that still to be discovered to be a facet of nonclassicallity, and also providing a rigorous

technique for describing what is nonclassical in the task.

Noncontextual bound for the discrimination task

With the techniques we gathered so far we can obtain a relationship between

(s, c, ε), the three degrees of freedom defining the behavior in our scenario Bsd with the

symmetries that provides information about the interplay between the variables (s, c, ε)

and our resource. The full set of facet-defining inequalities of the noncontextual polytope,

as presented in chapter 3 and appendices D, C does that.

In (Schmid and Spekkens, 2018) the authors also prove the noncontextual bound

for the ideal scenario using a diagrammatic intuitive description, but since we are mostly

interested in the noisy version, that it is achieved using the techniques for general obtaining

noncontextuality inequalities we want to show the validity of the following result.

Theorem 13. For any noncontextual ontological model respecting the symmetries (5.29a)-

(5.29c) over data-tables B ∈ Bsd we will have the trade-off between the average success

rate of the task s, the average confusability c and the noise ε given by:

s ≤ 1− c− ε
2

(5.33)

with the ideal scenario as a special case with condition ε→ 0.

Proof. The proof is greatly simplified once one notices that this trade-off is actually a

tight noncontextuality inequality of the polytope NC(Bsd). Therefore we might use the

algorithmic approach, since the dimension of the problem does not make it unfeasible.

Using this approach, with notation described by the algorithm of appendix C, we find the

inequality:
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(225)− x44 + x46 + x50− x52 ≤ 1

− pψ,φ̄ + pψ,ψ + pd,φ − pd,φ̄ ≤ 1

− (1− cφ̄) + (1− εψ) + sφ − (1− sφ̄) ≤ 1

cφ̄ + sφ + sφ̄ − εψ ≤ 2
(5.29a)−(5.29c)

=⇒

c− ε+ 2s ≤ 2 =⇒ s ≤ 1− c− ε
2

The number (225) is the number given by inequality using PORTA. The labeling follows

the direction that was chosen by the Fourier-Motzkin elimination protocol, where they

have cancelled all odd variables, so we simply consider x38 = p(φ|Mφ, Pψ) = p(1|M1, P1)

and we follow the labeling that is associated with table 5.3 and appendix C.

x44 ≡ p(1|M2, P2), x46 ≡ p(1|M2, P3), x50 ≡ p(1|M3, P1), x52 ≡ p(1|M3, P2) (5.34)

We have also considered the situation that is depicted in appendix D of (Schmid and

Spekkens, 2018), where they do not impose the symmetries, therefore letting the different

noise and confusability quantities be labeled by the operational description that generates

them, such as cφ = p(ψ|Mψ, Pφ), and similarly for the other quantities. In this way we

obtain the more general table,

P1 ≡ Pφ P2 ≡ Pφ̄ P3 ≡ Pψ P4 ≡ Pψ̄
1|M1 ≡ φ|Mφ 1− εφ εφ̄ cψ 1− cψ − εφ + εφ̄
1|M2 ≡ ψ|Mψ cφ 1− cφ̄ 1− εψ cφ − cφ̄ + εψ
1|M3 ≡ gφ|Md sφ 1− sψ 1− sφ̄ sφ − sφ̄ − sψ

Table 5.5: Behavior representing the operational description of the primitives from mini-
mum error state discrimination without considering the symmetries.

This is a tight inequality since the noncontextual behavior

1, 0, 0, 1

1, 0, 1, 0

1, 1, 1, 1

 that can

be a realization of table 5.3 achieves the equality, since sφ = 1, sφ̄ = 0, cφ̄ = 1, εψ = 0.

This behavior is also a vertex of the polytope C(Bsd). We conclude that this is a tight

noncontextual trade-off between the primitives that are associated with the minimum

error state discrimination task, imposing a bound on the average success probability. �
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Figure 5.3: Comparison between the quantum optimal noisy bounds for the average
success probability s in equation 5.26 and the noncontextual bound given by the noncon-
textuality inequality from theorem 13. We are always considering the symmetries from
(5.29a)-(5.29c). In the blue curve we have the behaviors that might be achieved by quan-
tum theory and that are conjectured to be optimal. In the yellow region we have the non-
contextuality facet associated with the noncontextual polytope NC(Bsd)∩{symmetries}.

Proof. (of theorem 13 using the resource theory) We provide another demonstration that

the noncontextual bound given is tight and associated with the noncontextual polytope.

First, we notice that in the theorem we consider the scenario Bsd described by the behav-

iors that are given by table 5.4. Notice that for any s ∈ [0, 1] fixed we have that there

is a free operation T that relates the first and the second rows of table 5.4. Therefore,

the noncontextuality inequalities that use only the first two rows for this behavior cannot

present nontrivial bounds for noncontextuality. If we then consider only the behavior of

the first and third rows we will always be able to construct the second row. The structure

is now the same as the one present in the scenario Bsi and we can effectivelly consider, that

the contextual structure from the scenario Bsd ∩ {symmetries} arises from the structure

of the scenario Bsi.

If we write what we have just said, we have the following: Let us denote the set of

behaviors of the same form as in 5.4 as Bsd,sym := Bsd∩{symmetries}. Then, we consider

two maps5 T1 : C(Bsd,sym)→ C(Bsi) and T2 : C(Bsi)→ C(Bsd,sym).

T1 : qM :=

0 0

1 0

0 1

⇒
1− ε ε c 1− c

c 1− c 1− ε ε

s 1− s 1− s s


︸ ︷︷ ︸

B∈Bsd,sym

T1→

(
c 1− c 1− ε ε

s 1− s 1− s s

)
︸ ︷︷ ︸

B∈Bsi

(5.35)

5Notice that, in fact, we are also mostly interested in behavior from Bsi that also satisfy a symmetry:
p21 = p24 and p22 = p23, so that to be extra careful we indeed consider a smaller polytope than Bsi. For
the purpose of the proof, which is finding the inequality s ≤ 1− (c− ε)/2 we not to focus so much in this
fact.
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For T2 we consider similar stochastic maps, such that qM copies the results of

the first measurement procedure and uses permutations between the outcome results

regarding preparation procedures in the same context.

(
c 1− c 1− ε ε

s 1− s 1− s s

)
︸ ︷︷ ︸

B∈Bsi

T2→

1− ε ε c 1− c
c 1− c 1− ε ε

s 1− s 1− s s


︸ ︷︷ ︸

B∈Bsd,sym

(5.36)

Now notice that any behavior of C(Bsi) that respects the noncontextuality as-

sumption needs to be in NC(Bsi). Since we know that NC(Bsi) is given by (C.14)-(C.22)

we can simply notice that (C.20) will give us, considering 1|M1 ≡ gφ|Md and 1|M2 ≡ φ|Mφ

we will have,

p23 + p14 − p12 − p22 ≤ 1

p(1|M2, P3) + p(1|M1, P4)− p(1|M1, P2)− p(1|M2, P2) ≤ 1

p(φ|Mφ, Pψ) + p(gφ|Md, Pφ̄)− p(gφ|Md, Pφ̄)− p(φ|Mφ, Pφ̄) ≤ 1

5.4→ c+ s− (1− s)− ε ≤ 1 =⇒ s ≤ 1− c− ε
2

.

We can conclude the following:

1. For any violation of the inequality (C.20) we have Bsmall = T1(Blarge) is a contextual

behavior. Therefore, Blarge can only be a contextual behavior as well, otherwise we

would have a contradiction. We conclude then that violation of inequality (C.20),

in the form of s ≤ 1− (c− ε)/2, implies contextuality in the scenario Bsd,sym.

2. For any behavior Bsmall respecting the noncontextuality inequality we have that

Bsmall is noncontextual6. Since T2 is a free operation, T2(Bsmall) is also noncon-

textual in the scenario Bsd,sym. Therefore, if Blarge respects the noncontextuality

inequality (C.20) in the form of s ≤ 1 − (c − ε)/2 we get that Blarge is noncontex-

tual, with respect this inequality.

3. We conclude that s ≤ 1− (c− ε)/2 is a noncontextuality inequality for any behav-

ior Blarge ∈ Bsd,sym. Seing in the lights of the operational task, we get that this

inequality is a noncontextual bound for the success probability s.

Therefore by using the resource theory framework we can understand better the

inner structure of the noncontextual polytopes, obtaining noncontextual bounds for com-

6In fact, for Bsmall to be noncontextual it should respect all the noncontextuality inequalities for the
simplest scenario. And indeed, if we write all the inequalities in terms of the elements of Bsmall we have
that the only non-trivial inequalities are s ≤ 1− (c− ε)/2 and s ≤ 1− (ε− c)/2. The second inequality
follows from the first if we consider c ≥ ε, and this is fairly reasonable from an experimental perspective
since, if the error is higher then the confusability one could actually reverse the roles, by making ε→ c.
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plex scenarios from scenarios with a simpler structure. This is one example of such

framework. Notice that without the imposition of the symmetries this is no longer the

case, and we would need to obtain bounds using the full set of tight noncontextuality

inequalities given in (Schmid and Spekkens, 2018). �

We conclude that robust experimental implementations of minimum error state

discrimination will represent advantage with respect to classical counterparts. The re-

source theory for generalized contextuality can be used to restore the operational equiva-

lences and the symmetries imposed. Even without any consideration about the task, we

can also use the resource theory to witness the existence of quantum contextual corre-

lations via the resource theory, as we have discussed in section 4.3. We also notice that

the l1-distance monotone can be used to provide information about the largest differ-

ence between the success probability given by the noncontextual bound, and the optimal

quantum bound.
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BNC
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BNC
1

BNC
op

B

Figure 5.4: Comparing the noncontextual and quantum bounds for the ideal case. The
l1-distance will find the square region depicted in light blue.

By definition, the l1-distance monotone will be calculated by means of,

d(B) := min
B∗∈NC(B)

max
i,j

∑
k

|p(k|Mi, Pj)− p∗(k|Mi, Pj)|.

and for the scenario Bsd ∩ {symmetries} we will have that

d(B) = 2 min
B∗∈NC(B)

max
i,j
|pi,j − p∗i,j|

= 2 min
B∗∈NC(B)

max{|c− c∗|, |s− s∗|}

The optimal noncontextual ideal behavior BNC
op will then be the one where |c − cNCop | =
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|s − sNCop | and sNCop = 1 − cNCop /2. In figure 5.4 we can see why this is the case. Let

BNC
1 be some other noncontextual behavior, such that |s − sNC1 | < |c − cNC1 |. In this

case, max{|c − c∗|, |s − s∗|} = |c − cNC1 |, but since |c − cNCop | < |c − cNC1 | it cannot

be the final result of d(B). The same reasoning apply when we consider BNC
2 with

|s − sNC2 | > |c − cNC2 |. The optimal case will then find the noncontextual behavior in

the boundary of the noncontextuality inequality, such that the difference between the

confusability and the success probability is the same. Since we know the quantum and

the noncontextual bounds we can construct a linear optimization problem such that we

obtain the highest quantum behavior violating the noncontextuality inequality the most:

we simply optimize d restricted to the blue curve in figure 5.4.

5.3 Quantum Cloning

Whenever speaking about quantum cloning, the first important result one re-

members is the famous no-cloning theorem (Wootters and Zurek, 1982). An interesting

extension to mixed state was given in (Barnum et al., 1996).

Theorem 14. (Wootters and Zurek, 1982) Let |φ〉 , |ψ〉 be two different non-orthogonal

quantum states. Then, these two states cannot be perfectly cloned.

Therefore, a direct question we might ask is: how can quantum cloning serve as

a case study for proving quantum contextual advantage? It is well known that classical

states can be cloned at will, serving as the basis for most information processing in

classical computers. As it is adressed in (Sainz, 2020), this question posits important

steps for comprehending what generalized noncontextual bounds for prepare-and-measure

scenarios actually mean.

