
Universidade de São Paulo
Instituto de F́ısica
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Abstract

In this work we present some new developments in the study of Wilson loops in 3d
Chern-Simons-matter theories.

We begin with a brief introduction of the N = 4 and N = 6 3d theories and
the definition of their BPS Wilson operators. Firstly, a new formulation of the
1/2-BPS Wilson loop is provided, which addresses some of the shortcomings of the
original formulation, such as the explicit dependence on the contour parameter and
the definition of the operator in terms of the trace of a superconnection, rather
than a super-trace. This new formulation also elucidates the moduli space of this
operators which is the conifold.

Secondly, we consider wavy deformations of the 1/2-BPS Wilson loop of ABJ(M)
and relate them to the Bremsstrahlung function of ABJ(M). We compute these new
loops with a deformed contour to leading order in perturbation theory.

Finally, the 1/2-BPS Wilson line of N = 4 is studied as a defect, where we define
the displacement multiplet in terms of chiral superfields of su(1, 1|2) and study 2pt
and 4pt correlation functions via a bootstrap approach. The superconformal blocks
are derived with the super-Casimir approach, and the CFT data is extracted at
strong coupling. We comment on the holographic description of defects in terms of
type IIA strings in 10d and M2-branes in the 11d description.

Key-Words: “Wilson Loops”, “ABJ(M)”, “Displacement-Multiplet”, “Supercon-
formal Bootstrap”, “Bremsstrahlung Function”.



Resumo

Nesse trabalho nós apresentamos alguns novos deseonvolvimentos no estudo de laços
de Wilson em teorias de Chern-Simons-matter em 3d.

Nós começamos com uma breve introdução das teorias N = 4 e N = 6 em 3d e a
definição de seus operadores de Wilson BPS. Primeiramente, uma nova formulação
do laço 1/2-BPS é apresentada, tal formulação aborda e resolve alguns dos problemas
da formulação original, como a dependência expĺıcita no parâmetro do contorno e
a definição do operador em termos do traço de uma superconexão, ao invés de
um super-traço. Essa nova formulação também elucida o espaço moduli desses
operadores, que é o conifold.

Em seguida, nós consideramos deformações do tipo wavy dos operadores de Wil-
son 1/2-BPS de ABJ(M) e os relacionamos à função de Bremsstrahlung de ABJ(M).
Nós computamos esses novos operadores com um contorno deformado em primeira
ordem em teoria de perturbação.

Por fim, a linha de Wilson 1/2-BPS de N = 4 é estudada como um defeito,
onde definimos o multipleto de deslocamento em termos de supercampos quirais
de su(1, 1|2) e estudamos funções de correlação de 2pt e 4pt via o programa de
bootstrap. Os blocos superconformes são derivados por meio da técnica de super-
Casimir, e a CFT data é extráıda a strong coupling. Nós discutimos a descrição
holográfica de defeitos em termos de teoria de cordas tipo IIA em 10d e M2-branes
na descrição 11d.

Palavras-Chave: “Laços deWilson”, “ABJ(M)”, “Displacement-Multiplet”, “Boot-
strap Superconforme”, “Função Bermsstrahlung”.
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Chapter 1

Introduction

Wilson loops are ubiquitous in the study of gauge theories and were first introduced
in the study of the quark confinement by Kenneth G. Wilson [1]. They consist of
gauge invariant operators supported along a contour, which makes them useful for
probing non-local features of field theories, such as the quark/anti-quark potential
and the radiation emitted by an accelerated charge. Apart from their importance
in calculating physical observables, they are also important in mathematics, being
related to the study of knot theory [2].

For any gauge theory, a Wilson operator can be defined in terms of the holonomy
of the gauge connection around a contour C,

W = TrP exp

✓
i

I

C

A

◆
, with A = Aµdx

µ. (1.1)

The gauge fields are in general Lie algebra valued, so that one has to take the trace,
and P stands for a path-ordering.

In the context of supersymmetric fields theories, Wilson operators can be made
supersymmetric (BPS), which may render them exactly calculable by a technique
called supersymmetric localization [3]. As exact results are rare in general quantum
systems, the study of BPS loops becomes of great importance for probing non-
perturbative aspects of quantum field theories.

The class of supersymmetric operators OBPS is defined by the supersymmetry
constraint

�SUSYOBPS = 0, (1.2)

for a variation parameterized by some supercharge of the theory. Such operators are
often classified in respect to the amount of preserved supersymmetry or the “BPS-
ness” of the operator, which is specified by the number of independent supercharges
for which (1.2) is satisfied. This way, the so-called 1/N -BPS operators are the
ones that remain invariant under the action of 1/N of the total supercharges of the
underlying gauge theory.

In this thesis we are interested in the BPS constraints of Wilson operators in
the three-dimensional superconformal field theories known as Chern-Simons-matter
theories, as well as their solutions. To define BPS Wilson loops in these theories,
one needs to generalize the gauge connection of (1.1) to a super-matrix [4], which,

1



2

apart from containing the gauge fields, accommodates the matter fields which are
necessary to satisfy the BPS constraint (1.2).

To illustrate this point, let us consider the example of ABJM theory, which is
an N = 6 Chern-Simons matter theory. In this theory, a supersymmetry variation1

transforms the fields of the theory as

�A(1)
µ ⇠

✓
CI J� +

1

2
✏IJKL ̄

K
� C̄L

◆
,

�A(2)
µ ⇠

✓
 J�CI +

1

2
✏IJKLC̄

L ̄K
�

◆
,

�CI ⇠ ✏IJKL ̄
J
↵ ,

�C̄I
⇠  J↵ ,

(1.3)

where A(i)
µ are gauge fields, CI are complex scalars and  I are complex fermions.2

With these general transformations, one can engineer a connection which satisfies
(1.2) by composing combinations of both gauge and matter fields in a way that their
variation amount to a total derivative along the loop. As in these theories the matter
fields and gauge fields transform di↵erently in respect to gauge transformations, one
needs to introduce the connection as a super-matrix in order to accommodate these
di↵erent representations.

In [5], the first example of BPS Wilson loop was defined for ABJM theory, this
solution is 1/6-BPS and is supported along a straight line or a circle. Such loops
are known as bosonic loops, due to the bosonic nature of their field content, since in
order to preserve 1/6 of the supersymmetry, the super-connection couples to scalar
bilinears,3

L1/6-BPS ⇠

✓
A(1) + CC̄ 0

0 A(2) + C̄C

◆
. (1.4)

These are the simplest loops in ABJM theory, and they are constructed in a way
that the connection is annihilated by the supersymmetry variation.

The 1/2-BPS Wilson loop was first constructed in [6], and it is supported along
the same contours. In this case, the super-connection also couples to the fermions
of the theory, in addition to the scalar bilinears, and for this reason they are called
fermionic loops,

L1/2-BPS ⇠

✓
A(1) + CC̄  ̄

 A(2) + C̄C

◆
. (1.5)

In this case, we notice that the variation of the super-connection does not vanish,
since we cannot ask for supersymmetry variations of the fermions to vanish identi-
cally. Rather, it amounts to a gauge transformation, such that the Wilson loop is
invariant once the trace is taken.

The original formulation of the fermionic loop has two shortcomings. The first
is the necessity to introduce an ad-hoc twist matrix in the definition of the loop
connection in order to restore gauge invariance of the operator. The second is the

1
For the complete transformations, see Appendix A.

2
For more details about the field content of ABJM, see chapter 2.

3
Bar denotes complex conjugation.
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fact that the fermions couple to the operator via grassmann even couplings that are
explicit functions of the contour parameter, in other words, the formulation is not
manifestly reparametrization invariant. In chapter 3 we review this construction
and point out the source of such problems.

In chapter 4 we present a new formulation of the 1/2-BPS Wilson loop which
addresses the issues of the original formulation. This is done by means of a gauge
transformation, which gets rid of the twist matrix and allows the fermionic couplings
to be written in a manifestly reparametrization invariant way. In this new gauge, it is
possible to relate the 1/6-BPS solution to the 1/2-BPS by considering deformations
of the loop connection.

Such deformations define a new family of 1/6-BPS Wilson loops which are
fermionic, and encompasses the 1/2-BPS solution as a special case. This new formu-
lation allows for the identification of the moduli space of these loops as the conifold,
and it was generalized in the context of other CSm theories [7, 8].

One of the physical quantities which concerns this works is the Bremsstrahlung

function. This is an important observable of gauge theories, since it contains the
information of the energy radiated by a quark in the low energy limit. This function
can be computed directly from the expectation value of circular Wilson loops [9],
via

B(�) =
1

2⇡2
�@� loghWcirclei, (1.6)

where � is the ’t Hooft coupling of the theory.
From localization [10], we have hWcirclei exactly for the case of 1/2-BPS loops

of ABJ(M), which gives us a closed expression for the B(�) function. In the weak
coupling regime �⌧ 1, the Bremsstrahlung function can also be computed through
the so-called wavy line deformation of the 1/2-BPS loop [11], which provides a pure
field theoretical approach to its calculation. In chapter 5 we present our partial
findings in the calculation of B(�) via the wavy 1/2-BPS loop of ABJM, which
would provide a non-trivial check of this function via Feynman diagrams.

Another important topic in this thesis is the AdS/CFT correspondence, or
gauge/gravity duality, which states the dynamical equivalence of certain SCFTs to
theories of gravity in an AdS space. Being a weak/strong duality, it maps strongly
coupled gauge theories to weakly coupled gravity, so that non-perturbative regimes
in the SCFT can be approached via the AdS side.

The most important example of such correspondence for CSm theories is given
by the duality between N = 6 CSm theory with gauge group U(N) ⇥ U(N) and
Chern-Simons levels k and �k, a.k.a ABJM, and M-theory in AdS4 ⇥ S7/Zk [12].
The Chern-Simons-levels k are integers which parameterizes the ABJM action and
define the ’t Hooft coupling of the theory via

� =
N

k
. (1.7)

The duality is realized by identifying the free parameters of both sides,

L3

l3p
= 4⇡

p

2kN, (1.8)
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where the M-theory parameters are the AdS radius L and the 11d Planck length
lp. In the special limit of k5

� N the AdS side is reproduced by weakly coupled
type IIA strings in AdS4 ⇥ CP3, giving ABJM a description in terms of 10d gravity
theory.

In the strong coupling regime of the gauge theory, the degrees of freedom of
Wilson loops are encoded in the degrees of freedom of a semi-classical string, such
that the expectation value of these operators can be calculated via the minimization
of the string action, which defines the proper area of a fundamental string world-
sheet. This way,

hWi ⇠ e�Sstring,min , (1.9)

where the string world-sheet is bounded by the Wilson loop contour C.
The identification of Wilson operators with string world-sheets allows us to use

the AdS/CFT dictionary to calculate operator insertions on the Wilson line by
considering the holographic description of field fluctuations living in the string world-
sheet. This provides us with an AdS2/CFT1 instance of the holographic principle, so
that the strongly coupled regime of the CFT can be mapped to a weakly interacting
theory in the world-sheet.

In this work, we discuss the holographic description of the BPS Wilson lines
of CSm theories, where one can map strongly coupled correlation functions on the
Wilson line to a weakly interacting field theory in an AdS2 space. An explicit solution
for ABJM 1/2-BPS line is given in [13], and we comment on the still unknown
holographic description of 1/2-BPS defects of N = 4 CSm theories in the same
spirit.

Another angle from which we are interested in studying BPS Wilson loops is
through the defect conformal field theory (dCFT) one. As these operators are sup-
ported along straight lines or circles, when inserted in the vacuum, they break the
underlying symmetries to the conformal group along the contour.

By introducing a gauge invariant quantity for local operators Oi(ti) as

W [O1(t1)O2(t2) · · · On(tn)] ⌘ TrP [W�1,t1O1(t1)Wt1,t2O2(t2) · · · On(tn)Wtn,1],
(1.10)

where Wti,tj is the untraced Wilson operator integrated from points x(ti) to x(tj),
we can define the defect correlation functions as

hO1(t1)O2(t2) · · · On(tn)iW ⌘
hW [O1(t1)O2(t2) · · · On(tn)]i

hWi
, (1.11)

defining correlators in a one-dimensional conformal field theory supported by the
Wilson contour, which is referred to as the dCFT. In the case of BPS WLs, the
defects are also invariant under the set of supercharges annihilating the loop (1.2),
thus endowing the dCFT with a supersymmetry structure.

Within supersymmetric dCFT, we are interested in studying correlation func-
tions of protected operators by using the conformal bootstrap approach, which makes
use of the one-dimensional superconformal symmetry in a systematic fashion.

The operators we are interested in studying are part of a short multiplet called
the displacement multiplet, which is fundamental for any dCFT. This multiplet car-
ries this name because it always contains the displacement operator, which is present
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in any dCFT (even in non-supersymmetric ones), since it is defined as the line inser-
tion of momentum generators perpendicular to the defect.4 In the supersymmetric
cases, the displacement multiplet also contains other generators which arise from
the insertion of broken charges such as R-symmetry generators and supercharges of
the vacuum.

In chapter 6 we introduce the 1/2-BPS Wilson loops of N = 4 as defects. There,
the displacement multiplets can be cast into a superfield formalism, which makes
the study of correlation functions possible in a suitable superspace. Within this
superspace, we can employ the superconformal Casimir equation [14] to derive the
conformal blocks of the OPE expansion of such superfields, which allows for the ex-
traction of the conformal block coe�cients and anomalous dimensions of displace-
ment multiplet operators in the strong coupling regime by employing holographic
considerations.

4
As any line defect inserted in the vacuum of a SCFT defines a breaking of translation invariance

in its perpendicular directions, the displacement operator is always present.



Chapter 2

Chern-Simons-matter theories

Introduction

The study of Chern-Simons theories can be motivated in many di↵erent ways. One
of them was commented in the introductory text, and refers to knot theory [2]. More
on the realm of physical interest, this class of theories sees applications ranging from
condensed matter theory to quantum gravity. In the study of condensed matter
systems, these theories describe the behaviour of topological insulators and the
quantum Hall e↵ect. From the quantum gravity aspect, it is important in defining
instances of the AdS4/CFT3 correspondence.

To define Chern-Simons theory in more precise terms, we introduce its action,

SCS =
k

4⇡

Z

M

d3x✏µ⌫⇢Tr

✓
Aµ@⌫A⇢ + i

2

3
AµA⌫A⇢

◆
, (2.1)

with Aµ a general U(N) gauge field, and ✏µ⌫⇢ the totally anti-symmetric tensor. In
general the coe�cient k is arbitrary, but it needs to be integer-valued for SCS to
define a gauge invariant quantum theory.

To see this, we notice that the action (2.1) is invariant under infinitesimal gauge
transformations, but it is not generally invariant under large gauge transformations.
In this case the action is shifted by

SCS ! SCS + 2⇡kn, for n 2 Z. (2.2)

Once we consider a quantum theory, where the correlation functions are given by

hO1(x1) · · · On(xn)i =

Z
[DAµ]e

�iSSCO1(x1) · · · On(xn), (2.3)

gauge invariance is restored once we require the coe�cient k to be an integer. This
coe�cient is called the Chern-Simons level, and it basically counts loop orders in
perturbation theory of Chern-Simons-matter theories. It is interesting to note that
(2.1) defines a topological invariant, i.e a quantity that is only sensitive to the
topology of the manifold M in which it is being integrated, which is one of the
defining properties of pure Chern-Simons theories.

Now that pure Chern-Simons theory is properly introduced, we can focus on the
Chern-Simons-matter theories, which, as the name suggests, contain matter fields

6



2.1 ABJ(M) theory 7

in addition to gauge fields governed by Chern-Simons terms. This class of theories
is defined by supersymmetric addition of matter to the Chern-Simons action. When
matter is added in a supersymmetric way, the topological invariance of the pure
Chern-Simons action is broken, but a superconformal configuration is defined. Of
particular interest to us are the N = 4 and N = 6 theories, which we review in the
following.

2.1 ABJ(M) theory

The original construction of ABJM theory, or N = 6 three-dimensional Chern-
Simons-matter theory, is given in terms of the low energy limit of M2-branes in
M-theory by Aharony, Bergman, Je↵eris and Maldacena in 2008 [12].

ABJM contains two gauge fields, A(1)
µ and A(2)

µ whose dynamics are given in
terms of (2.1), with opposite level, k and �k. The matter content consists of
four complex scalars (CI)

j

ĵ
and four complex spinors ( ̄I)j

ĵ
transforming in the bi-

fundamental of the total gauge group U(N)k⇥U(M)�k. We denote unhatted indices
for U(N)k and hatted indices for U(M)�k. R-symmetries have capital Latin-letters
(I = {1, 2, 3, 4}). The complex-conjugates of the scalars and fermions are denoted

(C̄I)ĵj and ( I)
ĵ
j and transform in the anti-bi-fundamental.

This field content of can be cast into the quiver representation:

⇣
A(1)

µ

⌘j
k

⇣
A(2)

µ

⌘l̂
k̂

U(N)k U(M)�k

(CI)
j

ĵ
,
⇣
 

I
⌘j
ĵ

⇣
C

I
⌘ĵ
j
, ( I)

ĵ
j

The quiver contains the two gauge groups as nodes U(N)k and U(M)�k, from
the arrows we can read the representation of the fields under the gauge groups.
An outward arrow means a fundamental index, and an arrow inward means an
antifundamental.

In general, the two gauge groups are parametrized by M,N , defining the ABJ
theories. ABJM is a special case of ABJ theories, where M = N . This way, ABJ
theory has two independent ’t Hooft parameters � = N/k and �̂ = M/k which
collapse to a single one when in the ABJM slice.1

ABJM defines a conformal theory in three dimensions with N = 6 supersymme-
try, so it enjoys the symmetries of osp(6|4). The bosonic subgroup of symmetries

1
We sometimes refer to the general ABJ theories as ABJ(M).



2.2 N = 4 theories 8

comprises of the conformal group in 3d, so(1, 4)conf and the so(6)R ⇠= su(4)R R-
symmetry,

so(1, 4)conf � su(4)R ⇢ osp(6|4). (2.4)

The fermionic generators are composed of 12 Poincaré supercharges represented
by antisymmetric QIJ↵, and 12 superconformal charges SIJ↵, where I and J are
R-symmetry indices, and ↵ is a spinor index taking values ↵ 2 {+,�}. A general
supersymmerty transformation is the action of a general supercharge

Q = ✓̄IJ↵QIJ↵ + #̄IJ↵
SIJ↵, (2.5)

parameterized by 12 independent spinors #̄IJ and ✓̄IJ . The supersymmetry trans-
formations acting on the fields play an important role in defining the BPS loops in
this theory, and are explicitly listed in appendix (A.3).

As we are interested in developing a perturbative analysis of the 1/2-BPS Wilson
loop in the context of the wavy-line deformations of chapter 5, we write the ABJM
action [15],

SABJM = SCS + Skin � VYukawa � Vbos, (2.6)

with

SCS = �i
k

4⇡

Z
dx3✏µ⌫⇢Tr

✓
A(1)

µ @⌫A
(1)
⇢ + i

2

3
A(1)

µ A(1)
⌫ A(1)

⇢ � A(2)
µ @⌫A

(2)
⇢ � i

2

3
A(2)

µ A(2)
⌫ A(2)

⇢

◆

Skin =

Z
dx3Tr

�
DµCID

µC̄I + i ̄�µDµ I

�
. (2.7)

The covariant derivatives are defined as

DµCI = @µCI + i(A(1)
µ CI � CIA

(2)
µ ) , DµC̄

I = @µC̄
I
� i(C̄IA(1)

µ � A(2)
µ C̄I) ,

Dµ ̄
I = @µ ̄

I + i(A(1)
µ  ̄I

�  ̄IA(2)
µ ) , Dµ I = @µ I � i( IA

(1)
µ � A(2)

µ  I) . (2.8)

The Yukawa potential reads

VYukawa = �i
2⇡

k

Z
dx3Tr

�
C̄ICI J  ̄

J
� CIC̄

I ̄J J (2.9)

+2CIC̄
J  ̄I J � 2C̄ICJ J  ̄

I
� ✏IJKLC̄

I ̄JC̄K ̄L + ✏IJKLCI JCK L

�
,

and the bosonic potential is

Vbos =
4⇡2

3k2

Z
dx3Tr

�
CIC̄

ICJC̄
JCKC̄

K + CIC̄
JCJC̄

KCKC̄
I (2.10)

+4CIC̄
JCKC̄

ICJC̄
K
� 6CIC̄

JCJC̄
ICKC̄

K
�
.

2.2 N = 4 theories

This class of theories was first introduced by Gaiotto and Witten [16], being later
generalized in [17] and [18], with the enhancement of the quivers to have an arbitrary
number of nodes, and to be either linear or circular. Being an N = 4 theory in three
dimensions, it enjoys the isometries of osp(4|4), whose bosonic subgroups comprise
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the conformal group and an so(4)R ⇠= su(2)A�su(2)B, so that the operators of these
theories are labeled according to the subgroup

so(1, 4)conf � su(2)A � su(2)B ⇢ osp(4|4). (2.11)

In this thesis we are only interested in the linear quiver set-up, in which we
have an adjoint U(NI) gauge field AI defining the “Ith-node” , and adjacent nodes
defined by AI±1, in the adjoint of U(NI±1), with alternating level ±k. The matter
fields comprise a string of alternating hypermultiplet and twisted-hypermultiplets
coupling AI to AI+1 and AI to AI�1, respectively.

