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Abstract

The evolution of a heavy-ion collision system deals in many stages, where one of them is
known as Quark-Gluon Plasma (QGP) which behaves as a relativistic fluid and therefore all
properties of standard hydrodynamic are valid, and consequently the evolution of the system
can be entirely determined by the initial conditions. In other words, the anisotropic flow is
well understood as a hydrodynamic response to spatial anisotropies in the system density
at early time. This response function can be written as a systematic expansion in terms of
length scales, such that the known quantity called eccentricity represents the global structure
and contains initial features of the system to predict the final observables represented by the
harmonic flows. However, the initial conditions for hydrodynamics consist of an energy-
momentum tensor as well as any conserved current, and components such as momentum
density and stress tensor can also contribute. Although they are thought to be less important
than energy density, their effects should have increasing importance for smaller collision
systems on flow observables. A framework able to include these effects was constructed,
along with numerical tests from full hydrodynamic simulations to demonstrate its efficacy.

Keywords: QGP; hydrodynamics; framework; simulations.
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Resumo

A evolução de um sistema de colisão de íons pesados lida com muitos estágios, onde um
deles é conhecido como Plasma de Quarks e Glúons (PQG) o qual se comporta como um
fluido relativístico e portanto todas as propriedades da hidrodinâmica padrão são válidas e,
consequentemente, a evolução do sistema pode ser inteiramente determinada pelas condi-
ções iniciais. Em outras palavras, a anisotropia final de fluxos é bem entendida como uma
resposta hidrodinâmica às anisotropias espaciais no sistema de densidade em um tempo ini-
cial. Esta função de resposta pode ser escrita como uma expansão sistemática em termos de
escalas de comprimento, tal que a quantidade conhecida como excentricidade representa a
estrutura global e contém características iniciais do sistema para prever os observáveis finais
representados pelos fluxos harmônicos. Entretanto, as condições iniciais para hidrodinâmica
consistem no tensor de energia e momento tal como qualquer corrente conservada, e com-
ponentes como a densidade de momento e o tensor de tensões podem contribuir. Embora
eles sejam vistos como menos importantes que a densidade de energia, seus efeitos em ob-
serváveis finais de fluxo devem ter um aumento de importância para sistemas de colisões
menores. Uma estrutura capaz de incluir esses efeitos foi construída, e através de testes nu-
méricos provenientes de simulações hidrodinâmicas completas foram feitos para demonstrar
sua eficácia.

Palavras-chave: PQG; hidrodinâmica; estrutura; simulações.
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Chapter 1

Introduction

1.1 Heavy ion Physics
The study of ultra-relativistic heavy ion collisions is an interdisciplinary field which involves
high-energy physics of elementary particles and nuclear physics [1]. The name “heavy-ion”
is used for large atomic nuclei, whereas the term “ultra-relativistic” denotes a regime where
the kinetic energy exceeds significantly the rest energy. Here, high-energy particle physics
is referred by ultra-relativistic energies and nuclear physics is referred by atomic nuclei that
collide.

A nucleus is comprised of protons and neutrons, and protons and neutrons are basi-
cally made of quarks that are confined by a strong interaction mediated by gluons that hold
the quarks together, and this interaction has been described by Quantum Chromodynamics1

(QCD) [2].
Imagine that we have a resistant box that cannot be opened easily, and we are interested

to figure out what there are inside it. The most natural way is break up this box. In this
simple example, the box represents a nucleus, which is made by particles that we want study.
A natural solution is accelerate the two nuclei to relativistic velocities and collide them.

In an event, nuclei are imparted with a huge amount of kinetic energy, and when they
collide, this energy is used to break up the nuclei [3], making possible to produce a new state
of the matter, which basically consists of a “soup” of quarks and gluons. With the increasing
temperature (heating) and/or the increasing baryon density (compression), a phase transition
may occur to the state where ordinary hadrons do not exist anymore, and quarks and gluons
themselves are the appropriate degrees of freedom. This phase transition is called Quark-
Gluon Plasma (QGP) [4–19].

This makes it possible to study the many-body properties of deconfined matter [20],
determine properties of the QGP, and understand the initial stages from experimental data.

A system created by a collision of nuclei generates a large number of particles, and
consequently, it is complicated to use only QCD to completely study the system. This work
uses an effective hybrid model that combines a fluid dynamical description with particle
description.

1Part of Quantum Field Theory (QFT) that deals with the strong (nuclear) interaction.
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In order to describe this hybrid model, it is necessary to understand the evolution of a
collision system. During a collision between two heavy nuclei, there are some stages of
evolution that can be shown in Figure 1.1.

FIGURE 1.1: The time evolution of a typical heavy ion collision from MADAI
collaboration, Hannah Petersen and Jonah Bernhard.

Below, all these stages are detailed respectively.

• Before collision: At this stage, the two nuclei are moving close to the speed of light
which causes Lorentz contractions, which is why both are deformed at the figure.
Since we have ∼ 260 nucleons per ion, they will eventually interact.

• Early stage dynamics: After the nuclei collide, a “soup” of QCD matter is produced.
However, the system must first evolve into a state that can be described with thermo-
dynamic relations. A sophisticated way to describe this early time evolution is using
the Color Glass Condensate (CGC)[21]. The collision system described by CGC leads
to the glasma formation [14, 15] before, eventually, the QGP.

• Quark-gluon plasma: The thermalization of the glasma results in a strongly coupled
quark-gluon plasma. Although the thermalizaion is not completely understood yet, we
know that it is fast (τtherm. ∼ 1 fm), and the initial temperature of the thermalized
QGP is about T ∼ 400 MeV. In this way, the initial conditions for the hydrodynamic
evolution of the QGP is provided by the matching of the initial energy-momentum
tensor,

T µνinitial(τtherm.) = T µνhydro(τtherm.), (1.1)

where the term "initial" refers to some model (e.g. CGC) used to describe the early
stages dynamics. However, the QGP phase is the focus in this work. This phase
can be described by relativistic hydrodynamics and its existence was announced by
Relativistic Heavy Ion Collider (RHIC) in 2004 [16, 18, 22, 23].

• Hadronization: As the medium expands and becomes more dilute, the strongly-
coupled QGP begins to reconfine into a gas of hadrons [24–27]. Concomitant with
its fast expansion, the QGP cools down and once it achieves the transition tempera-
ture, we have the formation of the hadrons, that begins at the edge of the plasma and
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usually ends in the central regions. Eventually, this hadron gas will achieve a temper-
ature such that all the inelastic collisions stop, which is denoted as being the chemical
freeze-out, since the species of hadron are maintained after this threshold temperature.
As the temperature keeps decreasing, one has the kinetic freeze-out, wherein the elastic
interactions stop (the gas does not interact anymore) and the momentum distribution
is frozen.

• After hadronization: The gas of hadrons the hydrodynamic evolution still undergoes
a complex dynamic. Unstable hadrons decay, and hadrons undergo elastic and inelas-
tic collisions that change the momentum distribution and species composition of the
hadron gas. Once all unstable hadrons have decayed into stable ones and once the
hadron gas is too dilute for even hadronic interactions to occur, hadrons continue their
way unhindered toward the detectors.

In general, the matter produced in a collision between atomic nuclei is definitively a
system of interacting quarks and gluons, and the study of heavy ion collisions is a field
interested in more precisely determine properties of the QGP [1].

Next chapter explains a model that describes the evolution of heavy ion collisions. This
description is a hydrid model, which is based on fluid and particle description.

The experimental evidence for the existence of the QGP in heavy ion collisions could be
related by elliptic flow that is characteristic of the collective behavior, which will be discussed
in section 1.2. In the next section, we discuss about important issues regarding the viscosity
of the QGP.

1.2 The viscosity of the QGP
One of the most important striking features of the QGP is that its time evolution can be
modeled with relativistic fluid dynamics. Early studies are concentrated on ideal fluid [28],
but the realization that hadronic data from relativistic heavy ion collisions could be used to
extract the transport coefficients of QCD, in particular the shear viscosity to entropy density
ratio (η/s).

To understand the connection between the QGP and its viscosity, it is necessary to an-
alyze some details about the geometry of the collision. In Figure 1.2, we have a schematic
collision, where what is measured is the particle distribution in momentum space that is
decomposed in terms of Fourier coefficients, such as

E
dN

d3p
=

1

2π

dN

pTdpTdY

∞∑
n=−∞

Vne
−inϕ, (1.2)

where E is the particle’s energy, pT is the transverse momentum, ϕ is the azimuthal angle
in momentum space, and Y is the rapidity (more details about rapidity will be available in
section 1.6). The Vn is the Fourier coefficient associated with the respective mode, with the
first having specific names like V1 is the direct flow, V2 is the elliptic flow, V3 is the triangular
flow, and so on.
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FIGURE 1.2: A typical heavy ion collision. Figure adapted from [29].

When the QGP is formed in a typical heavy ion collision, it has initially an ellipsoidal
shape. As time goes by, this formed ellipsoid will expand, faster in the perpendicular direc-
tion of the collision (notice the momentum anisotropy on the left of the Figure 1.2), gen-
erating the elliptic flow. We can formally represent the momentum asymmetry using the
eccentricity εp that can be written as

εp =
〈T xx − T yy〉
〈T xx + T yy〉

, (1.3)

where T xx and T yy are the components of the stress tensor, with 〈...〉 meaning that we are
averaging it on the reaction plane. Intuitively, we can understand the elliptic flow as being
originated from the gradient pressure of the QGP formed in the collision, with the large
elliptic flow indicating that the partons of the QGP are interacting strongly with small shear
viscosity to entropy density (momentum diffusion).

