
Universidade de São Paulo
Instituto de Física

O problema da hierarquia
do Modelo Padrão

e suas soluções

Gabriel Massoni Salla

Orientador: Prof. Dr. Enrico Bertuzzo

Dissertação de mestrado apresentada ao Instituto de

Física da Universidade de São Paulo, como requisito

parcial para a obtenção do título de Mestre em Ciên-

cias.

Banca Examinadora:

Prof. Dr. Enrico Bertuzzo - Orietador - IFUSP

Prof. Dr. Rogério Rosenfeld - IFT/UNESP

Prof. Dr. Ricardo Matheus D’Elia - IFT/UNESP

São Paulo

2020



Ficha Catalográfica Ficha Catalográfica



University of São Paulo
Physics Institute

The hierarchy problem of
the Standard Model

and its solutions

Gabriel Massoni Salla

Supervisor: Prof. Dr. Enrico Bertuzzo

Dissertation submitted to the Physics Institute of the

University of São Paulo in partial fulfilment of the re-

quirements for the degree of Master of Science.

Examining Committee:

Prof. Dr. Enrico Bertuzzo - Supervisor - IFUSP

Prof. Dr. Rogério Rosenfeld - IFT/UNESP

Prof. Dr. Ricardo Matheus D’Elia - IFT/UNESP

São Paulo

2020



para a catalogação



Agradecimentos

A cada palavra e equação escritas fica óbvio para mim que este trabalho é o fruto do apoio

de muitos. As próximas palavras são para aqueles que direta ou indiretamente o influenciaram

e assim possibilitaram sua realização.

Agradeço à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (processo

n◦ 2018/23679-2) pelo auxílio financeiro, sem o qual este projeto não poderia ser desenvolvido.

Agradeço à minha família, que não só apoiou a minha trajetória, mas também sempre supor-

tou de perto todas as minhas chatices e reclamações. Em particular, gostaria de agradecer aos

meus pais por todo carinho, pela preocupação, pelos valiosíssimos conselhos e por me ensinarem

que o caminho da ciência deve ser trilhado com um coração humilde.

Agradeço aos meus amigos, que fizeram dos meus anos na faculdade os melhores da minha

vida. Aos Wiladores, em especial, por me presentearem com lembranças que levarei comigo até

meu último dia; são inestimáveis os momentos nos quais ora discutíamos física, ora perdíamos

tempo tomando café e falando bobagens. Gostaria ainda de mencionar alguns destes amigos que

impactaram diretamente o desenvolvimento deste trabalho. Agradeço à Fernanda, companheira

de sala, pelas conversas sobre a vida e a física, que em momento algum falharam em ampliar

meus horizontes. Ao Francisco, por sempre se mostrar disponível a esclarecer dúvidas sobre

cosmologia e por me ajudar a remover muitos dos preconceitos que tinha com esta área de

pesquisa. Ao Martín, cuja dedicação sempre me impressionou, pelas contrutivas discussões

sobre os prospectos da pesquisa. À Patrícia, por não somente me apoiar em momentos difícies,

como também pelos diversos debates sobre a intersecção da física e da matemática. E ao Pedro,

pelas incontáveis discussões que tivemos a respeito dos nossos trabalhos, da física atual e do que

nos reserva o futuro no mundo acadêmico.

Agradeço, finalmente, ao prof. Enrico. Há mais de 4 anos estudo sob sua supervisão e creio

ser impossível medir em algumas poucas palavras o quanto esta orientação significou para mim.

O que posso dizer é que, desde a minha primeira reunião com ele, quando eu ainda estava na

graduação, nunca me senti desmotivado. Sua solicitude para as dúvidas mais elementares e

sua simpatia ao ensinar são alguns dos motivos que me permitiram sempre seguir em frente. O

trabalho que hoje apresento e o pesquisador que amanhã serei são o reflexo de toda sua paciência,

dedicação e confiança em mim depositadas. Muito obrigado, professor.



Resumo

Nesta dissertação é estudado o Problema da Hierarquia de física de partículas, em particular

tanto a sua formulação como também algumas de suas soluções, nomeadamente Supersimetria,

modelos de Higgs Composto, modelos de Higgs Gêmeos e modelos de Relaxamento Cosmológico.

Na primeira parte deste trabalho define-se a questão como dois problemas distintos: o Problema

da Massa Escalar e o Paradigma da Hierarquia, que estão relacionados respectivamente às

inconsistências dentro do contexto de Teorias de Campos Efetivas e ao conceito de naturalidade.

São revisadas, a partir de sua formulação teórica baseada em primeiros princípios e com foco em

como solucionam o Problema da Hierarquia, as soluções acima mencionadas juntamente com suas

implementações mínimas. Além disso, restrições experimentais dos respectivos modelos mínimos

são discutidas. Em particular, uma nova abordagem independente de modelo fundamentada

em teorias efetivas para os modelos de Relaxamento Cosmológico é desenvolvida. Finalmente,

obtém-se uma caracterização de cada solução com base na classificação entre o Problema da

Massa Escalar e o Paradigma da Hierarquia.

Palavras-chave: Problema da Hierarquia; Supersimetria; Higgs Composto; Higgs

Gêmeos; Relaxamento Cosmológico



Abstract

In this thesis the Hierarchy Problem of particle physics is studied, in particular both its

formulation and some of its solutions, namely Supersymmetry, Composite Higgs models, Twin

Higgs models and Cosmological Relaxation models. In the first part the Hierarchy Problem is

defined as two different problems: the Scalar Mass Problem and the Hierarchy Paradigm, which

are related to the inconsistencies within the Effective Field Theory framework and the concept of

naturalness, respectively. A review of each of the aforementioned solutions is presented by devel-

oping their basic theoretical formulation, focusing on how they solve the Hierarchy Problem, and

their minimal implementation. Furthermore, recent experimental bounds of the corresponding

minimal models are discussed. On top of this, a novel model-independent approach to Cosmo-

logical Relaxation models based on effective theories is developed. Finally, the characterisation

of each model in terms of the Scalar Mass Problem and the Hierarchy Paradigm is obtained.

Keywords: Hierarchy Problem; Supersymmetry; Composite Higgs; Twin Higgs; Cos-

mological Relaxation
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Introduction

At the present time it is clear that the Standard Model (SM) of particle physics is insuf-

ficient to describe all fundamental properties of nature, as there are many observations

that it fails to address [1, 2, 3]. The most concrete example of an inconsistent prediction

of the SM is that of massless neutrinos, whereas we know that they are massive due to

their oscillations [3, 4]. Such failures motivate us in searching for new physics beyond the

SM (BSM) and show that the SM is nothing but an Effective Field Theory (EFT).

With respect to an energy scale Λ, EFT’s are quantum field theories that describe the

low-energy degrees of freedom (dof) without including explicitly the high-energy dof which

lie above Λ [5, 6, 7, 8]. The low- and high-energy regimes of this field theory are usually

denoted as Infra-Red (IR) and Ultra-Violet (UV), respectively. The physical principle

that allows us proceeding in this manner is the Wilsonian decoupling principle, which

states that the physics in the far-UV, i.e. above Λ, enters only as small corrections to the

theory with only the dof of the IR. In the context of field theory, these small corrections

are characterised by effective operators, whose couplings are related to the ones of the

UV-theory and can be obtained, after integrating out the heavy modes, by matching both

theories at the scale Λ. This scale can be therefore interpreted as the scale at which the

predictions of the EFT are not valid anymore. For this reason it is denoted as the cut-off

of the EFT. The EFT framework is very fitting to the development of BSM theories and

it will be used extensively in this thesis; the relevant concepts and techniques associated

with EFT’s will be introduced as necessary.

As an EFT, the SM has a corresponding cut-off Λ; however, in spite of the experimental

searches, we have yet to find relevant signatures of new physics in the UV. For this reason

we believe such cut-off to be much larger than the Electro-Weak (EW) scale. As it will be

shown, a large cut-off will introduce another problem to the SM, the Hierarchy Problem

[1, 5, 9, 10]. This problem is much more conceptual compared to other issues of the SM

and has a deep connection to the EFT framework. Moreover, it guided the theoretical

development of particle physics for the last decades and is still one of the most important

motivations for seeking new physics at high-energy experiments.

The objective of this thesis is to once more explore the Hierarchy Problem. In partic-

ular, four distinct classes of solutions will be presented∗, followed by a discussion of how

∗In this thesis other classes of solutions relevant to the study of the Hierarchy Problem, for instance
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each of them solve the problem.

In order to do so, the thesis is structured in the following manner. In the first chapter

the inconsistencies surrounding the Higgs mass will be analysed in detail and a precise

definition of the Hierarchy Problem will be given. More precisely, a new classification of

the problem into two distinct concepts is proposed. In the upcoming chapters four types of

solutions to this problem are studied, of which three, Supersymmetry [11, 12], Composite

Higgs Models [13, 14] and Twin Higgs models [15, 16], are more traditional solutions based

on the introduction of new symmetries. The fourth type of solution, named Cosmological

Relaxation models [17, 18], is much more recent and raises many questions regarding the

nature of the Hierarchy Problem. The discussion of each of these solutions include: their

motivations, the development of the theoretical framework with emphasis on how they

solve the problem, implementation of their minimal realisation, and a brief analysis of the

most relevant phenomenology and present experimental bounds. Notably in section 5.2 a

novel model-independent approach to Cosmological Relaxation models is explored, with

which it is possible to determine general features of this class of models making use only of

EFT techniques. A more complete investigation of how these solutions are related to the

original formulation of the problem and how they allow us to improve our comprehension

of the latter will be left to the conclusion of this thesis.

models of extra dimensions (Randall-Sundrum), are not discussed due to the lack of space.
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1 The facets of the Hierarchy Problem

Let us start by giving a precise formulation of the Hierarchy Problem and the concepts

behind it, and explain why it drove most of the theoretical activity over the last 40 years.

This chapter is organised in the following way. In the first section the concepts of

Effective Field Theory are used to find the inconsistencies surrounding the Higgs mass

and the problem is precisely defined. Section 1.2 is dedicated to the concept of naturalness

and how to properly quantify it. A brief outline of what will be studied in this thesis is

also given at the end of the chapter.

1.1 Definition of the problem - the Scalar Mass Problem

In the context of renormalization one can introduce an arbitrary hard cut-off Λ as a mean

to get finite expressions from loop amplitudes; this is the simplest and more straightfor-

ward regularisation method [1, 19]. In Wilsonian analysis the procedure is similar, but

with physical interpretation anew, in which Λ acquires a physical meaning: it is the scale

below which the theory is defined [8, 20]. If the theory is being probed experimentally at

an energy scale E � Λ, then it is possible to calculate the running of the couplings with

respect to the energy scale [1, 20, 21]. Such approach to renormalization offers a nice in-

terplay with the concept of Effective Field Theories (EFT), which are just Quantum Field

Theories (QFT’s) defined only until a maximum energy Λ [8, 21, 22]. When the energy

is close to the cut-off, i.e. E . Λ, the predictions made by the EFT’s are not reliable

anymore. The connection between Wilson approach and EFT is made more precise in the

following way. A theory described by a Lagrangian L may be written as [23]

L = Λ4

g2
∗
F , (1.1)

where Λ is the cut-off of the theory, g∗ is a dimensionless parameter and F is a dimen-

sionless function of dimensionless combinations of fields, derivatives and Λ. In particular,

for a scalar particle φ such combination is given by

F = F

(
gφφ

Λ , · · ·
)
, (1.2)

13



with gφ a dimensionless coupling. In general F can be a very complicated function∗,

but we can always go to low energy scales and perform a Taylor expansion in F while

respecting the appropriate selection rules of the relevant symmetries. Doing so for the

scalar term in Eq. (1.2) will result in the following mass term for φ:

L = Λ4

g2
∗
F

E,|φ|�Λ−−−−−→ cΛ2|φ|2, (1.3)

where c is a dimensionless constant. Note that this constant needs to be small (|c| � 1) if

the scalar belongs to IR particle spectrum, otherwise m2
φ ∼ Λ2. The same reasoning can

be repeated considering more fields, but it does not provide more information than this

because we know neither the details of the function F , nor the particular selection rules

of the theory. Nevertheless, Eq. (1.3) already gives us precious information at tree-level.

The Standard Model (SM) itself is an EFT from the moment we accept that it cannot

be the final theory; there are still many unsolved problems in the SM, for example neu-

trino oscillations. The SM does not have a mechanism to generate their masses without

introducing new operators (a 5-dimensional one in this particular case) or new particles

(e.g. right-handed neutrinos) [1, 24, 25]. Besides the neutrinos, other examples of big

issues within the SM are the nature of Dark Matter (DM), Dark Energy (DE), the gen-

eration of baryon asymmetry and how to couple gravity consistently [2]. It is believed

that these problems can be explained by physics at higher energies †. Therefore, above

the cut-off new physics should enter the scene. If a theory is not defined at all energy

scales, physicists must seek generalisations that include physics above Λ. These theories

are called UV-completions of the considered EFT.

Let’s focus now on some properties of EFT’s. Consider an EFT with a coupling g. For

energies well below the cut-off (E � Λ), we calculate β(g) = E dg
dE [20, 21]. When E gets

close to Λ, the EFT loses its meaning and we cannot predict anything in the UV (see for

instance Figure 1). Hence we will always need to formulate an UV-completion for energies

above the cut-off in order to calculate g at higher energies. As a consequence of such fact,

measured parameters of a theory have contributions from the EFT but also from the UV.

∗Actually, without knowledge of the fundamental theory above Λ it is impossible to determine F .
†More precisely, recent experiments with neutrinoless-double-beta decay indicates that the threshold

to new physics lies at TeV scale, which is a concrete motivation to LHC physics [26]. The other problems,
however, are much more open and there is a fatal lack of a unique phenomenology.
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Figure 1: Running of a coupling g in an EFT with cut-off Λ.

Explicitly, the measured coupling gM , with a given renormalization condition at E = 0,

can be written as

gM =
∫ ln Λ

−∞
d(ln Λ′) β(gEFT) + δgUV. (1.4)

On the one hand gEFT is the coupling from the well defined EFT, while on the other hand

δgUV is the contribution coming from the UV. It is tempting to write it as the integral of

β(gUV) from ln Λ to infinity, but such expression does not make sense because we do not

know how the UV-theory works (it is not even restricted to be a field theory!), therefore

we write the contributions from the UV symbolically as δgUV.

Our predictive power lies on β(gEFT), calculated as usual via loop corrections and

renormalization methods. Since the β-function is being integrated over the energy, what

needs to calculate is essentially the loops themselves. Take as concrete example the

corrections to the Higgs mass. There are many corrections to the 2-point function of the

Higgs, but in particular the Yukawa couplings with fermions (y), the self quartic coupling

(λ) and the quartic couplings g2 and (g′)2 with gauge bosons produce a term proportional

to Λ2 at 1-loop order [1, 9, 16]:

δM2
H = 3Λ2

8π2

(
λ+ 1

8(g′)2 + 3
8g

2 − y2
)

+ · · · , (1.5)

where we used the cut-off Λ to cut off the internal momenta, and the dots denote sub-

leading terms. The cut-off of the SM is, as far as it is known, above the TeV scale if not

the Planck scale itself, whence Eq. (1.5) will produce a very large shift on the mass. Such

enormous shift is not observed; the Higgs mass lies at 125 GeV. In renormalization program

15



this is not a problem at all because, as per usual, we get rid of divergent quantities like this

through counter-terms, producing finite corrections. Moreover, one could use dimensional

regularisation, obtain 1
ε

divergences and cancel them with counter-terms.

So where is the problem? It starts with Eq. (1.4). Regularisation procedures are

required to cancel divergent terms, but in an EFT there are no divergences at all, because

all integrals are cut-off by Λ. Then in Eq. (1.4) the huge term in Eq. (1.5) will be

present with no counter-term to cancel it∗. The fact is: we measure a small mass M2
H ,

thus the only way to measure such mass value is to impose that δgUV is just as huge as the

contribution in Eq. (1.5). There are two points worth of mention in this last statement.

The first is that while working in an EFT one expects that UV corrections are small

compared to contributions from energy scales below the cut-off, i.e., that the EFT is a

good approximation and heavy physics decouple, as expected by the Wilson decoupling

principle [8, 21, 22]. Second, δgUV must not only be of the same order, but must also be

set to a particular value in order to give a small measured mass. In other words, we are

tuning an unknown parameter of an unknown UV-completion to match the experimental

value, i.e. we need to create a certain amount of "fine-tuning" in order to keep light the

scalar mass.

A toy-model to help us make more precise the discussion above is given by the following

Lagrangian [9, 16]:

L = 1
2 ∂

µ φ ∂µ φ−
m2

2 φ2 + ψ̄(i/∂ −M)ψ − yφψ̄ψ, (1.6)

where φ is a real scalar and ψ a Dirac fermion. Suppose that this theory is the UV-

completion of a low-energy theory with just the light scalar particle φ, i.e. that m�M .

Therefore, for energy scales E � M , it is reasonable to integrate out the fermion and

obtain an EFT for just the scalar particle. The sum of One-Particle-Irreducible (1PI)

∗We mean here that no regularisation is needed, which in perturbation theory involves the introduction
of equally divergent counter-terms. Renormalization is, of course, always essential to express observables
in terms of physical quantities.
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diagrams at 1-loop is given by [20, 27]

iΣ(p2) = p

k

p+ k

p

= −(−iy)2
∫ d4k

(2π)4 Tr
[
i(/k + /p+M)
(p+ k)2 −M2

i(/k +M)
k2 −M2

]

= 4y2
∫ 1

0
dx
∫ d4k

(2π)4
k2 + ∆

(k2 −∆)2 , (1.7)

where ∆ = M2−p2x(1−x). Performing dimensional regularisation in Eq. (1.7) we obtain

iΣ(p2) = 3iy2

4π2

[(
M2 − 1

6p
2
)2
ε
−M2 + 1

6p
2 +

∫ 1

0
dx ∆ ln 4πµ2e−γE

∆

]
, (1.8)

with µ the running scale. Therefore, at 1-loop the corrected inverse propagator reads

p2 −m2 − Σ(p2) =
(

1− y2

8π2

)
p2 −

(
m2 − 3y2M2

4π2

)
, (1.9)

where we have omitted logarithmic terms. The (unormalised) effective Lagrangian be-

comes then

L eff = 1
2

(
1− y2

8π2

)
∂µ φ ∂µ φ−

1
2

(
m2 − 3y2M2

4π2

)
φ2 + · · · , (1.10)

where the dots denote higher order operators generated by fermionic loops. Note in

particular the mass shift, which for the hierarchy chosen, is enormous; in fact it is of the

order of the EFT cut-off M . We arrive at a somewhat contradictory situation where, to

observe a small effective mass for a scalar, we need to assume a big and precise cancellation

between m2 and M2. Such cancellation is only possible when m ∼ yM , in contradiction

with our previous assumption if y ∼ O(1). More precisely, the configuration in which

we have a heavy fermion and a light scalar can only be achieved if the Yukawa coupling

y is of order m
M

, meaning that the particles interact very weakly. The situation clarified

by the example above illustrates the problem with the Higgs mass. More in general, for

arbitrary couplings, scalar masses tend to receive large corrections from the UV, and for

this very reason it is said that scalar masses are UV-sensitive.
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This UV-sensitiveness is typical in scalar theories, whereas for fermions or gauge

bosons there is a way to maintain masses stable under quantum corrections. Take for

example a free massive spin half fermion; there is a global U(1)V symmetry which trans-

forms the right- and left-handed components of the Dirac spinor in the same way [20].

When the mass is zero, this symmetry is enhanced and becomes a U(1)V × U(1)A which

transforms the right- and left-handed components independently [1]. Obviously, the ra-

diactive corrections also respect this bigger symmetry, therefore in the massive case the

contributions from loops that breaks U(1)A must be proportional to the mass itself, so

to vanish and restore the symmetry when the mass is taken to zero∗. Fermion masses

are examples of technical natural parameters; when taken to zero the symmetry group is

enhanced and as a consequence radiactive corrections must be proportional to this same

parameter. If such parameter is small for some reason, then technical naturalness guaran-

tees that it is stable under quantum corrections. Such is not the case for the Higgs mass,

because the SM does not have any extra symmetries when M2
H = 0.

We can illustrate the concept of technical naturalness with the toy-model of Eq. (1.6),

considering however that the scalar is much heavier than the fermion, i.e. M � m. With

this hierarchy we may, in an analogous manner, perform the 1-loop match into the low-

energy effective theory by integrating out the scalar. Since we are interested only in the

behaviour of the mass parameter, it suffices to compute the sum of the 1PI diagrams Ξ(p)

with p = 0:

iΞ(p = 0) =
k

k

= (−iy)2
∫ d4k

(2π)4
i(/k +M)
k2 −M2

i

k2 −m2

= iy2M

16π2

[
2
ε

+
∫ 1

0
ln 4πµ2e−γE

∆

]
, (1.11)

with ∆ = M2 + (m2 −M2)x. Eq. (1.11) implies that the mass of the fermion receives

contributions that are proportional to M itself, verifying explicitly that M is a technically

∗The U(1)A symmetry is actually not a real symmetry of any QFT, since it is anomalous. The
effects of the chiral anomaly are in general non-perturbative, in particular it does not interfere with the
computation of the fermion masses, so the argumentation still holds [1, 21]
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natural parameter. Hence, as opposed to the situation where m � M , it is possible to

construct a low-energy EFT with a light fermion and a heavy scalar for an arbitrary

Yukawa coupling.

In summary, the problem we face comes from the clash between the EFT approach

and scalar particles. As we saw in Eq. (1.3), the EFT predicts on general grounds that

tree-level scalar masses are just as big as the cut-off of the EFT (except in the extreme

case |c| � 1), which in turn implies that the particle cannot belong to the spectrum of IR

physics and should be integrated out. If we instead insist on having a light scalar in the

spectrum, for which a proper mechanism is needed in order to explain it, the scenario is

worsened by taking quantum effects into account: loop corrections to the scalar mass are

also of order of the cut-off, therefore UV-effects of the same order, which are uncomputable

in the EFT framework, are required to stabilise the mass at its observed value. Note that

the issue lies not on the cancellation between EFT- and UV-contributions, but on the fact

that the latter must be of the same order of the first. This contradicts the core principle

of EFT’s, that the low energy theory is a good approximation and that heavy physics

decouple. From the EFT point of view δgUV should only represent a small correction to

the value of gM at the IR, in other words, gEFT � δgUV. Therefore, the mass of a light

scalar is driven to a value of the order of the cut off by quantum corrections. These points

are very important, and should be once more emphasised: experimentally we observe

a light scalar, while the framework that supports all modern particle physics, the EFT

approach, predicts that in general no scalar particle could live at the IR and, if it for some

reason belongs to IR spectrum, would not be quantum mechanically stable.

The situation described above fits into the definition of what is a problem within

physics. We must remember that physics is a predictive, natural science, in the sense that

physical theories describe observed phenomena and also predict new ones. The verification

of a given theory comes with the observation of the predicted phenomena, from both the

qualitative as well quantitative points of view. If the same theory fails to describe some of

the observed phenomena, or a predicted phenomenon is not experimentally observed, then

it is incompatible with reality; in other words, it has problems. The SM is an extreme

example of this, because, while it predicts the wrong value for the neutrino masses, it

is extremely successful in every other aspect∗. As stressed, the SM embedded into the

∗Other smaller issues like b-anomalies or the anomalous (g − 2)µ are not yet well established, hence
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framework of EFT is inconsistent with the measured value of the Higgs mass. Since it is

a wrong prediction of a well established theory of physics, the situation of the Higgs mass

described above is a concrete problem of the SM EFT.

This problem, from now on addressed as the Scalar Mass Problem (SMP), is one of the

focuses of this thesis. It is worth remarking that the SMP represents a departure from the

usual definition of what is called "Hierarchy Problem" (see section 1.2), which has being

constantly criticised in the literature in recent times [26, 28]. In order to solve the SMP,

three paths can be followed. First, it could be that the interpretation of the theory and its

connection to the experiments is wrong. However, this possibility is excluded, because the

SM and EFT are both very successful. Second, it may be that QFT, as a fundamental

theory, is not valid anymore above the LHC scale, hence completely new theories to

describe UV-physics (that must recover the usual QFT’s at low energies) would need to

be formulated. Third, it is possible that the theoretical framework is adequate, but that

something is missing in the model, for instance new mechanisms (e.g. new symmetries)

and/or new particles. This is what beyond the Standard Model (BSM) models are all

about and also the approach followed in this thesis.

1.2 Naturalness & Fine Tuning - the Hierarchy Paradigm

The questions raised by the SMP are already enough to motivate us to search for solutions,

in particular the ones that extend the SM. However, the history of physics did not follow

this path. Instead, particle physicists at the time asked themselves: why is the coefficient

c so small? How and why such fine tuned cancellations happen? Note that, although

these questions are similar to the ones of the SMP at the quantitative level, they are

vastly distinct at the conceptual level, as it will now be clarified.

Naturalness

Consider a physical quantity g with dimension dim g. According to the previous

discussion, the only physical parameter at disposal is the cut-off of the theory for which

g is defined. Purely on dimensional grounds, one concludes that [9, 16, 10]

g = cgΛdim g, (1.12)

they are not taken into account [3]
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with cg a dimensionless constant. As always, dimensional analysis does not allow us to

calculate the coefficient directly, and a theory is needed to compute it. Still, one can

always expect what the value of cg will turn out to be: based on physical intuition one

can infer if it is small, large or even of order 1. For the most fundamental theory of nature,

where the parameters do not depend on anything else other than Λ, there is no particular

reason for cg to be large or small; it is natural for cg to be of order 1. The Higgs mass is

an example of an unnatural parameter, because if ΛSM > 100 TeV, we must have

cH < 10−3. (1.13)

The situation gets even worse if ΛSM = MP ∼ 1019 GeV. More in general, scalar masses

are unnatural. This statement can be seen directly from Eq. (1.3), where it was deduced

that |c| � 1 if φ belongs to IR physics.

Loop corrections are also problematic. Taking the physical Higgs mass to be small, its

most relevant 1-loop corrections in Eq. (1.5) introduce Λ2 divergent terms. As pointed

out, in order to stabilise the mass parameter, UV-effects must be of same order. Moreover,

they need to cancel the contributions from Eq. (1.5) very precisely; that is why it is said

that the UV contribution δgUV is fine tuned.

The concept behind this discussion is named naturalness and is used as a guiding

principle to formulate BSM models. Note, however, that such principle is not a completely

physical one and the justification is the following. Ultimately, one is trying to explain why

numbers are small and, although they are quantitatively related to physical quantities,

theories and models are discarded solely based on them, and not on phenomenological

or theoretical inconsistencies. Formulated in another way, unnatural BSM models are

just unnatural, and not physically inconsistent. For this reason, if naturalness is used

as a guiding principle in order to solve the issues regarding the Higgs mass, one will not

be solving the SMP, but something else instead. The latter is the hierarchy between the

Electroweak scale and the scale of new physics, which is named as the Hierarchy Paradigm

(HPa). The word "paradigm" is chosen instead of "problem", because the question whether

a parameter is natural or not is not a problem from the physical point of view, as stressed

in the section 1.1. In Table 1 a concise definition of both the SMP and the HPa is given,

and note the term "Hierarchy Problem" (HP) will still be used to denote both of them.
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Physicists of the last decades have insisted in using naturalness to shape their models∗

and, although naturalness has some conceptual mishaps, they were not without gain.

Many interesting, profound and useful ideas were born from theories that use naturalness

as a guiding principle, whence it is worth to insist on it for a while.

Fine Tuning

In order to use naturalness consistently one must first develop a way to quantify how

much a parameter is natural or not.

It was stressed that, to obtain the proper value of the Higgs mass, a certain amount

of cancellation between radiative corrections and UV contributions was required. From

Eq. (1.4), with gM = m2
h = (125 GeV)2 together with the correction in Eq. (1.5) it

is possible to compute how precise the cancellation between the contributions must be.

Taking Λ = MP ∼ 1019 GeV one obtains that the cancellation between the two terms

must be given within 34 orders of magnitude; that’s what one calls "precise cancellation".

Such cancellations are also a source of unnaturalness; in the example cited above we have

M2
P

(125 GeV)2 ∼ 1034,

hence the cancellation is given for 10−34 parts in 1. The conclusion is that this fact

renders the theory unnatural and one is therefore motivated to search for solutions to

this problem. However, to make the discussion more precise, we need to quantify how

unnatural the theory is, in this manner it will be possible to determine if a solution to

the HPa is indeed a solution or not. Such quantification is given by the concept of Fine

Tuning (FT), which is, as the name suggests, the precise tuning of the free parameters of

the theory in order to obtain the correct measured quantities. Apart from the subjective

definition of what is tuned and what not, FT is still a key concept in any EFT since, after

all, we expect UV effects to account for only small corrections, i.e. that the heavy physics

decouple in the IR regime. All definitions of FT, in a way or another, try to measure the

UV-sensitivity of a given EFT with respect to the free parameters of the theory.

One can define the FT as the relative variation of a given observable of the theory with

∗The Swampland Program, introduced in 2005 [29], must not be forgotten. In this program one tries
to determine which low-energy EFT’s are consistent with Quantum Gravity (Landscape) and which are
not (Swampland). Since it does focus on the consistency of EFT’s, it can be classified as an approach to
the SMP.
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respect to a given parameter. Consider an observable O that depends on a parameter g,

which is itself generated at an UV scale Λ. If O is measured at an energy E � Λ, one

first solves the RGE of g with the initial condition gUV = g(Λ) and then runs it to E,

where it will acquire a value g(E). A change δg in the initial condition at the UV results

in a change δO in the measured observable:

O(gUV)→ O(gUV) + δO ' O(gUV) + δg
dO
dg

∣∣∣∣∣∣
E

.

The FT ∆ is defined by
δO

O
≡ ∆δg

g
, (1.14)

which may be rewritten as

∆ = g

O

dO
dg = d lnO

d ln g , (1.15)

evaluated at energy E. If O depends on more parameters, {gi}, then

∆ = max
i

∣∣∣∣∣d lnO
d ln gi

∣∣∣∣∣, (1.16)

can be taken as the corresponding generalisation. The measure ∆ defined above for the

FT is known as Barbieri-Giudici measure [30]. Though model dependent [31], Eq. (1.16)

may be applied to any theory and it represents very well the conceptual idea of FT.

Before proceeding, let us explore the meaning of ∆ a little bit more. Consider for

instance that the observable O is the coupling g itself; in this case Eq. (1.16) becomes

∆ = d ln g(E)
d ln g(Λ) = g(Λ)

g(E)
dg(E)
dg(Λ) '

g(Λ)
g(E)

δg(E)
δg(Λ) (1.17)

⇒ δg(E)
g(E) = ∆δg(Λ)

g(Λ) . (1.18)

With Eq. (1.18) the meaning of the FT becomes extremely clear: a 1% variation on g(Λ)

results in a (∆×1)% variation on g(E). So what we would expect to be a non-tuned, i.e.,

natural theory is at maximum a ∆ of order 1, otherwise, if ∆ & 1, then small variations in

the UV initial conditions affect severely the measured value, which means that the theory

is highly UV-sensitive (see for instance Figure 2).

???
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Figure 2: Illustration of the fine tuning through the running of the coupling g. In a) one
has ∆ . 1, hence the variation in g(E) is small or of the same order compared to that
in the UV, while in b) ∆ � 1, so a small variation in g(Λ) causes a big change in g(E).
The expression for δg(E) is given by Eq. (1.18).

Since EFT is a very profound and complex subject, there isn’t an unique solution to

neither the SMP nor the HPa as far as it is known. In the next chapters some of the

solutions to the HPa and the SMP are going to be presented. In particular, the focus will

be on the ideas and mechanisms behind each model and to use them to build minimal

BSM models which are consistent with experimental constrains. They are briefly outlined

below.

• The first one is a method based on symmetries. As it will be seen in Chapter 2,

there is an unique way to extend the symmetry group of the SM if bosons and

fermions are related in some way. The symmetry sought is one that relates bosons

and fermions, which can be represented as

δφ = εψ, (1.19)

where φ is a scalar, ψ is a Weyl fermion and ε is a spinor that parametrises the

transformation. Supersymmetry is the name of this theory and it stabilise the Higgs

mass due to the appearance of a bosonic loop for every fermionic loop, in a way

that the contribution from Eq. (1.5) vanishes exactly.

• The second situation considered is one analogue to the one in Quantum Chro-

modynamics (QCD) case. In this theory, quarks and gluons form bound states:

baryons and mesons. Taking the quarks to be massless, the QCD Lagrangian
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becomes invariant under a SU(2)R × SU(2)L group, which transforms left- and

right-handed components of up and down quarks independently [1, 20, 24]. The

spontaneous breaking of such group gives a SU(2)V and generates three massless

Nambu-Goldstone Bosons (NGB’s): the pions. The quarks are not massless, hence

the group SU(2)R × SU(2)L is explicitly broken by the masses. But as the quarks

masses themselves are technical natural parameters, the effects of this explicit break

will be small if the masses are small. The up and down are very light [3], therefore

the pion masses turn out to be small compared to the QCD scale ΛQCD. In other

words, a small mass compared to the energy scale of the theory can be explained

through compositness. Models in which the Higgs is taken to be a composite par-

ticle in the same way compositness in QCD is understood are known as Composite

Higgs Models, subject of Chapter 3. In this case the symmetry transformation is a

simple shift in the field,

δφ = c, (1.20)

with c a constant.

• The third class of models to be presented is known as Neutral Naturalness. In such

models one avoids any new physics charged under the SM gauge group. The moti-

vation for this is precisely the stringent experimental constrains, which comes from

experimental particle physics and collider data. One supposes that that the Higgs

is a pNGB of an approximate global symmetry that connects the SM with a new,

neutral sector [16, 15, 32]. In this case the symmetry transformation of the Higgs

is analogous to the one in Eq. (1.20). What is interesting in this type of solution

is that, there are some special cases where discrete symmetries become manifest,

hence such models have an intriguing interplay between discrete and continuous

symmetries. The Higgs mass is computable and is stabilised by the corrections

from the neutral sector.

• In Chapter 4 the Cosmological relaxation models will be introduced. It is qualita-

tively different with respect to the mechanisms cited above, due to the fact that it

takes into account cosmological considerations. The Higgs mass in this case is driven

to the observed experimental value by the cosmological evolution of the universe and

it is stabilised by the dynamics of new particles [16, 17]. How such reasoning touches
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Hierarchy Problem (HP)
Scalar Mass Problem (SMP) Hierarchy Paradigm (HPa)
Questions why EFT’s with scalar

particles contradicts the expectations
of decoupling and quantum stability

at the low-energy regime

Questions why the ratio between
the Higgs mass and the scale of
new physics is so small, and how

large quantum corrections are cancelled

Table 1: Brief definitions of the Scalar Mass Problem and of the Hierarchy Paradigm,
which are the two facets of what it is today named as Hierarchy Problem.

the thin line between the formulation of the SMP and the HPa, and why it is so

important to modern physics is going to be explained in detail.
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2 Supersymmetry

Supersymmetry (SUSY) is the first solution to the Hierarchy Problem (HP) that will be

presented in this thesis. It was first introduced in the 70’s, and soon became clear that

considering a supersymmetric version of the SM would solve the HP.

This chapter is organised in the following manner. First, the SUSY algebra is in-

troduced from first principles and its most relevant physical properties are pointed out.

Then, reducible and irreducible representations of the superalgebra are built, while fo-

cusing manly on the superfield representation. In section 2.3, the motivations for SUSY-

invariant Lagrangians for both chiral and vector supermultiplets are given and general

renormalizable non-abelian supersymmetric gauge theories are constructed. Finally, the

Minimal Supersymmetric Standard Model (MSSM) is developed, and particular emphasis

on how it solves the HP and on the corresponding FT is given.

2.1 Motivations & SUSY algebra

Supersymmetry was first motivated not from a particular problem within particle physics,

such as the Hierarchy Problem, but as an exception to a famous no-go theorem∗ known as

Coleman-Mandula Theorem. Within reasonable assumptions it proves that the S-matrix

of a quantum field theory can commute only with the elements of the product between the

Poincaré group and internal symmetry groups [34, 35]. Although this theorem is robust,

it contains several loopholes. One of them is in the very definition of a symmetry group,

which includes the assumption that its elements commute with the S-matrix, in other

words, a symmetry is defined based on usual Lie algebras. Hence, the Coleman-Mandula

theorem does not necessarily hold if we generalise the Lie algebras to graded Lie algebras

[35]. According to the Spin-Statistics theorem [36], the only physical bracket other than

the commutator is the anticommutator, so in mathematical terms we would now have a

Z2-graded Lie algebra, or, in simple physical terms, an algebra that mixes commutators

and anticommutators.

The relation between the statistics of a given particle and graded Lie algebras is

made manifest from the definition of the latter. A graded Lie algebra g is a Lie algebra

∗No-go Theorems prove that a particular configuration is physically impossible. An example in classical
physics is Earnshaw’s theorem [33].
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supplemented with a gradation, in other words, the algebra g can be written as [35]

g =
⊕
n∈Z

gn, (2.1)

such that [gn, gm] ⊆ gn+m. In the equation above, the grade is defined as the integer in the

direct sum. The Lie bracket associated with a graded Lie algebra depends on the grade

of each element, and can be written compactly as

[x, y] = xy − (−1)nmyx, x ∈ gn, y ∈ gm. (2.2)

From the equation above it is clear that the commutator is the Lie bracket of an algebra

with grade zero, while the anticommutator corresponds to an algebra with grade 1, whence

a graded Lie algebra that mixes commutators and anticommutators is given by

g =
⊕

n∈{0,1}
gn = g0 ⊕ g1. (2.3)

The specific grade from Eq. (2.3) is named Z2-grading and is the adequate mathematical

structure for a Lie algebra that relates both commutators and anticommutators.

Admitting the idea of a Z2-graded Lie algebra, also called superalgebra, new gener-

ators, which will play the role of the generators of the symmetry that will extend the

Poincaré group non-trivially, must be introduced to the original Lie algebra. These gen-

erators are the elements of the algebra g1 in Eq. (2.3) and are named Q and Q̄ their

conjugate. The structure of the superalgebra will be thus fully determined from the mo-

ment that all commutators and anticommutators of Q and Q̄ with the generators of the

internal and Poincaré symmetries are computed.

Before doing so, the Lorentz nature of both Q and Q̄ must be made explicit. The whole

point of supersymmetry being an exception of the Coleman-Mandula theorem is that these

new generators are allowed to have non-trivial Lorentz representations, therefore they are

defined to have the following su(2)⊕ su(2) transformations

Q ∼ (j, j′), (2.4)

where j and j′ are integers or half-integers with the condition 2(j + j′) = odd, because
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otherwise Q and Q̄ would be bosonic operators and, by the Coleman-Mandula theorem,

would be forced to be Lorentz scalars∗. That is to say, Q, and consequently Q̄, are Lorentz

spinors and can then belong to the algebra g1. The determination of j and j′ is given in

group-theoretical grounds. Take for instance

[Q, Q̄]+ = QQ̄+ Q̄Q.

This anticommutator must transform as (j + j′, j + j′), i.e. as a bosonic operator. Such

operator must belong to the Poincaré group [38], but the only generator transforming

under such representation is the 4-momentum P µ ∼ (1
2 ,

1
2), so j = 1

2 and j′ = 0 is the only

possibility. Q and Q̄ are therefore Lorentz spinors of the lowest representations, (1
2 , 0) and

(0, 1
2) respectively, and so Q̄ can be written as Q† since the representations are mapped

into each other by complex conjugation [37].

With the same reasoning we can compute

[Qα, Qβ]+, α, β = 1 or 2, (2.5)

where now α and β denote the indices of the (1
2 , 0) representation. The symmetric part in

α and β transforms as (1, 0), hence it is zero because there is no such tensor in the Poincaré

group [38], while the antisymmetric piece depends on whether there is just one operator

Q or more. If there is indeed just one pair of operators (Q,Q†), the antisymmetric part

of Eq. (2.5) is zero, as the anticommutator is symmetric. If not, if there are N pairs of

operators,

QI and (Q†)J , with I, J = 1, · · · ,N , (2.6)

then Eq. (2.5) will have a contribution from a term proportional to εαβ if multiplied by

an antisymmetric tensor ZIJ , defined as central charges. When N > 1 one usually speeks

of extended supersymmetries [11, 12, 39].

With similar, though more technical arguments†, one arrives at the full superalgebra

∗An operator O with Lorentz representation

O ∼ (a, b)

is bosonic (fermionic) if the sum a+ b is integer (semi-integer) [37].
†The steps presented here are manly based on the original work [40], which also details the argumen-

tation to determine the commutations relations with the Poincaré generators.
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for N = 1:

[Qα, Q
†
β̇
]+ = 2σµ

αβ̇
Pµ, (2.7a)

[Qα, Qβ]+ = [Q†
α̇, Q

†
β̇
]+ = [Q†

α̇, P
µ]− = [Qα, P

µ]− = 0, (2.7b)

[Jµν , Qα]− = i(σµν) β
α Qβ, (2.7c)

[Jµν , Q†
α̇]− = i(σ̄µν) β̇

α̇ Q
†
β̇
, (2.7d)

where α̇ and β̇ are the indices of the (0, 1
2) representation and take values 1̇ and 2̇, σµ are

the Pauli matrices, σµν is the spin generator and Jµν the generator of the Lorentz group.

To close the superalgebra one needs in addition the commutation relations with the

internal group generators, called here Bn. The Coleman-Mandula theorem states that

Bn form a algebra composed of an abelian algebra plus a non-abelian (semi-simple) Lie

algebra. The structure of a Z2-grading forces the commutator between Q’s and B’s to be

proportional to the Q’s themselves (see Eq. (2.2)), therefore

[Qα, Bn]− = qnQα, (2.8a)

[Q†
α̇, Bn]− = −q∗

nQ
†
α̇, (2.8b)

The charges qn defined by the equation above are real, which follows from the generalised

Jacobi identities [41]:

[O1, [O2, O3]−]− + [O2, [O3, O1]−]− + [O3, [O1, O2]−]− = 0, (2.9a)

[F1, [O2, O3]−]− + [O2, [O3, F1]−]− + [O3, [F1, O2]−]− = 0, (2.9b)

[O1, [F2, F3]+]− + [F2, [F3, O1]−]+ − [F3, [O1, F2]−]+ = 0, (2.9c)

[F1, [F2, F3]+]− + [F2, [F3, F1]+]− + [F3, [F1, F2]+]− = 0, (2.9d)

with Oi and Fi bosonic and fermionic operators, respectively. In particular, using that
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[Bn, P
µ]− = 0 and Eq. (2.9c) with F2 = Qα, F3 = Q†

α̇ and O1 = Bn one obtains

0 = [Bn, [Qα, Q
†
α̇]+]− + [Qα, [Q†

α̇, Bn]−]+ − [Q†
α̇, [Bn, Qα]−]+

= 2σµα α̇[Bn, P
µ]− − q∗

n[Qα, Q
†
α̇]+ + qn[Q†

α̇, Qα]+

= (qn − q∗
n)[Qα, Q

†
α̇]+, (2.10)

showing that qn − q∗
n = 0 must be satisfied. In a extended superalgebra the relations

(2.8a) and (2.8b) becomes more complex due to the internal indices I, J , in this case the

qn are promoted to matrices (qn)IJ , and are hermitian in the internal indices by similar

calculation [39, 40]. In the non-extended case one can prove in addition that not all

charges qn are non-vanishing. This follows from the Jacobi identity in Eq. (2.9b) with

F1 = Qα, O2 = Bn and O3 = Bm,

0 = [Qα, [Bn, Bm]−]− + [Bn, [Bm, Qα]−]− + [Bm, [Qα, Bn]−]−

= if lnm[Qα, Bl]− − qm[Bn, Qα]− + qn[Bm, Qα]−

=
(
if lnmql − qmqn + qmqn

)
= if lnmql, (2.11)

where f are the structure constants of the internal algebra. For the non-abelian piece of

the internal symmetry, the structure constants cannot be all zero simultaneously, hence

qnon-ab
l = 0, i.e. in non-extended SUSY the generators Q and Q† do not affect non-abelian

charges. Only the charges associated with the abelian algebra, for which f = 0, are

allowed to be non-zero. As a result of Eq. (2.11), only one linear combination of the

abelian generators has a non-trivial SUSY transformation. This can also be seen from the

fact that the entire SUSY algebra is invariant under the abelian transformation

Q→ eirQ, (2.12a)

Q† → e−irQ†. (2.12b)

The transformation above originates from a U(1)R group, generated by R, whose com-

mutation relations are

[Qα, R]− = rQα, (2.13a)
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[Q†
α, R]− = −rQ†

α (2.13b)

In extended SUSY the U(1)R group is promoted to a full U(N )R group [11].

Equations (2.7) and (2.13) contain the most important features of supersymmetric

theories. In the following sections they will be used to construct representations, with the

final goal being the construction of supersymmetric Lagrangians.

2.2 Representations

With the superalgebra at hands, our task would be to explore its properties and then

build representations. Once the SUSY transformations of the fields are determined, the

construction of Lagrangians invariant under SUSY becomes straightforward. Our focus

will be, however, on the formulation in terms of superfields, a more abstract and practical

representation of SUSY. After understanding how to consistently introduce superfields,

they will be studied along with the algebraic properties of SUSY.

2.2.1 Superfields

One can study the representations of a field through their transformations properties under

the corresponding symmetry group. In the standard case of the Poincaré and internal

symmetry groups, this is achieved by constructing the appropriate unitary operators U(λ),

where λ are the transformation parameters that act on field space. In this latter case,

however, the algebra is an usual Lie algebra. For SUSY one must be able to define

such operators for Z2-graded Lie algebras. The most natural way to construct them is

to realise that if we contract Q and Q† in the superalgebra with spinors θα and θ†
α̇, all

anticommutators become commutators. The referred contraction of spinors is defined in

the usual way with the Levi-Civita tensor [41, 42],

θQ ≡ θαQα = Qαθα = θαQβεαβ, (2.14a)

θ†Q† ≡ θ†
α̇(Q†)α̇ = (Q†)α̇θ† α̇ = θ†

α̇Q
†
β̇
εα̇ β̇. (2.14b)
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For instance, contracting both sides of the anticommutation relation in Eq. (2.7a) with

θα and θ† α̇ one obtains

θαθ† α̇[Qα, Q
†
α̇]+ = θαθ† α̇QαQ

†
α̇ + θαθ† α̇Q†

α̇Qα

= θα
(
−Qαθ

† α̇
)
Q†
α̇ + θα

(
−Q†

α̇θ
† α̇
)
Qα

= −(θαQα)
(
−Q†

α̇θ
† α̇
)
− (θαQα)

(
Q†
α̇θ

† α̇
)

= θQθ†Q† − θ†Q†θQ

= [θQ, θ†Q†]−, (2.15)

where the anticommuting properties of grassmannian objects was used. The other relation

in Eqs. (2.7) and (2.13) can be rewritten analogously.