The field content of the multiplets are

•Hyper: qaI , Iȧ, q̄Ia,  ̄
ȧ
I • Twisted-Hyper: q̃I�1ȧ,  ̃

a
I�1, ¯̃q

ȧ
I�1,

¯̃ I�1a, (2.12)

with q, q̄ representing scalar fields and  ,  ̄ fermionic fields. We define (un-)dotted
indices to be fundamental indices of (su(2)A) su(2)B, namely a = 1, 2 and ȧ = 1̇, 2̇.

The linear quiver structure in which we work is given by

Figure 2.1: Representation the linear quiver. Chern-Simons forms have alternating
level k.

As we are interested in Wilson loops that couple the nodes AI and AI+1, it is
useful to define the so-called moment maps, in respect to these nodes. Transforming
in the adjoint representation of AI and AI+1 respectively, they are given by the
scalar bilinears

µ̃I
ȧ
ḃ
= ¯̃q ȧ

I�1q̃I�1 ḃ �
1

2
�ȧ
ḃ
¯̃q ċ
I�1q̃I�1 ċ , µ̃I+1

ȧ
ḃ

= q̃I+1 ḃ
¯̃q ȧ
I+1 �

1

2
�ȧ
ḃ
q̃I+1 ċ

¯̃q ċ
I+1 ,

⌫I = qaI q̄I a , ⌫I+1 = q̄I aq
a
I .

(2.13)

We only list here the moment maps that are relevant for the Wilson loops that
will be studied in chapter 6, one can also construct combination of fermionic fields
transforming in the adjoint of the nodes [7], which are not moment maps, but
currents.

A general superymmetry transformation is parameterized by

Q = ✓aȧ↵Qaȧ↵ + #aȧ↵
Saȧ↵, (2.14)

where the spinors carry fundamental indices of su(2)A � su(2)B, accounting for four
Poincare and four superconformal charges. For more details about preserved super-
algebra of these theories see Appendix B.



Chapter 3

Supersymmetric Wilson loops

In this chapter we review the construction of BPS Wilson operators in ABJM theory,
outlying important features of the construction of the so-called 1/6-BPS bosonic
loops [19] and the 1/2-BPS fermionic loops [6], which are particularly important
for the next chapters. By presenting such constructions, we shed light over the
supermatrix nature of the connections and its interplay with the BPS condition
(1.2).

In this chapter we only present the circular loops, defined by the contour parametriza-
tion

xµ(⌧) = (0, cos(⌧), sin(⌧)). (3.1)

To search for BPS solutions, we outline that, for circular Wilson loops, the BPS
equation holds for a certain linear combination of Poincaré QIJ and superconformal
SIJ charges. This is because the action of these charges are related by

SIJ ! xµ�µQIJ , (3.2)

so that a general variation (2.5) can be written as

� =
�
✓̄IJ + #̄IJ(xµ�µ)

�
QIJ . (3.3)

By condensing both parameters ✓̄IJ and #̄IJ into a single spinor ⇥̄IJ , the BPS
constraint can be expressed as

⇥̄IJ
QIJWBPS = 0 for ⇥̄IJ = ✓̄IJ ± (ẋµ�µ)✏̄

IJ , (3.4)

with
#̄IJ = ±i✏̄IJ�3. (3.5)

The spinor ⇥̄IJ is called the Killing spinor, and as we will see, (3.4) is central to
defining the correct combinations of charges which annihilate the loops by chosing
the appropriate superconformal charges #̄IJ in terms of the Poincaré ✓̄IJ .1

1
Rigorously speaking, the charges are QIJ and SIJ , but we refer to the parameters of the SUSY

transformations as charges throughout the text.

10
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3.1 1/6-BPS bosonic loops in ABJ(M)

The first constructed BPS operators in ABJM are the 1/6-BPS solutions known as
the bosonic loops. These loops can be seen as the 1/2-BPS loops of N = 2 [20]
containing only bosonic fields in the connection, hence the name.

With the total gauge group being U(N) ⌦ U(M), and matter content trans-
forming in the bi-fundamental representation, there are in principle many ways
to construct gauge invariant connections, but as the connection is a dimensionless
quantity, we are restricted in the combinations that can compose it.

Drawing intuition from the case of N = 4 SYM, where BPS loops couple to
scalar fields in the adjoint representation [21], one looks for an analog set-up in
ABJM. Although no matter fields transform in the adjoint, the scalar bilinears
CIC̄J and C̄JCI have the correct dimension and transform in the adjoint of U(N)
and U(M) respectively, so we can expect that the BPS loops of ABJM contain these
combinations.

Following this reasoning, the natural ansatz for a BPS operator contains the
scalar bilinears along with the gauge fields, defining the dressed connections. Notic-
ing the SUSY variation (A.3) of gauge fields and scalars, one can hope to find a BPS
operator fine-tuning an embedding matrix M I

J which couples the loop to the scalar
bilinears.

This way, we can define two independent Wilson loops [19],

W
(1)
bos = TrP exp

✓
i

I
A

(1)
bosd⌧

◆
, A

(1)
bos = A(1)

µ ẋµ
�

2⇡i

k
|ẋ|M I

JCIC̄
J , (3.6)

and

W
(2)
bos = TrP exp

✓
i

I
A

(2)
bosd⌧

◆
, A

(2)
bos = A(2)

µ ẋµ
�

2⇡i

k
|ẋ|M I

J C̄
JCI , (3.7)

where the loops are taken over a circular contour xµ(⌧), and the matrix M I
J defines

an embedding in the R-symmetry space.
One can inspect [5] that the loops defined above are annihilated by the Killing

spinors defined in terms of the Poincaré supercharges

✓̄12 and ✓̄34, (3.8)

and superconformal charges

#̄12 = i✓̄12�3 and #̄34 = �i✓̄34�3, (3.9)

which yields the Killing spinors

⇥̄12 = 2✓̄12⇧� and ⇥̄34 = 2✓̄34⇧+, (3.10)

where we have introduced the spinor space projectors

⇧± =
1

2

✓
1±

ẋµ�µ
|ẋ|

◆
, (3.11)
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such that

⇧±⇧± = ⇧±, (3.12)

⇧±⇧⌥ = 0. (3.13)

With the choices of (3.8) and (3.9), one can check that the Killing spinors (3.10)
annihilate the connections (3.6), (3.7) for the embedding

M I
J = diag(�1,�1, 1, 1). (3.14)

To see that the BPS condition (1.2) is satisfied by the connection A
(1)
bos for the

given Killing spinors, we can take the variation

�A(1)
bos = �A(1)

µ ẋµ
�

2⇡i

k

�
M I

J�CIC̄
J +M I

JCI�C̄
J
�
, (3.15)

so that when the variation is taken in respect to the Killing spinor ⇥̄12, we have

�A(1)
µ ẋµ =

4⇡i

k
⇥̄12 (�µẋ

µ)
�
C1 2 �  2C1 + ✏12KL ̄

KC̄L
�
, (3.16)

M I
J�CIC̄

J = 2M I
J ⇥̄

12✏IM12 ̄
M C̄J , (3.17)

M I
JCI�C̄

J = 2⇥̄12
�
M I

1CI 2 �M I
2CI 1

�
. (3.18)

In the gauge variation (3.16), we write

(ẋµ�µ)
�
↵ = (2⇧+ � 1) �

↵ , (3.19)

such that
⇥̄12(ẋµ�µ) = �⇥̄12. (3.20)

This way, plugging expressions (3.16), (3.17), and (3.18) in (3.15) yields

�12A
(1)
bos = �⇥̄124⇡i

k

�
C1 2 �  2C1 + ✏12KL ̄

KC̄L +M I
J ✏IM12 ̄

M C̄J +M I
1CI 2 �M I

2CI 1

�
,

(3.21)
such that the connection is annihilated by the variation

�12A
(1)
bos = 0. (3.22)

Next, we need to analyze the action of �34, parameterized by the Killing spinor
⇥̄34. This way, the terms of (3.15) read

�A(1)
µ ẋµ =

4⇡i

k
⇥̄34 (�µẋ

µ)
�
C3 4 �  4C3 + ✏34KL ̄

KC̄L
�
, (3.23)

M I
J�CIC̄

J = 2M I
J ⇥̄

34✏IM34 ̄
M C̄J , (3.24)

M I
JCI�C̄

J = 2⇥̄34
�
M I

3CI 4 �M I
4CI 3

�
. (3.25)

In the variation of the gauge field, we can write

(ẋµ�µ)
�
↵ = (1� 2⇧�)

�
↵ , (3.26)
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so that
⇥̄34(ẋµ�µ) = ⇥̄34. (3.27)

This way we can plug (3.23), (3.24), and (3.25) in (3.15) to yield

�34A
(1)
bos = 0. (3.28)

Equations (3.22), (3.28) render the connection invariant under the action of
the Killing spinors (3.10). As these spinors are parameterized by four independent
components of (3.8), we have a total of 4 independent charges annihilating the

connection A
(1)
bos, so these loops are 1/6-BPS.

We notice that, if the connection is itself invariant under ⇥̄12 and ⇥̄34, then the
whole Wilson loop is also invariant

�A(1)
bos = 0 =) �W (1)

bos = 0, (3.29)

which renders the bosonic loop W
(1)
bos a 1/6-BPS operator. The invariance of the

connection under a supersymmetry transformation is a su�cient condition for the
Wilson loop to also be invariant under such transformation, but as we will see in
the 1/2-BPS solutions, it is not a necessary condition.

The proof of supersymmetry of A(2)
bos is exactly the same as the one presented for

the A
(1)
bos connection, modulo swapping the order of the bilinear of matter fields in

the calculation.
In closing, we notice that the configuration of the 1/6-BPS loop relies on the

existence of the matrix M I
J defining its embedding in the R-symmetry space, such

that it breaks the R-symmetry group from su(4)R ! su(2)� su(2). We also notice
that this solution is the most supersymmetric solution which can be achieved by
requiring that connection A to be annihilated by the supersymmetric variation,

�A = 0. (3.30)

Solutions that enjoy more supersymmetry are only attained by considering a
relaxed BPS condition, which allows for a supersymmetry variation of the super-
connection to amount to a gauge transformation, in a way that the RHS of (3.30)
is modified to contain a gauge transformation of a U(N |M) structure, which we
introduce in the 1/2-BPS construction.

3.2 1/2-BPS fermionic loops of ABJ(M)

To define the 1/2-BPS operators, one needs to couple the loop to fermionic fields
as well as the scalars used in the 1/6-BPS construction. To accommodate the bi-
fundamental representations of the fermions one must enhance the loop connection
to a super-connection. A superconnection L of the supergroup U(N |M) has the
property of transforming as adjoint of U(N) and U(M) in the diagonals, and as
bi-fundamental in the o↵-diagonals, such that under a gauge transformation of U1 2

U(N), and U2 2 U(M), it transforms as

L =

✓
L11 L12

L21 L22

◆
!

✓
U1L11U

†

1 � iU1@µU
†

1 U1L12U
†

2 ,
U2L21U

†

1 U2L22U
†

2 � iU2@µU
†

2

◆
, (3.31)
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allowing for the introduction of matter fields in the o↵-diagonal. In this context, the
diagonal entries can naturally accommodate the bosonic dressed connections, since
they couple to the scalar bilinears and transform in the adjoint, and the o↵-diagonal
entries are compatible with the coupling to fermionic fields of the theory.

The 1/2-BPS Wilson operators of ABJ(M) were first constructed in [6], and they
can be seen as a generalization of the 1/6-BPS of the previous section, now containing
bi-fundamental fermions in the o↵-diagonal entries of the superconnection,

L1/2-BPS =

0

@ A
(1)
bos �i

q
2⇡
k |ẋ|⌘

↵
I  ̄

I
↵

�i
q

2⇡
k |ẋ| 

↵
I ⌘̄

I
↵ A

(2)
bos

1

A , (3.32)

with

A
(1)
bos = A(1)

µ ẋµ
�

2⇡i
k |ẋ|M I

JCIC̄J ,

A
(2)
bos = A(2)

µ ẋµ
�

2⇡i
k |ẋ|M I

J C̄
JCI .

(3.33)

In contrast to the 1/6-BPS loop, this loop couples to all fields in the matter con-
tent of the theory, with the coupling to fermions being achieved via the Grassmann
even quantities ⌘↵I (⌧) and ⌘̄I↵(⌧), which we refer to as fermionic couplings, and to
the scalars via a matrix M I

J ,

⌘↵I (⌧) =
�
ei⌧/2 �ie�i⌧/2

�
�1I , ⌘̄I↵(⌧) =

✓
ie�i⌧/2

�ei⌧/2

◆
�I1 , (3.34)

M I
J = diag(�1, 1, 1, 1) .

To inspect the BPS condition in this loop, we first notice that if we ask for
L1/2-BPS to be invariant under the action of supercharges, we would have

�L1/2-BPS =

0

@ �A(1)
bos �i

q
2⇡
k |ẋ|⌘

↵
I � ̄

I
↵

�i
q

2⇡
k |ẋ|� 

↵
I ⌘̄

I
↵ �A(2)

bos

1

A (!)
=

✓
0 0
0 0

◆
, (3.35)

which can only be acomplished by setting the fermionic couplings to zero, defeating
the purpose of enhancing the connection in the first place, and getting back to the
set-up of bosonic loops.

As we have said before, connection invariance guarantees loop invariance, but it
is not necessary. Instead, we can consider a relaxed condition for the supersymmetry
variation of superconnections, which explores the enhanced u(N |M) structure of the
super-connection.

The idea is to make use of this enhanced gauge symmetry at the level of the
super-connection, by considering the case where a supersymmetry variation of the
super-connection is equivalent to a u(N |M) gauge transformation, so that the traced
loop is still an invariant quantity. This way, the BPS condition reads

�L1/2-BPS = D⌧G, (3.36)

where operator D⌧ is the supercovariant derivative of the u(N |M) structure, defined
by its action on an arbitrary supermatrix G of u(N |M) as

D⌧G ⌘ @⌧G + i[L1/2-BPS,G]. (3.37)
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As the action of the supercovariant derivative D⌧G is a U(N |M) gauge trans-
formation, we are exchanging a supersymmetric transformation of L for a gauge
transformation, which does not contribute once the trace is taken. This way, the
BPS condition translates into finding a matrix G for which (3.36) holds.

Under this BPS constraint, the presented loop is a 1/2-BPS solution preserv-
ing all Poincaré charges parameterized by arbitrary constant ✓IJ , which amounts
to a total of six independent spinors parametrizing the transformations. The pre-
served superconformal charges have their parameters completely fixed in terms of
the Poincaré charges via the identificaction

#̄1I = i✓̄1I�3 and #̄IJ = �i✓̄IJ�3, for I, J 6= 1. (3.38)

This way, we have the six independent Killing spinors written in terms of the
projectors,2

⇥̄1I = 2✓̄1I⇧� and ⇥̄IJ = 2✓̄IJ⇧+. (3.39)

In the light of the constraint (3.37), supersymmetry can be checked by considering
the supermatrix

G(⌧) = 2

r
2⇡

k

✓
0 2⌘(⌧)✓̄1ICI

�✏1IJK ✓̄IJ ⌘̄(⌧)C̄K 0

◆
. (3.40)

When integrated along the loop, the gauge transformations of the BPS constraint
generate an o↵-set in the superconnection that needs to be compensated in order for
the traced operator to be gauge invariant. One can easily recover gauge invariance
by the introduction of a twist matrix T as in [4]. Under a finite u(N |M) gauge
transformation, a Wilson link

W1/2-BPS(⌧i, ⌧f ) = P exp

✓
i

Z ⌧f

⌧i

d⌧L1/2-BPS(⌧)

◆
, (3.41)

transforms as

W1/2-BPS(⌧i, ⌧f ) ! U(⌧i)W1/2-BPS(⌧i, ⌧f )U
�1(⌧f ), (3.42)

where
U(⌧) = exp (iG(⌧)) . (3.43)

If we consider the operator defined by the super-trace of a Wilson link compen-
sated by a T matrix

sTr
�
W1/2-BPS(⌧i, ⌧f )T

�
, (3.44)

where sTr denotes a supertrace,3 and the ad-hoc T matrix is such that

U(2⇡) = T U(0)T �1, (3.45)

2
The killing spinors of the 1/6-BPS solutions are given by I = 2 in the first set, and I, J = 3, 4

in the second set.

3
The supertrace of a matrix is defined as sTr

✓
A B
C D

◆
= TrA� TrD.
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we recover gauge invariance of the circular operator,

sTr
�
W1/2-BPS(0, 2⇡)T

�
! sTr

�
U(0)W1/2-BPS(0, 2⇡)U

�1(2⇡)T
�

= sTr
�
U(0)W1/2-BPS(0, 2⇡)T U�1(0)T �1

T
�

(3.46)

= sTr
�
W1/2-BPS(0, 2⇡)T

�
.

We notice that the femionic couplings are anti-periodic in 2⇡, the scalars are
periodic, and the spinors ✓IJ are just constants. This way, we have that the matrix
G(⌧) is 2⇡-anti-periodic, which in turn gives us

U(2⇡) = T U(0)T �1 for T = �i�3. (3.47)

As consequence we have that the gauge invariant operator is defined by

sTr
�
W(�i�3)

�
= �iTr (W), (3.48)

where �3 matrix turns the sTr into a Tr .
This is a hint that the defined Wilson operator is not in its most natural form,

since the sTr definition is dependent on a non-trivial twist matrix. In fact, this is
because the loop is defined in terms of anti-periodic fermionic couplings, an issue
that we address in the next chapter.

The expectation value of the 1/6-BPS and 1/2-BPS loops of ABJM can be
exactly calculated from the localization technique. In [22], the authors reduced the
calculation of the 1/6-BPS loops (3.6), (3.7) to a matrix model, and in [6], it was
shown that the same supercharge Q that is used to localize the 1/6-BPS loop was
also shared by the 1/2-BPS loop. In such work, it was also proved that the 1/2-BPS
loop is cohomologically equivalent to the 1/6-BPS loop, namely

W1/2-BPS = W1/6-BPS +QV, (3.49)

which in terms of localization, means that both loops localize to the same matrix
model [22], hence, their expectation value is the same.

The solution to the matrix model which describe these loops is given in [10],
which allows one to retrieve expansions at weak and strong coupling regimes. The
weak coupling regime is given by

⌦
W1/2-BPS

↵
= 1+

i⇡

k
(N �M)�

2⇡2

3k2

✓
N2

�
5

2
NM +M2

�
1

4

◆
+O

✓
1

k3

◆
. (3.50)

At the time, there was no field theory computation of the 1/2-BPS loop, and
this result provided the first prediction that was later confirmed by the field theory
calculations of [23].

Similarly, taking the strong coupling regime of the model yields

⌦
W1/2-BPS

↵
⇠ exp

 
⇡

r
M +N

k

!
, (3.51)

which is in agreement with the prediction from the minimal area of an AdS4 ⇥ CP3

string ending on the circular loop at the boundary.
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3.3 The Bremsstrahlung function

One of the developments covered by this work is the perturbative calculation of the
deformed circular 1/2-BPS Wilson loop in ABJ(M) theory, presented in chapter 5.
In our set-up, we calculate a weak coupling expansion of the loop with a deformed
contour, which relates to the Bremsstrahlung function. Such function is dependent
only on the gauge coupling � of the theory, and it encodes the information of the
energy emitted by a moving quark in the low energy limit via

�E = 2⇡B(�)

Z
dt(v̇)2, for v ⌧ 1. (3.52)

In this context of deformations of supersymmetric Wilson operators, B(�) was
first introduced for N = 4 SYM in [9], where the 1/2-BPS Wilson loop is given by

W1/2-BPS[C] =
1

N
TrP exp

I

C

ds
⇣
iAµẋ

µ + |ẋ|~� · ~n
⌘�

, (3.53)

defined for C being a circle or straight line. The ~� are scalar fields transforming in
the adjoint, and ~n is the scalar coupling such that |~n| = 1.

There is a plethora of equivalent ways of defining the Bremsstrahlung function
in terms of Wilson loops, ranging from the introduction of cusps in the Wilson
line contour to the language of defect CFTs and the introduction of the so-called
displacement operators.

As we have a natural intepretation of Wilson lines as heavy charged probes, the
most natural way of introducing such function is by defining a cusped Wilson line,
where such cusp can be seen as a sudden change of direction of the probe, generating
Bremsstrahlung radiation.

Whenever one considers a BPS Wilson line, one is protected from UV divergences
because of the supersymmetric nature of the operator, but when a cusp is introduced,
the breaking of the supersymmetry generates divergences in the vacuum expectation
value of the operator, and regulators are needed. The cusp is defined in both space-
time contour xµ and R-symmetry space, which in the context of N = 4 translates
into a discontinuity of the coupling to the scalars by an angle ✓.