The question of whether relativistic hydrodynamics can describe elliptic flow satisfacto-
rily is shown in Figure 1.3, which shows good agreement of the hydrodynamic model with
the experimental data. Notice that, from the data analysis, we have a very small shear vis-
cosity (η/s = 0.2) [30]. Therefore, there are reasons to believe that the QGP formed in these
heavy ion collisions is strongly coupled, which characterizes the hydrodynamical behavior.

1.3 Initial condition to final state mapping
In a usual hydrodynamic simulation, the distribution of energy-momentum tensor (T µν)
when the hydrodynamics become valid completely determine the final result, which is the
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FIGURE 1.3: In (left), we have the success of the hydrodynamic modelling of
the QGP (the red line crossing the experimental dots). The IP+Glasma is the
initial condition model, whilst MUSIC is the hydrodynamic code that models
the space-time evolution of the QGP. In the (rigth), we have the experimental
coefficients Vn are in good agreement with the theoretical model for η/s =

0.2. Figure adapted from [30]

final particle distribution (E dN
d3p

). Then we have

T µν

∣∣∣∣∣
Initial

→ E
dN

d3p

∣∣∣∣∣
Final

. (1.4)

The final state of a heavy ion collision system can be characterized by the quantity Vn
(linked with the final anisotropic flow), and similarly, the initial condition can also be charac-
terized by the quantity εn (linked with the spatial anisotropies in the initial system density).

The relationship between initial condition until the final state is a complicated process
that can be represented by relatively simple relations, such as

Vn = κnεn, (1.5)

where the anisotropic flow can be proportional to initial spatial anisotropies, it happens be-
cause the asymmetry of the system is conserved.

Relations such (1.5) identify the relevant properties of a initial stage and separate them
from the effects of subsequent evolution (κn). And through these simple relations, it is
possible to determine the relevant information about the final state (after hadronization).
These relations are derived from an expansion that will be explained at Equation 3.23, where
its first term corresponds to κnεn. Although there are other terms, this work is interested to
consider only the first one in order to start since the simple case. In other words, final state
(Vn) is well understood as a hydrodynamic response to the initial condition profile (εn). In
hydrodynamics, Vn is typically a functional of the initial density profile [31, 32]. With this
knowledge, it is possible to put constraints on the initial stages with the initial stages from
experimental data, as well as to determine properties of the QGP.
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The initial condition consists of the energy-momentum tensor at some early time. It is
currently believed that the distribution of energy density in the transverse plane is the most
important quantity driving the evolution of the system compared to other aspects of initial
conditions such as the distribution of momentum density or stress tensor.

Under this assumption, the dependence of final observables on the initial energy density
has been studied [33–36], and numerous results have been obtained that constrain specific
properties of the initial state as well as the QGP medium. It is not known how important are
the effects that are neglected in the approximation, some of these may indeed be unimportant.
However, some may be quite significant particularly for smaller collision systems as proton-
nucleus and proton-proton, which are currently of great interest in the field.

In order to write quantities that represent initial conditions, a systematic expansion of the
initial energy-momentum tensor that orders features in terms of their importance to subse-
quent hydrodynamic evolution was derived. Observables that characterizes the final stage
are naturally separated into orthogonal modes with respect to azimuthal rotations. Thus, the
energy density must be decomposed into modes with definite properties, so these quantities
with the correct rotational symmetry can be constructed for each observable. The observables
are entirely in momentum space because only the momentum of each outgoing particle can
be measured, not it is spatial position when it is emitted (at least not directly). As such, one
must also construct translation-invariant quantities. And finally, and crucially, the ansatz
for hydrodynamics which assumes a large separation between microscopic and macroscopic
scales, is only sensitive to long-length properties of the initial energy density distribution.
All these properties are naturally obtained from a cumulant expansion of a Fourier transform
of the energy density profile that was proposed by Teaney and Yan [32].

In order to include effects stemming from other components of the initial energy-momentum
tensor such as the momentum density and stress tensor, a hydrodynamic framework in an
nontrivial ansatz that is able to predict the final observables with more precision was con-
structed. Then each new contribution from initial conditions was tested numerically in order
to check whether the ansatz could include these new effects. After this, simulations using
initial conditions were made in order to demonstrate the efficacy of framework.

1.4 Participants, spectators, and impact parameter
In this field, it is important to define some technical terms, then as explained in [1], in heavy-
ion collisions, simple geometric concepts are often used. For example, one separates so
called participants from spectators, see Figure 1.4. If we assume that all nucleons propagate
along parallel, straight line trajectories, then the nucleons which do not meet any other nu-
cleons on their way are called spectators. Other nucleons which interact with each other are
called participants.

A 2-D vector connecting the centers of the collision nuclei in the plane transverse to the
nucleon trajectories is called impact vector, and its length is the impact parameter.
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FIGURE 1.4: Impacter parameter, spectors and participants presented in Ref.
[37].

The class of central collision2 corresponds to the zero impact parameter.

1.5 Centrality
So far we have interpreted the most central collisions as those corresponding to the smallest
values of the impact parameter. In this section, we are going to introduce the quantitative
measure of the centrality and relate it directly to the impact parameter. In experiments with
heavy ions, centrality is estimated as the percentile of events with the measured multiplicity
(as registered in detectors), or with the largest number of participants.

A good example to understand this concept different classes of centrality. Class 0− 10%
corresponds to the most central collisions characterized by the smallest values the impact pa-
rameter (compared with the other classes) and the largest values of the participating nucleons
than 20− 30%.

In class of 0− 10% of centrality also the largest multiplicities or entropy density (used in
this work) of the produced hadrons are obtained. With increasing centrality, the number of
the participants is reduced, and already class 20−30% the mean number of the participants is
smaller. Note that the large centrality corresponds to a large value of the impact parameter
and, hence, to a peripheral rather than to a central collision [38].

1.6 Rapidity and pseudorapidity
The component of a three-vector A parallel to z-axis is usually denoted by As, and the
transverse component is AT = A− As. [1, 38], since we deal with relativistic energies, it is
useful to use the rapidity instead of the standard velocity

Y =
1

2
ln

(
E + ps
E − ps

)
= tanh−1 ps

E
= tanh−1 vs, (1.6)

2In practice one considers a group of events which are characterized by the smallest values of the impact
parameter. The concept of centrality is discussed more in section 1.5.
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where E is the energy of a particle, such that E =
√
m2 + p2, and vs = ps/E is the

longitudinal component of the velocity.
Rapidity is additive under Lorentz boosts along the z-axis. This means that the difference

dY does not change under Lorentz boosts along the collision axis. A boost-invariant system
is independent of rapidity.

Experimentalists distinguish between rapidity and pseudorapidity. The latter is defined
as

η =
1

2
ln

(
|p|+ ps
|p| − ps

)
= − ln

(
tan

θ

2

)
, (1.7)

where θ is the scattering angle. Pseudorapidity is easier to measure than rapidity (it is just
a measure of the angle at which a particle has been emitted). To measure rapidity one has
to identify the particle. Since at large energies E ≈ |p| one is often tempted to assume that
dN/dY ≈ dN/dη. In practice, this approximation is poor, especially in the region where
rapidity is close to zero.

In theoretical calculations one usually uses the space-time rapidity

ηs =
1

2
ln

(
t+ z

t− z

)
. (1.8)

τ =
√
t2 − z2, (1.9)

where τ is the proper time. Lines of constant τ and constant ηs are represented in Figure 1.5.
In the neighbourhood of z = 0, one has τ ' t and ηs ' z/t. We then use the property of
boost-invariance mentioned above: any value of z with |z| < t can be brought to z = 0 by
means of a homogeneous Lorentz boost in the z direction.

FIGURE 1.5: Schematic representation of a nucleus-nucleus collision in the
(z, t) plane. The thick lines are the trajectories of the colliding nuclei, which
are moving nearly at the velocity of light. The lines of constant z/t are also

lines of constant ηs made at Ref. [39].
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Chapter 2

Model description

Our study is based on a hybrid model which combines viscous fluid dynamical description
of the QGP stage with a realistic kinetic simulation of the hadronic stage [40–45]. Relativis-
tic hydrodynamics is the most relevant framework to understand the transport properties of
the QGP since it directly connects the collective flow developed during the QGP stage with
its equation of state. It is based on the key assumption of local thermalization. Since this
assumption breaks down during both the very anisotropic initial matter formation stage and
the dilute late hadronic rescattering stage, the hydrodynamic framework can be applied at
best only during the intermediate period. To describe the breakdown of the hydrodynamic
description during the late hadronic stage due to expansion and dilution of the matter, one
may have two options: one can either impose a sudden transition from thermalized mat-
ter to non-interacting or free-streaming hadrons through the Cooper-Frye prescription [46],
making a transition from a macroscopic hydrodynamic description to a microscopic kinetic
description at a switching temperature TSW .

In this work, we use the MUSIC [47–49] 3+1D hydrodynamic code. All initial conditions
used are boost-invariant, more details about the rapidity dependence are available in [50,
51]. The equation of state used in this work is that of parametrization "s95p-v1" from [52],
obtained from interpolating between lattice data and hadron resonance.