As we have already noticed with the minimum error state discrimination, the

nonclassicality arises when we notice operational, or in other words statistical equivalences

in the experimental data. Such as saw in the last section, it is quite surprising that

any advantage arises from a task that, a priori, has nothing to do with our common

understanding of the word classical.

For this quantum task, we have a particular important detail to mention: we

consider briefly the action of a transformation procedure. In fact, the idea is that given

a preparation procedure P that we operationally describe, we will include in the scenario

the procedure T (P ), that can be understood as considering the entire Ludwig box P

followed by T as a preparation procedure. In quantum terms, considering a Schrödinger

picture operational description. There is still much work towards a full comprehension of

how, when and why we can consider the relationship between transformation procedures

and prepare-and-measure scenarios. The paper of (Lostaglio and Senno, 2020) is one of

the attempts to study such a situation. Another one that deals with anomalous weak
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values and that it is interesting for quantum thermodynamics is the study presented in

(Kunjwal et al., 2019).

Scenario description

The description of the state-dependent quantum cloning task is as follows: We

consider two preparation procedures Pa, Pb, that are associated in the quantum description

with preparing the two states |a〉 〈a| and |b〉 〈b| to be cloned. We then suppose that a new

pair of preparation procedures, Pα, Pβ that are the procedures Pα = T (Pa) and Pβ = T (Pb)

associated with the preparation procedure of the cloned states. This would correspond to

effectively using a cloning unitary Pα
QM
≡ |α〉 := U |a, 0〉, where |0〉 is the initial state of

some ancilla that we use for the cloning process. Given that we have these procedures,

we would like to suppose that there are procedures Paa, Pbb that give the ideal prepared

clones, that we represent in quantum theory as |a, a〉 ≡ |aa〉.
For each of these procedures we suppose that there exist some measurements that

perfectly test whether the preparation was correct. Such as in the minimum error state

discrimination task, we suppose that:

1. For each preparation Ps, for s ∈ {a, b, α, β, aa, bb} =: Iqc there exists measurement

procedures Ms that test with certainty if preparation Ps was performed.

2. There exists complementary preparation procedures Ps⊥ , that are clear in light of

our discussions from section 5.2.

3. For each (s, s′) ∈ {(a, b), (α, aa), (β, bb)} we have the operational equivalences 1
2
Ps+

1
2
Ps⊥ ' 1

2
Ps′ +

1
2
Ps′⊥ .

The intuition behind this operational description, that is ideal since we are not

allowing for noise in the probabilities p(1|Ms, Ps) = 1, for all s ∈ Iqc, is similar to the

one from Bsd: we notice the fundamental description of the preparation and measure

primitives, at the operational level, and then we also acknowledge some symmetries that

are due to the so-called “purity” of the statistics. We here then consider the following

description for the scenario Bqc :

Definition 30. Let P := {P1, . . . , P12} a set of preparation procedures and M := {M1, . . . ,M6}
a set of binary-outcome measurement procedures. We consider that there are no opera-

tional equivalences between the measurement procedures but, we assume

1

2
P1 +

1

2
P2 '

1

2
P3 +

1

2
P4 (5.37)

1

2
P5 +

1

2
P6 '

1

2
P7 +

1

2
P8 (5.38)

1

2
P9 +

1

2
P10 '

1

2
P11 +

1

2
P12 (5.39)
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for the preparation procedures. We will refer to this scenario as Bqc. ♦

This operational scenario described in the terms of (Schmid et al., 2018) relates

to the one in (Lostaglio and Senno, 2020) via the following definition:

Definition 31. Letting the following labels for the preparation procedures to act: P1 ≡
Pa, P2 ≡ Pa⊥ , P3 ≡ Pb, P4 ≡ Pb⊥ and so on, we then suppose the label correlation

a, a⊥, b, b⊥, α, α⊥, aa, aa⊥, β, β⊥, bb, bb⊥ → 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 (5.40)

. Letting M1 ≡ Ma,M6 ≡ Mbb following the ordering a, b, α, β, aa, bb. And, by also

imposing the symmetries associated with the purity, or also, the idealizations in the

scenario, as

p(1|Ms, Ps) ≡ ps,s = 1, ps,s⊥ = 0, ∀s ∈ {a, b, α, β, aa, bb} (5.41)

♦

Quantum contextuality in the cloning scenario

Using the resource theory results we can infer the following:

Theorem 15. The scenario Bqc has quantum contextual realizations.

Proof. First we notice that the scenario Bqc can be written in the form of

Bqc = B6 � B6 � B6, (5.42)

where B6 is the scenario that constitutes the same operational structure for preparation

procedures as the scenario Bsi but having 6 measurement procedures. Since we allow for

ideal measurements for the purpose of quantum cloning task, we know that each scenario

B6 has a quantum contextual behavior because there exists free operations T : B6 → Bsi
with T (B) ∈ C(Bsi) quantum contextual correlation. Therefore B must be a quantum

contextual correlation.

The operational structure for the scenario Bqc given in terms of the weight vectors

γ1
P , γ

2
P , γ

3
P are given by the following equations:

γ1
P =

(
1

2
,
1

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0,

1

2
,
1

2
, 0, 0, 0, 0, 0, 0, 0, 0

)
(5.43)

γ2
P =

(
0, 0, 0, 0,

1

2
,
1

2
, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0,

1

2
,
1

2
, 0, 0, 0, 0

)
(5.44)

γ3
P =

(
0, 0, 0, 0, 0, 0, 0, 0,

1

2
,
1

2
, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1

2
,
1

2

)
(5.45)
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If we let γ =
(

1
2
, 1

2
, 0, 0; 0, 0, 1

2
, 1

2

)
=
(
~α, ~β

)
= γsi the weights for the simplest scenario we

can see that, by using definition 28, we would have that the operational equivalences for

B6 � B6

γP
1
B6�B6

=

(
1

2
,
1

2
, 0, 0, 0, 0, 0, 0; 0, 0,

1

2
,
1

2
, 0, 0, 0, 0

)
=
(
~α1

B6�B6
, ~β1

B6�B6

)
γ2
P B6�B6

=

(
0, 0, 0, 0,

1

2
,
1

2
, 0, 0; 0, 0, 0, 0, 0, 0,

1

2
,
1

2

)
=
(
~α2

B6�B6
, ~β2

B6�B6

)
and, performing the same procedure again to obtain the weights for B6 � B6 � B6 we will

have,

γ1
B6�B6�B6

=
(

0, 0, 0, 0, ~α1
B6�B6

; 0, 0, 0, 0, ~β1
B6�B6

)
γ2

B6�B6�B6
=
(
~α1

B6�B6
, 0, 0, 0, 0; ~β1

B6�B6
, 0, 0, 0, 0

)
γ3

B6�B6�B6
=
(

0, 0, 0, 0, ~α2
B6�B6

; 0, 0, 0, 0, ~β2
B6�B6

)
γ4

B6�B6�B6
=
(
~α2

B6�B6
, 0, 0, 0, 0; ~β2

B6�B6
, 0, 0, 0, 0

)

as we have explicitly from definition 28, this is how we construct the operational equiva-

lences for the box product scenarios. This is then,

γ1
B6�B6�B6

=

(
0, 0, 0, 0,

1

2
,
1

2
, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0,

1

2
,
1

2
, 0, 0, 0, 0

)
γ2

B6�B6�B6
=

(
1

2
,
1

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0,

1

2
,
1

2
, 0, 0, 0, 0, 0, 0, 0, 0

)
γ3

B6�B6�B6
=

(
0, 0, 0, 0, 0, 0, 0, 0,

1

2
,
1

2
, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1

2
,
1

2

)
γ4

B6�B6�B6
=

(
0, 0, 0, 0,

1

2
,
1

2
, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0,

1

2
,
1

2
, 0, 0, 0, 0

)

and we notice that γ1
B6�B6�B6

= γ4
B6�B6�B6

, so we might as well drope one of these two,

since we are clearly over counting. And we see that the weights for the box scenario

B6 � B6 � B6 are the same weights for the scenario Bqc, from equations (5.43)-(5.45). For

the measurement procedures we have in each scenario B6 that M1,2,3 = {M1,2,3
1 , . . . ,M1,2,3

6 }
and we consider the relabel associated with the scenario Bqc to be M1,2,3

i ≡ Mi. We

therefore have the dimensionality of the polytopes matching by,

dim(Bqc) = 2× 6× 12 = 3 (2× 6× 4) = 3 dim(B6) (5.46)
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Since we have that the map � preserves the operational structure, and the noncontex-

tuality polytope we conclude that the scenario Bqc has quantum contextuality that is

accessible. �

There are then two conclusions we might draw from theorem 15: The first one is

that we have only provided an operational demonstration of existence of quantum con-

textuality for the scenario. This corresponds then to evidence that the quantum cloning

task might be advantageus with respect to classical analogs under these circunstances,

but theorem 15 itself does not constitutes a proof of quantum advantage. It constitutes a

no-go theorem: there are quantum behaviors in Bqc that cannot be achieved by classical

probability, when classicality is understood as arising from noncontextuality hypothesis.

The second conclusion we draw is that we only need to obtain the full set of tight in-

equalities for the scenario B6, which represents a considerable simplification in terms of

computational complexity. In this case, we are not even considering the simmetries arising

from an idealization of the scenario, so there might have even more simplifications that

appear in this case, such as it was when we were treating the ideal scenario for Bsd.

Quantum advantage

To observe quantum advantages we must first consider how are we measuring the

success of a guiven task. In the case of the cloning scenario, we would like to know if the

preparation procedures Pα for example, for the cloning event |a〉 → U(|a, 0〉) is as close

as possible to the states Paa associated by |aa〉. For such a purpose we use the fidelity

(Nielsen and Chuang, 2002) as a measure of how much these two preparations are equal.

For treating the problem without assuming the validity of quantum theory we

need an operational definition of the fidelity:

Definition 32. (Lostaglio and Senno, 2020) Let p(1|Maa, Pα) ≡ paa,α be our notation

for the conditional probabilities in the behaviors corresponding to the scenario Bqc from

definition 31. Then, the global cloning fidelity operationally defined is, Fg : Bqc → R+

defined as,

Fg :=
1

2
paa,α +

1

2
pbb,β (5.47)

the average probability that the imperfect clones Pα, Pβ pass the test for the ideal clones

Maa,Mbb. ♦

The important considerations for quantum advantage need to be expressed in

terms of the fidelity. For quantum theory it is known the optimal result given by,

Theorem 16. (Bruß et al., 1998) The optimal quantum fidelity from the scenario Bqc is

described by the following equation,

FQ
g =

1

4

(√
(1 + pb,a)(1 +

√
pb,a) +

√
(1− pb,a)(1−

√
pb,a)

)2

(5.48)
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where we have that pb,a = |〈a|b〉|2 is again the confusability associated with the preparation

|a〉 passing the test of Mb.

We have then to obtain a bound that any noncontextual model would be restricted

to associated with the fidelity given operationally by definition 32. We consider only the

ideal case, where we have the following result, proved in (Lostaglio and Senno, 2020).

Theorem 17. Considering an ideal scenario, that assumes the operational description of

definition 31, we have that any noncontextual model will have a fidelity bounded by the

optimal FNC
g ,

Fg ≤ FNC
g = 1− pb,a

2
+
pbb,aa

2
. (5.49)

This result shows that the quantum success arising from the operational task of

state dependent quantum cloning measured by the fidelity is higher then any noncontex-

tual explanation one could provide. Letting pbb,aa = p2
b,a to be a symmetry induced by the

quantum description, we have that the behavior of the fidelity under the noncontextuality

assumption, compared with the optimal cloning one for the ideal description of definition

31 is always larger.
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Quantum
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Figure 5.5: Comparing the optimal quantum fidelity with the optimal fidelity that any
noncontextual ontological model need to obey. We plot the optimal fidelities against the
confusability c = pb,a.