�
~n

�!
n0

Figure 3.1: The contour of the Wilson line, showing a geometric cusp of angle �.
The vectors ~n and ~n0 are the S5 vectors coupling to the scalars of N = 4 SYM. The
internal angle is cos ✓ = ~n · ~n0.

In this configuration, the expectation value of the loop acquires a log divergence,
and can be written as

hWcuspi ⇠ e��cusp(�,�,✓) log(L/✏), (3.54)
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where the function �cusp is called the cusp anomalous dimension, and ✏ and L are
UV and IR cuto↵s respectively. To retrieve the B(�) function, we need to take a
small limit angle of the cusp anomalous dimension, yielding

�cusp ⇠ (✓2 � �2)B(�) + o(�4). (3.55)

Apart from this rather physical definition of B(�), one can also define it in terms
of the expectation value of circular Wilson loops [9]:

B(�) =
1

2⇡2
�@� log hWcirclei. (3.56)

In the cases that we solve the insertion of the loop exactly (e.g BPS loops of 4d
N = 4 SYM and BPS loops of ABJ(M)), this formula provides us with an exact
expression for B(�). For example, for the 1/2-BPS of N = 4 SYM we have, in the
large N limit,

⌦
W

N=4
circle

↵
=

2
p
�
I1(

p

�) +O(1/N2), (3.57)

which can be plugged in (3.56) to collect the exact Bremsstrahlung function

BN=4(�) =
1

4⇡2

p
�I2(

p
�)

I1(
p
�)

. (3.58)

Unfortunately, the ABJ(M) analogue of this formula is much more complicated then
the above [24], but still, it is a known closed expression that can be expanded at
any order for any value of the coupling �.

There is yet another way to define the B(�) function which is central to this
work, which is by means of a deformation in the contour of a BPS Wilson loop or
line. By introducing a controlled deformation parameter in the contour of the loop,
one defines what is called a wavy Wilson operator. The appearence of B(�) in this
context is formally related to understaning the Wilson operator as a defect in the
underlying CFT, and the deformation on the loop as generated by the insertion of
displacement operators in the defect CFT [25].

A wavy Wilson operator is achieved by considering a small deformation of the
contour around a BPS solution. In general, BPS Wilson operators are defined by a
circular or straight line contour, so one achieves a wavy operator by deforming the
circle or line supporting the operator.

Considering a BPS Wilson line, defined by a straight contour in d-dimensions

C : xµ(s) = (s, 0, ..., 0), (3.59)

the wavy line is defined by the deformation parameter ⇠µ(s), which deforms the
contour C into C

0
such that,

C
0
: xµ(s) + ⇠i(s) = (s, ⇠i(s)), (3.60)

with the requirement of ⇠i(s) to be small in magnitude, which is necessary to avoid
divergences coming from emerging cusps and self-intersections of the deformed con-
tour. Notice that the wavy line is in general no longer BPS, since the deformation
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of the contour violates the BPS constraints. However, the breaking of the line
supersymmetry is done in a controlled fashion by tuning the deformation profile.

In [11], it was noted that the quadratic term in ⇠ follows a universal behaviour
due to the superconformal nature of the underlying theory. As the Wilson line is a
functional of its contour, the leading order deformation is constrained by rotation
and translation invariance to obey

I[⇠] =

Z
ds

Z
ds

0
⇠̇i(s)K(s� s

0
)⇠̇i(s

0
), (3.61)

where the kernel has dimensions of 1/distance2, so that

K(s� s
0
) ⇠

1

(s� s0)2
. (3.62)

As one can be arbitrarily close to a BPS solution by taking the deformation
to vanish, no divergences are expected, so that the kernel must be expressed as a
distribution, and the only distribution with the correct properties is given by

K(s� s
0
) =

d

ds

P

s� s0 , (3.63)

where P is the principal value distribution, which yields

I[⇠] =

Z
ds

Z
ds0

(⇠̇(s)� ⇠̇(s0))2

(s� s0)2
. (3.64)

Defining W
(n) as the the loop expansion of order ⇠n in the W expression, we can

relate B(�) to the wavy deformations via [11]

hWi
(2)

hWi(0)
= ⇡2B(�)I[⇠]. (3.65)

This equation provides a way to check B(�) by taking a perturbative calculation in
the CFT, which is the developments of chapter 5, where we carry out the calculations
in attempt to reproduce the B(�) of ABJ(M) by a pure field theory calculation.

3.3.1 An N = 4 SYM perturbative detour

The main goal of chapter 5 is to calculate the wavy deformation of the 1/2-BPS
Wilson loop of ABJM and to relate it to the Bremsstrahlung function via (3.65).
Before diving into that calculation, it is instructive to take a perturbative calculation
of the deformation of the 1/2-BPS Wilson line of N = 4 SYM at order �, which is
a well understood example, and see how one can achieve a perturbative expansion
of (3.65) by solving the expectation value of the LHS perturbatively.

We begin by defining a wavy line W1/2-BPS[C 0] which is a deformation of the
1/2-BPS straight Wilson line of N = 4,

W1/2-BPS[C] =
1

N
TrP exp


g

I

C

ds
�
iAµ(x(s))ẋ

µ(s) + �i(x(s))|ẋ(s)|✓
i
��

, (3.66)
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where we have re-scaled the fields Aµ ! gAµ and �i ! g�.
We need to plug (3.66) in expression (3.65) keeping contractions up to order �

and expand the result at order ⇠2 in the deformation. As W
(0) is the undeformed

1/2-BPS Wilson line, its expectation value is given by

hW
(0)
i = 1. (3.67)

By calculating W
(2) perturbatively, we can evaluate LHS of (3.65) as a power series

in �, allowing for an identification of the B(�).
To introduce the deformed contour C 0, we make xµ

! xµ + ⇠µ in (3.66), and to
carry out the calculation in order �, we must expand the loop exponential up to the
second order,

hW1/2-BPS[C
0]i = 1 + g

I
dshL(s)i+

g2

2

I
dsds0hL(s)L(s0)i+O(�2). (3.68)

As the term in order g contains only 1-point functions, it vanishes, and we are
left only with the g2 term which is of order �,

1

N

g2

2
Tr

I
dsds0h(iAµ(y)ẏ

µ + �i(y)|ẏ|✓
i)(iA⌫(z)ż

⌫ + �j(z)|ż|✓
j)i, (3.69)

where we have defined y ⌘ y(s) and z ⌘ z(s0). In the rescaled fields, the propagators
are independent of g,

hAa
µ(y)A

b
⌫(z)i =

1

4⇡2

�ab�µ⌫
|y � z|2

,

h�a
i (y)�

b
j(z)i =

1

4⇡2

�ab�ij
|y � z|2

,

so that we have4

hW1/2-BPS[C
0]i = 1 +

1

N

g2

2

1

4⇡2

(N2
� 1)

2
Tr

I
dsds0

✓
✓i✓j�ij|ẏ||ż|� ẏ · ż

|y � z|2

◆
. (3.70)

Expanding everything in order ⇠2, with the aid of

|ẏ(s)| =
q

1 + ⇠̇(s) · ⇠̇(s),

|y(s)� z(s0)|2 = (s� s0)2 + (⇠(s)� ⇠(s0))2,

ẏ(s) · ż(s0) = 1 + ⇠̇(s) · ˙⇠(s0),

we recover, in the large N limit, exactly the behaviour (3.64),

hW
(2)
1/2-BPSi =

g2N

16⇡2

I
dsds0

(⇠̇(s)� ⇠̇(s0))2

(s� s0)2
+O(�2). (3.71)

4
We have �i = �

a
i T

a
and Aµ = Aa

µT
a
, and with the normalization Tr (T aT b

) = �ab/2.
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If one extends this calculation to higher orders in the coupling constant �, one
recovers [11]

hW
(2)
1/2-BPSi =

✓
�

16⇡2
�

�2

384⇡2

◆I
dsds0

(⇠̇(s)� ⇠̇(s0))2

(s� s0)2
+O(�3). (3.72)

From the exact B(�), one finds

B(�) =
�

16⇡2
�

�2

384⇡2
+

�3

6144⇡2
�

�4

92160⇡2
, (3.73)

which matches the perturbative calculation.
In chapter 5, we present our approach to recovering the analog procedure for

the circular 1/2-BPS Wilson loop of ABJ(M), which is a more intricate problem,
since the wavy-line prescription must account for a deformation in the fermionic
couplings.



Chapter 4

Wilson loops in ABJ(M)

In chapter 3 we have presented the original formulations of the 1/6-BPS bosonic
and the 1/2-BPS fermionic loops of ABJM. The construction of the 1/2-BPS loops
relies on the ⌧ -dependent grassman even parameters (3.34) that couple the loop
to fermions, and also in the twist matrix T to recover gauge invariance. These
shortcomings are addressed in a new formulation of the BPS operators developed
in conjunction with M. Tenser, M. Trépanier and M. Probst. This new formulation
was presented in chapter 2 of [26], which is a state-of-the-art review on Wilson loops
in CSm theories.

We can trace the necessity of the twist matrix precisely back to the fact that
⌘↵I (⌧) and ⌘̄I↵(⌧) are 2⇡-anti-periodic. Using a gauge transformation of u(N |M),
we can define new couplings which are 2⇡-periodic, avoiding the need for a twist
matrix, so that the Wilson loop is naturally gauge invariant in a formulation with the
supertrace. In doing so, it is possible to relate the new couplings to the projectors
(3.11), allowing for a manifestly reparametrization invariant definition thereof.

With this new formulation in hand, it is possible to construct a family of fermionic
1/6-BPS Wilson loops parameterized by grassman C-numbers which contains the
1/2-BPS loop as a special case. This is a new family of Wilson loops and give a con-
crete realization of the cohomology of 1/6-BPS Wilson operators in ABJ(M) (3.49).
The underlying structure also highlights the role of the breaking of the su(4) R-
symmetrty of ABJM by these operators and provide an identification of the moduli
space of the new loops with a conical singular space, which was not possible before.

4.1 A new formulation of 1/2-BPS loops

The main idea is to propose a U(1)⇥U(1) ⇢ U(N |M) gauge transformation which
turns the fermionic couplings into 2⇡-periodic functions at the same time “untwist-
ing” the loop connection.

Under a general U(N)⇥ U(M) transformation, the fields of ABJ(M) transform

22
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as

A(1)
µ ! U1A

(1)
µ U †

1 � iU1@µU
†

1 , (4.1)

A(2)
µ ! U2A

(2)
µ U †

2 � iU2@µU
†

2 , (4.2)

� ! U1�U
†

2 , (4.3)

�̄ ! U2�̄U
†

1 , (4.4)

where � is any field in the bi-fundamental representation, and �̄ is any field in the
anti-bi-fundamental, with U1 a general element of the U(N) group, and U2 a general
element of U(M).

The proposed gauge transformation is

U1 = e�i⇤(⌧), (4.5)

U2 = ei⇤(⌧), (4.6)

with

⇤(⌧) =
(2⌧ � ⇡)

8
+
⇡

2
⇥(⌧ � 2⇡), (4.7)

where ⇥ is the Heaviside Theta function.
Implementing this gauge transformation in the connection L1/2-BPS (3.32), we

have for the dressed connection A
(1)
bos

A
(1)
bos ! U1A

(1)
µ ẋµU †

1 � iU1@⌧U
†

1 �
2⇡i

k
M I

JU1CIU2U
†

2 C̄
JU †

1 (4.8)

! A(1)
µ ẋµ

�
2⇡i

k
M I

JCIC̄
J + @⌧⇤(⌧) (4.9)

! A
(1)
bos + @⌧⇤(⌧). (4.10)

From the first to second line, we use the fact that the elements (4.6) are diagonal,
so they commute with the charged fields.

Analogously, for the second dressed connection A
(2)
bos, we have

A
(2)
bos ! A

(2)
bos � @⌧⇤(⌧). (4.11)

Following the transformation laws, the fermionic entries of the superconnection pick
up a phase factor coming from the gauge transformation of the fermions,

 ↵
I !

p
�ie

i⌧
2  ↵

I and  ̄I
↵ !

p

ie�
i⌧
2  ̄I

↵, (4.12)

so that in this new gauge, the 1/2-BPS connection (4.13) reads

L
0 =

0

@ A
0(1)
bos

q
�4⇡i
k |ẋ|⌘0↵I  ̄

I
↵q

�4⇡i
k |ẋ| ↵

I ⌘̄
0
I
↵ A

0(2)
bos

1

A , (4.13)

with the gauge transformed dressed connections

A
0(1)
bos = A(1)

µ ẋµ
�

2⇡i
k |ẋ|M I

JCIC̄J + 1
4 +

⇡
2 �(⌧ � 2⇡),

A
0(2)
bos = A(2)

µ ẋµ
�

2⇡i
k |ẋ|M I

J C̄
JCI �

1
4 �

⇡
2 �(⌧ � 2⇡).

(4.14)
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The 1/4 pieces come from the continuous term in (4.7), whereas the delta distribu-
tions arise from the derivative of the ⇥ function. The original fermionic couplings
⌘↵I and ⌘̄I↵ absorb the ⌧ dependent part of the transformation and an extra 1/

p
2

factor to be written as

⌘0↵I (⌧) =
1
p
2

�
1 �ie�i⌧

�
�1I , ⌘̄0I↵(⌧) =

1
p
2

✓
1
iei⌧

◆
�I1 . (4.15)

With the loop connection cast as (4.13), we can inspect that the contributions
from the � functions in the transformed dressed connections annihilate the twist
matrix T of the gauge invariant quantity

W = sTr

✓
P exp

✓
i

I
L(⌧)

◆
T

◆
. (4.16)

To see that, we can separate their contribution from the the connection, since
they sit inside a path ordering operator. When integrated over the circular contour,
as they are only supported at 2⇡, we have the contribution

exp

Z 2⇡+✏

2⇡�✏

d⌧
i⇡

2

✓
�(⌧ � 2⇡) 0

0 ��(⌧ � 2⇡)

◆�
= i�3 = T

�1, (4.17)

which precisely cancels T from (4.16). This way, the loop can be naturally expressed
in terms of the sTr operation.

So far, our new gauge has two important e↵ects: it introduces a constant piece
in the dressed connections and it untwists the original loop connection. In this
new gauge, we can write the superconnection in a manifestly reparameterization
invariant fashion.

To do that, we notice that the ⇧± projectors of (3.11) take the explicit form

⇧± =
1

2

✓
1 ⌥ie�i⌧

±iei⌧ 1

◆
. (4.18)

Since the projectors are written in a reparameterization invariant fashion, and we
can read the fermionic couplings ⌘0 and ⌘̄0 from its first row and column, we can
define the fermionic couplings in a manifestly reparameterization invariant way by
defining them as

⌘0↵I =
p
2(s⇧+)

↵�1I and ⌘̄0I↵ =
p
2(⇧+s̄)↵�

I
1 , (4.19)

where s↵ = (1, 0).
Now we can drop the primes in the notation and forget that we have performed

a gauge transformation in the first place, so we are able to define the Wilson loop
on its own right as

W = (i)sTrP exp

✓
i

I
L1/2-BPSd⌧

◆
, (4.20)

with the superconnection now given by

L1/2-BPS =

0

@ A
(1)

q
�

4⇡i
k |ẋ|⌘↵I  ̄

I
↵q

�
4⇡i
k |ẋ| ↵

I ⌘̄
I
↵ A

(2)

1

A , (4.21)
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with
A

(1) = A(1)
µ ẋµ

�
2⇡i
k |ẋ|M I

JCIC̄J
�

|ẋ|
4|x| ,

A
(2) = A(2)

µ ẋµ
�

2⇡i
k |ẋ|M I

J C̄
JCI +

|ẋ|
4|x| ,

(4.22)

and

⌘↵I =
p
2(s⇧+)

↵�1I , ⌘̄I↵ =
p
2(⇧+s̄)↵�

I
1 , M I

J = diag(�1, 1, 1, 1), (4.23)

thus achieving a formulation which is fully reparameterization invariant, and natu-
rally written in the language of the superconnection via the sTr operation, without
the need of an ad-hoc twist matrix.

We notice the particular feature of the ±1/4 constant pieces in the connection,
which are the product of the gauge transformation. These constant pieces are related
to a particular feature of the supersymmetry transformation of the fermions which
are not expressed in terms of the Killing spinors, but are only written in terms of
the superconformal charges. In fact, as shown in Appendix A, they play an essential
role in the supersymmetry proof in the new gauge.

As we have simply gauge transformed a 1/2-BPS gauge invariant operator, it is
guaranteed that in the operator still is a 1/2-BPS solution to (1.2), nonetheless, an
explicit proof of supersymmetry in this new gauge frame is given in Appendix A.

4.2 A new family of 1/6-BPS loops

As discussed in chapter 3, ABJ(M) theories have a great moduli space of BPS
Wilson loops, which encompasses the 1/6-BPS bosonic loops as well as the 1/2-BPS
fermionic loops.

Within the new formulation of the 1/2-BPS loop, presented last section, it is pos-
sible to show that the 1/6-BPS bosonic loops are related by the 1/2-BPS fermionic
loops via a deformation of their super-connection. By constructing such a deforma-
tion, one defines a family of Wilson loop operators that is fermionic and generically
1/6-BPS containing the 1/2-BPS fermionic loop. The construction is the field real-
ization of the cohomological statement that the 1/2-BPS fermionic loops are related
to the 1/6-BPS via a Q-exact term.

Recall that the fermionic 1/2-BPS loops break the R-symmetry of ABJ(M) as
su(4) ! u(1) � su(3), while the 1/6-BPS bosonic loops as su(4) ! su(2) � su(2).
The key ingredient in defining this new family of fermionic Wilson loops is to come
up with a mechanism that is capable of controlling the R-symmetry of the loop,
interpolating between the two configurations.

In fact, what controls the breaking of R-symmetry is the coupling to the scalar
bilinears M I

J , so that our mechanism needs to be able to control the eigenvalues of
this matrix. This can be achieved by considering grassman-odd C-valued parameters
↵i, which are charged under an su(2) subsector of the original su(4) R-symmetry,
i.e i = 1, 2. With these parameters we can define a deformation which transitions
from the 1/6-BPS configuration to the 1/2-BPS one, by engineering a super-matrix
coupling to the C1, C2, C̄1, C̄2 scalars.
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We begin by noticing that the preserved charges of the 1/6-BPS loop are also
preserved by the 1/2-BPS loop,

✓̄12 and ✓̄34 = ✓12, (4.24)

and the preserved superconformal charges are

#̄12 = i✓̄12�3 and #̄34 = �i✓̄34�3. (4.25)

We introduce the deformation of the bosonic gauge connection

L = L1/6-bos +�L, (4.26)

where L1/6-bos is the connection

L1/6-bos =

 
A

(1)
bos 0

0 A
(2)
bos

!
, (4.27)

with the dressed connections given by (3.6) and (3.6). The deformation is defined
as

�L = i�3�+G � 2�3
G
2 + �31

4
, (4.28)

where the G matrix is parameterized by the grassman-odd parameters ↵a
2 C

G =

r
2i⇡

k

✓
0 ↵̄aCa

�↵aC̄a 0

◆
. (4.29)

We denote lowercase Latin letters for the 1, 2 indices of the su(4), which defines an
su(2) subspace, so that the matrix G contains the scalars C1, C2, C̄1, C̄2.

We define the variations �± as being generated from two independent combina-
tions of the four parameters ✓̄12 and ✓̄34, such that

�+ = ✓̄12+ Q
+
12 + ✓̄34

�
Q

�

34 + #̄12
+ S

+
12 + #̄34

�
S

�

34, (4.30)

�� = ✓̄12
�
Q

�

12 + ✓̄34+ Q
+
34 + #̄12

�
S

�

12 + #̄34
+ S

+
34. (4.31)

The reason to call first variation �+ and the second �� is that we can use the
conjugate notation of charges

✓̄34
�

= ✓+12 and ✓̄34+ = ✓�12, (4.32)

so that �± is parameterized by ± charges.
Noticing that these superchages amount to 1/6 of the supercharges preserved by

ABJ(M), the 1/6-BPS condition can be expressed by

�±L = D⌧G, (4.33)

where G is some U(N |M) supermatrix.1

1G does not necessarily need to be G, or related to it at all. But in our construction we’ll have

G ⇠ G.
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Let’s write the explicit form of the deformed connection by evaluating the defor-
mation (4.28) and plugging it back in (4.26). We first evaluate the piece i�3�+G of
the deformation,

i�3�+G = i

r
2i⇡

k

✓
0 ↵̄a�+Ca

↵a�+C̄a 0

◆
. (4.34)

To carry out the calculation we need to evaluate the Killing spinors associated to
the �+ variation, which is sourced by the independent Poincaré parameters in (4.30).
Via (3.4), we have

⇥̄12
↵ = 2(⇧+)

+
↵ ✓̄

12
+ , (4.35)

⇥̄34
↵ = 2(⇧�)

�

↵ ✓̄
34
�
. (4.36)

As we are interested in twisting only the su(2) subspace of the R-symmetry, we
can recover a notation containing only the index “a = 1, 2” by conjugating the
R-symmetry indices as

⇥̄34
↵ = ⇥12 ↵, (4.37)

so that we now work with the Killing spinors

⇥̄12 and ⇥12. (4.38)

With these spinors, we can evaluate (4.34) as

i�3�+G = (2i)

r
2i⇡

k

✓
0 ↵̄a⇥↵

ab ̄
b
↵

↵a⇥̄ab↵ b↵ 0

◆
. (4.39)

This contribution will be responsible for the coupling of fermions, since they are
purely o↵-diagonal.