2.1 Relativistic hydrodynamics
Hydrodynamics is used to describe the space-time evolution of the energy-momentum ten-
sor T µν of the strongly-coupled quark-gluon plasma. This makes it possible to learn about
certain general many-body properties of QCD without necessarily tracking the complicated
dynamics of every quark, gluon and hadron in the system. Such properties of QCD include
the equation of state and the viscosities of QCD.

As explained in [39],

Standard Thermodynamics is about a system in global thermodynamic equilib-
rium. This means that intensive parameters (P , T , µ) are constant throughout
the volume, and also that the system is globally at rest, which means that its total
momentum is 0. In this section, pressure and temperature vary with space and
time, and which are not at rest, such as indian atmosphere during monsoon. We
however request that the system is in local thermodynamic equilibrium, which
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means that pressure and temperature are varying so slowly that for any point,
one can assume thermodynamic equilibrium in some neighbourhood about that
point. Here, ’neighbourhood’ has the same meaning as in mathematics, and there
is no prescription as to the actual size of this neighbourhood, or ’fluid element’.
There is, however, a general condition for local thermodynamic equilibrium to
apply, which is that the mean free path of a particle between two collisions is
much smaller than all the characteristic dimensions of the system. (Ollitrault,
2008)

The fluid equations derived under the assumption of local thermodynamic equilibrium
are called ideal-fluid equations.

In hydrodynamics, the energy-momentum tensor T µν is a contravariant tensor, where
each value of ν corresponds to a component of the four-momentum, and µ to a four-component
of energy flux. Specifically,

• T ττ is the energy density

• T τj is the density of jth component of momentum, with j ∈ {1, 2, 3}

• T iτ is the energy flux along axis i

• T ij is the flux along axis i of the jth component of momentum.

It is important to note that T µν is symmetric, it means that the momentum density T τi

and the energy flux T iτ are equal.
The momentum flux T ij is usually called the stress tensor.

2.1.1 Ideal hydrodynamics
Starting with the most simple case as [39], this subsection deals with systems whose pressure
and temperature vary with space and time, and which are not at rest.

The rest frame of a fluid element is the Lorentz frame in which its momentum vanishes.
The velocity ~v of a fluid element is defined as the velocity of the rest frame of this fluid

element with respect to the laboratory frame. The four-velocity uµ is defined by

u0 =
1√

1− ~v2
,

~u =
~v√

1− ~v2
,

(2.1)

where we have chosen a unit system where c = 1. u0 is the Lorentz contraction factor. The
four-velocity transforms as a four-vector under Lorentz transformations. The square of a
four-vector is a Lorentz scalar, and we indeed obtain

uµuν = u0u0 − ~u2 = 1. (2.2)
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The energy-momentum in the fluid rest frame is thus

T(0) =


ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 . (2.3)

In order to obtain the energy-momentum tensor in a moving frame, one does a Lorentz
transformation.

Under a Lorentz transformation, the contravariant tensor T µν transforms to

T µν = Λµ
αΛν

βT
αβ
(0) , (2.4)

which can be written as a multiplication of (4× 4) matrices

T = ΛT(0)Λ
T , (2.5)

where ΛT denotes the transpose of Λ, where that Λ is symmetric, ΛT = Λ.
The energy-momentum tensor for an arbitrary fluid velocity is

T µν = (ε+ P)uµuν − Pgµν , (2.6)

where gµν ≡ diag(1,−1,−1,−1) is the Minkovski metric tensor. One easily checks that
this equation reduces to Eq. (2.3) in the rest frame of the fluid, where uµ = (1, 0, 0, 0). In
addition, both sides of Eq. (2.6) are contravariant tensors, which means that they transform
identically under Lorentz transformations. Since they are identical in one frame, they are
identical in all frames, which proves the validity of Eq. (2.6).

The conservation equations of energy and momentum are

∂µT
µν = 0. (2.7)

Eqs. (2.6) and (2.7) are the equations of ideal-fluid relativistic hydrodynamics.

2.1.2 Viscous hydrodynamics
And in the case of viscous hydrodynamics, the energy-momentum tensor has the form

T µν = T µνideal + Πµν , (2.8)

where T µνideal is the fluid-perfect part given by Eq. (2.6) and Πµν is the viscous tensor and
describes dissipation [53, 54]

Πµν = πµν + Π∆µν ,

∆µν = gµν − uµuν .
(2.9)

Here πµν is the shear tensor and Π describes the viscous the viscous bulk pressure. The
equations of hydrodynamics follow from the conservation laws for energy and momentum,
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and from the requirement that the entropy production is positive. These conditions determine
the form of equations to be satisfied by dissipative terms πµν and Π.

From the formal point of view, the inclusion of the dissipative terms in (2.9) follows from
the gradient expansion around the local equilibrium. In the first order in gradients one finds
the Navier-Stokes expressions

πµν = η∇<µuν>,

Π = ς∂αu
α,

(2.10)

where the angle brackets project out the traceless symmetric part (the symmetric part
denoted by round brackets)

∇<µuν> = 2∇(µuν) − 2

3
∆µν∇αu

α,

∇α = ∆αβ∂β.
(2.11)

The quantities η and ς in (2.9) are the shear and bulk viscosity, respectively. Unfortu-
nately, the relativistic fluid dynamics based on the Navier-Stokes prescription suffers from
problems connected with the acausal transmission of signals. This is why the second-order
theory had been developed by Israel and Stewart [55]. Within the second-order theory, the
shear tensor πµν and the bulk pressure Π satisfy non-trivial dynamic equations. They are not
any longer expressed by simple formulas such as (2.10). Moreover, the second-order theory
requires that higher-order kinetic coefficients should be introduced.

At the moment, the formalism developed by Israel and Stewart is the most popular ver-
sion of the dissipative hydrodynamics used to describe heavy ion collisions. Usually only
the shear viscosity is included in such calculations. There are, however, suggestions that the
bulk viscosity may also play an important role [56]. More importantly, the second-order for-
malism may lead to unphysical behavior to the early stages of the collisions or at the edges
of the produced system. Such issues are discussed in the lectures by Michael Strickland [57]
in the context of a new formulation of dissipative fluid dynamics.

2.1.3 Before hydrodynamics
In these work, we define the early stage of heavy ion collisions as everything that happens
before the plasma can be described by hydrodynamics.

Hydrodynamics describes the evolution of the strongly-coupled quark-gluon plasma in
space and time. It can describe this evolution if it is provided the state of the fluid on a given
spacetime surface1.

Remember that, with second-order viscous hydrodynamics, the energy-momentum ten-
sor T µν is decomposed into four independent hydrodynamic fields: the energy density ε(~x),
the fluid velocity uµ(~x), the shear stress tensor πµν(~x), and the bulk pressure Π(~x)

In almost every simulation of heavy ion collisions, the equations of hydrodynamics are
initialized at a fixed value of τ = τ0 . That is, hydrodynamic initial conditions are provided

1That is, if hydrodynamics is taken as nothing more than a system of partial differential equations, boundary
conditions or initial conditions must be provided before a numerical solution of the equations can be obtained.



Chapter 2. Model description 13

as T µν(τ0, ~x). More typically the different fields are initialized separately: ε(τ0, ~x), uµ(τ0, ~x),
πµν(τ0, ~x) and Π(τ0, ~x) separately, here we can understand ~x as (x, y, ηs). Note that these
initial conditions represents a considerable amount of information. To understand how much
of a challenge it is to determine T µν , it is worth taking a step back and look at the initial
moments of a heavy ion collisions.

The initial conditions of hydrodynamics hide a lot of the complexity of the early stage
of heavy ion collisions. Between the moment that the nuclei collide and the time at which
hydrodynamics become applicable, there is a complex dynamical evolution of the deconfined
matter. Moreover the fact that there are fluctuations in heavy ion collisions implies that there
is no single initial condition corresponding to two nuclei colliding. There is rather a family,
or a distribution, of initial conditions.

2.1.4 After hydrodynamics
Hydrodynamics cannot describe a fluid of arbitrary low density, in particular if this fluid
is expanding rapidly as the case in heavy ion collisions. Physically, this means that the
hydrodynamics description of the plasma produced in heavy ion collisions must be stopped
at some point, and that the matter being described with hydrodynamics must be converted
into different degrees of freedom. This procedure can be called particlization, since the fluid
is converted into particles. This conversion from fluid to particle is performed in simulations
of heavy ion, using the Cooper-Frye prescription.

It is important not to confuse particlization/Cooper-Frye with hadronization and freeze-
out, which are some times used loosely to refer to particlization. Technically, hadronization
refers to the reconfinement of the strongly-coupled quark-gluon plasma into hadrons. How-
ever, hadronization and particlization do not have to happen at the same time. Actually,
Cooper-Frye requires that hadronization happens before particlization, and freeze-out refers
to the moment when interactions among particles stop completely (or, in practice, when these
interactions become negligible). In other words, The kinetic freeze-out is a transition from a
strongly coupled system to a weakly coupled one. For a hadron gas, it implies that the gas is
so dilute that the hadrons do not interact with each other anymore.

Freeze-out can also refer to two separate concepts: chemical freeze-out, when inelastic
collisions stop, and kinetic freeze-out, when both inelastic and elastic collisions stop. When
freeze-out is used alone, it usually refers to the kinetic freeze-out.