We conclude that there exists quantum advantage for the cloning scenario with

respect to noncontextual models. We also notice that there exists a threshold for robust-

ness for a noisy experimental setting. In (Lostaglio and Senno, 2020) the author shows

that for a white noise model,

N (ρ) = (1− v)ρ+
v

4
1 (5.50)

where v is the visibility we get regions of advantage for the quantum fidelity. For

a noise that is too high, the fidelity of quantum cloning becomes smaller then one that it

is achieved by the noncontextual bound.
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Figure 5.6: Comparing the optimal quantum fidelity with the optimal fidelity that any
noncontextual ontological model need to obey. In this case, we are considering that there
exists noise, with visibility parameter given by v = 0.015. We see a region where optimal
quantum fidelity is higher than the noncontextual bound, but that due to noise this is
no longer the case for all c = pb,a. For the noisy fidelity we have considered the one in
(Lostaglio and Senno, 2020).

We would like to conclude this section by pointing out that although the role

that is played by the fidelity might be not directly related to a real measure of noncon-

textuality, both in the sense of a true resource theory monotone, but also in the sense of a

mathematical distance in the space of quantum states, it is the common way to measure

the success of cloning experimental tasks. Therefore, with respect to this function, and

the operational description of the cloning scenario we see that contextuality poses itself

as a resource for advantageous results.

It is also important to stress that in theorem 15 we have not relied on the fidelity

as a witness of quantum contextuality. This is an operational account for the existence of

quantum contextual behaviors. The direct implication is that, although one could criticize

a utilization of the fidelity to express diference between contextual and noncontextual

ontological models, the structure of the scenario Bqc that was introduced in (Lostaglio

and Senno, 2020) does present quantum contextuality, regardless if we take into account

the specific measure of success for the quantum task.
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6
Conclusions and Further Directions

“There is hope that quantum mechanics will gradually lose its baffling qual-

ity... I have observed in teaching quantum mechanics, and also in learning it,

that students go through an experience... The student begins by learning the

tricks of the trade. He learns how to make calculations in quantum mechan-

ics and get the right answers...it is comparatively painless. The second stage

comes when the student begins to worry because he does not understand what

he has been doing. He worries because he has no clear physical picture in his

head... Then, unexpectedly, the third stage begins. The student suddenly says

to himself, I understand quantum mechanics, or rather he says, I understand

now that there isn’t anything to be understood... The duration and severity

of the second stage are decreasing as the years go by. Each new generation

of students learns quantum mechanics more easily than their teachers learned

it...”

- Paul Dirac, quote from (Susskind, 2016)

Although I agree with Paul Dirac, in the sense that students nowadays think

about quantum mechanics in a much more natural way, it is by no means because scientists

are more and more understanding that “there isn’t anything to be understood” but rather

the complete opposite. More and more, we get used to quantum mechanics because of the

invasion of new technologies in the life of all. The earlier we encounter quantum theory,

the earlier we rephrase our imagination and our creativity in quantum terms, but never

without truly searching for why quantum mechanics is the way it is. This is happening

for practical reasons: we need better ways to understand quantum theory so that we will

be more structured to enter the era of quantum computational advantage and quantum

technological applications.

In this work, we have tackled the problem from a foundational perspective: to

start, we devoted time to understanding the word classical means. We suppose a notion

of classicality that is operationally relevant, generalized contextuality. By studying the

resource theoretical approach, we have noticed the following pattern:

95



CHAPTER 6. CONCLUSIONS AND FURTHER DIRECTIONS

1. We first define a fragment of reality that is accessible by the experimenter. This is

our description of a prepare-and-measure fragment.

2. This fragment provides an operational description of the quantum information task

the experimenter will perform.

3. By imposing the assumption that there exists a noncontextual ontological explana-

tion for the results of the experimental setting, we conclude that this information

task is bounded by a parameter.

4. With the results of quantum theory, we are able to show that there are quantum

procedures that violate the noncontextual bound.

5. Later we (generally) realize that the noncontextual bound was associated with a

noncontextuality inequality for the noncontextual polytope associated with the ex-

perimental scenario.

In our work, we have attempted to answer the last item above. The idea was to

provide general ways to witness quantum contextual behaviors present in general prepare-

and-measure scenarios. However, not only that, to construct a framework so that the

noncontextuality inequalities are understood: we based our approaches with known algo-

rithmic results (Schmid et al., 2018) and the resource theory (Duarte and Amaral, 2018).

We were not able to prove the existence of quantum advantage for general scenarios.

However, we have provided a framework where one can engineer operational prepare-and-

measure experimental settings with a quantum contextual structure and that have the

noncontextuality inequalities given, using the box product.

With the resource theory binary map, we could understand why some scenarios

in the literature, that are structurally related, all share quantum contextual behaviors.

Although the complexity grows, some of the features of the noncontextuality polytope

remain.

We have also pointed out that pre/post-processing the quantum behaviors might

be associated with quantum simulation theory, and this can lead to a general technique

for witnessing quantum contextuality for any scenario. These simulation problems are in

general linear programming or semi-definite programming type problems.

Following this dissertation, there are many new directions to follow. To mention

just a few, we could try to understand the connection between generalized contextuality

and measurement-based quantum computation; Another direction possible is that many

works indicate the relationship between protocols for measuring quantum thermodynamic

quantities and negativity of quasi-probability distributions, which is an instance of con-

textual behavior (Lostaglio, 2020).

Other directions are to study the connection of the notion of transformation con-

textuality applied to experimental scenarios. There are structural results (Schmid et al.,
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2020c) limiting the transformations under some circumstances, based on a categorical

approach to quantum theory. In (Baldijão et al., 2020) the connection between scenarios

with transformation procedures, prepare-and-measure scenarios, and the emergence of

objectivity as an instance of noncontextuality was pointed out, and some general aspects

of transformation contextuality were carefully considered. We believe that much more is

still to be understood in that path.

A possible future direction can be associated with understanding the connection

between generalized contextuality and other definitions of contextuality that try to en-

compass experimental robustness. In (Tezzin et al., 2020) a new interesting connection

between the compatibility scenario approach and the contextuality-by-default was ob-

tained, it would be interesting to search for similar connections thinking on generalized

contextuality.
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A
Glossary

In this section we wanted to provide further clarifications to the concepts that are

fairly used, or even fundamental, to those who intent to deepen the work presented here.

Since there is a strong interplay between philosophy of science, quantum physics, quantum

information theory and experimentally minded theories when we speak about quantum

generalized contextuality, we believe that those starting this research field might feel the

need of an introduction to concepts that are, for obvious reasons, meagre in standard

courses of physics. For example, research in foundations of quantum mechanics tend to

express ideas such as realism, which is perhaps the most important one in the current

study of that area, but without reasoning what type of realism is one committed to it.

This might be a lack of philosophical attention in early courses of physics, but it can lead

to misinterpretations. For example, we know now that the EPR realism is different than

the Einstein view about a realistic approach towards scientific reasoning. But also Bohr

realism, neo-realism or realism that gathers independence of an experiment device and

cosmological ideas are all different notions. In this work we wanted to bring light to one

notion of realism due to Spekkens, that is committed to Leibniz and Reichenbach.

1. Einstein Realism: In the paper of 1935 Einstein, Podolsky and Rosen tried to express

the negative perception towards the quantum mechanical description of physical

reality that they had by an argument of reduction to absurd. In the paper they

use arguments (there is a very nice analysis of the EPR1 argument and a careful

consideration of their assumptions in (Hermens, 2010)) that are usually described

as the criticism of Einstein being mainly focused on non-locality. But as one can

really see in Einstein’s letters do Schrödinger (Howard, 1985) Einstein himself had

a different (stronger) conception of what would be necessary for a physical theory

to describe reality. In his mind, a realistic theory should be able to describe the

fact - this is more close to his realistic approach towards nature - that there are

independent and separable systems. We must notice that this is much stronger

1This acronym is famously due to the paper (Einstein et al., 1935) by Einstein, Podolsky and Rosen.
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than a notion of non-locality: he argues that two pairs of systems should have their

existence in a separable manner and analysed paradoxes and contradictions growing

from that notion of realism. The best source for that is (Howard, 1985) in which in

fact we even learn that Einstein himself seamed a bit upset with the final printed

paper of 1935.

2. The Principle of Indiscernibles : Leibniz had in his philosophical commitments a

set of principles of knowledge that represented the nucleus of his theoretical con-

struction. Using this principles he tried to make a study on the abstract aspects

of knowledge, such as the ideas, the act of thinking, etc. One of these principles is

called the principle of indiscernibles that can be put in words as: there exist no two

beings that are identically equal in the universe; each being is intrinsically different

than the other and this difference is the essence of that thing (Chaúı, 1983). This

can be putted logically as, given two objects x and y, for properties F we have that

(Forrest, 1996)

x = y → ∀F (Fx ⇐⇒ Fy), (A.1)

were we have that, if there are two things in the universe that are identical then

one need that these two things must have the same properties no matter which,

otherwise they would be discernible. And we can make this construction equivalent

to

∀F (Fx ⇐⇒ Fy)→ x = y (A.2)

which is the logical definition that Spekkens is committed towards his notion of

noncontextuality. If no property can be used to distinguish either object from one

another, hence these should be representing the exact same thing (Spekkens, 2019).

3. Ontologic model : We mean an ontological commitment towards one presumed op-

erational theory. Given a list of instructions for the experimentalist to perform in

the laboratory that will provide oneself with probabilities an ontological model will

prescribe the existence of entities with respect to that given operational prescrip-

tion that will propose the ontic states of the system that has been studied in the

experiment, inferring with this at least something about that ontic state. The ob-

served features, described here in the generalized probabilistic theories framework,

are then inferences about the ontic states and, it’s considered that the experiment

represent some feature of the system that is related to the ontological commitment;

in other words, the experiment will represent the entities that were considered to

exist once one proposes a connection between the ontic states and the operationally

obtained statistics. The number of ontic states, that will be the existing entities

of the model, will depend on what does it take for the model to be considered as

representative of physical reality (that it is not the notion present in the EPR paper
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but the one present in philosophy: Being of a Thing.) For the purposes of our work

an extremely succinct description can be found in (Spekkens, 2005, sec. II pg. 2)

“An ontological model is an attempt to offer an explanation of the suc-

cess of an operational theory by assuming that there exist physical systems

that are the subject of the experiment. These systems are presumed to

have attributes regardless of whether they are being subjected to exper-

imental test, and regardless of what anyone knows about them. These

attributes describe the real state of affairs of the system.”

4. Ontic: Relates to a complete description, or specification, of the defining aspects

and properties of something. This means that by ontic we mean that that something

has all it’s real comprehention of physical purpose and intent known. Hence, by the

ontic state of the system we consider that the state the system is correspond to

the reality of the existing aspect. By knowning the ontic state of the system one

could known every real aspect or infer everything of that specific system, it’s true

being, meaning not only predictability with probability one but also (philosophical)

understanding of the nature that is involved on the construction of that existence.