The piece containing the square ⇠ G
2, will be responsible for the diagonal pieces,

since it involves the square of an o↵-diagonal matrix. It evaluates to

�2�3
G
2 =

2⇡i

k

✓
(2↵̄a↵b)(CaC̄b) 0

0 (2↵̄a↵b)(C̄bCa)

◆
. (4.40)

With expressions (4.39), (4.40), we can evaluate the deformed superconnection
(4.26) as

L =

0

@A
(1)
bos +

2⇡i
k (2↵̄a↵b)(CaC̄b) + 1

4 (2i)
q

2i⇡
k ↵̄

a⇥↵
ab ̄

b
↵

(2i)
q

2i⇡
k ↵a⇥̄ab↵ b↵ A

(2)
bos +

2⇡i
k (2↵̄a↵b)(C̄bCa)�

1
4

1

A . (4.41)

This superconnection defines a family of 1/6-BPS solutions parameterized by the
grassmann coordinates ↵a, and the BPS condition (4.33) can be checked by evalu-
ating the action of the �+ and �� variations independently,

�+L = 2D⌧G, (4.42)

��L = 2D⌧ (e
2i⇤�2

G), with ⇤ = �

⇣
⌧ +

⇡

2

⌘
. (4.43)



4.2 A new family of 1/6-BPS loops 28

With the explicit superconnection (4.41), we can tune the parameters ↵a such
that the connection collapses to the 1/2-BPS solution in the new gauge (4.13). In
order to see that we first notice that we can cast (4.41) as

L =

0

@ A
(1)

q
�

4⇡i
k |ẋ|⌘↵a  ̄

a
↵q

�
4⇡i
k |ẋ| ↵

a ⌘̄
a
↵ A

(2)

1

A , (4.44)

identifying the deformed bosonic connections as

A
(1) = A

(1)
bos +

2⇡i
k |ẋ|�Ma

b CaC̄b + |ẋ|
4|x| ,

A
(2) = A

(2)
bos +

2⇡i
k |ẋ|�Ma

b C̄
aCb �

|ẋ|
4|x| ,

(4.45)

where the couplings are

⌘b =
p
2↵̄a⇥↵

ab, ⌘̄b =
p
2⇥̄ba

↵ ↵a, �Ma
b = 2↵̄a↵b. (4.46)

The �M piece is crucial to the enhancement of supersymmetry to 1/2-BPS, s
this term changes the residual R-symmetry of the loop, e↵ectively enhancing its
supersymmetry to 1/2-BPS. The enhancement of supersymmetry can be seen as
coming from a particular choice of the family parameters ↵a, such that the matrix
�M has eigenvalues 0 and �2. As it can be directly inspected, this deformation
will take

M +�M ! diag(�1, 1, 1, 1), (4.47)

which corresponds to changing the R-symmtrey configuration,

su(2)� su(2) ! u(1)� su(3). (4.48)

Schematically,
Lbos +�L(↵̄i,↵i)| {z }

general 1/6-BPS

=====)
eigen 0,-2

L1/2-BPS. (4.49)

There are still interesting questions regarding the moduli space of 1/6-BPS Wil-
son operators in ABJ(M), namely, if this family encompasses all 1/6-BPS loops, or
only a subset of them. For instance other 1/6-BPS loops were already constructed
in [27], and it is still to be understood what is the relation of their work with ours.

A nice new feature of the formulation of fermionic loops as the deformation of a
bosonic connection is the identification of the moduli space of operators. To identify
this space we notice that we have parameterized the super-connection of the 1/6-
BPS fermionic family by four independent complex parameters ↵i and ↵̄i, so that
the moduli space of connections is C4. The space of loop operators is a subset of the
space of connections, since any two connections related by a gauge transformation
define the same loop operator.

Under a constant gauge transformation U1 = ei⇤, we have that the connection
(4.41) is invariant in its diagonal entries and the fermions acquire a phase

L !
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@A
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q
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k ↵ae�i⇤⇥̄ab↵ b↵ A

(2)
bos +

2⇡i
k (2↵̄a↵b)(C̄bCa)�

1
4

1

A . (4.50)
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Defining the new parameters

↵̃a = e�i⇤↵a
¯̃↵b = ei⇤↵̄b, (4.51)

we can write the gauge transformed connection as

L =

0

@A
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2⇡i
k (2¯̃↵a↵̃b)(CaC̄b) + 1

4 (2i)
q
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q

2i⇡
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2⇡i
k (2¯̃↵a↵̃b)(C̄bCa)�

1
4

1

A , (4.52)

so that this gauge transformation maps

L(↵̄a,↵b) ! L( ¯̃↵b, ↵̃a), (4.53)

which means that a constant gauge transformation reflects as a rescaling of the
family parameters such that their product is invariant. Modding out the C⇤ action
of these gauge transformations, we recover the moduli sapce of loops as C4/C⇤, which
is the space of singular complex matrices known as the conifold. For an explicit proof
of supersymmetry in this gauge, refer to Appendix A.



Chapter 5

Deformations of the 1/2-BPS WL
in ABJM

The study of BPS Wilson loops is highly motivated by the exact results coming from
localization, which provides us with weak coupling expansions, such as (3.50), that
can be matched by field theory calculations via Feynman diagrams, and strong cou-
pling predictions that can be attained holographically by the calculation of minimal
surfaces.

Localization results are given in terms of one-dimensional matrix models, and
perturbation theory is developed in terms of standard Feynman diagram calcula-
tions. Since these techniques operate under quite distinct frameworks, it is a rel-
evant issue to match calculations coming from these two methods. Such matches
are far from trivial in the context of BPS Wilson loops in CSm theories, since both
perturbation theory and exact results are filled with intricacies.

One such particularity of Wilson loops in this context arises from the issue of
loop framing, which can be understood as a regularization procedure for calculating
integrals relating to loop expansions in Chern-Simons theory.1

To illustrate this point, we can introduce the simplest set-up provided by the
expectation value of a Wilson loop around a general contour C in a pure Chern-
Simons theory (2.1),

hWi = hTrP exp

✓
i

I

C

Aµdx
µ

◆
i. (5.1)

At leading order in the gauge coupling, the only contribution is given by a gauge
propagator integrated over the loop contour,

hWi|� ⇠

I

C

d⌧1d⌧2hAµ(x1)A⌫(x2)ẋ1
µẋ2

⌫
i. (5.2)

As in general, short distances divergences occur when the insertions on the loop
collide x1 ! x2, a standard regularization procedure is to displace the contour of
one of the insertions from C ! C

0, such that

xµ
2(⌧) = xµ

1(⌧) + �nµ(⌧), (5.3)

1
For a review of loop framing, see chapter 7 of [26]
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which when inserted in (5.2) generates a topological invariant known as the Gauss

linking number

hWi|� ⇠

I

C

dxµ
1

I

C0
dx⌫

2✏µ⌫⇢
(x1 � x2)⇢

|x1 � x2|
3
= Link(C, C 0), (5.4)

such that this expectation value depends explicitly on the choice of framing (5.3).
Thus, in order to define parturbation theory in Chern-Simons theory, one needs the
extra data of framing.

Pure field theory calculations in ABJM theory are attained via a standard pertur-
bative set-up called dimensional regularization with dimensional reduction (DRED),
which operates at framing zero. Di↵erently, localization results often operate un-
der a di↵erent choice of framing, making the match of observables from the matrix
model computations with perturbation non-trivial, since one needs to account for
the di↵erence in framing.

Apart from providing non-trivial checks of localization results, the perturbative
calculation of BPS operators also provides a clearer understanding of the mecha-
nisms of cancellation of UV divergences of these operators. The first match of the
localization results of [10] was given by [23], where the 1/2-BPS loop was calculated
at order �2 via the DRED scheme, and once the framing factors were identified, it
was possible to confirm the localization result (3.50).

In what follows, we want to push forward the perturbative calculations of such
operator by considering a �2 perturbative calculation in the wavy-line deformation.
This way, one could also match the perturbative calculations with a localization
prediction for the Bremsstrahlung function [24]

B(�) 1
2
=
�

8
�
⇡2�3

48
+O(�5). (5.5)

Our calculations are mainly based on the same DRED scheme, and our diagrams
are the same as the ones in [23], but now we introduce a deformation in the loop con-
tour to follow the wavy-line prescription for the calculation of the Bremmstrahlung
function.

The observable that we calculate is defined as the insertion of the loop operator
(3.2) with the deformed contour (5.7) in the path integral

hW [C, ⌘, ⌘̄,M ]i =
1

M +N

Z
D[A(1)

µ , A(2)
µ , ,  ̄, C, C̄]e�SABJMTrP

⇣
e�i

H
L(⌧)d⌧

⌘
,

(5.6)
with the action of ABJ(M) (2.6), and we explicitly write the dependence of the
operator on the matter couplings and the contour of integration C, which takes the
form

C : xµ(⌧) = (0, eg(⌧) cos(⌧), eg(⌧) sin(⌧)), (5.7)

where we can recover the original circular contour for g(⌧) = 0. As the loop is
periodic, it is convenient to expand g(⌧) in its Fourier components, and parameterize
the deformation by its modes bn

g(⌧) =
1X

n=�1

bne
in⌧ . (5.8)
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For infinitesimal bn no cusps nor self intersections appear in the contour, which
discards extra logarithimic divergences. At order O(b2n) the expectation value of
the Wilson operator defines the wavy-circle approximation, such that (5.8) defines
a Fourier representation for the ⇠ parameter of (3.64).

To carry out the perturbative calculations, we need to expand the exponentials
in terms of the loop connection. Naturally, the connection encodes the u(N |M)
structure, such that the diagonal entries transform in the adjoint of the quiver
nodes, for that reason, the upper left block is referred to as the N ⇥ N block, and
the lower right block is the M ⇥M . The upper o↵ diagonal is the N ⇥M block and
the lower o↵-diagonal is the M ⇥N .

Since the definition of the operator contains a trace, for each order the non-
trivial contributions are always given only by the adjoint blocks. Expanding the
loop operator, we have2

hWi = 1 + (�i)Tr

✓I
d⌧hL(⌧)i

◆

| {z }
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+(�i)2Tr

✓I

⌧1<⌧2

d⌧1d⌧2hL(⌧1)L(⌧2)i
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| {z }
W(2)

+ · · ·

(5.9)
For organization purposes, let us define the Wilson loop expansion as

W =
X

n

W
(n), (5.10)

with W
(n) containing “n” insertions of the connection L. When the trace acts, only

the diagonal blocks survive, so that we define N ⇥N block of W (n) as B(n)
N and the

M ⇥M block as B(n)
M , this way

TrW =
X

n

Tr [B(n)
N +B(n)

M ] ⌘ Tr [BN +BM ]. (5.11)

We’ll always consider insertions of W (n) inside a correlator, so we write contractions
as operator products and omit the brackets.

5.1 Diagrams

In the calculations that follow, we notice that the sextic scalar terms and Yukawa
couplings in (2.6) play no role in our calculations since, in our set-up they would
contribute to higher orders in the perturbation parameter �.

The first contribution to the expansion of the exponential is given by W
(1),

which corresponds to the insertion of the connection in the path integral. The
trace operation picks up the dressed connections A

(1) and A
(2), corresponding to

the blocks B(1)
N and B(1)

M respectively,

Tr
�
W

1
�
= �iTr [B(1)

N +B(1)
M ] = �iTr

I

C0

�
A

(1) +A
(2)
�
. (5.12)

2
The path ordering P orders the integrals and cancels the 1/n! from the exponential.
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Each insertion of the dressed connection translates to the insertion of a single
gauge field Aµ(⌧) and a scalar bilinear ⇠ C(⌧)C̄(⌧). As we are working in the DRED
scheme [28, 29], we can consistently discard the tadpoles which arise from the scalar
bilinears. As ABJ(M) are fully conformal, the one point function of the gauge field
also vanishes, so that

hW
(1)
i = 0. (5.13)

5.1.1 Order �

The term contributing to O(�) is W (2), which contains two insertions of the connec-
tion L(⌧),
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where numerical subscripts keep track of the curve parameters: �i = �(⌧i). When
the trace acts we have the contribution from W

(2),

W
(2)
|� ⇠ Tr [B(2)

N +B(2)
M ]|�. (5.14)

Let’s focus on B(2)
N , since the computation for B(2)

M is completely analogous.
Defining x = xµ(⌧1) and y = yµ(⌧2), we have
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We have in principle three contributions: a single gluon exchange coming from the
gauge propagator in term (I), two scalar tadpoles coming from self contractions of
term (II) and a single fermion exchange coming from term (III).

The gluon exchange vanishes due to the antisymmetry of the ✏ tensor, which is
contracted with three vectors lying in the plane of the contour. The tadpole can be
discarded in our regularization scheme, so that the only non-vanishing contribution
comes from the single exchange of a fermion,

fBM =
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.
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As the block BN also contributes with the same single fermion exchange, we have
the O(�) result

W|� = �2MN
�(3/2� ✏)

2⇡3/2

✓
2⇡i

k

◆I
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d⌧1d⌧2|ẋ||ẏ|(⌘̄�⌘)
µ (x� y)µ
((x� y)2)3/2�✏

. (5.15)

Diagramatically, the O(�) contributions are

(single gluon) (single fermion) (scalar tadpole)

Figure 5.1: All contributions at O(�), the only surviving diagram is the single
fermion.

5.1.2 Order �2

The calculation at order �2 contains contributions of up to four insertions of the
connection L, which means we have to expand the loop operators up to fourth order
in the exponential to pick up all contributions

W|�2 = 1 +W
(1)
|�2

| {z }
0

+W
(2)
|�2 +W

(3)
|�2 +W

(4)
|�2 . (5.16)

Expanding in terms of W (n), the non-vanishing contributions are given by

W|�2 = (�i)2
I

⌧1>⌧2

L(⌧1)L(⌧2)|�2 + (�i)3
I
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+ (�i)4
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L(⌧1)L(⌧2)L(⌧3)L(⌧4)|�2 . (5.17)

From the W
(2) term, we have the self-energy corrections of the single fermion ex-

change and the single gluon exchange, which correspond to diagrams (b) and (d)
below. Diagram (c) also comes from this order, by contracting the scalar bilinears.
From the W

(3) insertion we have terms A1A2A3 in the diagonals, which contracted
with the gauge cubic vertex gives rise to diagram (a), and also diagram (f) coming
from the contraction of the gauge-fermion vertex. Lastly, from the W

(4) insertion,
we have diagram (e) as the double contraction of the fermions.

Having the relevant diagrams in hand, one just has to use the Feynman rules to
evaluate the correlators. For simplicity, we separate bosonic and fermionic contri-
butions, spelled out in the following.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Contributions to O(�2) diagrams. Diagrams (b), (c) and (d) come from
the second order expansion of the exponential in the Wilson loop. Diagram (a) and
(f) come from third order, and diagram (e) comes from fourth order.

Bosonic Diagrams

The evaluation of diagram (a) is known from the early studies of Wilson loops in
pure Chern-Simons theory [30]. As it is the product of pure gauge interactions we
can see it as a pure Chern-Simons contribution. Its value is topologically protected,
which means that it does not percieve the small deformations of the wavy loop, so
we can recycle a previous known result of the perfect circle. Already accounting for
both adjoint blocks, we’ll have

(a) = �
M(M2

� 1) +N(N2
� 1)

M +N

⇡2

6k2
. (5.18)

As this diagram does not depend on the contour deformation g(⌧), it won’t play any
role in the O(b2n).

Next we have diagram (b), it is evaluated using the one-loop propagator for the
fermions. Considering both contributions of the diagonal blocks, we have
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. (5.19)

Diagram (c) is obtained from two scalar contractions,
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M2N +N2M
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J
K). (5.20)

These are all contributions which are purely bosonic, meaning they are contribu-
tions common to the 1/6-BPS bosonic loops. It is interesting to note that with the
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1/2-BPS condition M = diag(�1, 1, 1, 1), we have Tr (M I
JM

J
K) = 4 and diagrams

(b) and (c) add up to the same structure as the 1/2-BPS of N = 4 SYM (3.70)
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. (5.21)

Fermionic Diagrams

The first fermionic contribution is (d), which is evaluated using the fermion one-loop
corrected propagator. The BN and BM blocks cancel out due to the grassman even
couplings ⌘ and ⌘̄, so we have (d) = 0:
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At order W (3) we have diagram (f) which evaluates to
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µ
3

�
. (5.23)

And at last, at order W (4) the only contribution (e) reads
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(5.24)

All these diagrams can also be checked in [23].

5.2 Evaluating the correlators

Taking all the diagrams into account, the goal is to evaluate them at order of b2n,
and for that we need to regularize all the integrals. We have used two distinct
regularization schemes, the DRED scheme and the so-called substitution method
[31]. We take advantage of a strategy that involves expanding correlators into an
infinite series that can be integrated, then re-sum the result [23].

Since we are working with a circular WL in a superconformal field theory, we
expect (3.64) to hold for the second order deformation g(⌧). Expression (3.64) is
written for a straight line operator, so we want a circular counterpart of that. In [31],
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the circular 1/2-BPS WL of N = 4 SYM were studied up to O(g4) in perturbation,
with order O(g2) yielding

hW
(SYM)
1/2-BPSi|g2 = 2I2(

p

�)
X

n=2

n(n2
� 1)|bn|

2. (5.25)

Stripping the � dependence of this expression, which is the Bremsstrahlung function,
we have a Fourier representation of (3.64), where the operator W1/2-BPS is the 1/2-
BPS circular loop of N = 4 SYM, given by (3.53). In what follows we look for a
loop deformation of the 1/2-BPS WL of ABJM which reproduces the same universal
behaviour on the deformation parameters bn.

The wavy-line prescription introduces a deformation on the contour of the loop,
and as the fermionic couplings of the original formulation are explicitly dependent
on the curve parameter, it is not a priori clear if one should also deform the fermionic
couplings to reproduce the correct wavy-line set-up. However, if the fermionic cou-
plings are kept fixed, the one is in violation of (3.64), which hints us that the wavy-
line deformation must also account for a deformation on the fermionic couplings.

Based on the latitude loops exposed in [4], we were able to come up with an
ansatz to correct the fermionic coupings and recover the constraint (3.64) in Fourier
space. The deformed fermionic couplings can be written as

⌘↵I (⌧) = eg(⌧)/2
�
ei⌧/2 �ie�i⌧/2

�
�1I , ⌘̄I↵(⌧) = eg(⌧)/2

✓
ie�i⌧/2

�ei⌧/2

◆
�I1 . (5.26)

With these couplings, one is in agreement with the expected universal behaviour, so
that the prescription of wavy-loops must account for the fermionic deformations in
the case of ABJM.

5.2.1 DRED scheme

The DRED scheme follows the standard QFT procedure of defining a continuous
dimension to space-time, so that the divergences of the integrals can be condensed
to poles in gamma functions, allowing for an analytic expansion which separates the
finite parts of the divergent behaviour [29]. We mostly follow the conventions of
[23].

As divergences occur when insertions of a correlator collide, i.e when two field
insertions approach the same point in the WL contour, we need to introduce a
general strategy which we used to regulate them. A general correlator is a path-
ordered integration of functions containing poles, which naturally come from the
propagators of Wick contractions. For a collision of points ⌧1 and ⌧2 the divergence
can be seen as arising from terms like

A =

Z

d⌧1<d⌧2

d⌧1d⌧2f(⌧1, ⌧2)(x1 � x2)
�↵, (5.27)

where the function f(⌧1, ⌧2) is free of divergences and consists in Euclidean contrac-
tions of x1, x2 and derivatives of these. As we are in a circular contour, we can
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rewrite the dependence on the path xi as periodic functions, which translates in
terms of the correlators being expanded in terms of

A =

Z

d⌧1<d⌧2

d⌧1d⌧2
X

i

fi(⌧1, ⌧2) sin(⌧1 � ⌧2)
�↵i . (5.28)

Where again fi(⌧1, ⌧2) are a function free of divergences, so that we localize the
divergences of the correlators in the sine functions (↵i > 0). This makes it possible
to use an analytic continuation by expanding the sine as

sin�↵(⌧1 � ⌧2) !
(2i)

�(↵)

X

n=0

�(n+ ↵)

n!
(e�i(⌧1�⌧2))2n+↵. (5.29)

In a sense, we are “hiding” the divergences in the poles of the Gamma functions,
allowing for the integration in the contour variables ⌧i to be performed. We then
re-sum the series and recover the finite result as we impose the integrals to approach
d = 3, so that the we can recover the finite contribution at each perturbation order.