The Cooper-Frye formula will be discussed in next section 2.2. What is relevant to dis-
cuss here is the particlization criteria. The criteria that is used to stop the hydrodynamics
and convert the fluid into hadrons. In almost all hydrodynamics simulations of heavy ion
collisions, particlization is assumed to happen at a given temperature (or energy density,
which is related to temperature through the equation of state). As the temperature of the
hydrodynamic medium decreases, different parts of the medium reach the particlization tem-
perature. Connecting all the points at which the local temperature of the medium cross the
particlization temperature forms a 4D spacetime hypersurface. This hypersurface is com-
plete once every point in the hydrodynamic medium is below this particlization criteria, and
hydrodynamics can then be stopped.
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2.2 Relativistic kinetic theory of gases
This theory describes a gas as a large number of particles. The information about this system
is comprised in a distribution of particles in the phase space which gives us the statistics of
the gas. This quantity is called distribution function and can be written as

f(x, p) =
dN

d3xd3p
, (2.12)

where
dN = f(x, p)d3xd3p (2.13)

denotes the number of particles in the phase space with volume d3xd3p.
Using this definition, it is possible to extract macroscopic quantities from Kinetic theory

by taking averages (moments). For instance, we can determine quantities as particle density,
particle flux and the 4-vector number current, respectively as

n(t, ~x) =

∫
d3pf(x, p)

~n(x) =

∫
d3p

~p

E
f(x, p)

nµ = (n,~n) ≡
∫
d3ppµf(x, p),

(2.14)

where the term pµ is the four-momentum defined as (p0 = E, ~p).
The equilibrium distribution function for a classical dilute gas at rest is given by the

well-known Boltzmann distribution. In other cases, for a quantum gas, we can have either the
Fermi-Dirac distribution for fermions or the Bose-Einstein distribution for bosons. However,
the study of heavy ion collisions deals with high-energies and requires the usage of the
relativistic version of the Boltzamnn equation (more details available in [58]).

The relativistic generalization of the Boltzmann distribution in equilibrium [58] is

feq(x, p) =
1

e

(
pµuµ−µ

T

)
+K

, (2.15)

where the term µ is the chemical potential, T is the temperature, and in ideal gas the factor
K is 1 for bosons,−1 for fermions, and 0 for distinguishable particles. In other case, in local
equilibrium, we have

f(x, p)→ feq(t, ~x, u
µpµ) =

1

e

(
pµuµ(x)−µ(x)

T (x)

)
± 1

, (2.16)

where pµuµ is the four-velocity (momentum).
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In near equilibrium [59] one expects the particle distribution function to be close to feq
such as

f(x, p) = feq(x, u
µpµ) + δf(x, p), (2.17)

that has this form because usually we consider small departures from equilibrium.
It is possible to establish a relation between T µν(t, ~x) on a freeze-out surface with the

distribution function such as

T µν(t, ~x) =

∫
d3p

E
pµpνf(x, p)

=

∫
d3p

E
pµpνfeq +

∫
d3p

E
pµpνδf(x, p)

(2.18)

where as shown in previous section, this energy-momentum tensor can be written as

T µν =T µνideal + Πµν

=(ε+ P)uµuν − Pgµν
(2.19)

where

T µνideal =

∫
d3p

E
pµpνfeq, (2.20)

and

Πµν =

∫
d3p

E
pµpνδf. (2.21)

The distribution of particle in momentum space can be given such as

dN

d3p
=

∫
d3x

f(t=ts,~x,p)︷ ︸︸ ︷
f(x, p)

E
dN

d3p
=

∫
d3xEf(ts, ~x, p),

(2.22)

where we can switch at constant time like ts.
Hybrid model transitions from hydrodynamic field equations to microscopic transport at

a sudden switching temperature TSW at which the hydrodynamic energy-momentum tensor
is particlized using Cooper-Frye freeze-out prescription, T µν is converted to hadrons using
the Cooper-Frye formula [60], that can be written as

E
dN

d3p
=

∫
σ

d3σµp
µfi(ts, ~x, p). (2.23)

where fi is the distribution function of particle species i, and d3σµ characterizes an element
of the isothermal freeze-put hypersurface defined by TSW .
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2.3 Final hadron dynamics
Particlization describes the conversion of the fluid to hadronic degrees of freedom. In prac-
tice, in simulations, this means that the momentum distribution for each species of hadrons
is tabulated from the particlization hypersurface.

Physically particlization is the transition from the strongly-coupled quark-gluon plasma
reconfined to a gas of hadrons. These hadrons continue to interact until it is too dilute.
Moreover most of the hadrons in this gas are unstable and decay into stable and unstable
hadrons. These decay continue until only hadrons that are stable remain.

In the case of this work, the hydrodynamic code does not include a simulation of hadronic
interaction, including such interaction requires the addition of hadronic transport models
such as UrQMD afterburner (Ultra relativistic Quantum Molecular Dynamics) [61–63].
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Chapter 3

Mapping the hydrodynamic response

3.1 Characterizing the initial stage of a heavy-ion collision
We assume that the evolution of the collision system is entirely determined by an initial
condition that consists of the energy-momentum tensor at some early time T µν(τ = τ0, ~x).
This is true in particular for standard hydrodynamic calculations.

Under this assumption, the final particle distribution in a given event E dN
d3p

is a determin-
istic functional of the initial energy-momentum profile in the transverse plane, as well as the
currents, in that event,

E
dN

d3p
(~p) = F [T µν(τ0, ~x)] . (3.1)

The azimuthal dependence of the particle distribution is of particular interest, and can be
usefully organized as a set of Fourier coefficients in the azimuthal angle ϕ of the outgoing
particle momentum [64]. Here it will be convenient to write it as a complex Fourier series

E
dN

d3p
(~p) ≡ 1

2π

dN

dηpTdpT

∞∑
n=−∞

Vn(pT , η)e−inϕ, (3.2)

not least because it is observed that the entire angular distribution can typically be character-
ized by only a few of the lowest harmonics Vn.

In this work we focus on momentum-integrated observables. Integrating over pT and η,
Eq. (3.2) becomes

dN

dϕ
=
N

2π

∞∑
n=−∞

Vne
−inϕ. (3.3)

Here we write the harmonic decomposition as a complex Fourier series, where the stan-
dard υn and Ψn are the magnitude and phase of the complex number Vn,

Vn = υne
inΨn . (3.4)

Harmonic flows coefficients Vn contain information about the final particle distribution
E dN
d3p

and hence, Vn can also be written as

Vn = F [T µν(~x)] . (3.5)
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Each collision event will present a different initial T µν which will result in a momentum
distribution given by this functional (which itself is the same in every event).

Further, we assume that the structure of T µν(~x) at long length scales is more impor-
tant than small scale structure for the subsequent evolution of the system, such that we can
express the final momentum distribution of various particles as a perturbative expansion in
terms of cumulants of a Fourier transform. The lowest cumulants represent the smallest
Fourier momenta, and therefore the largest structures. Since small-scale structure is as-
sumed to be less important, higher terms in the series are less important, and the series can
be truncated.

FIGURE 3.1: Examples of initial energy density at midrapidity for a Pb+Pb
collision, where its structure on the (left) has a more granular distribution with

local details and on the (right) has a smoother aspect. Figure from [65].

As said in [65],

the influence of small scale structure within initial condition on the final observ-
ables, we systematically filter a variety of initial conditions using the separation
of scales such that global large scale structure (e.g. eccentricities) are not sig-
nificantly changed but small scale structure is filtered out. Using relativistic
hydrodynamics, it was find that a variety of integrated Vn flow observables and
Vn distributions remain insensitive to small scale structure. Then, at the same
reference it was identified that these two initial conditions have a similar global
structure and consequently a similar final state. (Gandim, 2019)

In the case, initial condition, for example, an energy density ε(~x) is assumed that con-
tribute to the relevant cumulant expansion was proposed by Teaney and Yan [32]. It was
found that such a perturbative expansion works exceptionally well to describe the results of
hydrodynamic simulations.

In the next chapter, we extend this idea to incorporate the contributions of the initial
momentum density T τi(~x) and initial stress tensor T ij(~x) to develop a general framework
that is valid even when components beyond the energy density are present, and which may
even be valid for systems that are not described by hydrodynamics. The only requirement
is some sort of separation of scales, such that large-scale structures are more important than
small-scale structures.
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Now about the final stage, the flow coefficients Vn are defined with respect to azimuthal
rotations. In order to characterize the functional in Eq. (3.5), we must decompose the initial
energy-momentum tensor into modes with definite rotational properties.

We note that the flow coefficients have the following rotation. Under a rotation of the
system such as φ→ φ+ δ, the complex coefficients Vn change as

Vn → Vne
inδ. (3.6)

Note that any other properties and symmetries must also be taken into account. For
example, the harmonic flows are translation-invariant and dimensionless.

3.2 A cumulant expansion
In this section, we start by reviewing the cumulant expansion for a generating function ρ(~x)
that can be replaced by energy density for example. We are only interested in azimuthal
rotation properties, so we only consider the dependence on transverse coordinates {x, y},
meaning that we have a system which is approximately symmetrically distributed into lon-
gitudinal dependence (boost-invariant). The cumulant decomposition can be done at a given
spacetime rapidity, or with any particular average or moment of the rapidity distribution, and
it can be studied separately what range of spacetime rapidities contribute to particle distribu-
tions at a given rapidity or pseudorapidity.