With the superalgebra written in terms of commutators, U can be written as an

exponential of the generators as usual

U(λ) = U(x, θ, θ†) = exp
(
ixµPµ + iθQ+ iθ†Q†

)
. (2.16)

The unusual part comes from the fact that now U can depend on the spinors θ and

θ†, which, unlike xµ, have grassmannian nature. The action of such spinor-dependent

transformations on the SM fields is unclear, since the fields of usual quantum field theories

do not depend on such parameters. The solution to this impasse is simple: one promotes

all ordinary fields to superfields. A superfield is an object F that depends on λ = (x, ξ, ξ†),

where ξ is a spinor and ξ† its conjugate, and transforms under SUSY as∗

F (x, ξ, ξ†)→ U(0, θ, θ†)F (x, ξ, ξ†). (2.17)

There are still two problems: it is neither known how F is related to the ordinary fields

nor how Qα and Q†
α̇ act on the (x, ξ, ξ†) space. For the latter, it suffices to calculate

U(0, θ, θ†)U(x, ξ, ξ†) = U(λ),

∗In Eq. (2.17) it is implicit that F is already treated as an ordinary superfield, and not as an operator-
valued field. More fundamentally, one would take F to be an operator-valued superfield that transforms
as

F (x, ξ, ξ†)→ U(0, θ, θ†)F (x, ξ, ξ†)U†(0, θ, θ†),

with Q and Q† abstract operators, and then represent both of them as differential operators acting on
λ-space, whose action is given exactly by Eq. (2.17) [43].
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which can be trivially evaluated by making use of the superalgebra and the Baker-

Campbell-Hausdorff formula,

λ = (xµ − iθσµξ† + iξσµθ†, ξ + θ, ξ† + θ†), (2.18)

so that the effect of a SUSY transformation on the coordinates is

xµ → xµ − iθσµξ† + iξσµθ†

ξ → ξ + θ

ξ† → ξ† + θ†,

i.e. just simple translations, which are represented in coordinate space by derivatives

Qα = ∂

∂ ξα
+ i
(
σµξ†

)
α
∂µ, (2.19a)

Q†
α̇ = ∂

∂ ξα̇
+ i(ξσµ)α̇ ∂µ . (2.19b)

The differential operators in Eq. (2.19) satisfy the same anticommutation relations (2.7a)

and (2.7b), so they are the representation of the SUSY generators in the (x, ξ, ξ†) space.

What is left is to understand how does the superfield is related to the ordinary fields and

the spinorial parameters.

Since the Talyor expansion of functions that depend on grassmannian parameters are

always finite, the dependency one the spinorial parameters can be introduced as a linear

combination of powers of ξ and ξ†. The most general scalar superfield can be written as

F (x, ξ, ξ†) = φ(x) + ξψ(x) + ξ†χ†(x) + ξ2f(x) + (ξ†)2g(x) + ξ2ξ†m†(x)

+(ξ†)2ξn(x) + ξσµξ†vµ(x) + ξ2(ξ†)2d(x), (2.20)

where the coefficients of this linear combination are none other than the fields themselves,

implying that we are building a linear representation of SUSY. Here, the Lorentz structure

of the superfield F was specified to be that of a scalar, implying that φ, f , g and d are

scalars, vµ is a vector, χ†, ψ, n and m† are Weyl spinors. Note how many different kinds

of fields appear in F ; to relate bosons and fermions is one of the most striking features of
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SUSY.

A remark regarding Eq. (2.20) is in order. For a scalar superfield, one could in

principle add the terms (
ξσµξ†

)(
ξ†σ̄νξ

)
hµν , ξσµνξFµν , (2.21)

for a symmetric rank 2 tensor hµν and an antisymmetric Fµν , to the superfield in Eq.

(2.20). The first term above contains only the information on the trace of hµν , because

σ(µσ̄ν) ∼ ηµν , while the second one is actually zero, since ξσµσ̄νξ = ξσν σ̄µξ. Therefore,

these tensor structures cannot be fitted into the scalar superfield, or, more precisely, they

do not add any new degrees of freedom to it∗.

In conclusion, it was shown how to construct the superfield representation of the

superalgebra, that, together with Eq. (2.17), gives the appropriate SUSY transformations

of the fields. The expression of F in Eq. (2.20) contains many distinct fields, which is a

priori no issue. However, we will see in the following that only two particles are connected

by SUSY transformations in N = 1. This does not mean that superfield formulation is

inconsistent, but that it is reducible, as it will become clear.

2.2.2 Irreducible representations

Let us turn to the irreducible representations of the SUSY algebra. Our starting point is

the Hilbert space of a multi-particle theory: the Fock space. The Fock space is defined as

F =
∞⊕
n

(
n⊗
k=0
H
)
, (2.22)

where H is the Hilbert space spanned by the one-particle states |p, σ〉, with p the on-shell

4-momentum and σ the z-projection of the spin (or helicity for massless particles). It

is well known that H is an irreducible and unitary representation of the Poincaré group

[37]. When needed, a "B" or "F " subscript in F will be written to designate a bosonic or

fermionic Fock space, respectively.

In a supersymmetric theory, Qα and Q†
α̇ may also act on the Fock space in Eq. (2.22),

∗The usual definitions are
σµν = 1

4
(
σµσ̄ν − σ̄µσν

)
,

while σ̄µν has the bars exchanged. The identities mentioned can be found in [11, 39, 41].
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so take for example the action of Q1 on the one-particle state,

Q1 |p, σ〉 .

It is sufficient∗ to study the action on standard kets, which are defined as pt = (M, 0, 0, 0)

and as pt = (E, 0, 0, E) for massive and massless particles, respectively. Consider first

the massless case, where the spin is actually the helicity h. Examining the commutation

relation (2.7c) with µ = 1 and ν = 2, we obtain the effects of the action of Q1,

[J12, Q1] = i
(
σ12

) 1

1
Q1 + i

(
σ12

) 2

1
Q2 ⇒ [J3, Q1] = 1

2Q1. (2.23)

In other words, Q1 raises the helicity (or the spin for massive case) by half unit. If

|pl, h〉 ∈ FB, i.e. the state-ket of a boson, then

Q1 : FB → FF ,

because the associated helicity is now a half-integer. In the same manner, if |pl, h〉 ∈ FF ,

then

Q1 : FF → FB.

With similar analysis one concludes that Q1 and Q†
2̇ raise and Q2 and Q†

1̇ lower by half

unit the helicity. It is worth remarking that this raise and lower of spin, unlike the ones

of the raising and lowering spin operators J±, change the representation from a bosonic

(femionic) to a fermionic (bosonic) one.

One cannot raise the helicity indefinitely, as every grassmannian operator is nilpotent,

i.e. (Q†
α̇)2 = Q2

α = 0, so there is only a finite number of combinations of non-zero operators

to apply on |pl, h〉. This means that only a finite number of particles (Fock spaces) are

connected by SUSY transformations. How many particles depends on the value of N ,

because it determines the total number of fermionic operators available, as we will now

see. Consider the superalgebra in the frame with P µ = pµl . Eq. (2.7a) can be written as

[Qα, Q
†
α̇]+ = 2E

(
σ0 + σ3)α α̇ = 4Eδ1αδ1̇ α̇, (2.24)

∗This is analogous to the case of the construction of H itself, where little group representations of the
standard vectors are used [37].
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or simply

[Q1, Q
†
1̇]+ = 4E, (2.25a)

[Q2, Q
†
2̇]+ = 0, (2.25b)

[Q1, Q
†
2̇]+ = [Q2, Q

†
1̇]+ = 0. (2.25c)

The algebra in this form can be interpreted more easily. The second relation implies

that Q2 and Q†
2̇ produce zero-norm states, hence do not have any physical action on the

states. The first relation straightforwardly implies that Q1 and Q†
1̇ behave respectively

like annihilation and creation operators. With this interpretation one can build the SUSY

representation in the same way the Fock space is built, through the action of creation and

annihilation operators on the vacuum |0〉. One subtlety of this approach regards the

vacuum. The vacuum state, here named |Ω〉, must be such that it is annihilated by the

annihilation operator,

Q1 |Ω〉 = 0. (2.26)

Note that due to the fact that the theory is SUSY invariant, the state |0〉 is invariant

under SUSY transformations, therefore

Q†
1̇ |0〉 = 0, Q1 |0〉 = 0, (2.27)

and for this reason |0〉 cannot be used to define the vacuum state of the algebra. An

appropriate vacuum state that satisfy the equation above can be defined from the fact

that Q1 is nilpotent,

|Ω〉 ≡ 1√
4E

Q1 |pl, h〉 . (2.28)

In what follows |Ω〉 will be used as the vacuum of the algebra.

The analysis proceeds as follows. First, note that this vacuum |Ω〉 is not the same

as |0〉, because it is actually a one-particle-state with an associated helicity σ. Second,

it follows from CPT invariance that for each state with an helicity h, there must be a

state with opposite helicity −h in the particle spectrum. The action of Q†
1̇ on the vacuum

|Ω〉 produces a state with helicity σ − 1
2 , according to the discussion above. Hence,

we must also include a state with helicity −σ and another one with helicity −σ + 1
2 .

One remark regarding the values of sigma is in order. On the one hand there is in
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Particle SUSY Partner
Helicity Name Helicity Name

0 Scalar 1/2 Scalarino
1/2 Fermion 0 Sfermion
1 Gauge Boson 1/2 Gaugino

Table 2: Supermultiplets for N = 1.

principle no restriction to the values sigma may assume. On the other hand, from the

phenomenological point of view, it is not interesting to consider values higher than 1,

since elementary particles with spin higher than 1 have not yet been observed. Taking

this into consideration we restrict the value of |σ| to be only 0, 1/2 or 1.

Returning to the main discussion, there is in total 4 degrees of freedom (dof) which

can be brought together into two massless particles. Then, for every massless particle

with helicities σ and −σ in the spectrum, SUSY invariance requires the inclusion of

another massless particle with helicities −σ + 1/2 and σ − 1/2. This latter is named the

superpartner of the original particle. Moreover, the multiplet composed of a particle and

its superpartner is denoted supermultiplet. The supermultiplets for N = 1 are given in

Table 2.

In an extended SUSY theory for massless particles the situation is similar. The su-

peralgebra in this case is given by

[QI
1, (Q

†
1̇)
J ]+ = 4EδIJ , (2.29)

[QI
2, (Q

†
2̇)
J ]+ = 0, (2.30)

and the vacuum with helicity σ is written as

|Ω〉N = 1
(4E)N/2Q

1
1 · · ·QN

1 |pl, h〉 , (2.31)

such that it is annihilated by allQI
1. There are nowN distinct creation operators available.

For instance, taking n < N of these operators and applying to the vacuum in Eq. (2.31),

one obtains
1

(4E)n/2 (Q†
1)I1 · · · (Q†

1)In |Ω〉N , (2.32)

that has helicity σ − n/2 and, due to the fact that the operators can be applied in

different orders, is
(

N
n

)
-fold degenerate. If only states with at maximum helicity 1 are
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being considered, then N ≤ 4, wich follows from imposing both |σ| ≤ 1 and |σ− N
2 | ≤ 1.

It is important to note that, in extended SUSY, the supermultiplets contains more than

two particles (while working in 3+1 dimensions [11, 43]).

For the massive case the procedure is almost identical. For N = 1 one only needs

to properly organise the dof to re-obtain Table 2, while in the extend case is a bit more

subtle because of internal symmetries between the many SUSY generators and will not

be discussed in this thesis [39, 11].

The representations presented above are irreducible asH itself is irreducible. The next

step is to compare these representations with those of superfields. Before proceeding, there

are a few algebraic properties of SUSY worth remarking. First, for particles that transform

under internal symmetry groups, it follows from the discussion of section 2.1 that in a

non-extended superalgebra the elements of a given supermultiplet have all the same non-

abelian charges, whereas in the extended case the charges of the superpartner are given

by combinations of (qn)IJ (see Eqs. (2.8a) and (2.8b)). An immediate consequence of this

in the context of supersymmetric version of the SM is the prediction of coloured scalars,

which, till this moment, were not observed and put therefore strong bounds on such

models. Second, from Eq. (2.7b) it is easy to see that the SUSY generators commute

with P 2, therefore all particles in a supermultiplet have the same mass. On the one

hand this signalises how SUSY solves the Hieararchy Problem, because the Higgs has

a fermionic SUSY partner with the same mass and thus, due to the fact that fermion

masses are technically natural, the Higgs mass is also technically natural. On the other

hand this is very problematic, because none of the SUSY partners have been detected at

EW scale. This issue can be solved via SUSY breaking, as we will see in section 2.4.2.

Third, all the supermultiplets built above have the same number of bosons and fermions,

or, more precisely, they have each the same number of dof for each statistics. This is

not a coincidence, as it follows directly from the superalgebra [39, 41]. To prove this,

consider the operator F that counts the number of fermions in a given supermultiplet.

This operator satisfy

[Qα, F ]+ = 0, [Q†
α̇, F ]+ = 0, (2.33)

and in particular

[Qα, (−1)F ]+ = 0, [Q†
α̇, (−1)F ]+ = 0. (2.34)
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Consider the following trace in the supermultiplet space:

Tr
[
(−1)F [Qα, Q

†
α̇]+

]
. (2.35)

Using Eq. (2.34) and the cyclic property of the trace, we determine that the trace above

is vanishing. From Eq. (2.7a) of the superalgebra together with the fact that all states in

a supermultiplet have a well defined, non-zero 4-momentum, one obtains

Tr
[
(−1)F

]
= 0, (2.36)

which proves the initial assertion.

2.2.3 Chiral and vector superfields

In section 2.2.1 it was shown that the superfield representation of the SUSY algebra

was reducible, which became even more clear from the construction of the irreducible

representations of the superalgebra. In order to connect uniquely both representations,

the superfields must be somehow constrained. More precisely, some kind of conditions

must be imposed on them such that only the physical dof remain on them.

Superfields are in general complex objects, so a condition one may impose on them is

V
(
x, ξ, ξ†

)
= V †

(
x, ξ, ξ†

)
. (2.37)

Using Eq. (2.20) for a scalar superfield, this condition implies that

V (x, ξ, ξ†) = C(x) + ξη(x) + ξ†η†(x) + ξ2N(x) + (ξ†)2N(x)

+ξ2ξ†λ†(x) + (ξ†)2ξλ(x) + ξσµξ†vµ(x) + ξ2(ξ†)2D(x), (2.38)

with C, N , vµ and D real fields. However, Eq. (2.37) does not seem to be sufficient in

diminishing the number of fields to the desired one∗. Note that a real superfield is always

redundant, in the sense that we may perform the transformation

V → V + F + F †, (2.39)

∗These extra fields are required when considering massive fields, which is not the case.
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which still is a real superfield for any superfield scalar F . The above transformation

induces transformations on the component fields, in particular on the vector field vµ,

vµ → vµ + aµ + a†
µ, (2.40)

where aµ is the vector field from F . Choosing

aµ + a†
µ = ∂µ φ, (2.41)

with φ a real scalar field, one recovers the usual gauge transformation of a massless

vector field. Thus, with the condition that Eq. (2.41) is satisfied, Eq. (2.39) is the

generalisation of a gauge transformation in the context of supersymmetric theories. We

are then motivated in finding a new superfield that satisfies Eq. (2.41).

From the the differential structure of the SUSY generators in (x, ξ, ξ†) space, it is

implicit that in Eq. (2.17) the action of both operators were defined from the left. If

instead U(0, θ, θ†) were to act from the right∗, another pair of differential operators would

emerge

Dα = ∂

∂ ξα
− i

(
σµξ†)α ∂µ, (2.42a)

D†
α̇ = − ∂

∂ ξ† α̇ + i(ξσµ)α̇ ∂µ . (2.42b)

The operators Dα and D†
α̇ differ from Qα and Q†

α̇ in some sign and, because of that, the

D’s anticommute with all Q’s and they themselves satisfy very similar anticommutation

relations:

[Dα, D
†
α̇]+ = −2σµα α̇ ∂µ, (2.43a)

[Dα, Dβ]+ = 0, [D†
α̇, D

†
β̇
]+ = 0. (2.43b)

Since the operators in Eq. (2.42) generate SUSY translations if applied from the right,

one may use them to obtain a "differential equation" by applying them to a superfield Φ

and requiring generically that

D†
α̇Φ(x, ξ, ξ†) = 0. (2.44)

∗This looks quite silly, but in the context of group theory right and left actions are generally not
equivalent. To take the same operators in right-action form and then applying it by the left side is a
smart way of obtaining new differential operators with some physical meaning.
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A superfield that satisfy Eq. (2.44) is called a chiral superfield. Note in addition that

D†
α̇Φ is still a superfield, which means that D†

α̇ and Dα behave like covariant derivatives

with respect to SUSY transformations. The "differential equation" in Eq. (2.44) is a very

special one because it does not imply in any conditions over the x variable, i.e. Eq. (2.44)

does not force the fields to satisfy any differential equation, otherwise such restriction

would be in conflict with the classical equations of motion.

The fact that Eq. (2.44) does not imply in any additional differential equation over

the x variable can be verified explicitly,

D†
α̇Φ = χ†

α̇ + θασµα α̇

(
i ∂µ φ+ vµ

)
+ iθ†

α̇g + θ2
(
m†
α̇ + i

2 ∂µ ψ
ασµα α̇

)
+

+
(
θ†
α̇θn+ iθασµα α̇ ∂µ ξ

†θ†
)

+ 2θ2θ†
α̇

(
d+ 1

4�φ
)
.

For this expression to be zero, all coefficients of the θ-directions must be zero, which is

satisfied by:

χα(x) = nα(x) = 0

g(x) = 0

vµ(x) = −i ∂µ φ(x)

m†
α̇(x) = i

2 ∂µ ψ
α(x)σµα α̇

d(x) = −1
4�φ(x).

Hence the most general chiral superfield is given by

Φ = φ(x)+
√

2ξψ(x)+ ξ2f(x)− iξσµξ† ∂µ φ(x)+ i√
2
ξ2 ∂µ ψσ

µξ†− 1
4ξ

2(ξ†)2�φ(x), (2.45)

where we have re-scaled ψ. For the case of the chiral superfield, it is convenient to

introduce a even more compact notation using the supercoordinates,

yµ = xµ − iξσµξ†, (2.46)
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for which the chiral superfield is simply∗

Φ(y) = φ(y) +
√

2ξψ(y) + ξ2f(y). (2.47)

The previous form of Φ in Eq. (2.45) can be obtained by Taylor expanding in the grass-

mann variables.

At first sight even the chiral superfield is no good for our purpose, for it has two

complex scalars and a Weyl spinor; one scalar more than needed to compose a irreducible

supermultiplet. In the next section it will become clear what role does this extra scalar

plays and why the superfield in the equation above indeed represents an irreducible super-

multiplet. The chiral superfield, defined by Eq. (2.44) and given explicitly in Eq. (2.47), is

the first superfield to be introduced and can accommodate the supermultiplets of a scalar

field (then ψ is the superpartner) or of a fermion field (with φ the superpartner). With

the explicit expression of the chiral superfield, it is possible to obtain the infinitesimal

SUSY transformations of the ordinary fields. From Eq. (2.17), these are given by

(θQ+ θ†Q†)Φ = δΦ(x, ξ, ξ†) =
[
θ
∂

∂ ξ
+ θ† ∂

∂ ξ† + i
(
θσµξ† − ξσµθ†

)
∂µ

]
Φ(x, ξ, ξ†).

Performing the algebra and matching the coefficients one obtains the infinitesimal SUSY

transformations,

δφ =
√

2θψ, (2.48a)

δψ = i
√

2σµθ† ∂µ φ+
√

2θf, (2.48b)

δf = i
√

2θ†σ̄µ ∂µ ψ. (2.48c)

Note that the transformation of the field f is nothing but a total derivative.

Having now defined a chiral supermultiplet, let us return to the previous point and

∗The supercoordinates are incredibly practical for chiral superfields because in such coordinates

D†
α̇ = − ∂

∂ ξ† α̇
, and Dα = ∂

∂ ξα
− 2i

(
σµξ†)α

∂

∂ yµ
,

and therefore the condition (2.44) for a superfield becomes just

∂

∂ξ†
α̇

Φ(y) = 0.
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compute the transformation of the real superfield

V → V + Φ + Φ†. (2.49)

Explicitly, the changes in the fields are:

C → C + φ+ φ†

η → η +
√

2ψ

N → N + F

vµ → vµ − i ∂µ
(
φ− φ†

)
λ→ λ− i√

2
σ̄µ ∂µ ψ

†

D → D − 1
4�

(
φ+ φ†

)
.

As expected, transformation (2.49) indeed induces the usual gauge transformation, and

Eq. (2.49) can be therefore understood as a generalisation of gauge transformation in

a SUSY theory. For this very reason the superfield V is called vector superfield. The

transformations above are not all independent, since they can be reorganised in a way to

extract gauge invariant quantities. Let

D ⇒ D + 1
4�C, (2.50)

λ⇒ λ+ i

2 σ̄
µ ∂µ η

†. (2.51)

Redefining D and λ in this way make both gauge invariant under transformation (2.49),

allowing us to set C, N and η to zero by performing a particular choice of gauge, known

as Wess-Zumino gauge. In this gauge it is clear that the physical fields are vµ, λ and, a

priori, D. V represents the supermultiplet of a vector field, although there is the extra

(real) scalar D, which plays the same role of f in the chiral superfield.

In the same manner we can compute the SUSY transformation of the vector field. The

infinitesimal transformation is given by

δV (x, ξ, ξ†) =
[
θ
∂

∂ ξ
+ θ† ∂

∂ ξ† + i
(
θσµξ† − ξσµθ†

)
∂µ

]
V (x, ξ, ξ†), (2.52)
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which is equivalent to the component fields transformations

δλα = iθαD + (σµνθ)αFµν , (2.53a)

δvµ = i
(
θσµλ

† + θ†σ̄µλ
)
, (2.53b)

δD = ξ†σ̄µ ∂µ λ− ξσµ ∂µ λ†. (2.53c)

Note, again, that the transformation of D is also a total derivative.

2.3 SUSY Lagrangians

A SUSY Lagrangian is nothing more than a Lagrangian which is also invariant under

SUSY transformations (up to total derivatives). To build a SUSY Lagrangian, it is enough

to gather the fields from a given irreducible supermultiplet and write all possible renor-

malizable interactions between them, which all together is SUSY invariant. Although

straightforward, this procedure is not so simple, because SUSY transformation, albeit not

very complicated, involve fields and grassmannian parameters, rendering the algebraic

work quite intricate. The superfield formulation built so far is very useful in this regard:

Lagrangians built from superfields are manifestly SUSY invariant. In this section it will

be shown how to construct SUSY Lagrangians from superfields, while leaving explicit

their relation with the irreducible representations, and why they are manifestly SUSY in-

variant. In particular, the Lagrangians for chiral and vector superfields will be discussed

in detail.

2.3.1 Wess-Zumino model

As discussed in section 2.2, the irreducible of a massless chiral supermultiplet consists of

a massless complex scalar and a massless spin 1/2 Weyl fermion. The free Lagrangian for

such fields is given by

L = ∂µ φ
† ∂µ φ+ iψ†σ̄µ ∂µ ψ. (2.54)

The objective is to write Eq. (2.54) in terms of superfields. The first step is to note

that a kinetic term is written with both the field and its complex conjugate. So the most
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straightforward term that contains information of both is given by

Φ†Φ.

This combination is not a chiral superfield, although it is trivially a vector superfield.

Nonetheless, it is indeed the desired kinetic term. Writing it explicitly in terms of com-

ponent fields, one finds

Φ†Φ = · · ·+ (ξ†)2ξ2
(
∂µ φ

† ∂µ φ+ iψ†σ̄µ ∂µ ψ + f †f
)
,

where the dots denote terms with other powers of ξ and ξ†. It is thus clear that the

term in the equation above is, except for the f †f term, identical to the Lagrangian in

Eq. (2.54). In spite of the presence of this extra term f †f , Φ†Φ is indeed the desired

kinetic term for the free Lagrangian of the chiral supermultiplet, and the reason is the

following. It must be noted that the irreducible representations are built based on the

irreducible representations of the Poincaré group, which is itself build from on-shell states

|p, σ〉. Contrary to the representation as Fock spaces, fields in Lagrangians can be off-shell

and for this reason it is necessary to have the auxiliary field f in the Lagrangian. More

precisely, as it was seen in section 2.2 , a supermultiplet has the same number of dof of

fermions and bosons, which is a result that does not depend on whether the particles are

on-shell or not, therefore one should have equal dof in both an off- and on-shell Lagrangian.

The Lagrangian in Eq. (2.54) clearly has matching dof if the fields are on-shell (2 for a

complex scalar and 2 for a Weyl fermion), but not if they are off shell (2 for a complex

scalar and 4 for a Weyl fermion). The complex scalar field f (with 2 dof) compensates

the two missing bosonic dof off-shell and is relevant only if off-shell, because its EoM are

f = f † = 0. (2.55)

The natural introduction of the field f (and of the field D in the case of the vector

superfield) is one of the main advantages from a bottom-up approach based on superfields

rather than the irreducible representations. In the latter, one would need to introduce

the f †f term by hand and also guess its SUSY transformation [11].

In order to obtain the correct Lagrangian one needs to specifically select the (ξ†)2ξ2
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term from Φ†Φ. This is easily done using grassmannian calculus [44]. Defining

d2ξ ≡ −1
4dξ

αdξβεαβ,

d2ξ† ≡ −1
4dξ

†
α̇dξ

†
β̇
εα̇ β̇,

d4ξ ≡ d2ξd2ξ†,

one has

L =
∫
d4ξ Φ†Φ. (2.56)

The Lagrangian above is manifestly SUSY invariant, which can be seen by determin-

ing how the Lagrangian transforms under an infinitesimal SUSY transformation. The

integration measure in superspace is invariant,

d4ξ → d4ξ, (2.57)

since SUSY acts as a translation in the superspace (see Eq. (2.18)). The product of chiral

superfields Φ†Φ is, as stressed, a vector superfield and its (ξ†)2ξ2 component transforms

therefore as the (ξ†)2ξ2 component of a vector superfield. This transformation is given in

Eq. (2.53) and is nothing but a total derivative. Hence, apart from surface terms, the

Lagrangian in Eq. (2.56) is SUSY invariant.

The Lagrangian in Eq. (2.56) would be that of a free chiral supermultiplet, i.e. without

interactions. In order to build interactions between the fields of the same supermultiplet,

one may use the superfields to write down interacting operators. Take for instance

1
2MΦΦ. (2.58)

This particular quantity is again a chiral superfield (in general, every power of a chiral

superfield is a chiral superfield). As a chiral superfield, the ξ2 component of the operator

above transforms like f in Eq. (2.48) and it is thus invariant under infinitesimal SUSY

transformation, except for a total derivative. In addition to the operator in Eq. (2.58),

one can also consider its complex conjugate, which needs to be integrate over (ξ†)2 instead
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of ξ2. The interacting Lagrangian is therefore given by

L 2 = 1
2M

∫
d2ξ ΦΦ + 1

2(M)†
∫
d2ξ† Φ†Φ†

which is manifestly SUSY invariant.

Other interactions can be built analogously with one or three fields,

L 1,3 = λ
∫
d2ξ Φ + 1

6Y
∫
d2ξ Φ3 + h.c. (2.59)

One could in principle add any power of Φ integrated over ξ2, but not all of these operators

are renormalizable. The Lagrangian (2.56) fixes the dimension of f as +2 and Eq. (2.59)

introduces a φφf operator, which is marginal. Therefore, the most general renormalizable

Lagrangian of a interacting chiral superfield, known as interacting Wess-Zumino model,

is

LWZ =
∫
d4ξ Φ†Φ +

∫ (
d2ξ λΦ + 1

2MΦ2 + 1
6YΦ3 + h.c

)
. (2.60)

This Lagrangian describes the usual dynamics of a scalar and a fermion plus their SUSY

interactions∗.

Although very elegant, the Wess-Zumino Lagrangian (2.60) does not leave the inter-

actions between the many particles and SUSY particles explicit. Take, for example, the

generalisation of Eq. (2.60) for N chiral superfields†,

L =
∫
d4ξ Φ†

iΦi +
∫ (

d2ξ W (Φ) + h.c.
)
, (2.61)

where W is the superpotential defined by

W (Φ) = 1
2MijΦiΦj + 1

3!YijkΦiΦjΦk, (2.62)

where we take λi = 0 for simplicity. Here the indices i, j and k run from 1 to N and are

∗More precisely, one cannot have non-vanishing linear, quadratic and triple operators simultaneously
for a single chiral superfield due to U(1)R invariance [41]. This is not worrisome here, because the purpose
of Eq. (2.60) is to motivate the generalisation with more chiral fields below, for which this restriction
does not hold.

†Note that the kinetic term is taken to be δijΦ†
i Φj , which is the simplest choice. Other possibilities

for the mixing matrix of the kinetic term are possible, but are out of the scope of this thesis [11, 12]
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implicitly summed. The terms quadratic in ξ are

∫
d2ξ W (Φ) = Mij

(
φifj −

1
2ψiψj

)
+ 1

2Yijk(φiφjfk − φiψjψk), (2.63)

where we have used that the matrices M and Y are symmetric. Note that the Lagrangian

is quadratic on all fi, so we may integrate them out. The EoM are

f †
i = −Mijφj −

1
2Yijkφjφk, (2.64a)

fi = −M∗
ijφ

∗
j −

1
2Y

∗
ijkφ

∗
jφ

∗
k. (2.64b)

Substituting the above equations we obtain the potential V that describes the scalars’

interactions, also named f -term,

V (φ, φ†) = f †
i fi

=
∣∣∣∣Mijφj + 1

2Yijkφjφk
∣∣∣∣2

= MijM
∗
ikφjφ

∗
k + 1

2MijY∗
imnφjφ

∗
mφ

∗
n +

+1
2M

∗
ijYimnφ∗

jφmφn + 1
4YijkY

∗
inmφiφjφ

∗
mφ

∗
n, (2.65)

while the interactions with fermions are

L int = −1
2(Mijψiψj + Yijkφiψjψk + h.c.). (2.66)

From Eqs. (2.65) and (2.66) the physical meaning of the operators in Eq. (2.62) is

obvious: M is the mass parameters of the particles and Y is the Yukawa coupling. Note

that, as a direct consequence of SUSY invariance, the scalar triple and quartic couplings

are not independent since they are both given in terms of M and Y .

A remark regarding the interactions is in order. Note that the superpotential W (Φ)

is a function only of Φ, i.e. it does not depend on both Φ and Φ†, and it is actually a

requirement from SUSY. This follows directly by the fact that δ
∫

d2ξ W must be a total

derivative, in other words, that the ξ2 component of W transforms as a field f under

SUSY (see Eq. (2.48)). This is only possible if W is a chiral field and, as seen above,

products of Φ and Φ† are not chiral. From a mathematical point of view this means
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that SUSY invariance is requiring the superpotetial to be holomorphic in the complex

superfield Φ [11, 41, 12].

2.3.2 Gauge theories

The SUSY Lagrangians for vectors superfields will naturally be related to gauge theories,

as the first describe massless spin 1 particles. In particular, the vector superfield will

carry the same representation under the gauge group of its associated vector field. For

SU(N) non-abelian gague theories this implies that the vector superfield carries a index

a from the adjoint representation.

Let us focus first on how to write down the kinetic term of a vector supermultiplet.

In contrast to the case of the chiral field it is not trivial to build a kinetic term for the

vector superfield. The first and foremost difficulty has to do with the strength field tensor

F a
µν itself. The free Lagrangian of a spin 1 particle is as usual

− 1
4F

a
µνF

a
µν , (2.67)

so, if we intent to build a Lagrangian which is the square of some superfield, the superfield

in question should contain some term proportional to F a
µν , such that its square would be

given by

iλa†σ̄µDµλ
a − 1

4F
a
µνF

a
µν ,

where λaα are the respective gauginos. But, as previously noted, a tensor structure like

F a
µν does not enter in a scalar superfield F , whence we cannot construct the appropriate

kinetic term from a scalar superfield.

A way to include the F a
µν in a superfield is to give up on the Lorentz scalar hypothesis,

i.e. to allow F (x, ξ, ξ†) to transform non-trivially under Lorentz transformations. The

simplest alternative is to consider a superfield Wα(x, ξ, ξ†) transforming under (1/2,0),

whose first component is a fermion,

Wα(x, ξ, ξ†) = −igα(x) + · · · .

To make contact with the vector superfield, we choose g as the gauginos λa. To construct

the entire W a
α , we use the most basic property of superfields: the transformation under
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SUSY. Note that

W a
α(x, 0, 0) = −iλaα(x),

hence, according to Eqs. (2.17) and (2.18),

W a
α(x, 0, 0)→ U(0, ξ, ξ†)W a

α(x, 0, 0) = W a
α(x, ξ, ξ†) (2.68)

one obtains the full superfield. Relation (2.68) is in fact a general property of superfields:

taking the lowest dimensional component and applying U will result in the full superfield

[45]. Notwithstanding, such calculation is a long one, as it starts with Taylor expanding

U ,

U(0, ξ, ξ†)λaα = e
i

(
ξQ+ξ†Q†

)
λaα

= λaα + iδλaα −
1
2δ

2λaα −
i

3!δ
3λaα + 1

4!δ
4λaα, (2.69)

where δ is the infinitesimal SUSY transformation obtained applying ξQ + ξ†Q† to the

superfields. The ξ component of Wα is obviously given by the first term of this expansion,

δλaα, which is given by Eq. (2.53)∗. Note that this transformation contains the respective

field strength tensor F a
µν . This allows us to guess the correct Lagrangian. Since the

intentions is to build the kinetic term out of the square of W a
α , the Yang-Mills Lagrangian

shall be given by

L YM =
∫ (

d2ξ TrW 2 + h.c.
)

(2.70)

where

W 2 = WαWα =
(
T bWαb

)
(T aW a

α). (2.71)

Under SUSY transformation this term transforms as a total derivative because Wα is a

chiral superfield (a trivial result from the explicit expression given below). To check if

the above reasoning is correct, one may compute the full expression for W a
α . For such,

the transformations of all fields in V a are needed, which are given in Eq. (2.53). The W a
α

∗Transformations in Eq. (2.53) are for a vector superfield outside the context of gauge theories. To
obtain the transformations of component fields in non-abelian gauge theories one just needs to substitute
ordinary derivatives by covariant ones and the abelian strength field by the non-abelian one.
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superfield is thus given by

W a
α(y) = −iλaα(y) +

(
δ β
α D

a(y)− i(σµν) β
α F

a
µν(y)

)
θβ + θ2

(
σµDµλ

a†(y)
)
α
. (2.72)

In component fields Eq. (2.70) can be expanded as

L YM = i(λa)†σ̄µDµλ
a − 1

4F
a
µνF

a
µν + 1

2D
aDa, (2.73)

which is indeed the desired and expected result. A remark regarding the field Da is in

order. As stressed, the field Da plays the same role as f in the chiral superfield, since

it contains the missing bosonic dof off-shell. In this case Da is real, since vaµ has 3 dof

off-shell.

Having built the SUSY Lagrangians for the chiral and vector superfields, it is already

possible to construct Lagrangians that contain interactions between both. For this to be

achievable, the relevant chiral superfields must be charged under the non-abelian symme-

try in question, in other words, they must carry some non-trivial representation. Since

the final goal is to study SUSY versions of the SM, only chiral fields transforming under

the fundamental of the gauge group are considered,

Φ = (Φi), i = 1, · · · , N. (2.74)

From the standard knowledge of Quantum Field Theory and our previous results one

expects that the Lagrangian that describes the interactions between matter fields and the

gauge fields will be given by

L WZ+YM ⊃ (Dµφ)†
i (Dµφ)i + iψ†

i (σ̄µDµψ)i + f ∗
i fi −

−1
4F

a
µνF

aµν + iλa†σ̄µDµλ
a + 1

2D
aDa + · · · , (2.75)

where the missing terms are the ones taking SUSY interactions into account. In other

words, the objective is to determine the theory that couples chiral and vector superfields

in a way that is consistent with SUSY invariance.

To this end, let us understand how do superfields behave under non-abelian gauge
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transformations. An abelian gauge transformation is, according to Eq. (2.49),

V → V ′ = V + Λ + Λ†,

with Λ a chiral superfield. In the non-abelian case there is no reason to believe that the

non-abelian gauge transformation will retain the same form from Eq. (2.49) due to the

non-commutativity. For this reason it is more logical to start with the matter fields, for

which the gauge transformations are much more straightforward. The transformation of

the chiral superfield Φ is parametrized by Λa through exponentiation,

Φ→ exp{ΛaT a}Φ, (2.76)

which must again be a chiral superfield. Such transformation is almost identical to the

non-SUSY case, except for the fact that Λa is a chiral superfield. If it wasn’t, then an

inconsistency would emerge, since a chiral superfield would be transformed into something

which is not in general a chiral superfield∗. Accepting this transformation as the gauge

transformation of a chiral superfield, we note that Eq. (2.76) is not unitary, therefore the

Lagrangian (2.56) is not gauge-invariant. In the very same way the covariant derivative

is constructed [1], a compensator is introduced between Φ† and Φ to make Lagrangian

(2.56) invariant. This compensator C must depend on V a so to introduce the field vaµ on

the Lagrangian. The equation C(V ) must satisfy is

eT
aΛa†

C(V ′)eTaΛa = C(V ). (2.77)

For the abelian case the equation above is trivially satisfied by†

Cabelian(V ) = e−V , (2.78)

since there are no matrices involved. The general case will maintain the same structure

as long as we introduce higher order correction in Eq. (2.49), which, by means of the

∗Φ(y)→ f(y)Φ(y) is not necessarily chiral for any function f

†Here the coupling constant g is taken to be 1. To re-introduce it, it is enough to make V a → 2gV a.
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Baker-Campbell-Haussdorff formula, will satisfy Eq. (2.77). The final answer is [41]:

C(V ) =e−V aTa

, (2.79)

V a → V a + Λa + Λa† +O(ΛV ). (2.80)

In short, the Wess-Zumino Lagrangian coupled to a non-abelian gauge theory is given

by (reintroducing the coupling constant)

L = L YM +
∫
d4ξ Φ†e−2gV aTaΦ, (2.81)

which is exactly the expected answer (2.75) plus new SUSY interactions. The latter can

be obtained by expanding∗ Eq. (2.81):

− g
√

2
(
φ†
iT

a
ijψjλ

a + λa†ψ†
iT

a
ijφj

)
+ gφ†

iT
a
ijφjD

a. (2.82)

The last term of Eq. (2.82), named D-term, contributes to the scalar potential in Eq.

(2.65),

V (φ†, φ) = f †
i fi + 1

2D
aDa, (2.83)

which, after solving the EoM of Da, becomes

V (φ†, φ) = f †
i fi + 1

2g
2
(
φ†
iT

a
ijφj

)2
. (2.84)

2.4 Minimal Supersymmetric Standard Model

Having understood how to construct Lagrangians for chiral and vector superfields and

how to couple them in non-abelian gauge theories, we are in the position to build su-

persymmetric versions of the SM. In particular, the focus of this section is to build the

minimal version of the SM, i.e. the most simple and self consistent theory while taking

SUSY into account.

∗Using Wess-Zumino gauge, with which V aV b = 1
2ξ

2(ξ†)2
Aa

µA
b
µ and V aV bV c = 0, such that the

expansion of the exponential in Eq. (2.81) is given by just three terms.
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2.4.1 Particle content

The simplest way to supersymmetrise a theory is to introduce N = 1 SUSY, in other

words, to build a theory with all tools developed so far. As a consequence, the SM

particle content will be doubled; for every fermion (boson) a boson (fermion) is added to

the particle spectrum of the theory.

In the process of building a theory, one must be careful before introducing so many

particles to a gauge theory, with one of the reasons being gauge anomalies. Not only

gauge anomalies coming from triangle diagrams but also topological anomalies like the

Witten anomaly, since the SM gauge group contains an SU(2)L group [46]. The latter

is avoided in the SM for it has only an even number of Weyl fermions: 3 left-handed

leptons plus 3 left-handed quarks. The SUSY theory we intent to build has a total of 3

left-handed leptons, 3 left-handed quarks and a higgsino. The latter is the SUSY partner

of the Higgs boson, which is a Weyl fermion and a doublet of SU(2)L, because the Higgs

is a scalar and itself a doublet of SU(2)L. Therefore, we are left with an odd number of

fermions∗ and the Witten anomaly leaves the theory inconsistent. To cancel such anomaly

the addition of a new SUSY Weyl fermion is necessary. This new field is introduced as

a new Higgs field, i.e. one needs two Higgs doublets to make the supersymmetric theory

consistent†. These two Higgs are called Hu and Hd and their transformations under the

symmetry group of the SM are defined as

Hu ∼
(

1, 2, 1
2

)
(2.85)

Hd ∼ (1, 2, y), (2.86)

with y a real number. The hypercharge of the Hd doublet must be such to cancel the

remaining gauge anomalies: U(1)3
Y , SU(2)2

LU(1)Y and U(1)Y grav2. For example, the

anomaly coefficient of the latter is given by[20, 21, 47]

U(1)Y grav2 −→ 3(2Y`L − YeR
− YνR

) + 3(6YqL
− 3YuR

− 3YdR
) + YH̃u

+ YH̃d
= 0, (2.87)

∗The wino triplet does not contribute to this counting because it transforms under the adjoint rep-
resentation, which is real. Only fermions in the chiral representation (1/2,0) contribute to the anomaly
[46].

†Another argument of why this new field is Higgs-like will be given below.
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Superfield Boson Fermion SU(3)c × SU(2)L × U(1)Y
L ˜̀

L `L 1 2 −1
2

Ē ẽ∗
R ēR 1 1 +1

Q q̃L qL 3 2 +1
6

Ū ũ∗
R ūR 3̄ 1 −2

3

D̄ d̃∗
R d̄R 3̄ 1 +1

3

Hu Hu H̃u 1 2 +1
2

Hd Hd H̃d 1 2 −1
2

Ga Ga
µ G̃a Adj 1 0

Wa W a
µ W̃ a 1 Adj 0

B Bµ B̃ 1 1 0

Table 3: Superfields and corresponding component fields with the appropriate group
representations.

where the Y ’s are the usual hypercharges of the many fermions in the SM and YH̃ are the

hypercharges of the higgsinos. As the first two terms are automatically cancelled in the

SM [1, 47], one obtains that

YH̃u
+ YH̃d

= 0⇒ YHu = 1
2 , YHd

= −1
2 . (2.88)

It is trivial to see that the other two anomalies are also cancelled by the choice of charges

above. In Table 3 all the superfields of the theory with their respective charges are

presented. At this point the model is theoretically consistent and the next step is to

study the its phenomenological consequences.

The first step is to determine the most general superpotential allowed by the gauge

symmetries. The superpotential associated with the Yukawa couplings from the SM is

given by [35, 11, 12]

WYukawa = QYuŪHu −QYdD̄Hd − LYeĒHd, (2.89)

where the Y are matrices in flavour space. The the SU(2)L indices are implicitly con-

tracted through the Levi-Civita symbol. Here, the necessity for two Higgs superfields

is once again manifest. As previously noted, the superpotential must be holomorphic,
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therefore one cannot use Hu and H∗
u simultaneously in expression (2.89) to build gauge

invariant operators and two distinct superfields with opposite hypercharges are needed.

Using Eq. (2.65) for the scalar sector, the interactions obtained are just quartic inter-

action between the many squarks and also quartic interactions between two squarks and

two Higgs. In particular, the terms

Vf ⊃ (ũRY ∗
u Yuũ

∗
R + ũLY

∗
u Yuũ

∗
L)H0

uH
0∗
u (2.90)

will be the most relevant ones when considering loop corrections. For the interactions

with fermions, Eq. (2.66) gives us the SM Yukawa interactions and squark-quark-Higgsino

interactions. The superpotential in Eq. (2.89) do not generate the mass terms for neither

the Higgs nor Higgsinos, whence it is insufficient to our theory. We must include a

superpotential, called µ-term,

Wµ-term = µHuHd, (2.91)

which is the only possible term with the two Higgs superfields, as the superpotential must

be holomorphic and gauge invariant. Note that µ has mass dimension, meaning it could

possibly receive large radiative corrections from the UV. This does not happens, because

it is supersymmetric, hence can only be renormalized via wave function renormalization

[11]. From the f -term of the superpotential Wµ-term + WYukawa comes the mass terms of

the Higgs. The scalar potential also receives contribution from the D-term of Eq. (2.84),

which for the Higgs it is given by

VD-term(Hu, Hd) = g2

2

(
H†
u

σa

2 Hu +H†
d

σa

2 Hd

)2
+ g

′2

8
(
H†
uHu −H†

dHd

)2
, (2.92)

where g and g′ are the coupling constants of SU(2)L and U(1)Y , respectively. Together

with the mass terms, the potential for Hu and Hd can be written as

V (Hu, Hd) = |µ|2
(∣∣∣H+

u

∣∣∣2 +
∣∣∣H0

u

∣∣∣2 +
∣∣∣H−

d

∣∣∣2 +
∣∣∣H0

d

∣∣∣2)+ (2.93)

+g
2 + g

′2

8

(∣∣∣H+
u

∣∣∣2 +
∣∣∣H0

u

∣∣∣2 − ∣∣∣H−
d

∣∣∣2 − ∣∣∣H0
d

∣∣∣2)2
+ g2

2
∣∣∣H+

u H
0∗
d +H0

uH
−∗
d

∣∣∣2.
The superpotentials in Eqs. (2.89) and (2.91) already describe the interactions familiar

to the SM, but those are not the only ones allowed by SUSY and gauge invariance. An
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additional superpotential is given by [35, 11]

W ′ = αiLiHu + γijkLiQjD̄k + δijkLiLjĒk + βijkŪiD̄jD̄k, (2.94)

where i, j and k are family indices and all gauge group indices are properly contracted.

It is clear from Eq. (2.94) that W ′ allows for baryon and lepton number violation at tree-

level, and consequently gives contributions to proton decay. To see this consider some of

the terms coming from Eq. (2.66),

V ′ ⊃ βijkuRid̃
∗
RjdRk + γijkeLiqLj d̃

∗
Rk + h.c. (2.95)

These allow for the proton to decay through a squark mediation, given at tree level by

the following Feynman diagram

d̃R

uR

d̄R

ēL

qL
.

Hence, the decay width can be estimated as [11]

Γ(p→ lepton + meson) ∼ |βγ|2
M5

p

M4
d̃

, (2.96)

with the proton mass Mp inserted by dimensional analysis. Current bounds set Γ−1 > 1034

years [3], thus, with the squark mass at TeV scale, one obtains

|βγ| < 10−26, (2.97)

which renders W ′ phenomenologically irrelevant. Instead of fine tuning the parameters α,

β, γ and δ to match the experimental observations one would rather introduce a theoretical

tool to justify why W ′ is forbidden in our theory. With this reasoning a discrete symmetry,

called R-parity [11, 39], is introduced, under which usual particles have charge +1 and

the SUSY partners have charge −1. If R-parity is a good symmetry of nature, only terms

with zero or two SUSY particles are allowed in the potential, whence forbidding W ′. An
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important phenomenological consequence of such symmetry is the prediction of a stable

SUSY particle, which may be a good candidate for Dark Matter.