As an illustration, let us consider the O(�) contribution which is given by the
single fermion exchange (5.15). In this case, the schematic function f(⌧1, ⌧2) is given
by the numerator, and the sine functions come from the expansion of the numerator.
Taking (5.15) and expanding it in O(g2), we will have the correlator written as a
sum of typical terms of the form

W|�,g2 =
X

p1,p2

Z

d⌧1<d⌧2

d⌧1d⌧2 Cp1,p2e
ip1⌧1+ip2⌧2 sin

✓
⌧1 � ⌧2

2

◆�4+2✏

, (5.30)

for p1, p2 integers, and Cp1,p2 complex-valued constants. For this particular ampli-
tude, we have the sum over 36 pairs of p1, p2. With (5.30), we can apply (5.29),
which maps the sine functions into gamma functions, allowing for the integration in
the ⌧1, ⌧2 variables. After the integration is done, one just takes the ✏! 0 limit, to
recover the result for d = 3, which yields

W|�,g2 ⇠ �
1X

n=�1

|bn|
2(n2

� 1)|n|. (5.31)

The evaluation of diagrams of O(�2) follow similar patterns, although more com-
plicated due to the number of field insertions on the loop, which translates into the
number of integrals of ⌧i that need to be performed.

5.2.2 Substitution method - Ap

The substitution method relies on the observation that the 1/2-BPSWL is UV finite,
so that at each order in O(�) the contributions must sum up to a finite quantity,
or equivalently, the divergences that appear from each diagram must cancel each
other.

The Ap method was proposed in [31], here we develop it for the relevant cases,
and add some comments regarding the regularization of the divergent integrals.
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What we here call the Ap method is a recursive algorithm to calculate integrals of
the form

Ap
n1,n2

=
1

4⇡2

Z
d⌧1d⌧2

ein1⌧1+in2⌧2

(ei⌧1 � ei⌧2)p
. (5.32)

For p = 0 this is simply Ap
n1,n2

= �0,n1�0,n2 . For p > 0, instead of performing the inte-
grals, we view them as formal objects satisfying the parity condition and recurrence
relations, arising from combinations of integrands with factorizable numerators

Ap
n1,n2

= (�1)pAp
n2,n1

,
pX

k=0

✓
p
k

◆
(�1)kAp

n1+p�k,n2+k = A0
n1,n2

. (5.33)

We will need the values of p = 2 and p = 4 in order to regularize the integrals of
O(�) up to order g2, since the most divergent terms are given by the typical term
(5.30) with ✏ = 0.

Cases p = 2, 4

For p = 2 this is solved by

A2
n1,n2

=
1

4
|n1 � n2|�2,n1+n2 + C(1)

n1+n2
, (5.34)

with arbitrary C(1)
n .

At quartic order we find

A4
n1,n2

=
1

96
|n1 � n2|((n1 � n2)

2
� 4)�4,n1+n2 + C(2)

n1+n2
(n1 � n2)

2 + C(3)
n1+n2

. (5.35)

Indeed, each of the integrals (for p > 0) is divergent, but the final expression for the
Wilson loop at a given loop order is finite, so the arbitrary Cn do in fact contain these
divergences. Here, while computing the contribution of each diagram, we found the
same structure of (5.32) and used the specific substitution rules (5.34) and (5.35).
We found a final result dependent of the arbitrary C’s and set them to zero in the
end of the computation. Which hints that setting all C’s to zero should be scheme
equivalent to DRED.

To see this identification of the DRED scheme with the substitution method, we
consider the order � calculation, where the only contribution is given by the single
fermion exchange diagram, and compute it with both prescriptions. In the DRED
scheme, we recover the result (5.31), where we it is manifestly divergence free. In
the substitution scheme, we have

W|�,g2 ⇠ �
1X

n=�1

|bn|
2(n2

� 1)|n|+
X

n,p

C(p)
n , (5.36)

with the sum of constants running through a finite set of integers. This way, we can
identify the substitution result with the DRED claculation by taking the remaining
constants C(p)

n in the sum to vanish.
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5.2.3 Further directions

We are yet to complete the calculation of W|�2,g2 , the remaining diagrams to be
evaluated are (e) and (f) mainly because of technical di�culties related to the pro-
cedure of regularization. All other diagrams have already being evaluated and all of
them are in agreement with the constraint of the Bremsstrahlung function, namely
they evaluate to

(b),(c),(d) = f(�)
X

n

n(n2
� 1)|bn|

2. (5.37)

where the sum over the modes is the momentum representation of I[⇠] of (3.64) [31].
Our hope is to perform the remaining calculations, and recover the Bremsstrahlung
function of ABJM.

The technical dificulties in the calculation of the remaining diagrams can be
traced to the fact that they correspond to more than two field insertions on the
Wilson loop. Diagram (e) corresponds to four fermionic insertions on the loop and
(f) to two fermionic insertions and a gauge field. In turn, each insertion generates
a source of divergence, since the loop integration takes these insertions to collide.
This way, instead of having only two integrals to be performed and regularized, as
in the solved diagrams, we need a prescription which solves four integrations which
is computationally intractable with the current DRED scheme.



Chapter 6

Wilson lines as defects

Apart from being fundamental operators of any gauge theory, Wilson lines are also
of importance in the context of space-time defects, since the insertion of BPS ex-
tended operators in a general superconformal theory provides a method for defining
supersymmetric CFTs inheriting a subgroup of bulk isometries.

Operators of a general d-dimensional superconformal theory are labeled by the
quantum numbers of the bosonic subgroup of isometries, which comprises the confor-
mal group so(d+ 1, 1)conf and a space-time commuting R-symmetry group soR(N),
which rotates the supercharges of the theory. A familiar example is given by N = 4
SYM theory in 4 dimensions, where we have the bosonic subgroup

so(4, 2)conf � suR(4) ⇢ psu(2, 2|4), (6.1)

and operators are naturally labeled according to their conformal dimensions �,
space-time spin j, and su(4)R Dynkin labels [r1, r2, r3].

In what follows, we are particularly interested in superconformal theories in
three-dimensional space-time, where the N -extended supersymmetric theory enjoys
the isometries of osp(N|4), and operators are labeled in respect to the subgroup

so(1, 4)conf � so(N )R ⇢ osp(N|4). (6.2)

From the Lagrangean point of view, these theories are described by Chern-Simons
terms couple to matter fields, which have been reviewed in chapter 2 for the case of
N = 6 and N = 4.

When considering the insertion of BPS Wilson operators in the vacuum of these
theories, we have a breaking of the vacuum symmetries, i.e a breaking of the sym-
metries of the underlying theory (bulk theory), and a particular subgroup of the
underlying superconformal isometries is preserved, giving rise to a one-dimensional
conformal theory supported in the Wilson operator contour, which is known as the
defect conformal field theory (dCFT).

In general, the bulk symmetries are broken to the conformal group in one di-
mension su(1, 1)conf, a u(1)J0 “twist” mixing rotations and R-symmetries, residual
R-symmetries and the supercharges preserved by the defect:

osp(N|4) =) su(1, 1)conf � so(N ⇤)R � u(1)J0 � supercharges, with N
⇤ < N .

(6.3)

41
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In the dCFT, operators are also labeled in respect to its bosonic subgroup, which
is bound to be a subset of the bulk bosonic isometries. In the non-supersymmetric
case, a Wilson line breaks all fermionic generators, and only a one-dimensional
conformal group is preserved, defining an ordinary one-dimensional CFT. In a su-
persymmetric case, a BPS line preserves some amount of the bulk supersymmetry,
so that the dCFT corresponds to a superconformal one-dimensional theory, which
is the setting of interest to us.

The reason we are interested in BPS dCFTs is that correlation functions of
these defects can be studied via the superconformal bootstrap approach, since they
define superconformal field theories in one dimension. This approach relies only
on the symmetry group preserved by the Wilson lines, and in principle requires no
definition of the Wilson line in terms of the fields of the bulk theory, providing a
purely group theoretic approach to the problem, thus achieving non-perturbative
set-up to the study of the defects. When a definition of the Wilson line in terms
of Lagrangean fields is existent, one can map operators of the dCFT to insertion of
bulk fields in the line, and explore perturbative dynamics on the dCFT by evaluating
Feynman diagrams.

From the AdS/CFT perspective, a Wilson line is the boundary of a world-sheet
of a propagating string in the AdS side (1.9). The preserved dCFT isometries are
then reproduced by isometries on this world-sheet, so that field fluctuations of the
dCFT can be mapped to an e↵ective field theory living in the world-sheet, in an
AdS2/CFT1 instance of the holographic principle. The gravity description of the
system makes it possible to study correlation functions of gauge invariant operators
on the line by means of Witten diagrams [32].

The 1/2-BPS line of ABJ(M) was recently studied in this context in [13], and
we we present our studies of the 1/2-BPS lines of the N = 4 Chern-Simons-matter
theories in the same spirit, providing a weak coupling description of the fundamental
operators of the theory, as well as a superspace representation of their correlation
functions.

The psu(1, 1|2) symmetry of the defect is used to constrain the correlation func-
tion of chiral superfields, where we derive the superblocks associated to the correla-
tion functions via the super-covariant approach [14], and calculate a strong coupling
correction to the free theory based on a “minimal solution” explored in [13]. In
closing, we discuss the holographic description of this set-up in terms of low energy
M-branes in an orbifold setting.

Generalities

The presence of the 1/2-BPS Wilson line in the 3d Chern-Simons-matter theories
breaks the osp(N|4) symmetry to su(1, 1|12N ) [33]. We are interested in the study
of correlation functions of operators that live in the dCFT, namely, of operators
charged under the su(1, 1|12N ) group and supported along the line.

Given local operators Oi(ti) of the bulk theory, i.e. operators transforming ac-
cording to a representation of osp(N|4) inserted in the line at the point ti and
transforming in a representation of U(N |N),1 the defect correlation function is de-

1
In order to define gauge invariant operators, one needs to respect the embedding of the su-
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fined as

hO1(t1)O2(t2) · · · On(tn)iW ⌘
hW [O1(t1)O2(t2) · · · On(tn)]i

hWi
, (6.4)

with

W [O2(t1)O2(t2) · · · On(tn)] ⌘ TrP [Wti,t1O(t1)Wt1,t2O(t2) · · · O(tn)Wtn,tf ]. (6.5)

With Wti,tj being the gauge compensator between ti and tf .2 With these definitions
we can induce operators in the dCFT by inserting bulk operators in the line.

Given an infinitesimal variation of the Wilson line, one can rewrite it as an
operator insertion of the variation of the Wilson connection as

h�W · · · i

hWi
= �i

Z
dth�L(t) · · · iW . (6.6)

Once we consider that the variation in (6.6) can be generated by any element of
the algebra osp(N|4), we naturally have that the elements in the preserved sub-
algebra su(1, 1|12N ) decouple from the ones which are broken, since symmetries
of the line will yield zero for RHS of (6.6). The broken generators will give rise
to operators living in the defect, with well defined quantum numbers under the
preserved su(1, 1|12N ) symmetry.

Given a broken generator “G” in osp(N|4), it defines an operator supported on
the line via its action on the Wilson line operator

[G,W ] ⌘ i�GW =

Z
dtW [G(t)]. (6.7)

Equation (6.7) can be understood as a kind of “pullback” for operators, since it
yields an operator G(t) on the line, transforming in a representation of the subalgebra
su(1, 1|12N ) ⇢ osp(N|4).

The breaking of bulk translations by a line defect implies in the breaking of Ward
identites associated to the directions perpendicular to the Wilson line. In particular
for a line placed at the x1 axis, the conservation of the energy momentum tensor is
schematically modified to

@µTµm(x) = �2(x?)Dm(x), (6.8)

where “m” stands for the x1-orthogonal directions. The operator D is called the
displacement operator, and it carries the information about the linear response of
the Wilson operator to deformations of the Wilson line contour.

This operator can be seen as arising from the insertion of a linear combination
of the broken translation generators G± ⇠ P2 ± iP3 in (6.7).3 In particular, the two

perconnection in U(N1|N2) for the “ 1-line”. We take NI = N working with a single ’t Hooft

parameter � = N/k.
2
It is implicit the limit ti ! �1 and tf ! 1 in (6.5).

3
Assuming the line is placed at the x1 axis.
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point function of the displacement operator is fixed by the dCFT superconformal
symmetry and bound to satisfy

hDm(t1)Dn(t2)i =
�mnC�

|t12|4
, (6.9)

reflecting the fact that this operator is a conformal primary of protected conformal
dimension � = 2.

In the supersymmetric setting, the displacement operator defines the top com-
ponent of a chiral multiplet of su(1, 1|12N ), and their correlation functions can be
studied in superspace, allowing us to extract any correlation function of any operator
inside the multiplet by expanding the correlation function of the chiral superfields.
In particular, all 2pt correlation functions are immediately fixed by the supercon-
formal two point functions of the chiral fields, and all 4pt functions are given once
the 4pt of the superprimary of the multiplet is known. As shown in [9], the constant
normalizing the 2pt function (6.9) is related to the bremsstrahlung function as

C�(�) = 12B(�). (6.10)

We concentrate on the analysis of the osp(N|4), but in principle it can be re-
produced for any BPS defect in di↵erent dimensions. The goal is to derive the
components of the displacement multiplet, to cast it as (anti-)chiral superfield, and
to use the superconformal invariants of this space to constrain the correlation func-
tions.

Once the correlation functions are constrained, we develop the superconformal
boostrap approach in terms of the super-Casimir di↵erential equation [14], which
makes it possible to express correlators in a convariant basis of the underlying dCFT
symmetry, i.e the supercoformal blocks.

Given the superconformal blocks, we perturb the correlators around the free
theory and calculate the anomalous dimensions of the exchanged operators in the
s-channel OPE of the relevant correlation functions.

The program

Let us organize the steps which we take to study these defects, outlying the impor-
tant parts that will be discussed in more detail as we carry out the calculations in
the next sessions. We are ultimately interested in the systematic study of dCFT
correlators of operators sitting in the short multiplet by the name of displacement
multiplet. This particular short multiplet can be cast as a chiral superfield, which
makes it possible to use the full power of superconformal symmetry to constrain all
4pt funtions of this multiplet in terms of the 4pt function of the superprimary of
the multiplet. By using a supersymmetric generalization of the Casimir equation,
we derive the superblocks of the s-channel OPE of the said chiral fields, and by the
means of a holographic ansatz, it is possible to calculate the anomalous dimensions
of the operators flowing in the OPE at the strong coupling limit.

One begins by inspecting the symmetries of the 1/2-BPS defect, which generates
the symmetry group of the dCFT, ultimately dictating the dynamics of the chiral
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fields. To do that, we can divide the generators of the bulk theory into two disjoint
sets, the symmetries of the defect S, and the broken generators G, such that

[S,W ] = 0, S 2 osp(N|4), (6.11)

and
[G,W ] ⇠ G 6= 0, G 2 osp(N|4), (6.12)

so that the broken generators spawn the operators of the displacement multiplet via
(6.7). This gives rise to both the symmetry group su(1, 1|12N ) of the dCFT and the
field content of the multiplet that we are interested in studying.

After we identified the operators of the multiplet and the symmetry group, we
classify these operators in respect to the quantum numbers of the line, generally
consisting in the conformal dimension �, the j0 twist charge, and the Dynkin labels
of the preserved R-symmetry of the defects. At this stage, it is possible that we
miss some of the operators in the displacement multiplet. This is because not all of
them are generated by the direct insertion of the broken generators in the line.

To understand this, we note that the line operators defined by (6.7) are invariant
under the addition of total derivatives, which may spawn extra operators. On the
other hand, we also notice that the operators come from the generators of the super-
algebra osp(N|4), which must satisfy the super-Jacobi consistency conditions. In
fact, the imposition of the super-Jacobi identities fixes all freedom in choosing the
derivative terms in (6.7), spawning extra operators in the multiplet that ensure
consistency of the algebra at the same time completing the displacement multiplet.

Once the multiplet is completed, we can verify that it is a 1/2-BPS multiplet of
the dCFT algebra, meaning it is annihilated by 1/2 of the preserved supercharges
of the defect. Being a 1/2-BPS multiplet, it can be cast as a chiral superfield in a
suitable superspace.

The superspace structure naturally arises from the su(1, 1|12N ), so we have the
space-time coordinate t of the line, and N /2 complex Grassman coordinates ✓a, and
their derivatives

@a =
@

@✓a
@̄a =

@

@✓̄a
, (6.13)

with a = 1, · · · , 12N defining the superspace coordinates (t, ✓a). The superspace is
also endowed with the covariant derivatives

Da = @a + ✓̄a@t, D̄a = @̄a + ✓a@t. (6.14)

We also introduce a chiral(anti-) coordinates, such that D̄ay = 0 and Daȳ = 0,

y = t+ ✓a✓̄
a, ȳ = t� ✓a✓̄

a, (6.15)

which is the natural coordinate system of the chiral fields. This way, we may define
the superconformal chiral fields by the chirality conditions

D̄a� = 0 Da�̄ = 0. (6.16)

The perk of working in superspace is that we can constrain the correlators of the
whole multiplet by studying the correlators of the correspinding chiral fields. Recall-
ing that we are in a superconformal setting, apart from supersymmetry, correlators
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are constrained by the 1d conformal group. The Ward identities of the dilatation,
translation and special conformal transformations constrain the 2pt functions of any
operator to satisfy

hO1(t1)O2(t2)i =
��1,�2

|t12|2�1
, tij ⌘ ti � tj, (6.17)

where the operator Oi has dimension �i. Supersymmetry further constrains the 2pt
functions of the chiral fields by the Ward identities associated to the preserved super-
charges, so that the ordinary distance tij must be enhanced to the supersymmetric
distance hij̄i,

hij̄i = yi � ȳj � 2✓ai✓̄
a
j , (6.18)

so that the superconformal 2pt of the chiral fields is written as

h�(y1, ✓1)�̄(y2, ✓2)i =
C�

h12̄i2��
. (6.19)

As each component of the chiral fields corresponds to an operator of the displacement
multiplet, the grassmann expansion of (6.19) yields all two point functions thereof.

Our main object of study consists in j0-neutral 4pt functions of the chiral super-
fields. As we are in a one-dimensional theory, insertions of operators in a correlator
come with a specific ordering4 so that we have in principle two distinct correlators,
which are constrained by superconformal symmetry as

h�(y1, ✓1)�̄(ȳ2, ✓̄2)�(y3, ✓3)�̄(ȳ4, ✓̄4)i =
C2

�

h12̄i2��
h34̄i2��

f(Z) , (6.20)

h�(y1, ✓1)�̄(ȳ2, ✓̄2)�̄(ȳ3, ✓̄3)�(y4, ✓4)i = �
C2

�

h12̄i2��
h43̄i2��

h(X ) , (6.21)

where

Z =
h12̄i h34̄i

h14̄i h32̄i
X = �

h12̄i h43̄i

h13̄i h24̄i
(6.22)

are the supersymmetric generalization of the usual conformal cross ratios z and �,

Z|✓!0 ⌘ z =
t12t34
t14t23

, X|✓!0 ⌘ � =
t12t34
t13t24

. (6.23)

The correlator (6.20) is called the chiral-anti-chiral, and the correlator (6.21) is called
the chiral-chiral. In more than one dimension they would be related by crossing,
but in one dimension one is only allowed to take the OPE of neighboring operators,
so they need to be considered independently.

By definition, the constructed chiral fields gives us the operators of the multiplet
via a grassmann expansion,

�(y, ✓) = �0(y) + ✓a�
a
1 + · · · (6.24)

�̄(ȳ, ✓) = �̄0(ȳ) + ✓̄a�̄1a + · · · (6.25)

4
We take the ordering t1 < t2 < t3 < t4.
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with �i being operators of the multiplet. The ✓a free terms �0, �̄0 correspond to
the super-primaries of the multiplet and the fields contracted with the Grassmann
coordinates are their descendants, which are achieved from the super-primaries by
action of the preserved supercharges.

An expansion of (6.21) and (6.20) generates all 4pt functions of the operators in
the displacement multiplet, and as we will show in detail in the next sessions, the
4pt functions of descendents are written in terms of the 4pt function of the super-
primary of the multiplet, so that by solving for the super-primary yields solutions
to all other correlators. To see this, notice that the 4pt functions of the descendants
are generated by Grassmann expanding the LHS of (6.20) and (6.21). On the other
hand, the expansion of the RHS generates expressions containing derivatives of f(Z)
and h(X ), which are known once these functions are known.

This way, the natural object of study is given by the 4pt functions of the super-
primaries, which is given by taking the fermionic coordinates ✓a ! 0 in (6.20) and
(6.21),

h�0(t1)�̄0(t2)�0(t3)�̄0(t4)i =
C2

�

t
2��0
12 t

2��0
34

f(z) , (6.26)

h�0(t1)�̄0(t2)�̄0(t3)�0(t4)i =
C2

�

t
2��0
12 t

2��0
34

h(�) . (6.27)

So far superconformal symmetry had two main e↵ects in our set-up. Firstly, it
constrains all 4pt correlators of displacement multiplet operators as a function of
the 4pt function of the super-primary operator, and secondly, it constrains the 4pt
functions of super-primaries to follow (6.26) and (6.27), so that all information is
encoded into the unknown functions f and h.