The natural way to identify large- and small-scale structures is to take a (2-D) Fourier
transform

ρ(~k) =
1

2π

∫
d2xρ(~x)ei

~k·~x. (3.7)

Naively, small momenta k are associated with large-scale structure, and large k repre-
sents small scales. Thus, we assume that the Fourier-transformed density is sufficiently well
behaved as to be decomposed in a Maclaurin series, expanding around |~k| = 0. In order
to identify quantities with the correct rotational properties, we switch from Cartesian to po-
lar coordinates and expand the Maclaurin coefficients in a Fourier series with respect to the
azimuthal angle φk

ρ(~k) =
∞∑
m=0

∞∑
n=−∞

ρn,mk
me−inφk . (3.8)

We can express the general moment ρn,m in terms of the original density ρ(~x) by inverting
the transformations,

ρn,m =
im

2m
(
m+n

2

)
!
(
m−n

2

)
!

∫
d2xrmeinφρ(~x), (3.9)

where φ = tan−1(y, x) is the coordinate azimuthal angle, and subject to the constraint that
the only non-zero values are form ≥ |n| and when the difference (m−n) is an even number.

A problem with these moments, however, is that they depend on the choice of the origin
of the coordinate system. Since the final particle distribution is translation-invariant, the
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moments ρn,m are not appropriate for characterizing the harmonics Vn. Another way of
saying this is that small k does not, in fact, represent large-scale structure in general, but
instead structure far from the chosen center of coordinates, which is not the same.

The correct quantities are instead the cumulants of the density [32]. That is, we reset the
generating function as

ρ(~k) ≡ eW (~k), (3.10)

and expand W (~k) in Maclaurin and Fourier series as the same way before,

W (~k) =
∞∑

n=−∞

∞∑
m=|n|

Wn,mk
me−inφk . (3.11)

One cannot write a general expression for the cumulants Wn,m, and they must instead
be generated iteratively order-by-order. This is not a problem, since we want to truncate the
series at a finite m.

The first few cumulants are

W0,0 = ln
[
ρ(~k = ~0)

]
, (3.12)

W1,1 =
i

2
〈reiφ〉, (3.13)

W0,2 =
1

2

i2

2!

[
〈r2〉 − |〈reiφ〉|2

]
, (3.14)

W2,2 =
1

4

i2

2!

[
〈r2ei2φ〉 − 〈reiφ〉2

]
, (3.15)

W1,3 =
1

8

i3

2!

[
〈r3eiφ〉 − 〈r2ei2φ〉〈re−iφ〉

− 2〈r2〉〈reiφ〉+ 2〈reiφ〉2〈re−iφ〉
]
,

(3.16)

W3,3 =
1

8

i3

3!

[
〈r3ei3φ〉+ 〈reiφ〉

(
3〈r2ei2φ〉 − 2〈reiφ〉2

)]
, (3.17)

where the brackets represent a spatial average weighted by the density ρ(~x),

〈...〉 =

∫
d2x...ρ(~x)∫
d2xρ(~x)

. (3.18)

The cumulants with negative n are redundant, since they are trivially related to those with
positive n.

Calculations with more detailed derivation are available in appendix A.
With this definition, all of the cumulants except W1,1 are now translation-invariant, and

truly represent large- or small-scale structure according to the value of m.
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We can show this explicitly. For any function ρ(~x), under a translation of the system such
that ρ(~x)→ ρ(~x+ ~R),

ρ(~x)→ ρ′(~x) =

∫
d2xρ(~x+ ~R)ei

~k·~x

=

∫
d2xρ(~x)ei

~k·(~x−~R)

= ei
~k·~Rρ(~k),

(3.19)

and
W (~k) = ln(ρ(~k))→ ln(ei

~k·~Rρ(~k))

= W (~k)− ikx cos(φk − φ).
(3.20)

So the m = 1 cumulants obtain an additive constant, while all others are translation-
invariant.

If one chooses the center of coordinates such that 〈x〉 = 〈y〉 = 0 (W1,1 = 0), then
the lowest cumulant Wn,m coincides with ρn,m. Because of this, the issue of translation-
invariance is typically ignored (beyond the need to do event-by-event recentering). However,
it is a symmetry of Vn that must be respected, and it will be important to keep it in mind as
we proceed.

The index n represents the rotational property of each cumulant. Similar to Vn of Eq.
(3.6), in our complex notation a rotation of the system such as φ → φ + δ changes the
cumulants as

Wn,m → Wn,me
inδ. (3.21)

As we have the Eq. (3.5), Vn can be written as a function of Wn,m as

Vn = f(Wn,m). (3.22)

In this case, one can write a power series expansion, ensuring that each term has the same
rotational properties of Vn

Vn =
mmax∑
m=n

κn,mWn,m +
mmax∑
l=1

mmax∑
m=l

mmax∑
m′=|n−l|

κl,m,m′Wl,mWn−l,m′ +O(W 3). (3.23)

The sums at non-linear order should be understood to neglect cumulants with n = 0, as
only the n 6= 0 cumulants are assumed to be small, and the resulting terms would therefore
be redundant with respect to terms at lower order.

By truncating the cumulant expansion at some finite mmax (representing some minimum
desired length scale), we obtain a finite number of terms at each order in the power series,
which itself can be truncated at a finite order (leading order: Vn = κn,nεn,n).

With this definition the coefficients κn,m must be dimensionful, since the Vn are defined
to be dimensionless. They may well depend on scales that present themselves in the initial
energy-momentum tensor, which therefore change from one event to another. We want to
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have an explicit characterization of the dependence on the initial condition, with unknown
dimensionless coefficients that characterize only the response function. At the same time,
only rotation-invariant quantities are assumed to be small, and only n 6= 0 cumulants show
up in the expansion, Eq. (3.23).

As a result, one must divide each of these dimensionful cumulants by a relevant scale in
order to obtain a dimensionless predictor for Vn which is our goal to figure out. Therefore,
the standard eccentricities [66] are obtained by making the choice to divide each cumulant
Wn,m by 〈rm〉, and this is the most common choice.

In order words, we can define

εn,m ≡ −
〈rmeinφ〉
〈rm〉

, (3.24)

where the minus signs is merely a convention, and here we have centered the coordinates in
each event such as 〈reiφ〉 = W1,1 = 0. The standard eccentricities are defined as the lowest
term with the correct symmetry, e.g., ε1 ≡ ε1,3, ε2 ≡ ε2,2, ε3 ≡ ε3,3, etc. For the lowest orders,
where this definition is usually used, the numerator can be replaced with the appropriate
cumulant. With these dimensionless quantities defined, we can replace Wn,m → εn,m in Eq.
(3.23), and the coefficients κn,m are now dimensionless. This also ensures that εn,m ≤ 1
simply by its definition, which makes it a good quantity for a power series of (3.23).

Note however, in the formalism of cumulants expansion, for odd m, the denominator is
not actually a cumulant (equal to zero). A more natural choice may be to simply take the
appropriate power of W0,2, the lowest cumulant representing the size of the system, i.e., one
can define the ratio

εn,m ≡ −m!
Wn,m

(W0,2)
m
2

, (3.25)

where
εn = εne

inΦn , (3.26)

where the phase Φn is known as participant plane, the exponent m
2

makes the eccentricity
dimensionless for any m, and the term m! exists because each cumulant has in its front a
coefficient and when we divide Wn,m by W

m
2

0,2, it appears the term 1/m! in front, then to
eliminate it, the eccentricity was defined multiplying by m!.

Now, we use the same relation (3.23), choosing m = |n| in order to write the lowest
eccentricities (lowest cumulants), such that

Vn = κnεn +O(ε2), (3.27)

where the linear response coefficient κn depend only on hydrodynamic parameters, and even
it is possible to improve more this relation using superior terms of expansion [67], this work
is interested only in linear response.

We have derived a relation between the initial energy density distribution, for example,
and the final azimuthal anisotropy coefficients Vn, which has already been used success-
fully to describe hydrodynamic calculations and which has provided much insight into the
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relationship between initial and final states.

3.3 Energy density as a generating function
The generating function can be replaced by initial energy density written as

ρ(~k) =
1

2π

∫
d2xT ττ (~x)ei

~k·~x, (3.28)

and its cumulant expansion is exactly the same.
In order to check Eq. (3.27), some simulations were performed. The initial conditions

chosen do not represent a realistic collision, but we only play with the initial conditions and
check the final results. This group of initial conditions was called Toy Model. Then, the
energy density was chosen as a deformed Gaussian (similar made in [68]) at τ0 written as

T ττ (~x) = Ae
− r2

2σ2

(
1+
∑
n
an cosn(φ+ψn)

)
, (3.29)

where A is the magnitude of the Gaussian, n is a positive integer, σ is the transversal size
(radius), ψn is a reference angle, and the term responsible for the asymmetry (magnitude of
the deformations) is an, such that they belong to the range 0 ≤ an < 1. It is important to
note that a value of an close to 1 imply in a Gaussian which does not converge at infinity.
In this picture, whether all these terms of deformation are zero, the energy density will be
symmetrically distributed in the transversal plane {x, y} as shown in Figure 3.2.

The sign in front of an in Eq. (3.30) has been chosen such that ψn is the direction of the
the polygon. For n = 2, is the mirror axis of the ellipse [66], which is the standard definition
of the participant plane [69].

FIGURE 3.2: Profile of initial energy density at midrapidity symmetrically
distributed in the transversal plane because an = 0.