2.4.2 SUSY breaking

The Higgs potential in Eq. (2.93) is the prediction of a exact N = 1 supersymmetric SM

with two Higgs doublets imposing also R-parity. Note, however, that both quadratic and

quartic coefficients are positive, meaning that it cannot break Electroweak (EW) sym-

metry. Besides, as stressed in previous sections, exact SUSY implies in mass degenerate

supermultiplets that are charged under the SM gauge group. From the phenomenological

point of view such prediction is already inconsistent with present experiments. Both these

issues insinuate that, if nature is somehow supersymmetric, SUSY must be broken.

SUSY spurions

The precise manner in which SUSY breaks is not of interest, since only the low-energy

theory is relevant to our discussion. Hence, one can simply parametrise the breaking

effects of SUSY by introducing soft operators∗ to the low-energy effective Lagrangian.

The technique of spurions can be used to determine what is the consistent choice of soft

operators that break SUSY in the IR. This technique is widely used in the context of

EFT’s and consists in considering the parameters and couplings that break the given

symmetry in the UV as (spurionic) fields [1, 21, 5]. The latter transform under the

relevant symmetry such that the UV Lagrangian is manifestly invariant under it. In this

way, the low-energy EFT can be written using the selection rules of the symmetry and

the breaking effects are properly given in terms of the spurionic fields.

In the case of SUSY theories, the spurion must be charged under SUSY, but shall

not break Lorentz invariance [48]. The explicit form of the possible spurions can be

determined from the conditions under which SUSY is broken. As discussed in section

2.2, all SUSY generators annihilate the vacuum if SUSY is exact (see Eq. (2.27)), hence,

using Eq. (2.7a),

〈0|P 0|0〉 = 0, (2.98)

in other words, the energy of the vacuum is zero. From the scalar potential of the in-

∗Soft operators are operators that break a given symmetry, but that introduce at the maximum
logarithmic divergences.

59



teracting Wess-Zumino model coupled to a non-abelian gauge superfield written in Eq.

(2.83), one can interpret the condition above as

V
(
φ = φ† = 0

)
= 0. (2.99)

Eq. (2.99) implies that, in order to SUSY remain unbroken, both f - and D- term must

simultaneously vanish. If not, then SUSY is spontaneously broken, as the vacuum is not

supersymmetric anymore. We are not interested in understanding how such breaking

occurs, i.e. how to write a model with non-vanishing f - or D- terms, but on the impacts

of such breaking in the IR. The reasoning above leaves evident that SUSY breaking,

without also breaking Lorentz invariance, can only be generated from f - and D-terms,

therefore the appropriate spurions must also have this same structure. In what follows

only the effects of a f -term spurion will be considered. The D-term spurion, in the context

of supersymmetric versions of the SM, is uninteresting, as it could only give non-trivial

contributions if there were chiral superfields charged under the adjoint representation of

the internal groups [48]. Since there is no such superfield in the (minimal) realisations of

the supersymmetric SM, they are henceforth ignored.

The f -term spurion can be thus written as

S = ξ2fS, (2.100)

where fS is a constant. It is assumed for simplicity that S is a SM singlet. The next step

is to construct operators with the fields of the Table 3 and the spurion S. To study the

effects in the IR one must only consider the leading contributions from spurions, which

are the ones that generate superrenormalizable operators. Considering M to be a mass

scale of the UV∗, these are given by

L b-term =
∫
d4ξ

S†S

M2 BHuHd, (2.101a)

L Higgs masses =
∫
d4ξ

S†S

M2

(
M2

uH†
uHu +M2

dH
†
dHd

)
, (2.101b)

L a-term =
∫
d2ξ

S

M

(
QAuŪHu −QAdD̄Hd − LAeĒHd

)
, (2.101c)

∗The physical interpretation of this scale changes as the realisation of SUSY spontaneous breaking in
the UV changes [11, 12, 43], but in the IR it is just an input scale that sets the soft scale.

60



L gaugino masses =
∫
d2ξ

S

M
Tr
(
M̃GW

2
SU(3) + M̃WW

2
SU(2) + M̃BW

2
U(1)

)
, (2.101d)

L sfermion masses =
∫
d4ξ

S†S

M2

(
L†CLL+Q†CQQ+ Ē†CEĒ + D̄†CDD̄ + Ū †CU Ū

)
,

(2.101e)

where Wα
SU(3), Wα

SU(2) and Wα
U(1) are the spinorial superfields of the respective gauge

groups. Furthermore, Ci and Ai are matrices in flavour space and M̃i, B and M2
i are

numerical coefficients [11, 49]. For each of the cases in Eq. (2.101) the integration over ξ

can be trivially performed. For instance, from Eq. (2.101a) one obtains

L b-term =
∫
d4ξ

S†S

M2 BHuHd

= B
|fS|2

M2

∫
d4ξ ξ2(ξ†)2(Hu + · · · )(Hd + · · · )

= B
|fS|2

M2 HuHd

≡ −bHuHd, (2.102)

where we associate the soft-SUSY breaking coefficient b with the UV parameters,

b = −B |fS|
2

M2 . (2.103)

Performing analogous calculations one obtains all soft-breaking parameters in terms of fS
and M ,

m2
i = −M2

i

|fS|2

M2 , M̃ ′
i = −M̃i

fS
M
, ai = −Ai

fS
M
, m̃i = −Ci

|fS|2

M2 . (2.104)

The soft-breaking potential can be therefore be written as

Vsoft = 1
2
(
M̃ ′

GG̃G̃+ M̃ ′
W W̃W̃ + M̃ ′

BB̃B̃ + h.c.
)

+

+
(
ũ∗
Rauq̃LHu − d̃∗

Radq̃LHd − ẽ∗
Rae

˜̀
LHd + h.c.

)
+

+q̃∗
Lm̃

2
Qq̃L + ũ∗

Rm̃
2
uũR + d̃∗

Rm̃
2
dd̃R + ˜̀∗

Lm̃
2
`
˜̀
L + ẽ∗

Rm̃
2
eẽR +

+b(HuHd + h.c.) +m2
u|Hu|2 +m2

d|Hd|2,

which consists of only superrenormalizable operators, as expected. Note that, in partic-

ular, besides additional mass term for gauginos, squarks and Higgs, a coupling between
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the two Higgs and a triple coupling between the squarks and the Higgs are generated.

Electroweak symmetry breaking

With all the allowed soft-breaking parameters, it is now possible to study how Elec-

troweak symmetry breaking (EWSB) occurs. Taking the potential in Eq. (2.105) into

account, the full potential for the Higgs fields now reads

V (Hu, Hd) = g2 + g
′2

8

(∣∣∣H+
u

∣∣∣2 +
∣∣∣H0

u

∣∣∣2 − ∣∣∣H−
d

∣∣∣2 − ∣∣∣H0
d

∣∣∣2)2
+ g2

2
∣∣∣H+

u H
0∗
d +H0

uH
−∗
d

∣∣∣2 +

+
(
|µ|2 +m2

u

)(∣∣∣H+
u

∣∣∣2 +
∣∣∣H0

u

∣∣∣2)+
(
|µ|2 +m2

d

)(∣∣∣H−
d

∣∣∣2 +
∣∣∣H0

d

∣∣∣2)+

+b
(
H+
u H

−
d −H0

uH
0
d + h.c.

)
, (2.105)

with b > 0∗. From the equation above it is clear that EWSB is possible, since it contains

the unknown soft-breaking parameters m2
u, m2

d and b. The objective is to determine under

what conditions these parameters allow for EWSB to take place.

Suppose that at the values

〈Hu〉 = 1√
2

v+

vu

 , 〈Hd〉 = 1√
2

vd
v−

 , (2.106)

the potential (2.105) obtains its minimum value. Given the SU(2)L symmetry we may

choose one of these directions to be zero, say, v+ = 0. Moreover, given the U(1)Y sym-

metry, vu can be made real. Note that there is not enough gauge redundancy to set both

v− and v+ to zero. Notwithstanding, one can set v− = 0 by looking at the derivatives of

V with respect to the fields. Take for instance the derivative along the charged direction

H+
u at the minimum:

∂V

∂H+
u

∣∣∣∣∣
Hi=〈Hi〉

= v−√
2

(
b+ g2

4 v
∗
dvu

)
. (2.107)

As the above expression is evaluated at the minimum, it must be zero by definition,

hence, for arbitrary values of g and b, the only way to satisfy the above equation is to

have v− = 0. As a matter of fact, to further study the minimum properties we may set

both charged directions in Eq. (2.105) to zero†. Taking the derivatives with respect to

∗b may be taken as positive by doing a global redefinition of the phases of both Hu and Hd.
†Note that this result is consistent with the fact that U(1)EM, the symmetry associated with electro-

magnetism, is unbroken.
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the neutral components at the minimum (2.106), we obtain the following equations for

the vacuum expectation values (vevs):

∂V

∂H0
u

∣∣∣∣∣
Hi=〈Hi〉

= 0 −→
(
|µ|2 +m2

u

)
vu + g2 + g

′2

8
(
v2
u − |vd|

2
)
vu − bvd = 0, (2.108a)

∂V

∂H0
d

∣∣∣∣∣
Hi=〈Hi〉

= 0 −→
(
|µ|2 +m2

d

)
v∗
d −

g2 + g
′2

8
(
v2
u − |vd|

2
)
v∗
d − bvu = 0. (2.108b)

From the second equation we see that, as vu is real, vd must also be real. Hence, the vevs

of the Higgs are written as

〈Hu〉 = 1√
2

 0

vu

 , 〈Hd〉 = 1√
2

vd
0

 , (2.109)

with both vu and vd real.

It is still unclear whether vu and vd are vanishing or not, since this depends on the

second derivative of the potential V (H0
u, H

0
d). For EWSB to take place, the determinant

of the Hessian of V at zero must be negative, characterising a local maximum,

det Hess(V, 0) < 0⇒ b2 >
(
|µ|2 +m2

u

)(
|µ|2 +m2

d

)
. (2.110)

In spite of the condition set by the equation above, b is not allowed to be arbitrarily

large. Another relation between b, µ and the masses m2
u and m2

d is determined from the

requirement that V must be bounded from below regardless the direction in (H0
u, H

0
d)

space [35]. Take for example the real diagonal direction H0
u = H0

d = φ. The potential in

this case becomes

V (H0
u = H0

d = φ) =
(
2|µ|2 +m2

u +m2
u − 2b

)
φ2, (2.111)

therefore only if

2|µ|2 +m2
u +m2

u > 2b (2.112)

will the potential be always bounded from below as φ→∞. Note that the above condi-

tions does not allow m2
u = m2

d. Furthermore, EWSB will only take place in the narrow

region between the inequalities (2.110) and (2.112). From this fact alone it comes as no

surprise that the model will be tuned to a certain degree. The quantification of such FT
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will be studied in section 2.5.

Mass eigenstates

With two Higgs doublets we have a total of 8 dof, from which only the combinations

that diagonalise the mass matrix with potential (2.105) are physical observable states. Our

next task is to expand the Higgs potential (with both charged and neutral components)

around the vevs, compute the mass matrix from the quadratic terms and then diagonalise

it. In particular, this procedure shall give us three massless pions, one neutral and two

charged, which are the Nambu-Goldstone Bosons (NGB) of EWSB. The remaining 5 mass

eigenstates are expected to be massive, of which 2 are charged, 1 is a neutral CP odd

scalar and 2 are CP even neutral scalars. The focus will be on the neutral states, as the

lightest CP even neutral states is to be identified with the physical Higgs boson h [11, 12].

The diagonalisation of the 8 × 8 matrix can be simplified by further examining the

potential after expanding the fields around their vev

H0
i →

vi√
2

+H0
i . (2.113)

The potential in Eq. (2.105) is thus given by

V2 =
(
|µ|2 +m2

u

)(
(ReH0

u)2 + (ImH0
u)2 + (ReH+

u )2 + (ImH+
u )2

)
+

+
(
|µ|2 +m2

d

)(
(ReH0

d)2 + (ImH0
d)2 + (ReH−

d )2 + (ImH−
d )2

)
+

+M
2
Z

4v2

[
(v2
u − v2

d)
(
(ReH0

u)2 + (ImH0
u)2 − (ReH0

d)2 − (ImH0
d)2
)

+

+2v2
u(ReH0

u)2 + 2v2
d(ReH0

d)2 − 4vuvd ReH0
d ReH0

u

]
−

−2b
(
ReH0

u ReH0
d − ImH0

u ImH0
d

)
+ b

(
H+
u H

−
d + h.c.

)
+M

2
W

v2

(
v2
u

∣∣∣H+
u

∣∣∣2 + v2
d

∣∣∣H−
d

∣∣∣2), (2.114)

where we have defined the following quantities:

v2 = v2
u + v2

d, (2.115a)

M2
Z = g2 + g

′2

4 v2, (2.115b)

M2
W = 1

4g
2v2, (2.115c)
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which are respectively the tree-level vev, the Z boson mass and theW boson mass squared.

Another useful definition is the misalignment of the vevs, given by

tan β ≡ vu
vd
. (2.116)

Instead of an 8× 8 matrix, it is clear from Eq. (2.114) that one needs to diagonalise only

three 2× 2 matrices, which are given by

(
ImH0

u, ImH0
d

)b cot β b

b b tan β


ImH0

u

ImH0
d

 , (2.117a)

(
ReH0

u, ReH0
d

) b cot β +M2
Z sin2 β −b−M2

Z sin β cos β

−b−M2
Z sin β cos β b tan β +M2

Z cos2 β


ReH0

u

ReH0
d

 , (2.117b)

(
H+∗
u , H−

d

)b cot β +M2
W cos2 β b+M2

W sin β cos β

b+M2
W sin β cos β b tan β +M2

W cos2 β


H+

u

H−∗
d

 , (2.117c)

where, in order to leave the expressions only in terms of b, β and M2
Z , we used that

(
|µ|2 +m2

u

)
= b cot β + M2

Z

2 cos 2β, (2.118a)

(
|µ|2 +m2

d

)
= b tan β − M2

Z

2 cos 2β, (2.118b)

which results from Eqs. (2.108a) and (2.108b). Since the focus is only in the in the lightest

neutral component, the charged matrices are not relevant to the discussion anymore, as

they do not mix with the neutral states. Even so, we note that two of the three NGB

come from the charged components. This clearly follows from the zero determinant and

non-vanishing trace, meaning there are two massless eigenstates π+ and π−. The other

massless pion comes from the imaginary part matrix, as it will now be shown.

The imaginary part matrix in Eq. (2.117a) is a real symmetric matrix, whence it can

be diagonalised by the following orthogonal matrix,

ImH0
u

ImH0
d

 = 1√
2

 sin β cos β

− cos β sin β


π0

A0

 . (2.119)
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with mass eigenvalues

M2
π0 = 0, M2

A0 = 2b
sin 2β , (2.120)

therefore there are indeed three NGB, which which in turn implies in the correct number

of massive gauge bosons. The real part matrix in Eq. (2.117b) contains no massless

eigenstates and is instead diagonalised by a distinct orthogonal transformation,

ReH0
u

ReH0
d

 = 1√
2

 cosα sinα

− sinα cosα


 h

H0

 , (2.121)

with the angle α given by

tan 2α = M2
A0 +M2

Z

M2
A0 −M2

Z

tan 2β. (2.122)

The masses of h and H0 are given by

M2
H0 = 1

2

[
M2

A0 +M2
Z +

√
(M2

A0 +M2
Z)2 − 4M2

A0M2
Z cos2 2β

]
, (2.123)

m2
h = 1

2

[
M2

A0 +M2
Z −

√
(M2

A0 +M2
Z)2 − 4M2

A0M2
Z cos2 2β

]
. (2.124)

As m2
h < M2

H0 , the observed Higgs particle is identified with h.

Another way of diagonalising these matrices is by directly identifying the linear combi-

nation of Hu and Hd that acquires a vev v and therefore contains all NGB. This particular

combination is given by

H = vuHu + vdH̃d

v
= Hu sin β + H̃d cos β (2.125)

where H̃d is defined as usual by

H̃d = iσ2H∗
d . (2.126)

It is trivial to see that H has vev v,

〈H〉 = 〈Hu〉 sin β +
〈
H̃d

〉
cos β = 1√

2

 0
v2

u+v2
d

v

 = 1√
2

0

v

, (2.127)

and can be therefore identified with the Higgs doublet of the SM. Furthermore, one must
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also consider the orthogonal direction, which is given by

H ′ = Hu cos β − H̃d sin β (2.128)

Note that Eqs. (2.125) and (2.128) are equivalent to the following rotation of Hu and Hd,

H
H ′

 =

 cos β sin β

− sin β cos β


H̃d

Hu

, (2.129)

which shows to us that the rotation in Eq. (2.119) has a physical meaning behind it.

Either way, the rotation above does not diagonalise the CP even sector, that is composed

of ReH0 and ReH ′0, hence an additional rotation given in Eq. (2.121) is needed.

???

The model constructed here is known as the Minimal Supersymmetric Standard Model

(MSSM). Throughout the discussion it was emphasised that to build a SUSY version of

the SM it is not enough to just supersymmetrise the ordinary SM. One also needs to

introduce an extra Higgs doublet to cancel anomalies, impose R-parity to avoid proton

decay and actually break SUSY softly in order to break EW symmetry spontaneously.

All these are important elements of the MSSM and are the minimal requirements for the

theory to be consistent. The MSSM is not, though, the unique SUSY version of the SM;

there are many non-minimal SUSY extensions of the SM, which won’t be discussed in

this thesis [35, 38, 39, 41, 11, 43].

2.4.3 Tree-level and 1-loop bounds on m2
h

A more careful analysis of Eq. (2.124) consists is determining if it is possible to achieve the

observed value of the physical Higgs mass, namely m2
h = (125 GeV)2. Take Eq. (2.124),

m2
h(x) = 1

2

[
x+M2

Z −
√

(x+M2
Z)2 − 4xM2

Z cos2 2β
]
, (2.130)

where x = MA0 is the mass of the neutral CP odd state. In order to study this function,

the precise value of x is superfluous, because the function m2
h(x) is strictly crescent and
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achieves its maximum value at x =∞,

m2
h(x) ≤ lim

x→∞
m2
h(x) = M2

Z cos2 2β. (2.131)

Therefore, if the upper bound M2
Z cos2 2β is lower than 125 GeV, there will be a conflict

with the experimental data, which is indeed the case, as M2
Z ' (91GeV)2 and |cos 2β| ≤ 1.

The conclusion is that the tree-level mass (2.124) is incompatible with experiments. Still,

one may consider loop contributions and hope that they can be used to push the upper

bound (2.131) up to the correct value.

We now proceed to the calculation of 1-loop corrections due to tops and stops. Other

contributions coming from gauge bosons, gauginos, leptons, sleptons, and any other quarks

or squarks are neglected, as the top Yukawa is by far more relevant then other couplings.

The top and stop interact only with the Hu, so only it is affected by those loop corrections.

Assuming, for simplicity, that the stops are mass degenerate and that the corresponding

a-term in Eq. (2.105) is zero, one can write down the 1-loop Coleman-Weinberg potential,

derived in Eq. (A.28) of Appendix A,

∆Veff(H0
u) = 3

16π2

[(
m̃2
t +M2

)2
ln m̃

2
t +M2

q2 −M4 ln M
2

q2

]
, (2.132)

where the first term is the stop contribution, the second term is the top contribution, and

M2 =
∣∣∣ytH0

u

∣∣∣2

with yt the top Yukawa coupling and q an arbitrary energy scale. Note that, if SUSY were

exact, i.e. m̃2
t = 0, the contributions of top and stops would cancel exactly, justifying why

SUSY could potentially solve the HP. Taking into consideration that the soft-breaking

scale is above the EW one, we expand the potential for m̃2
t �M2 and obtain∗

∆Veff(H0
u) = 3

16π2M
4
[
ln m̃2

t

M2 + 3
2

]
+ · · · . (2.133)

The dots in the above expression are terms that either do not depend on or are linear in

∗The expansion is done for m̃t � M , but this separation cannot be to excessive. The reason for
this is clear, as a large-log appears in the effective potential. For a large separation of scales, one must
integrate out the heavy modes, match the UV theory with the corresponding EFT and run the couplings
accordingly [50].
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|H0
u|

2 (while neglecting O(M6) terms, which represent higher order contributions). The

renormalization condition is chosen such that the effective potential Veff = Vtree + ∆Veff is

still minimised by the tree-level vev [35], hence

dVeff

d|H0
u|

2

(
vu√

2

)
= 0⇒ d∆Veff

d|H0
u|

2

(
vu√

2

)
= 0. (2.134)

As consequence, the correction to the mass is proportional to the quartic corrections, thus

we do not need to worry with the quadratic terms that fix condition (2.134) but only with

the piece proportional to |H0
u|

4. Therefore, the correction to the mass term of Hu is given

by

δm2
u = 2v2

u

d2∆Veff

d(|H0
u|

2)2
(2.135)

evaluated at vu/
√

2. A straightforward calculation leads to

δm2
u = 3|yt|4v2

u

4π2 ln m̃
2
t

m2
t

, (2.136)

where mt = ytvu√
2 is the top mass. Rewriting the above expression in terms only of the top

mass, the vev squared and β, one obtains

δm2
u = 3m4

t

π2v2 sin2 β
ln m̃

2
t

m2
t

. (2.137)

The radiative correction in Eq. (2.137) shifts the mass term of Hu in potential (2.105),

|µ|2 +m2
u → |µ|

2 +m2
u + δm2

u.

Whence, there will be a shift in the first element of the mass matrix (2.117b),

b cot β +M2
Z sin2 β → b cot β +M2

Z sin2 β + δm2
u,

which will in turn produce a new mass eigenvalue for h,

m2
h →

1
2

M2
A0 +M2

Z + δm2
u −

(
M4

A0 +M4
Z + δm4

u − 2M2
A0M2

Z cos2 4β −

−2δm2
uM

2
Z cos2 2β + 2M2

A0δm2
u cos2 2β

)1/2
. (2.138)
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Just as in the tree-level case, an upper bound for m2
h is obtained in the limit M2

A0 = ∞.

This limit yields

m2
h ≤M2

Z cos2 2β + sin2 βδm2
u = M2

Z cos2 2β + 3m4
t

π2v2 ln m̃
2
t

m2
t

(2.139)

⇒ m2
h ≤M2

Z + 3m4
t

π2v2 ln m̃
2
t

m2
t

. (2.140)

In order to achieve the measured mass for h, the equation

(125 GeV)2 ≤M2
Z + 3m4

t

π2v2 ln m̃
2
t

m2
t

(2.141)

must be solved for m̃2
t . Using the experimental values for the Z boson mass and the vev

[3] one obtains the following lower bound for the stop mass:

m̃2
t & (1 TeV)2. (2.142)

This bound is compatible with present experimental data [51, 52], which are shown in

Figure 3.

2.5 Tuning in the MSSM

In section 2.4.3, based on the observed value of the Higgs mass, the stop mass was esti-

mated and it is somewhat compatible with the experimental constrains at 95%CL. Hence,

with a stop mass of order TeV the Hierarchy Problem could be potentially solved. How-

ever, it will become clear that a certain amount of Fine Tuning (FT) still persists.

The first solution presented in this work is the MSSM, which truly eliminates the

quadratic divergences from the Higgs mass, which is clear from the computation of the

effective potential in Eq. (2.132), for example. However, this is not enough to judge

it free from any tuning, because of the introduction of a new energy scale∗: the soft-

breaking scale Λsoft. More precisely, since there are new parameters in the theory which

are of order Λsoft, new cancellations between them may be needed and raise the FT to

dangerous levels.

∗If instead we worked not withing the context of EFT, but with a spontaneously broken SUSY, we
would have introduced an unification scale at the far UV.
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Figure 3: Most recent experimental bounds on the stop mass m̃t. The plot shows the ex-
cluded region at 95% Confidence Level. The process analysed is pp→ t̃¯̃t→ tt̄χ̃0

1χ̃
0
1, where

χ̃0
1 is the lightest neutralino, with

√
s = 13 TeV and 137 fb−1 of integrated luminosity.

The thin solid (black) curves show the changes in these limits as the signal cross sections
are varied by their theoretical uncertainties. The thick dashed (red) curves present the
expected limits. Taken from [52].
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For the explicit calculation the mass of the Z boson is the most suitable observable,

as it is one of the most precise measurements of the SM. The physical Higgs mass is not

used in this case, because the vev and quartic coupling depend implicitly on the SUSY

parameters, making the calculations much more complicated. The Z mass, on the other

hand, has a very straightforward dependence of the free parameters of the MSSM [30, 53].

Using Eqs. (2.118a) and (2.118b) one obtains

M2
Z

∣∣∣∣
tree

= −2|µ|2 + 2(m2
d −m2

u tan2 β)
tan2 β − 1 , (2.143)

at tree-level.

In order to further simplify the discussion, the limit tan β � 1 is taken, such that

M2
Z

∣∣∣∣
tree

= −2
(
|µ|2 +m2

u

)
. (2.144)

The FT is thus calculated only through the derivatives with respect to m2
u and |µ|2, which

are given by

∆|µ|2 =
∣∣∣∣∣2|µ|

2

M2
Z

∣∣∣∣∣, ∆m2
u

=
∣∣∣∣∣2m2

u

M2
Z

∣∣∣∣∣. (2.145)

The parameter m2
u comes from the soft potential in Eq. (2.105), so it is naturally of

order of the soft-breaking scale, this latter being given by the value of the stop mass

(2.142). As consequence, ∆m2
u

will not turn out to be very large. On the other hand, the

µ parameter is supersymmetric, so there is nothing that forbids it from being as large as

unification scale or even the Planck scale. In order to have the FT controlled, however,

one needs µ to be of the same order as m2
u, i.e. the soft-breaking scale. This awkward

situation, where a supersymmetric parameter needs to be of the order of soft-breaking

scale, is known as µ-problem. One way to solve it is to forbid the superpotential in Eq.

(2.91) at tree-level and let it be generated by radiative corrections, in this manner it turns

out be be automatically of order mu [35, 11]. Thus, for m2
u and |µ|2 both of order of the

soft-breaking scale, the FT on M2
Z (or equivalently on the EW scale) at tree-level is

∆ &

(
1 TeV

100 GeV

)2

= 100. (2.146)

From Eq. (2.144) one can understand the FT in Eq. (2.146) as the amount of precise

cancellation between m2
u and |µ|2, which must be of 10−2 parts in 1. Though still fine
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tuned, a FT of order 100 is much more reasonable compared to 1034 from before, for this

reason the situation represented by Eq. (2.146) is named as the little Hierarchy Problem.

If we now include the 1-loop corrections from stop and top loops, Eq. (2.144) becomes

M2
Z

∣∣∣∣
1-loop

= −2
(
|µ|2 +m2

u + 3m4
t

2π2v2 ln m
2
t̃

m2
t

)
, (2.147)

where we considered tan β → ∞. Such correction could potentially reduce the FT to an

acceptable level, but it turns out that for mt̃ ∼ 1 TeV the last term in the right-hand side

of Eq. (2.147) is at least 100 times smaller then |µ|2 + m2
u, so it won’t interfere much in

the value of ∆ [53].

2.6 Conclusions

Throughout this chapter the basic principles of SUSY and the simplest supersymmetric

version of the SM, the MSSM, was presented. With it, it became clear how SUSY solves

the HP. However, in order to leave the MSSM phenomenologically consistent, one had

to introduce new parameters of order TeV or higher in the theory. Those ended up

creating more undesired FT, rendering the MSSM unnatural. But note that the situation

within the MSSM is much better than before, as the FT was reduced from 1034 to 102.

Also, a small FT is not an essential property of a theory, in the sense that we should

not completely discard a theory solely on FT grounds. Notwithstanding, it is still very

important that a theory remains untuned, because it translates our physical intuition

of what we expect from EFT’s and it allows us to have calculable (and hence testable)

theories.
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3 Composite Higgs Models

In this chapter a different solution to the Hierarchy Problem (HP) will be explored, namely

the possibility of considering the Higgs not as an elementary particle but a composite

object instead. In the SM, all scalar particles come as bound states of quarks in Quantum

Chromo-dynamics (QCD), so the idea of compositness is not an absurdity from this point

of view. The theory of hadrons and, in particular, the dynamical mechanism used to

obtain it from the one of quarks and gluons contain many of the key concepts for the

understanding of Composite Higgs Models (CHM).

This chapter is organised in the following way. In the first section the main motivations

for such theories, while quickly explaining how do they work in general, are outlined.

Then, in the second section, not only the needed results from group theory, but also some

important aspects of SO(N) groups are reviewed. After that, the Minimal Composite

Higgs Models (MCHM), i.e. the minimal realisations of compositness compatible with

the SM, is explored in depth and the Higgs mass is computed. In the last section the

predictions of such models are compared with present experiments and the respective FT

is computed.

3.1 Motivations and general idea

As briefly explained in Chapter 1, QCD with just two massless quarks, the up and down

quarks, is invariant under a global SU(2)L × SU(2)R which is spontaneously broken to

the diagonal group SU(2)V by the vacuum condensate 〈q̄q〉. For exactly massless quarks

the chiral group SU(2)L × SU(2)R is an exact symmetry and consequently the Nambu-

Goldstone Bosons (NGB), the pions, are massless and all other bound states turn out to

have well determined masses [1, 21]. This scenario is clearly incompatible with reality,

therefore a small and explicit break of the chiral group due to the non-vanishing quark

masses must be considered. Performing chiral perturbation theory, one obtains an effective

low-energy Lagrangian that describes the strong interactions, which at this energy scale is

mediated by the pions themselves [54, 55]. A similar configuration will take place in CHM.

In general, one considers a global symmetry group G spontaneously broken to a subgroup

H that gives rise to a new strong dynamics in the SM. Considering the Higgs as a bound

state from this strong sector, there are two possibilities: the Higgs is a NGB or it is a
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resonance. The latter option is not viable, because, if true, we would have already observed

many other resonances with similar masses [14]. The first option is more plausible but

nonetheless problematic, since the Higgs is massive. To avoid such situation, one needs to

break G explicitly, in this manner the Higgs is understood as a pseudo Nabmbu Goldstone

Boson (pNGB) [21] and, if the breaking parameter is considerably small, the Higgs has a

mass far below the resonances.

That the Higgs mass is stabilised by realising it as a pNGB is the main motivation

for CHM. We will see explicitly in section 3.2 that the transformation of the NGB under

the global group G is a shift symmetry, which is a non-homogeneous symmetry trans-

formation. As a consequence, a mass term for the NGB is forbidden if the symmetry is

exact. Introducing an explicit break of this symmetry by allowing a mass term in the La-

grangian renders the mass technically natural, since the symmetry is restored if the mass

is taken to zero. More in general, the mass will turn out be to given by the parameters

that break the shift symmetry, hence the Higgs mass is protected from receiving large

radiative corrections. In this manner the Hierarchy Problem (HP) is solved.

In addition to stabilising the Higgs mass, one can directly compute it, as it will be

shown in section 3.3.4. In QCD one may also calculate the pion masses in terms of

the quark masses, which is given by the Gell-Mann-Oakes-Renner relation [1, 21]. This

relation follows from introducing the mass matrix of the quarks as a spurionic field in

the Lagrangian, that after SSB breaks the chiral symmetry and contributes to the pion

masses in the low-energy Effective Field Theory (EFT). In CHM, rather than introducing

in the Lagrangian a term that explicitly breaks the global group, one gauges a subgroup

G ⊂ G. As it will be explained in detail in the following sections, it is not obvious that

the gauging of a subgroup breaks explicitly a global symmetry, but we anticipate that

this is indeed the case, since loop effects generate a Coleman-Weinberg potential for the

Higgs that is not invariant under G. Such method to break the group explicitly is used,

because, since all the group structure of the Higgs ought to be determined from G, H and

G/H, the electroweak group GEW = SU(2)L × U(1)Y must somehow be described by G,

implying that a subgroup of G must be gauged such that GEW ⊆ H. In this picture, the

SM becomes the low-energy effective theory of this strong dynamics, which is mediated

by the Higgs boson at energies much below than the confinement scale.

Composite Higgs Model as an EFT
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Let us make the discussion a bit more precise. The introduction of a new strong

sector brings several consequences. For instance, a new energy scale f is dynamically

generated from the Dimensional Transmutation (DT) mechanism [23]. The idea behind

this mechanism can be understood from the renormalization group equations (RGE) for

the gauge coupling of a non-abelian gauge-symmetry at 1-loop,

µ
dg
dµ = −C g3

16π2 , (3.1)

where C > 0 is some constant that depends on the particle content charged under the

symmetry [1, 20]. The RGE flow of the equation above implies that the coupling g

increases as the energy is lowered, hence in the IR one can take the boundary condition

g(f)→∞ at a scale f and solve the RGE in Eq. (3.1),

4π
g2(Λ) = − C2π ln fΛ ⇒ f = Λe− 8π2

Cg2(Λ) (3.2)

where Λ is an energy scale of the UV. So it follows from the RGE in Eq. (3.1) that the

scale f is computable from the RGE in terms of the initial conditions in the UV. In this

sense f is said to be dynamically generated.

The same scale f in Eq. (3.2) can also be understood, as in QCD, as the scale in which

the interactions become too strong and the vacuum confines, which thus characterises the

spontaneous breaking of G. Hence, on general grounds, the spontaneous breaking will

take place through the vev of a scalar operator Φ, namely 〈Φ〉, with magnitude fdim Φ.

As we will see in the next section, the field Φ can be written in terms of its vev as

Φ(x) = fU [Π]
(
Φ̃(x)

)
, (3.3)

where Φ̃ are the radial resonances of the field and fU [Π] is a function that depends on the

matrix U [Π], defined by [1, 20, 21]

U [Π] ≡ e
i
√

2
f

Πâ(x)T̂ â

, (3.4)

with T̂ the broken generators of the symmetry group and Π the corresponding NGB (in

the literature, the matrix U [Π] is also called "Goldstone Matrix"). By construction, some

of the NGB will arrange themselves in a Higgs doublet of SU(2)L with 1/2 hypercharge,
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although the particular details of such procedure obviously depend on the groups G and

H chosen. Therefore, a coset G/H with dimension less than 4 is incapable of forming the

desired complex doublet. Stated in this way, it is trivial to see that a realistic CHM needs

at least a coset with dimension 4; this point will be discussed further in section 3.3.

It is therefore of interest to write the EFT of models in which the Higgs is realised as

a pNGB. This EFT will describe the low-energy physics below the scale f , where the dof

of the new strong sector are already integrated out. In such EFT the relevant dof are the

NGB and the light resonances, i.e. the ones with masses below 4πf . As a result, one may

use Eq. (1.1) to write the general Lagrangian for a CHM,

L CH = f 4F ′
(
U [Π], ∂µ

f
,

Φ̃
fdim Φ̃

,
ψ

fdimψ

)
. (3.5)

In the above equation we have set Λ = 4πf and g∗ = 4π, which corresponds to a maximally

strongly coupled theory, as is QCD, and ψ denote generically the light resonances, that

may be bosonic or fermionic. Furthermore, in Eq. (3.5) the SM fields are not yet being

considered, that is to say, for the moment all gauge and Yukawas coupling are set to zero.

To a great extent, the light resonances play an important phenomenological role in the

low-energy regime, since their effects can be used to experimentally probe compositeness

[14]. In order to simplify the analysis, however, we will integrate them out and neglect

all their leading effects. Therefore, we may write the EFT of the Higgs as

L Higgs = f 4F

(
H

f
,
∂µ
f

)
, (3.6)

where additional NGB other than the Higgs have also been ignored∗. The Lagrangian

defined in Eq. (3.6) can be expanded in the low-energy regime as a sum of renormalizable

and non-renormalizable operators. Since it is known in advance that the Higgs is a

complex doublet by construction, the Lagrangian in Eq. (3.6) is given by

L Higgs −→ L (≤4)
Higgs + L (6)

Higgs + · · · , (3.7)

∗Note that, despite having integrated Φ̃ out, the cut off 4πf was maintained. This is valid in the case
considered, for which g∗ = 4π. Otherwise, if g∗ < 4π, one would have to substitute f by MΦ̃, the mass
of the lightest resonance [56].
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with

L (≤4)
Higgs = |∂µH|2 + c2f

2|H|2 + c4|H|4, (3.8a)

L (6)
Higgs = cH

2f 2

(
∂µ |H|2

)2
+ cT

2f 2

(
H†←→∂ µH

)2
− c6

f 2 |H|
6 + c�

2f 2 |�H|
2, (3.8b)

where the couplings c’s are dimensionless. The Lagrangian in Eq. (3.8b) contains all

independent dimension 6 operators involving the Higgs and derivatives [56, 57].

The couplings in Eq. (3.8) contains all leading information of the EFT of the Higgs as

a pNGB, and can therefore be used to constrain the low-energy model. In particular, much

about them can be said by making use of the appropriate selection rules of the theory,

which at low-energy are given by the group structure of H and G/H. For instance, the

Higgs, as a NGB, transforms non-linearly under the coset group G/H and so possesses a

shift symmetry (see section 3.2), hence the coefficients c2, c4 and c6 are zero at tree-level

and at all orders in perturbation theory if G is exact. Solely based on the shift symmetry,

we cannot say much about the coefficients cH , cT and c� since they depend on Higgs

derivatives and are thus invariant under the shift symmetry. Whether cH , cT and c� are

zero or not will depend on other factors, for example on the particular selection rules of

the unbroken group H, which are yet unspecified. Their respective operators, though,

have very distinct phenomenological interpretations, as it will now become clear.

Custodial Symmetry

To study the phenomenology associated with the effective operators in Eq. (3.8b), the

interactions with the SM must be first turned on, which implies that the Lagrangian must

be complemented with additional operators that include couplings of the Higgs to fermions

and gauge bosons. Of particular interest to our present discussion are the interactions

between the Higgs and the gauge bosons, which are given by

L (6)
Higgs-gauge = cH

2f 2

(
∂µ |H|2

)2
+ cT

2f 2

(
H†←→D µH

)2
− c6

f 2 |H|
6 + c�

2f 2

∣∣∣D2H
∣∣∣2 + · · · , (3.9)

where

DµH =
(
∂µ−igW a

µT
a − g′ 1

2Bµ

)
H (3.10)

is the appropriate covariant derivative of the Higgs field and the dots denote other dimen-

sion 6 operators that involve the Higgs and the gauge bosons∗.

∗Other operators that are not considered above are relevant to a more precise discussion of the Higgs
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Of the operators in Eq. (3.9), the most relevant one to our discussion is

OT = cT
2f 2

(
H†←→D µH

)2
, (3.11)

because it gives a tree-level contribution to the masses of gauge bosons. More explicitly,

considering that the Higgs acquires a vacuum expectation value (vev)∗ V , the operator

OT reads

OT

∣∣∣∣
H=〈H〉

= −1
2

(
g2V 4

4f 2 cos2 θw

)
ZµZµ. (3.12)

The importance of the equation above comes from the fact that Electroweak precision

measurements (EWPM) strongly constrain deviations from the EW sector [1, 58, 59],

including the discrepancies from the values of the gauge bosons masses. From a more

practical view, such deviations can be parametrised by the ρ-parameter [1, 3] that is

defined by

ρ ≡ M2
W

M2
Z cos2 θw

, (3.13)

which is clearly equal to 1 at tree-level in the SM. This parameter has a central role in

EWPM, because its deviations from the tree-level value are of order [3]

∆ρ = ρmeasured − 1 = O(10−3). (3.14)

If an operator like OT is allowed in the Lagrangian, ∆ρ would be approximately given by

∆ρ ' cT
V 4

f 2v2 ⇒ cT
V 4

f 2v2 . 10−3. (3.15)

For example, if cT ∼ O(1) and V ∼ v, we would obtain a severe bound on f :

f 2 & v2 · 103.

With such bound, any interesting emergent phenomena due to the compositness would

be washed out and also an enormous FT would be created.

phenomenology [57]. However, the purpose here is just to give a motivation of the types of models that
will be studied, for which the operators shown in Eq. (3.9) are sufficient.

∗Note that it is not assumed that V = v, with v the EW vev of the SM. That the vev of the Higgs is
not exactly the same as the one of the SM is to be expected, since the minimisation of the potential of
the Lagrangian (3.6) is far less trivial. Nonetheless, it is trivial to see that if f � v, then V ' v.
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The lesson to be taken from the above discussion is that a custodial symmetry must

be present, i.e. a symmetry that protects ρ from large quantum corrections. In the

SM there is indeed such a symmetry: the Higgs potential in the unbroken EW phase is

invariant under a global SO(4)c group, where the real components of the Higgs doublet

transform in the fundamental of SO(4)c and the usual SU(2)L gauge group is a subgroup

of it. After EWSB, SO(4)c breaks down to SU(2)c, also known as the custodial symmetry

group, which is responsible for protecting ρ (Appendix B is referred to a more detailed

discussion of custodial symmetry in the SM). This residual symmetry is only approximate

in the SM, because not all interactions present in the SM respect it (e.g. the Yukawa

terms). Notwithstanding, even the greatest source of custodial violation, the top Yukawa,

only gives a correction of order 10−3 to ∆ρ [1, 3].

From the discussion above we see clearly that an issue with CHM comes from Eq.

(3.6), that in general allows for operators that give large corrections to the ρ-parameter,

or equivalently, that put strong bounds on f . In order to avoid such scenarios, one

needs to be sure that not only GEW ⊂ H, but also SO(4)c ⊆ H. Consequently, the

selection rules of the custodial group forbid OT at tree-level, so that the latter can be only

generated radiatively and is therefore suppressed by loop factors, allowing the model to be

compatible with EW data∗. In what follows, it will always be assumed that SO(4)c ⊆ H

[1, 14, 56, 60].

At the level of the Lagrangian in Eq. (3.9), custodial symmetry does not forbid neither

cH nor c�. We will see in detail that cH will generally have a non-zero value, while the

coefficient c� is not related to selection rules of H and can only be generated at tree-level

by integrating out a massive scalar particle with suitable quantum numbers [56]. The

effects of such operator does not affect our analysis and is henceforth neglected.

Yukawa Sector

Up to this point only the properties of gauge bosons were discussed. In particular, as

stressed, some of the gauge interactions will explicitly break the symmetry group G, and

will thus allow for a mass term to be generated at loop level. In section 3.3.4 these 1-loop

effects will be calculated and it will be from this point obvious that the interactions with

∗The "T " in OT refers to the Peskin-Takeuchi parameter T . Along with the other two parameters, S
and U , it quantifies the amount of new physics on the EW sector when the new physics is considerably
heavy. The T parameter measures specifically the violation of custodial symmetry [58].
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gauge bosons are insufficient to trigger spontaneous EWSB, because loops from gauge

bosons give only positive contributions to the Higgs mass. For this reason, fermions play

a crucial role in the model as they will guarantee that EWSB occurs. More precisely,

the leading contribution from the top quark guarantees that the loop induced Higgs

mass parameter is negative. Whence, a more precise treatment of the fermion sector

is of fundamental importance. This, however, will not be so straightforward and the

reason is the following. Take for example the proton and the neutron in QCD, which a

doublet of the isospin group [24], whose interactions are mediated by the pions. While the

properties of the mediators (pions) are determined exclusively by the group, the fermions

(proton and neutron) must be embedded in a representation of the same group in order to

determine the appropriate interactions, i.e. the couplings of fermions with the mediators

are representation-dependent. The discussion of this topic is for this reason much more

subtle, and so it is left to the section 3.3.

3.2 Necessary group theory

In this section some of the technical tools from the group theory needed to construct

CHM are reviewed. Also, some of the properties of SO(N) groups, its breaking pattern

and, in particular, some representations of SO(5) and SO(4) are discussed.

3.2.1 Callan-Coleman-Wess-Zumino construction

Unlike in the elementary Higgs theory, where the Higgs has a well determined linear

transformation under GEW, it is way more difficult to build a Lagrangian for the Higgs

field in CHM, since its transformation rule under G is non-linear. As a NGB, the Higgs

transforms non-linearly according to the representation of the coset group, G/H. Nev-

ertheless, due to spontaneous symmetry breaking (SSB) pattern, one can still determine

the correct structure of the theory of the NBG. Stated in another way, thanks to SSB, we

can determine the correct selection rules for the low-energy effective theory. This proce-

dure, known as Callan-Coleman-Wess-Zumino (CCWZ) construction [21], is essential to

the construction of CHM.

Let us begin with some definitions. Consider a theory describing some scalar field∗

∗These fields are assumed to be scalar, but not necessarily elementary. For instance, it could be, as
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Φ. Suppose further that this theory is invariant under a symmetry group G, for which Φ

transforms according to some representation, namely

Φ→ Φ′ = fg(Φ), ∀g ∈ G. (3.16)

Here, fg(·) is the function that parametrizes the transformation under G, which we assume

to be linear∗. It should be clear that the notation used in Eq. (3.16) is very general, as it

includes not only the usual vector transformation Φ→ gΦ, but also tensor transformations

of different ranks.

If the field Φ acquires a non-vanishing vev, then the symmetry group G is sponta-

neously broken to a subgroup H. This is equivalent to saying that the vacuum is invariant

only by the action of H

〈Φ〉 = fh(〈Φ〉), ∀h ∈ H. (3.17)

Therefore, for any infinitesimal parameter ε one obtain,

〈Φ〉 = fe+iεT (〈Φ〉) ' fe(〈Φ〉) + ε

[
∂

∂ε
fe+iεT (〈Φ〉)

]
ε=0

+O
(
ε2
)
,

where e ∈ G is the identity element and T ∈ h, with h being the sub-algebra associated

with H. So one concludes that

[
∂

∂ε
fe+iεT (〈Φ〉)

]
ε=0

= 0, T ∈ h. (3.18)

In the same way, the elements outside H do not leave the vacuum invariant. Given any

element of G\H one obtains

[
∂

∂ε
fe+iεT̂ (〈Φ〉)

]
ε=0
6= 0, T̂ ∈ ĝ, (3.19)

where ĝ = g\h is the subset of the full algebra g that does not leave 〈Φ〉 invariant. Due

to the fact that H is a subgroup, the algebra commutation relations may be written as

in QCD, a fermionic pair ψ̄ψ.
∗If Φ1 and Φ2 both follow the transformation rule in Eq. (3.16) and a and b are numbers, then

fg(aΦ1 + bΦ2) = afg(Φ1) + bfg(Φ2).
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follows [61, 62]

[h, h]− ⊆ h, [ĝ, h]− ⊆ ĝ, [ĝ, ĝ]− ⊆ g. (3.20)

The development of the theory of SSB relies on the ensuing equation,

Φ(x) = fU
(
Φ̃(x)

)
, (3.21)

where U = U [Π(x)] is an element of G that contains solely the information of the NGB,

while Φ̃(x) contains the other (radial) dof of the field Φ. To prove Eq. (3.21), one needs

first to define a bilinear function (·, ·) which is G-invariant, i.e. for any fields Φ1 and Φ2,

(Φ′
1(x),Φ′

2(x)) = (fg(Φ1(x)), fg(Φ2(x))) = (Φ1(x),Φ2(x)), ∀g ∈ G. (3.22)

Consider now the following quantity,

Sx(g) ≡ (Φ(x), fg(〈Φ〉)). (3.23)

If the group G is assumed to be compact, the quantity above can be minimised [21].