“In the present context, an ontic state refers to something that objectively

exists in the world, independently of any observer or agent. In other

words, ontic states are the things that would still exist if all intelligent

beings were suddenly wiped out from the universe.” (Leifer, 2014, pg. 69)

5. No-go theorem: The physicist and philosopher Ronnie Hermens defines the term as

follows:

“(..) what no-go theorems actually prove. The setup of such theorems is

that, first, certain plausible assumptions for physical theories are formu-

lated. Then, it is shown that no theory that satisfies these assumptions

can reproduce the predictions of quantum mechanics. Consequently, if

quantum mechanics is taken to provide the correct predictions, one of the

assumptions has to be rejected. ” (Hermens, 2016, Introduction, pg. 4)

In his work, he proceeds to study what is the meaning of some important no-go

results, such as the Kochen-Specker theorem, when dealing with different interpre-

tations of quantum probability theory. We can therefore understand the content of

no-go theorems formulated in terms of logical expressions leading to contradictions.

For example, in (Hermens, 2011), the author draws the logical description of the

assumptions at play in the Kochen-Specker theorem as,

QM ∧Realism ∧CP ∧ FM→ ⊥, (A.3)
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where CP means the Correspondence Principle stating that there exists a bijec-

tive correspondence between observables and self-adjoint operators, and FM means

Faithful Measurements stating that measurements of the observables reveals

their values at that time, and finally, the symbol ⊥ means contradiction. The non-

contextuality assumption is then part of CP,

QM ∧Realism ∧ IP ∧NC ∧ FM→ ⊥, (A.4)

where NC is a formulation of Noncontextuality and IP stands for the Identifi-

cation Principle. The idea is that, writing equations such as (A.4), makes clear

the fact that we could give up some of the assumptions to avoid the contradiction.

In fact, this discussion is relevant for what we understand as loopholes as well, since

stating every hidden assumption in the arguments of no-go theorems (or by simply

considering idealizations in the arguments) make very complicated to implement

experimentally (the validity of) these theorems, since some of the assumptions might

not be satisfied entirely during the procedure; therefore not fully validating the

logical contradictions such as (A.4). The most famous example is the experimental

implementation of a loophole-free Bell test (Giustina et al., 2015). No-go theorems

are not only present in quantum theory, but also in relativistic quantum mechanics or

quantum field theory (the algebraic approach) there exists no-go theorems related to

the impossibility of particle interpretations (Malament, 1996). For the philosophical

discussions concerning no-go results, see (Oldofredi, 2019) for a recent reference.

6. Ontological Commitment: Regarding the set of choices that one makes when con-

structing a theory, there always exists a set of truth conditions that must be satisfy

by any entity within the theory.

“On its face, the notion of ontological commitment for theories is a sim-

ple matter. Theories have truth conditions. These truth conditions tell

us how the world must be in order for the theory to be true; they make

demands on the world. Sometimes, perhaps always, they demand of the

world that certain entities or kinds of entity exist. The ontological com-

mitments of a theory, then, are just the entities or kinds of entity that

must exist in order for the theory to be true. ” (Bricker, 2016, Introduc-

tion)

This clarifies the following: although many interpretations of quantum theory do

not assume the existence of any underlying ontology, or ontological models in the de-

scription we consider for this work, every interpretation of the theory must have some

ontological commitment regarding what are the truth conditions allowed. Denying
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the ontological model framework as presented in this dissertation constitutes itself

as an ontological commitment.
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B
Contextuality for quantum theory

B.1 Preparation contextuality

In this section we will develop the proof given by (Banik et al., 2014) of prepara-

tion contextuality for quantum theory that was stated in theorem 3.

In this chapter we proceed to demonstrate theorem 3. The general idea is ex-

tremely similar to the one given by Spekkens and it is mostly based upon definitions 17

and 16.

1
2

|ψc〉

|ψa〉

|ψb〉
|ψ⊥a 〉

|ψ⊥c 〉
|ψ⊥b 〉

|φn〉

|φ⊥n 〉

ρn·

Figure B.1: Representation of the mixed state and all the six decompositions we will
consider in the proof of preparation contextuality.

Any mixed state ρn from a qubit can be written as

ρn =
1

2
(1 + ~n · ~σ) (B.1)
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were 0 ≤ |~n| < 1. We will follow (Banik et al., 2014) directly. Define |~n| = q. Then we

will consider the six possible decompositions of the state ρn:

ρn =
1− q

2
|φ⊥n 〉〈φ⊥n |+

1 + q

2
|φn〉〈φn| (B.2)

=
1− q

2

(
|ψa〉〈ψa|+ |ψ⊥a 〉〈ψ⊥a |

)
+ q|φn〉〈φn| (B.3)

=
1− q

2

(
|ψb〉〈ψb|+ |ψ⊥b 〉〈ψ⊥b |

)
+ q|φn〉〈φn| (B.4)

=
1− q

2

(
|ψc〉〈ψc|+ |ψ⊥c 〉〈ψ⊥c |

)
+ q|φn〉〈φn| (B.5)

=
1− q

3
(|ψa〉〈ψa|+ |ψb〉〈ψb|+ |ψc〉〈ψc|) + q|φn〉〈φn| (B.6)

=
1− q

3

(
|ψ⊥a 〉〈ψ⊥a |+ |ψ⊥b 〉〈ψ⊥b |+ |ψ⊥c 〉〈ψ⊥c |

)
+ q|φn〉〈φn| (B.7)

where we have that |ψn〉〈φn| = 1
2

(1 + n̂ · ~σ) and we construct the vectors |ψa〉, |ψb〉
and |ψc〉 are chosen, similarly with the simetric construction of all proofs in (Spekkens,

2005), such that every line between antipodal points has a distance of 60◦ with the other

antipodal lines, from the labels b and c. Since we are considering antipodal points in

the Bloch spechere this means that for each preparation associated with, say |ψa〉〈ψa| we

have that the orthogonal one can be distinguished by a single-shot experiment, because

of definition 16 we have that, for all λ ∈ Λ,

µn(λ)µn⊥(λ) = 0 (B.8)

µa(λ)µa⊥(λ) = 0 (B.9)

µb(λ)µb⊥(λ) = 0 (B.10)

µc(λ)µc⊥(λ) = 0 (B.11)

were we just define µn = µ|φn〉〈φn|, and etc. We have that the six decompositions are

associated with six different contexts. Considering now definition 17 we have that the

noncontextual assumption will lead us to the following relations:
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µρn(λ) =
1− q

2
µn⊥(λ) +

1 + q

2
µn(λ) (B.12)

=
1− q

2
(µa(λ) + µa⊥(λ)) + qµn(λ) (B.13)

=
1− q

2
(µb(λ) + µb⊥(λ)) + qµn(λ) (B.14)

=
1− q

2
(µc(λ) + µc⊥(λ)) + qµn(λ) (B.15)

=
1− q

3
(µa(λ) + µb(λ) + µc(λ)) + qµn(λ) (B.16)

=
1− q

3
(µa⊥(λ) + µb⊥(λ) + µc⊥(λ)) + qµn(λ) (B.17)

Since there are no solutions that are consistent with (B.8)-(B.17) we have that the rep-

resentation of quantum theory of any mixed state is inconsistent with preparation non-

contextual ontological model. Let’s consider that Λρ is the support of µρn(λ). Then,

considering all the ontic states λ ∈ Λρ we will have that, for example, take (B.8), this

means that either µn(λ) or µn⊥(λ) has to be equal to zero. Then there are in total 16

possible situations like that one, in order to satisfy (B.8)-(B.11). Let us consider each

one:

1. For the case were µn(λ) = µa(λ) = µb(λ) = µc(λ) = 0 we will have that necessarily

µρn(λ) = 0. But since λ ∈ Λρ we have a contradiction.

2. If we have that µn(λ) = µa⊥(λ) = µb(λ) = µc(λ) = 0, then we have that from (B.13)

it follows that µρn(λ) = 1−q
2
µa(λ) and from (B.16) we have that µρn(λ) = 1−q

3
µa(λ).

Because we have that q > 0 the latter equations imply µρn(λ) = 0. Hence we get

our contradiction. Notice that by the symmetry of the conditions (B.8)-(B.11) we

have that same result for the other two symmetric cases b and c: µn(λ) = µa(λ) =

µb⊥(λ) = µc(λ) = 0 and also µn(λ) = µa(λ) = µb(λ) = µc⊥(λ) = 0.

3. If µn(λ) = µa⊥(λ) = µb⊥(λ) = µc(λ) = 0, then from (B.15) we have that µρn(λ) =
1−q

2
µc⊥(λ). And from (B.17) we have that µρn(λ) = 1−q

3
µc⊥(λ), such that, as before,

we get that µρn(λ) = 0 and hence, our contradiction. Similarly for when we have

µa(λ) = 0 and µb(λ) = 0. Summing up we have then proved our result for 7 out of

the 16 possibilities.

4. If µn(λ) = µa⊥(λ) = µb⊥(λ) = µc⊥(λ) = 0 we get a contradiction directly following

from (B.17).

5. When µn⊥(λ) = µa(λ) = µb(λ) = µc(λ) = 0, then (B.16) and (B.12) imply that
1+q

2
µn(λ) = qµn(λ) = µρn(λ), which is a contradiction as before.
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6. If we consider µn⊥(λ) = µa⊥(λ) = µb(λ) = µc(λ) = 0, then we get from (B.13) and

(B.16) that 1−q
2
µa(λ) + qµn(λ) = 1−q

3
µa(λ) + qµn(λ). This last equation implies that

µa(λ) = 0 and we recover the case were we have that µn⊥(λ) = µa(λ) = µb(λ) =

µc(λ) = 0. This means that we get our contradiction. We have the same behavior

happening when we exchange the ortogonality from a⊥ to the other letters b and c.

Thus, we have proved our result for 12 out of the 16 possibilities.

7. If we consider µn⊥(λ) = µa⊥(λ) = µb⊥(λ) = µc(λ) = 0 then we get from (B.15) and

(B.17) that 1−q
2
µc⊥(λ)+qµn(λ) = 1+q

3
µc⊥(λ)+qµn(λ) which implies that µc⊥(λ) = 0

ad hence it follows the contradiction from the last case: see below the final item.

Similarly we get other two possible cases by changing the letters.

8. We finally have the last possibility were we get that µn⊥(λ) = µa⊥(λ) = µb⊥(λ) =

µc⊥(λ) = 0 this implies that, by equations (B.12) and (B.17) the relation µρn(λ) =
1+q

2
µn(λ) = qµn(λ). This implies that µn(λ) = 0 because q < 1. We have then that

our contradiction follows from the first item. We have then got a contradiction from

all 16 possibilities.

We then conclude that for ρn there is no noncontextual ontological model consistent with

assignments of the ontic states λ and the quantum theory. This concludes the proof.

B.2 Measurement contextuality

Here we will proof that quantum theory is inconsistent with a noncontextual

ontological model for unsharp measurements, as stated in (Spekkens, 2005) and, in our

work, theorem 4.