As we deal with Toy Model, this system does not represent a real collision, but its pa-
rameters A and σ (Table 3.1) have been chosen in order to create a size of a real system as
[70], which corresponds roughly to a typical collision at RHIC.
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TABLE 3.1: Parameters of initial energy density symmetrically distributed.

A (fm−4) σ (fm) ψn an

50.0 3.0 0.0 0.0

In order to understand the shape of deformation of the Gaussian, we have two simple
examples where on the other hand, in the Figure 3.3, only a2 is different from zero and n = 2
(left), and consequently it appears as a deformation of the Gaussian. It is important that this
initial condition has as effect on the final particle distribution, meaning that all harmonic flow
coefficients will be zero except V2 because a2 6= 0. Following the same reasoning, with only
a3 if different of zero and n = 3 (right), and in the same way it implies in V3 6= 0 because
a3 6= 0 and hence, all other Vn are zero. For both cases, Vn is real. As we shall see, υn is
usually positive for an > 0, which means that anisotropic flow develops along the flat side
of the polygons (Figure 3.3).

FIGURE 3.3: Profile of energy density deformed because a2 6= 0 (left) and
deformed because a3 6= 0 (right).

Now, in order to determine whether these eccentricities of Toy Model describe the evo-
lution of a heavy ion collision system, we perform hydrodynamic simulations. Specifically,
all simulations of this model use the equation of state s95p-v1, vanishing bulk viscosity ς/s,
the shear viscosity η/s used was 0.2, and the hydrodynamics begins at τ0 = 1.0 fm. In next
chapter, all simulations use the same parameters in Toy Model.

The Toy Model was created to check whether the eccentricities with other T µν compo-
nents work. Then for simplicity, we only calculate the spectrum of direct pions, without
contributions of resonance decays.

We are interested to study the hydrodynamic response to initial conditions. For this
simple case where we have only T ττ contribution we can play with initial conditions, varying
its parameters in order to probe the resulting response.

In general, an deforms the initial energy density and generates effects in its correspondent
harmonic flow. This happens because anisotropic flow Vn is seen as a hydrodynamic response
to spatial anisotropies εn. This response function is represented by relations (3.27). In this
picture, simulations were made in order to test how effective these relations are for n = 2
and 3.
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All eccentricities can be defined in the same way, then according to Eq. (3.27), it is possi-
ble to establish a linear relation between these predictors and the harmonic flow coefficients
as

υne
inΨn = κnεne

inΦn . (3.30)

Figure 3.4 displays the relation V2 and ε2 event-by-event, for fluid velocities ux = uy =
uηs = 0. Using the same values of parameters as A and σ, we have the following form for ε2

εe2 = −〈r
2ei2φ〉e − 〈reiφ〉2e
〈r2〉e − |〈reiφ〉e|2

. (3.31)

where

〈...〉e =

∫
d2x...T ττ (~x)∫
d2xT ττ (~x)

. (3.32)

As shown, the parameter a2 is responsible for the asymmetry of ε2, then each event has a
different value of this parameter. This form of energy density is more clear below

T ττ (~x) = Ae−
r2

2σ2
(1+a2 cos 2φ). (3.33)
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FIGURE 3.4: Relation between real projections of V2 and ε2 event-by-event.
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TABLE 3.2: Parameters used for V2 × ε2.

A (fm−4) σ (fm) a2

50.0 3.0 {0.0− 0.6}

On the other hand, for n = 3 is the same idea, where a3 changes in the same way. It is
possible to make a plot which displays the relation between the real projections of V3 and ε3
event-by-event. Similarly, we have

εe3 = −
〈r3ei3φ〉e + 〈reiφ〉e

(
3〈r2ei2φ〉e − 2〈reiφ〉2e

)
(〈r2〉e − |〈reiφ〉e|2)

3
2

, (3.34)

and in shape of the Gaussian is

T ττ (~x) = Ae−
r2

2σ2
(1+a3 cos 3φ). (3.35)
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FIGURE 3.5: Relation between real projections of V3 and ε3 event-by-event.

TABLE 3.3: Parameters used for V3 × ε3.

A (fm−4) σ (fm) a3

50.0 3.0 {0.0− 0.6}

We used the same parameters for A and σ of the table 3.1.
It is possible to note the linear relation between εn and Vn. This shows that in Toy Model,

the hydrodynamic response to initial energy density is consistent.
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Chapter 4

Including effects from other Tµν
components

We are interested in constructing a framework which incorporates the effects of initial mo-
mentum density and initial stress tensor. Using the same considerations as for the case of
energy density only, these other components of initial T µν were included through a nontriv-
ial ansatz that added one term for each new contribution, following the cumulant expansion
exactly as made before

ρ(~x) = T ττ + α∂iT
τi − β∂i∂jT ij. (4.1)

Because we do not know the relative importance of each new contribution, each one has a
constant response coefficient α (fm) and β (fm2) with the appropriate dimension. Assuming
Eq. (4.1), we can begin to construct the framework, but it is advisable to add one contribution
at a time in order to understand better its effect.

4.1 Physical motivation
Let us return to the case where only energy density contributes, such that the evolution be-
ginning at some time τ0 and depends on the distribution of energy density only. We know
that these estimators εen(τ0) give an excellent description of the final results. Now, imagine
that we do not know the value of τ0, we instead generate estimators εen(τ) from the state of
the system a short time before or after τ0 such as τ = τ0 + δτ , and in this way we have a new
expression for energy density

T ττ (τ) = T ττ (τ0) + δτ∂τT
ττ
∣∣∣
τ0

+
1

2
δτ 2∂2

τT
ττ
∣∣∣
τ0

+O(δτ 3). (4.2)

The final state of the system is the same , and so our estimator should be approximately
unchanged.

Conservation of T µν show us that, to first order, any change is energy density is compe-
sated by momentum density. And we can continue to second order, which adds the stress
tensor and we obtain

∂τT
ττ = −∂iT τi, (4.3)

∂2
τT

ττ = ∂i∂jT
ij. (4.4)
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Thus, our original scalar ρ(~x) can be approximated by these terms

ρ(~x) = T ττ (τ0) ' T ττ (τ) + δτ∂iT
τi(τ0) +

1

2
δτ 2∂i∂jT

ij(τ0). (4.5)

So while we cannot make a rigorous derivation of, e.g., the values of α and β, which
clearly depend on the system, it is natural to construct a field with a some of the three
quantities in the form of Eq. (4.1) (T ττ , T τi, and T ij) to make an estimator for the final
flow.

While not all transverse degrees of freedom of T µν appears, these three quantities can be
expected to be the most important.

4.2 Effects from initial momentum density
The vector field T τi, with i ∈ {x, y} transforms nontrivially with respect to azimuthal ro-
tations. This must be taken into account to obtain cumulants with well-defined rotational
properties. Using the general notation for the momentum density U(~x), we start by defining
a complex number representing the (2-D) momentum density vector as

U(~x) = T τx + iT τy, (4.6)

and the cumulant expansion needs to consider the rotational property of U(~x): if the system
rotates such as φ → φ + δ, this function transforms as U(~x) → U(~x)eiδ. In the generating
function, this quantity appears in the divergent ∂iT τi which is a scalar.

In this section, we neglected the importance of the initial stress tensor to isolate the effects
caused by anisotropy from the initial momentum density. Thus, in this case, the generating
function can be written as

ρ(~x) = T ττ + α∂iT
τi, (4.7)

Taking the Fourier transform and this equation changes to

ρ(~k) =
1

2π

∫
d2x

(
T ττ − iαkiT τi

)
ei
~k·~x. (4.8)

In order to select only the large-scale structure and assuming that this function is well
behaved, we expand it in a Maclaurin series around |~k| = 0 and to identify quantities with
correct rotational properties, we expand the Maclaurin coefficients in Fourier series with
respect to φk and obtain

ρ(~k) =
∞∑
m=0

∞∑
n=−∞

ρn,m(α)kme−inφk . (4.9)
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And now we have a general form for its moments written as

ρn,m(α) =
im

2m
(
m+n

2

)
!
(
m−n

2

)
!

[∫
d2xrmeinφT ττ (~x)

− α
(
m+ n

2

)∫
d2xrm−1ei(n−1)φU(~x)

− α
(
m− n

2

)∫
d2xrm−1ei(n+1)φU∗(~x)

]
,

(4.10)

More details are provided in appendix B.
In the same way as for energy energy density, moments ρn,m for m ≥ |n| and when the

difference (m− n) is an even number exist. In addition, there is the same problem with the
moments because they are not translation-invariant and depend of the center of coordinates,
and the same solution is used here which consists of a switch of moments by cumulants of
the generating function.

ρ(~k) = eW (~k). (4.11)

Expanding W (~k) in Maclaurin and Fourier series,

W (~k) =
∞∑
m=0

∞∑
n=−∞

Wn,m(α)kme−inφk . (4.12)

Therefore, the first few cumulants are

W0,0(α) = ln
[
ρ(~k = ~0)

]
, (4.13)

as we can note, the cumulant W0,0 does not change, but all others have

W1,1(α) =
i

2

[
〈reiφ〉e − 〈α〉u

]
, (4.14)

W0,2(α) =
1

2

i2

2!

[
〈r2〉e − α〈re−iφ〉u − α〈reiφ〉u∗ − |〈reiφ〉e − 〈α〉u|2

]
, (4.15)

W2,2(α) =
1

4

i2

2!