Taking the variation of S with respect to g one obtains

δSx(g) = (Φ(x), δfg(〈Φ〉)) = (Φ(x), fg+δg(〈Φ〉)− fg(〈Φ〉)). (3.24)

The variation of an element g is given by

g + δg = g
(
e+ iεAT

A
)
,

where the index A runs through all generators of the group and εA are infinitesimal

parameters. Thus

δSx(g) = εA

(
Φ(x),

[
∂

∂εA
fg
(
e+iεA′TA′)(〈Φ〉)]

ε=0

)
. (3.25)

From Eqs. (3.18) and (3.19) it follows that only the action of the unbroken generators is

relevant to the above equation. One may rewrite Eq. (3.25) as

δSx(g) = εâ

(
Φ(x),

[
∂

∂εâ
fg
(
e+iεb̂T̂ b̂

)(〈Φ〉)]
ε=0

)
,
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where the indices â and b̂ run only through the broken generators. Now, since the group

G is compact, there is an element U ∈ G such that

δSx(U) = 0, (3.26)

therefore (
Φ(x),

[
∂

∂εâ
fU
(
e+iεb̂T̂ b̂

)(〈Φ〉)]
ε=0

)
= 0. (3.27)

Using now the invariance of the bilinear (·, ·) under G,

(
fU−1(Φ(x)),

[
∂

∂εâ
fe+iεb̂T̂ b̂(〈Φ〉)

]
ε=0

)
= 0. (3.28)

Eq. (3.28) shows us that these quantities are orthogonal with respect to the bilinear

function.. According to Eq. (3.19), the quantity

[
∂

∂εâ
fe+iεb̂T̂ b̂(〈Φ〉)

]
ε=0

is intrinsically related to the broken dof, i.e. the NGB themselves, hence Eq. (3.28) means

that fU−1(Φ(x)) contains no information at all regarding the NGB. Moreover, note that

by the definition of Sx(g) in Eq. (3.23) together with Eq. (3.18), one has

Sx(g) = Sx(g · h), ∀h ∈ H. (3.29)

As a consequence, the minimum point U is given up to an element of H. This defines the

(right) coset G/H and allows us to write U as

U [Π(x)] = e
i
√

2
f
T̂ âΠâ(x), (3.30)

where Πâ(x) are the NGB and we have already inserted the scale f in order to canonically

normalise them. In this way, Eq. (3.21) is proved [21, 13].

The transformation rule of the NGB can be deduced from Eq. (3.21). Performing a

transformation on Φ one obtains

Φ′ = fg
(
fU
(
Φ̃
))

= fU ′

(
Φ̃′
)
, (3.31)
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where U ′ = U [Π′]. As Φ̃ contains no information on the NGB, it can only transform under

elements of H, hence

Φ̃→ Φ̃′ = fh
(
Φ̃
)
, (3.32)

where, because of Eq. (3.21), h = h(Π, g). Therefore, it follows that

fg·U
(
Φ̃
)

= fU ′·h
(
Φ̃
)
. (3.33)

Since the above equation holds for any g ∈ G, one arrives at

U [Π′] = g · U [Π] · h−1(Π, g). (3.34)

From Eqs. (3.30) and (3.34), it is obvious that the transformation rule of the NGB is

highly non-linear.

As an immediate consequence, it is impossible to simply guess a Lagrangian invariant

under Eq. (3.34). Nonetheless, it is still possible to determine the conditions under

which the low-energy Lagrangian of Π will turn out to be invariant. Take for instance the

4-divergence of Φ together with Eq. (3.21) and the linearity of f ,

∂µ Φ = ∂µ
(
fU
(
Φ̃(x)

))
= fU

(
∂µ Φ̃(x)

)
+ ∂µ U

∂

∂U
fU
(
Φ̃(x)

)
= fU

(
∂µ Φ̃(x) + fU−1

(
∂µ U

∂

∂U
fU
(
Φ̃(x)

)))
.

Note the last term in the last line of the equation above,

fU−1

(
∂µ U

∂

∂U
fU
(
Φ̃(x)

))
, (3.35)

that, irrespective of the explicit form of the representation f , will give rise to terms

proportional to

U−1 ∂µ U,

which, taking Eqs. (3.20) and (3.30) into consideration, can be written as

U−1 ∂µ U = idâµT̂
â + ieaµT

a, (3.36)
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with the symbols dâµ and eaµ given by

dâµ = dâ
b̂
(Π) ∂µ Πb̂ and eaµ = eaâ(Π) ∂µ Πâ, (3.37)

where dâb̂(Π) and eaâ(Π) are numbers∗. These two symbols are the fundamental quantities

to write our desired Lagrangian for Π. As such, their transformation under G are essential,

and can be trivially determined from Eqs. (3.36) and (3.34),

i
(
dâµ
)′
T̂ â + i

(
eaµ
)′
T a = U−1[Π′] ∂µ U [Π′]

= h(Π, g) · U−1[Π] · g−1 ∂µ
(
g · U [Π] · h−1(Π, g)

)
= h · U−1 ∂µ U · h−1 + h ∂µ h

−1

=
(
hT̂ âh−1

)
dâµ +

[(
hT ah−1

)
eaµ − (∂µ h)h−1

]
.

Taking into account the commutation relations (3.20), one obtains

hT̂ âh−1 = D â
b̂
(h)T̂ b̂, (3.38a)

hT ah−1 = E a
b (h)T b, (3.38b)

(∂µ h)h−1 = iHaâ(h)T a ∂µ Πâ, (3.38c)

where D , E and H are all unitary representations of the group. In particular, in the

last relation above, the ∂µ Πâ dependency appears because h depends on x only through

Π. With Eq. (3.38), the transformations of dâµ and eaµ are given by,

(
dâµ
)′

= D â
b̂
(h)db̂µ, (3.39a)

(
eaµ
)′

= E a
b (h)ebµ −Haâ(h) ∂µ Πâ. (3.39b)

Having discussed the transformation of the NGB, it still remains to understand how

Φ̃ enters in the low-energy theory. On the one hand, the group structure of the NGB

does not depend on the function f in Eq. (3.16), but only on the representation of the

coset. On the other hand, Φ̃ transforms according to Eq. (3.32), posing much more

difficulty in building a Lagrangian for the radial resonances. The main problem comes

∗a, b, · · · denote indices for generators of h, while â, b̂, · · · for the ones in ĝ.
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with the derivative term, since in Eq. (3.32) the group element h depends on x through

Π. Whence, ordinary derivatives applied to Φ̃ are not suited for the low-energy theory.

Instead, one must define a quantity D̃µ such that

(
D̃µΦ̃

)′
= fh

(
D̃µΦ̃

)
, (3.40)

in other words, a covariant derivative must be constructed. With this reasoning, the

following Ansatz is made: the covariant derivative for Φ̃ is given by

D̃µΦ̃ = ∂µ Φ̃ +
[
∂

∂ε
fe+iεTa

(
Φ̃
)]

ε=0
eaµ(Π). (3.41)

It is now proven that Eq. (3.41) indeed respects Eq. (3.40),

(
D̃µΦ̃

)′
= ∂µ

[
fh
(
Φ̃
)]

+
[
∂

∂ε
fe+iεTa

(
fh
(
Φ̃
))]

ε=0
eaµ(Π′)

= fh
(
∂µ Φ̃

)
+
(
∂µ h

∂

∂h
fh
(
Φ̃
))

+

+
[
∂

∂ε
fe+iεTa

(
fh
(
Φ̃
))]

ε=0

[
E a
b (h)ebµ −Haâ(h) ∂µ Πâ

]
= fh

(
∂µ Φ̃

)
+ fh

([
∂

∂ε
fe+iεh−1Tah

(
Φ̃
)])

ε=0
E a
b (h)ebµ +

+
(
∂µ h

∂

∂h
fh
(
Φ̃
))
−
[
∂

∂ε
fe+iεTa

(
fh
(
Φ̃
))]

ε=0
Haâ(h) ∂µ Πâ. (3.42)

Note that, since the quantity

[
∂

∂ε
fe+iεh−1Tah

(
Φ̃
)]

ε=0

is linear on h−1T ah, which by Eq. (3.38b) is given by

h−1T ah =
(
E −1(h)

)a
b
T b,

one obtains [
∂

∂ε
fe+iεh−1Tah

(
Φ̃
)]

ε=0
E a
b (h)ebµ =

[
∂

∂ε
fe+iεT b

(
Φ̃
)]

ε=0
ebµ. (3.43)
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Hence, Eq. (3.42) becomes

(
D̃µΦ̃

)′
= fh

(
D̃µΦ̃

)
+
(
∂µ h

∂

∂h
fh
(
Φ̃
))
−
[
∂

∂ε
fe+iεTa

(
fh
(
Φ̃
))]

ε=0
Haâ(h) ∂µ Πâ. (3.44)

From Eq. (3.38c), it follows that

(∂µ h) = iHaâ(h)T a
(
∂µ Πâ

)
h,

and together with

i

(
T ah

∂

∂h

)
fh
(
Φ̃
)

=
[
∂

∂ε
fh+iεTah

(
Φ̃
)]

ε=0
, (3.45)

one concludes that the last two terms on the right-hand side of Eq. (3.44) cancel. This

completes the proof that Eq. (3.41) is indeed the desired covariant derivative.

It is now possible to comprehend how to build an adequate low-energy Lagrangian.

The low-energy dof, the pions and the radial modes, can be included in the effective

Lagrangian only through the quantities dâµ, Φ̃ and D̃µΦ̃, because they have well defined

transformations properties under G that are parametrise solely by the elements of low-

energy group H. Stated in another way, the G-invariant effective Lagrangian of pions and

Φ̃ can only be written as H-invariant combinations of dâµ, Φ̃ and D̃µΦ̃. This procedure,

known as Callan-Coleman-Wess-Zumino (CCWZ) construction, allows to write down ef-

fective theories that automatically respect the symmetries of the UV physics. Using Eqs.

(1.1) and (1.2), the Lagrangian for the corresponding EFT is given by

L CCWZ = f 4F

(
dâµ
f
,

Φ̃
fdim Φ̃

,
D̃µΦ̃

fdim Φ̃+1

)
, (3.46)

which leaves explicit the fact that we are taking the selection rules coming from the SSB

into consideration. In particular, if Eq. (3.46) is expanded at the low-energy regime, the

first operator involving only the NGB is

L CCWZ −→
f 2

4 d
â
µd

â
µ + · · · , (3.47)

where the coefficient is fixed, because, as it will be seen in the next section, it plays the

role of the kinetic term of the NGB, so it must be correctly normalised. Also in next

section, Eq. (3.47) will be used to write down the Lagrangian for the MCHM.
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3.2.2 SO(N) and its representations

The CCWZ construction derived in the previous section is valid for any compact Lie

group of our interest. Still, in order to build a concrete model, one needs to specify G

and H. Throughout this section, models with G = SO(N) and H = SO(N −1) are going

to be considered, some of their properties and the relevant quantities to write the correct

effective Lagrangian will be derived and calculated.

We begin with the definition of SO(N). The elements of SO(N) by definition leave

the N -dimensional euclidian inner product invariant. The matrix representation of this

definition is named fundamental representation; it consists of N×N , orthogonal, unit de-

terminant matrices. The fundamental representation in some cases can also be understood

as the lowest dimensional, non-trivial representation of the group [37, 63]. Higher dimen-

sional representations, i.e. tensor representations, are build from the fundamental one.

A tensor T of rank n transforms under SO(N) as the tensor product of n fundamentals,

namely

T ∼ �⊗�⊗ · · · ⊗�, (3.48)

where � denotes the fundamental representation. Using the techniques of Young Tableuax

one can decompose such tensor representations into smaller, irreducible representations,

also called invariant sub-spaces of the given representation [37, 11, 64]. In addition to the

fundamental and tensor representations, one can also define the spinorial representation.

Such representation are motivated from the fact that for N > 2 the SO(N) groups are

not simply connected. The spinorial representation is defined precisely as the one that is

mapped to a simply connected group, also named Spin(N), which is related to the original

SO(N) by a double covering. In more practical terms, the spinorial representation is

constructed out of the fundamental one trough the introduction of the gamma matrices

that respect the Clifford algebra [64, 65]. The distinct representations of SO(N) will be

useful in what follows, in particular in the discussion of the fermion sector.

These concepts, though important in our discussion, are mere definitions. To discuss

the actual physics of the composite Higgs, one needs to specify the breaking pattern of the

group G, or in other words, one has explicitly chose G and H.. Consider for example the

breakin pattern SO(N)→ SO(N − 1). The number of NGB associated with it is simply

N − 1, since SO(N) has N(N−1)
2 generators. The most interesting point of this breaking
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pattern is that, with the appropriate choice of N , one is permitted to choose the number

of NGB desired. For instance, one just needs to chose N = 5 to build a complex doublet

with 4 NGB. This is not possible with other groups, for example SU(N), for which one

cannot choose the number of NGB so freely. Another interesting feature of this SSB

pattern regards the choice of the broken generators. It is quite difficult, if not impossible,

to write down explicitly the broken generators. Fortunately, for SO(N) → SO(N − 1)

this choice is very simple

i
(
T̂ âfund

)
ij

= 1√
2
[
δâi δ

N−1
j − δâj δN−1

i

]
, i, j = 1, · · ·N, â = 1, · · ·N − 1. (3.49)

One may always choose generators in Eq. (3.49) as the broken ones by performing an

appropriate rotation on the vacuum 〈Φ〉 (the vacua states may not be invariant under

general group transformation, but they are all physically equivalent). In Eq. (3.49) it is

left explicit that the generators from the fundamental representation, that are N × N ,

antisymmetric matrices, were used. The generators of the spinorial representation could

also be used, but their general expression for SO(N) is much more complex [64, 65].

In order to compute the symbols dâµ and eaµ, the expression for the matrix U [Π] is

required. Note that the Goldstone matrix can only be explicitly written for a given

representation of the generators. The symbols dâµ and eaµ, however, will not depend on the

explicit representation of Φ, since it only the representation of the coset is relevant. The

Goldstone matrix in the fundamental representation is given by Eq. (3.30),

Ufund[Π] = exp
(
i
√

2
f

ΠâT̂ âfund

)

= 1 + i
√

2
f

ΠâT̂ âfund + 1
2

[
i
√

2
f

ΠâT̂ âfund

]2

+ 1
6

[
i
√

2
f

ΠâT̂ âfund

]3

+ · · · .

With the expression for the broken generators in Eq. (3.49) the Goldstone matrix can be

further simplified to

Ufund[Π] =

1−
(
1− cos Π

f

)
~Π~ΠT

Π2
~Π
Π sin Π

f

− ~ΠT

Π sin Π
f

cos Π
f

 , (3.50)
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where Π =
√∑

â(Πâ)2 and ~Π = (Πâ) is a column vector. Therefore,

U−1
fund ∂µ Ufund = idâµT̂

â
fund + ieaµT

a
fund, (3.51)

where dâµ is given by

dâµ(Π) =
√

2Πâ

Π2

(
1
Π sin Π

f
− 1
f

)
~Π · ∂µ ~Π−

√
2

Π sin Π
f
∂µ Πâ. (3.52)

The eaµ symbol can be similarly computed, but serves to no purpose in this thesis, as we

won’t take resonances into account.

The SO(4) group

As already stressed, the custodial symmetry group SO(4)c must be a subgroup of H.

In what follows some particular properties of this group will be studied.

First, from the commutation relations one can prove the following isomorfism [37, 65,

66]

SO(4) ' SU(2)L × SU(2)R, (3.53)

with SU(2)L and SU(2)R independent groups. As a consequence of Eq. (3.53), every

representation of SO(4) can be mapped into a representation of the chiral group SU(2)L×

SU(2)R. For example, a real 4-plet, ~Π, transforming under the fundamental of SO(4) is

equivalent to a pseudo-real 2× 2 matrix Σ that transforms under the (2,2) representation

of the chiral group∗,

Σ→ Σ′ = gLΣg†
R, (gL, gR) ∈ SU(2)L × SU(2)R. (3.54)

This is proved by defining the following pseudo-real matrix

Σ ≡ 1√
2
[
σ0Π4 + iσiΠi

]
= 1√

2
σâΠâ, i = 1, 2, 3, â = 1, 2, 3, 4, (3.55)

where σâ = (i~σ, σ0). From the definition above, one can take the trace of Σ†Σ, which is

∗A pseudo-real 2x2 matrix satisfies
Σ∗ = σ2Σσ2.

This conditions follows from the fact that ~Π is a real vector with 4 dof, whereas a general complex 2× 2
matrix has 8 dof. A pseudo-real matrix instead has 4 dof.
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invariant at most by the action of the chiral group, and obtain

Tr
[
Σ†Σ

]
=
∣∣∣~Π∣∣∣2. (3.56)

Together with the fact that SO(4) and SU(2)L × SU(2)R have the same number of

generators, this proves the equivalence of both groups, as the action of both transformation

leaves the same quantity invariant.

From the physical point of view, SO(4) is important, because it is the custodial sym-

metry group of the SM. Mathematically this is explicit from the fact that GEW ⊂ SO(4),

where in the isomorphism in Eq. (3.53) SU(2)L is associated with the SU(2)L of the SM

and a subgroup of the SU(2)R generators corresponds to the hypercharge gauge group.

Therefore, the EW group GEW can always be embedded into the custodial SO(4)c.

The SO(5)→ SO(4) breaking pattern

The SSB breaking patterns of interest in this thesis involve only SO(N) groups and,

in particular, the ones that have SO(4) as an unbroken subgroup. These considerations

motivate us in choosing H = SO(4)c, such that there is no symmetry other than those

already present in the SM in the low-energy regime. This implies, according to the

previous discussion, that the strong group in the UV is a SO(5) group. Curiously, the

breaking pattern

SO(5)→ SO(4), (3.57)

produces 4 NGB, which is precisely the number of dof to build the Higgs doublet. From

the aforementioned reasons, the CHM based on the breaking pattern in Eq. (3.57) is the

Minimal Composite Higgs Model (MCHM). Our next objective is to study its implemen-

tation.

Before proceeding, some additional properties of the groups SO(5) and SO(4) are

needed, in particular regarding the explicit expressions for their generators.

One can determine the explicit expression of the generators of SO(4) in the fundamen-

tal representation from the transformation rules of Σ. Under infinitesimal transformation
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of the SU(2)L subgroup we have,

δLΠâ = −iεi
(
T iL
)
âĉ

Πĉ, (3.58)

δLΣ = −iεi
σi

2 Σ, (3.59)

where, as usual, i =1, 2 or 3 and â =1, 2, 3 or 4. The infinitesimal transformation of Σ

can also be written in terms of Π by means of Eqs. (3.55) and (3.58),

δLΣ = 1√
2
σâδLΠâ = − i√

2
εiσ

â
(
T iL
)
âb̂

Πb̂. (3.60)

Hence,

εi
σi

2 Σ = 1√
2
εiσ

â
(
T iL
)
âb̂

Πb̂ (3.61)

for any infinitesimal parameters εi. Substituting Eq. (3.55),

1
2σ

iσb̂ = σâ
(
T iL
)
âb̂
, (3.62)

and, inverting the equation above, one obtains the TL generators

(
T iL
)
âb̂

= 1
4 Tr

[
σâσiσb̂

]
. (3.63)

In the same manner, by considering a transformation of SU(2)R, one can compute the TR
generators, (

T iR
)
âb̂

= −1
4 Tr

[
σb̂σiσâ

]
. (3.64)

The generators in Eqs. (3.63) and (3.64), in the context of the SSB (3.57), are 5 × 5

matrices,

T iL →



0

T iL 0

0

0

0 0 0 0 0


, T iR →



0

T iR 0

0

0

0 0 0 0 0


. (3.65)

In short, Eqs. (3.49), (3.63) and (3.64) are the generators of SO(5) in the fundamental

representation.
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The same generators in the spinorial representation of SO(5) are constructed out of

the Pauli matrices and, for the group in question, are 4× 4 matrices. It is not difficult to

see that

(
T iL
)
S

= 1
2

σi 0

0 0

 , (
T iR
)
S

= 1
2

0 0

0 σi

 , T̂ âS = 1
2
√

2

 0 σâ

σ†
â 0

 (3.66)

satisfy the correct commutation relations. The Goldstone matrix Uspin[Π] can be analo-

gously obtained by the exponentiation of T̂S. It is written more easily in terms of Σ of

Eq. (3.55),

Uspin[Π] = exp
(
i
√

2
f

ΠâT̂ âS

)
(3.67)

=

1 · cos |H|√
2f

iΣ
|H| sin |H|√

2f
iΣ†

|H| sin |H|√
2f 1 · cos |H|√

2f

 , (3.68)

with 1 the 2×2 identity matrix. One last remark regarding this representation is in order.

The spinorial of SO(4) can also be written as the (2, 1)⊕(1, 2) of SU(2)L×SU(2)R, which

follows from the fact that one can always decompose a 4-component spinor into two chiral

ones [37].

3.3 Minimal Composite Higgs Model

In the previous sections it was made clear that the minimal realistic model of compositness

is the one considering a SSB given by SO(5) → SO(4). In this sectionits theoretical

properties will be explored and how the couplings with gauge bosons change.

3.3.1 General properties

Our first task is to identify the Higgs doublet. Once again, the focus in on the pseudo-real

(2, 2) representation of the chiral group defined by the Σ matrix in Eq. (3.55), since it is

described by 4 real dof, and is given by

Σ = 1√
2
σâΠâ = 1√

2

Π4 + iΠ3 Π2 + iΠ1

iΠ1 − Π2 Π4 − iΠ3

 . (3.69)
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This matrix can be written in terms of a single doublet as follows. Define the second

column vector of the equation above as

H = 1√
2

Π2 + iΠ1

Π4 − iΠ3

 , (3.70)

and note that the first column vector is related to H in the following way:

1√
2

Π4 + iΠ3

Π1 − iΠ2

 = iσ2H
∗ ≡ H̃, (3.71)

which is none other than the charge conjugate doublet. In term of these two doublets the

matrix Σ is written as

Σ =
(
H̃,H

)
, (3.72)

or in component form

Σij = δ1jH̃i + δ2jHi. (3.73)

The transformations properties of H under the chiral group are easily obtained by con-

sidering a transformation of SU(2)L,

Σij → (gL)ikΣkj = δ1j(gL)ikH̃k + δ2j(gL)ikHk, (3.74)

therefore, in order to respect the transformation law, H and H̃ transform both as a doublet

of SU(2)L. One remark regarding the doublets is in order. One should observe that H

and H̃ are not distinct doublets, i.e. they carry the same dof. This is a consequence of

considering a real 4-plet ~Π. In the same manner, one could use a complex 4-plet ~ψ to

build the matrix Σ. In this case Σ is now complex and possesses two distinct SU(2)L
doublets, ψ+ and ψ−, which are related to the original components by

ψ+ = 1√
2

iψ1 + ψ2

ψ4 − iψ3

 , ψ− = 1√
2

iψ1 − ψ2

ψ4 + iψ3

 . (3.75)

In short, the pseudo-real (2, 2) representation is equivalent to one complex doublet of

SU(2)L, while the complex (2, 2) representation is equivalent to two distinct doublets.

As expected, the action of SU(2)L of SO(4)c coincides with the action of the SU(2)L
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gauge group of the SM. The action of SU(2)R, though, is not as trivial, since only one

combination of its generators will be equivalent to the hypercharge generator. In order

to determine this combination, one must study the action of the generators TR on the

doublet H. Consider first the action of T 1
R. This generator is given by Eq. (3.64)

T 1
R = − i2



0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


= −1

2

 0 σ2

σ2 0

 .

The variation of ~Π associated with the action of this generator is thus given by then

δR~Π = −iεT 1
R
~Π = − ε2



−Π4

+Π3

−Π2

+Π1


. (3.76)

Using Eq. (3.70), one can connect the transformation of Π to H,

δH = 1√
2

δRΠ2 + iδRΠ1

δRΠ4 − iδRΠ3

 = 1√
2

(
iε

2

)Π4 + iΠ3

iΠ1 − Π2

 = iε

2 H̃, (3.77)

hence, under the transformation of T 1
R, H does not have a proper transformation rule.

The same happens for a transformation with T 2
R, i.e. δH is again proportional to H̃. The

only generator that induces an appropriate transformation is T 3
R, given by Eq. (3.64),

T 3
R = − i2



0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0


= 1

2

 σ2 0

0 −σ2

 .
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The transformation of H in this case is given by

δR~Π = −iεT 3
R
~Π = − ε2



+Π2

−Π1

−Π4

+Π3


=⇒ δH = 1√

2

(
−iε2

)Π2 + iΠ1

Π4 − iΠ3

 = −iε2H.

More precisely, a transformation of T 3
R leads us to

H + δH =
(

1− i ε2

)
H. (3.78)

It is now clear that the doublet H has the same transformation properties under GEW as

the Higgs boson, provided that we identify T 3
R as the hypercharge operator. Hence, H

has consistent transformation rules and is the physical Higgs field. The same calculations

are valid for ψ± of the complex (2, 2) in Eq. (3.75), for which they have T 3
R-charge equal

to ±1
2 .

Having determined the Higgs doublet and the generators of SO(4)c that corresponds to

the generators of GEW, the next step is to write the d symbol in terms of H. Furthermore,

the ordinary derivatives in Eq. (3.52) that act on the Higgs field must be promoted to

covariant derivatives since GEW is gauged,

∂µH → DµH =
(
∂µ−igW i

µ

σi

2 − ig
′ 1
2Bµ

)
H. (3.79)

Note that this gauging explicitly breaks SO(4) (see Appendix B). Using in addition that,

Π2 = Π2
1 + Π2

2 + Π2
3 + Π2

4 = 2|H|2,
(
∂µ ~Π

)2
= 2 ∂µH† ∂µH.

we can substitute every Π in Eq. (3.52) by H. As a consequence, the Lagrangian in Eq.

(3.47) written in terms of H becomes

f 2

4 d
â
µd

â
µ = f 2

2|H|2
sin2
√

2|H|
f
|DµH|2 + f 2

8|H|4

(
2|H|2

f 2 − sin2
√

2|H|
f

)(
∂µ |H|2

)2
, (3.80)

where the last term still has an ordinary derivative, because |H|2 is a singlet [13]. Note

that we can understand Eq. (3.80) as the "kinetic term" of the Higgs, since in the limit
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f →∞ one obtains
f 2

4 d
â
µd

â
µ

f→∞−−−→ |DµH|2. (3.81)

Moreover, it is easy to see that all higher order operators coming from the expansion of

the Lagrangian in Eq. (3.47) will vanish in this limit, since they have extra powers of f

in the denominator. Therefore, the limit f →∞ can be understood as the one in which

the elementary Higgs theory is recovered.

The next step is to determine what changes does this Lagrangian bring to the observ-

ables of the theory. As in the SM, the kinetic term of the Higgs allows us to compute the

masses of gauge bosons and their couplings to the Higgs. We proceed to calculate these

quantities in the case of MCHM. For this end, the Lagrangian (3.80) is expanded around

the Higgs vev in unitary gauge,

H → H = 1√
2

 0

V + h

 , (3.82)

with V the vev of the Higgs. The impact on the masses and couplings of gauge bosons

come from the term with the covariant derivative in Eq. (3.80), as it is the only term that

contains gauge bosons fields. Substituting Eq. (3.82) in Eq. (3.80), one arrives at

f 2

2|H|2
sin2
√

2|H|
f
|DµH|2 = f 2

2|H|2
sin2
√

2|H|
f

H†
(
gW i

µ

σi

2 + g′

2 Bµ

)2

H + 1
2(∂µ h)2



= sin2 V + h

f

g2f 2

8 (0, 1)

g′

g
Bµ +W 3

µ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ
g′

g
Bµ −W 3

µ


20

1

+

+ f 2

2(V + h)2 (∂µ h)2


= sin2 V + h

f

g2f 2

4

(
W+
µ W

−
µ + ZµZµ

2 cos2 θw

)
+ f 2

V 2

(
∂µ h

1 + h
V

)2
.

The sine is expanded as

sin2 V + h

f
= sin2 V

f
+ sin 2V

f

h

f
+ cos 2V

f

(
h

f

)2

− 2
3 sin 2V

f

(
h

f

)3

+ · · · , (3.83)

where the first term in the equation above gives the mass term to the gauge bosons, which
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are given by

M2
W = M2

Z cos2 θw = g2f 2

4 sin2 V

f
. (3.84)

However, since both masses are measured with high precision [1, 3], it is very inciting to

write them still in terms of the EW vev v,

M2
W = M2

Z cos2 θw = g2v2

4 .

This gives us the relation between the three energy scales v, f and V :

v2 = f 2 sin2 V

f
. (3.85)

The equation above allows us to identify the relevant, dimensionless quantity that mea-

sures the effects of compositness in CHM,

ξ = v2

f 2 . (3.86)

The parameter ξ defined in Eq. (3.86) is not exclusive to the MCHM, since it is used to

characterise all distinct kinds of CHM and es essential for the computation of the FT.

The interaction between h and the gauge bosons in the Lagrangian in Eq. (3.80) can

be wrtitten only in terms of ξ,

L hWZ = M2
W

(
W+
µ W

−
µ + 1

2 cos2 θw
ZµZµ

)
× (3.87)

×
(

1 + 2h
v

√
1− ξ + h2

v2 (1− 2ξ)− 4h3

3v3 ξ
√

1− ξ + · · ·
)
. (3.88)

The first three terms of the expansion in Eq. (3.88) are already present in the SM, while all

other higher order couplings with hn, n ≥ 3, are absent in the SM. In the limit f →∞, or

equivalently ξ → 0, we recover the SM Lagrangian, for all new couplings are proportional

to ξ and hence vanish in this limit.

3.3.2 Coupling to fermions

We now turn the discussion to the fermions. In contrast to gauge bosons, one needs to put

much more effort in the model-building for fermions, notably because there is no indication

of how do they transform under SO(5) or SO(4). In this section different models corre-
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sponding to different embedding of fermions in representations of SO(5) are presented.

As previously stressed, this reflects the arbitrariness of the fermion representation in the

bottom-up approach we are using.

In the SM, the coupling of the Higgs with the fermions, in particular with the quarks,

is given by

L Yuk = −ytq̄LH̃tR − ybq̄LHbR + · · · , (3.89)

where only the third generation and H̃ = iσ2H
∗ is displayed. In CHM one could in

principle write the effective Lagrangian for the fermions just as the one in Eq. (3.88) for

the Higgs coupled to the gauge bosons was written. With this naive reasoning, the EFT

would be given by

L Naive = f 4F

(
H

f
,
qL
f 3/2 ,

tR
f 3/2 ,

bR
f 3/2 , · · ·

)
. (3.90)

Unfortunately, the above Lagrangian is inconsistent for many reasons. First, the fermions

of the SM do not have well determined transformations under G or H, which in turn

means thatit is unclear how to build invariant operators from the fields. Second, since

the fermions are representation-dependent, the representation of the Goldstone matrix is

not arbitrary. It must be such to allows us to construct consistent interactions between

the Higgs and the fermions.

In order to write a consistent EFT, one must reformulate the above Lagrangian. One

possible way to do so is to promote all fermion fields

qL → QL, tR → TR, bR → BR, (3.91)

to fields QL, TR and BR that have, by definition, a well determined, linear representation

under G. Considering an EFT with the promoted fields would leave explicitly that the

selection rules of G are being respected. However, this is still not adequate to describe

the low-energy interactions between the Higgs and the fermions, because at this energy

scale the group G is already broken, so, according to the CCWZ construction, the fields

must bear a representation under H, not G. One could avoid this issue and embed the

quark fields directly into some representation of the unbroken group, but this would not

be the correct path to follow, since the quarks must still be fundamental dof of nature

at higher energies and must have, at that energy scale, a well determined representation

under G.
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Suppose we can embed a quark fields, say qL, into some representation of G whose

transformation is given by the function fg(·) defined in Eq. (3.16). We now resort to the

Goldstone matrix by noticing that the fields

Q
L
≡ fU−1(QL) (3.92)

transform only under H, because the transformation of the Goldstone matrix in Eq.

(3.34), compensates the undesired transformation of G and leaves only the transformation

of H. Therefore, the field in Eq. (3.92) transforms as

Q
L
−→ fh

(
Q
L

)
, ∀h ∈ H. (3.93)

The same is valid for TR and BR, which are analogously defined according to Eq. (3.92).

In conclusion, the correct EFT for the fermions at low-energy theory is given by

L fermions = f 4F

(
Q
L

f 3/2 ,
TR
f 3/2 ,

BR

f 3/2 , · · ·
)
. (3.94)

Expanding the above Lagrangian, the allowed operators are H-invariant combinations of

Q
L
, TR and BR. Note that, even though Eq. (3.94) is a consistent effective Lagrangian,

it is not straightforward to build invariant operators, because QL, TR and BR are not

necessarily embedded into the same representation of G. So in principle one would have

to rely on the explicit expression of the fields in order to write down the allowed operators

at the low-energy regime, which must give us the SM Yukawa couplings in the limit

f →∞. One can still obtain more information regarding the low-energy operators in the

Lagrangian in Eq. (3.94), although a totally general analysis is not possible.

Consider the fundamental representation of G = SO(N), denoted here by �(N). Tak-

ing into account the SSB patter SO(N)→ SO(N − 1) and the expression of the broken

generators in Eq. (3.49), the fundamental of SO(N) is decomposed after SSB as

�(N) −→ �(N−1) ⊕ 1(N−1), (3.95)

where 1(N) is a singlet of SO(N). Consider now the rank 2 tensor representation of
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SO(N), which is the product of two fundamentals:

�(N) ⊗�(N). (3.96)

After SSB it is decomposed as

�(N)⊗�(N) −→
[
�(N−1) ⊕ 1(N−1)

]
⊗
[
�(N−1) ⊕ 1(N−1)

]
= · · ·⊕

[
1(N−1) ⊗ 1(N−1)

]
. (3.97)

Therefore, from the above equation, one is guaranteed to have at least one singlet of

SO(N−1) in the decomposition of �(N)⊗�(N). From Eqs. (3.95) and (3.97) we conclude

that every tensor representation of SO(N) contains at least one singlet of SO(N−1) after

SSB. This allows us to decompose the fermion fields as

Q
L

=
ˆ
QL ⊕ · · · , (3.98)

where the dots denote non-trivial, representation-dependent terms and
ˆ
QL is a singlet of

SO(N − 1). Assuming all promoted fields in Eq. (3.91) are in some tensor representation

of SO(N), we may write the fermion Lagrangian at low energies as

L fermions ⊃ −ytf
ˆ
Q̄Lˆ

TR − ybf
ˆ
Q̄Lˆ

BR + h.c.+ · · · , (3.99)

where
ˆ
TR and

ˆ
BR are similarly defined. The Lagrangian in Eq. (3.99) may not contain

all possible terms, but it already tells us at least how to build an invariant operator in

the low-energy regime. Hence, after embedding the fields in a tensor representation, all

it is left is to identify the corresponding singlet components and one may readily write

down the interacting Lagrangian (3.99). Unfortunately, the same cannot be done for

spinorial representations, since their general structure is far more complicated and the

decomposition under SSB is not as trivial as it is for the fundamental representation.

Taking all these considerations into account, the next task is to construct explicitly

some of the most important representations of SO(5) and SO(4) which are used to build

the MCHM. Before proceeding, the methodology of this analysis should be clarified. After

choosing a representation of SO(5), it shall be first decomposed into a representation of

GEW in order to verify if such representation can indeed accommodate the fermions of the

SM. Second, one must explicitly embed the fermions into the promoted fields and then
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build invariant operators. Note that in the limit f →∞ one must in addition recover the

Yukawa operators of the SM.

The first representation of SO(5) considered is the fundamental one, denoted by �(5).

Let us see how it decomposes into representations GEW. According to Eq. (3.95) the

decomposition of SO(5) into SO(4) is given by

�(5) → �(4) ⊕ 1(4), (3.100)

with �(4) the fundamental of SO(4) and 1(4) the respective singlet. As already stressed∗,

�(4) = (2, 2) of SU(2)L × SU(2)R, so it is further decomposed into

�(4) → 2⊕ 2,

where 2 is the fundamental of SU(2)L. With T 3
R as the generator of hypercharge, the

decomposition of �(4) must come with their respective hypercharges, namely

�(4) → 2 1
2
⊕ 2− 1

2
. (3.101)

At the end, the spontaneous breaking leads us to:

�(5) → �(4) ⊕ 1(4) → 2 1
2
⊕ 2− 1

2
⊕ 1(4)

0 . (3.102)

The conclusion from the equation above is that none of the quarks can be embedded in the

fundamental representation of SO(5), since the wrong hypercharges were obtained. One

could try some other representation, but it is easy to see that, due to the decomposition of

SO(4) in terms of the chiral group, no representation will have the correct hypercharges.

It is possible avoid this problem by adding a U(1)X group to the group G that has a single

generator, named X. If the hypercharge operator is redefined as

Y = T 3
R +X, (3.103)

one may choose X-charge in a way to obtain the correct hypercharges. In particular, for

the fundamental representation considered previously, one can chose the X charge as 2/3.

∗Here (2,2) denote the complex (2,2) representation of the chiral group discussed in section 3.2.2.
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In this case the group decomposition in Eq. (3.102) is given by

�(5)
2
3
→ �(4)

2
3
⊕ 1(4)

2
3
→ 2 7

6
⊕ 2 1

6
⊕ 1(4)

2
3
, (3.104)

where in the last decomposition Eq. (3.103) was used. Both qL and tR can be embedded

into this representation, but another one to embed bR needs to be built. With the same

reasoning, the adequate representation for bR is

�(5)
− 1

3
→ �(4)

− 1
3
⊕ 1(4)

− 1
3
→ 2 5

6
⊕ 2 1

6
⊕ 1(4)

− 1
3
. (3.105)

In short, we embed a generation of quarks in the following representations

QL ∼ �(5)
2
3

or �(5)
− 1

3
, (3.106a)

TR ∼ �(5)
2
3
, (3.106b)

BR ∼ �(5)
− 1

3
. (3.106c)

A few remarks are in order. With the addition of a U(1)X gauge group, the spontaneous

breaking pattern considered now is given by

SO(5)× U(1)X −→ SO(4)× U(1)X , (3.107)

which brings no change to the previous discussion of the Higgs, because the new abelian

group remains unbroken. Moreover, the X-charge of the Higgs is also set to zero, leaving

the covariant derivative the same∗.

Let us now begin the explicit embedding. The right-handed top quark tR is the singlet

of �(5)
− 1

3
, therefore one may chose an appropriate basis in which the 5-plet TR can be written

∗The introduction of a new gauged U(1)X is a subject of many interesting studies in BSM physics
[67], but a throughout review of this topic is out of the scope of this thesis.
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as

TR =



0

0

0

0

tR


. (3.108)

In order to construct the top Yukawa coupling in the Lagrangian in Eq. (3.99), one needs

to embed q̄L in the �(5)
− 2

3
of SO(5). Since it is a doublet of SU(2)L, we set

q̄L = ψ−, (3.109)

where ψ− denote one of the SU(2)L doublets of the (2,2) complex representation of the

chiral group, which is given in Eq. (3.75).

Q̄L =
(
−ib̄L,−b̄L,−it̄L, t̄L, 0

)
. (3.110)

The computation of the singlet components of Q
L

and TR is straightforward,

Q̄
L

= Q̄LUfund[Π] =
(
· · · ,

ˆ
Q̄L

)
, (3.111a)

TR = U−1
fund[Π]TR =

 ...

ˆ
TR

 . (3.111b)

Using the explicit expression for the Goldstone matrix in the fundamental representation,

which are given in Eq. (3.50), one obtains

ˆ
Q̄L = 1

Π sin Π
f
Q̄L · ~Π and

ˆ
TR = cos Π

f
tR. (3.112)

The operator in Eq. (3.94) is thus given by

ytf
ˆ
Q̄Lˆ

TR = ytf

2Π sin 2Π
f
Q̄L · ~Π tR

= ytf

2
√

2|H|
sin 2
√

2|H|
f

1√
2
[
b̄L(iΠ1 − Π2) + t̄L(iΠ3 + Π4)

]
tR

= ytf

2
√

2|H|
sin 2
√

2|H|
f

q̄LH̃tR.
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From the equation above, it is obvious that this term reduces itself to the SM Yukawa

coupling in the regime f → ∞. To complete the third generation of quarks, one must

still embed the bottom quark into �(5)
− 1

3
. This is done in the exact same way, except that

now the left-handed doublet is embedded into the ψ+ representation of Eq. (3.75). At

the end, the effective Lagrangian for the third generation is∗:

L Yuk = − ytf

2
√

2|H|
sin 2
√

2|H|
f

q̄LH̃tR −
ybf

2
√

2|H|
sin 2
√

2|H|
f

q̄LHbR. (3.113)

The interacting Lagrangian in Eq. (3.113) is an infinite series of operators, whose

couplings will be given by powers of ξ. After EWSB, L Yuk becomes

L Yuk
EWSB−−−→

[
ytf√

2

√
ξ(1− ξ)t̄t+ ybf√

2

√
ξ(1− ξ)b̄b

]
×
(

1 + h

v

1− 2ξ√
1− ξ −

h2

v2 2ξ + · · ·
)
.

(3.114)

The first term in the expansion above contains the mass terms of the quarks,

Mt = ytf√
2

√
ξ(1− ξ), Mb = ybf√

2

√
ξ(1− ξ). (3.115)

The second term is the correction to the SM Yukawa coupling, while all other are beyond

the SM. As already stressed, the coupling with the fermions depends on their group

representation, therefore the dependency of the Yukawa coupling on ξ will change when

the representation changes. We define for future purposes the coupling in Eq. (3.114) as

k
(fund)
F (ξ) ≡ 1− 2ξ√

1− ξ , (3.116)

where "fund" denotes specifically that the fermions are embedded in the fundamental of

SO(5).

Let us now turn to spinorial representations, taking for instance the spinorial of SO(5),

denoted here by S(5). Its group decomposition after SSB is

S(5) → S(4), (3.117)

with S(4) the spinorial of SO(4). Chosing the X-charge of S(5) as 1/6 and using the fact

∗The other components in Eqs. (3.111) could also be used to build an invariant operator, since they
are both 4-plets of SO(4). However, given that Q̄L and TR are orthogonal, such operator is redundant.
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that the spinorial representation S(4) is equivalent to the (2, 1) ⊕ (1, 2) representation of

the chiral group [64, 65], we obtain

S
(5)
1
6
→ S

(4)
1
6
' (2, 1) 1

6
⊕ (1, 2) 1

6
→ 2 1

6
⊕ 1 2

3
⊕ 1− 1

3
, (3.118)

with 1 the singlet of SU(2)L. Hence, one can fit an entire quark generation in S(5). The

multiplets for the left-handed quarks, the righ-handed top and bottom are promoted to

QL =



tL

bL

0

0


, TR =



0

0

tR

0


, BR =



0

0

0

bR


. (3.119)

Given the expression for the Goldstone matrix in the spinorial representation in Eq.

(3.68), one can decompose this representation as

U−1
spin[Π]QL =

Q(1,2)
L

Q
(2,1)
L

 , U−1
spin[Π]TR =

T (1,2)
R

T
(2,1)
R

 , U−1
spin[Π]BR =

B(1,2)
R

B
(2,1)
R

 , (3.120)

where (2, 1) and (1, 2) refer to the SU(2)R×SU(2)L representations. From the expressions

above it is obvious that there is no SO(4) singlet, as opposed to our analysis of the

fundamental representation.

The only independent invariant operators which can be built from the fields in Eq.

(3.120) are given by

L Yuk = ytfQ̄
(2,1)
L · T (2,1)

R + ybfQ̄
(2,1)
L ·B(2,1)

R + h.c.

= f√
2|H|

sin
√

2|H|
f

[
ytq̄LH̃tR + q̄LHbR + h.c.

]
. (3.121)

The masses are now given by

Mt = ytf
√
ξ√

2
, Mb = ybf

√
ξ√

2
, (3.122)

while the Yukawa coupling is

k
(spin)
F (ξ) =

√
1− ξ. (3.123)
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We see that the coupling kF (ξ) and the expression for the masses change noticeably from

one representation to another, although the limit ξ → 0 is the same.

???

One could proceed indefinitely and consider many more different representations. For

instance, the rank-2, symmetric and traceless tensor representation of SO(5) has some

interesting properties: it gives the same coupling strength as in Eq. (3.116), but it allows

for more invariant operators in the Lagrangian. In particular, it receives contributions

from possible resonances below the scale f [14, 13]. It is also possible to mix different

representations, i.e. to embed some fermions into one representation and others into

another representation [13]. In short, the possibilities are endless. One thing is certain,

though: the more complicated an embedding is, the more model building it requires. In

the discussion above, the two simplest MCHM, one with the fundamental representation

and the other with the spinorial one, were written down. Any other embedding follows

with the exact same analysis.

What could significantly change the discussion is another group structure, in other

words, another choice of groups G and H. The next-to minimal composite Higgs model

(NMCHM), for example, considers SO(6)→ SO(5); such model gives us the Higgs doublet

and an extra singlet as NGB [68, 69]. The options in this direction are also infinite, since

one can always consider bigger and bigger groups. With larger groups and extra particles,

the model-building possibilities are wider, but at the same time they deviate more and

more from the real world, as we haven’t had any significant signal of new physics at the

TeV scale. Other cosets have been considered and extensively researched; a review on

them is given in [70].

3.3.3 Partial Compositness

In the previous section the couplings of fermions to the Higgs were discussed at the level

of EFT. In this case the theory is given by the low-energy effective Lagrangian in Eq.

(3.94). If one attempts to UV-complete this model, there are essentially two possibilities

for the interacting Lagrangian with the fermions. The first one is the analogous of a

Yukawa coupling,

L S = −ytQ̄LStTR − ybQ̄LSbBR + h.c. (3.124)
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with St and Sb scalar operators. These operators have non-trivial expressions given by

the fields from the new strong sector, although this does not concern us here. The real

issue with Eq. (3.124) is the fact that St and Sb have dimension +1, which means that

the operators∗

M2
t S

2
t +M2

b S
2
b (3.125)

may be allowed (depending on its transformation rule under G). The presence of these

operators could then reintroduce the Hierarchy Problem.

In order to avoid reintroducing new hierarchies, a different type of interaction, one

that does not rely on scalar operators, must be proposed. An alternative is given by the

following Lagrangian

L PC = −yLQ̄LFL − ytRT̄RFtR − ybRB̄RFbR + h.c., (3.126)

where y are dimensionless coefficients and the new fields F are fermionic field operators

of dimension 5/2. The interactions in the Lagrangian (3.126) define the concept of partial

compositness, which means that the fermions are linearly coupled to the new strong sector.