By considering an s-channel ((12)-(34)) OPE expansion of (6.26) and (6.27) we
can write the correlators in terms of the conformal blocks of su(1, 1|12N ), following
the traditional bootstrap approach.5 In this sense, we can write

h�0(t1)�̄0(t2)�0(t3)�̄0(t4)i =
C2

�

t
2��0
12 t

2��0
34

1X

�=0

c�G�(z) , (6.28)

h�0(t1)�̄0(t2)�̄0(t3)�0(t4)i =
C2

�

t
2��0
12 t

2��0
34

1X

�=0

c̃�G̃�(�) , (6.29)

with the super-primaries �0 with dimension ��0 , and G�, G̃� are the conformal
block of dimension � associated to the exchange of an operator of dimension � in
the OPE. This way we have

f(z) =
1X

�=0

c�G�(z) , (6.30)

h(�) =
1X

�=0

c̃�G̃�(�) . (6.31)

5
We derive these conformal blocks by the super-Casimir approach [14], with more details in the

case of the N = 4 defect.
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This is in principle only a rewriting of the correlators in terms of the conformal
blocks, achieving a conformal partial wave decomposition. The upside of this, is
that we can consider a perturbations of their LHS and conformal symmetry bounds
the correlator to be expressed in terms of the conformal blocks by means of the
constants c� and c̃�.

As our defects have well defined representations in terms of the Lagrangean fields
of the theory, we can construct the weak coupling description of the super-primaries
of (6.28) and (6.29), which allows for a perturbative calculation of the LHS. In our
perturbation scheme, we first consider a Wick contraction at tree level, allowing
for the collection of the coe�cients c� around the free theory regime. Evaluating
the correlators at the free theory limit, we define the f (0)(z) and h(0)(�) functions
as the solution to (6.26) and (6.27), which defines our leading order results of the
conformal block expansions

f (0)(z) =
1X

�=0

c(0)� G�(z) = 1 +
1X

n=0

c(0)n G
�

(0)
n
(z), (6.32)

h(0)(�) =
1X

�=0

c̃(0)� G̃�(�) = 1 +
1X

n=0

c̃(0)n G̃
�

(0)
n
(�), (6.33)

where we take the identity out of the sums, and parameterize them with integers n,
such that the nth exchanged operator has classical dimension �(0)

n .
Next up, we use the free theory solution as a saddle point, and look for a strong

coupling correction to the correlators coming from holographic considerations. The
strong coupling limit of the dCFT can be understood as a weakly interacting e↵ective
field theory in the string world-sheet associated to the Wilson line. The Wilson line
defines a straight line contour, which renders the string world-sheet as an AdS2 slice
of the bulk, so that the dual description of our dCFT is given in terms of propagating
fields in an AdS2 space. This way, the correlation functions of the dCFT can be
mapped to correlation functions of fields in the AdS2 space that can be calculated
via Witten diagrams [32].

The perturbation scheme that we consider introduces a correction to the coef-
ficients c� and to the dimensions � of the exchanged operators in the free theory
expansion. The perturbation parameter is ✏, such that we have

cn = c(0)n + ✏c(1)n (6.34)

�n = �(0)
n + ✏�n, (6.35)

with �n defining the anomalous dimension of the nth exchanged operator.
To understand the perturbation parameter ✏, one must turn to the holographic

calculation of the correlators, where one has the identification of ✏ with the inverse
of the tension parameter of the world-sheet description. In the string theory side,
the AdS2 is the world-sheet which is described as the minimal solution to a string
action with tension T , such that

✏ =
1

4⇡T
. (6.36)
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In the small ✏ regime, the correlators can be calculated via Witten diagrams
[13, 32, 34], and in general, a correlator is expressed in terms of the so-called D-
functions [35, 36].

The calculation of this correction in [37] inspired an ansatz for the bootstrap by
noticing that the general D-functions carry logarithmic and power-like divergences
for � ! 0 and � ! 1, as this general behaviour needs to be reproduced by the
correlator in the dCFT side.

To implement the ansatz in the correlators, we first define the “hat” of any
function f to be f̂ , with

f̂(�) =
f( �

��1)

���0
, (6.37)

such that crossing symmetry is defined as

f̂(�) = f̂(1� �). (6.38)

In this new frame, the ✏ order correction to the correlators can be attained by the
general ansatz

f̂(�) = f̂ (0)(�) + ✏f̂ (1)(�), (6.39)

with
f̂ (1)(�) = r(�) log(1� �) + r(1� �) log(�) + q(�), (6.40)

where r(�) and q(�) are rational functions with poles reproducing the holographic
behaviour of the D-functions. Furthermore, we constrain

q(�) = q(1� �), (6.41)

to guarantee crossing symmetry of the correlator.
Up until now, the functions which parameterize the ansatz are completely arbi-

trary. From the holographic computations, it is expected that they have poles at
physical values of � ! 0 and � ! 1, so we can expand the functions in a Laurent
series

r(�) =
M2X

m=�M1

rm�
m, and q(�) =

L2X

l=�L1

ql�
l(1� �)l, (6.42)

for M2 � �M1 and L2 � �L1, explicitly accounting for the expected divergences.6

Notice that q(�) is written in terms of crossing symmetric monomials, ensuring the
crossing symmetry of the series. With (6.42) the ansatz (6.40) can be understood
as being parameterized by an infinite number of coe�cients rm and ql.

By using (6.40) as an ansatz for the O(✏), we have in principle infinite possi-
bilities, since the functions q(�) and r(�) are free. For each choice of functions
it is possible to calculate the anomalous dimensions �n of the operators, which in
general grow with a power-like behaviour in n. In order to construct a minimal solu-

tion, we consider the ansatz which produces the mildest behaviour in the anomalous
dimensions, as done in [13], which is achieved by considering the functions as7

r(�) =
r�2

�2
+

r�1

�
and q(�) =

q�1

�(1� �)
, (6.43)

defining our minimal ansatz in terms of three free parameters, r�1, r�2 and q�1.

6M1,M1, L1, L2 2 Z.
7
For a more complete discussion, see [34]
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6.1 1/2-BPS line defect in N = 4 theories

The Wilson line we are interested was defined in [38] and supported along a linear
quiver. These are the 1/2-BPS solutions defined along a straight line, and are known
as the  1 solutions.

6.1.1 The 1/2-BPS Wilson line

We are interested in studying the 1/2-BPS operator which preserves su(2)A and
breaks su(2)B. Such operator was called the ‘ 1-loop’ in [38], it is coupled to just
two adjacent nodes of the quiver and is defined as follows. The connection of the
 1 WL is

W = sTrP exp

✓
i

Z
1

�1

L dt

◆
, L =

✓
AI �i↵̄ I1̇�

i↵ ̄1̇
I+ AI+1 �

1
2

◆
, (6.44)

where ↵ and ↵̄ are not complex conjugate to each other and must satisfy ↵↵̄ = 2i/k.
The bosonic connections read

AI = At,I+
i

k

�
⌫I�µ̃I

1̇
1̇+µ̃I

2̇
2̇

�
, AI+1 = At,I+1+

i

k

�
⌫I+1�µ̃I+1

1̇
1̇ +µ̃I+1

2̇
2̇

�
, (6.45)

where we have defined the moment maps as (2.13). The line is supported at x2 =
x3 = 0, and preserves the Poincaré charges are parameterized by

✓+
a1̇
, ✓�

a2̇
, (6.46)

along with the superconformal ones

#+
a1̇
, #�

a2̇
. (6.47)

The 3d N = 4 theories we are considering have the symmetry group of osp(4|4),
whose bosonic part is so(1, 4)conf�so(4)R , which comprehends the conformal group
in 3d and the rotations of supercharges. The “ 1-lines” preserve an su(2)A subgroup
of R-symmetries by construction, so that we can understand the breaking of bulk
R-symmetry by the presence of such defect as

so(4)R ⇠= su(2)A � su(2)B =) su(2)A. (6.48)

In order to understand the preserved isometries of the 3d conformal algebra which
survive the presence of the defect, we need to account for the presence of a twist,
which mixes the broken R-symmetry generator and a rotation in a non-trivial fash-
ion.

The presence of the line keeps the invariance under translations and special
conformal transformations along itself, and also of dilatations, which accounts for a
conformal group in one dimension

so(1, 4)conf =) {P1, K1, D} ⇠= su(1, 1)conf. (6.49)
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We now have to look for a twist symmetry of the loop, and to do that, we need
to take a closer look at the breaking of R-symmetry in the line connection. In the
adjoint of U(N1), we have

AI = At,1 +
i

k
(�¯̃q1̇I�1q̃1̇ I�1 + ¯̃q2̇I�1q̃2̇ I�1| {z }

broken su(2)B

+ qaI q̄a I| {z }
manifest su(2)A

). (6.50)

Although the su(2)B is broken, we still have singlets of the diagonal, since in the
su(2)B space, we would have Mḃ

ȧ
¯̃qȧq̃ḃ with

Mḃ
ȧ =

✓
1 0
0 �1

◆
. (6.51)

Representing the generators of su(2)B as R̄ ḃ
ȧ , we would have an invariance of A(I)

by R̄ 1̇
1̇
and R̄ 2̇

2̇
. Notice that the fermions coupling to the line are  +

1̇
and  ̄1̇

+, so
that they are eigenvectors of M23 = �M

+
+ rotations as well,

[R̄ 1̇
1̇ , 

+
1̇
] =

1

2
 +
1̇
, [M +

+ , +
1̇
] = �

1

2
 +
1̇
. (6.52)

From this, we can easily define a twist annihilating the fermions

J0 =
⇣
M

+
+ + R̄1̇

1̇

⌘
. (6.53)

This generator can be seen to annihilate the loop connection, since the diagonal
entries are scalars and invariant under R̄1̇

1̇
. This is a charge preserved by W which

commutes with the other generators, namely it is a non-trivial central ideal8 of the
isometries preserved by the defect.

This u(1)j0 charge along with the conformal group on the line su(1, 1)conf and the
residual su(2)A R-symmetry makes the bosonic part of the symmetry group of the
1/2 BPS line su(1, 1)conf � su(2)A � u(1)j0 . The fermionic symmetries of the defect
are given by the preserved supercharges, which are

Q11̇
+ , Q21̇

+ , Q12̇
�
, Q22̇

�
and S11̇

+ , S21̇
+ , S12̇

�
, S22̇

�
. (6.54)

Along with the bosonic ones, they form the group preserved by the line su(1, 1|2),
where the projection of the algebra is over the central ideal j0. This way, the highest
weight states of the algebra are labeled as [�, j0, h], where we diagonalize in respect
to the dilatation, the j0 charge and the su(2)A Dynking label.

6.1.2 Displacement multiplet

As inspected last section, the presence of the 1/2-BPS Wilson line breaks the
osp(4|4) symmetry of the theory to su(1, 1|2), so that the broken generators when
inserted in the line give rise to the displacement multiplet transforming in a rep-
resentation of the defect symmetry group. With the symmetries in hand, we can
analyze the displacement multiplet, labeling the operators accordingly.

8
The appearance of such operator was first discussed in [33] for the N1 = 4 case.



6.1 1/2-BPS line defect in N = 4 theories 52

In order to calculate the labels associated to the j0 charge of a general line
operator G, one needs to evaluate

[J0,G] = j0G. (6.55)

The conformal dimension �G associated to an operator G coming from the in-
sertion of a broken generator G of dimenison �G is always increased by one, since
one needs to account for the dimension of the di↵erential dt in the definition of the
line operator, so that 9

�G = �G + 1. (6.56)

Supercharges. A generic Poincaré supersymmetry transformation is parametrized
by ✓↵

aḃ
, so that the variation reads

� ⌘ ✓↵
aḃ
Q

aḃ
↵ , (6.57)

where Q
aḃ
↵ are the Poincaré supercharges. With these definitions and the preserved

parameters of the “ 1-loop” (6.46), we have the set of conserved charges

Q
a1̇
+ ,Qa2̇

�
, (6.58)

in turn we have the broken supercharges as

Q
a1̇
�
,Qa2̇

+ , (6.59)

which are fundamental vectors of su(2)A with h = 1. As the fermionic generators
have dimension 1/2, when inserted in the line, they generate operators with� = 3/2.
To complete its lables, we need only to claculate j0.

The broken supercharges give rise to the line operators

[Qa1̇
�
,W ] =

Z
dt W [⇤a1̇

�
(t)], [Qa2̇

+ ,W ] =

Z
dt W [⇤a2̇

+ (t)], (6.60)

which are fermions in the 2 of su(2)A. The j0-charges are given by inserting J0, Q
and W into a Jacobi identity. For the “1̇,�” charges we have

[J0, [Q
a1̇
�
,W ]] + [Qa1̇

�
, [W , J0]| {z }

0

] + [W , [J0,Q
a1̇
�
]] = 0. (6.61)

We can evaluate the action of J0 in a supercharge as

[J0,Q
a1̇
�
] = �Q

a1̇
�
. (6.62)

Plugging it back in the Jacobi identity (6.61), it gives j0 = �1, completing the labels

⇤a1̇
�

:


3

2
,�1, 1

�
. (6.63)

9
In what follows, we only consider labels of operators on the line, and drop indices of �.
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The 2̇,+ case is calculated exactly in the same way, yielding

[J0,Q
a2̇
+ ] = Q

a2̇
+ , (6.64)

with resulting labels given by

⇤a2̇
+ :


3

2
, 1, 1

�
. (6.65)

In summary, we have derived the representation of the fermionic operators of the
displacement multiplet, and the final result is

⇤a1̇
�

:


3

2
,�1, 1

�
, ⇤a2̇

+ :


3

2
, 1, 1

�
. (6.66)

R-charges. The 1/2-BPS solution breaks the su(2)B of osp(4|4), which is gener-
ated by R̄ ḃ

ȧ , and as we have seen, the generator R̄ 1̇
1̇
conspires with the rotation M

+
+

to give the J0 symmetry of the defect. This leaves us with two broken R-symmetry
generators R̄ 2̇

1̇
, R̄ 1̇

2̇
. For each of the broken charges we define the operators

[R̄ ḃ
ȧ ,W ] =

Z
dt W [R̄ ḃ

ȧ (t)]. (6.67)

The task now reduces to finding the representation of R̄ ḃ
ȧ . As R-symmetry gen-

erators are dimensionless, when inserted in the line they yield operators of � = 1.
They are also singlets of su(2)A, so h = 0.

When acting on the R-symmetry subspace, the J0 operator has only contributions
from R̄ 1̇

1̇
, since R-symmetries commute with space-time rotations. We can see that

the two operators have their degeneracy lifted by the j0-charge10

[J0, R̄ 2̇
1̇ ] = R̄ 2̇

1̇ , [J0, R̄ 1̇
2̇ ] = �R̄ 1̇

2̇ . (6.68)

which gives us

R̄ 2̇
1̇ : [1, 1, 0] , R̄ 1̇

2̇ : [1,�1, 0] . (6.69)

Translations The broken translations are given by P++ and P��. Their insertion
in the line gives rise to the displacement operators

[P++,W ] =

Z
dt W [D(t)], [P��,W ] =

Z
dt W [D̄(t)]. (6.70)

As P�� and P++ are momentum generators, they have unit dimension, so that
the displacement operators have canonical dimension � = 2. Being scalars of the
R-symmetry, we have h = 0.

We can calculate their j0 label by acting with J0. The relevant Jacobi identity is

[J0, [P,W ]] + [P, [W , J0]| {z }
0

] + [W , [J0,P]] = 0. (6.71)

10
The R̄ 2̇

2̇
is not present in the displacement multiplet, since R̄ 2̇

2̇
= �R̄ 1̇

1̇
due to the trace condition

R̄ ȧ
ȧ = 0 for su(2).
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Where P is either P�� or P++. As the displacement operator is a singlet in R-
symmetry space, the only contribution of the J0 charge is M +

+ , so that

[J0,D] = D, [J0, D̄] = �D̄, (6.72)

so that
D : [2, 1, 0] , D̄ : [2,�1, 0] . (6.73)

With this, we have classified all operators arising from the insertion of broken
generators. The next step is to act with the preserved supercharges on them and
close the algebra using super-Jacobi identities, ensuring consistency of the algebra
and completing the multiplet. The definition of defect operators corresponding are
summarized in Table (6.1).

Operator [�, j0, h]

R̄ 2̇
1̇

[1, 1, 0]

R̄ 1̇
2̇

[1,�1, 0]

⇤a2̇
+

⇥
3
2 , 1, 1

⇤

⇤a1̇
�

⇥
3
2 ,�1, 1

⇤

D [2, 1, 0]
D̄ [2,�1, 0]

Table 6.1: Dynkin labels of the displacement multiplet operators.

6.1.3 Consistency conditions

We are now concerned with the compatibility of the developed displacement mul-
tiplet of 1/2 BPS defects in N = 4 theories with the osp(4|4) superalgebra. Note
that the prescription of generating operators in the displacement multiplet by the
insertion of osp(4|4) broken charges in the Wilson operator is defined up to total
derivatives.

At each node of the diagram (6.1), we can in principle add a term which is
@⌧O, since these operators are always supported along the line. Most importantly,
the freedom to add total derivatives in the multiplet is necessary to ensure that
the action of the supercharges is compatible with the bulk superalgebra. Here we
investigate whether (6.1) is consistent with the osp(4|4) algebra in its current form
(without total derivative terms), or if it is necessary to include total derivative terms.

The starting point is to study the action of conserved charges Qa1̇
+ and Q

a2̇
�
. We

inspect the action of Qa2̇
�

in the D multiplet structure via super-Jacobi identities,
since the näıve action of these charges on the operators yields trivial zeros which are
incompatible with the supergroup structure.

Displacement operators

Let us start by checking the consistency of the action of preserved charges on the
displacement operator itself. In order to do that, we consider the super-Jacobi
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identity of the preserved charges and D,

{Q
a2̇
�
, [Qb1̇

+ ,D]}� {Q
b1̇
+ , [D,Q

a2̇
�
]}+ [D, {Qa2̇

�
,Qb1̇

+}]
(!)
= 0. (6.74)

Starting with the third term, we have

{Q
a2̇
�
,Qb1̇

+} = 4✏ab✏2̇1̇P�+, (6.75)

Noticing that P+� = P1 = P .11 This term generates the derivative term via

[D, {Qa2̇
�
,Qb1̇

+}] = 4✏ab[P,D] = �4✏ab@⌧D. (6.76)

With the result (6.83) we can rewrite it as

[D, {Qa2̇
�
,Qb1̇

+}] = {Q
b1̇
+ , @⌧⇤

a2̇
+ }. (6.77)

The first term vanishes since D is the top component of the multiplet, [Qb1̇
+ ,D] = 0.

Plugging (6.77) into the super-Jacobi identity gives us

{Q
b1̇
+ , [Q

a2̇
�
,D]}+ {Q

b1̇
+ , @⌧⇤a2̇

+ }
(!)
= 0, {Q

b1̇
+ , [Q

a2̇
�
,D] + @⌧⇤a2̇

+ }
(!)
= 0, (6.78)

so
[Qa2̇

�
,D] = �@⌧⇤a2̇

+ . (6.79)

Thus fixing the action of the charges on the D operator.