[
〈r2ei2φ〉e − 2α〈reiφ〉u −

(
〈reiφ〉e − 〈α〉u

)2
]
, (4.16)

W3,3(α) =
1

8

i3

3!

[
〈r3ei3φ〉e − 3α〈r2ei2φ〉u −

(
〈reiφ〉e − 〈α〉u

)
·
(

3
(
〈r2ei2φ〉e − 2α〈reiφ〉u

)
− 2

(
〈reiφ〉e − 〈α〉u

)2
)]
,

(4.17)

where

〈...〉u =

∫
d2x...U(~x)∫
d2xT ττ (~x)

, (4.18)
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〈...〉u∗ =

∫
d2x...U∗(~x)∫
d2xT ττ (~x)

. (4.19)

Where like shown previously, momentum density is represented by the complex number
U(~x).

The idea is the same of Chapter 3 which is to construct estimators that are able to predict
the final state. However this case is different because it contains a new contribution and the
goal is to check if this framework works.

Firstly, we can define the eccentricities in the same way

εn(α) = −n!
Wn,n(α)(
W ε

0,2

)n
2

, (4.20)

A important detail is that the denominator does not have the momentum density contri-
bution because these new terms are negative, and as consequence events which W0,2 is really
close to zero would have eccentricities going to infinity but the harmonic flow coefficients
do not. Therefore, the complete denominator is inappropriate for estimators εn, making W e

0,2

to be the best option.
In this work, ε2 and ε3 are the most important eccentricities to verify in simulations the

best value of the constant α, thus we have

ε2(α) = −
〈r2ei2φ〉e − 2α〈reiφ〉u −

(
〈reiφ〉e − 〈α〉u

)2

〈r2〉e − |〈reiφ〉e|2
, (4.21)

in the same way, ε3 can be written as

ε3(α) = −
〈r3ei3φ〉e − 3α〈r2ei2φ〉u −

(
〈reiφ〉e − 〈α〉u

) [
3〈r2ei2φ〉e − 6α〈reiφ〉u

(〈r2〉e − |〈reiφ〉e|2)
3
2

−2
(
〈reiφ〉e − 〈α〉u

)2
]

(〈r2〉e − |〈reiφ〉e|2)
3
2

.

(4.22)

In order to check if the framework works in event-by-event simulations, it is necessary
to play with initial conditions (Toy Model), where the energy density is the same used in
Chapter 3

T ττ (~x) = Ae
− r2

2σ2

(
1+
∑
n
an cosnφ

)
, (4.23)

and as the momentum density is a complex function, then it can be written as a function of
magnitude and phase as

U(~x) = |U |eiφu , (4.24)

where, the magnitude is a function which is proportional to a Gaussian as

|U | = rBe
− r2

2ρ2

(
1−
∑
n
bn cosnφ

)
, (4.25)
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and the phase is
φu = φ−

∑
n

cn sinnφ, (4.26)

where B is the magnitude of momentum density, n is a positive integer, ρ is the transverse
size (radius of momentum density), the term responsible for the deformation is bn in magni-
tude of U(~x), such that they belong to the range 0 ≤ bn < 1, and cn is the term responsible
for the deformation in direction. It is important to note that values of bn close to 1 imply in
a function which does not converge at infinity. In this picture, whether bn and cn are zero,
the momentum density will be symmetrically distributed in the transversal plane {x, y} as
shown at Figure 4.1.

FIGURE 4.1: Profile of momentum density symmetrically distributed because
bn and cn are zero.

TABLE 4.1: Parameters used for momentum density.

B (fm−5) ρ (fm) bn cn

10.0 1.0 0.0 0.0

Basically, as we are using the same parameters of Chapter 4 for energy density that cor-
responds to a typical collision at RHIC. Using this idea, the parameters used for momentum
density (B, ρ) naturally have a small size compared to energy density (A, σ) because it is
more common in realistic events, and this same idea will be used for parameters of stress
tensor in next section.

In Figure 4.1, bn and cn are zero, which it implies that the correspondent harmonic flow
coefficient Vn is also zero. In this picture, Figure 4.2 has only b2 6= 0 (left), and it implies in
V2 6= 0. And analogously, the right side has only b3 6= 0 and hence it produces V3 6= 0.

Keeping the same idea, the term cn of phase are also able to generate anisotropic flow.
Figure 4.3 has only c2 6= 0, and it implies in V2 = 0 (left), and the right side has only c3 6= 0
what makes V3 6= 0. The same parameters from Table 4.1 were used for both figures.
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FIGURE 4.2: Profile of momentum density asymmetrically distributed be-
cause b2 6= 0 (left) and because b3 6= 0 (right).

FIGURE 4.3: Profile of momentum density asymmetrically distributed be-
cause c2 6= 0 (left) and because c3 6= 0.

It was used the equation of state s95p-v1, vanishing bulk viscosity ς/s, the shear viscosity
η/s used was 0.2, and the hydrodynamics begins at τ0 = 1.0 fm

In order to check the relation between Vn and εn(α), simulations were made, changing
all relevant parameters of initial conditions. Figure 4.4 plots events made for n = 2. In
particular, we have centered the coordinate system such that W1,1(α) = 0

ε2(α) = −〈r
2ei2φ〉e − 2α〈reiφ〉u
〈r2〉e − |〈reiφ〉e|2

, (4.27)
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where the parameters are

T ττ = Ae−
r2

2σ2
(1+a2 cos 2φ)

|U | = rBe
− r2

2ρ2
(1−b2 cos 2φ)

φu = φ− c2 sin 2φ.

(4.28)

This eccentricity is able to capture effects from energy and momentum density, but if
α = 0 we have correspondence with the usual case which we had only energy density con-
tribution.
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FIGURE 4.4: Plots of V2 × ε2(α = 0) (upper left), of V2 × ε2(α = 2.0) fm
(upper right), of V2 × ε2(α = 5.0) fm (lower left), and of V2 × ε2(α = 9.0)

fm (lower right).

TABLE 4.2: Parameters used for V2 × ε2(α) fm.

B (fm−5) a2 b2 c2

{0.0− 10.0} {0.0− 0.6} {0.0− 0.6} {0.0− 0.4}

Each point in these scatters (Figure 4.4) represents a different event where we changed
values for all parameters. It is possible to realize that for the first case which has α =
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0, V2 has points in vertical, it happens because the elliptic flow coefficient is sensitive to
asymmetries from initial momentum density, but in this case (α = 0), the eccentricity does
not capture these effects. On the other hand, when α = 2.0 and 5.0 fm, ε2 captures these
effects even there is not a linear relationship between V2 and ε2, but it is possible to figure
out the best value of α where in Figure 4.4 it is possible to obtain a linear relationship.

Now, for n = 3, the behavior is similar. Figure 4.5 plots the relation V3 × ε3 event-by-
event changing all relevant parameters of initial conditions, we have

ε3(α) = −〈r
3ei3φ〉e − 3α〈r2ei2φ〉u
(〈r2〉e − |〈reiφ〉e|2)

3
2

. (4.29)

And analogously as made with the parameters of ε2, for ε3, we have
In order to confirm that α is a constant independent of harmonic, it was used the best

value of ε2.
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FIGURE 4.5: Relation between V3 and ε3(α) event-by-event.

TABLE 4.3: Parameters used for V3 × ε3(α).

B (fm−5) a3 b3 c3

{0.0− 10.0} {0.0− 0.6} {0.0− 0.6} {0.0− 0.4}

These simulations perform the same initial parameters of MUSIC used in previous chap-
ter. After checking these results, it was clear that relation between Vn × εn(α) is linear for
α = 9.0 fm which confirms that the ansatz (4.7) works.
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4.3 Effects from initial Stress tensor
The quantity T ij for i, j ∈ {1, 2} is a rank 2 tensor which needs to have its rotation property
respected in its eccentricities. At the generating function, this quantity appears through two
consecutive contractions ∂i∂jT ij which is scalar.

In this section, the contribution of momentum density was neglected to analyze better
only the inclusion of stress tensor. As the same way as made previously, the generating
function was written as

ρ(~x) = T ττ − β∂i∂jT ij, (4.30)

and in order to identify the correct scales of structure, it was taken Fourier transform, thus
Eq. (4.30) becomes

ρ(~k) =
1

2π

∫
d2x

(
T ττ + βkikjT

ij
)
ei
~k·~x, (4.31)

and to select large-scales of system, it was taken Maclaurin series and to identify quantities
with the correct rotational properties it was taken Fourier series

ρ(~k) =
∞∑
m=0

∞∑
n=−∞

ρn,m(β)kme−inφk . (4.32)

It is convenient to separate the stress tensor in to parts: traceless and trace part as

T ij = T̃ ij +
T

2
δij, (4.33)

where T = T xx + T yy.
We have a general form for general moment written as

ρn,m(β) =
im

2m
(
m+n

2

)
!
(
m−n

2

)
!

[∫
d2xrmeinφT ττ (~x)

− β(m+ n)

(
m+ n

2
− 1

)∫
d2xrm−2ei(n−2)φC(~x)

− β(m− n)

(
m− n

2
− 1

)∫
d2xrm−2ei(n+2)φC∗(~x)

− β(m+ n)(m− n)

∫
d2xrm−2einφ

T

2
(~x)

]
,

(4.34)

where the complex number C(~x) is from contractions of T̃ ij and is defined as

C(~x) ≡ 1

2
(T̃ xx − T̃ yy) + iT̃ xy. (4.35)

It is possible to see all detail of this equations in appendix B.
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Cumulants for n = 0 and n = 1 do not have contributions of stress tensor. Then, since
for n = 2, we have

ρ0,2(β) =
1

2

i2

2!