Consider the following binary-outcome measurements Ma,Mb,Mc associated with

the projection valued-measures {Πa,ΠA}, {Πb,ΠB}, {Πc,ΠC} defined by

Πa :=

(
1 0

0 0

)
ΠA :=

(
0 0

0 1

)
(B.18)

Πb :=

(
1
4

√
3

4√
3

4
3
4

)
ΠB :=

(
3
4
−
√

3
4

−
√

3
4

1
4

)
(B.19)

Πc :=

(
1
4
−
√

3
4

−
√

3
4

3
4

)
ΠC :=

(
3
4

√
3

4√
3

4
1
4

)
(B.20)

we get then that the following conditions are satisfied:
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ΠaΠA = 0 (B.21)

ΠbΠB = 0 (B.22)

ΠcΠC = 0 (B.23)

Πa + ΠA = 1 (B.24)

Πb + ΠB = 1 (B.25)

Πc + ΠC = 1 (B.26)

given that we assume sharp measurements respect outcome determinism in the ontological

level, we shall have that there are idempotent functions χa, . . . , χC such that for all ontic

states λ ∈ Λ in our ontological model

χa(λ)χA(λ) = 0 (B.27)

χb(λ)χB(λ) = 0 (B.28)

χc(λ)χC(λ) = 0 (B.29)

χa(λ) + χA(λ) = 1 (B.30)

χb(λ) + χB(λ) = 1 (B.31)

χc(λ) + χC(λ) = 1 (B.32)

We will construct the unsharp measurement M as the measurement procedure associated

with the POVM {
1

3
Πa +

1

3
Πb +

1

3
Πc,

1

3
ΠA +

1

3
ΠB +

1

3
ΠC

}
=

{
1
2
,
1
2

}
(B.33)

and by definition 17 in the ontological model we get that for any ontic state λ ∈ Λ,{
1

3
χa +

1

3
χb +

1

3
χc,

1

3
χA +

1

3
χB +

1

3
χC

}
(B.34)

Now, consider the measurement M̃ that flip a fair coin in order to determine the outcomes

of the measurements. This measurement1 does not have to be associated by any means

with quantum theory, the only thing we need to notice is that the measurements M and M̃

are operationally equivalent. We obtain that the probability associated with measurement

effects of M̃ is simply {
1

2
,
1

2

}
1Which makes the argument even more beautiful.
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were each one should be understood as the effects ξ[k|M̃ ](λ) regarding measurement M̃

for any ontic state λ ∈ Λ. But we note that, regarding the noncontextuality assumption

we must have that since M and M̃ are equivalent they’re ontological model description

should be the same implying that

1

3
χa +

1

3
χb +

1

3
χc =

1

2
(B.35)

1

3
χA +

1

3
χB +

1

3
χC =

1

2
(B.36)

1. From the equations (B.27)-(B.29) we can have eight possible cases: suppose we have

that χa(λ) = χb(λ) = χc(λ) = 0, then we must have that all other effects are equal

to 1.

2. We get the same behavior by making χA(λ) = χB(λ) = χC(λ) = 0.

3. Consider the case were χa(λ) = χb(λ) = χC(λ) = 0. We have then that χB(λ) =

χA(λ) = χc(λ) = 1, hence we get that the assignment (B.34) would be {2
3
, 1

3
}. If we

have the other two cases (for two lowercase and one upper case) of χa(λ) = χC(λ) =

χc(λ) = 0 and also χA(λ) = χb(λ) = χc(λ) = 0 we get the same result.

4. If instead we consider the 3 cases of the form χa(λ) = χB(λ) = χC(λ) = 0 we get

then χA(λ) = χb(λ) = χc(λ) = 1 implying that we get the assignment (B.34) to be{
1
3
, 2

3

}
.

and we get a contradiction because the constraints (B.27)-(B.32) imply that the set of

possible values consistent with (B.35)-(B.36) are just {0, 1}, {1, 0},
{

2
3
, 1

3

}
,
{

1
3
, 2

3

}
, and

hence cannot be
{

1
2
, 1

2

}
completing the proof.
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C
PORTA

We shall present here the important features of the PORTA software in order

to use it for computation of the noncontextual measurement-assignment polytope, such

as obtaining the inequalities that characterize the generalized universally noncontextual

polytope/model. We consider the most important and simplest of all scenarios for our

work, and proceed following the work of (Schmid et al., 2018). Four our purposes we

will use two programs inside PORTA; the traf command and also the fmel command.

Both are important and perform certain algorithms that can be found in other softwares

such as qskeleton and lrs for Fourier-Motzkin elimination, as well as skeleton and

cddlib for vertex enumeration.

C.1 Vertex enumeration

In order to perform vertex enumeration using the traf command from PORTA,

consider the procedure to calculate, for example, the enumeration for the noncontextual

measurement-assignment polytope Bsi. In such a scenario we have no operational equiv-

alences and hence the enumeration is done over the following set of inequalities,

DIM = 4

INEQUALITIES_SECTION

(1) x1 >= 0

(2) x2 >= 0

(3) x3 >= 0

(4) x4 >= 0

(5) x1+x2 == 1

(6) x3+x4 == 1

END
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where we have just four variables. Here the dimension of the problem is given by |K|×|J |,
i.e, the number of outcomes multiplied by the number of measurements in the scenario.

The vector ~x in the program corresponds to the vector ~ξ(λ) from (3.31), x1 = ξ[m1|M1](λ)

and so on. This is the form of every traf operation on PORTA, were we just write

down the dimension correctly and use the operations <=, >=,==,= etc. The PORTA

software reads the file as strings using commands char perform Gauss elimination. This

means that one cannot insert crazy notation such as 3.4∗x2, because the program will not

recognize its format, and will return errors. Another important fact is that the command

performs elimination on the equality’s first, so if the equations are too restrictive the

program will eliminate too many variables and not find any vertex solution. A final (but

important) remark; in order to run traf for vertex enumeration it is important that the

code be written in a .ieq type file, otherwise as stated in the porta.c in the line

else if (is_set(Traf) && ieq_file)

returns reading errors. So, in order to run the command, go to the bin directory in the

porta-1.4.1 file run the command

traf name_of_the_file.ieq

For the simplest scenario Bsi we find the four vertices:

κ1 → (1, 0, 0, 1) (C.1)

κ2 → (1, 0, 1, 0) (C.2)

κ3 → (0, 1, 0, 1) (C.3)

κ4 → (0, 1, 1, 0) (C.4)

(C.5)

and for the fair-coin-flip scenario Bfcf we find, with notation for the vertex κ∗ as

(
ξ[0|M1](κ

∗), ξ[1|M1](κ
∗), ξ[0|M2](κ

∗), ξ[1|M2](κ
∗), ξ[0|M3](κ

∗), ξ[1|M3](κ
∗)
)
,
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were we will have the vertices of the noncontextual measurement-assignment polytope by

κ1 →
(

1, 0,
1

2
,
1

2
, 0, 1

)
(C.6)

κ2 →
(

1, 0, 0, 1,
1

2
,
1

2

)
(C.7)

κ3 →
(

1

2
,
1

2
, 1, 0, 0, 1

)
(C.8)

κ4 →
(

1

2
,
1

2
, 0, 1, 1, 0

)
(C.9)

κ5 →
(

0, 1, 1, 0,
1

2
,
1

2

)
(C.10)

κ6 →
(

0, 1,
1

2
,
1

2
, 1, 0

)
(C.11)

Since it is extremely simple to assign the vertices for a scenario with no operational

equivalences, we have created the efficiency table

|M| |OM | # κ’s Time(s) |M| |OM | # κ’s Time(s)
2 2 22 0 5 3 243 0
5 2 25 0 10 3 59049 16
10 2 210 1 11 3 177147 159
15 2 215 3 12 3 531441 1691
16 2 216 20 13 3 1594323 10870
17 2 217 58 8 5 390625 810
18 2 218 242
19 2 219 1000
20 2 220 3885

Table C.1: Vertex enumeration PORTA: efficiency

From table C.1 we can have some knowledge about the efficiency of the PORTA

program when performed by a normal PC. We have learned by the simulations that around

Dim > 43 the program starts to run out of space to reallocate variables.

C.2 Fourier-Motzkin elimination

Fourier-Motzkin elimination, that from now on we refer to as FME, is an al-

gorithm used in order to eliminate one variable from finite set of them, say x1, . . . , xn

into x2, . . . , xn that are constrained through several inequalities. In our case, we want

to use FME to eliminate unknown variables in order to obtain a set of known variables,

representing the state of a system in an operational framework, that will represent the

H-description of the generalized-noncontextual universal polytope. An explanation of the
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algorithm can be found in (Krishna, 2015). The important message is that this algo-

rithm is complex, and its computation complexity scale as O
((

n
4

)2d
)

. where n is the

initial amount of variables and d are the eliminated ones. This result draw attention at

implementing the algorithm as a step in a larger program.

Simplest scenario

Proceeding with the calculations of the full set of tight inequalities of the polytope

NC(Bsi). Since we know the vertices (C.1)-(C.4) we can write a PORTA program, in

order to use command fmel, by just writing all equations (3.40)-(3.43).

DIM = 32

ELIMINATION_ORDER

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

INEQUALITIES_SECTION

(1) x1 >= 0

(2) x2 >= 0

(3) x3 >= 0

(4) x4 >= 0

(5) x5 >= 0

(6) x6 >= 0

(7) x7 >= 0

(8) x8 >= 0

(9) x9 >= 0

(10) x10 >= 0

(11) x11 >= 0

(12) x12 >= 0

(13) x13 >= 0

(14) x14 >= 0

(15) x15 >= 0

(16) x16 >= 0

(18) x1+x2+x3+x4 == 1

(19) x5+x6+x7+x8 == 1

(20) x9+x10+x11+x12 == 1

(21) x13+x14+x15+x16 == 1

(22) +1/2x1+1/2x5-1/2x9-1/2x13== 0

(23) +1/2x2+1/2x6-1/2x10-1/2x14== 0

(24) +1/2x3+1/2x7-1/2x11-1/2x15== 0

(25) +1/2x4+1/2x8-1/2x12-1/2x16== 0
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(26) +1x3+1x4== x17

(27) +1x1+1x2== x18

(28) +1x2+1x4== x19

(29) +1x1+1x3== x20

(30) +1x7+1x8== x21

(31) +1x5+1x6== x22

(32) +1x6+1x8== x23

(33) +1x5+1x7== x24

(34) +1x11+1x12== x25

(35) +1x9+1x10== x26

(36) +1x10+1x12== x27

(37) +1x9+1x11== x28

(38) +1x15+1x16== x29

(39) +1x13+1x14== x30

(40) +1x14+1x16== x31

(41) +1x13+1x15== x32

END

Above we have considered that the variables are representatives of the following, with

respect to (3.40)-(3.43):

x1 = νP1(1) x2 = νP1(2) x3 = νP1(3) x4 = νP1(4)

x5 = νP2(1) x6 = νP2(2) x7 = νP2(3) x8 = νP2(4)

x9 = νP3(1) x10 = νP3(2) x11 = νP3(3) x12 = νP3(4)

x13 = νP4(1) x14 = νP4(2) x15 = νP4(3) x16 = νP4(4)

x17 = p(0|M1, P1) x18 = p(1|M1, P1) x19 = p(0|M2, P1) x20 = p(1|M2, P1)

x21 = p(0|M1, P2) x22 = p(1|M1, P2) x23 = p(0|M2, P2) x24 = p(1|M2, P2)

x25 = p(0|M1, P3) x26 = p(1|M1, P3) x27 = p(0|M2, P3) x28 = p(1|M2, P3)

x29 = p(0|M1, P4) x30 = p(1|M1, P4) x31 = p(0|M2, P4) x32 = p(1|M2, P4)

Hence, the format of the code is now clear, we want to eliminate all the variables that have

to do with the ν’s so that we only have the set of equations/inequalities with respect to

the probabilities, and hence, with respect to the data-table form the scenario. By running

the fmel we have that the program stops, because the line (25) represents a redundancy

in the construction. After one just delete line (25) the program gives back the following

result:

DIM = 32

INEQUALITIES_SECTION
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( 1) -x17-x18 == -1