Partial compositness does not reintroduce the HP, because F̄F have dimension higher than

4.

In 4-dimensional field theories it is impossible to build a fundamental 5/2-dimensional

operator†, so the only way to write it, while avoiding new hierarchies, is as

F → f

4πΨ, (3.127)

where Ψ is a fermion from the strong sector. This allows us to estimate the strength of

the Yukawa coupling in Eq. (3.99) in terms of the couplings in Eq. (3.126). Assuming

that Ψ is massive, Eq. (3.126) becomes

L PC → −f
[
yL
4πQ̄LΨL + ytR

4π T̄LΨtR + ybR
4π B̄LΨbR + h.c.

]
− fΨ̄Ψ. (3.128)

∗The fact that this operator has dimension 1 is not exactly trivial, as it follows from some considerations
on the magnitude of the top Yukawa coupling and on how the Wilson coefficient runs [13, 71].

†Many CHM are actually related to 5-dimensional theories through the AdS5/CFT correspondence.
In the 5-dimensional theory one can build the operators F explicitly [72].
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Therefore, after integrating Ψ out, the Yukawa couplings are approximately given by [56]

yt ∼
yLytR

4π , yb ∼
yLybR

4π . (3.129)

Other than the estimate in Eq. (3.129), the concept of partial compositness does not

provide us with any additional information relevant at low-energies. Still, it is important

as it emerges in possible UV-completions of CHM.

3.3.4 Computation of the Higgs mass

It is now feasible to compute the Higgs mass from radiative corrections. To this end,

the 1-loop Coleman-Weinberg (CW) potential will be used. We refer the reader to Ap-

pendix A for a more detailed discussion on this potential and its explicit derivation. The

regularization method employed is the hard cut-off one, because the EFT that describe

the Higgs has a well determined cut-off, which is given by the breaking scale f . In the

broken phase of the EW symmetry the CW potential of the Higgs is given by Eq. (A.32)

of Appendix A

VCW(h) = ±
∑
i

ni

[
M2

i (h)f 2

32π2 − M4
i (h)

64π2

(
ln f 2

M2
i (h) + 1

2

)]
, (3.130)

where the sum is over the particles that couple to the physical Higgs h, ni is the number of

dof of the particle and Mi(h) is its the field dependent mass. Besides, the sign is positive

for bosons and negative for fermions.

Let us begin with the gauge bosons. The W boson is a complex, massive vector, so it

possesses 6 real dof, while the Z boson has only 3 because it is real. The field dependent

masses of the gauge bosons can be computed from their interacting Lagrangian in Eq.

(3.88), which are given by

M2
W (h) = M2

W

(
1 + 2h

v
k3
V (ξ) + h2

v2 k
4
V (ξ)

)
+O

(
h3
)
, (3.131)

M2
Z(h) = M2

W

c2
w

(
1 + 2h

v
k3
V (ξ) + h2

v2 k
4
V (ξ)

)
+O

(
h3
)
, (3.132)

where the standard notation k3
V (ξ) and k4

V (ξ) to denote respectively the triple and quartic

gauge bosons couplings with the Higgs is being used.
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The largest contribution from the fermion sector comes from the top quarks, as it has

largest coupling to the Higgs. Hence, only the contribution from the top quark to the CW

potential will be considered, which in the broken phase of EW symmetry is a coloured

Dirac fermion with has 12 dof. As noted in section 3.3.2, the interactions of the top with

the Higgs depends on the representation of SO(5) chosen. We can, however, write the

field dependent mass as

Mt(h) = Mt

(
1 + h

v
kF (ξ)

)
+O

(
h2
)
, (3.133)

with kF (ξ) the representation-dependent coupling.

Using Eqs. (3.131), (3.132) and (3.133) in Eq, (3.130), one obtains the CW potential

for h

VCW(h) = f 2M2
W

32π2

(
6 + 3

c2
w

)(
1 + 2h

v
k3
V + h2

v2 k
4
V

)
−

− M4
W

64π2

(
1 + 2h

v
k3
V + h2

v2 k
4
V

)2[
6
(

ln f 2

M2
W (h) + 1

2

)
+ 3
c2
w

(
ln f 2

M2
Z(h) + 1

2

)]
−

− 12f 2M2
t

32π2

(
1 + h

v
kF

)2

+ 24M4
t

64π2

(
1 + h

v
kF

)2(
ln f 2

M2
t (h) + 1

2

)
(3.134)

where only the interactions already present in the SM are being taken into account,

because all other operators generated by the composite nature of the Higgs are suppressed

by powers of ξ, hence they are negligible in a first approximation. The Higgs mass

parameter is given by the second derivative of the potential, which is given by

M2
h = d2VCW

dh2

∣∣∣∣
h=0

= f 2

16π2v2

[
M2

W

(
6 + 3

c2
w

)
k4
V − 12M2

t k
2
F

]
− (3.135)

− 3M4
W

8π2v2

[
2
(
k3
V

)2
+ k4

V

](
ln f 2

M2
W

+ 1
2c2
w

ln f
2c2
w

M2
W

)
− 3M4

W (k3
V )2

4v2π2

(
1 + 1

2c2
w

)
+

+9M4
t k

2
F

2π2

(
ln f 2

M2
t

− 2
3

)
,

Since the breaking scale f is considerably larger than the EW scale, i.e. f � v, the largest

contribution to the mass in Eq. (3.136) comes from the term proportional to f 2∗. The

∗It is worth stressing again that the hierarchy between f and v cannot be too large, otherwise additional
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other terms proportional to ln f 2 are therefore sub-leading. Inspecting Eq. (3.136) it is

clear that the dominant term, due to the top quark, makes M2
h a negative parameter. This

drives spontaneous EWSB. In CHM spontaneous EW is thus achieved through radiative

corrections unlike what happens in the SM.

The Higgs acquires a vev V√
2 after EWSB, which is approximately given by

V 2 ' −M
2
h

λ
, (3.136)

where M2
h is given in Eq. (3.136) and λ is the quartic coupling that is also generated by

quantum effects. The latter is given by the fourth derivative of the CW potential (3.134)

λ = d4VCW

dh4

∣∣∣∣
h=0

= 1
32π2

288M4
t k

4
F

v4

(
ln f 2

M2
t

− 11
3

)
−

− 24M4
W

v4

[
4
(
k3
V

)4
− 12

(
k3
V

)2
k4
V − 3

(
k4
V

)2
](

1 + 1
2c4
w

)
−

− 72M4
W (k4

V )2

v4

[
ln f 2

M2
W

+ 1
2c4
w

ln c
2
wf

2

M2
W

]. (3.137)

We note in the equation above that in order to have λ > 0, we need f & 1.1 TeV.

Combining the Higgs mass parameter of Eq. (3.136) with the quartic coupling of Eq.

(3.137) one gets the physical Higgs mass. Neglecting the contributions from the gauge

bosons, it reads

m2
h = 2V 2λ

= 2v2
(

sin−1√ξ√
ξ

)2

λ

' 18M4
t

π2v2

(
sin−1√ξ√

ξ

)2

k4
F (ξ)

[
ln f 2

M2
t

− 11
3

]
, (3.138)

where in the second line Eq. (3.85) was used to write V in terms of v and ξ. This

equation makes clear that the model dependent coupling to fermions affects the physical

Higgs mass only by the O(1) parameter kF .

We stress that Eq. (3.134) is the Higgs potential that can be computed inside the

effects (e.g. the running of the couplings) must be taken into account due to the presence of large logs.
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EFT (the "IR contribution"). There may in principle be another "UV-contribution" which

is dominated by physics at the cut-off scale Λ. For instance, an additional contribution

to the |H|2 term in the potential may come from H-breaking couplings between H and

composite resonances. These contributions are uncomputable in the EFT, and introduce

an additional source of model dependency in the Higgs mass.

3.4 Experimental results & Fine tuning

Since experiments have not yet reached the energy scale at which the composite structure

of the Higgs becomes manifest, our only choice is to work with the effective theory of the

MCHM at lower energies. Stated in another way, we are not in position to detect new

fundamental particles or resonances yet, so the only option is to measure their residual

effects on the EFT, in particular the deviations of the couplings of fermions and gauge

bosons with respect to their SM value. From the discussion of sections 3.3.1 and 3.3.2,

these couplings are now functions of ξ, therefore, if ξ is different from zero, then certainly

one will be able to detect some deviations from the SM values.

For gauge bosons, the most important coupling is the one between one Higgs and two

gauge bosons. In the MCHM its strength is controlled by (see Eq. (3.88))

k3
V (ξ) =

√
1− ξ. (3.139)

The importance of the coupling k3
V (ξ) is due to experimental considerations: the principal

decay channels of the Higgs, H → b̄b, H → WW ∗, H → τ+τ−, H → ZZ∗, H → γZ and

H → γγ, involve the triple coupling in Eq. (3.139). In particular, the latter two have no

tree-level contribution, hence involve t̄t and gauge bosons loops, which in turn allow us

to probe the values of both k3
V and kF [3]. The quartic coupling in the MCHM, given in

terms of ξ by

k4
V (ξ) = 1− 2ξ, (3.140)

is still not experimentally relevant, as its measurement are much more challenging [3, 14].

But, at the same time, it is the one who gives the leading contribution to the Higgs mass

(see Eq. (3.138)).

In the limit ξ → 0, the couplings of gauge bosons and fermions return to their SM

value, because k3
V (0) = k4

V (0) = kF (0) = 1, even if the explicit expressions for kF (ξ) are
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Figure 4: Most likely contours in (k3
V , kF ) plane. On the left one has the constrains from

the individual decay channels of the Higgs, while on the right the combined data from
both ATLAS and CMS. Figure taken from [3].

different for distinct representations. Through the measurement of distinct decay channels

of the Higgs, one can trace the most likely contour in (kF , k3
V ) plane. The corresponding

plot is given in Figure 4. With this analysis one finds out that

k3
V = 1.04(5), kF = 0.98(11), (3.141)

which at 68% CL is compatible with the SM values [3]. Using such data, one can com-

pletely exclude the possibility of ξ > 0.01 at 1σ, which in turn means that a certain

amount of FT is being created. The FT is given by the tuning in the Higgs mass, which

was computed in Eq. (3.138),

m2
h '

3M4
t

π2v2

(
sin−1√ξ√

ξ

)2

k4
F (ξ)

[
ln f 2

M2
t

− 11
3

]

with only the leading order term from the top quark. To achieve mh = 125 GeV, one

needs f ' 6 TeV, for which the associated FT is at least of order 10.

3.5 Conclusions

In this chapter a new kind of solution to the Hierarchy Problem was discussed, one that

relies on ideas present on the SM itself, in particular in QCD. In contrast to SUSY theories,
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which relies on cancellations within the supermultiplets, the CHM exhibit a completely

different way of approaching the HP, for it introduces the Higgs as a pNGB of a new

strong dynamics. This class of models are interesting for many reasons. From one point of

view, their model-building possibilities are diversified, and from another standpoint they

have connections with much more exquisite, 5-dimensional theories, which offer possible

UV-completions for CHM. Besides, the phenomenology is very rich, in particular after

the introduction of resonances, and many of its predictions can be detected at colliders.

Just like SUSY, CHM reduce the unnaturalness problem by a lot, but remains tuned

nonetheless.
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4 Neutral Naturalness

Neutral Naturalness is another class of models that solves the HP, which, in contrast to

SUSY and CHM, are much less constrained by EW precision data and collider searches.

The minimal model of Neutral Naturalness, the Twin Higgs model (TH), introduces an

invisible copy of the SM which is related to the original one via a Z2 symmetry, and realises

the Higgs as a pNGB of a broken global symmetry. These two ingredients combined

eliminate the UV-sensitivity of the Higgs mass and explain why it is so small.

This chapter is structured as follows. In the first section the motivations are discussed

and in the second section the explicit implementation of the model is shown. In the third

section some comments on the cosmological problems associated with such models are

made. In the final section an explicit break of the Z2 symmetry is introduced and the

corresponding FT of the TH model is computed.

4.1 Motivations & Twin Worlds

Both solutions presented so far, supersymmetry (SUSY) and composite Higgs models

(CHM), predict new particles charged under the SM gauge group. In particular, SUSY

had coulored squarks, while CHM predicted a tower of bound states from the new strong

sector, which are detectable at the LHC. We saw in both cases that this implies in stringent

experimental constrains, which in turn raise the fine tuning (FT) to dangerous levels. It

would be therefore interesting if one could build a model in which the new particles are

completely neutral under the SM gauge group, in particular under SU(3)c, given the

very strong bounds on coloured particles. In this manner, one would be able to loosen the

bounds from collider physics, for instance from the EW precision measurements (EWPM).

In addition to a new, neutral sector, we still need a mechanism to stabilise (and

possibly predict) the Higgs mass parameter in order to solve the HP. We have learned from

CHM that the Higgs mass is protected from dangerous radiative corrections if understood

as a pNGB, which in that case was interpreted as a bound state from a new strong

sector. In the Neutral Naturalness scenario the Higgs is still considered as a pNGB,

but without an underlying strong dynamics, because this was precisely what made the

CHM so sensitive to experimental constrains. For this purpose, we consider the simplest
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potential that triggers spontaneous symmetry breaking (SSB), which is given by [15]

V (H ) = −M2|H |2 + λ|H |4, (4.1)

where H is a complex scalar field that contains information on the Higgs doublet. By

taking M2 > 0, this potential will lead to the SSB of the yet unspecified global symmetry

group G, which will break down to a subgroup H and as a result will give us the Higgs

doublet as a NGB. Moreover, the interactions of the NGB Higgs with the other NGB

and the unbroken modes must be the only ones that connect our SM to the new neutral

sector, else we would be once again constrained by precision and collider data.

To summarise, Neutral Naturalness theories have two main ingredients: the Higgs as

pNGB and new particles neutral under the SM, both of them interacting only via the

potential in Eq. (4.1). The tools to study the physics of a NGB Higgs were already

developed in Chapter 3, so it remains only to model the neutral sector in a way that the

Hierarchy Problem (HP) is solved. It turns out that such modelling is not straightforward

[15]. To see this, consider the quadratic corrections to the Higgs mass given in Eq. (1.5),

δm2 = 3Λ2

8π2

(
λ+ 1

8(g′)2 + 3
8g

2 − y2
)
≡ g2

SMΛ2

64π2 . (4.2)

This particular correction is actually the coefficient of the quadratic term of the Coleman-

Weinberg (CW) potential

V SM
CW(H) ⊃ g2

SMΛ2

64π2 |H|
2, (4.3)

computed with the SM particle content. Turning to the CW potential generated by the

potential in Eq. (4.1), it will depend only on |H |2, if the symmetry group G is exact.

In this way the NGB embedded in H will not acquire a potential, even after quantum

corrections are included. This suggests that in order to protect the Higgs mass from

UV-sensitiveness, the CW potential of the theory must be of the form

VCW(H ) ⊃ g2Λ2

64π2 |H |
2, (4.4)

for some dimensionless coupling g. But, if the theory is to generate correctly the SM

interactions, the corrections in Eq. (4.3) are inevitable. Therefore, one must add a

contribution from the neutral sector to Eq. (4.3) such that it results in Eq. (4.4). On
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general grounds, the field H contains other independent, scalar degrees of freedom (dof),

which interact with the Higgs and the neutral sector. The neutral dof of H , denoted

here by H ′, will receive quantum corrections from the interactions in the potential (4.1)

and also from the interactions with other neutral particles. These can be written as

V neutral
CW (H ′) ⊃ g2

NΛ2

64π2 |H
′|2, (4.5)

where g2
N is some dimensionless coupling. Since it is assumed that H and H ′ are inde-

pendent, or more precisely, that they come from independent sectors of our theory which

interact only via Eq. (4.1), the field H can be brought into the following form by an

appropriate choice of basis

H =

H
H ′

 . (4.6)

Demanding that
g2Λ2

64π2 |H |
2 = g2

SMΛ2

64π2 |H|
2 + g2

NΛ2

64π2 |H
′|2, (4.7)

one obtains that the dimensionless coefficients must be the same,

g2 = g2
SM = g2

N . (4.8)

The equation above implies that the couplings of the neutral sector must be tightly related

to the ones of the SM. One cannot, however, draw any conclusions for the individual

couplings, as it is unknown how interactions in the neutral sector take place.

Since there is no experimental evidence on neither the gauge structure, nor the particle

content of the neutral sector, one may choose them arbitrarily, as long this choice respect

both Eqs. (4.4) and (4.8). Thus, the most straightforward choice is to suppose that the

neutral sector is identical to the SM, in the sense that every particle from the SM has

now a twin partner, that have the same statistics and the same quantum numbers. These

quantum numbers, however, are not the ones from the usual SM gauge group, but from

the twin gauge group SU(3)′
c × SU(2)′

L × U(1)′
Y . To choose the structure of the SM as

the one of the neutral sector does not seem to be the simplest one, since the SM is a

very complex model. Nevertheless, there are two important advantages with such choice.

First, the interactions of the SM are very well understood, both from the theoretical, as
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well from the phenomenological point of view. Second, the introduction of an identical

copy of the SM together with Eq. (4.8) leaves the symmetry that interchanges the usual

SM with the twin SM, and vice-versa, manifest. In particular, this discrete symmetry is

a Z2 symmetry, whose action is given by [16, 15]

Z2 : SM←→ twin SM, (4.9)

where fields, gauge groups and couplings are interchanged. Eq. (4.9) is crucial to the

construction of Neutral Naturalness theories, because it is this discrete symmetry that

enforces Eq. (4.4) and therefore protects the Higgs mass.

Note that in this scenario the neutral scalar H ′ turns out to be a complex doublet

of the twin EW group with 1/2 twin hypercharge. This implies that the field H , that

triggers SSB of the global symmetry group in potential (4.1), is a complex bi-doublet

of SU(2)L × SU(2)′
L with 4 complex dof. The potential in Eq. (4.1) is thus invariant

under a global SU(4) group, which breaks down to a SU(3) group after SSB. We see,

however, that the potential (4.1) is invariant under a larger SO(8) group, since H has 8

real dof. In this case the SSB is given by SO(8) → SO(7), which has the same number

of NGB as SU(4) → SU(3). As we will see in the next sections, the two descriptions of

the SSB pattern are not equivalent due to their distinct group structures, but their cosets

are isomorphic, therefore the NGB Higgs may be described by either SO(8)/SO(7) or

SU(4)/SU(3). In addition, we observe that the field H in Eq. (4.6), which was used to

motivate the introduction of a neutral sector, is not the Higgs field, or more precisely, it

is not the field that acquire the EW vacuum expectation value (vev). To not generate

confusion, the doublets H and H ′ will now be denoted respectively as H(1) and H(2), while

the Higgs, the one that breaks EW symmetry, will still be denoted as H.

The idea of understanding this neutral sector as a copy of the SM is not restricted to

a single twin SM. Instead, one may create N − 1 neutral copies of it. In this case it is

straightforward to see that one can write H as

H =



H(1)

H(2)

...

H(N)


, (4.10)
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where H(1) is the complex doublet of the EW group of the SM, while all other H(i)

are associated with independent, neutral copies of the SM. In analogy to the case of a

single neutral sector, one needs all individual couplings to be the same in every sector.

In other words, only by implementing a ZN discrete symmetry that interchanges these

sectors can one guarantee that the quadratic term of the CW potential depends only

on |H |2 and, thus, protects the Higgs mass parameter from quadratic divergences. The

complex scalar field H now has 4N real dof, therefore the SSB pattern is given by

SO(4N) −→ SO(4N − 1), which in general contains many NGB besides the Higgs.

To emphasise, Neutral Naturalness models consist in introducing neutral sectors that

have the same particle content and gauge structure of the SM. What connects our SM

and these neutral copies of the SM is the interaction potential given in Eq. (4.1), which

contains interactions between the EW doublets of each sector∗. This potential is invari-

ant under a larger global symmetry, whose SSB gives us the physical Higgs as a NGB.

The mass of the Higgs boson is protected from quadratic divergences by implementing a

ZN discrete symmetry that interchanges the sectors; this symmetry guarantees that the

quadratic term of the CW potential depends only on |H |2.

The focus in this thesis is the construction of the minimal realisation of this idea,

namely the case where N = 2.

4.2 Twin Higgs Model

In this section the minimal model of Neutral Naturalness, the Twin Higgs (TH) model

[15], is worked out, in which one invisible copy of the SM is taken into consideration. The

focus is on the implementation of this model, in particular on how to couple it to gauge

bosons and fermions. Also, at the end of this section the physical mass of the Higgs from

radiative corrections is computed.

∗The potential in Eq. (4.1) does not contain the only interactions between the sectors, because the
ZN symmetry allows the following renormalizable, gauge invariant operators

L mix = εij
2 B(i)

µνB
(j)
µν ,

which characterises a kinetic-mixing between the hypercharge gauge bosons. This kind of coupling will
be relevant in section 4.3 when the cosmological impacts of TH are discussed.
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4.2.1 Implementation

The interacting potential between the SM and the neutral sector is given by Eq. (4.1)

V (H ) = −M2|H |2 + λ|H |4, (4.11)

with

H =

H(1)

H(2)

 , (4.12)

where the supscript (1) refers to the usual SM, while (2) refers to the twin SM. We stress

again that the global symmetry SO(8) will be spontaneously broken to SO(7). Just as in

the case of the composite Higgs, this global symmetry contains all group structure of the

Higgs, since it lives in its coset group. This implies that the EW groups, both the SM

one as well the twin one, are contained in SO(8); this latter, therefore, must be partially

gauged. From a group theoretical point of view this is consistent, since

SO(8) ⊃ SO(4)(1) × SO(4)(2), (4.13)

and each SO(4) is isomorphic to a SU(2)L × SU(2)R group. The product of both EW

groups, namely

SU(2)(1)
L × U(1)(1)

Y × SU(2)(2)
L × U(1)(2)

Y , (4.14)

is indeed a subgroup of SO(8), where one identifies the third generator of SU(2)R as the

hypercharge operator. Note that if one instead considered SU(4) as the global group,

one could still decompose it in SU(2)(1)
L × SU(2)(2)

L , but wouldn’t be able to define the

hypercharges directly; only by adding two independent U(1) groups would the hypercharge

groups be consistently introduced∗. From now on we will always assume that the global

symmetry group is SO(8).

The kinetic term for H is

L kin = |DµH |2, (4.15)

∗Choosing another subgroup of SU(4), in particular SU(2)×SU(2)×U(1), wouldn’t solve the problem,
because the decomposition of the fundamental representation of SU(4) under this subgroup implies that
the resulting two SU(2) doublets, i.e. H(1) and H(2), have opposite hypercharges. Hence, the Z2
symmetry would be explicitly broken. Besides, this U(1) acts on both the SM and the twin SM, which
is yet another reason to avoid this choice [63].
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with the covariant derivative given by

DµH =

DµH
(1)

DµH
(2)

 , (4.16)

where

DµH
(i) = ∂µH

(i) − igW a(i)
µ

σa

2 H
(i) − ig

′

2 B
(i)
µ H

(i) (4.17)

and W a(i)
µ , B(i)

µ are the gauge bosons of SU(2)(i)
L ×U(1)(i)

Y . Note that the gauge couplings

are the same, as a consequence of the discrete Z2 symmetry. The partial gauging of a

global group naturally leads to an explicit break of the group via radiative corrections, and

allows the Higgs to acquire a non-vanishing mass. Such quantum corrections, however, do

not reintroduce quadratic divergences in the Higgs mass due to the Z2 symmetry. This will

be shown explicitly in section 4.2.3, but let us anticipate that the CW potential generated

at 1-loop, already given in Eq. (3.130), in the case of consideration is approximately

VCW(H(i)) ' g2
SMΛ2

64π2

∣∣∣H(i)
∣∣∣2 + κ(Λ)

∣∣∣H(i)
∣∣∣4, (4.18)

where κ is a function that depends logarithmically on the cut-off Λ and g2
SM is a SM-like

coupling. It is trivial to see that the quadratic term of the sum of both potentials is

accidentally SO(8) symmetric,

VCW(H(1)) + VCW(H(2)) ' g2
SMΛ2

64π2 |H |
2 + κ(Λ)

(∣∣∣H(1)
∣∣∣4 +

∣∣∣H(2)
∣∣∣4), (4.19)

and as a consequence introduce only logarithmically divergent terms to the Higgs poten-

tial. The quartic term, which in the case of the above potential, is not SO(8) symmetric,

will allow the Higgs to acquire a mass. Thus, we observe that the Z2 parity is of central

importance to protect the Higgs mass, even when SO(8) is explicitly broken.

In order to compute the Higgs mass from the radiative corrections of the gauge bo-

son and fermion loops, one needs to know the details of the SSB, for instance how to

parametrise the fields H(1) and H(2) in terms of H. First of all, we define the breaking

scale of the SO(8) group, which is given by the minimisation of the potential (4.1):

dV
d|H |2

∣∣∣∣∣∣
H =〈H 〉

= 0⇒ |〈H 〉|2 = M2

2λ ≡
f 2

2 . (4.20)
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This vacuum state is conveniently aligned with the invisible sector, such that twin QED

is unbroken,

〈H 〉 = 1√
2



0

0

0

f


⇐⇒

〈
H(1)

〉
= 0,

〈
H(2)

〉
= 1√

2

0

f

 . (4.21)

The vacuum 〈H 〉 breaks SO(8) down to SO(7), meaning that there are a total of 7 NGB,

of which only 4 are needed to build the Higgs doublet. What is the physical meaning of

the extra NGB? Since the twin EW group is a subgroup of the larger SO(8) and is gauged,

they ought to be eaten-up by the twin gauge bosons. Note that one can do this, because,

given the covariant derivatives in Eq. (4.17), it is always possible to go to the unitary

gauge and let the twin gauge bosons absorb the NGBs. Indeed, one just needs to know

which generators are associated with the dof of the Higgs field. To this end, the broken

generators in the SU(4) representation of the SSB are listed, as it is easier to understand

what is happening in the case in which H(1) and H(2) are complex doublets rather than

real 4-plets. The generators in this case are hermitian and traceless, so a possible basis

for the broken generators (in the fundamental representation) is given by

{
T̂ â
}

=





0 1

0 0

0 0

1 0


,



0 −i

0 0

0 0

i 0


,



0 0

0 1

0 0

0 1


,



0 0

0 −i

0 0

0 i


,



0 0

0 0

0 1

1 0


,



0 0

0 0

0 −i

i 0


,



0 0

0 0

1 0

0 −1


, (4.22)

where a normalization factor of 1/
√

2 is understood. One clearly sees that the last three

generators, in the basis given in Eq. (4.22), act only on the twin sector, and therefore one

can use the SU(2)(2)
L × U(1)(2)

Y gauge redundancy to eliminate them; this choice defines

the unitary gauge in the twin sector. In this gauge, the Goldstone matrix contains only
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the Higgs boson and is written as

U [H] = exp
[

2iH â

f
T̂ â
]

= exp


√

2i
f



H1

H2

0

H∗
1 H∗

2 0 0




, (4.23)

with H1 and H2 the complex components of the Higgs doublet H, such that

H =

H1

H2

 . (4.24)

We are interested in writing the non-linear sigma model for the Goldstone Higgs H, so

we must substitute the field H by [16, 73]

H (x) = U [H(x)]
(
〈H 〉+ σ(x)√

2

)
= f√

2

(
1 + σ(x)

f

)
iH
|H| sin

√
2|H|
f

0

cos
√

2|H|
f

 , (4.25)

with |H| =
√
H†H and σ(x) the radial resonance. With the non-linear parametrization

above one obtains

H(1) = f√
2

(
1 + σ

f

)
iH

|H|
sin |H|

√
2

f
⇒
∣∣∣H(1)

∣∣∣2 = f 2

2

(
1 + σ

f

)2

sin2
√

2|H|
f

, (4.26a)

H(2) = f√
2

(
1 + σ

f

) 0

cos
√

2|H|
f

⇒ ∣∣∣H(2)
∣∣∣2 = f 2

2

(
1 + σ

f

)2

cos2
√

2|H|
f

. (4.26b)

If there were no radiative corrections, or in other words, if the SO(8) symmetry were

to remain exact, one would obtain a constant potential for H, because

|H |2 =
∣∣∣H(1)

∣∣∣2 +
∣∣∣H(2)

∣∣∣2 = f 2

2

(
1 + σ

f

)2

. (4.27)

In this way the vev of H is zero, hence

∣∣∣〈H(1)
〉∣∣∣ = 0,

∣∣∣〈H(2)
〉∣∣∣ = f√

2
, (4.28)
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which is equivalent to Eq. (4.21). As estimated in Eq. (4.19), quantum corrections,

however, do break SO(8) explicitly and allows a non-constant potential V (σ,H) to be

generated. For instance, considering the corrections at 1-loop in the CW potential (4.19)

one obtains the following potential

V (σ,H) ' · · ·+ κ(Λ)
(∣∣∣H(1)

∣∣∣4 +
∣∣∣H(2)

∣∣∣4) (4.29)

' · · ·+ κ(Λ)f 4

4

(
1 + σ

f

)4(
sin4
√

2|H|
f

+ cos4
√

2|H|
f

)

' · · ·+ κ(Λ)f 4

4

(
1− 1

2 sin2 2
√

2|H|
f

)
,

where the dots denote SO(8) symmetric terms and interacting terms between H and σ.

The minimisation of the above potential is straightforward

dV (σ,H)
d|H|

∣∣∣∣∣∣
H=〈H〉

= 0⇒ sin 4
√

2|〈H〉|
f

= 0. (4.30)

To determine the value of 〈H〉 that satisfy Eq. (4.30), one needs to know the sign of the

function κ(Λ). From the analysis of the second derivative of V (σ,H) with respect to |H|

we learn that

if κ(Λ) > 0⇒ 〈H〉 6= 0, (4.31a)

if κ(Λ) ≤ 0⇒ 〈H〉 = 0. (4.31b)

In section 4.2.3 the function κ(Λ) will be computed explicitly, but we anticipate that the

condition (4.31a) is satisfied only by including the contribution from the fermion sector.

Hence, assuming that 〈H〉 6= 0, one obtains from Eq. (4.30)

√
2|〈H〉|
f

= π

4 . (4.32)

Substituting Eq. (4.32) into Eq. (4.26) and taking the Higgs vev to be aligned with the

unbroken direction of the EW group, we obtain the vevs of H(1) and H(2)

〈
H(1)

〉
=
〈
H(2)

〉
= f

2

0

1

 , (4.33)

which is manifestly Z2 invariant.
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A remark on the choice of the vev (4.21) is in order. First, note that the potential

in Eq. (4.29) is proportional to the breaking scale f , hence f is the mass scale of the

scalar sector of the model, as both the SM as well the neutral sectors are described by

V (σ,H). It will be shown below that, due to the Z2 symmetry, the scale f is equal to

the EW vev v, which means that the overall mass scale of the theory is the EW scale.

As we shall see shortly, this implies that the TH model is incompatible with the observed

phenomenology. In order to make the model compatible with experimental data, we will

see in section 4.4 how to modify the potential V (H ) such that the twin sector and the SM

acquire mass scales proportional to f and v, respectively, and how to create an hierarchy

f > v that leaves the neutral sector heavier than the SM. For this to work, Eq. (4.21)

must hold, therefore it is of utmost importance to keep the vev of H aligned with the

twin sector. It is clear, however, that this choice apparently breaks Z2 spontaneously. In

principle this is not so problematic, since the the theory is still Z2 symmetric, although at

low energies the mechanism that protects the Higgs mass would be certainly concealed.

What is interesting is that, due to SO(8) being explicitly broken by quantum effects, the

Z2 symmetry is restored and the vev becomes Z2 invariant; in other words, there is an

intriguing interplay between the continuous and discrete symmetries.

Before analysing the modification in the EW sector, it is important to discuss first the

scalar sector. The Higgs field H acquires a vev and can be thus written as

H(x) =

 0
V√

2 + 1√
2ρ(x)

 (4.34)

in unitary gauge, with |〈H〉| = V√
2 . Here, ρ(x) is the radial resonance of the Higgs doublet.

From Eq. (4.26) it is clear that the radial resonances σ and ρ will interact and mix [74].

Their interactions are given by the potential in Eq. (4.1), that together with the 1-loop

corrections in Eq. (4.18) reads

V (σ, ρ) = −
(
M2 + δm2

)f 2

2

(
1 + σ

f

)2

+ λf 4

4

(
1 + σ

f

)4

+κ(Λ)f 4

4

(
1 + σ

f

)4[
1− 1

2 sin2
(

2V
f

+ 2ρ
f

)]
, (4.35)

where δm2 is quadratic piece of the 1-loop contribution, given in Eq. (4.2). The last

term in the potential in Eq. (4.35) contains the terms that mix both resonances and is

126



proportional to function κ(Λ). The quadratic term in the potential above gives us the

mass matrix of the scalar sector. This latter is given by

Vmass(σ, ρ) = 1
2(σ ρ)M

σ
ρ

 , (4.36)

with

M =

2λf 2 − δm2 + f 2κ(Λ)
(
1− 1

2 sin2 2V
f

)
−3κ(Λ)f2

2 sin 4V
f

−3κ(Λ)f2

2 sin 4V
f

−κ(Λ)f 2 cos 4V
f

 . (4.37)

When the Z2 symmetry is exact, Eq. (4.32) imposes that V
f

= π
4 , hence the off-diagonal

terms in Eq. (4.37) vanish. In this case there is no mixing and the lightest state can

be identified with the neutral, radial excitation of the Higgs field h. Since κ(Λ) is loop-

suppressed, we expect that λ > κ(Λ), therefore the ρ-resonance is the neutral Higgs h. If

the discrete Z2 group is not exact, there will be a mixing and h will be a linear combination

of the radial resonances; will be discussed in section 4.4. In section 4.2.3 the mass of h

will be computed in detail, but from Eq. (4.37) there is already an estimate to it,

m2
h ∼ κ(Λ)f 2. (4.38)

Let us now discuss the modifications in the EW sector. The gauge bosons of both

sectors become massive when the EW doubles acquire vevs. The kinetic term of the

Lagrangian in this case is given by

|Dµ 〈H 〉|2 =
∣∣∣Dµ

〈
H(1)

〉∣∣∣2 +
∣∣∣Dµ

〈
H(2)

〉∣∣∣2
= M2

W (1)W
(1)+
µ W (1)−

µ +M2
W (2)W

(2)+
µ W (2)−

µ

+
M2

Z(1)

2 Z(1)
µ Z(1)

µ +
M2

Z(2)

2 Z(2)
µ Z(2)

µ ,

where MW (i) and MZ(i) are the masses of the W (i) and Z(i) bosons, respectively. It is

trivial to see that the masses of the W ’s and the Z’s are given by

M2
W (1) = M2

W (2) = g2f 2

4 , (4.39a)

M2
Z(1) = M2

Z(2) = g2f 2

4 cos2 θw
, (4.39b)
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where g is the SU(2)L gauge coupling and θw is the weak angle. Note that the masses

of the respective gauge bosons of both sectors are equal, which is a consequence of the

manifest Z2 symmetry of the theory. In order to obtain the correct experimental value

for the masses, one needs to impose

f = v, (4.40)

with v being the EW vev.

With Eq. (4.40) we see that the expression for the masses are unchanged with respect

to the SM. On the other hand the couplings between H and the gauge bosons are modified,

as it will now become clear. After SSB, spontaneous EW symmetry breaking (EWSB) is

also triggered, hence the Higgs also acquire a vev. In the unitary gauge together with Eq.

(4.32) one has

H(x) =

 0
πf

4
√

2 + 1√
2h(x)

 , (4.41)

where h is the neutral, CP -even component of the Higgs field. Substituting the above

equation into Eq. (4.25), we obtain for the twin sector

∣∣∣DµH
(2)
∣∣∣2 = f 2

2

∣∣∣∣∣∣∣Dµ

 0(
1 + σ

f

)
cos

(
π
4 + 1

f
h
)

∣∣∣∣∣∣∣
2

= 1
2

(
1 + σ

f

)2

(∂µ h)2 sin2
(
π

4 + 1
f
h

)
+ 1

2(∂µ σ)2 cos2
(
π

4 + 1
f
h

)
+

+g
2f 2

2

[
W (2)+
µ W (2)−

µ + 1
2 cos θw

Z(2)
µ Z(2)

µ

]
cos2

(
π

4 + 1
f
h

)
. (4.42)

In the same manner for the SM sector

∣∣∣DµH
(1)
∣∣∣2 = 1

2

(
1 + σ

f

)2

(∂µ h)2 cos2
(
π

4 + 1
f
h

)
+ 1

2(∂µ σ)2 sin2
(
π

4 + 1
f
h

)
+

+g
2f 2

4

[
W (1)+
µ W (1)−

µ + 1
2 cos θw

Z(1)
µ Z(1)

µ

]
sin2

(
π

4 + 1
f
h

)
. (4.43)

We see that the sum of Eqs. (4.42) and (4.43) gives us a correct normalised kinetic term

for h and its coupling to gauge bosons of both sector. In particular, note that, since

cos2
(
π

4 + 1
f
h

)
= 1− sin2

(
π

4 + 1
f
h

)
,
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the couplings of h with the SM and the twin sector have opposite signs. This implies

that the quadratic piece of the 1-loop radiative corrections to the mass of h are exactly

cancelled.

???

The implementation of the TH model above is obviously not consistent with reality.

The source of inconsistency has its roots in Eqs. (4.32) and (4.40), since the new physics,

which should become manifest at the breaking scale f , is exactly at the EW scale. Such

situation is discarded by many reasons. First, the Taylor expansion of the trigonometric

functions in Eqs. (4.42) and (4.43), which determine the coupling of h with the gauge

bosons, does not reproduce the interactions of the SM. Take Eq. (4.43) for example:

sin2
(
π

4 + 1
f
h

)
=

[
1√
2

(
sin h

f
+ cos h

f

)]2

= 1
2

[
1 + sin 2h

f

]

= 1
2

1 + 2h
f
− 4

3

(
h

f

)3

+ · · ·
.

It is clear from the above expansion that neither Eq. (4.42) nor Eq. (4.43) contain the

quartic coupling with gauge bosons, but predict only odd-power interactions instead.

As stressed previously in section 3.4, the quartic coupling is still not well understood

experimentally, so it is difficult to reject the above formulation solely based on its absence.

A second, more concrete point is the following. Consider the total decay width of the

Higgs, that in the TH model is given by [27]

Γtotal = Γ(h→ SM) + Γ(h→ Neutral), (4.44)

where "Neutral" refers to the particles within the neutral sector. From Eqs. (4.40), (4.42)

and (4.43) one can relate the decay widths from both sectors∗

Γ(h→ SM) = Γ(h→ Neutral). (4.45)

∗The fermion sector has yet to be discussed, but it will be seen in section 4.2.2, that, due to Z2
invariance, the relation in (4.45) is valid.
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The neutral sector is invisible to us, as none of its particles are charged under gauge group

of the SM, as a consequence the invisible branching ratio is given by

Br(h→ inv) & 50%. (4.46)

According to the Particle Data Group (PDG) [3], the branching ratio for invisible decays

of the Higgs is

Br(h→ inv) < 24%, (4.47)

at 95% CL. Therefore the prediction in Eq. (4.46) is clearly excluded by data.

Both problems have their origin in the exact Z2 symmetry of the TH model. For

instance, Eq. (4.45) is a direct consequence of the manifest Z2 symmetry of the model,

while Eq. (4.40), that states that the SSB scale of the global SO(8) is located at the EW

scale, follows directly from the invariance under Z2 of the vev of H . In addition, the vev of

the Higgs doublet was calculated in Eq. (4.32) from the minimisation of the Z2-symmetric

potential (4.29), which in turn implied that there were no even-power couplings to the

gauge bosons. One may see that, if the Z2 group were to be broken, both problems could

be avoided. By introducing a source of Z2-breaking one could create a hierarchy between

v and f , such that the twin sector becomes heavier in comparison to the SM, and also

modify the minimisation of the potential (4.1) in order to change the vev f of H . In

the next few sections we are going to discuss aspects of the Z2 symmetric theory like

the introduction of fermions and the computation of the Higgs mass, before discussing in

section 4.4 how to break Z2 consistently.

4.2.2 Fermion sector

Our next objective is to introduce the fermions in the theory. It was seen in the previous

discussion that there is an interesting interplay between the discrete Z2 and the continuous

SO(8) symmetries. For instance, the latter is an exact symmetry of the scalar sector and

it is broken in the gauge bosons sector by the partial gauging of the group, but, due to the

Z2 symmetry, it generates a SO(8)-symmetric quadratic term under radiative corrections.

Since the symmetry is broken only by the small gauge couplings, SO(8) is not just an

accidental symmetry, but a physical one instead, on which we can rely to study the

physical properties of the theory.
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Such considerations take into account only the scalar and gauge boson sectors. The

fermion sector requires a more careful discussion, because we do not know what role does

the SO(8) symmetry play in it. More precisely, as long as the Higgs mass parameter is

protected from quadratic divergences, one is free to chose whether SO(8) is a symmetry

of the fermion sector or not.

Following this line of reasoning, there are two different approaches to the fermion

sector. The first one is to treat the global symmetry group SO(8) as an accidental

symmetry, which means that one does not need to build a SO(8) invariant Lagrangian for

the fermions, but we must use the Z2 symmetry to make the quadratic term of the CW

potential (accidentally) SO(8)-symmetric. The second possibility is to treat SO(8) as a

physical symmetry, in other words, to build our theory according to its selection rules and

embed all our fields into appropriate representations [15]. The latter approach is similar

to the one studied in section 3.3.2 for a CHM, where an EFT was built according to the

selections rules of SO(5) and SO(4), but requires much more effort as we will see.

First case: SO(8) as an accidental symmetry

Let us first not impose the SO(8) symmetry and just built an interacting Lagrangian

that reproduces the SM terms and that protects the Higgs mass. Considering just the

quarks, the Yukawa operators in the SM are given by

L (1) = −ytq̄(1)
L H̃(1)t

(1)
R − ybq̄

(1)
L H(1)b

(1)
R + h.c., (4.48)

where as usual H̃(1) = iσ2H
(1)∗. Imposing the Z2 symmetry one must add the following

Lagrangian to account for the interactions in the twin sector:

L (2) = −ytq̄(2)
L H̃(2)t

(2)
R − ybq̄

(2)
L H(2)b

(2)
R + h.c. (4.49)

The Yukawa Lagrangian is thus given by the sum of the two terms,

L Yuk = L (1) + L (2) . (4.50)

Note that the Lagrangian in the above equation is not SO(8) invariant, as the quarks from

both sectors do not mix through any symmetry transformation. The corresponding CW
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potential will be computed in detail in section 4.2.3, but we anticipate that its quadratic

term is accidentally SO(8) symmetric and contributes only logarithmcally to the Higgs

mass parameter.

It is also interesting to see how this cancellation works in the broken phase of the

theory. Take the lowest order expansion of the EW doublets from Eq. (4.25),

H(1) ' iH, (4.51a)

H(2) '

 0
f√
2 −

1√
2f |H|

2

 . (4.51b)

The interactions with the top and twin top quarks, for example, becomes

L top = iytq̄
(1)
L Ht

(1)
R + ytt̄

(2)
L t

(2)
R

1√
2f
|H|2 − ytt̄(2)

L t
(2)
R

f√
2

+ h.c., (4.52)

hence the two relevant 1-loop diagrams that contribute to the Higgs mass are

t̄(1)

t(1)

+
t
(2)
L t̄

(2)
R
. (4.53)

The diagram on the left is just the usual fermion loop of the SM, while the diagram on

the right is the contribution from the neutral sector. The insertion ⊗ on the twin quark

loop corresponds to the third term in the Lagrangian (4.52), which comes from the zeroth

order expansion of the cosine. From the above diagrams we note that there are other

types of diagrams that can cancel quadratic divergences besides the squark loop in SUSY

and, in contrast, do not require the addition of particles charged under the SM [16, 73].

Second case: SO(8) as a physical symmetry

The Lagrangian in Eq. (4.50) already describes the fermion sector consistently, but

treats SO(8) as an accidental symmetry. Stated in another way, the SO(8) group has

no physical content; it is just an accidental symmetry of the scalar sector. However, the

construction of the fermion sector is always redundant from our bottom-up approach,
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since one needs to choose the representation of the fermions under the relevant groups.

Hence, if there are no other reasons against, one might consider the SO(8) symmetry as

a physical symmetry and use SO(8) invariance to build the interacting Lagrangian.

Following this line of reasoning, the first step is to promote the fermion fields,

q
(1)
L , q

(2)
L → QL, t

(1)
R , t

(2)
R → TR, b

(1)
R , b

(2)
R → BR (4.54)

where the fields QL, TR and BR are embedded into some representation of SO(8). One

can build an SO(8) invariant Yukawa term with the promoted quark fields (4.54) and

H . Unlike what happens in CHM, where one could chose any representation that could

fit the quarks representations, there is not much liberty in the TH model regarding the

choice of the representation. This is a consequence of the fact that the promoted quark

fields couple linearly to H , which transforms under the fundamental representation of

SO(8). Hence, QL must transform under the fundamental representation of SO(8), while

TR and BR must be singlets of it. In this way the Yukawa Lagrangian is SO(8) invariant.

In principle we could also embed QL, TR and BR into larger representations of SO(8). For

example, we could have QL transforming in the fundamental and TR/BR in the symmetric

rank-2 tensorial representation∗. In the following it is chosen that QL transforms under

the fundamental representation while TR/BR are singlets, as the discussion with tensorial

representations is analogous.

To check if such representations can fit the respective quarks from both sectors, one

must decompose them into representations of the EW groups. For instance, the funda-

mental of SO(8), denoted here by �(8), is decomposed as [63, 75]

SO(8) ⊃ SO(4)(1) × SO(4)(2) ⊃ SU(2)(1)
L × U(1)(1)

Y × SU(2)(2)
L × U(1)(2)

Y

�(8) →
[
�(4) ⊗ 1(4)

]
⊕
[
1(4) ⊗�(4)

]
→

(
2 1

2
⊕ 2− 1

2

)(1)
⊕
(
2 1

2
⊕ 2− 1

2

)(2)

where �(4) is the fundamental of SO(4), 1(4) is a singlet of SO(4), 2 is a doublet of

SU(2)L with its respective hypercharge. One clearly sees from the above decomposition

that the fundamental of SO(8) alone cannot describe the quark fields, due to the wrong

hypercharge of the doublets. Just as in CHM, one needs to introduce another local U(1)X

∗The right handed fields cannot transform under the fundamental of SO(8), because there are no
singlets of SU(2)(1)

L × SU(2)(2)
L in it.
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which will contribute to the hypercharge as in Eq. (3.103). Therefore, the adequate

representation of the promoted quarks under SO(8)× U(1)X are

QL ∼ �(8)
2
3

or �(8)
− 1

3
, (4.55a)

TR ∼ 1(8)
2
3
, (4.55b)

BR ∼ 1(8)
− 1

3
, (4.55c)

with 1(8) a singlet of SO(8). Choosing the X charge of H as zero, one can write the

Yukawa Lagrangian as

L Yuk = −yT Q̄LH TR − yBQ̄LH BR + h.c., (4.56)

which is manifestly SO(8)× U(1)X invariant.