Fermionic operators

We now turn our attention to the identities of the fermions ⇤a2̇
+ in the multiplet. We

notice that we have to study two distinct set-up of identities. The first one concerns
the insertion of a preserved charge Q, a broken charge Q and the the W operator,
schematically

{Q, [Q,W ]}� {Q, [W , Q]}+ [W , {Q,Q}]
(!)
= 0, (6.80)

and the second is the insertion of three fermionic charges, consisting of a fermionic
line operator ⇤, and two preserved Poncaré charges Q, schematically

[Q(1), {Q(2),⇤}] + [Q(2), {⇤, Q(1)
}] + [⇤, {Q(2), Q(1)

}]
(!)
= 0. (6.81)

Let us start with the first set of Jacobi identites. We have the preserved super-
charges (6.58), so we first study their action on the fermionic operator ⇤a2̇

+ , which

gives rise to the displacement operator D. First we observe that ⇤a2̇
+ is annihilated

by the Q
a2̇
�

charges, so we only have to evaluate the action of Qa1̇
+ on the fermionic

operator. Considering a Jacobi identity of the type (6.80), we first notice that the
middle term always vanishes, since by definition Q is preserved by the defect, and
we are left with

{Q,⇤} = [{Q,Q},W ], (6.82)

11
The P action is defined as �@⌧ in accordance with (6.104).
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where we defined [Q,W ] = ⇤. If we plug the charges Qa1̇
+ ,Qb2̇

+ as the preserved and
broken one, respectively, we collect

{Q
b1̇
+ ,⇤

a2̇
+ } = 4✏baD. (6.83)

Next, we have to consider the second type of identities (6.81),

[Qc2̇
�
, {Qb1̇

+ ,⇤
a2̇
+ }] + [Qb1̇

+ , {⇤a2̇
+ ,Qc2̇

�
}] + [⇤a2̇

+ , {Qc2̇
�
,Qb1̇

+}]
(!)
= 0. (6.84)

The first term reads
[Qc2̇

�
, {Qb1̇

+ ,⇤
a2̇
+ }] = 4✏ab[Qc2̇

�
,D]. (6.85)

With the result (6.79), we reach

[Qc2̇
�
, {Qb1̇

+ ,⇤
a2̇
+ }] = �4✏ba@⌧⇤c2̇

+ . (6.86)

The third term generates a derivative again

[⇤a2̇
+ , {Qc2̇

�
,Qb1̇

+}] = �4✏cb[⇤a2̇
+ , P ] = �4✏cb@⌧⇤a2̇

+ . (6.87)

Of course, we do not know a priori what the second term evaluates to, but we can see
that it needs to generate epsilon tensors and derivatives of the fermionic operator.
We notice that the final expression contains a 2̇ index, while the supercharge of the
second term is Qb1̇

+ . So that if

{⇤ā2̇
+ ,Qc2̇

�
} ⇠ R̄ 2̇

1̇ (6.88)

we can see that the su(2) index will rotate to 2̇ as we wish. Furthermore, anti-
commutators of supercharges naturally contain the su(2) invariant, and we need to
fit it in a derivative, so the natural ansatz is

{⇤a2̇
+ ,Qc2̇

�
} = 4✏ca@⌧ R̄ 2̇

1̇ . (6.89)

This way, the second term in (6.84) evaluates to

[Qb1̇
+ , {⇤a2̇

+ ,Qc2̇
�
}] = �4✏ac@⌧⇤b2̇

+ , (6.90)

which means that (6.84) evaluates to

✏ba@⌧⇤c2̇
+ + ✏cb@⌧⇤a2̇

+ + ✏ac@⌧⇤b2̇
+ = 0, (6.91)

as desired.

R-symmetry operators

Lastly, we need to perform the consistency check on the R̄ 2̇
1̇
operator. Its Jacobi

identity reads

{Q
a2̇
�
, [Qb1̇

+ , R̄
2̇
1̇ ]}� {Q

b1̇
+ , [R̄

2̇
1̇ ,Q

a2̇
�
]}+ [R̄ 2̇

1̇ , {Q
a2̇
�
,Qb1̇

+}]
(!)
= 0. (6.92)
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The first term reads
{Q

a2̇
�
, [Qb1̇

+ , R̄
2̇
1̇ ]} = �✏cb@⌧ R̄ 2̇

1̇ , (6.93)

while the third term is
[R̄ 2̇

1̇ , {Q
a2̇
�
,Qb1̇

+}] = ✏cb@⌧ R̄ 2̇
1̇ . (6.94)

which means that one can consistently choose

[Qc2̇
�
, R̄ 2̇

1̇ ] = 0, (6.95)

so that the Jacobi identity holds. This is di↵erent than in the ABJ(M) case, where
one needs to introduce an extra operator F which satisfies (6.95). In fact, as R̄ 2̇

1̇
is

the super-primary of this multiplet. Defining

R̄ 2̇
1̇ ⌘ R, ⇤a2̇

+ ⌘ ⇤a, D, (6.96)

Qa
⌘ Q

a1̇
+ and Q̄a

⌘ Q
a2̇
�

charges, we can write a summary of supersymmetry
transformations as

[Qb,R] = ⇤b, [Q̄b,R] = 0,

{Qb,⇤a
} = 4✏baD, {Q̄b,⇤a

} = 4�ab@⌧R,

[Qb,D] = 0, [Q̄b,D] = �@⌧⇤b. (6.97)

As the preserved fermionic charges act on the states |�, j0, hi, one recovers an-
other state |�0, j00, h

0
i in the same multiplet (with the same Casimir numbers). In

fact, we acted with the preserved charges (6.58) in the states generated by the op-
erators in Table (6.1) and recover other operators of the multiplet. The result can
be visualized as in Figure 6.1. As we can see, the multiplet naturally decouples into
actions of the Qa and Q̄a charges, with any mixing between them annihilating the
states, thus defining (anti-)chiral superfields.

Figure 6.1: Representation of 1/2 BPS multiplet. Zeros are enhanced to total
derivative operators along the line defect.
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6.1.4 Chiral correlators

As the displacement multiplet is naturally described by a chiral superfield, we wish
to use a superspace representation of the preserved psu(1, 1|2) defect algebra to
constrain the correlation functions of operators in the displacement multiplet. In
the present case, we are interested in recasting the displacement multiplet dropping
the u(1)j0 charge of the chiral superfield, since it is projected out of the algebra,
where R is the super-primary operator, which is an su(2) scalar with mass dimension
of � = 1.

Accounting for the su(2) structure of psu(1, 1|2), we introduce two sets ✓a, with
a = 1, 2. Using this superspace, we can cast the displacement multiplet and its
conjugate as a chiral and anti-chiral fields, where the superprimary is given by the
operators R, and R̄:

�(y, ✓) = R(y) + ✓a⇤a(y)�
1

2
✓a✓b✏

abD(y), (6.98)

�̄(ȳ, ✓̄) = R̄(ȳ) + ✓̄a⇤̄a(ȳ) +
1

2
✓̄a✓̄b✏abD̄(ȳ). (6.99)

2-point functions

In order to read o↵ the 2-point functions, we need to expand (6.19) in the Grassmann
parameters, where now we have su(2) products ✓i · ✓̄j ⌘ Tij to expand. For any Tij,
we have T 3

ij = 0, so that our expansions truncate at second order

1

(y12 � 2T12)2
=

1

y212
+

2(2T12)

y312
+

3(2T12)2

y412
, (6.100)

yielding

h�(t1, ✓1)�̄(t2, ✓2)i = C�

✓
1

t212
+

2(2✓1 · ✓̄2)

t312
+

3(2✓1 · ✓̄2)2

t412

◆
. (6.101)

From this expansion we easily collect

hR(t1)R̄(t2)i =
C�

t212
, h⇤a(t1)⇤̄b(t2)i = �

4C��ab
t312

, hD(t1)D̄(t2)i =
24C�

t412
.

(6.102)

4-point functions

As before, we expand expression (6.26) in the Grassmann parameters and match
with the superfield expansion in terms of the operators in the multiplet, collecting

hR(t1)R̄(t2)R(t3)R̄(t4)i =
C2

�

t212t
2
34

f,

h⇤a1(t1)⇤̄a2(t2)⇤
a3(t3)⇤̄a4(t4)i =

C2
�

t312t
3
12

⇥
�a1a2�

a3
a4z (zf

00
� 3f 0) + 4�a1a4�

a3
a2f (f 0 + zf 00)

⇤
,

hD(t1)D̄(t2)D(t3)D̄(t4)i =
16C2

�

t412t
4
34

⇥
36f + z

�
4z2 � 2z � 32

�
f 0 + 2z2

�
7z2 + z + 7

�
f 00
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+z3(z � 1)(8z + 4)f (3) + z4(z � 1)2f (4)
⇤
,(6.103)

where all f and its derivatives are functions of z. All 4pt functions are defined in
terms of the same function f(z), so that if one solves the correlators of primaries,
the rest of the multiplet is easily solved by evaluating the derivatives.

6.1.5 Bootstrapping the supercorrelators

So far we have exploited the symmetry constraints on two and four point functions
of operators in the displacement multiplet, rewriting them in terms of an unknown
function f(z). In this section, we develop an in-depth leading and next-to-leading
order computation of the chiral-anti-chiral correlator, as the chiral-chiral is obtained
similarly.

Conformal blocks

We are interested in calculating the function f(z) which parameterizes all the 4-
pt functions of operators in the displacement multiplet of the 1/2-BPS defect of
N = 4 theories (6.103). One fundamental ingredient to the program is the conformal
blocks of the psu(1, 1|2) conformal group. In order to calculate the blocks for the
chiral-antichiral 4pt function, we need to employ a conformal partial wave analysis,
where the s-channel is explored and the Casimir operator labels the irreducible
representations exchenged in the OPE.

A di↵erential representation for the generators is given by

P = �@t, D = �t@t �
1
2✓a@

a
�

1
2 ✓̄

a@̄a ��,

K = �t2@t � (t+ ✓✓̄)✓a@
a
� (t� ✓✓̄)✓̄a@̄a � (✓✓̄)2@t � 2 t�+ j0 ✓✓̄,

Qa =
p
2
�
@a � ✓̄a@t

�
,

Q̄a = �
p
2
�
@̄a � ✓a@t

�
, (6.104)

Sa = �i
p
2
⇥
(t+ ✓✓̄)@a � (t� ✓✓̄)✓̄a@t � 2✓̄a✓̄b@̄b � (2�+ j0)✓̄

a
⇤
,

S̄a = �i
p
2
⇥
(t� ✓✓̄)@̄a � (t+ ✓✓̄)✓a@t � 2✓a✓b@

b
� (2�� j0)✓a

⇤
,

Ra
b = ✓a@

b
� ✓̄b@̄a �

1
2 �

b
a (✓c@

c
� ✓̄c@̄c).

Note that the twist operator J0 is absent since it is a central extension of the
algebra, i.e it annihilates all generators and is itself a Casimir. In fact, it means
that it is a quantum number that is unchanged by the action of any element of the
su(1, 1|2). In this respect, by projecting out this generator we work in psu(1, 1|2).

The quadratic Casimir operator is given by

C(2) = D2
�

1

2
{K,P}+

i

8

⇥
S̄a, Q

a
⇤
�

i

8

⇥
Sa, Q̄a

⇤
�

1

2
R b

aR
a
b , (6.105)

which yields the eigenvalue
c2 = �(�+ 1), (6.106)

when acting in a highest weight state [�, 0].
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By acting with the quadratic Casimir (6.105) in the insertions 1, 2 of (6.20),12

we generate a di↵erential equation for the blocks G�. We define the di↵erential
operator

D1,2 = �
1

2
C(2)

1,2 , (6.107)

where C(2)
1,2 is given by (6.105) with every operator acting on the points t1 and t2, as

in

C(2)
1,2 = {D1 +D2, D1 +D2}�

1

2
{K1 +K2, P1 + P2}+ · · · (6.108)

Then the di↵erential equation is13

D1,2

✓
f(Z)

h12̄ih34̄i

◆
= c2

✓
f(Z)

h12̄ih34̄i

◆
. (6.109)

Collecting the bosonic term, which accounts for the 4pt function of primaries,
we have the di↵erential equation

z ((2� z)f 0(z)� (z � 1)zf 00(z)) = �(�+ 1)f(z), (6.110)

whose solution gives us the blocks

G�(z) = (�z)�2F1(�,�, 2�+ 2; z). (6.111)

Leading Order

We start by developing the weak coupling description of the super-primary operators
in terms of the Lagrangean fields. Our goal is to perturb the theory around the free
limit, where all interactions vanish.

Recalling the definition of R and R̄ from (6.96), we are looking for an object
with the same su(2) R-symmetry index structure, and quantum numbers [1, 1, 0]
and [1,�1, 0]. Luckily, the quiver structure of the theory is constraining enough to
arrive at the ansatz

R(t) =
2i

k

 
(µ̃I)2̇1̇ 0

0 (µ̃I+1)2̇1̇

!
and R̄(t) = �

2i

k

 
(µ̃I)1̇2̇ 0

0 (µ̃I+1)1̇2̇

!
. (6.112)

Which naturally satisfies the complex structure, because the moment maps are
mapped to each other by complex conjugation.

Ignoring overall factors, which can be absorbed into the C� constant, one eval-
uates the 4pt function14

hR(t1)R̄(t2)R(t3)R̄(t4)iW =
C��4

t212t
2
34

✓
1�

✓
1 +

1

N2

◆
z + z2

◆
, (6.113)

12
Recalling the superspace structure, the particle numbers 1, 2 are given by the coordinates

t1, ✓1, t2, ✓2.
13
Computations are carried out in the conformal frame: t3 ! 0, t4 ! 1.

14
We take NI = N and the ’t Hooft coupling � = N/k.
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where we have performed Wick contractions following a free theory of su(2) charged
bosons

h¯̃qȧ(t1)
ĵ
i q̃

ḃ(t2)
k
l̂
i = �ȧ

ḃ
�ki �

ĵ

l̂

1

|t12|
. (6.114)

From (6.113), one can read o↵ the leading order piece of f(z) as

f (0)(z) = 1�

✓
1 +

1

N2

◆
z + z2. (6.115)

Given the leading order f (0)(z), we now need to look for its conformal block
expansion in the s-channel OPE of (6.113). We now have to expand (6.115), which
yields the conformal block expansion

f (0)(z) = 1 +
1X

n=0

c(0)n Gn+1(z). (6.116)

In order to extract the coe�cients cn that render (6.116) true, one power expands
the equation in z around the origin. This procedure reorganizes the blocks and
generates a set of recursive equations for the coe�cients. In the large N limit, we
have

c(0)n =

p
⇡4�n�1(n+ 2) ((n+ 1)2 + n)�(n+ 1)

�
�
n+ 3

2

� , (6.117)

which tells us that the primary itself flows through the s-channel OPE, since we need
a block of � = 1 to reproduce the linear term ⇠ z in f (0)(z). This set-up is dissimilar
to the N = 6 counterpart, where the OPE was in the double-particle limit. In the
next session we provide the first order perturbation of this result, accounting for the
anomalous dimensions of the exchanged operators.

Next-to-Leading Order

Following the perturbation scheme, we can relate the ansatz function to the confor-
mal block expansion (6.30), which can now be transformed into a “hat” equation in
the � variable as

f̂(�) =
1

�2
+

1X

�=1

c�Ĝ�(�), (6.118)

where we have

Ĝ�(�) = ��2G�

✓
�

�� 1

◆
. (6.119)

Expanding both sides of (6.118) in O(✏) yields

f̂ (1)(�) =
1X

n=0

⇣
c(1)n Ĝ

�
(0)
n
(�) + c(0)n �(1)n @�Ĝ�(�)|�=�

(0)
n

⌘
, (6.120)

allowing for the extraction of the anomalous dimensions and corrections to the con-
formal block expansion.

Our minimal ansatz is a priori a three-parameter family of functions, as the
constants q�1, r�1, r�2 are free. We can always absorb one of them in the definition
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of the perturbation parameter ✏. Matching the expansion around z ! 0 of (6.120)
allows us to reach a solution for any value of these parameters, which means that the
conformal block expansion does not constrain the space of solutions for the given
ansatz as in the N = 6 case, where we had a regularity condition.

Instead, we reach a recursive set of equations which are solved for c(1)n and �n as
a function of the free parameters. We have an analytic function for the anomalous
dimensions

�n =
n(n+ 3)

n(n+ 3) + 1
r�2 + r�1, (6.121)

and the first corrections read

c(1)n = q�1 � r�2,
1

4
(q�1 + r�2 � 4r�1) ,

1

90
(6q�1 � 56r�2 + 25r�1) , · · · (6.122)

The anomalous dimensions can be checked by applying the orthogonality relation15

�
1

2i⇡

I
1

(1� z)2
G1+n(z)G�2�m(z) = �n,m. (6.123)

Chiral-Chiral correlator

In the same spirit of bootstrapping the chiral-anti-chiral correlator (6.26) with a
minimal ansatz (6.43), one can also follow the same procedure for the chiral-chiral
correlator (6.27). The partial wave expansion of the correlator

h(�) = 1 +
X

�>0

c̃�G̃�(�). (6.124)

We start by deriving the superconformal blocks which account for the exchange
of operators in the s-channel of (6.21), which is given by the same super-Casimir
insertion (6.105). This again generates a di↵erential equation for the superblocks
G̃�(�), which yields the solution

G̃�(�) = ��
2F1(�,�, 2 + 2�,��). (6.125)

The leading order coe�cients are again given by the Wick contractions with the
super-primaries (6.95), which gives us h(0)(�) as

h(0)(�) = 1 +

✓
1 +

1

N2

◆
�+ �2. (6.126)

Again, expanding (6.124) in terms of the operators in s-channel, we have

1 +

✓
1 +

1

N2

◆
�+ �2 = 1 +

1X

n=0

c̃(0)n G̃1+n(�), (6.127)

which is solved by for c̃(0)n = c(0)n , relating the coe�cients of the chiral-chiral and
chiral-antichiral in a trivial way.

15
Notice that the Casimir eigenvalue equation always defines a Sturm-Liouville problem, allowing

for the definition of orthogonality relations among the blocks.
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The next-to-leading order, is given by matching (6.124) in first order in the
perturbation parameter ✏. In this order the minimal ansatz generates the function
h(1)(�) as16

h(1)(�) =
�

1� �

✓
�q

✓
�

1� �

◆
� r

✓
1

1� �

◆
log(�) +

✓
r

✓
1

1� �

◆
+ r

✓
�

�� 1

◆◆
log(1� �)

◆
.

(6.128)

Plugging it in the expansion we have

h(1)(�) =
1X

n=0

⇣
(c̃(0)n + ✏c̃(1)n )G̃

�
(1)
n +n+1

(�)
⌘
|O(✏), (6.129)

which can be solved for the coe�cient corrections c(1)n and the anomalous dimensions
�(1)n . Contrary to the chiral-antichiral correlator, the solution to (6.129) constrains
one of the parameters of the ansatz, namely, the non-trivial solutions are spanned
by

r�2 = �q�1. (6.130)

The anomalous dimensions are given by

�̃(1)n = �
(n2 + n� 3) q�1 + r�1

n2 + n� 1
, (6.131)

and the first coe�cient corrections

c̃(1)n =
1

2
(2r�1 � 3q�1) ,

1

24
(�28q�1 � 15r�1) ,

1

900
(�5179q�1 � 526r�1) , · · ·

(6.132)
Some comments about the degrees of freedom of the ansatz are in order. In

the ABJM case, the solution presented no free parameters, which could be seen
as consequence of two features. The first one is the fact that the conformal block
expansion is completely regular for � ! 0 (and by crossing � ! 1), which posits a
set of constraints in the coe�cients rm and ql, fixing all the coe�cients rm in terms
of the coe�cients ql, apart from r0 and r�1. The second important feature is the
selection rules for the mixing of FF̄, which only allows long multiplets of dimension
�long > 3. In turn it generates a constraint in the conformal block expansion which
allows one to fix the remaining degrees of freedom.

The N = 4 case is di↵erent, since there is no known constraint in the dimension
of exchanged long multiplets, defining a less constrained set-up. The block expansion
of the chiral-chiral correlator yields one constraint, which fixes one of the parameters
(6.130). Once the ansatz is fixed, we can extract the CFT data by a small � limit
of the conformal block expansion. This procedure yields a recursive set of equations
for the anomalous dimension and first order correction to the coe�cients �(1)n and
c(1)n as functions of the parameters q�1, r�1. As we can always absorb one of the free
parameters in the definition of ✏, we are left with one free parameter.

16
Notice we are not working with the hat function ĥ(�), but with h(�).



Chapter 7

Outlook

In this thesis we have presented three distinct projects regarding the study of BPS
Wilson loops in CSm theories. Let us briefly summarize the main results and com-
ment on possible ramifications of this work.

A new formulation of BPS loops: In chapter 4 we have discovered a new gauge
for the formulation of BPS loops in ABJM theory which is written in the natural
language of the supertrace of a connection. In this new gauge we pay the price of
having a constant piece ±1/4 in the connections, but gain the ability of identifying
the moduli space and to write the operators in a manifeslty reparameterization
invariant way.

In this new formulation, we have constructed a systematic framework for the
definition of 1/6-BPS fermionic loops from the 1/6-BPS bosonic loops via the pre-
scription of deforming the loop connections [26]. The deformation introduces free
parameters which endow the moduli space of connections with a manifold structure,
which makes it possible to identify the moduli space of Wilson loops by modding out
connections that are related by gauge transformations, constituting a novel feature
in the study of Wilson loops in CSm theories.

This prescription was first generalized in [8], where these techniques are applied
in the context of BPS Wilson loops of arbitrary theories with N � 2 in S3. There
it was possible to identify the moduli space of loops as generalized cones in complex
space, which are essentially the generalization of the conifold to higher dimensions.
It was also pointed out that such spaces may have interesting physical features, so
that it would be pertinent to study it from a geometrical point of view.

In [7] the same techniques were applied in the context of N = 4 CSm theories,
where it yields a two-parameter family of loops by the deformation of bosonic loops.
Apart from defining new loops, these deformations can be seen as a general organi-
zational principle for structuring relations between loops with di↵erent BPS ranks,
which is highly desirable since CSm theories often carry a rich moduli space of loops.

Deformations of the 1/2-BPS loop in ABJM: The second study concerns
the wavy-line deformation of the 1/2-BPS Wilson loop of ABJM theory and the
calculation of the Bremmstrahlung function. The wavy-line prescription specifies a
deformation of the Wilson operator contour, and as the original matter couplings to

64
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the operator were contour dependent, it was unclear whether one should consider a
deformation of these couplings as well.