( 2) -x19-x20 == -1

( 3) -x21-x22 == -1

( 4) -x23-x24 == -1

( 5) -x25-x26 == -1

( 6) -x27-x28 == -1

( 7) -x18 -x22 +x26 -x29 == -1

( 8) -x29-x30 == -1

( 9) -x20 -x24 +x28 -x31 == -1

( 10) -x31-x32 == -1

( 1) -x22 <= 0

( 2) -x24 <= 0

( 3) -x26 <= 0

( 4) -x28 <= 0

( 5) -x30 <= 0

( 6) -x32 <= 0

( 7) -x26 -x30 <= 0

( 8) -x26 -x30 <= 0

( 9) -x26 -x32 <= 0

( 10) -x28-x30 <= 0

( 11) -x28 -x32 <= 0

( 12) -x28 -x32 <= 0

( 13) +x24 -x28 -x32 <= 0

( 14) +x22 -x26 -x30 <= 0

( 15) -x22+x24 -x28 -x32 <= 0

( 16) +x22-x24-x26 -x30 <= 0

( 17) +x32 <= 1

( 18) +x30 <= 1

( 19) +x28 <= 1

( 20) +x26 <= 1

( 21) +x24 <= 1

( 22) +x22 <= 1

( 23) -x26 +x32 <= 1

( 24) -x28+x30 <= 1

( 25) +x28-x30 <= 1

( 26) +x26 -x32 <= 1

( 27) -x22 +x26 +x30 <= 1

( 28) -x24 +x28 +x32 <= 1

( 29) -x22-x24 +x28 +x32 <= 1

( 30) -x22-x24 +x28+x30 <= 1
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( 31) -x22-x24+x26 +x32 <= 1

( 32) -x22-x24+x26 +x30 <= 1

( 33) -x22+x24 -x28+x30 <= 1

( 34) -x22+x24+x26 -x32 <= 1

( 35) +x22-x24-x26 +x32 <= 1

( 36) +x22-x24 +x28-x30 <= 1

( 37) +x22+x24-x26 -x30 <= 1

( 38) +x22+x24-x26 -x32 <= 1

( 39) +x22+x24 -x28-x30 <= 1

( 40) +x22+x24 -x28 -x32 <= 1

( 41) +x28 +x32 <= 2

( 42) +x28 +x32 <= 2

( 43) +x28+x30 <= 2

( 44) +x26 +x32 <= 2

( 45) +x26 +x30 <= 2

( 46) +x26 +x30 <= 2

( 47) -x22+x24+x26 +x30 <= 2

( 48) +x22-x24 +x28 +x32 <= 2

END

Note that from (1)-(10) in the equations section we have the equations telling us

that the probabilities for the same outcomes sum to one and, importantly, we have the op-

erational equivalences from the equality’s for preparations (choosing to write p(1|Mi, Pj) =

pij).

p11 + p12 = p13 + p14 (C.12)

p21 + p22 = p23 + p24 (C.13)

And also, from the inequalities section we have that from (1)-(28) and (41)-(48) we have

inequalities that arise from the characteristics of the behaviors being probabilistic and

not from the noncontextuality assumptions. Hence we have the set of twelve inequalities

(29)-(40) that we can write as the probabilities:
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(29) : p23 + p24 − p22 − p12 ≤ 1

(30) : p23 + p14 − p22 − p12 ≤ 1

(31) : p13 + p24 − p22 − p12 ≤ 1

(32) : p13 + p14 − p22 − p12 ≤ 1

(33) : p22 + p14 − p12 − p23 ≤ 1

(34) : p22 + p13 − p12 − p24 ≤ 1

(35) : p12 + p24 − p22 − p13 ≤ 1

(36) : p12 + p23 − p22 − p14 ≤ 1

(37) : p12 + p22 − p13 − p14 ≤ 1

(38) : p12 + p22 − p13 − p24 ≤ 1

(39) : p12 + p22 − p14 − p23 ≤ 1

(40) : p12 + p22 − p23 − p24 ≤ 1

But we notice that using (C.12) and (C.13) we get that the highlighted inequalities

(29),(32),(37),(40) are also somewhat “not tight” since they are just trivial:

p23 + p24 − p22︸ ︷︷ ︸
p21

−p12 ≤ 1 =⇒ p21 − p12 ≤ 1

Always true since 0 ≤ pij ≤ 1. Doying the same for the other inequalities, we have that

p13 + p14 − p12︸ ︷︷ ︸
p11

−p22 ≤ 1 =⇒ p11 − p22 ≤ 1

p22 + p12 − p13 − p14︸ ︷︷ ︸
−p11

≤ 1 =⇒ p22 − p11 ≤ 1

p12 + p22 − p23 − p24︸ ︷︷ ︸
−p21

≤ 1 =⇒ p12 − p21 ≤ 1

Hence, we have that the full set of tight inequalities that represent the noncon-

textual polytope NC(Bsi) is, by the method given in (Schmid et al., 2018):
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0 ≤ pij ≤ 1, ∀Mi, Pj (C.14)

p12 + p22 − p14 − p23 ≤ 1 (C.15)

p12 + p22 − p13 − p24 ≤ 1 (C.16)

p22 + p13 − p12 − p24 ≤ 1 (C.17)

p12 + p23 − p22 − p14 ≤ 1 (C.18)

p22 + p14 − p12 − p23 ≤ 1 (C.19)

p23 + p14 − p12 − p22 ≤ 1 (C.20)

p12 + p24 − p22 − p13 ≤ 1 (C.21)

p13 + p24 − p22 − p12 ≤ 1 (C.22)

were we have that (C.20) has corrected the typo with respect to (Schmid et al., 2018, Eq.

29g, pg. 7).
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Linear programming

D.1 Noncontextuality from data-tables

By the calculations performed in appendix C and remarks from section 3.3 it is

not a computationally useful way to study the contextuality of a quantum scenario by

fully deriving all the noncontextuality inequalities. A much better method is obtained by

means of the Farkas dual. In (Schmid et al., 2018) they have developed a way to analyse

the noncontextuality assumption of an ontological model only by looking at the data-table
~b. This is done by first writing the equations (3.41)-(3.43) as a matrix equation:

M · ~x = ~b∗ (D.1)

were b∗ is a possible behavior of the scenario B that admits a noncontextual model ~B∗ ∈
NC(B) were the distinction between ~b and ~B will be made clear in a second at equation

(D.6). The condition of equation (3.31) is then just ~x ≥ 0. We then formulate a primal

LP as

∃~x such that

M · ~x = ~b∗,

and ~x ≥ 0 (D.2)

for any data-table ~b∗ given. This LP is checking weather any solution can be found, such

that ~B∗ ∈ NC(B). When such primal LP is unfeasible we can obtain a certificate by

means of the Farkas dual. This certificate is obtained by solving

min
~y
~y ·~b∗ such that

~1 ≥ ~y ·M ≥ ~0. (D.3)

Hence we have the following method:
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1. If the primal LP is feasible =⇒ Farkas dual is also feasible with ~y ·~b∗ ≥ 0 =⇒
there exists a noncontextual ontological model for ~B∗.

2. If the primal LP is unfeasible =⇒ from the Farkas dual we get that ~y ·~b∗ < 0 =⇒
there is no noncontextual ontological model for ~B∗.

Simplest scenario

Considering the scenario as Bsi we get that the matrix M constructed following

equations (3.41)-(3.43) acts on a 16 dimensional vector ~x associated with the νPj(κ) since

we have 4 vertices and 4 preparation procedures. Now, it will really make a difference for

the matrix M the way one constructs the vector ~x! Consider the following manner:

~x := (νP1(κ1), νP1(κ2), νP1(κ3), νP1(κ4), νP2(κ1), νP2(κ2), . . . , νP4(κ4)) (D.4)
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M =



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1
2

0 0 0 1
2

0 0 0 −1
2

0 0 0 −1
2

0 0 0

0 1
2

0 0 0 1
2

0 0 0 −1
2

0 0 0 −1
2

0 0

0 0 1
2

0 0 0 1
2

0 0 0 −1
2

0 0 0 −1
2

0

0 0 0 1
2

0 0 0 1
2

0 0 0 −1
2

0 0 0 −1
2

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0



(D.5)

were we have used the convention for the behavior as

~b = (1, 1, 1, 1, 0, 0, 0, 0, p(0|M1, P1), p(0|M1, P2), p(0|M1, P3), p(0|M1, P4),

p(1|M1, P1), p(1|M1, P2), . . . , p(1|M2, P4)) = (1, 1, 1, 1, 0, 0, 0, 0, ~B) (D.6)

Notice that we have highlighted the lines in matrix M that we can see from (C.1)-(C.4)

as the lines depicted in M being the “columns” from (C.1)-(C.4). This is because we take

as an example, from (3.43) we have that for p(0|M1, P1) we havet

1 · νP1(κ1) + 1 · ·νP1(κ2) + 0 · νP1(κ3) + 0 · νP1(κ4) = p(0|M1, P1)

because we fix the measurement event [0|M1] which is the first entry of the vectors from

(C.1)-(C.4).
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LP for the Farkas dual

By following (D.3) we have only to write a linear program for the Farkas lemma.

There are many different ways to proceed in writing an LP as (D.3); normally a very good

resource for linear programming is the MatLab/Octave programming language, that

offers several possibilities and it is extremely simple to write the code. Also Mathemat-

ica is a good resource for such type of calculation. But, despite the fact that these two

resources are incredible for all sorts of analytic/LP calculations, in our work, whenever

possible we shall make use of free software: in what follows we use glpk - which is built

in to other programming languages - and if necessary, Python, so that we are able to

produce data statistics for the LP’s. In order to use CPLEX/glpk there are helpful re-

sources (Makhorin, 2014),(Sankaranarayanan, 2018) in order to use them. Here we have

used a very rudimentary C program to write the glpk file below:

var x1;

var x2;

var x3;

var x4;

.

.

.

var x24;

minimize obj:1.0000 * x1+1.0000 * x2+1.0000 * x3+1.0000 * x4+1.0000 *

x9+1.0000 * x11+1.0000 * x14+1.0000 * x16+1.0000 * x17+1.0000 * x20+1.0000

* x22+1.0000 * x23+0.0000 * x24;

c1:1.00 * x1 + 0.50 * x5 + 1.00 * x9 + 1.00 * x12 + 0.00 * x24 <= 1;

c2:1.00 * x1 + 0.50 * x6 + 1.00 * x9 + 1.00 * x11 + 0.00 * x24 <= 1;

c3:1.00 * x1 + 0.50 * x7 + 1.00 * x10 + 1.00 * x12 + 0.00 * x24 <= 1;

c4:1.00 * x1 + 0.50 * x8 + 1.00 * x10 + 1.00 * x11 + 0.00 * x24 <= 1;

c5:1.00 * x2 + 0.50 * x5 + 1.00 * x13 + 1.00 * x16 + 0.00 * x24 <= 1;

c6:1.00 * x2 + 0.50 * x6 + 1.00 * x13 + 1.00 * x15 + 0.00 * x24 <= 1;

c7:1.00 * x2 + 0.50 * x7 + 1.00 * x14 + 1.00 * x16 + 0.00 * x24 <= 1;

c8:1.00 * x2 + 0.50 * x8 + 1.00 * x14 + 1.00 * x15 + 0.00 * x24 <= 1;

c9:1.00 * x3 + -0.50 * x5 + 1.00 * x17 + 1.00 * x20 + 0.00 * x24 <= 1;

c10:1.00 * x3 + -0.50 * x6 + 1.00 * x17 + 1.00 * x19 + 0.00 * x24 <= 1;

c11:1.00 * x3 + -0.50 * x7 + 1.00 * x18 + 1.00 * x20 + 0.00 * x24 <= 1;

c12:1.00 * x3 + -0.50 * x8 + 1.00 * x18 + 1.00 * x19 + 0.00 * x24 <= 1;

c13:1.00 * x4 + -0.50 * x5 + 1.00 * x21 + 1.00 * x24 <= 1;

c14:1.00 * x4 + -0.50 * x6 + 1.00 * x21 + 1.00 * x23 + 0.00 * x24 <= 1;

c15:1.00 * x4 + -0.50 * x7 + 1.00 * x22 + 1.00 * x24 <= 1;