There is still a subtlety regarding the colour groups [15]. In the Lagrangian (4.56),

a general transformation of SO(8) mixes the quarks from both sectors and consequently

their colour states. As a result the group SU(3)(1)
c × SU(3)(2)

c is explicitly broken, since

the colours states are not diagonal anymore. This problem is solved by introducing an

additional group Gc that contains both colour groups as a subgroup. The choice of this

group is not very important to us∗, so we generically state that all promoted quarks in

Eq. (4.54) bear some representation R of Gc, which is decomposed as

R→ (3⊗ 1)⊕ (1⊗ 3) (4.57)

under SU(3)× SU(3), with 3 the fundamental of SU(3).

In the end, following this approach one concludes that the symmetry group that

consistently implements the SO(8) symmetry in the Yukawa sector is Gc×SO(8)×U(1)X .

The most interesting point of this analysis is the fact that the symmetry group does not

distinguish what belongs to the SM or the twin SM; in this sense both sectors are unified.

∗A possible option for Gc is SU(9), which has well defined decomposition into SU(3)×SU(3) [63, 75].
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4.2.3 Computation of the Higgs mass

The next step is to compute the Higgs mass at 1-loop level. The CW potential with

cut-off regularization si used (given in Eq. (3.130)) and computed in the unbroken phase

of the global symmetry. The contributions to the CW potential are split in two pieces:

the ones from the SM and the ones from the neutral sector. Both of them are related by

the Z2 symmetry, hence contribute in the same way.

Let us start with the contributions from the gauge bosons. In the unbroken phase

none of the gauge bosons have mass, so their field dependent masses are

M2
W (H(i)) = 1

2g
2
∣∣∣H(i)

∣∣∣2, M2
B(H(i)) = 1

2(g′)2
∣∣∣H(i)

∣∣∣2, (4.58)

for the W a(i) and B(i) bosons, respectively. The sum of the potentials of both sectors is

thus

VCW, vector = Λ2

64π2

(
9g2 + 3(g′)2)|H |2 − (4.59)

−

∣∣∣H(1)
∣∣∣4

256π2

[
9g4

(
ln 2Λ2

g2|H(1)|2
+ 1

2

)
+ 3(g′)4

(
ln 2Λ2

(g′)2|H(1)|2
+ 1

2

)]
−

−

∣∣∣H(2)
∣∣∣4

256π2

[
9g4

(
ln 2Λ2

g2|H(2)|2
+ 1

2

)
+ 3(g′)4

(
ln 2Λ2

(g′)2|H(2)|2
+ 1

2

)]
,

Note that the first term in the equation above protects the Higgs mass from Λ2 due to

the SO(8) symmetry, while the terms that depend logarithmically do not.

The corrections from the interactions in Eq. (4.1) of the EW doublets with them-

selves introduce further terms to the CW potential. Notwithstanding, they are all SO(8)

symmetric, because the field dependent masses are manifestly SO(8) symmetric,

M2
H(i)(H ) = −M2 + 2λ|H |2, (4.60)

hence the CW potential VCW, scalar generated from the interactions of the scalar sector do

not contribute to the Higgs mass.

Let us calculate the corrections from the fermion sector. In section 4.2.2 two distinct

approaches were developed: one that did not enforced the SO(8) symmetry on the Yukawa

Lagrangian and another that did. The latter approach forced us to promote the fermion
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fields and the symmetry group of the model, which added much model dependency to

our theory, for instance in the colour group Gc and in the interactions of the gauge boson

associated with U(1)X . Another remark on this approach is the fact that the Yukawa

Lagrangian in Eq. (4.56) is SO(8) symmetric, therefore does not directly contribute to

the Higgs mass through the CW potential. If the contributions from the gauge boson

sector could alone achieve spontaneous EWSB, this wouldn’t be an issue, but it will be

seen below that the potential in Eq. (4.59) is insufficient to trigger spontaneous EWSB; a

contribution from the fermions sector, which has the correct sign, is needed. This problem

could be avoided by adding SO(8)-breaking operators to the Lagrangian in Eq. (4.56), but

this, again, would be a source of model dependency. Given the aforementioned reasons,

we abandon the approach of the SO(8) symmetric Yukawa Lagrangian and proceed from

now on with Lagrangian (4.50), which just assumes the Z2 symmetry. Considering only

the top quark, whose field dependent mass is

M2
t

(
H(i)

)
= |yt|2

∣∣∣H(i)
∣∣∣2, (4.61)

we obtain the CW potential

VCW, top = −3|yt|2Λ2

8π2 |H |2 + (4.62)

+3|yt|4

16π2

[∣∣∣H(1)
∣∣∣4(ln Λ2

|yt|2|H(1)|2
+ 1

2

)
+
∣∣∣H(2)

∣∣∣4(ln Λ2

|yt|2|H(2)|2
+ 1

2

)]
.

The full CW potential is given by

VCW = VCW, scalar + VCW, top + VCW, vector. (4.63)

The Higgs mass parameter M2
H is computed from the second derivative with respect to

the Higgs field at H = 0. This calculation leads us to

M2
H = − 3f 2

16π2

[
|yt|4

(
ln 2Λ2

|yt|2f 2
− 1

)
− 3g4

16

(
ln 4Λ2

g2f 2 − 1
)
− (g′)4

16

(
ln 4Λ2

(g′)2f 2
− 1

)]
,

(4.64)

which is clearly negative due to the top Yukawa being much larger than the gauge cou-

plings. Hence, spontaneous EWSB is triggered through quantum effects. To compute the

physical Higgs mass, i.e. the mass of the radial excitation h, we use the quartic coupling,
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given by the fourth derivative of the CW potential

λ = d4VCM

dh4 (4.65)

= 3
π2

[
|yt|4

(
ln 2Λ2

|yt|2f 2
− 5

4

)
− 3g4

16

(
ln 4Λ2

g2f 2 −
5
4

)
− (g′)4

16

(
ln 4Λ2

(g′)2f 2
− 5

4

)]
.

A remark regarding the approximate expression for the CW potential used in section

4.2.1 is in order. In Eq. (4.19) the approximation that Λ� f was used, which corresponds

to neglect the fluctuations around the vev and to substitute the fields by their vev in the

logarithms in Eqs. (4.59) and (4.62). With such approximation one obtains the same

results as in Eqs. (4.64) and (4.65) for the Higgs mass parameter and quartic coupling,

respectively, but without the constant coefficients. In short, for Λ� f one has

λ ' κ(Λ) = 3
π2

[
|yt|4 ln 2Λ2

|yt|2f 2
− 3g4

16 ln 4Λ2

g2f 2 −
(g′)4

16 ln 4Λ2

(g′)2f 2

]
, (4.66)

where the function κ(Λ) is the same from Eq. (4.19).

Neglecting the contributions from the gauge bosons and also considering Λ � f , the

physical mass of the Higgs m2
h is

m2
h ' 4|〈H〉|2λ

' 3f 2|yt|4

8 ln Λ2

M2
t

, (4.67)

where we have used Eq. (4.32). To achieve mh = 125 GeV from Eq. (4.67), still using

f = v, one needs Λ ' 2 TeV.

4.3 Cosmological constrains

In section 4.2.1 we stressed that the TH model is not realistic, since it is not consistent

with present data from experimental particle physics. This lead us to the conclusion that

the Z2 discrete symmetry must be somehow broken. In this section it will be seen that

the TH model, as it is, is also incompatible with cosmological data.It will become clear

that, in order to alleviate this tension, there need to be a source of Z2-breaking.

Due to the exact Z2 symmetry, the TH model predicted, in particular, that the twin

particles have the same mass as their SM counterparts. As it was shown, this implied in
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several inconsistencies with EW data. Such predictions impacts not only particle physics,

but also other areas of physics, for instance cosmology. The evolution of the universe is

tightly constrained by particle physics because in the early universe, when the temperature

was high and neutral matter had yet to be created, the subatomic interactions between the

particles dictated how the universe evolved [76, 77]. Conversely, a beyond the SM (BSM)

model can be confronted with cosmological data in order to see if it predicts the correct

evolution of the universe. Many of the relevant parameters obtained from cosmological

observations have a much higher precision than their counterparts in particle physics,

hence can constrain BSM models much better. However, by using cosmological data, one is

assuming the universe to be described by the standard model of cosmology ΛCDM, which

is characterised by 6 parameters [78, 77]. Appendix C is referred to a brief introduction

to the ΛCDM and some of the most basic concepts of cosmology. What we need to keep

in mind is that, although cosmology offers precise data, they are qualitatively different

from the ones of particle physics, in the sense that both assume distinct theoretical and

experimental backgrounds. With this in mind, we proceed to understand how cosmology

constrains the TH model.

One of the most important quantities in cosmology relevant to particle physics is the

effective number of neutrinos, denoted by Neff [77, 79, 80]. This parameter represents the

amount of degrees of freedom (dof) that, together with the photon, contributes to the

energy density associated with radiation. At later times, after the radiation domination

epoch, the latter can be written as

ρrad = ργ + ρrest

=
π2T 4

γ

30

2 +
∑
i

ni

(
Tdec,i

Tγ

)4
, (4.68)

where the sum is over all particles that contribute to radiation density, ni is the number

of dof (times 7
8 for fermions), Tγ is the photon temperature and Tdec,i is the decoupling

temperature of the ith-particle (in other words, the temperature at which the particle and

the photons ceased to be in thermal equilibrium). The expression above is conventionally

rewritten as

ρrad = ργ

1 + 7
8

(
Tν
Tγ

)4

Neff

, (4.69)
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with Tν the decoupling temperature of the neutrinos, for which Tν

Tγ
'
(

4
11

) 1
3 , and∗

Neff = 8
7

(
Tγ
Tν

)4∑
i

ni
2

(
Tdec,i

Tγ

)4

. (4.70)

One the one hand, in the SM, only the three neutrinos contribute significantly to ρrad

and gives us

Neff, SM = 3, (4.71)

where the tiny effects from neutrino oscillations and non-equilibrium dynamics are sup-

pressed [81]. On the other hand, in TH model, not only the SM neutrinos, but also the

twin photon and twin neutrinos contribute to the radiation energy density. In this case

the effective number of neutrinos reads

Neff, TH = Neff, SM + 8
7

(
Tγ(2)

Tν(1)

)4

+ 3
(
Tν(2)

Tν(1)

)4

. (4.72)

The decoupling temperatures is defined as the one for which the scattering rate is of the

same order as the Hubble parameter. Hence, Tdec is a function of the coupling constants

and the masses of the particles involved. Due to the Z2 symmetry, the twin sector is

identical to the SM, so the decoupling temperatures are also the same. Therefore,

Neff, TH −Neff, SM = 8
7

(11
4

) 4
3

+ 3 ' 7. (4.73)

The most recent experiments from the PLANCK collaboration gives the value of Neff [82],

Neff = 2.99(17), (4.74)

in this way Eq. (4.73) is clearly incompatible with Eq. (4.74)†.

Another remark regarding Tdec is in order. In Eq. (4.73) the interactions between the

two sectors was not taken into account, because these interactions, which are mediated by

the Higgs, are highly suppressed. Hence, the decoupling temperature of the twin particles

∗One must observe that Eq. (4.69) is misleading, because it gives the idea that only neutrinos con-
tribute to ρrad, but it is clear from Eq. (4.70) that other particles can contribute to the radiation energy
density.

†The recent tension regarding the Hubble parameter can be reflected to a O(1) uncertainty in Neff.
Even so, it cannot explain Eq. (4.73) [79, 83]
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shown in Eq. (4.72) depends mostly on the interactions of the neutral sector. There is,

however, another operator allowed by Z2 symmetry, namely [32]

L mix = ε

2B
(1)
µνB

(2)
µν , (4.75)

which is a kinetic mixing between the U(1)Y gauge bosons. Considering the Lagrangian

in Eq. (4.75), one sees that the SM and the twin SM can interact more at tree-level, this

in turn implies that both sectors stay longer in thermal equilibrium and therefore raise

not only Tγ(2) and Tν(2) , but also Tγ(1) and Tν(1) .

Once more we experience the disastrous phenomenological consequences of an exact

Z2 symmetry. To reduce the contribution from the neutral sector in Eq. (4.73) one must

lower the decoupling temperatures Tγ(2) and Tν(2) , and also avoid that the SM and the

twin SM remain too long in thermal equilibrium. This can be done in three ways. First,

one can create an hierarchy between both sectors, such that f > v [16, 15, 73, 79]. In

this way all massive particles from the twin sector become heavier than the SM ones and

as a consequence contribute less to radiation energy density. Moreover, SM particles do

not annihilate so often into twin particles, hence the twin sector is not re-heated. Second,

one may reduce the couplings that connect the SM with the twin sector, in particular

the ε coupling in Eq. (4.75). With a small kinetic mixing, the twin particles interact less

with the SM and decouple from it much earlier. Third, in order to specifically reduce

Tγ(2) , which contributes the most in Eq. (4.73), one can break twin QED and let the

twin photon become massive [15]. From the three methods aforecited, the first is the

simplest and easily implemented (see section 4.4), while the third is the most radical and

model-dependent one. Note that both of them break Z2 explicitly. The second method

does not break Z2, but, since there is no theoretical justification to impose that ε is very

small or even zero, it is a source of tuning.

???

It is clear that cosmological constrains are not satisfied by TH with an exact Z2

symmetry. The issue with Neff is the most prominent, but not the only one. Other

problems are, for example, if the twin matter can be interpreted as Dark Matter (DM)

[32]. Such questions are much more subtle and are not the focus of this thesis. What

we wish to stress in this section is, that cosmology introduces many difficulties to the
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construction of a phenomenologically acceptable TH model and offers the most stringent

experimental bounds.

4.4 Z2 breaking & Fine-Tuning

In this section it is discussed how to introduce an explicit break of the Z2 symmetry,

motivated by the discussion in sections 4.2 and 4.3. Moreover, the fine-tuning (FT)

associated with this breaking is computed.

Our main goal is to raise the masses of the twin particles in a way the Higgs mass

is still protected from quadratic divergences. The masses of all particles come from the

Higgs mechanism, therefore an hierarchy between the vevs v and f must be created. This

implies that there must be a source of Z2-breaking in Eq. (4.1), which will modify the

minimisation of the potential. The new potential of the scalar sector is

V
(
H(1), H(2)

)
= −M2

(∣∣∣H(1)
∣∣∣2 +

∣∣∣H(2)
∣∣∣2)+ λ

(∣∣∣H(1)
∣∣∣2 +

∣∣∣H(2)
∣∣∣2)2

+ ∆M2
∣∣∣H(1)

∣∣∣2. (4.76)

The potential above contains an extra
∣∣∣H(1)

∣∣∣2 operator compared to potential (4.1), which

is the only non-trivial, soft operator allowed∗ and obviously breaks the Z2 symmetry of

the potential.

Note that the potential (4.76) also breaks SO(8) explicitly, so the minimisation must

be done separately for
∣∣∣H(1)

∣∣∣2 and
∣∣∣H(2)

∣∣∣. However, ∆M2 is taken to be small enough

to still consider the global SSB as a good approximation. The twin EW doublet H(2)

acquires the following vev,

dV
d|H(2)|2

∣∣∣∣∣∣
H(2)=

〈
H(2)

〉 = 0⇒
〈
H(2)

〉
= f√

2

0

1

 , (4.77)

where
〈
H(2)

〉
is aligned with the unbroken twin QED direction and f 2 = M2

λ
. The vev

above triggers SO(8) → SO(7) and the fields can be thus parametrized non-linearly in

terms of H, according to Eq. (4.25). For a cut-off Λ � f , the potential in Eq. (4.76)

∗Another possible operator is
∣∣H(2)

∣∣2, but its effects are equivalent to the ones of
∣∣H(1)

∣∣2.
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becomes

V (σ,H) = · · ·+ f 4κ(Λ)
4

[
1− 1

2 sin2 2
√

2|H|
f

]
+ ∆M2f 2

2 sin2
√

2|H|
f

, (4.78)

where the dots denote constant (SO(8) symmetric) terms and interacting terms between

H and σ, and κ(Λ) is the same function as in Eq. (4.66), that introduces 1-loop quantum

corrections from fermions and gauge bosons. One can then minimise with respect to H,

dV
d|H|

∣∣∣∣∣∣
H=〈H〉

= 0⇒ sin2
√

2|〈H〉|
f

= 1
2

(
1− ∆M2

f 2κ(Λ)

)
. (4.79)

Note that the expression above reduces to Eq. (4.32) in the case ∆M2 = 0. In order

to obtain an hierarchy between the Higgs vev and the SSB scale, i.e. f√
2 � |〈H〉|, the

right-hand side of Eq. (4.79) must be much smaller than 1. Therefore, one can Taylor

expand Eq. (4.79) and obtain

|〈H〉|2 = f 2

4

(
1− ∆M2

f 2κ(Λ)

)
. (4.80)

Before computing the physical mass of the Higgs, one needs to diagonalize the mass

matrix of the scalar sector in order to obtain the correct linear combination of radial

resonances, which is identified with the neutral Higgs h. The mass matrix obtained in

Eq. (4.37) is modified in two aspects. First, Eq. (4.32) is not valid anymore, hence there

is a non-vanishing mix between σ and ρ. Second, one needs to add the contribution from

the soft-breaking operator. Naming V√
2 = |〈H〉|, this yields the new mass matrix

M′ =2λf 2 + ∆M2 sin2 V
f
− δm2 + f 2κ(Λ)

(
1− 1

2 sin2 2V
f

)
∆M2 sin 2V

f
− 3κ(Λ)f2

2 sin 4V
f

∆M2 sin 2V
f
− 3κ(Λ)f2

2 sin 4V
f

∆M2 cos 2V
f
− κ(Λ)f 2 cos 4V

f

 .
(4.81)

Since now there is a clear hierarchy between the scales, f � V , the off-diagonal elements

are much smaller then the diagonal ones∗. Hence, in a first approximation, σ and ρ are

the eigenstates of M′, where ρ is associated with h.

∗A matrix
(
a b
b d

)
has eigenvalues λ1,2 = 1

2

[
a+ d∓

√
(a− d)2 + 4b2

]
. In the case of the matrix
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Taking such considerations into account, the physical mass of the Higgs is already

computed in Eq. (4.81). It reads

m2
h ' ∆M2 cos 2V

f
− κ(Λ)f 2 cos 4V

f
. (4.82)

Using Eq. (4.80) and imposing that |〈H〉| = v√
2 , we obtain

m2
h ' 4|〈H〉|2κ(Λ). (4.83)

To obtain the correct value for m2
h we must impose that the quartic coupling κ(Λ) to be

around 0.13, as in the SM [3]. To obtain such values we must create an amount of FT.

The quartic coupling introduces FT, because we must maintain an hierarchy Λ� f .

However, since κ(Λ) depends logarithmcally on Λ and f , the associated FT is order unity,

hence negligible. The main source of FT comes from the physical mass m2
h. The FT of

the mass with respect to the breaking parameter ∆M2 is given by Eq. (1.16)

∆ =
∣∣∣∣∣∆M2

m2
h

∂m2
h

∂∆M2

∣∣∣∣∣ = ∆M2

m2
h

. (4.84)

For f = 1 TeV, one needs ∆M2 ' (330 GeV)2 to achieve the correct value of the Higgs

mass. Hence, ∆ ' 7, which is acceptable. However, if f = 5 TeV, then ∆M2 '

(1700 GeV)2, therefore ∆ ' 200.

???

The potential in Eq. (4.76) represents the most straightforward way to introduce the

Z2-breaking in the TH model. With it, one can raise the value of f and consequently raise

the masses of the twin particles at the cost of an order 100 FT. This method of breaking

the Z2 symmetry does not spoil the mechanism that protects the Higgs mass, since it

is only introduced via super-renormalizable operators. Other ways of implementing the

Z2-breaking, for instance by letting the twin photon to become massive or to create an

hierarchy between the couplings of both sectors, require much model building and will

certainly re-introduce the quadratic divergences to the Higgs mass.

(4.81) we have a� b, d, hence
λ1 '

d

2 � λ2 '
1
2(2a+ d).
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4.5 Conclusions

The TH model is the first solution to the HP that does not rely on particles charged under

the SM to stabilise the Higgs mass. As a consequence, the constrains from EW precision

measurements are less stringent; with an appropriate amount of Z2-breaking, the mass

scale of the twin sector is such that all constrains from EW precision measurements are

satisfied, at the cost of a FT ∆ ∼ O(102) (while neglecting the kinetic-mixing between the

abelian gauge bosons). This solution is particularly interesting, because one may introduce

an arbitrary number of neutral sectors, offering rich model-building prospects. Moreover,

the phenomenology of such models is not complicated, since the gauge structure and

particle content of such sectors are identical to the ones of the SM. The main difficulty lies

on the cosmological bounds. It is not straightforward to correctly describe the evolution

of the universe with such models, without introducing an unreasonable amount of FT. To

summarise, Neutral Naturalness models offer an original way of solving the HP, but, in

order to be phenomenologically consistent, must be tuned.
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5 Cosmological Relaxation Models

5.1 Motivations

In Chapter 4 the idea of Neutral Naturalness was developed, whose purpose was to solve

the Hierarchy Problem (HP) while evading most of the experimental constrains from par-

ticle and collider data. It was found out, however, that essentially every implementation

of this idea is in disagreement with cosmological data. Although the theoretical and ex-

perimental frameworks of cosmology are distinct from the ones of particle physics, the

early universe is described by the dynamics of the elementary particles and therefore the

latter affects the cosmological history as a whole. As a consequence, one cannot ignore

cosmology when formulating Beyond the Standard Model (BSM) theories. In the discus-

sion of the Twin Higgs (TH) model cosmological constrains (section 4.3) were introduced

after formulating the model. From our experience, it did not turn out to be a good strat-

egy to impose cosmological considerations after the model was formulated, as one needed

to introduce an unreasonable amount of Fine Tuning to satisfy them. Instead, a more

compelling approach to this embarrassing situation would be to take cosmology seriously

from the start, in other words, one should use cosmology as a guiding principle and not

just as a source of experimental constrains. Note that we are in any way proposing to com-

pletely fuse cosmology with particle physics, but to bring them somewhat closer. In light

of this, how should one proceed? One should first note that the most important objective

of cosmology is to describe the evolution of the universe and justify why it is what we

observe today. Hence, one must somehow include this evolution into our model-building

and, if the HP is to be solved, the Higgs shall be tightly related to it.

With such motivation, let us determine what does the cosmological evolution of the

early universe, when elementary particles were the relevant degrees of freedom (dof),

add to their description. One particularly interesting effect is that of temperature. At

primordial times the universe was an almost uniform hot soup of particles, i.e. it was

a thermodynamical system. Hence, the early universe possessed thermal energy and

the equilibrium temperature T at a given time t thus determined the energy scale of

the particles in this thermal bath. A non-zero temperature has significant impact on

Quantum Field Theories (QFT’s) since the temperature enters in the expression for the

generating functional, which in this case is most often called partition function. Therefore,
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in addition the usual quantum corrections, there are thermal corrections [84]. For a scalar

field, for instance the Higgs, the 1-loop corrected potential can be written as

Veff(H,T ) = V0(H) + V1(H,T ), (5.1)

where V0 is the tree-level potential,

V0(H) = −M2
H |H|

2 + λ|H|4, (5.2)

and V1 is the 1-loop contribution from thermal effects, which must satisfy the condition

V1(H,T ) T→0−−−→ 0, (5.3)

since there is no thermal bath when T = 0. For T 6= 0, one can Taylor expand V1 and

obtain the following expression for the effective potential

Veff(H,T ) = M2
H,eff(T )|H|2 − rT |H|3 + λeff(T )|H|4, (5.4)

where r > 0. The new coefficients λeff and M2
H,eff depend on the temperature and on the

relevant dof (e.g. the masses of the particles that couple to the Higgs). The effective mass

may be put into the form

M2
H,eff(T ) = −M2

H + cT 2, (5.5)

with c > 0. In our expanding universe the temperature depends on time and decreases as

the universe expands (see Appendix C, Eq. (C.11)), hence M2
H,eff is a dynamical variable,

in the sense that it depends on time. Moreover, its derivative with respect to time is

proportional to the Hubble parameter Hb,

Ṁ2
H,eff = −2cT 2Hb(t), (5.6)

leaving explicit that the dynamics of M2
H,eff depends on the evolution and particle content

of the universe and on the temperature.

Temperature indeed plays a significant role in the description of the Higgs in the early

universe. Eqs. (5.5) and (5.6), however, do not offer a solution to the HP and the reason

is simple. Temperature effects, how important they were at the very beginning of the
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universe, become less important as time passes. In particular, the temperature today is

so small compared to the Electroweak (EW) scale that

M2
H,eff ' −M2

H , Ṁ2
H,eff ' 0. (5.7)

In conclusion, as far as today’s experiments are concerned, temperature effects are negli-

gible and they cannot possibly solve the HP.

We see clearly from the discussion above that, in order to solve the HP, the cosmologi-

cal evolution must induce some change in the Higgs mass parameter at zero temperature.

This naturally implies that M2
H must be somehow dynamical. In particular, one should

expect from this dynamics the exact opposite of thermal corrections, i.e. the dynamical

effects on M2
H shall be more relevant in the IR scale rather than in the UV, because the

Higgs mass must be stabilised at its experimental value in the IR and not in the UV.

Models that implement this idea are known as Cosmological Relaxation (CR) models [17].

To summarise, CR models make the Higgs mass parameter dynamical, i.e. it varies

with time as the universe itself expands. As stressed above, the dynamics we refer to

is not the one coming from thermal effects, since they cannot solve the HP and are

irrelevant in the IR. Instead, CR models introduce a new mechanism that will render the

zero-temperature mass M2
H dynamical and stable at the EW scale.

5.2 General EFT approach

5.2.1 Back-reaction mechanism

The objective is to write an EFT that implements the idea behind CR models and that

will allow us to make general statements on such models. To this end, the Lagrangian

from Eq. (1.1) is written down,

L = Λ4

g2
∗
F

(
Dµ

Λ ,
H

Λ ,
φ

Λdimφ

)
, (5.8)

where Λ is the cut-off of the EFT, g∗ is a dimensionless coupling, Dµ is the appropriate

covariant derivative and H is the Higgs field. The other parameter φ in the function F is

defined as all other relevant dof of the theory, regardless if they are from the SM or from

BSM, that connect the Higgs to the evolution of the universe. In other words, φ will be

147



responsible for the dynamics of M2
H .

The next step is to introduce some of the concepts of cosmology in Eq. (5.8). The

expansion of the universe may be separated in two pieces: the homogeneous and isotropic

expansion, and its perturbations. The first is characterised by the classical Einstein’s

equations and the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, given respec-

tively by Eqs. (C.1) and (C.3) in Appendix C, while the latter are described by the

perturbed Einstein’s equations and the fluctuations of the classical metric and matter

fields [77, 85]. Since φ is the bridge between the Higgs and the cosmic evolution, it can

be decomposed as

φ(x) = φ̄(t) + δφ(x), (5.9)

where φ̄(t) represents the classical, non-perturbed evolution of the universe and δφ(x) is

the quantum fluctuation, which is tightly related to the anisotropies and inhomogeneities

of the cosmological evolution. As it is usual in cosmology, the analysis will be first focused

on the classical evolution and than later on the quantum effects.

The classical behaviour of the CR mechanism will be described by the classical mode

φ̄ in the tree-level Lagrangian. Eq. (5.8) is rewritten as

L 0 = Λ4

g2
∗
F0

(
Dµ

Λ ,
H

Λ ,
φ̄

Λdimφ

)
, (5.10)

where the subscript 0 means that this is the tree-level Lagrangian. To study the phe-

nomenology of Eq. (5.10) one would usually expand it in the low energy regime as series

of operators. In the present case, however, one must be more careful for two reasons.

First, one neither know if there are any additional global selection rules nor the Lorentz

and gauge structure of φ, which makes it impossible to appropriately write down operators

without assumptions on φ. Second, although the cosmological relaxation becomes more

important at the IR, this mechanism will first take place at the far UV (at a primordial

era of the universe), where one is not allowed to expand the Lagrangian. On the one hand,

the first point is a real issue and will depend on our model-building. It will be discussed

in more detail in section 5.2.3. On the other hand, the latter issue is not so problematic,

because one can simply go to the low-energy regime where the expansion is valid. The

subtlety lies in the initial conditions of φ̄; as the explicit expression of the UV Lagrangian

is unknown, one cannot give a precise value for its initial condition at the UV, hence, for
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the mechanism to properly work, it must not depend heavily on the initial conditions of φ̄
∗. In order to understand the mechanism behind the CR models, we will proceed without

expanding the Lagrangian in Eq. (5.10).

Let us now discuss how M2
H and φ̄ interact. By definition, φ̄ must render M2

H dynam-

ical, however a definition for the mass parameter is lacking, due to the insistence in not

writing Eq. (5.10) in terms of operators. An alternative definition for the tree-level mass

parameter in terms of F0 is proposed,

M2
H ≡ −

Λ4

g2
∗

(
∂F0

∂|H|2

)
H=0

, (5.11)

which recovers the usual definition when one Taylor-expands F0. Note that the equation

above defines an effective mass, in the sense that it may depend on the fields that couple

to |H|2. Another remark to Eq. (5.11) is that it is assumed that |H|2 is a gauge invariant

operator at all energy scales below the cut-off Λ (which could not be true at the UV if,

for instance, the Higgs were part of a multiplet of a larger gauge group). If M2
H is to vary

with time, its derivative with respect to time,

Ṁ2
H = −Λ4

g2
∗

d
dt

(
∂F0

∂|H|2

)
H=0

= −Λ4

g2
∗

[
˙̄φ
(

∂2F0

∂φ̄∂|H|2

)
H=0

+ ˙̄φ†
(

∂2F0

∂φ̄†∂|H|2

)
H=0

+ · · ·
]
, (5.12)

where the dots denote terms that depend on higher derivatives of φ̄, must be non-zero.

From Eq. (5.12) one sees that this is satisfied under the following conditions

˙̄φ 6= 0 and
(

∂2F0

∂φ̄∂|H|2

)
H=0
6= 0⇒ Ṁ2

H 6= 0, (5.13)

where it is assumed that the contributions from higher derivatives are negligible. In section

5.2.3 it will become clear how important these contributions are, but we anticipate that

they are very suppressed and therefore Eq. (5.13) is a very good approximation. The first

condition of Eq. (5.13), ˙̄φ 6= 0, is trivially satisfied if the Equations of Motion (EoM) of φ̄

have non-constant solutions. The second condition on the second derivative of F0 is not

∗Note that this discussion is very similar, if not identical to the motivation of the Fine Tuning (FT)
measure in section 1.2. In some sense, it is required from the start that the model is free of FT coming
from the initial conditions of φ̄.
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so straightforward, but, if one analyses the low-energy regime, it means that a non-trivial

interaction between φ̄ and |H|2 must take place. At this point it is impossible to give

an explicit expression for such interaction at the IR, because, as stressed, the Lorentz

structure of φ̄ is still unknown.

Let us discuss in more detail the first condition in Eq. (5.13). From Eq. (5.12) it is

clear that M2
H is directly proportional to the time-derivative of φ̄. In general, the EoM of

φ̄ will depend on its potential V0, that is defined by

V0(φ̄) ≡ −Λ4

g2
∗
F0

∣∣∣∣
H=0, ∂µ=0

, (5.14)

and on the interactions with the Higgs∗. Since it is assumed that φ̄ interacts only via

|H|2, or that at least it is the most relevant interaction with the Higgs field, the Higgs will

contribute to the EoM with terms proportional to its vacuum expectation value (vev).

From this perspective, it is obvious that the vev of the Higgs plays a crucial role in the

evolution of φ̄, which of course depends on the value and the sign of M2
H . It is clear

from this viewpoint that one can separate the analysis in two parts: the case where at

the initial time t0 ∼ Λ−1 the Higgs mass parameter was positive, and the case where it

was negative. In the first situation the Higgs has a vanishing vev and therefore does not

contribute to the EoM of φ̄. Even so, M2
H must evolve to its SM value, which is negative.

In order to guarantee that M2
H will be dragged to the correct value today, one needs a

non-trivial potential V0(φ̄) to generate the dynamics of φ̄. The second case, in which the

initial value of M2
H is already negative, is much more intricate. In this situation the vev

is non-vanishing and would affect the EoM considerably. However, one must not forget

the thermal effects of Eq. (5.5); if the initial value of M2
H is as large as the temperature,

the correction from the temperature could cancel it and reduce the value of the physical

vev. For this reason it is quite complicated to make statements on the dynamics of φ̄ in

a model-independent way in this situation. To proceed with the discussion we suppose,

without proof, that even in this case one needs a potential V0 at some point to control

the evolution of φ̄.

To summarise, it is crucial to have a non-trivial potential. However, this is not enough

to successfully describe the CR mechanism, because in addition of having a dynamical

∗If φ is a BSM field, one needs to consider the possibility of it interacting with the other field from
the SM. We will return to this point in section 5.2.3.
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mass parameter, one needs M2
H to converge to the SM value M2

H,SM as time passes. More

precisely, for a general potential V0, the field φ̄ will continue to evolve irrespective to

the value of M2
H , such that one cannot guarantee that Ṁ2

H → 0 as M2
H → M2

H,SM. The

solution to this problem is conceptually simple: φ̄ must be aware of the value M2
H in a

way that
˙̄φ→ 0 as M2

H →M2
H,SM.

In other words, not only φ̄ affects M2
H but also M2

H must affect φ̄; only under such

circumstances can one assure that the system is able to converge to the SM scenario.

Before proceeding with the discussion, let us be a bit more precise with what is meant

with converge. Until now were trying to describe the dynamical evolution of φ̄ and M2
H ,

i.e. a parametrisation of the pair (φ̄,M2
H) with respect to time. As it was seen, given a

generic initial condition (φ̄0,M
2
H,0) at t0, the EoM of φ̄ together with Eq. (5.12) dictate

how it evolves with time. In particular, in order to observe the correct EW scale today,

this pair must converge to

(φ̄,M2
H) t→tf−−−→ (φ̄eq,M

2
H,SM), (5.15)

with tf the final time and φ̄eq ≡ φ̄(tf ). To solve the Hierarchy Problem one needs the

pair to be stable at the equilibrium point (φ̄eq,M
2
H,SM), this implies that

∂V0

∂φ̄
(φ̄eq) = 0, ∂2V0

∂φ̄†∂φ̄
(φ̄eq) > 0. (5.16)

From Eq. (5.12), the stability conditions of Eq. (5.16) are sufficient to also stabilise M2
H

at the classical level, under the condition that the contributions from higher derivatives

of φ̄ are suppressed. So, Eq. (5.15) is being referred when the system is said to converge,

in which the pair (φ̄,M2
H) converges to the equilibrium point (φ̄eq,M

2
H,SM).

One remark regarding the initial conditions is in order. We stress again that the initial

condition of (φ̄,M2
H) is not well determined, since it lies at the UV, where one has no

details of the function F0. For this reason, the pair must converge to (φ̄eq,M
2
H,SM) for a

wide variety of initial conditions∗. Adding this condition to the stability one, one finds

∗It must and can not be totally independent from the initial conditions, because, as pointed out, the
explicit mechanisms for positive and negative M2

H,0 are completely distinct. A review on many of the CR
models with distinct initial conditions for the Higgs mass parameter is given in [18].
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Figure 5: Illustration of the evolution of the initial condition (φ̄0,M
2
H,0) to the attractor

point. For a wide range of initial conditions (red region), the system converges to a
arbitrarily close neighbourhood of (φ̄eq,M

2
H,SM) (green region).

out that (φ̄eq,M
2
H,SM) must be an attractor point of the system. Stated in another way,

for a generic initial condition at t0, (φ̄,M2
H) will be arbitrarily close to the (φ̄eq,M

2
H,SM)

after sufficient time and from then on will remain in its neighbourhood. See for instance

Figure 5.

???

In this section we have constructed what is called a back-reaction mechanism, i.e. a

dynamical system in which the relevant dof depends on time such that their evolution

equations are tightly connected. From Eqs. (5.11) and (5.12) it was determined how φ̄

affects M2
H and, in particular, how it renders the latter dynamic (see Figure 6). As it

was seen, for this system to converge, one concluded that a back-reaction from M2
H is

necessary, in other words, the Higgs mass parameter must somehow affect the dynamics

of φ̄. However, there is no clear way of how this could possibly take place and it is simple

understand why. The other solutions presented so far (Supersymmetry, Composite Higgs

and Neutral Naturalness) rely on symmetries to solve the HP, which implies that the

respective EFT’s have some additional selection rules. As a consequence, for a given

particle content the models can be uniquely determined. In the case of Cosmological

Relaxation this is not true, since one relies on dynamics rather than symmetries, therefore

there is no way to uniquely determine how the back-reaction mechanism works only from

the general EFT approach.
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Figure 6: The back-reaction mechanism of φ̄ and M2
H . The red arrow is given by Eqs.

(5.11) and (5.12), whereas it is impossible to determine the blue arrow in a model inde-
pendent way.

5.2.2 Quantum effects

The next step is to discuss the properties of quantum corrections to the back-reaction

mechanism, in particular we will consider 1-loop corrections. The Lagrangian in Eq.

(1.1) at 1-loop can be written as

L 1 = Λ4

g2
∗

[
F0

(
Dµ

Λ ,
H

Λ ,
φ

Λdimφ

)
+ g2

∗
16π2 F1

(
Dµ

Λ ,
H

Λ ,
φ

Λdimφ

)]
, (5.17)

where F0 is the same tree-level function of Eq. (5.10), F1 is the function generated at

1-loop and φ is given by Eq. (5.9). Eq. (5.17) leaves manifest the difficulty of describing

quantum effects in CR models only from the EFT approach: F1 is yet another unknown

function and there is no indication of how to describe the quantum fluctuation δφ. In-

deed, it is not obvious how the quantum fluctuations of φ evolve during the cosmological

evolution and what impact can they have today∗.

Although there is not much to say about the evolution of the quantum fluctuations,

one can analyse how they behave near the attractor point. Suppose that the classical

mode is already stabilised, in this case the field φ is given by

φ(x) = φ̄eq + δφ(x). (5.18)

∗In general they are not irrelevant. Take the example from the standard cosmology, where the quantum
modes of the fields have evolved to the non-linear, large structures we observe today [77].
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To study the dynamics of δφ in the neighbourhood of the attractor point, we shall per-

turb the potential around φ̄eq. Using Eq. (5.16), the tree-level potential can be Taylor-

expanded as

V0
(
δφ+ φ̄eq

)
− V0

(
φ̄eq
)
' 1

2δφ
† ∂

2V0

∂φ†∂φ

∣∣∣∣∣∣
φ̄eq

δφ. (5.19)

The 1-loop correction to the potential is defined as

V1(φ) ≡ − Λ4

16π2 F1

∣∣∣∣
H=0, ∂µ=0

, (5.20)

which may be expanded as

V1
(
δφ+ φ̄eq

)
− V1

(
φ̄eq
)
' δφ†∂V1

∂φ†

∣∣∣∣∣∣
φ̄eq

+ ∂V1

∂φ

∣∣∣∣∣∣
φ̄eq

δφ. (5.21)

In the equation above higher order terms are neglected, because they do not contribute

at 1-loop level. In conclusion, apart from interactions with the Higgs, the potential for

δφ near φ̄eq is quadratic and if one neglects the cosmic evolution, the resulting EoM are

those of an harmonic oscillator with a constant source ∂V1
∂φ

(φ̄eq). If one takes into account

the FLRW metric, then a damping term appears in the EoM (see for instance Eq. (C.27)

for the case of a scalar field). Therefore, the quantum fluctuations of φ will eventually

die out as time passes, which means that the field φ becomes asymptotically static. This,

however, does not exclude phenomenological signals at accessible energies and the reason

is the following. Depending on the Lorentz and gauge structure of φ, there could be a

neutral, scalar component of φ that mixes with the Higgs [86, 87]. If the mixing term is

considerably large, this could make φ observable at the IR. But, as it was stressed, this

depends on the explicit choice of φ, so this possibility is not pursued in this section.

One last remark on quantum fluctuations regards the quantum tunnelling. Even if

one develops a way to drive the classical mode φ̄ to the equilibrium point φ̄eq, there is

no guarantee that quantum fluctuations in this vicinity are not able to tunnel to another

minimum of the potential and in this manner destabilise the Higgs mass parameter at

an observable rate. In order to not spoil the classical stabilisation, the life-time of the

vacuum defined by φ̄eq should be at least larger than the age of the universe [17]. Due

to the many theoretical complications, the study of this phenomenon lies outside of the

scope of this thesis. However, this issue will again be mentioned in section 5.2.3.
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5.2.3 Minimal Model?

From the EFT approach one could determine the existence of a back-reaction mechanism

at the classical level and how quantum fluctuations of φ behave near the equilibrium point.

The Lorentz and gauge structure of φ, however, remain unknown. In this section it will

be discussed which would be the most appropriate Lorentz representation for φ and how

it could guide us in the model-building of CR models.

Before going into the details of the possible Lorentz structures that φ may possess,

one needs first to determine if φ could be a field from the SM or if it must be a BSM field.

To this end, let us suppose φ is a field from the SM and expand the tree-level Lagrangian

(5.10) in the low-energy regime E � Λ,

L 0 ⊃
[
g0Λ2 +

∑
i

gi
Λdim Oi−2Oi

]
|H|2, (5.22)

where {gi} are coupling constants and {Oi} are all possible gauge-invariant∗ operators

with SM fields, except the Higgs. Note that dimOi ≥ 4, therefore all operators Oi|H|2

turn out to be non-renormalizable and their impact in the IR is suppressed by powers of the

cut-off. It is clear that irrelevant operators play a role similar to that of temperature, they

become less important as the energy scale decreases. Hence, their effects are irrelevant in

the IR and cannot be the underlying dof behind the CR mechanism. For the effects of

some operator O in Eq. (5.22) to be relevant at the IR, it must have at most dimension

2. Since one cannot built such operator in the SM, it is thus necessary for φ to be a BSM

field.

We list below all possible Lorentz-invariant operators with dimension ≤ 2 for each

Lorentz structure that φ can have†. In this list the selection rules from global symmetry

groups are not taken into account.

• Fermions

Fermions are complex fields, hence can carry representations under the gauge group,

which leads to some model-building dependence. Nevertheless, irrespective to the

gauge-representation, if φ is a fermion field ψ, then the lowest dimensional Lorentz

∗Here gauge invariance refers to invariance under the SM gauge group SU(3)c × SU(2)L × U(1)Y ,
since we are already in the low-energy regime.

†In order to keep the discussion more simple, it is excluded from this listing the spin-2 and spin-3/2
cases, since they are intrinsically connected to gravity and Supersymmetry, respectively [21, 35]
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invariant operator is ψ̄ψ. This operator has dimension 3 and therefore φ cannot be

a fermion.

• Vectors

If φ is a vector field Xµ, it can be either real or complex. In both cases it can bear

some representation under gauge groups, hence there is model-dependency. The

possible operators in this case are

X†
µXµ: This term violates unitarity in the UV and requires the model to be UV-

completed.

∂µXµ: This could only be considered if Xµ is an uncharged matter field.

• Complex Scalar

If φ is a complex scalar field Φ, it can be charged under the gauge groups. The

possible operators are

Φ and Φ†: Allowed if Φ is a singlet.

|Φ|2: Always allowed.

• Real Scalar

If φ is a real field, it cannot transform under complex representations of any group,

but only under real ones (adjoint representations for instance). The possible oper-

ators are

φ: Allowed if φ is a singlet.

φ2: Always allowed.

From our analysis, it is clear that the only excluded situation is the case where φ is a

fermion. The other possibilities are allowed, but have distinct levels of model-dependency.

The worst choice would be the vector one, since, in addition to the dependence on the

representations under the gauge groups, there is also the problem with unitarity. In

comparison to the complex scalar, the real scalar has much less model-dependency, so it

is the minimal choice. From now on we will work only with real scalar fields.

One remark is in order. Although marginal operators have significant effects, relevant

operators will dominate at the IR, therefore, for the CR mechanism to properly work, one

must have relevant operators coupled to the Higgs mass parameter. It is worth noting
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that marginal operators could have larger impact if the anomalous dimension of the fields

were large, but this would require for a dark-sector to generate this anomalous dimension.

Neglecting the contributions from marginal and irrelevant operators and considering that

φ is a single field, the Higgs mass parameter in the low-energy regime E � Λ is given by

L ⊃ −M2
H(φ)|H|2, M2

H(φ) = g0Λ2 − g1Λφ, (5.23)

where it is supposed that φ is a gauge invariant operator. The minus sing in the second

term is chosen for future convenience. From the equation above it is clear that the Higgs

mass is driven to M2
H,SM by the cancellation between the two terms, which is achieved

when φ obtains the value

φ̄eq = −
M2

H,SM − g0Λ2

g1Λ
. (5.24)

The first problem encountered by considering a real scalar field is again the Scalar Mass

Problem and the Hierarchy Paradigm and one needs an additional mechanism to stabilise

the mass of φ. We are already familiar with many mechanisms that were discussed

in the past chapters, so one may implement one of them to stabilise the mass of φ.

Neither Supersymmetry nor Neutral Naturalness are good choices, because both models

introduce several particles to the particle spectrum; as it was seen in section 4.4, too

many additional particles render the model incompatible with cosmological data. The

most adequate mechanism is to realise φ a pseudo Nambu-Goldstone-Boson (pNGB) of

an approximate, spontaneously broken global symmetry. In this scenario φ has a shift-

symmetry that forbids a mass term at tree-level, which could be generated by quantum

corrections if the global symmetry is somehow broken. The coupling φ|H|2 from Eq.

(5.23) is an interaction that breaks the shift-symmetry explicitly and it can generate a

potential V1(φ) at 1-loop.