Carrying out the perturbative calculations, we have checked that indeed one
must correct the fermionic couplings of the loop in order to satisfy a universal
constraint of Wilson lines in superconformal field theories [11]. As a historical note,
the corrections to the fermionic couplings (5.26) inspired the idea to look for a gauge
transformation which ultimately lead to the new gauge of chapter 4.

Apart from the developments regarding the wavy-line prescription, we also ap-
plied a novel regularization method, which we call the substitution method, firstly
defined on [31], to calculate the divergent integrals from the diagrams. This method
is more computationally e�cient than the standard DRED scheme, since it relies
on substitution rules rather than explicit integration over the loop contour, and it
could in principle be used to regularize any loop integral.

We have managed to calculate the wavy-line deformation at order � both in
the DRED scheme and the new regularization method, with perfect agreement.
The computation at order �2 is still incomplete, due to the di�culties in treating
diagrams (e) and (f) which contain more than two loop insertions. The next step in
the direction of finishing these calculations would consist in a generalization of the
substitution method for the regularization of integrals with three and four sources
of divergence.

The 1/2-BPS defect of N = 4 Chern-Simons-matter theories: In this study,
we carried out the description of the 1/2-BPS Wilson lines known as the  1 solu-
tions as dCFTs, where we have identified the symmetry group of the defect as the
subgroup of the bulk symmetry su(1, 1|2) ⇢ osp(4|4), as well as the complete dis-
placement multiplet.

By casting the displacement multiplet as a chiral superfield, we have successfully
employed a superconformal bootstrap program to the study of 4pt functions of op-
erators of that multiplet, where we have derived the relevant superconformal blocks
via the techniques of [14], and by expanding the OPEs in this basis, we achieved
a conformal partial wave expansion allowing for the extraction of the anomalous
dimensions of the exchanged operators in the dCFT in the strong coupling limit via
a holographic ansatz parameterized by three unknowns.

By considering the chiral-chiral and chiral-anti-chiral 4pt functions, we managed
to fix one of the parameters, and unlike the ABJM case [13], there is no known
constraints on the anomalous dimensions from pure representation theory of the
exchanged operators, which means the N = 4 case is less constrained than the
N = 6. In turn, we cannot fix any more parameters of the minimal ansatz, so that
we end up with a one parameter family of solutions once we absorb one the two
remaining parameters in the definition of the perturbation parameter ✏.

We also note that the program we have used to study this defect in chapter 6 can
be applied to a wide range of defects in di↵erent dimensions. For instance in [33],
we have a complete classification of maximally supersymmetric defects in theories
of varying supersymmetry in 3  d  6 from the group theory point of view, which
could be used as a guide to similar constructions.

Another future direction which requires attention is the holographic description
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of the defects. A good starting point is to consider the well known holographic
description of the 1/2-BPS Wilson line of ABJM and try to reason towards a holo-
graphic description of the studied 1/2-BPS line of N = 4.

The original formulation of ABJM theory with level k is given in terms of 11-
dimensional supergravity in AdS4 ⇥ S7/Zk, which gives rise to a 10-dimensional
description in terms of Type IIA strings in AdS4 ⇥ CP3 by considering the limit of
large k [12]. Within the string theory description, the Wilson line is reproduced by
the string world-sheet which is bounded by the Wilson line contour via (1.9), so that
insertions on the dCFT associated to the 1/2-BPS defect can be studied by sourcing
fields in the string world-sheet.

In [13], the authors managed to calculate the 4pt functions of displacement
multiplet operators in this set-up, by explicitly constructing the string world-sheet
solution and expanding the Nambu-Goto action as a weakly interacting e↵ective
field theory which reproduces the dynamics of the dCFT in the strong coupling
limit.

The string world-sheet which is given by an AdS2 ⇢AdS4 and localized in the
CP3, such that in the boundary of the AdS4 it reproduces the Wilson line contour.
This way, we have the string action

SB =
1

2
T

Z
d2�

p

hhµ⌫


1

z2
(@µx

r@⌫xr + @µz@⌫z) + 4GCP3

MN@[µY
M@⌫]Y

N

�
, (7.1)

with xr = (x0, x1, x2) parameterizing the Euclidean boundary of AdS4, z the AdS
radial coordinate, and Y N general coordinates of the CP3 space.

By expanding (7.1) around the AdS2 world-sheet geometry, one generates an
e↵ective field theory in the coordinates transverse to the world-sheet, which are in
one-to-one correspondence with the operators of the displacement multiplet. This
way, the correlators of the multiplet can be calculated holographically by insertions
of the fluctuations with corresponding representations.

The holographic set up for the N = 4 case is quite di↵erent from the ABJM case,
since there is no known description of the 1/2-BPS defects in terms of 10-dimensional
gravity. Naively, we would expect that the description of the defect could be attained
by considering orbifolds over an 11-dimensional description in terms of M2-branes,
which could generate a 10-dimensional description via the k ! 1 compactification.

As a general naive prescription, one could follow an analog M2-brane construc-
tion of the original ABJM formulation [12], where the 10-dimensional description is
achieved by considering a Zk orbifold of S7. In this spirit, the description of M2-
branes which are su(1, 1|2) invariant are given in terms of the Zk orbifold followed
by an extra Zp ⌦ Zq orbifold of S7, for integers p and q [38, 39].

These extra orbifolds, which are necessary to reproduce the correct R-symmetry
breaking of the S7 to the su(2)A ⇥ su(2)B of the N = 4 CSm theories, end up
complicating the process of taking the large k limit to reproduce a 10-dimensional
description, since the coordinates of the compactified manifold do not reproduce
the R-symmetry manifestly, as in the ABJM case. In turn, it makes the process of
identifying the operators of the displacement multiplet with transverse fluctuations
non-trivial, which calls for a more in-depth analysis of the holographic construction.



Appendix A

Useful notations and definitions in
ABJ(M)

A.1 Supersymmetry conventions

We work in three-dimensional Euclidean space gµ⌫ = diag(1, 1, 1), with the gamma-
matrices chosen as (�µ) = {��3, �1, �2

}. The spinor indices are lowered and raised
as (�µ)↵� = ✏↵⇢(�µ)⇢

�✏��, where

✏↵� =

✓
0 1
�1 0

◆
and ✏↵� =

✓
0 �1
1 0

◆
. (A.1)

Omitted spinor indices ↵ = ± follow the convention

� = �↵ ↵ = ��↵ 
↵. (A.2)

The supersymmetry transformations are the ones written in [4]:
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� i✏̄KL�✏IJKLC̄
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�CI = ⇥̄KL↵
✏IJKL ̄

J
↵ ,

�C̄I = 2⇥̄IJ↵ J↵ ,

(A.3)

where ⇥IJ = ✓̄IJ � (ẋµ�µ)✏̄IJ is a conformal Killing spinor, with superconformal
parameter

#̄IJ = ±i✏̄IJ�3. (A.4)
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The Poincaré (✓̄IJ) and superconformal parameters (#̄IJ) satisfy the relations

✓̄IJ = �✓̄JI , ✓IJ =
1

2
✏IJKL✓̄

KL , (A.5)

#̄IJ = �#̄JI , #IJ =
1

2
✏IJKL#̄

KL . (A.6)

In Euclidean space, there is no reality condition, i.e., ✓̄ 6= ✓† and #̄ 6= #†.

A.2 Feynmann rules

From [23] we have the following Feynman rules of ABJM. We only list the terms
which contribute to O(�2) in the calculation of the 1/2-BPS loop of section 5.1.

• Tree-level vector propagators are:

⌦
Aa(1)

µ (x)Ab(1)
⌫ (y)

↵(0)
= �ab

✓
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[(x� y)2]
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, (A.7)

⌦
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µ (x)Ab(2)
⌫ (y)
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[(x� y)2]
3
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; (A.8)

• One-loop vector propagators:
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⌫ (y)
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(A.9)

⌦
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(A.10)

• Scalar propagator:

D
(CI)

ĵ
i (x)(C̄

J)(y)l
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; (A.11)

• Tree-level fermion propagator:

D
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I )
j
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; (A.12)

• One-loop fermion propagator:

D
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(A.13)

The interactions are given by
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• Gauge cubic vertex

�
ik

12⇡
✏µ⌫⇢

Z
d3x fabc

1 Aa(1)
µ Ab(1)

⌫ Ac(1)
⇢ ,

ik

12⇡
✏µ⌫⇢

Z
d3x fabc

2 Aa(2)
µ Ab(2)

⌫ Ac(2)
⇢ ,

(A.14)
where fabc

i is the structure constant of U(Ni);

• Gauge-fermion cubic vertex

�

Z
d3x Tr

✓
 ̄I�µ iA

(1)
µ �  ̄I�µA(2)

µ  I

◆
. (A.15)

We work with hermitian generators of U(N1) and U(N2). The colour convetions are

Tr (T aT b) = �ab, Tr (T̂ âT̂ b̂) = �âb, (A.16)

and
N2

1X

a=1

(T a)ij(T
a)kl = �ij�kl,

N2
2X

â=1

(T̂ â)ij(T̂
â)kl = �îj�k̂l. (A.17)

A.3 Proof of supersymmetry of the 1/2-BPS loop
of ABJM

In order to prove supersymmetry of the 1/2-BPS loop (4.20), we need to act with 1/2
of the supercharges of ABJ(M) and prove that the constraint of supersymmetry is
respected. For self-consistency and clarity, we repeat the definitions of the operator
and supercharges that are used in the variation,

W = i sTrP exp

✓
i

I
L1/2-BPSd⌧

◆
, (A.18)

with the superconnection now given by

L1/2-BPS =

0

@ A
(1)

q
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4⇡i
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I
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1

A , (A.19)

with
A

(1) = A(1)
µ ẋµ

�
2⇡i
k |ẋ|M I

JCIC̄J
�

|ẋ|
4|x| ,

A
(2) = A(2)

µ ẋµ
�

2⇡i
k |ẋ|M I

J C̄
JCI +

|ẋ|
4|x| ,

(A.20)

and

⌘↵I =
p
2(s⇧+)

↵�1I , ⌘̄I↵ =
p
2(⇧+s̄)↵�

I
1 , M I

J = diag(�1, 1, 1, 1). (A.21)

We want to take the variation with respect to supersymmetry transformations pa-
rameterized by

⇥1I = ✓̄1I + #̄1I(xµ�µ) = ✓̄1I(1� ẋµ�µ), (A.22)

⇥IJ = ✓̄IJ + #̄IJ(xµ�µ) = ✓̄IJ(1 + ẋµ�µ), I, J 6= 1, (A.23)
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which means we have chosen

#̄1I↵ = i✓̄1I�(�3)�
↵
, #̄IJ↵ = �i✓̄IJ�(�3)�

↵
, I, J 6= 1. (A.24)

We want to show that the variation of the superconnection reduces to a superco-
variant derivative acting on a supermatrix G 2 u(N |M),

�susyL(⌧) = D⌧G ⌘ @⌧G+ i[L, G]. (A.25)

The supermatrix G has to be anti-diagonal, since the susy transformations of the
bosonic fields do not contain any derivatives. Therefore we have

G =

✓
0 g1
ḡ2 0

◆
, (A.26)

so
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D⌧ ḡ2 i
q
�

4⇡i
k |ẋ|( ↵
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where we define the dressed covariant derivatives,

D⌧g1 = @⌧g1 + i(A(1)g1 � g1A
(2)), (A.28)

D⌧ ḡ2 = @⌧ ḡ2 � i(ḡ2A
(1)

�A
(2)ḡ2). (A.29)

This way, the 1/2-BPS constraint (A.25) is satisfied once we find g1 and ḡ2 that
satisfy the following conditions
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(A.30)

To calculate the LHS of (A.25), we apply the supersymmetry variation on the con-
nection, which yields

�A(1) =
8⇡i

k
CI 1(1 + ẋµ�µ)✓̄

1I +
8⇡i
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The problem of finding the correct g1 and ḡ2 that satisfy the BPS condition
reduces to the calculation of

�(⌘↵I  ̄
I
↵) = 4i D⌧ (⌘

↵
1CI) ✓̄
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↵ , (A.35)

�( ↵
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I ⌘̄1↵). (A.36)

Once we have (A.35) and (A.36), it is easy to see that
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automatically satisfy conditions (B) and (C). Using that ⌘̄1↵⌘
�
1 = 1

2(1 + ẋµ�µ)↵
�, we

see that they also satify (A) and (D).
In order to derive (A.35) and (A.36), we can write
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Focusing on terms (II) and (III), we have
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where we have separated indices 1 from term (III). The term (III.b) vanishes when
contracted with ⌘,
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where we have used the projector property
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So we have that (II)+(III) evaluates to

⌘�1 ((II) + (III)) = �
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Focusing on the contraction of ⌘ with the Killing spinor, we can write
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rewriting the coupling in terms of the projectors, it is easy to see that we have
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which means (A.41) can be written as
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We still have to evaluate the contributions of terms (I) and (IV) in (A.38). Getting
back to term (I), we have
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Using
(1� ẋ⌫�⌫)
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we reach
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Adding up the terms (I), (II), and (III), contracted with the coupling ⌘, we have
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µ ẋµ
�

2⇡i

k
MR

S CRC̄
S)CL � iCL(A

(2)
µ ẋµ
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We can put ⌘ inside the derivative at the expense of an extra term
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Finally, we have the pieces (I-III) evaluating to

(I) + (II) + (III) = 4i✓̄1L� D⌧ (⌘
�
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Now we focus on the last contribution, the term (IV). We have
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Adding up contributions all contributions, namely (A.51) and (A.52), we reach
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Notice that the last three terms in (A.53) cancel each other
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So we finally have
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The derivation of (A.34) is analogous to the derivation of (A.33), so one can follow
the same strategy. Reading the superconformal transformations to  , we can write

�( �
1 ⌘̄

1
�) =

[�2i⇥↵
1L(�

µ) �
↵ DµC̄

L

| {z }
(I)

+
4⇡i

k
⇥�

1L(C̄
LCM C̄M

� C̄MCM C̄L)
| {z }

(II)

+
8⇡i

k
⇥�

IJC̄
IC1C̄

J

| {z }
(III)

�2i(✏�1LC̄
L)

| {z }
(IV)

]⌘̄�1 .

We also have, by the reality condition of ⇥IJ , that the supercharges satisfy
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The derivation of (A.31) and (A.32) are the same, except with  and C switching
places, they consist in using the same tricks as in deriving the former relations.



Appendix B

Defect symmetries

In chapter 6 we study the 1/2-BPS Wilson line of N = 4 CSm theories. In this
context of defects, the 1/2-BPS line defines an su(1, 1|2) dCFT, which can be seen
as the reduction of the bulk osp(4|4) to the BPS line. In this appendix, we explicitly
construct the su(1, 1|2) from the original bulk symmetries of N = 4 CSm theories,
and specify all conventions used in the calculations of that chapter.

B.1 osp(4|4)

We use the conventions and definitions of [40]. The 3dN = 4 superconformal algebra
is osp(4|4), and its bosonic sub-algebra so(1, 4)�su(2)A�su(2)B consist of conformal
and R-symmetry transformations. We work in three-dimensional Euclidean space
R3, with isometry generators Pµ, Mµ⌫ , D, Kµ for translations, rotations and dilata-
tions, and special conformal transformations. The su(2)A and su(2)B R-symmetry
are Ra

b and R̄ȧ
ḃ, respectively. The bosonic sector reads

[M↵
�, P��] = ��
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�P�� , (B.1)
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�K��
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�K�� + �↵
�K�� , (B.2)
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�,M�
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�M↵

� , [D,P↵�] = P↵� , [D,K↵�] = �K↵� , (B.3)
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�D , (B.4)

[Ra
b, Rc

d] = ��a
dRc

b + �c
bRa

d , [R̄ȧ
ḃ, R̄ċ

ḋ] = ��ȧ
ḋR̄ċ

ḃ + �ċ
ḃR̄ȧ

ḋ , (B.5)

where we have the spinor embedding

P↵� ⌘ (�µ)↵�Pµ , K↵�
⌘ (�µ)↵�Kµ , M↵

�
⌘

i

2
(�µ�⌫)↵

�
Mµ⌫ . (B.6)

The algebra (B.1)–(B.5) is represented on a dimension � scalar primary operator
Oaȧ(x) in the (2,2) irrep of su(2)A � su(2)B as

[Pµ,Oaȧ(x)] = i@µOaȧ(x) , [Kµ,Oaȧ(x)] = i(x2@µ � 2xµ(x · @)� 2�xµ)Oaȧ(x) ,

[Mµ⌫ ,Oaȧ(x)] = i(xµ@⌫ � x⌫@µ)O(x) , [D,Oaȧ(x)] = (x · @ +�)Oaȧ(x) , (B.7)

[Ra
b,Ocċ(x)] = �c

b
Oaċ �

1

2
�a

b
Ocċ , [R̄ȧ

ḃ,Ocċ(x)] = �ċ
ḃ
Ocȧ �

1

2
�ȧ

ḃ
Ocċ.
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The fermionic sector of the algebra reads:

{Q↵aȧ,Q�bḃ} = 4"ab"ȧḃP↵� , {S
↵
aȧ,S

�
bḃ} = 4"ab"ȧḃK

↵� , (B.8)

[K↵�,Q�aȧ] = i
�
��

↵
S

�
aȧ + ��

�
S

↵
aȧ

�
, [P↵�,S

�
aȧ] = �i (�↵

�
Q�aȧ + ��

�
Q↵aȧ) ,

(B.9)

[M↵
�,Q�aȧ] = ��

�
Q↵aȧ �

1

2
�↵

�
Q�aȧ , [M↵

�,S�
aȧ] = ��↵

�
S

�
aȧ +

1

2
�↵

�
S

�
aȧ ,

(B.10)

[D,Q↵aȧ] =
1

2
Q↵aȧ , [D,S↵

aȧ] = �
1

2
S

↵
aȧ , (B.11)

[Ra
b,Q↵cċ] = �c

b
Q↵aċ �

1

2
�a

b
Q↵cċ , [Ra

b,S↵
cċ] = �c

b
S

↵
aċ �

1

2
�a

b
S

↵
cċ ,

(B.12)

[R̄ȧ
ḃ,Q↵cċ] = �ċ

ḃ
Q↵cȧ �

1

2
�ȧ

ḃ
Q↵cċ , [R̄ȧ

ḃ,S↵
cċ] = �ċ

ḃ
S

↵
cȧ �

1

2
�ȧ

ḃ
S

↵
cċ ,

(B.13)

and also

{Q↵aȧ,S
�
bḃ} = 4i

⇥
"ab"ȧḃ

�
M↵

� + �↵
�D
�
+ �↵

�
�
"ȧḃRab + "abR̄ȧḃ

�⇤
. (B.14)

All other (anti)commutators vanishing.

B.2 su(1, 1|2) sub-algebra

Inside the osp(4|4) it is possible to identify the su(1, 1|2) sub-algebra preserved by
the 1/2 BPS Wilson line. The su(1, 1) generators are those of the one-dimensional
conformal group, i.e. {D,P ⌘ P1, K ⌘ K1}, satisfying

[P,K] = �2D [D,P ] = P [D,K] = �K (B.15)

The SU(2) generators Ra
b are traceless, i.e. R a

a = 0. The u(1) twist is given by

J0 =
⇣
M

+
+ + R̄ 1̇

1̇

⌘
. (B.16)

The twist is actually a central extension of the algebra, i.e it commutes with all
other generators.

The fermionic generators are given by a reorganization of the preserved super-
charges Q11̇

+ , Q21̇
+ , Q12̇

�
, Q22̇

�
, together with the corresponding superconformal charges.

Our notation is

Qa = Q
a1̇
+ Sa = S

a1̇
+ Q̄a = ✏abQ

b2̇
�

S̄a = ✏abS
b2̇
�

(B.17)

so that,

{Qa, Q̄b} = �4�abP, {Sa, S̄b} = �4�abK, (B.18)

{Qa, S̄b} = �4i [�ab (D + J0) +Ra
b] , {Q̄a, S

b
} = 4i

⇥
�ba (D � J0)�R b

a

⇤
. (B.19)
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Finally, the non-vanishing mixed commutators are

[D,Qa
] =

1

2
Qa, [D, Q̄a] =

1

2
Q̄a, [K,Qa

] = iSa, [K, Q̄a] = �iS̄a,

(B.20)

[D,Sa
] = �

1

2
Sa, [D, S̄a] = �

1

2
S̄a, [P, Sa

] = iQa, [P, S̄a] = �iQ̄a,

(B.21)

[Ra
b, Qc

] = ��caQ
b
+

1
2�

b
aQ

c, [Ra
b, Q̄c] = �bcQ̄a �

1
2�

b
aQ̄c, [J0, Q

a
] = 0, [J0, Q̄

a
] = 0,
(B.22)

[Ra
b, Sc

] = ��caS
b
+

1
2�

b
aS

c, [Ra
b, S̄c] = �bcS̄a �

1
2�

b
aS̄c, [J0, S

a
] = 0, [J0, S̄

a
] = 0.
(B.23)
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