c16:1.00 * x4 + -0.50 * x8 + 1.00 * x22 + 1.00 * x23 + 0.00 * x24 <= 1;
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c17:-1.00 * x1 + -0.50 * x5 + -1.00 * x9 + -1.00 * x12 + -0.00 * x24 <= 0;

c18:-1.00 * x1 + -0.50 * x6 + -1.00 * x9 + -1.00 * x11 + -0.00 * x24 <= 0;

c19:-1.00 * x1 + -0.50 * x7 + -1.00 * x10 + -1.00 * x12 + -0.00 * x24 <= 0;

c20:-1.00 * x1 + -0.50 * x8 + -1.00 * x10 + -1.00 * x11 + -0.00 * x24 <= 0;

c21:-1.00 * x2 + -0.50 * x5 + -1.00 * x13 + -1.00 * x16 + -0.00 * x24 <= 0;

c22:-1.00 * x2 + -0.50 * x6 + -1.00 * x13 + -1.00 * x15 + -0.00 * x24 <= 0;

c23:-1.00 * x2 + -0.50 * x7 + -1.00 * x14 + -1.00 * x16 + -0.00 * x24 <= 0;

c24:-1.00 * x2 + -0.50 * x8 + -1.00 * x14 + -1.00 * x15 + -0.00 * x24 <= 0;

c25:-1.00 * x3 + 0.50 * x5 + -1.00 * x17 + -1.00 * x20 + -0.00 * x24 <= 0;

c26:-1.00 * x3 + 0.50 * x6 + -1.00 * x17 + -1.00 * x19 + -0.00 * x24 <= 0;

c27:-1.00 * x3 + 0.50 * x7 + -1.00 * x18 + -1.00 * x20 + -0.00 * x24 <= 0;

c28:-1.00 * x3 + 0.50 * x8 + -1.00 * x18 + -1.00 * x19 + -0.00 * x24 <= 0;

c29:-1.00 * x4 + 0.50 * x5 + -1.00 * x21 + -1.00 * x24 <= 0;

c30:-1.00 * x4 + 0.50 * x6 + -1.00 * x21 + -1.00 * x23 + -0.00 * x24 <= 0;

c31:-1.00 * x4 + 0.50 * x7 + -1.00 * x22 + -1.00 * x24 <= 0;

c32:-1.00 * x4 + 0.50 * x8 + -1.00 * x22 + -1.00 * x23 + -0.00 * x24 <= 0;

solve;

display x1;

display x2;

display x3;

display x4;

.

.

.

display x24;

end;

Check (Sankaranarayanan, 2018) about the format of the file above. We have considered

the following behavior from (Schmid et al., 2018):

~Be = (1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0) (D.7)

that maximally violates inequality (C.22). If we run the above program

glpsol --math Name_of_the_file.txt

we get

GLPSOL: GLPK LP/MIP Solver, v4.65

Parameter(s) specified in the command line:

--math LP.txt
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Reading model section from LP.txt...

83 lines were read

Generating obj...

Generating c1...

Generating c2...

.

.

.

Generating c32...

Model has been successfully generated

GLPK Simplex Optimizer, v4.65

33 rows, 24 columns, 140 non-zeros

Preprocessing...

32 rows, 24 columns, 128 non-zeros

Scaling...

A: min|aij| = 5.000e-01 max|aij| = 1.000e+00 ratio = 2.000e+00

Problem data seem to be well scaled

Constructing initial basis...

Size of triangular part is 32

* 0: obj = 0.000000000e+00 inf = 0.000e+00 (12)

* 14: obj = -1.000000000e+00 inf = 0.000e+00 (0)

OPTIMAL LP SOLUTION FOUND

Time used: 0.0 secs

Memory used: 0.2 Mb (207206 bytes)

Display statement at line 59

x1.val = 0

Display statement at line 60

x2.val = 0

Display statement at line 61

x3.val = 0

Display statement at line 62

x4.val = 1

Display statement at line 63

x5.val = 0

Display statement at line 64

x6.val = 0

Display statement at line 65

x7.val = 0

Display statement at line 66

x8.val = -2

Display statement at line 67
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x9.val = 0

Display statement at line 68

x10.val = 1

Display statement at line 69

x11.val = 0

Display statement at line 70

x12.val = 0

Display statement at line 71

x13.val = 0

Display statement at line 72

x14.val = 0

Display statement at line 73

x15.val = 1

Display statement at line 74

x16.val = 0

Display statement at line 75

x17.val = 0

Display statement at line 76

x18.val = 0

Display statement at line 77

x19.val = 0

Display statement at line 78

x20.val = 0

Display statement at line 79

x21.val = 0

Display statement at line 80

x22.val = -1

Display statement at line 81

x23.val = -1

Display statement at line 82

x24.val = 0

Model has been successfully processed

Hence obtaining as a result the value ~y ·~b = −1 < 0 showing that we indeed have that the

primal LP is unfeasible and hence that ~Be is a behavior that is outside the noncontextual

polytope. As a result for ~y we get

~y = (0, 0, 0, 1, 0, 0, 0,−2, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,−1,−1, 0) (D.8)

which is the same result we have obtained by means of using the linprog function from

MatLab/Octave, and also using the Minimize from Mathematica. We reinforce that
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the way one defines the vector ~b and the ordering of the vertices (C.1)-(C.4) influences on

how the vectors ~y, ~x and also the matrix M will look like, so that the presentation here are

only mere examples and not fixed, uniquely defined, quantities. The important aspect is

that no matter how the construction is made, the linear program will present a final result

independent of such format; in other words, the value −1 should be always obtained. This

is so because we can understand the certificate as a noncontextual inequality, which is a

fixed constraint over the noncontextual polytope.

D.2 Contextual Fraction

Because of the necessary and sufficient linear conditions that define noncontex-

tuality in a finite prepare-and-measure scenario it is possible to use convex optimization

(Boyd et al., 2004) to obtain some of the monotones that are associated with the convex

structure of the scenario. In particular, the set of linear conditions:

∀k, j : νPj(κ) ≥ 0,

∀j :
∑
κ

νPj(κ) = 1,

∀κ, a :
∑
j

(αaj − βaj )νPj(κ) = 0,

∀k, i, j :
∑
κ

ξ̃[k|Mi](κ)νPj(κ) = p(k|Mi, Pj)

can be used to apply the contextuality monotones that are associated with the convexity

structure of the noncontextual polytope: the contextual fraction is our case study here due

to it’s importance for application in quantum computing, see (Abramsky et al., 2017),

(Frembs et al., 2018).

We propose the following, in light of (Abramsky et al., 2017), suppose that ~B is a

possible behavior for the operational scenario given. We then relax the equality between

the operational probabilities and the ontological distributions, since the data-table might

be contextual, but we let the vector ~ν measure the best noncontextual description pos-

sible, and we maximize over the weight 1
|P|~ν · ~1, where we have devided by the numer of

preparation procedures so that the contextual fraction would be in the range [0, 1]. We

construct then the LP,
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Maximize
1

4
~ν ·~1

Subject to Aeq~ν = ~0

Aineq~ν ≤ ~B

~ν ≥ ~0

If we let r be the result of the LP, the contextual fraction is then f(B) = 1 − r,
since we are finding the optimal noncontextual fraction in this manner. Each ~ν · ~1 = c

represents a hyperplane for c ∈ R, and the optimal result is then the closest point with

the noncontextuality inequality that represents a facet of the noncontextual polytope.

Figure D.1: Monte Carlo distribution: We have generated and calculated the contextual
fraction for behaviors in Bsi. In the plot we have around 5 000 000 points.

We notice that in the scenario Bsi we have exactly eight contextual vertices, that

are the points with f(Bv) = 1. To find all the vertices for C(B) we simply need to find

the deterministic assignments: all the deterministic assignments can be found by noticing
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the imposed restrictions over the probabilities for preparation procedures.

pi1 + pi2 = pi3 + pi4 ⇒

1 + 1 = 1 + 1

1 + 0 = 1 + 0

0 + 1 = 1 + 0

1 + 0 = 0 + 1

0 + 1 = 1 + 0

0 + 0 = 0 + 0

From which we construct the following table, we have highlighted the vertices

for which we have contextual fraction equal to one, and all the other are noncontextual

vertices for which the contextual fraction returns zero:

(1, 1, 1, 1) (1, 0, 0, 1) (1, 0, 1, 0) (0, 1, 0, 1) (0, 1, 1, 0) (0, 0, 0, 0)

(1, 1, 1, 1)

(
1, 1, 1, 1
1, 1, 1, 1

) (
1, 0, 0, 1
1, 1, 1, 1

) (
1, 0, 1, 0
1, 1, 1, 1

) (
0, 1, 0, 1
1, 1, 1, 1

) (
0, 1, 1, 0
1, 1, 1, 1

) (
0, 0, 0, 0
1, 1, 1, 1

)
(1, 0, 0, 1)

(
1, 1, 1, 1
1, 0, 0, 1

) (
1, 0, 0, 1
1, 0, 0, 1

) (
1, 0, 1, 0
1, 0, 0, 1

) (
0, 1, 0, 1
1, 0, 0, 1

) (
0, 1, 1, 0
1, 0, 0, 1

) (
0, 0, 0, 0
1, 0, 0, 1

)
(1, 0, 1, 0)

(
1, 1, 1, 1
1, 0, 1, 0

) (
1, 0, 0, 1
1, 0, 1, 0

) (
1, 0, 1, 0
1, 0, 1, 0

) (
0, 1, 0, 1
1, 0, 1, 0

) (
0, 1, 1, 0
1, 0, 1, 0

) (
0, 0, 0, 0
1, 0, 1, 0

)
(0, 1, 0, 1)

(
1, 1, 1, 1
0, 1, 0, 1

) (
1, 0, 0, 1
0, 1, 0, 1

) (
1, 0, 1, 0
0, 1, 0, 1

) (
0, 1, 0, 1
0, 1, 0, 1

) (
0, 1, 1, 0
0, 1, 0, 1

) (
0, 0, 0, 0
0, 1, 0, 1

)
(0, 1, 1, 0)

(
1, 1, 1, 1
0, 1, 1, 0

) (
1, 0, 0, 1
0, 1, 1, 0

) (
1, 0, 1, 0
0, 1, 1, 0

) (
0, 1, 0, 1
0, 1, 1, 0

) (
0, 1, 1, 0
0, 1, 1, 0

) (
0, 0, 0, 0
0, 1, 1, 0

)
(0, 0, 0, 0)

(
1, 1, 1, 1
0, 0, 0, 0

) (
1, 0, 0, 1
0, 0, 0, 0

) (
1, 0, 1, 0
0, 0, 0, 0

) (
0, 1, 0, 1
0, 0, 0, 0

) (
0, 1, 1, 0
0, 0, 0, 0

) (
0, 0, 0, 0
0, 0, 0, 0

)
Table D.1: Table of vertices from the large polytope of all behaviors C(Bsi): Contex-
tual vertices for the simplest scenario. Each of these vertices violate one of the tight
noncontextuality inequalities defined by (C.14)-(C.22).