It is worth remarking that the relation between the 1-loop induced potential V1 and

V0 remains unclear. More precisely, it is unknown which of them is more relevant to the

dynamics of φ. At this point in the discussion we may only state that, due to the lack

of symmetries in the EFT, a tree-level potential V0 is not forbidden at the scale Λ. In

what follows it is assumed that V0 dominates the dynamics of φ, but it will become clear

in section 5.3.1, in a specific model, under what conditions this is true and why it is

necessary.
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Let us discuss V0 in more detail. It is already expected that V0 breaks the continuous

shift-symmetry of the NGB φ, because else it would be a constant potential. Therefore,

one may write V0 as a sum of two distinct contributions:

V0(φ) = V0,break(φ) + V0,inv(φ). (5.25)

The first contribution V0,break in the equation above is by definition a potential that

breaks the shift-symmetry completely, i.e. it does not exist any real number a for which

V0,break(φ + a) = V0,break(φ) is satisfied. Since it breaks the shift-symmetry explicitly, it

may be written as a power series,

V0,break(φ) = c0 + c1Λ3φ+ 1
2c2Λ2φ2 + · · · , (5.26)

where the c’s are independent couplings. In particular, the coefficient c2Λ2 that represents

the mass of φ must be small and stabilised in order to avoid the SMP and the HP. However,

it is impossible to state that c2 is stable under quantum effects if all the couplings g1

and {cn} are independent, because in this case radiative corrections depend on all these

couplings. In short, due to the many independent sources of explicit symmetry breaking,

c2 is not quantum mechanically stable. This issue can be solved if all the couplings that

break the shift-symmetry are assumed to depend solely on g1. More precisely, if

cn = cn(g1) such that cn(0) = 0, ∀n, (5.27)

then the explicit breaking of the shift-symmetry is controlled only by g1 and one can

thus stabilise the mass parameter of φ ∗. For a sufficiently small g1 and considering the

low-energy regime we can write V0,break as

V0,break ' r0Λ4 − r1g
α
1 Λ3φ, (5.28)

where r1 is a number, r0 > 0 and α > 0. To simplify our discussion, α = 1 is chosen. The

expansion above is valid, because the linear term is the most relevant, non-constant one

in the IR regime and will therefore dictate the dynamics of φ. It is interesting to note

∗Note, however, that due to the unknown origin of the coupling in Eq. (5.23), we cannot guarantee
that g1 is small. One needs to assume that it is small for the technical naturalness argument to work.
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that the source of shift-symmetry breaking is given only by the coupling g1, which could

be an indication that the origin of V0,break may be the same as of the interaction φ|H|2.

Unfortunately, the underlying physics of the interaction in Eq. (5.23) is also unknown,

hence there is not much to say about it.

The second contribution in Eq. (5.25) consists of terms that may be invariant under

a discrete sub-group of the continuous translation symmetry. For instance, assume that

for a real a the potential V0,inv satisfies

V0,inv(φ+ na) = V0,inv(φ), (5.29)

for any integer n. Note that, though this potential restores a discrete sub-group of the

shift-symmetry, it is not forbidden since V0,break and the interaction (5.23) break the

symmetry completely, hence g1 remains technically natural. Although the origin of V0,inv

in the UV is also uncertain, it must have a connection to the SSB of the global symmetry

group that has φ as its NGB, because the potential restores part of the shift-symmetry

associated with the same global symmetry. Moreover, it is most likely that this potential

is non-perturbative, as it encodes global properties of φ.

One remark regarding the potentials in Eq. (5.25) is in order. Note that V0,inv is a

periodic function of period a, therefore is has sites of typical size a. Then, if g1 = 0, i.e.

if shift-symmetry wasn’t broken, the values of the field φ would be restricted to the ones

in the interval [0, a]. In this manner it wouldn’t be possible for φ̄ to evolve to the value

in Eq. (5.24), which certainly lies outside of this interval. However, g1 6= 0 and so φ can

assume values outside [0, a]. Even so, it is impossible for V0,inv to drive φ̄ to φ̄eq due to its

periodicity, whence one needs a non-vanishing V0,break in order to generate the required

dynamics.

From the aforementioned properties of both potentials, one can qualitatively under-

stand how the evolution of φ̄ will proceed and, in particular, how it will be classically

stabilised. The classical mode will be stabilised by V0,inv at the site centred at the equilib-

rium point φ̄eq and it will arrive at this particular site through the slope of the potential

V0,break. As for how this mechanism take place in detail, one needs a concrete model to

make quantitative statements. One possible drawback to this scenario is regarding the

quantum fluctuations mentioned in section 5.2.2. It is well known that a quantum field can

tunnel classical barriers, for instance those of the periodic potential V0,inv, which means
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Figure 7: Diagrammatic representation of the many ingredients of the CR model. V0,break
and V0,inv are the tree-level potentials that describe the dynamics of the classical mode
φ̄, given by Eqs. (5.25), (5.28) and (5.29). The field φ interacts with the Higgs through
the coupling in Eq. (5.23), which may be related to the potential V0,break in the UV.
Here, "Other Sectors" denote all other dof besides the Higgs that may be relevant to
the CR model. In particular, it may contain some reminiscent dof of the SSB of the
global symmetry that could have generated V0,inv. However, there is no indication of
how they interact with φ and with the Higgs. In addition, everything is inside of the
yet-undetermined cosmological context.

that, while the equilibrium configuration φ̄eq is classically stable, it may not be so at the

quantum level. As a consequence, the field φ can spread throughout many different min-

ima of the potential and would thus create distinct vacua configurations in the universe

[17, 18]. But again, it is difficult to make precise statements, because tunnelling effects

depend on numerous factors, e.g. the height of the barriers and the distance between

adjacent barriers, so this point won’t be discussed anymore.

???

In this section it was outlined how the model building will proceed, where the options

with the least amount of model-dependency have been chosen. In this way the motivations

for a minimal model were given. Notwithstanding, it is not adequate to call it a minimal

model, because most of our choices were not uniquely determined due to the lack of

symmetries.
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Before turning to the discussion of a specific model,the conclusions and choices made

along this section are emphasised. First, it was determined that φ cannot be a SM particle

due to the relevance of its effects at the IR. After that it was investigated which would

be the most adequate Lorentz structure for φ, and the conclusion was that a real scalar

has the least amount of model-dependency. Then it was discussed how to avoid the HP

for φ. φ was chosen to be realised as a pNGB of a spontaneously broken approximate

global symmetry, because, out of the mechanisms studied so far, it is the most fitting

mechanism while taking cosmological considerations into account. The potential that is

responsible for the evolution of φ will have a tree- and 1-loop-level potential, however

the tree-level contribution V0, which is not forbidden by any symmetries at the UV, is in

general more relevant and necessary. This potential can be split into two pieces: V0,break,

that breaks the shift-symmetry completely, and V0,inv, that is invariant under a discrete

sub-group of the shift-symmetry. In order to stabilise the mass of φ consistently, the

couplings in V0,break must all depend on g1, such that it is the only source of explicit

symmetry breaking. Furthermore, its most relevant contribution at the IR is the linear

term in φ. It was conjectured that the coupling φ|H|2 and V0,break may have the same

origin at the UV. The other contribution V0,inv is periodic and with it, apart from issues

of quantum tunnelling, we can expect φ̄ to be successfully stabilised. It is presumed that

V0,inv is the result of a non-perturbative effect of the SSB of the global symmetry. See

Figure 7 for a diagrammatic representation of our discussion.

5.3 L+N Relaxion model

Having explored the general properties of CR models from the EFT point of view, we now

proceed to study a particular realisation of it, the L + N relaxion model [17, 18]. It will

first be shown how to implement this model in terms of our previous discussion. Then,

the theoretical conditions and bounds for which the model is consistent with the CR

mechanism will be presented. Finally, some of the experimental bounds will be studied.

5.3.1 Implementation

The correct implementation of the CR model at low-energy demands the specification of

the particle content and their interactions with φ, the choice of a cosmological context

and the identification of the back-reaction mechanism. We proceed to study them one by

161



one.

Particle content and back-reaction

It has been argued in section 5.2.3 that one needs both potentials V0,inv and V0,break

in order to stabilise the classical mode φ̄. In addition, there are indications that V0,inv

may be generated from non-perturbative effects of other dof, besides the Higgs, that are

relevant to the CR mechanism (the "Other Sectors" in Figure 7). In what follows, this

hint is pursued as way to make the model more minimal and elegant∗.

With this line of reasoning, we chose to introduce a new strongly-interacting sector

with an underlying non-abelian gauge group Gs, whose precise structure does not concern

us here. This choice is motivated from the fact that such theories have well studied non-

perturbative effects and can indeed generate periodic potentials [1, 21]. More precisely,

we are interested in the impact of the following term,

L θ = θ
c2
s

32π2C
a
µνC̃

a
µν , (5.30)

where Ca
µν is the strength field tensor of the gauge group Gs, with a the index of the

adjoint representation, C̃a
µν = 1

2εµναβC
aαβ is the dual of Ca

µν , cs is the gauge coupling and

θ is the coefficient of the operator. The operator (5.30) is a marginal operator that breaks

CP in the strong gauge sector and accounts only for boundary terms, since it can be

rewritten as a total derivative. As a consequence, this operator does not affect the theory

at the level of perturbation theory.

It can, however, have non-perturbative effects [1, 21, 88]. For instance, in a free

theory with a massless Dirac fermion ψ charged under this gauge group, the Lagrangian

is invariant under the transformations of the following global group,

U(1)V × U(1)A, (5.31)

where U(1)V transforms left- and right-handed fermions in the same way, while U(1)A
transforms them with opposite phases. For this reason they are called vector and axial

symmetries, respectively. In analogy with QCD, one expects that at a scale ΛSSB the gauge

∗It is not attempt to do the same with V0,break, because it would require us to study the UV-completions
of the model, which is out of the scope of this thesis.
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interaction becomes strong and that the fermion condenses into the vacuum expectation

value
〈
ψ̄ψ

〉
, which breaks the global symmetry group spontaneously. The SSB pattern is

given by

U(1)V × U(1)A → U(1)V , (5.32)

since the fermion condensate is invariant only under U(1)V . The Goldstone matrix U ,

that in this case is just a phase, transforms under U(1)A in the same way
〈
ψ̄ψ

〉
does.

The term in Eq. (5.30) may have significant impact on the SSB, as it depends explicitly

on the gauge fields that are strongly interacting. Notwithstanding, due to the anomalous

nature of the U(1)A symmetry, one can perform an axial rotation on the fermion that

eliminates the operator (5.30) from the Lagrangian. On the one hand, if the fermion

is exactly massless, then the Lagrangian is invariant under U(1)A and the θ-parameter

can be completely removed from it. Therefore, the parameter θ is not physical in this

case. On the other hand, if the fermion has a non-vanishing mass M , U(1)A is explicitly

broken. As a consequence, the axial rotation that eliminates the term in Eq. (5.30) renders

the mass term complex and θ-dependent. In this latter scenario, one may promote the

θ-dependent mass M(θ) to a spurionic field that transforms in the same way as U † under

U(1)A. Whence, after SSB, the lowest order mass-dependent operator one may write in

the Lagrangian is given by∗.

Λ3
SSB

(
MU + U †M †

)
. (5.33)

Taking the vacuum expectation value of U in the equation above leads us to the following

potential,

V (θ̄) ∼ Λ3
SSB|M | cos θ̄, (5.34)

where θ̄ is a function of θ and the vacuum expectation value of the pNGB.

The potential in Eq. (5.34) is known as θ̄-potential and is a direct, non-perturbative

effect of the operator in Eq. (5.30). In particular, it is a periodic potential, as required by

our previous discussion, however it is constant as θ̄ is just function of constant parameters.

In order to fit the mechanism above in the CR mechanism, one needs θ̄ to be a dynamical

∗Note that due to the fact that the axial symmetry is anomalous, i.e. it was never a symmetry of the
generating functional, its selection rules must not b satisfied to build the EFT after SSB. This point does
not interfere with our discussion, but it is of particular importance in the determination of the mass of
the pNGB, which is not protected by shift-symmetry. In this regard, the angular mode of the SSB of an
axial symmetry is not a pNGB in the usual sense.

163



quantity, in other words, a field. This is easily done by promoting θ̄ to a field [1, 21, 88],

θ̄ → θ̄ + a(x)
f

, (5.35)

where a is a real scalar and f is an energy scale.The potential of Eq. (5.34) can be re-

obtained by following the same procedure, but with the axial rotation parameter given

by θ + a(x)
f

rather than θ. In this manner we obtain a potential for a, which is given by∗

V (θ̄, a) ∼ Λ3
SSB|M | cos

(
θ̄ + a(x)

f

)
. (5.36)

This peculiar field a is called axion [88, 89] and is characterised by the interaction

L aCC̃ = c2
s

32π2
a

f
Ca
µνC̃

a
µν , (5.37)

that results in the potential in Eq. (5.36) given an appropriate particle content. The axion

is indeed an appropriate choice for the field φ, as it may be understood as a pNGB from

either a spontaneously broken axial U(1)PQ, which is usually denoted as Peccei-Quinn

symmetry and broken at the scale f [89], or from a Clockwork mechanism [90, 48], for

example. From now on it is assumed that φ is an axion and, since it responsible for the

CR mechanism, it is called relaxion.

From this discussion one anticipates how the relaxion, together with the strong gauge

sector, naturally introduces a back-reaction of the Higgs mass parameter. In the example

above, which is inspired from the mechanism that takes place in QCD, the potential

V (θ̄) is proportional to the mass |M | of the fermion. If this fermion acquires its mass

through the Higgs mechanism, just like the quarks do, the amplitude of the potential is

thus proportional to the vev of the Higgs. Therefore, as M2
H varies, so does the potential

in Eq. (5.36), which in turn affects the dynamics of the relaxion. In other words, this

is a concrete back-reaction from M2
H . We can be even more precise by noting that the

amplitude of the potential is large if the vev is large, implying that it becomes more

difficult for the classical mode φ̄ to overcome the barriers as the vev grows. With such

reasoning it is obvious that the model is guaranteed to stabilise the relaxion if its evolution

∗Due to the space-time dependence of the axial rotation parameter, the kinetic term of the fermion
will generate couplings proportional to ∂µ a. Such interactions, that are relevant for the phenomenology
of a, are not discussed here.
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makes v grow. In section 5.3.2, how this back-reaction affects the evolution of φ̄ will be

studied in detail.

Our example was based on the QCD scenario and it would be compelling if one could

take take Gs as the QCD colour group, because then the model would be even more

minimal. However, this is not possible due to the physical θ̄-parameter of QCD, θ̄QCD

[17, 18]. Through the measurement of the electric dipole moment (EDM) of the neutron

one can infer an upper bound for θ̄QCD, which is given by |θ̄QCD| . 10−10 [3, 88]. In the

presence of an axion, this parameter is dynamical and is stabilised near the experimental

value. This is achieved by minimising the potential in Eq. (5.36), for which the axion

acquires a vev 〈a〉 ' −θ̄f . In CR models such is not the case, as the relaxion must be

stabilised at the equilibrium configuration in Eq. (5.24) and as a consequence the relaxion

will in general drive θ̄QCD to a value excluded by the EDM of the neutron. For this reason

one cannot chose Gs as the QCD colour group, but need to introduce a new, hidden strong

sector instead.

Although it is impossible to use the framework of QCD in the CR model, the back-

reaction of the periodic potential, i.e. that the height of the potential (5.34) is proportional

to the vev of the Higgs, is certainly interesting and could be used to stabilise φ̄ correctly.

In order to retain this property, the fermions charged under the new strong gauge group

Gs must somehow interact with the Higgs. The most straightforward and minimal way

to do so is to introduce four left-handed Weyl fermions [17, 18, 91]: two SU(2)L doublets

L and Lc that transform under the fundamental and anti-fundamental of Gs with −1/2

and +1/2 hypercharges, respectively, and two singlets under the SM gauge group, N and

N c, that transform respectively only under the fundamental and anti-fundamental of Gs.

The most general renormalizable, interacting Lagrangian is thus given by

L L+N ⊃
c2
s

32π2
φ

f
Ca
µνC̃

a
µν −MLLL

c −MNNN
c − yHLN c − ỹH̃LcN + h.c., (5.38)

where ML and MN are Dirac masses, y and ỹ are the Yukawa couplings and we are using

the Weyl notation to contract the SU(2)L and the spinorial indices. In the Lagrangian

above it was already included the coupling between the relaxion and the gauge bosons,

which will generate the periodic potential of the relaxion. In the next section it will be

seen in detail how the condensation takes place and how the periodic potential depends

on the Higgs vev.
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Cosmological context

Some assumptions regarding the cosmological era in which the CR will take place

still need to be made. This choice is crucial to the model for two reasons. First, new

particles and interactions leave imprints on high precision measurements of the cosmolog-

ical evolution, for instance the Big Bang Nucleo-synthesis (BBN), the Cosmic Microwave

Background (CMB) and Large structure formation [77, 92, 93]. For this reason more

primordial eras of the cosmic evolution are preferred. Second, the EoM of the relaxion,

which is a Klein-Gordon equation analogous to the one in Eq. (C.27) in Appendix C,

depends explicitly on the Hubble parameter Hb. In particular, it controls the damping

of φ̄, hence one must have Hb under control if the evolution of φ̄ is to be successfully

stopped.

A reasonable choice for the cosmological epoch is inflation, an era before radiation

domination, in which the universe had an accelerated expansion (Appendix C is referred

for more details). One characteristic of this epoch is that the Hubble parameter is ap-

proximately a constant, that implies in a constant damping term in the EoM. However,

even with this damping, it is difficult to avoid the relaxion from gaining a lot of kinetic

energy as it evolves due to the potential in Eq. (5.28), which could make the stabilisa-

tion difficult. To avoid such situation and have the dynamical evolution of the relaxion

under control, we assume that it is in a slow-roll regime, i.e. it satisfies the conditions

of Eqs. (C.25) and (C.28). Stated in another way, the Hubble friction in the slow-roll

regime will allow for the relaxion to be stabilised by its potential V0. In what follows

it is assumed that the CR mechanism takes place during inflation and that the relaxion

slow-rolls, but the inflationary sector is left unspecified and it is assumed that there is no

relevant interaction between the relaxion and the inflaton.

???

At this point one can precisely see how the CR mechanism in the L+N model works.

At the beginning of inflation, when the relaxion has a generic small initial value, say

φ0 ' 0, the relaxion starts its evolution. We have argued that the vev v must grow as the

relaxion evolves, hence the initial mass of the Higgs shall be positive (i.e. the coefficient

g0 in Eq. (5.23) is positive) and will decrease as φ̄ approaches φ̄eq. Choosing without

loss of generality that φ̄eq > 0, this implies that g1 > 0 and that there is a critical value
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φ̄crit for which M2
H = 0. From this point onward the vev becomes non-vanishing and the

barrier of the potential grows until φ̄ cannot overcome it.

Note that for this argument to work, one needs the potential V0,break to induce the

correct evolution, in other words, it must drive φ̄ to large, positive values. Before the

critical point φ̄crit the EoM of φ̄ is approximately given by

3Hb
˙̄φ− r1g1Λ3 = 0, (5.39)

where the slow-roll condition (C.28) and the potential in Eq. (5.28) are used. The equation

above is trivially solved for a constant Hubble parameter and φ̄ grows if the coefficient r1

of the potential (5.28) is positive. One remark regarding quantum corrections is in order.

We stress again that the relaxion-Higgs interaction in Eq. (5.23) generates a quantum

potential at 1-loop. In particular, using Eq. (3.130) for the 1-loop Coleman-Weinberg

potential one obtains the following potential:

∆V1(φ) = g1Λ3

16π2φ+ · · · , (5.40)

where the dots denote logarithmic terms. Note that this potential has the opposite sign

in comparison to V0,break in Eq. (5.28), therefore, by the EoM, it will drive φ̄ to negative

values. In order to avoid the quantum contribution ∆V1 to dominate the EoM, one needs

r1 >
1

16π2 . (5.41)

With these properties it is thus straightforward to determine the conditions under

which the classical mode of the relaxion stops evolving; one must simply solve the EoM

after the Higgs acquires a vev and compute φ̄eq in terms of the parameters of the model.

In section 5.3.2 the stopping conditions of the relaxion will be studied in more depth.

5.3.2 Theoretical constrains

In this section the L+N model outlined in section 5.3.1 is studied in more detail. More

precisely, we will study the conditions under which the model works properly. All condi-

tions derived in this section are summarised in Table 4 [17, 18, 91, 94].

Strong Sector
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Let us first discuss the Lagrangian (5.38) in more depth, in particular let us see how the

potential depends on the vev of the Higgs and what kind of constrains does it introduce.

Before proceeding, one must determine the hierarchy between the energy and mass

scales involved. As it will be seen below, in order to successfully form a Higgs-dependent

potential, one needs the mass of at least one of the fermions to be below the condensation

scale 4πF . This condition allows for the respective fermion to form a condensate. In

order to simplify the discussion, it is assumed that only N and N c condenses, i.e. MN <

4πF < ML. Here, the mixing between N (N c) and the electrically neutral component

of L (Lc) is ignored, which is small if the mixing given by the Yukawa couplings y and

ỹ in Eq. (5.38) is not very large. In addition, it is assumed that v > F , in such way

that electroweak symmetry breaking (EWSB) happens before the condensation, because

it will avoid some phenomenological complications (for the opposite situation v < F see

[95]). Furthermore, for the Lagrangian in Eq. (5.38) to be valid at energies below the

cut-off Λ, the SSB of the symmetry that generated the relaxion must have broken, hence

f > Λ.

Given a sufficient separation between ML and 4πF , one may integrate L and Lc out for

energies 4πF < E �ML. The leading effect of this integration is given by the diagram∗

p

L

H

N

H̃

N c

= yỹ∗ iML

p2 −M2
L

p→0−−→ −iyỹ
∗

ML

, (5.42)

which results in the effective Lagrangian

L L+N → L eff = c2
s

32π2
φ

f
Ca
µνC̃

a
µν −

[
MN + δMN + yỹ

ML

|H|2
]
NN c + h.c. (5.43)

In the effective Lagrangian above the 1-loop radiative correction δMN from closing the

∗Here the Feynman rules for Weyl fermions [11, 42] are used.
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Higgs loop in the diagram (5.42),

δMN =
k

−k

N N c ' yỹ

16π2ML ln Λ
ML

, (5.44)

for Λ � ML, are already included, which can be relevant to our considerations as it is

proportional to ML.

At some point the Higgs will get a vev, hence the effective Lagrangian can be written

as

L eff = c2
s

32π2
φ

f
Ca
µνC̃

a
µν −

[
MN + δMN + yỹ

2ML

(v + h)2
]
NN c + h.c., (5.45)

with h the radial mode of the Higgs doublet. Lowering the energy, the strong group Gs

will condense below the scale 4πF . Following the same procedure used to obtain the

potential (5.36), one arrives at the expression for the periodic potential of the relaxion:

V0,inv(φ) ' (4πF )3
[
MN + δMN + yỹ

2ML

(v + h)2
]

cos φ
f
, (5.46)

where contributions from higher order operators are neglected. At this point the assump-

tion made regarding the EW scale and the condensation scale, i.e F < v, is very relevant,

because it implies that the radial mode h is classical and it is given by its EoM.

We may separate the potential V0,inv in two pieces:

V0,inv = Λ4
b cos φ

f
+ µ4

b

h

v

(
h

v
+ 2

)
cos φ

f
, (5.47)

where it was defined

Λ4
b(φ) ≡ (4πF )3

[
MN + δMN + yỹ

2ML

v2(φ)
]
, (5.48)

and

µ4
b(φ) ≡ yỹ

2ML

(4πF )3v2(φ). (5.49)

On the one hand, the term proportional to µ4
b is h-dependent and induces, in particular,

a mix between φ and h. The phenomenology of this scenario will be explored in section

5.3.3. On the other hand, the quantity in Eq. (5.48) is independent of h and represents
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the vev-dependent barrier that will stop the relaxion. In addition, for the vev to dominate

the barrier, one needs that

MN + δMN <
yỹ

2ML

v2(φ) (5.50)

during the final stages of the evolution. This implies that at the equilibrium configuration

one may approximately write

Λ4
b

(
φ̄eq
)
' µ4

b

(
φ̄eq
)
. (5.51)

Inflation

Let us now study some of the constrains that emerge from cosmological considerations.

First, it is assumed that the CR mechanism takes place during inflation, in a way that the

relaxion is not the inflaton. This implies that the energy density of the relaxion cannot

dominate over the energy-density of the inflaton, else inflation would not be driven by the

latter. We thus impose that

ρinflaton > ρφ. (5.52)

Using the expression of the energy-density of the inflaton in the slow-roll regime in Eq.

(C.24) and the expression for the zero-point energy of the relaxion in Eq. (5.28), the

condition above can be rewritten as

3M2
PH

2
b > r0Λ2 ⇒ Hb >

√
r0

3
Λ2

MP

, (5.53)

where MP = (8πG)−1/2 is the reduced Planck mass and Hb is the Hubble parameter.

Second, in section 5.3.1 we have argued that the relaxion should be in a slow-roll

regime, which requires Eqs. (C.25) and (C.28) to be satisfied. Before the critical point

φ̄crit, for which M2
H = 0, the slow-roll velocity of φ̄ is approximately given by

˙̄φSR = r1g1Λ3

3Hb

, (5.54)

which is obtained from the EoM using the slow-roll condition (C.28). Eq. (C.25) thus

implies
1
2

(
r1g1Λ3

3Hb

)2

< r0Λ4 ⇒ r2
1g

2
1Λ2 < 6H2

b . (5.55)
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From the second slow-roll condition in Eq. (C.28) together with Eq. (5.28) we obtain

r1g1MP√
6r0Λ

< 1, (5.56)

which indicates that the coupling g1 must be quite small if r0 ∼ r1 ∼ O(1).

Third, inflation should take place at an energy scale below the cut-off, such that it is

reasonable to expand the effective Lagrangian (5.8) in a series of operators. Therefore

Hb < Λ. (5.57)

Fourth, we assume that the classical mode is dominant during the relaxion excursion.

This means that the overdensity δφ of the relaxion energy density is small [85] and whence

δφ = H2
b

2π ˙̄φSR
< 1⇒ Hb <

(r1g1)
1
3

√
3

Λ. (5.58)

One remark regarding the equation above is in order. Depending on the shape of the

potential V0, Eq. (5.58) does not necessarily hold. The behaviour of the quantum fluctu-

ation δφ in those cases is as important as the classical mode and impacts the evolution of

the latter since they can exchange energy. Such scenarios are not studied in this thesis,

which are carefully considered in [18], and the focus on the Hubble friction as the source

of energy dissipation.

Fifth, in order for the mechanism to take place during inflation, the barrier in Eq.

(5.29) must have already formed. This puts a constraint on the scale of inflation,

Hb < 4πF. (5.59)

The sixth condition regards the period of reheating [85, 96]. After the end of inflation,

the temperature of the universe is typically much smaller than the initial temperature

of the radiation domination era. For this reason, an additional period by the end of

inflation, named reheating, is necessary to bring the universe to the correct temperature.

A problem for the stabilisation mechanism may arise from this epoch, since the barrier

of the periodic potential vanishes if the reheating temperature TRH by the end of the

reheating is larger than the confinement scale. In this case, due to the lack of V0,inv, the
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relaxion would not be stabilised anymore and would therefore be free to keep evolving.

In order to avoid these problems, it is imposed that the reheating temperature is smaller

compared to the confinement scale,

TRH < 4πF, (5.60)

in such a way that the barrier of the potential does not vanish after the reheating.

Lastly, one must compute the total number of e-folds necessary to slow down the

relaxion during the inflationary period and allow it to completely scan the Higgs mass

parameter. For this calculation it is assumed that the CR mechanism lasts during the

entire inflationary period, such that one may write the total number of e-folds in Eq.

(C.32) as

Ne =
∫ φ̄eq

φ̄0
dφ̄Hb

˙̄φ
. (5.61)

Note that this equation holds even if the relaxion is not the inflaton, as we are assuming.

Since in the entire excursion of the relaxion both Hb and ˙̄φ ' ˙̄φSR remain approximately

constant, Ne is given by

Ne '
(
φ̄eq − φ̄0

) ˙̄φSR

Hb

' g0Λ
g1

Hb
3Hb

r1g1Λ3

' 3g0H
2
b

r1g2
1Λ2 . (5.62)

Stopping condition

We now proceed to discuss how the relaxion stops its evolution. As stressed, the

relaxion is expected to stop due to the back-reaction of the periodic potential in Eq.

(5.47), whose barrier grows with the Higgs vev. At the critical point φ̄crit the total energy

density of the relaxion is given by

Ecrit = 1
2

˙̄φ2
SR − g0r1Λ4, (5.63)

where the zero-point energy r0Λ4 is suppressed. Note that the first contribution in Ecrit

is purely kinetic energy, whereas the second contribution comes from the potential energy
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Sector Explanation Condition

Strong
Sector

N and N c condense MN < 4πF < ML

Condensation below EW scale v > F

Broken global symmetry f > Λ
vev dominates the barrier v2 > 2MLMN

yỹ
+ M2

L

16π2 ln Λ
ML

Inflation

Inflaton energy density
dominates

Hb >
√

r0
3

Λ2

MP

Classical > Quantum Hb <
(r1g1)1/3

√
3 Λ

Number of e-folds Ne '
3g0H2

b

r1g2
1Λ2

Inflation below the cut-off Hb < Λ
Barrier forms Hb < 4πF

Reheating TRH < 4πF
Slow-roll r2

1g
2
1Λ2 < 6H2

b

Slow-roll r1g1MP√
6r0Λ < 1

Stopping
Condition

Height of the barrier necessary
to stop the relaxion

Λ4
b

(
φ̄eq
)

= r1g1Λ3f

Table 4: Conditions discussed in section 5.3.2 imposed in order for the CR mechanism in
the L+N model to be consistent.

of V0,break. From energy conservation, if there were no dissipation, the relaxion would stop

in a configuration for which the potential energy density equals to Ecrit, which exists since

the barrier of V0,inv grows as φ̄ grows. If one adds the Hubble friction, that dissipates the

kinetic energy of the relaxion, the relaxion will stop before this configuration. The exact

expression for the equilibrium configuration φ̄eq is given by the asymptotic behaviour of

the solution of the EoM of φ̄,
¨̄φ+ 3Hb

˙̄φ+ V ′
0 = 0, (5.64)

with V0 given by Eqs. (5.25), (5.28) and (5.47).

In general Eq. (5.64) cannot be solved analytically [18]. However, in the case that

H−1
b is much smaller than the time ∆t spent by the relaxion to cross a wiggle of the

periodic potential, in other words, when the Hubble friction is very strong, the EoM can

be written approximately as
˙̄φ = − V ′

0
3Hb

, (5.65)

and implies that the relaxion will stop immediately as V ′
0 = 0. From Eqs. (5.28) and
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(5.47) one obtains that this condition is first satisfied when [17]

Λ4
b

(
φ̄eq
)

= r1g1Λ3f. (5.66)

One can also study the opposite situation, i.e. Hb∆t � 1, in which the Hubble friction

is small. As a consequence, the relaxion oscillates quickly through the barriers and loses

very little kinetic energy, hence the averaged velocity of φ̄ is still described by the slow-roll

velocity (5.54). After a careful analysis of the EoM [18], it is possible to show that the

barrier of the periodic potential at the stopping configuration is approximately given by

Λ4
b .

1
2

˙̄φ2
SR, (5.67)

which agrees with our previous argumentation based on energy conservation∗.

???

In this section some constrains on the L + N model that assure the mechanism to

properly work were studied. They are summarised in Table 4. In addition to those, one

can use them to compute an upper bound for the cut-off Λ in terms of only the height

of the barrier Λb at the equilibrium point and of the number of e-folds Ne [18, 91, 94].

∗Note that the potential V0,break varies very little from the critical point to the equilibrium one, whence
the kinetic energy is almost entirely transferred to the periodic potential.
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Starting from Eq. (5.62) for the number of e-folds one obtains

Ne '
g0H

2
b

r1g2
1Λ2

= g0

r1g2
1Λ2H

5
b

1
H3
b

>
g0

r1g2
1Λ2

(√
r0

3
Λ2

MP

)5( 33/2

r1g1Λ3

)

=
g0r

5/2
0

3r2
1

 Λ5

g3
1M

5
P

=
g0r

5/2
0

3r2
1

 Λ5

M5
P

(
r3

1Λ9f 3

Λ12
b

)

>

g0r
5/2
0

3r2
1

 Λ5

M5
P

(
r3

1Λ9H3
b

Λ12
b

)

>

g0r
5/2
0

3r2
1

 Λ5

M5
P

(
r3

1
Λ12
b

)(
r0

2

)3/2 Λ15

M3
P

=
(
g0r

4
0r1

35/2M8
P

)
Λ20

Λ12
b

, (5.68)

where Eqs. (5.53), (5.57), (5.58) and (5.66) were used. Using that the reduced Planck

mass is MP ' 1018 GeV, one has the following bound for the cut-off,

Λ .

(
35/2

g0r1r4
0

)1/20( Λb

103 GeV

)3/5(
Ne

1026

)1/20
1010 GeV, (5.69)

where the value 1026 for the number of e-folds is the maximum allowed with reasonable

fine tuning. Note that the cut-off can be as high as 1010 GeV.

5.3.3 Experimental constrains

Having derived the theoretical constrains of the L+N model, we proceed to study some

of its the phenomenological signatures. Our brief analysis will be focused on general

properties of relaxion models and on some aspects of the phenomenology of the L + N

model.

Higgs-Relaxion mixing

We begin with a more general analysis of relaxion models. Independently on the

choice of the additional particle content and interactions, all relaxion models have the
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linear coupling with the Higgs, given by Eq. (5.23), as a consequence there is a mixing

between the Higgs and the relaxion [86, 87], so one needs to diagonalise the corresponding

mass-matrix to obtain the mass eigenstates. Before writing down this mass-matrix, let us

understand what are the impacts of this mixing at the phenomenological level. Suppose

that the the diagonalisation is achieved by the rotation

φ
h

 =

 cos θ sin θ

− sin θ cos θ


φ̃
h̃

, (5.70)

with φ̃ and h̃ the respective mass eigenstates. This implies that the all the interactions

of the Higgs in the SM will be now proportional to cos θ, for instance the coupling to the

top kF and the triple-gauge boson coupling k3
V , which were first introduced in section 3.4

in the context of Composite Higgs Models. They are now given by

kF → kF cos θ, k3
V → k3

V cos θ. (5.71)

From the experimental values in Eq. (3.141), extracted from Figure 4, one concludes that

this angle is very small and even compatible with zero, implying that the mixing is very

suppressed. To determine how does this fact impact the model, one needs to compute θ

in terms of the parameters of the model.

The relevant terms in the Lagrangian are given by Eqs. (5.23) and (5.47),

L mix = g1Λφ
1
2(v + h)2 − Λ4

b cos φ
f
− 1

2m
2
hh

2 − 1
2m

2
φφ

2, (5.72)

where m2
h and m2

φ are the mass parameters of h and φ, respectively. In order to obtain

the eigenstates today, one expands the relaxion around its equilibrium point, φ→ φ̄eq +φ,

in this manner the Lagrangian is given by

L mass = −1
2

(
φ h

)
M

φ
h



= −1
2

(
φ h

)m2
φ −

Λ4
b

f2 cos φ̄eq
f
−g1Λv

−g1Λv m2
h


φ
h

. (5.73)
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The rotation in Eq. (5.70) diagonalises the mass-matrix above,

L mass = −1
2

(
φ̃ h̃

)m̃2
φ 0

0 m̃2
h


φ̃
h̃

, (5.74)

with m̃2
φ and m̃2

h the mass eigenvalues. Therefore the mixing angle can be written as

tan 2θ = ± 1√(
m̃2

h
−m̃2

φ

2Mhφ

)2
− 1

, (5.75)

where Mhφ is the off-diagonal term of the mass matrix M.

The fact that θ is very small implies that the denominator of Eq. (5.75) is quite large,

m̃2
h − m̃2

φ

2Mhφ

� 1. (5.76)

To expand the above equation in terms of the parameters of the model, one makes the

assumption that the physical mass of the relaxion m̃2
φ is much smaller than m̃2

h. This is

reasonable from the fact that axion-like particles (ALP’s) tend to have small masses, but

this depends on what kind of UV-completion generates the ALP, which in the particular

case of the relaxion is not determined [3, 88]. Using Eqs. (5.51) and (5.66), and taking

into account that m̃2
h ∼ v2, one obtains

m̃2
h − m̃2

φ

2Mhφ

' m̃2
h

2g1Λv
' v

g1Λ
. (5.77)

From Eq. (5.76) above is rewritten as

1
g1

v

Λ � 1. (5.78)

Therefore, one obtains the following estimate for the coupling g1,

g1 �
v

Λ � 1, (5.79)

where the expectation that v � Λ is being considered. Eq. (5.79) is an indication that

g1 is extremely small.

One remark regarding the bound (5.79) is in order. As stressed, every relaxion model
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will have at least a mixing with the Higgs from the linear interaction in Eq. (5.23).

Nevertheless, additional sources of mixing appear from the particular characteristics of

each model. Take for instance the L + N model developed so far. This model has a

Higgs-dependent barrier, which modifies non-trivially the mass-matrixM. In particular,

the off-diagonal term becomes

Mhφ →Mhφ = −g1Λv − 4µ
4
b

vf
sin φ̄eq

f
, (5.80)

due to the Higgs-dependent barrier in Eq. (5.47). At the equilibrium point, using Eqs.

(5.66) and (5.51), and supposing that

sin φ̄eq

f
∼ O(1), (5.81)

which reflects our ignorance on the precise value of φ̄eq, Eq. (5.80) can be written as

Mhφ = −g1Λv − 4µ
4
b

vf
sin φ̄eq

f
' −g1Λv − 4g1r1

Λ3

v
' −g1

Λ3

v

(
1 + v2

Λ2

)
' −g1

Λ3

v
, (5.82)

where in the second equality it was used that r1 is also a O(1) parameter (see Eq. (5.41))

and in the last step that v � Λ. From the result above we obtain the following bound

g1 �
(
v

Λ

)3
� 1, (5.83)

which is clearly distinct from the one obtained in Eq. (5.79), though they both imply in

a small g1.

This example shows to us how intricate it is to make general, model-independent

predictions in relaxion models. Although the mixing between the Higgs and the relaxion

is indeed a general characteristic of relaxion models, it is clear that each particular model

will have a distinct value for the mixing, since they may have additional contributions

to the mass-matrix. Even worse, these can suppress the contribution from the linear

interaction (5.23), as it is clear from the derivations of the estimates to the coupling g1

in Eqs. (5.79) and (5.83), making the model-independent signals more concealed. In

order to understand more clearly how difficult it is to make general statements regarding

relaxion models, let us consider the L + N model once again. We have seen in section

5.3.2 that this model predicts the condensation of the fermions N and N c, that at low
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energies manifests itself as an electrically neutral meson∗ field η̃. This field enters in the

low-energy EFT after the condensation of the new strong group through the Goldstone

matrix U = exp
(
−iη̃/

√
2fη̃

)
, with fη̃ the corresponding decay constant. Expanding the

potential (5.47) while taking into account η̃ results in a mixing of it between both the

Higgs and the relaxion. In other words, the L + N models predicts not only additional

terms to Mhφ, but also that the mass-matrix is a 3 × 3 matrix that mixes η̃, φ and h,

which thus implies in a more complicated diagonalisation. In this case all off-diagonal

terms are still all proportional to the coupling g1, therefore one expects similar results to

hold, i.e. a very small g1.

We emphasise once more that the fact that the Higgs mixes with the relaxion is general

and independent of which particular model is being considered. How it mixes, however, is

model-dependent. We can only expect that the experimental bounds on kF and k3
V force

some of the mixing angles to be very small, which in turn could imply in a bound for g1,

as in the case of Eqs. (5.79) and (5.83).

The mixing between the Higgs and the relaxion would be a general phenomenological

consequence from the point of view of collider physics. It remains to analyse the phe-

nomenology from the cosmological perspective. Unfortunately, the relaxion itself does

not leave any relevant imprint on the cosmological history of the universe, because the

relaxion mechanism takes place at primordial times of the universe (be it during inflation

or not), and there are no direct experimental probes of those epochs. Furthermore, since

g1 � 1, the relaxion is very weakly interacting, hence it will not have any relevant im-

pact on more recent cosmological events like the Cosmic Microwave Background (CMB)

or Big-Bang Nucleosynthesis (BBN). We see that, with respect to the other solutions to

the Hierarchy Paradigm, the CR models are almost invisible to experimental searches of

cosmology.

L+N phenomenology

As the model-dependent experimental signs are more pronounced as the model inde-

pendent ones, one could in principle study the phenomenology of the L + N model in

more depth. A complete review of those, however, is out of the scope of this thesis. In

∗This meson is the analogue of η′ of QCD, that is associated with the anomalous axial symmetry of
the fermions. As noted in section 5.3.2, this meson will have a mass of the order of the condensation
scale 4πF since it is not protected by shift-symmetry.
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spite of that, it is necessary to point out some of the relevant signatures in order to have

a more complete understanding of the model. Based on the analysis done in [91], we will

comment on three phenomenological aspects of the L+N model.

The first and most straightforward consequence of having fermions charged under the

SM gauge group is their impact on the EW precision measurements (EWPM), which were

already mentioned in previous chapters [1, 58]. The EWPM can be split in two parts:

oblique and non-oblique corrections. "Oblique" refers to corrections to the propagators of

gauge bosons and can be parametrised by the extended Peskin-Takeuchi set of parameters

STUVWX∗. The constrains on the parameters of the new strong sector, namely ML,

MN , y and ỹ, are obtained by making use of the experimental values of the accessible

EW observables and by minimising the corresponding χ2 function. Some of the results

obtained in [91] are plotted in Figure 8a), which shows the excluded region in the y−ML

plane in the case that y = ỹ and for distinct values of MN .

It is clear from Figure 8a) that the oblique effects already constrain some of the

parameter space, but there are also relevant non-oblique signatures in the L+N model.

The most important one regards the decay channels of the Higgs, because, due to the

Yukawa couplings in Eq. (5.38), the Higgs can decay into the fermions from the new

strong sector. Moreover, the fermions will hadronize into the unstable meson η̃, which

will at some point decay to SM particles. As a consequence, the branching ratios of the

Higgs, in particular the invisible one, are modified and further constrains on the parameter

space are obtained. The main results of [91] are shown in Figure 8b).

In addition to the EWPM, one can obtain some interesting bounds from cosmology.

We stressed that the relaxion itself is almost invisible to cosmological searches, but the

fermions from the new strong sector interact with the SM and can therefore leave some

traces during the cosmological evolution. For instance, after the temperature of the

universe is lower than the condensation scale 4πF the strong group will hadronize and

η̃ mesons will be produced. They will eventually decay into either hadrons from the SM

or radiatively into photons and leptons, which implies that the distributions of protons,

neutrons, electrons and photons may be modified. One of the cosmological events that

may be disrupted by the decays of the η̃ meson is Big-Bang Nucleo-synthesis (BBN), the

∗The Peskin-Takeuchi parameters STU can unequivocally measure the deviations of the EW sector
caused by new physics only if this latter is much heavier than the EW scale. If it is not far or even below
the EW scale, the additional three parameters VWX are needed [58, 97, 59].
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Figure 8: Excluded regions (coloured) at 95% CL from the bounds on a) oblique EWPM
and b) Higgs decays, for two distinct values of MN . In the plots above it is considered
that y = ỹ and that the strong group is given by Gs = SU(3). Both plots were taken
from [91].

epoch in which light elements were formed and that took place at T . MeV [77, 85]. In

this manner, depending on the value of the condensation scale and on the life-time of η̃,

some regions of the parameter space are excluded by taking the precise data from the

BBN into account [3, 98]. The results of [91] are shown in Figure 9. The excluded region

in this case depends heavily on how η̃ decays. If it decays into hadrons of the SM, which

can alter the ratio of protons and neutrons, then its life-time cannot exceed 10−1 s. If it

decays radiatively into photons and leptons, the upper bound of the life-time is thus 104

s [98].

5.4 Conclusions

Cosmological Relaxation models offer a novel way of approaching the Hierarchy Paradigm.

With respect to other solutions, CR models take the evolution of the universe into account

from the beginning, which allows us to make contact with cosmological phenomena more

consistently. Furthermore, they do not rely on new symmetries, neither local nor global

ones, but on dynamics instead. As it was seen, this makes the discussion in terms of EFT

rather difficult, because there are no selection rules available to unequivocally determine

the properties of the mechanism at low energies. Notwithstanding, some of the most
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Figure 9: Excluded region (coloured) from the bounds imposed by BBN, in term of
the Yukawa couplings and the condensation scale F , for distinct values of ML and for
Gs = SU(3). Taken from [91]

important features of the CR mechanism, for instance the back-reaction of the Higgs

mass parameter, are encoded in the EFT formulation and, as it was shown, the relaxion

models have a solid motivation based on this framework. Altogether the CR model, and

more in particular the relaxion models, stabilises the Higgs mass parameters due to the

coupled dynamical evolution of M2
H and φ during primordial epochs of the universe, and

therefore disregards the notion that new physics should be around TeV scale.

We have studied in addition the L+N model, that is a specific realisation of the CR

mechanism, together with some of its phenomenological consequences. From the theo-

retical point of view, interesting features of this model are its simplicity and the explicit

representation of the back-reaction through the Higgs-dependent barrier. From the more

phenomenological view, the L + N model offers a rich variety of experimental signals,

which spans from EW precision measurements to deviations from Big-Bang Nucleosyn-

thesis, making the model testable in many scenarios.
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Conclusions

In this thesis the Hierarchy Problem of the SM of particle physics was studied along

with some of its solutions. Particular emphasis to the formulation of the question, as

there can only be answers to well defined questions, was given. After presenting four

distinct solutions to the problem, they will be now analysed from the point of view of

the classification made in Chapter 1, in terms of the Scalar Mass Problem (SMP) and

the Hierarchy Paradigm (HPa), taking into account whereas they are symmetry-based or

dynamical solutions.

We begin our discussion with symmetry-based solutions. Models that propose to solve

the Hierarchy Problem by introducing new symmetries are very similar, because they all

introduce new selection rules in the IR that protect the Higgs mass parameter at tree-

and quantum-level. Exact symmetries, however, render the phenomenology incompatible

with experiments, so all the new symmetries must be broken, implying that the low-energy

expansion of the corresponding EFT must contain operators that explicitly break them.

These operators parametrise how the effects of new physics generate the mass term for

the Higgs and are characterised by a new energy scale f , that is the scale at which new

physics is expected to be observed. As a consequence, the Higgs acquires a non-vanishing

mass, which depends on the scale f and on the relevant couplings, and is in general much

smaller than the Planck mass MP . With such reasoning, the question being addressed is

obviously the SMP, since one relies on the techniques and predictions of the EFT in order

to stabilise the Higgs mass parameter in the IR. Note that till this point the fine tuning

(FT) is non-existing, as one is entirely within the EFT framework.

The fact that the mass of the Higgs is computable and given in terms of f , allows us to

predict the value of the latter or, at the least, to have an order of magnitude estimate. For

instance, from the explicit expression for the Higgs mass in the Minimal Supersymmetric

SM (MSSM) one expected that the stop mass, proxy for the soft-breaking scale of SUSY,

would be around 1 TeV. However, for all symmetry-based solutions studied in this thesis,

the respective experimental signatures were not observed. Hence, the scale f is larger

than the value computed from the EFT, meaning that the prediction of the latter is at

odd with observations. This situation is usually circumvented assuming a certain amount

of FT, in other words, one assumes that there are unknown UV effects that contribute
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to the stabilisation of the Higgs mass. Concretely, we assume that there is an additional

contribution m2
h

∣∣∣
UV

to the physical Higgs mass m2
h,

m2
h = m2

h

∣∣∣∣
EFT
−m2

h

∣∣∣∣
UV
,

where m2
h

∣∣∣
EFT

is the EFT prediction, for instance Eq. (2.139) in the case of the MSSM,

and the cancellation between both terms is such to obtain the observed value for the

physical mass. As stressed in Chapter 1, such UV effects do not respect the decoupling

of heavy modes, which is a core principle of the EFT framework, and must be introduced

by hand. Therefore, from the moment that it is assumed that there is a certain amount

of FT being created, such that the Higgs mass parameter is stabilised at its experimental

value, we are abandoning the EFT approach and asking ourselves why the Higgs mass is

smaller than what we expected it to be, i.e. the HPa is being addressed.

In essence, the symmetry-based solutions studied in this thesis have a connection

with both SMP and HPa. On the one hand in their theoretical formulation, these models

properly address the SMP and make predictions consistent with the principles of EFT. On

the other hand, the disagreement with experiments and the introduction of FT deviate the

model from an approach entirely within the EFT framework, introducing in this manner

the HPa.

Let us now turn to the solutions that are based on dynamics. From our EFT analysis

of the CR models, which implement the dynamics through the cosmic evolution, one

concludes that such solutions are completely different with respect to symmetry-based

ones. In particular, the focus is no longer how to generate a mass term for the Higgs

given a particular broken symmetry, but in how the corresponding EFT evolves from the

far-UV to the IR and allows the Higgs to be dynamically stabilised. In Chapter 5 we

described how the pair (M2
H , φ̄) evolved classically, and showed that it depends on the

evolution equations and on the initial conditions. The latter could be a potential source

of FT, in the sense that the evolution could only work by considering very specific initial

conditions. However, from the EFT approach it was clear that the whole mechanism

depends only mildly on them (apart from the sign of M2
H), which followed directly from

the fact that the explicit form of the theory at the UV is unknown. Hence, from this

side the models do not suffer from FT problems. The same is not true for the coupled

evolution equations, since they are only partially described by the general EFT approach.
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From general arguments it was determined how the dynamics of φ affected M2
H , but the

necessary back-reaction is completely model-dependent. Therefore, there may be some

FT associated with the new degrees of freedom (dof) that generate the back-reaction,

which usually manifests itself through the stopping conditions of φ. Even so, this will

depend on the experimental constraints of each model and, at least for the L+N model,

the allowed parameter space is still quite large.

What is clear from this discussion is that CR models are much more associated with

the SMP rather than the HPa, as the core of the models are built upon the EFT framework

and the FT is only introduced, if it is, from model-dependent factors. Given that CR

models address more intensely the SMP, one must deepen the understanding of EFT

description of dynamical-based approaches to the Hierarchy Problem. In what follows

the relation between CR models and EFT’s will be discussed in more detail, in particular

regarding the decoupling principle.

It is not trivial that the Wilsonian decoupling principle is respected in the case of

EFT’s with an associated dynamic. After all, note that in CR models the stabilisation of

the Higgs mass requires very large field values in the IR (in some cases even larger than

the Planck mass), which in principle is a contradiction to the decoupling of heavy modes.

As pointed out recently in [28, 99], this is not the case, and the reason lies precisely

on the dynamical nature of the models: The fact that the CR mechanism rely on very

heavy modes to stabilise the Higgs mass parameter in the IR is not a violation of the

Wilsonian decoupling, because there is sufficient time to observe them. More precisely,

at a given energy scale E, the EFT predicts that the probability for the production of

quanta with energies much larger than E is very suppressed. However, if one waits long

enough, or if has sufficient samples, one can overcome these suppressed probabilities and

indeed observe physical states with energies above the present threshold. One subtlety of

this argument lies on the requirement that the relevant fields are tightly connected to the

evolution, such that the production of quanta with a given energy depends on time. This

is true for the case of CR models, since the evolution of the universe defines the energy

scale of the thermal bath and therefore changes the respective dispersion relations at each

instant.

One remark is in order. Although the arguments above explains the apparent contra-

diction of CR models with a very clear physical reasoning, it does not elucidate what is
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their underlying physics. In other words, it is not straightforward to determine which fun-

damental dof render the dynamical evolution of the EFT consistent with the decoupling

principle. As stressed in [28], one possible realisation in the context of CR models uses

the graviton, the particle that mediates gravitational interactions, because it is precisely

the field that induces the cosmological evolution. Nevertheless, the details of this idea

are not explicitly stated and it is possible that this is not the only feasible alternative. A

more precise analysis of this situation could be subject of future investigation.

???

It is clear from our discussion that the Hierarchy Problem is, even after decades of

research, still a rich subject with many theoretical as well experimental prospects. Not

only its solutions keep guiding us to the search for new physics beyond the standard model,

but also with each new solution the comprehension of the problem itself is improved.

In this manner, the conceptual and phenomenological difficulties behind the Hierarchy

Problem are slowly unravelled, and so the path to the future of particle physics is paved.
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A Effective actions and potentials

In this appendix we review the concepts of effective actions and the techniques of effective

potential. This is a review based on [1, 8, 20, 21, 100, 101].

The method of effective action in Quantum Field Theories is an alternative approach to

calculate quantum contributions. Instead of computing loop diagrams for each amplitude

of interest, all loop effects are resumed in the Lagrangian (or more precisely in the action),

such that all vertices produced by this new action, the so called effective action, already

contains the renormalized quantum effects.

This appendix is structured in the following way. In the first section we develop the

basic intuition behind the concept of effective action. Then, we show explicitly how to

compute the effective action and the corresponding effective potential. In particular, we

perform these calculations using two distinct regularisation methods.

A.1 The effective action

To compute any given n-point function in a Quantum Field Theory it is enough to take

derivatives of the generating functional Z[J ] with respect to the external current J . Con-

cretely, let Z[J ] be given by

Z[J ] =
∫
Dφ eiS[φ]+i

∫
d4x φ(x)J(x), (A.1)

where φ(x) are some set of fields, whose precise structure does not concern us here, and

S[φ] is the classical action. To simplify the following discussion, we will use the connected

generating functional, defined from Eq. (A.1) as

Z[J ] = eiW [J ], (A.2)

which generates only connected amplitudes. Eq. (A.1) can be rewritten as

iW [J ] =
∫

[Dφ]c e
iS[φ]+i

∫
d4x φ(x)J(x), (A.3)

where the subscript c in the integration measure leaves explicit that we are summing only

in the connected diagrams. As usual, the connected n-point function G(n)
c can be written
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as the following functional derivative:

G(n)
c (x1, · · · , xn) = δnW [J ]

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

. (A.4)

To take into account for quantum effects, Eq. (A.4) must be supplemented with a

renormalization procedure, which involves the redefinition of the parameters and many

loop integrals for each n-point function of interest. This necessity steams from the fact

that the action S[φ] is fully classical, in the sense that it does not contain any information

regarding the quantum nature of the theory and depends therefore only on the bare

couplings and fields. From this reasoning we may put forward the question if there exists

a modified action Γ[φ] that contains all renormalized quantum effects and will therefore

allows us to compute any G(n)
c with only tree-level diagrams.

It is indeed possible to obtain such an action Γ[φ]. Based on the previous discussion,

we may define it formally and indirectly as

iW [J ] =
∫

[Dφ]c e
iS[φ]+i

∫
d4x φ(x)J(x)

=
∫

tree
[Dφ]c e

iΓ[φ]+i
∫

d4x φ(x)J(x), (A.5)

where tree denotes that the integral is only over the tree-level diagrams∗. Obviously, Eq.

(A.5) permits us to compute Γ directly in terms of the classical action S. Naively we may

expect the following equation to hold,

iΓ ∼
∫

loops
[Dφ]c e

iS[φ],

where loops denotes that we are summing only over the loop diagrams. To make sense

of the equation above, we need to formulate it more precisely. First, note that Γ is a

functional of φ and contains information of all amplitudes with an arbitrary number of

external states. Therefore, the argument of S inside the integral must be shifted by

some φ̃ in order to insert φ̃ in each external line of each n-point function computed from

∗The fact that Eq. (A.5) is restricted to tree-level diagrams means that the integral is selecting only
the field configurations φJ that satisfy the equations of motion, which are now given by

δΓ[φJ ]
δφJ(x) = −J(x).

From the equation above one can relate Γ[φJ ] and W [J ] through a Legendre transformation [21]
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S. Hence, the action Γ in the naive equation above becomes a function of this external

configuration φ̃ and may be rewritten as

iΓ[φ̃] ∼
∫

loops
[Dφ]c e

iS[φ+φ̃]. (A.6)

However, the equation above is still insufficient to describe Γ[φ], because we need to

better specify the integration domain. To understand how to perform the integral, take

for instance a loop diagram, with an arbitrary number of external states, that cannot

be separated into two disconnected diagrams by removing an internal line. Diagrams

of this type are called 1 Particle Irreducible (1PI) and contribute to the integral in Eq.

(A.6). Consider now a second loop diagram which is not 1PI, because in the absence of

an internal state it is simply the product of two disconnected 1PI loop diagrams. This

latter can be represented as

(A.7)

where each blob is a 1PI loop diagram. We note that diagrams such as the one in Eq.

(A.7) do not contribute to the integral in Eq. (A.6) and the reason is the following. As

stressed, 1PI diagrams are ones that need to be taken into account to compute Γ[φ], and

so the vertices produced by it contain information on all 1PI diagrams. The diagram in

Eq. (A.7) is nothing but a tree-level composition of 1PI diagrams, therefore it does not

belong to the integration in Eq. (A.6), but to the one in Eq. (A.5). In conclusion, only

1PI must be considered and hence

iΓ[φ̃] =
∫

1PI
[Dφ]c e

iS[φ+φ̃] (A.8)

is the correct expression∗ for the effective action Γ[φ]. In terms of exponential the equation

above is given by

eiΓ[φ̃] =
∫

1PI
Dφ eiS[φ+φ̃], (A.9)

in which connected and disconnected diagrams are considered.

∗In the discussion above only perturbation theory is considered. If other effects steaming from non-
perturbative physics are relevant, these must be added to the computation of Γ[φ] [1].
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A.2 Coleman-Weinberg potential

Next we show how to compute the effective action Γ[φ] explicitly. Let us first consider

the action of a real scalar field given by

S[φ] =
∫

d4x
[1
2(∂ φ)2 − V (φ)

]
, (A.10)

with V (φ) the corresponding potential. To compute Γ[φ] in Eq. (A.9) we must first shift

the field φ by some φ̃,

S[φ+ φ̃] =
∫

d4x
[1
2
(
∂ φ+ ∂ φ̃

)2
− V (φ+ φ̃)

]
(A.11)

=
∫

d4x
[1
2(∂ φ)2 + 1

2(∂ φ̃)2 + ∂ φ ∂ φ̃− V (φ̃)− φV ′(φ̃)− 1
2φ

2V ′′(φ̃) + · · ·
]
,

where the dots denote higher order terms in the expansion of the potential. From the

above expansion we may compute Γ[φ̃] perturbatively, such that it may be written as

Γ[φ̃] = Γ(0)[φ̃] + Γ(1)[φ̃] + · · · , (A.12)

where Γ(n)[φ̃] denotes the nth loop contribution. It is thus obvious that

Γ(0)[φ̃] =
∫

d4x
[1
2
(
∂ φ̃
)2
− V (φ̃)

]
. (A.13)

The 1-loop contribution involves terms only up to φ2, but since the integration is restricted

to 1PI diagrams, linear terms do not contribute. Hence,

eiΓ
(1)[φ̃] =

∫
1PI
Dφ exp

{
−i
∫

d4x
1
2φ
(
� + V ′′(φ̃)

)
φ
}
∝ 1√

det
(
� + V ′′(φ̃)

) (A.14)

⇒ iΓ(1)[φ̃] = −1
2 tr ln

(
� + V ′′(φ̃)

)
, (A.15)

where the trace is over space-time indices as well any other internal index.

Before computing the 1-loop effective action in Eq. (A.15), some remarks are in

order. First, the example above is very simple, because it contains only a single real

scalar field that self-interacts via its potential. More generally, φ interacts with other

fields, and thence receives more radiative corrections. In such situations the integration
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in Eq. (A.14) must be performed for each field, or more precisely, for each dof that

interacts with φ. This implies that the effective action iΓ(1) will be proportional to the

total number of dof of the corresponding field. Second, for bosons, i.e. scalars and vectors,

the integration procedure is very similar to the one in Eqs. (A.14) and (A.15), with the

difference of taking all dof into account. The case of fermions is a bit different and must

be briefly discussed. Note that for some operator O(φ̃)

eiΓ
(1)[φ̃] =

∫
1PI
Dψ̄Dψ exp

{
i
∫

d4x ψ̄
(
i/∂ −O(φ̃)

)
ψ
}
∝ det

(
i/∂ −O(φ̃)

)
(A.16)

⇒ iΓ(1)[φ̃] = tr ln
(
i/∂ −O(φ̃)

)
. (A.17)

Using the properties of the trace we obtain that

tr ln
(
i/∂ −O(φ̃)

)
= tr ln

(
−i/∂ −O(φ̃)

)
, (A.18)

therefore

iΓ(1)[φ̃] = tr ln
(
i/∂ −O(φ̃)

)
= 1

2
[
tr ln

(
i/∂ −O(φ̃)

)
+ tr ln

(
−i/∂ −O(φ̃)

)]
= 1

2 tr ln
[(
i/∂ −O(φ̃)

)(
−i/∂ −O(φ̃)

)]
= 1

2 tr ln
[
� +O(φ̃)2 + i/∂O(φ̃)

]
, (A.19)

which is in the same form as Eq. (A.15) and can be therefore computed in an analogous

manner.

A.2.1 Dimensional regularisation

Let us compute

iD[φ̃] = 1
2 tr ln [� + U ], (A.20)

where U is an operator that can depend on φ̃(x) (and therefore on the space-time coordi-

nates). Note that the equation above may represent both Eq. (A.15) and (A.19), expect

for some sign.

The trace may be taken over either the space-time-coordinates x or over the momen-

tum p. Some care must be taken, however. On the one hand note that the operator U
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is a local operator in x, so its action is well defined on the |x〉 basis. On the other the

D’Alembert operator can be trivially represented in the momentum basis |p〉 by

〈x|
(
−P 2

)
|p〉 = −(i ∂)2 〈x|p〉 = −(i ∂)2e−ixp, (A.21)

with P the momentum operator. In this manner D[φ̃] becomes

iD[φ̃] = 1
2

∫ d4p

(2π)4 〈p|ln
[
−P 2 + U(X)

]
|p〉

= 1
2

∫
d4x

∫ d4p

(2π)4 〈p|x〉 〈x| ln
[
−P 2 + U(X)

]
|p〉

= 1
2

∫
d4x

∫ d4p

(2π)4 e
ipx ln

[
−(i ∂)2 + U(x)

]
e−ipx. (A.22)

In order to cancel the exponentials in the equation above we must commute one of them

with the differential operator tr ln [−(i ∂)2 + U(x)]. Note that this operator depends also

on x through U(x), whence it is incorrect to simply substitute i ∂ by p, because i ∂ and

U(x) do not commute. The action of the exponential is, in this case, to shift i ∂ by p,

iD[φ̃] = 1
2

∫
d4x

∫ d4p

(2π)4 ln
[
−(i ∂+p)2 + U(x)

]
= 1

2

∫
d4x

∫ d4p

(2π)4 ln
[
−(i ∂−p)2 + U(x)

]
= 1

2

∫
d4x

∫ d4p

(2π)4 ln
[
−p2 + U(x) + (2ip · ∂+�)

]
, (A.23)

where in the second line we made a change of variable in p.

The expression in Eq. (A.23) contains two distinct contributions to the 1-loop effective

action. The first, that comes from −p2 + U(x), does not contain any derivative of φ̃ and

will therefore only contribute to the its potential (in the case of the scalar field). The

second contribution comes from the terms with derivatives 2ip · ∂+�, which accounts

for corrections to the kinetic term and derivative interactions. The contribution from

derivatives were recently studied in [101], where the two derivative term was explicitly

computed.

In this thesis we are only interested in the 1-loop effects to the potential, hence we

192



will set ∂ = 0 from now on. Then, we must compute

iD[φ̃] = 1
2

∫
d4x

∫ d4p

(2π)4 ln
[
−p2 + U(x)

]
. (A.24)

In this section we will use dimensional regularisation (dim reg) to evaluate Eq. (A.24).

Due to the logarithm we cannot compute D directly with the techniques of dim reg. A

way out is to represent the logarithm as

ln x = −
(

d
dα

1
xα

)
α=0

, (A.25)

in this manner the integrand becomes a rational polynomial that can be regularised with

dim reg. Therefore,

iD[φ̃] = 1
2

∫
d4x

∫ d4p

(2π)4 ln
[
−p2 + U(x)

]
= −1

2

∫
d4x

(
d

dα

∫ d4p

(2π)4
1

[−p2 + U(x)]α
)
α=0

= − i2

∫
d4x

µ4−d

(4π)d/2U(x)d/2Γ
(
−d2

)
, (A.26)

where Γ(x) is the gamma function, d = 4− ε and µ is the running scale. Performing the

expansion in ε and using MS scheme we obtain

iD[φ̃] = − i

64π2

∫
d4x U4

[
ln µ2

U2 + 3
2

]
. (A.27)

As stressed, Eq. (A.27) is not precisely the potential, because we must sum over all dof

that interact with φ. We can thus write the 1-loop effective action as

Γ(1)[φ̃] = −
∫

d4x VCW(φ̃) = −
∫

d4x
∑
i

∓ ni
64π2Ui(φ̃)4

[
ln µ2

Ui(φ̃)2
+ 3

2

]
, (A.28)

where the sum is over the particles that interact with φ, ni is the corresponding dof of

these particles and the sign is negative for bosons and positive for fermions. This effective

action defines VCW, known as the 1-loop Coleman-Weinberg potential.
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A.2.2 Cut-off regularisation

We now evaluate Eq. (A.24) with cut-off regularisation. First, we must Wick rotate the

integral by setting p0
E = −ip0,

iD[φ̃] = 1
2

∫
d4x

∫ d4p

(2π)4 ln
[
−p2 + U(x)

]
= i

2

∫
d4x

∫ d4pE
(2π)4 ln

[
p2
E + U(x)

]
. (A.29)

With a momentum cut-off set by p2
E = Λ2, the integral over the momenta is given by

∫ d4pE
(2π)4 ln

[
p2
E + U(x)

]
= 1

16π4

∫
dΩ4

∫ Λ2

0

dp2
E

2 p2
E ln

[
p2
E + U(x)

]
(A.30)

= 1
16π2

∫ Λ2

0
dp2

E p2
E ln

[
p2
E + U(x)

]
= 1

64π2

[(
2U2 − Λ2

)
Λ2 − 2

(
U + Λ2

)
ln
(
U + Λ2

)
+ 2U2 lnU

]
.

Expanding the equation above for Λ2 � U and neglecting constant term we obtain

iD[φ̃] = i

2

∫
d4x

[
U(φ̃)Λ2

32π2 − U(φ̃)2

64π2

(
ln Λ2

U(φ̃)
+ 1

2

)]
. (A.31)

The Coleman-Weinberg potential is therefore given by

VCW(φ̃) =
∑
i

±ni2

[
Ui(φ̃)Λ2

32π2 − Ui(φ̃)2

64π2

(
ln Λ2

Ui(φ̃)
+ 1

2

)]
, (A.32)

where the sum is over the particles that interact with φ, ni is the corresponding dof of

these particles and the sign is positive for bosons and negative for fermions.
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B Custodial Symmetry in the SM

In this appendix we review the concept of custodial symmetry in the SM.

In the SM custodial symmetry refers to an approximate, non-abelian symmetry in

the electroweak (EW) sector. This symmetry is of great significance, because it has

profound impact on observables of the EW sector of the SM. The custodial symmetry

is already manifest at the low-energy theory, the Fermi theory, where the gauge bosons

were integrated out. To see this we must first write the low-energy theory in terms of the

parameters of the EW theory.

At low energies the Fermi-Lagrangian receives two distinct contributions from the EW

sector: charged currents (CC) interactions and neutral currents (NC) interactions. In the

EW theory these are given by the following interacting Lagrangian

L = M2
WW

+
µ W

−
µ + 1

2M
2
ZZµZµ + g√

2
(
W+
µ J

−
µ +W−

µ J
+
µ

)
+ gZZµJ

0
µ, (B.1)

where g is the SU(2)L gauge coupling and g2
Z = g2 +g′2, with g′ the hypercharge coupling.

In the SM the currents are explicitly given by [25]

J+
µ = ēLγ

µνL + d̄Lγ
µV †

CKMuL, (B.2a)

J−
µ = ν̄Lγ

µeL + ūLγ
µVCKMdL, (B.2b)

J0
µ =

∑
f

f̄γµ
(
T 3PL −Q sin2 θw

)
f, (B.2c)

where the sum in the neutral current is over all fermions and a sum over all generations

in the charged currents is understood. When the typical energy of the experiment is much

smaller than MW , the interaction between the currents is diagrammatically represented

by

J+
W J−

−→
J+

J−
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J0
Z J0 −→

J0
J0

The current-current interactions on the right-hand side of the above diagrams are obtained

by integrating the massive gauge bosons out and its coupling strength by matching with

the UV-theory. This is done explicitly by considering the Equations of Motion (EoM) of

the gauge bosons∗

W+
µ = − g

M2
W

√
2
J+
µ , (B.3a)

W−
µ = − g

M2
W

√
2
J−
µ , (B.3b)

Zµ = − gZ
M2

Z

J0
µ. (B.3c)

Inserting the EoM in Eq. (B.3) back into Lagrangian (B.2) we obtain

L Fermi = M2
W

(
− g

M2
W

√
2
J+
µ

)(
− g

M2
W

√
2
J−
µ

)
+ 1

2M
2
Z

(
− gZ
M2

Z

J0
µ

)2

+

+ g√
2

[
− g

M2
W

√
2
J+
µ J

−
µ −

g

M2
W

√
2
J+
µ J

−
µ

]
− g2

Z

M2
Z

J0
µJ

0
µ

= − g2

2M2
W

J+
µ J

−
µ −

g2
Z

2M2
Z

J0
µJ

0
µ

≡ −G
CC
F√
2
J+
µ J

−
µ −

GNC
F√
2
J0
µJ

0
µ

= −G
CC
F√
2

[
J+
µ J

−
µ + GNC

F

GCC
F

(
J0
µ

)2
]
, (B.4)

where GCC
F and GNC

F denote the couplings of CC and NC, respectively, which are defined

in term of the gauge couplings and masses of the mediators as

GCC
F = g2

√
2M2

W

, GNC
F = g2

Z√
2M2

Z

. (B.5)

The ρ parameter is the coefficient of the NC interaction, namely

ρ ≡ GNC
F

GCC
F

. (B.6)

∗We are considering the currents to be conserved, hence ∂µ W
±
µ = 0 and ∂µ Zµ = 0.
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In the SM at tree-level this parameter is exactly 1, since

ρtree = g2
Z

g2
M2

W

M2
Z

= M2
W

M2
Z cosθw

= 1. (B.7)

Under radiative corrections the ρ parameter receives only very small corrections due to

the fact that it is protected by an SO(3) symmetry. This symmetry is made manifest in

Lagrangian (B.4) by rewriting the charged currents as

J±
µ = J1

µ ± iJ2
µ. (B.8)

The Lagrangian in this case is

L Fermi = −G
CC
F√
2

[(
J1
µ

)2
+
(
J2
µ

)2
+
(
J0
µ

)2
+ ∆ρ

(
J0
µ

)2
]
, (B.9)

where we have defined

∆ρ = GNC
F

GCC
F

− 1, (B.10)

which is the deviation of the ρ parameter with respect to the tree-level value. If ∆ρ = 0,

the Lagrangian (B.9) is invariant under the so called custodial SO(3) symmetry, under

which the currents
(
J1
µ, J

2
µ, J

0
µ

)
transform as a triplet. It is obvious then that ∆ρ is

technically natural, hence it is stable under quantum corrections.

From the above discussion it is clear that the origin of custodial symmetry rests in the

Higgs sector, because the ρ parameter is directly connected with the masses of the gauge

bosons. The Higgs as a doublet of SU(2)L can be written in terms of 4 real components:

H =

H2 + iH1

H4 − iH3

 , (B.11)

with H1, H2, H3 and H4 real. The potential written in terms of those is

V (H) = −m2|H|2 + λ|H|4

= −m2
(
H2

1 +H2
2 +H2

3 +H2
4

)
+ λ

(
H2

1 +H2
2 +H2

3 +H2
4

)2
. (B.12)

Therefore it is clear that V (H) has a SO(4) global symmetry, under which (H1, H2, H3, H4)

is a 4-plet. After electroweak symmetry breaking (EWSB) the SO(4) is broken down to
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SO(3), which is exactly the same we have encountered in the Fermi Lagrangian. This

follows from the fact that the devoured directions (H1, H2, H3) form a triplet of SO(3),

meaning that the gauge bosons, and as a consequence the respective currents, will trans-

form under SO(3).

The SO(4) may be written as

SO(4) ' SU(2)L × SU(2)R,

with the SU(2)L being the same that of the SM. The fundamental of SO(4) is then

equivalent to the (2, 2) representation of the chiral group (see sections 3.2.2 and 3.3.1)

and every doublet H of SU(2)L can be brought into the matrix form

Σ = (H̃,H), (B.13)

where H̃ = iσ2H∗ and

Σ→ ULΣU †
R (B.14)

under SU(2)L × SU(2)R, with UL ∈ SU(2)L and UR ∈ SU(2)R. After EWSB Σ acquires

a vev given by

Σ→ 〈Σ〉 =
(〈
H̃
〉
, 〈H〉

)
= v√

2

1 0

0 1

 , (B.15)

which means that the chiral group breaks down to the diagonal group. Note that the

Lagrangian of the Higgs may be rewritten in terms of Σ, leaving the custodial symmetry

manifest. This Lagrangian is given by

L Higgs = |∂µH|2 +m2|H|2 − λ|H|4

= 1
2 Tr

[
∂µ Σ† ∂µ Σ

]
+m2 det Σ− λ(det Σ)2, (B.16)

where we have not yet coupled the gauge bosons. It is trivial to see that the Lagrangian

(B.16) is invariant under SU(2)L × SU(2)R.

In the SM we have two sources of custodial violation: the gauge boson sector and the

Yukawa sector. Custodial symmetry is broken in the gauge sector because only the third

generator of SU(2)R is gauged, as it is the one that generates hypercharge transformations
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(see subsection 3.3.1). The covariant derivative of Σ is in this case given by

DµΣ = ∂µ Σ− ig2W
a
µσ

aΣ + i
g′

2 Σσ3Bµ. (B.17)

Under a global transformation of SU(2)L the gauge bosons transform as

W a
µ

σa

2 → ULW
a
µ

σa

2 U
†
L, (B.18)

which leaves the Lagrangian invariant. On the other hand, under an arbitrary global

transformation of SU(2)R

Σσ3 → ULΣU †
Rσ

3 6= ULΣσ3U †
R. (B.19)

Hence, the Lagrangian is not invariant and the custodial symmetry is therefore broken

by the hypercharge coupling. Radiative corrections to ∆ρ from the gauge sector are

proportional to the hypercharge coupling g′, which is very small.

In the Yukawa sector the situation is different. Consider the Yukawa terms of the

quark sector:

L Yuk = −q̄LH̃YuuR − q̄LHYddR + h.c., (B.20)

with Yu and Yd are matrices in flavour space. The above Lagrangian can be rewritten in

terms of Σ; we obtain

L Yuk = −q̄LΣ

Yu 0

0 Yd

 qR + h.c., (B.21)

where we have defined

qR ≡

uR
dR

 , (B.22)

which is a doublet of SU(2)R. If Yu = Yd, then the Yukawa sector is manifestly invariant

under the chiral symmetry group. This also means that custodial symmetry is exact

in the Yukawa sector only if each generation is mass degenerate, since the masses are

proportional to the corresponding Yukawas. We know, however, that this is not true, as

the up-type and down-type quarks of all generations have distinct couplings. Quantum

corrections from the fermion sector to the ρ parameter will thus depend explicitly on the

mass splitting of the fermions from each generation, and will vanish if the generations
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are mass degenerate. The most important contributions come from the third generation,

in particular from the top quark, for it has the largest coupling. Nevertheless, such

corrections are still very small [1].
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C Cosmology

In this appendix we review some of the most relevant concepts of cosmology, in particular

the standard Big-Bang model and Inflation.

C.1 The Standard Model - ΛCDM model

C.1.1 Fundamental Principles

Cosmology is understood as the science that describes the evolution of the universe and

explains why it is what we observe today. The Standard Model of modern cosmology,

also known as ΛCDM model, has three fundamental hypothesis that allows us to make

qualitative and quantitative predictions [77, 78, 85]:

1) The universe can be described by Einstein’s General Relativity.

Historically, General Relativity (GR) was not conceived as a tool to explain the evo-

lution of universe, but as a generalisation of Special Relativity (SR), which in particular

gives a description of gravitational phenomena consistent with relativity principles. The

fact that it is possible to use GR in cosmology can be seen from Einstein’s equations

[102, 103],

Gµν(gµν) ≡ Rµν −
1
2gµνR = 8πGTµν , (C.1)

where Rµν and R are the Ricci tensor and scalar, respectively, that are functions of the

metric tensor gµν(x), G is Newton’s constant and Tµν is the energy-momentum tensor.

The left-hand side of Eq. (C.1) represents the geometry of space-time, since it depends

only on quantities that depends of the metric tensor, while the right-hand side represents

the matter content of such space-time, i.e. what it is inside of it. With such interpretation

it is intuitive that Eq. (C.1) can describe the evolution of the universe, which is just a

big space-time configuration, and its particle content.

To solve the Einstein’s equations means to compute the metric tensor gµν(x), in other

words to determine the geometric structure of the space-time as a function of its matter

content. In the context of cosmology we give particular attention to the time dependency

of gµν , as we want to understand how the universe evolves with time. Unfortunately,

unless some simplifications are imposed, it is in general impossible to solve Eq. (C.1) due

to its high non-linearity.
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One remark is in order. The Einstein’s equations in Eq. (C.1) are the Equations of

Motion (EoM) of the action [85, 102],

S = Smatter + 1
8πG

∫
d4x
√
−gR, (C.2)

where g = det gµν , with respect to gµν(x). The second term in the equation above, also

known as the Einstein-Hilbert action, describes the left-hand side of the Eq. (C.2) and

is the result of a summation of an infinite series of actions of a classical massless spin 2

field. For this reason Eq. (C.1) should be understood as classical EoM.

2) The universe is approximately homogeneous and isotropic.

At small distance scales, i.e. sub-galactic and galactic scales, the universe is neither

homogeneous nor isotropic, since there are many distinct structures (for example, stars

and planets) distributed in a non-uniform way in the sky. We should note that all obser-

vations today are made by detecting light signals, hence what we are observing is how the

universe was at the time those light signals were emitted. In this way small scale obser-

vations represent the universe at later times of its evolution. However, as we probe larger

and larger distances, the universe becomes more homogeneous and isotropic, which im-

plies that the universe at very earlier times was approximately homogeneous and isotropic

[77, 85, 92]. Assuming space isotropy and space homogeneity it is possible to determine

the form of the metric tensor,

gµν(t) =



−1

a2(t)

a2(t)

a2(t)


(C.3)

which is known as the Friedmann-Lemaître-Robertson-Walker (FLRW) metric∗. In Eq.

(C.3) a(t) is the scale-factor and must be determined through the Einstein’s equations.

The scale-factor represents the growth of the universe, therefore it quantifies how the

measure of distance changes as time passes [77]. We adopt the convention that the scale-

factor today is 1.

∗Here we use the standard convention of cosmology, that the Minkovski metric is given by ηµν =
diag(−1, 1, 1, 1). Moreover, we assume the curvature is zero.
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Another interesting and useful way to represent the scale-factor is using the concept

of red-shift [77, 78, 85]. If the universe is expanding, the wave-length of a light signal

grows, so the ratio of the wave-lengths of a photon at a later time t1 with respect to an

earlier time t0 is given by
λ(t1)
λ(t0)

> 1. (C.4)

Since the wave-length is a length scale, the ratio above is equal to the ratio of the respective

scale-factors. We can thus define

λ(t1)
λ(t0)

= a(t1)
a(t0)

≡ 1 + z, (C.5)

where z is the red-shift. Hence, smaller red-shifts represent later periods of the cosmolog-

ical evolution, while larger red-shifts represent earlier ones.

3) Matter content of the universe

In order to determine the scale-factor a(t) from Eq. (C.1) we need to specify the

energy-momentum tensor Tµν . In the standard model of cosmology there are three distinct

contributions to the content of the energy momentum tensor [77, 92]. The first is radiation,

in other words relativistic degrees of freedom (dof). The particles that contribute mostly to

radiation throughout the evolution of the universe are the photon and the neutrinos, but,

due to their mass, neutrinos eventually become non-relativistic and cease to be radiation.

The second kind of contribution is matter, i.e. non-relativistic dof. It can be further split

into two: Cold Dark Matter (CDM) and baryonic matter. "Baryon" is how cosmologists

name stable, visible matter, which is composed of protons, neutrons and electrons. CDM

is another kind of matter that does not interact with the photon, but whose existence is

inferred through measurements of the Cosmic Microwave Background (CMB), of bullet

clusters and of the rotation velocity of spiral galaxies, for example. The third contribution

to the energy-momentum tensor is what we call Dark Energy (DE). The theoretical and

phenomenological nature of DE is to this day unknown and its existence is postulated to

fit experimental data that probe the total energy density of the universe. In particular,

70% of the energy of the universe is approximately composed of DE, while 27% is given

by CDM and only 3% is baryonic matter [3].

With the hypothesis of isotropy and homogeneity of space-time and supposing that

there are no interactions between the particles, we can simplify the explicit form of
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the energy-momentum tensor Tµν . As a consequence of these symmetries, the energy-

momentum tensor has the form of a perfect-fluid [102, 77, 104],

T µν =



−ρ

P

P

P


, (C.6)

where ρ is the total energy density and P is the pressure.

???

With the three hypothesis above we can characterise the ΛCDM model of cosmology

by identifying the evolution equations and the free parameters of the model. Without per-

turbations and interactions, the evolution equations are simply the 00- and ii-components

of Eq. (C.1) [77, 85, 92], (
ȧ

a

)2
= 8πG

3 ρ, (C.7a)

ä

a
+ 1

2

(
ȧ

a

)2
= −4πGP, (C.7b)

where the dot denotes derivative with respect to the cosmic time t. Eq. (C.7), also

known as the Friedmann equations, defines the Hubble parameter,

Hb(t) ≡
ȧ(t)
a(t) . (C.8)

Another way to write Eq. (C.7a) is with the definition of the critical density [92] ρcrit,

ρcrit ≡
3H2

b0
8πG , (C.9)

with Hb0 the Hubble parameter today, whence

H2
b

H2
b0

= ρ

ρcrit
. (C.10)

In order to solve the equation above completely we need to know how the energy
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density depends on time. From simple dimensional analysis we can see that∗ [92]

ρradiation ∝
1

a4(t) , ρmatter ∝
1

a3(t) , (C.12)

therefore we may define,

ρradiation

ρcrit
≡ Ωr

a4(t) ,
ρmatter

ρcrit
≡ Ωcdm + Ωbaryons

a3(t) , (C.13)

where the Ω’s represent the ratio of the respective energy densities to the critical density

today. The case of DE is more complicated and model-dependent, but observations lead

us to considering [3, 85]
ρDE

ρcrit
∼ ΩΛ. (C.14)

With such dynamics, DE can be understood as a cosmological constant, i.e. an additional

constant term −2Λ in the Einstein-Hilbert action in Eq. (C.2). Neglecting curvature

effects, the Friedmann equation (C.7a) can be written as

H2
b

H2
b0

= ρradiation + ρmatter + ρDE

ρcrit
= Ωr

a4 + Ωcdm + Ωbaryons

a3 + ΩΛ. (C.15)

Note that by considering the equation above today we have the constrain

Ωr + Ωcdm + Ωbaryons + ΩΛ = 1. (C.16)

In summary, together with the constrain of Eq. (C.16), we have a total of 4 independent

input parameters.

If we took curvature into account, in other words, if we had considered that the

universe is not necessarily flat, there would be an additional contribution to the energy

density due to the energy contained in the curvature. This contribution gives an additional

factor of ΩK

a2 to the right-hand side of Eq. (C.15) and is an extra input parameter of the

model [85, 92]. Another assumption we have made is regarding the neutrinos. The energy

∗The energy of a photon in equilibrium in a thermal bath with temperature T has energy E = kBT ,
where kB is Boltzmann’s constant. From Eq. (C.12) we can conclude that temperature depends on the
scale factor as [77]

T (t) ∝ 1
a(t) . (C.11)
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density of neutrinos is not taken as a free parameter, because in the ΛCDM it is usually

fixed by setting the sum of their masses to a fixed values [3, 77, 85].

From Eq. (C.15) it is obvious that the universe has distinct phases of evolution, each

one characterised by a different energy density. For example, at very primordial times the

scale-factor was very small, hence the radiation contribution, due to the factor of a−4 in

the denominator, was dominant. This era is named radiation domination era. After the

radiation domination, matter dominated and at later times DE started dominating. Each

of these eras have distinct properties and phenomena which are necessary for a precise

description of the universe, for instance Big-Bang Nucleo-synthesis (BBN), the photon

decoupling and the formation of large structures [77, 78, 85, 92, 93]. The discussion of

these topics require a more careful analysis and a thorough review of perturbation theory,

so we will not develop them in details.

C.1.2 Perturbations

Since the universe is not completely homogeneous and isotropic, we need to consider per-

turbations to Eq. (C.15) and the interactions between the particles. Such perturbations

mark a departure from the classical regime given by the Einstein’s equations and introduce

fluctuations whose origin is not classical.

There are two types of perturbations: perturbations of the metric tensor and pertur-

bations of the distribution functions of the particles. The first represent fluctuations of

the metric around the FLRW metric and can be classified into scalar, vector and tensor

perturbations. However, only the scalar perturbations, that couples to matter and radi-

ation, and tensor ones, that generate gravitational waves, are relevant to the description

of the cosmic evolution [85, 93]. Perturbations of the distribution functions on the other

hand represent non-equilibrium aspects of the thermal bath and affect the components of

the energy-momentum tensor [77, 93]. Both types of perturbations are connected by the

perturbed Einstein’s equations,

Gµν(gµν + δgµν) = 8πG(Tµν + δTµν). (C.17)

In addition to the aforementioned perturbations, we must also take interactions into

account. The interactions between the particles, in particular between the ones of the

Standard Model of particle physics, have non-trivial impacts on the abundance of each
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particle species and on the formation of structures. More precisely, the number density

n of a given particle species, that in equilibrium scales as a−3, is given by the Boltzmann

equation [77]

a−3 d(a3n)
dt = C, (C.18)

where C is the collision integral, which is a functional of all the distribution functions of

the particles that interact with the corresponding particle. Moreover, C depends on the

squared amplitude of such interactions, that are given by the techniques and theories of

particle physics.

We can clearly see that there are many parameters and functions that need to be

introduced to describe perturbations and interactions in an appropriate manner, hence

we could expect that the set of free parameters of the model quickly grows. Fortunately,

these new parameters are not all independent, since they are all coupled to each other by

the differential equations from Eqs. (C.17) and (C.18). Even more, the initial conditions of

all of them depend on only one perturbation parameter from the metric tensor. However,

there is a priory no reason for such perturbations to exist, since we have no mechanism

to generate them. It is thus necessary to complement our model with such mechanism

[93, 105].

C.2 Inflation

C.2.1 Problems with the ΛCDM

In addition to the lack of a mechanism to generate the initial conditions of the pertur-

bations, the ΛCDM model described in section B.1 has many other conceptual problems.

These issues are used to motivate the modern theory of inflation.

One of the problems is called horizon problem [85]. "Horizon" is used to name the

largest 4-dimensional surface of the observable universe which is causally connected by

a light-like signal∗. At the beginning of the evolution, the scale-factor was very small,

therefore the horizon was small and essentially everything was in causal contact. As the

∗This is quantified by the conformal time [77],

η =
∫ t

0

dt′

a(t′) ,

that measures the distance a light-like signal could have travelled from the initial time t = 0 to t. If the
distance between two events is greater than η, they were never in causal contact.
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universe expands, the horizon grows and some patches of the universe cease to be in causal

contact. If we track different regions of the sky at a given red-shift back to primordial

times, we will determine the typical angular separation for which the events are causally

connected at this red-shift. This defines the mean correlation angle at some red-shift z,

so we should expect to measure such angle in experiments. One particularly interesting

red-shift is z ∼ 1000, when photons decoupled from matter, and has a correlation angle of

order 1 degrees [77]. The CMB, that is the measure of the temperature of the entire sky at

decoupling, shows that all regions in the sky seems to be correlated, as every corner of the

sky has approximately the same temperature, with fluctuations of the order of 10−5 parts

in 1 [3, 77]. In other words, the temperature of the sky is almost isotropic at that time. In

an analogous way we could expect that the universe would not be homogeneous, because

only small volumes of it were causally connected in the past. Measurements of the large

structures of the universe, however, show that the universe was still very homogeneous at

z . 1, contradicting our expectation [85].

Another very important problem is the flatness problem [77, 85, 93]. The universe

today is very flat, such that in the standard ΛCDM curvature is neglected. More precisely,

the energy density of curvature today ΩK0 is smaller than 0.01. We can compute how

much curvature energy density we must have had at primordial times in order to observe

ΩK0 using the Friedmann equation in a radiation dominated era. At red-shifts of the

order of the Planck time ΩK is given by

|ΩK | . 10−60. (C.19)

The question is how can we guarantee that our universe was extremely flat at the begin-

ning.

To solve the above-mentioned problems we conjecture that there was another era

before radiation domination, named inflation [93, 105], in which the cosmic expansion

was very quick and accelerated. In this scenario the horizon grows immensely and could,

in principle, causally connect a larger region of the universe. In addition, due to the rapid

expansion, any curvature fluctuations are washed away. In what follows we will develop

a concrete model of inflation.
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C.2.2 Single field inflationary model

One of the hypothesis of inflation is that ä > 0 during inflation. To see how to satisfy such

constrain, we can combine the Friedmann equations in Eq. (C.7) such that we eliminate

the factor H2
b . Doing this we obtain

ä

a
= −4πG

3 (ρ+ 3P ). (C.20)

In order to have an accelerated universe,

ρ+ 3P < 0⇒ P < 0, (C.21)

where the we have used that ρ > 0 always. The condition in Eq. (C.21) is not satisfied

by neither matter (P = 0) nor radiation (P = ρ/3), therefore we must introduce another

kind of d.o.f. [77, 105]. The simplest model that satisfies the equation above is the one

of a single real scalar field, which is given by the action [93, 105, 104]

S[φ] =
∫

d4x
√
−gL =

∫
d4x
√
−g
[1
2gµν ∂

µ φ ∂ν φ− V (φ)
]
. (C.22)

Since φ is the particle responsible for driving inflation, we name it inflaton. The energy

density and the pressure are components of the energy-momentum tensor,

Tµν = 2√
−g

δ

δgµν
√
−gL

= 2 δL

δgµν
− gµν L

= ∂µ φ ∂ν φ− gµν
[1
2 ∂

α φ ∂α φ− V (φ)
]
. (C.23)

Whence, using the non-perturbed FLRW metric of Eq. (C.3), we obtain

ρφ = 1
2 φ̇

2 + V (φ), Pφ = 1
2 φ̇

2 − V (φ). (C.24)

Condition (C.21) thus implies that

V (φ)� 1
2 φ̇

2. (C.25)
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Before continuing the discussion, we should remark that φ is a field in the quantum

mechanical sense, i.e. it has a classical, dominant behaviour and quantum fluctuations

around the classical configuration. Therefore it is natural to separate the field in two

parts [85],

φ(x) = φ(t) + δφ(x), (C.26)

where the classical mode φ(t) depends only on time due to isotropy and homogeneity.

The origin of cosmological perturbations are the quantum fluctuation δφ, whose relation

with the other perturbation parameters can be given at the end of inflation [77].

The condition in Eq. (C.25) is known as slow-roll condition, because it states that

the field will remains approximately constant during inflation (it will slowly change) [77,

85, 93]. Moreover, from the EoM of φ, that are given by the Klein-Gordon equation

φ̈+ 3Hbφ̇+ dV
dφ = 0, (C.27)

we are lead to the additional condition

φ̈� 3Hbφ̇. (C.28)

The equation above is also known as a slow-roll condition, as it constrains the acceleration

of φ.

What determines the dynamics of the inflaton is solely its potential, hence it would

be convenient to write the slow-roll conditions (C.25) and (C.28) in terms of V and its

derivatives. Up to the second derivative of the potential, the slow-roll conditions can be

parametrised by two parameters, namely [77, 85, 93]

ε = d
dt

1
Hb

, δ = φ̈

Hbφ̇
. (C.29)

Using the Friedmann equations (C.7) and the slow-roll conditions (C.25) and (C.28) we

may rewrite the parameters above only in terms of the potential,

ε = d
dt

1
Hb

' 1
16πG

(
V ′

V

)2

, (C.30)
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δ = φ̈

Hbφ̇
' ε− 1

8πG
V ′′

V
' −ε+ ε̇

2Hbε
. (C.31)

Note that ε, |δ| < 1.

Every deviation from the slow-roll regime can be measured by these two parameters.

In particular, they are used to define the spectral indices of scalar and tensor perturbation

modes at the end of inflation [3, 77, 85]. Without going into the details, the spectral indices

are the powers with which such perturbations grow in momentum space. However, these

indices describe only the momentum dependency, so we need two additional parameters

to measure their amplitude. In the ΛCDM the tensor perturbations are neglected and

only the scalar perturbations coming from the quantum fluctuations of φ are taken into

account [3, 93]. Hence, we add only two input parameters to our model. In short,

neglecting curvature and tensor perturbations, and fixing the sum of the neutrino masses,

the ΛCDM model has total of 6 free parameters: Hb0, Ωr, Ωcdm, Ωbaryon, the scalar spectral

index and the scalar perturbation amplitude. Nevertheless, due to many technical and

practical reasons, the ΛCDM model is not written in terms of these specific parameters,

but this does not affect our discussion [3, 93].

One last remark is in order. As every other epoch of the universe, inflation lasts for

some time. The duration of the inflationary period is measured by the number of e-folds

N [77],

N = ln
(
af
ai

)
, (C.32)

with af and ai the scale-factors at the end and beginning of inflation, respectively. The

equation above can be rewritten in terms of the slow-roll parameters,

N = − 1√
4πG

∫ φf

φi

dφ√
ε
, (C.33)

where φf is the field configuration of φ at the end of inflation and φi is the initial one.

Most of the experimental data can be explained with N ' 40− 60 [3, 77, 85].
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