We have seen that the quantum behavior BQ from (5.2) violates a noncontextu-

ality inequality for Bsi. If we calculate the contextual fraction f(BQ) ≈ 0.413, which is

the same amount of how much the behavior violates the inequality (C.21), as we have

seen in chapter 5.
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E.1 n-bit parity oblivious multiplexing

In this section we shall prove theorem 11. We will follow (Spekkens et al., 2009b)

closely. In the text we have already described the operational equivalences for n-bit parity

as

∀r ∈ Par,∀M, ∀k :
∑

x|x·r=0

p(k|M,Px) =
∑

x|x·r=1

p(k|M,Px), (E.1)

but this is truly achieved after some steps. The fact is that the operational equivalences

are written as

∀k ∈ OM , ∀M ∈M ,∀r ∈ Par :
∑

x|x·r=0

p(Px|k,M) =
∑

x|x·r=1

p(Px|k,M),

from Bayes theorem we have that

p(Px|k,M) =
p(k|Px,M)p(Px)

p(k)
,

since p(Px) is uniform, because it is the probability associated with the distribution of the

classical inputs generated by Alice, it does not depend on x. Hence, we get the relation

we have provided in the main text. Any message m that can be sent by Alice will be read

from Bob as measurement outcomes k|M , given that they don’t communicate with each

other. Hence, we can write that for any message m that Alice sends to Bob, we must

have the operational equivalences given by,

∀r ∈ Par :
∑

x|x·r=0

p(m|Px) =
∑

x|x·r=1

p(m|Px), (E.2)
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Lemma 10. We can describe the probabilities p(m|Px) using the following equation,

p(m|Px) = p(0)p0(m) +
n∑
i=1

p(i) [pi,0(m)δxi,0 + pi,1(m)δxi,1] , (E.3)

were p(i) is a normalized probability distribution over {0, . . . , n}. We have that p0(m), pi,0(m)

and pi,1(m) are normalized probability distributions over the message m.

1. Here we have that i ∈ {0, 1, . . . , n} represents the same variables as y, but we here

use the symbol i with generality and the symbol y to be the one that was chosen

to be guessed. Intuitively we could interpret any oblivious multiplexing protocol as

Alice generating i from distribution p(i); for i = 0 she sends the message m chosen

from p0(m), otherwise she sends a message m depending on the value of the i-th bit

of the message, by choosing between two different distributions, pi,0 and pi,1.

2. Remember that Px is chosen associated with x, which is generated at random so we

also have that the preparation Px is performed uniformly at random. Therefore the

above mentioned Bayes rule works.

Using this representation we can choose the distributions that achieve the maxi-

mum probability of Bob guessing correctly. Notice that from (E.3) we have that whenever

i = 0 there is no information gained by Bob of what is the value of the entry of x.

1. x is the message Alice has such that Bob want’s to guess the y-th coordinate.

2. m is the message that Alice actually sends to Bob.

Therefore the optimal strategy needs to set p(0) = 0. Again looking at (E.3) any informa-

tion about xi will be associated with the degree of distinction Bob can make between the

probabilities pi,0(m) and pi,1(m). Bob will be able to fully distinguish between these two

probability distributions whenever they are completely non-overlapping, otherwise there

could be some arbitrary aspect on the choice, that we have already tackled in figure 3.1.

This means that for any i and m we must have pi,0(m)pi,1(m) = 0. The optimal strategy

for Bob is then clear: Given any y, find out weather the message m is in the support of

py,0 or py,1, using a scheme that has outcomes b = 0 or b = 1 respectively.

The reason this is optimal is intuitive. The message Alice sends m contains

information about xy only if Alice generates i = y and so Bob will guess correctly with

probability one. When she does not generate i = y Bob has equal probability of guessing

between 0 or 1, according with the results of his measurements (either he finds in which

support is, py,0 or py,1, or he does not find), hence, 1/2 of chance.
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Then we get that for y chosen uniformly at random the probability that i = y is

1/n so that the best probability for Bob to guess correctly will be

p(g = xy) =
1

n
(1) +

(
1− 1

n

)
1

2
=

1 + n

2n
,

and this is the first important result. It remains to prove that equation (E.3) is valid.

Proof. (of equation (E.3)) Let r ∈ {0, 1}n and χr : {0, 1}n → [−1, 1] defined as

χr(x) = (−1)x·r,

we have that, ∑
x∈{0,1}n

χr(x)χr′(x) =
∑

x∈{0,1}n
(−1)x·(r⊕r

′) = 2nδr,r′ .

This can be shown by induction. For n = 2 we see that r = r′ imply that

r ⊕ r′ ∈ {(0, 0)} =⇒ x · (r ⊕ r′) ∈ {0},

and when r 6= r′ we can have all possible outcomes,

r ⊕ r′ ∈ {(0, 1), (1, 0), (1, 1)} =⇒ x · (r ⊕ r′) ∈ {0, 1}

and the sum gets ∀(r ⊕ r′) :∑
x∈{0,1}2

(−1)x·(r⊕r
′) = (−1)(0,1)·(r⊕r′) + (−1)(1,0)·(r⊕r′) + (−1)(0,0)·(r⊕r′) + (−1)(1,1)·(r⊕r′) = 0

Now if we consider for n+ 1 we get∑
x∈{0,1}n+1

(−1)x·(r⊕r
′) =

∑
x∈{(0,s):s∈{1,0}n}

(−1)x·(r⊕r
′) +

∑
x∈{(1,s):s∈{1,0}n}

(−1)x·(r⊕r
′)

= 2nδr,r′ + 2nδr,r′ = 22nδr,r′ = 2n+1δr,r′

This is so because, suppose that the first entry of (r ⊕ r′)1 = 1, this can only happens

if r 6= r′. In this case we get that, letting r̃ ⊕ r̃′ = a(r ⊕ r′) were a is the operator that
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annihilates the first entry,∑
x∈{(0,s):s∈{1,0}n}

(−1)x·(r⊕r
′) +

∑
x∈{(1,s):s∈{1,0}n}

(−1)x·(r⊕r
′) =

∑
x∈{(0,s):s∈{1,0}n}

(−1)(0×1)⊕s·a(r⊕r′) +
∑

x∈{(1,s):s∈{1,0}n}

(−1)(1×1)⊕s·a(r⊕r′) =

∑
s∈{1,0}n

(−1)s·a(r⊕r′) −
∑

s∈{1,0}n
(−1)s·a(r⊕r′) = 0.

Remember that x · r :=
⊕

i xiri. We then proceed to note that χr is an orthonor-

mal basis for the space of all functions on {0, 1}n since this space has 2n cardinality and

the orthonormal set χr has the same cardinality. Therefore,

p(m|Px) =
∑
r

p̂(m, r)χr(x).

We see that

2np̂(m, r) =
∑
x

χr(x)χr(x)p̂(m, r) =
∑
x

χr(x)p(m|Px) =
∑
x

(−1)x·rp(m|Px)

=
∑

x|x·r=0

p(m|Px)−
∑

x|x·r=1

p(m|Px).

and because of (E.2) we get p̂(m, r) = 0 for all r ∈Par. The only strings r that will have

p̂(m, r) 6= 0 are those with a number symbols different of zero (Hamming weight) of either

0 or 1. Let p̂0(m) be the Fourier coefficient associated with the string with only zeros,

and those with a single value 1 at position i by p̂i(m). Therefore,

p(m|Px) = p̂0(m) +
n∑
i=1

p̂i(m)(−1)xi .

Write (−1)xi = δxi,0 − δxi,1 and 1 = δxi,0 + δxi,1. We might rewrite the above equation

defining

ai,0(m) = 2p̂i(m), if sgn(p̂i(m)) ≥ 0,

ai,1(m) = 0, if sgn(p̂i(m)) ≥ 0,

ai,0(m) = −2p̂i(m), if sgn(p̂i(m)) < 0,

ai,1(m) = 0, if sgn(p̂i(m)) < 0.

Such that p̂i(m) ≥ 0 =⇒ ai,0(m)δxi,0 + ai,1(m)δxi,1 = 2p̂i(m)δxi,0, and also that when

p̂i(m) < 0 we have that ai,0δxi,0 + ai,1δxi,1 = −2p̂i(m)δxi,1. This means that,
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n∑
i=1

[ai,0(m)δxi,0 + ai,1(m)δxi,1] =
∑

i|p̂i(m)≥0

2p̂i(m)δxi,0 −
∑

i|p̂i(m)<0

2p̂i(m)δxi,1

and since

n∑
i=1

p̂i(m)(−1)xi =
∑

i|p̂i(m)≥0

p̂i(m)(−1)xi −
∑

i|p̂i(m)<0

p̂i(m)(−1)xi

=
∑

i|p̂i(m)≥0

p̂i(m)δxi,0 −
∑

i|p̂i(m)≥0

p̂i(m)δxi,1 +
∑

i|p̂i(m)<0

p̂i(m)δxi,0 −
∑

i|p̂i(m)<0

p̂i(m)δxi,1

=
∑

i|p̂i(m)≥0

p̂i(m)δxi,0 −
∑

i|p̂i(m)≥0

p̂i(m)(1− δxi,0) +
∑

i|p̂i(m)<0

p̂i(m)(1− δxi,1)−
∑

i|p̂i(m)<0

p̂i(m)δxi,1

= 2
∑

i|p̂i(m)≥0

p̂i(m)δxi,0 − 2
∑

i|p̂i(m)<0

p̂i(m)δxi,1 +

 ∑
i|p̂i(m)<0

p̂i(m)−
∑

i|p̂i(m)≥0

p̂i(m)


︸ ︷︷ ︸

Implicit in a0(m)

.

So that we get

p(m|Px) = p̂0(m) +
n∑
i=1

p̂i(m)(−1)xi = a0(m) +
n∑
i=1

[ai,0(m)δxi,0 + ai,1(m)δxi,1]

with ai,0(m), ai,1(m) ≥ 0, remains to show that a0(m) is also nonnegative. Let z(m) ∈
{0, 1}n be the bit string defined as

z(m) =

{
1, sgn(p̂i(m)) ≥ 0

0, sgn(p̂i(m)) < 0
, (E.4)

so we have that, by definition, for x = z(m) we have that

ai,0(m)δxi,0 + ai,1(m)δxi,1 = 0,∀i =⇒ p(m|Pz(m)) = a0(m),

and since p(m|Pz(m)) is a probability we get a0(m) is nonnegative. The final form of (E.3)

is achieved by noticing that, for any x,

1 =
∑
m

p(m|Px) =
∑
m

a0(m) +
n∑
i=1

∑
m

ai,xi(m),

define A0 :=
∑

m a0(m) and Ai,xi :=
∑

m ai,xi(m). We have that A0 +
∑n

i=1Ai,xi = 1 for

all x so that
∑n

i=1Ai,xi does not depend on x, therefore it does not depend on xi and so
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Ai,0 = Ai,1, for all i. Then we have that the form of (E.3) is achieved by letting

p(0) = A0

p(i) = Ai,0 = Ai,1

p0(m) =
a0(m)

p(0)

pi,b(m) =
ai,b(m)

p(i)

if p(0), p(i) 6= 0. This finishes the proof. �

We have proved then the following lemma.

Lemma 11. For any classical protocol the best guessing strategy is given by (1 + n)/2n.

To prove theorem 11 we need to prove that any noncontextual ontological model

cannot do better. Here we again follow closely the lines of (Spekkens et al., 2009a).

Let’s define Ps,b the procedure obtained by choosing a random x such that x · s = b and

implementing Px. For all measurement procedures that can be performed we have that

p(k|M,Ps,b) =
1

2n−1

∑
x|x·s=b

p(k|M,Px) (E.5)

From this and (E.1) we get that

∀s ∈ Par, ∀k,∀M : p(k|M,Ps,0) = p(k|M,Ps,1)

For any ontic state λ that is prepared by Ps,b we will have that,

p(λ|Ps,b) =
1

2n−1

∑
x|x·s=b

p(λ|Px)

and we again conclude that

∀s ∈ Par : p(λ|Ps,0) = p(λ|Ps,1).

This means that, using Bayes rules again we get that the operational equivalences are

also obey at the ontological level,

∀s ∈ Par :
∑

x|x·s=1

p(Px|λ) =
∑

x|x·s=0

p(Px|λ)

We conclude from that the following: knowledge of the ontic state of the system would

not improve the classical bound of (1 + n)/2n because the ontic state itself also does not

provide parity information.
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