[
〈r2〉e − 4〈β〉t − |〈reiφ〉ε|2

]
, (4.36)

ρ2,2(β) =
1

4

i2

2!

[
〈r2ei2φ〉e − 4〈β〉c − 〈reiφ〉e

]
, (4.37)

W3,3(β) =
1

8

i3

3!

[
〈r3ei3φ〉e − 12β〈reiφ〉c

− 〈reiφ〉e
(
3〈r2ei2φ〉e − 2〈reiφ〉2e

)]
,

(4.38)

where

〈...〉c =

∫
d2x...C(~x)∫
d2xT ττ (~x)

, (4.39)

〈...〉t =

∫
d2x...T

2
(~x)∫

d2xT ττ (~x)
. (4.40)

Now, we can construct eccentricities with this new contribution as

εn(β) = −n!
Wn,n(β)(
W e

0,2

)n
2

. (4.41)

Analogously as done before, the denominator does not have the stress tensor contribu-
tion because it is negative and hence events which W0,2 is really close to zero, making the
eccentricity go to infinity. In this picture, the complete denominator is inappropriate for the
estimators and therefore W e

0,2 is also the best option.
Basically, the contribution of trace part has effects only over ε1 because all cumulants

W c
n,n do not have such contribution.

For n = 2 and 3, these estimators are

ε2(β) = −〈r
2ei2φ〉e − 4〈β〉c − 〈reiφ〉2e
〈r2〉e − |〈reiφ〉e|2

, (4.42)

and

ε3(β) = −
〈r3e13φ〉e − 12β〈reiφ〉c − 〈reiφ〉e

[
3〈r2e2iφ〉e − 12〈β〉c − 2〈reiφ〉2e

]
(〈r2〉e − |〈reiφ〉e|2)

3
2

. (4.43)

In order to make some simulations with initial conditions and check if the framework
works, initial conditions were chosen. The energy density has the same form where an is
responsible by asymmetry. On the other hand, for initial conditions of stress tensor was
introduced viscosity tensor components: Πxx, Πyy, and Πxy. The traceless part can be repre-
sented by a complex function C(~x) that can be written in terms of a magnitude and a phase
such that

C(~x) = |C|ei2φc , (4.44)
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where each component of the tensor also can be written as the same way

T xx = 2|C| cos2 φc,

T yy = 2|C| sin2 φc,

T xy = 2|C| sinφc cosφ.

(4.45)

This magnitude is proportional to Gaussian as

|C| = r2Pe
− r2

2%2
(1−

∑
n
pn cosnφ)

, (4.46)

and the same idea was applied for its phase defined as

φc = φ−
∑
n

qn sinnφ, (4.47)

where P is the magnitude |C|, n is a positive integer, % is the transverse size, the term
responsible for the deformation of magnitude is pn, and qn is responsible for asymmetries in
phase. Values of pn close to 1 imply in a function which does not converge at infinity. If all
terms of asymmetry are zero, the tensor will be symmetrically distributed in the transversal
plane {x, y}. However, it is not possible to show geometric effects as made before because
it deals with a tensor of rank 2, but fortunately, it is possible to show these effects only in
magnitude, as done in Figure 4.6 where pn = 0 and hence, this magnitude is symmetrically
distributed. Basically, as we are using the same parameters of Chapter 4 for energy density,

FIGURE 4.6: Profile of magnitude of a symmetrically distributed stress tensor
because pn = 0.

TABLE 4.4: Parameters used for magnitude of stress tensor.

P (fm−6) % (fm) pn

10.0 1.0 0.0

so the parameter used for stress tensor in Table 4.4 (P , %) have a small size compared to
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energy density (A, σ) because it is more common in typical events the size of energy density
been bigger. And with this profile, all harmonic flows coefficients Vn also zero. With the
same idea, using the same parameters from Table 4.4, Figure 4.7 (left) has p2 6= 0 and it
implies that V2 6= 0, and on the right side has p3 6= 0 and V3 6= 0 as consequence.

FIGURE 4.7: Profile of a asymmetrically distributed stress tensor because
p2 6= 0 (left) and because p3 6= 0 (right).

In order to check the relation between Vn and εn(β) simulations were done, changing
all relevant parameters of initial conditions. Figure 4.8 plots events made for n = 2 and in
particular centered coordinate system such W1,1 = 0, we have

ε2(β) = −〈r
2ei2φ〉e − 4〈β〉c
〈r2〉e − |〈reiφ〉e|2

, (4.48)

T ττ = Ae−
r2

2σ2
(1+a2 cos 2φ)

|C| = r2Pe
− r2

2%2
(1−p2 cos 2φ)

φc = φ− q2 sin 2φ.

(4.49)

TABLE 4.5: Parameters for V2 × ε2(β).

P (fm−6) a2 p2 q2

{0.0− 10.0} {0.0− 0.6} {0.0− 0.4} {0.0− 0.6}

Each point in these scatters (Figure 4.8) represents a different event where we changed
values for all parameters. It is possible to realize that for the first case which has β =
0, V2 has points in vertical, that exist because the elliptic flow coefficient is sensitive to
asymmetries from initial stress tensor, but with this value of β = 0, the eccentricity does not
capture these effects. On the other hand, when β = 2.0 and 4.0 fm, ε2 captures these effects
even there is not a linear relationship between V2 and ε2, but it is possible to figure out the
best value of β where in Figure 4.8 it is possible to obtain a linear relationship.
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FIGURE 4.8: Plots of V2 × ε2(β = 0) (upper left), of V2 × ε2(β = 2.0) fm
(upper right), of V2× ε2(β = 4.0) fm (lower left), and of V2× ε2(β = 6.0) fm

(lower right).

On the other case where n = 3, using the best value of β, the behavior is similar, and we
have

ε3(β) = −〈r
3ei3φ〉e − 12β〈reiφ〉c

(〈r2〉e − |〈reiφ〉e|2)
3
2

. (4.50)

And analogously as made with the parameters of ε2, for ε3, we have

TABLE 4.6: Parameters for V3 × ε3(β).

P (fm−6) a3 p3 q3

{0.0− 10.0} {0.0− 0.6} {0.0− 0.4} {0.0− 0.6}

After checking these results, it was clear that both cases are linear for the same value of
β = 6.0 fm2 proving that the framework from ansatz (4.30) works.
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FIGURE 4.9: Relation between V3 and ε3(β).

4.4 Both effects together
This section is responsible by to include both contributions together. Basically, the procedure
is exactly the same but now using the generating function from Equation (4.1) that in order
to separate the scales we take Fourier transform as

ρ(~k) =
1

2π

∫
d2x

(
T ττ − α∂iT τi − β∂i∂jT ij

)
ei
~k·~x, (4.51)

and to select large-scales of system, it was taken Maclaurin series and to identify quantities
with the correct rotational properties a Fourier expansion was performed

ρ(~x) =
∞∑
m=0

∞∑
n=−∞

Wn,m(α, β)kme−inφk , (4.52)
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with these equations, the general moment are trivially written as

ρn,m(α, β) =
im

2m
(
m+n

2

)
!
(
m−n

2

)
!

[∫
d2xrmeinφT ττ (~x)

− α
(
m+ n

2

)∫
d2xrm−1ei(n−1)φU(~x)

− α
(
m− n

2

)∫
d2xrm−1ei(n+1)φU∗(~x)

− β(m+ n)

(
m+ n

2
− 1

)∫
d2xrm−2ei(n−2)φC(~x)

− β(m− n)

(
m− n

2
− 1

)∫
d2xrm−2ei(n+2)φC∗(~x)

− β(m+ n)(m− n)

∫
d2xrm−2einφ

T

2
(~x)

]
,

(4.53)

And now, in order to generate cumulants, the same idea of W (~k) was made such that the
cumulants are

W0,2(α, β) =
1

2

i2

2!

[
〈r2〉e − α〈re−iφ〉u − α〈reiφ〉u∗ − 4〈β〉T − |〈reiφ〉e − 〈α〉u|2

]
, (4.54)

W2,2(α, β) =
1

4

i2

2!

[
〈r2ei2φ〉e − 2α〈reiφ〉u − 4〈β〉c −

(
〈reiφ〉e − 〈α〉u

)2
]
, (4.55)

W3,3(α, β) =
1

8

i3

3!

[
〈r3ei3φ〉e − 3α〈r2ei2φ〉u − 12β〈reiφ〉c −

(
〈reiφ〉e − 〈α〉u

)
·
(

3〈r2ei2φ〉e − 6α〈reiφ〉u − 12〈β〉c − 2
(
〈reiφ〉e − 〈α〉u

)2
)]
.

(4.56)

The total eccentricity can be defined as

εn(α, β) = −n!
Wn,n(α, β)(
W e

0,2

)n
2

, (4.57)

where ε2 and ε3 are the eccentricities more important to check in simulations, thus we have

ε2(α, β) = −
〈r2ei2φ〉e − 2α〈reiφ〉u − 4〈β〉c −

(
〈reiφ〉e − 〈α〉u

)2

〈r2〉e − |〈reiφ〉e|2
, (4.58)
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as the same way, ε3 is

ε3(α, β) = −〈r
3ei3φ〉e − 3α〈r2ei2φ〉u − 12β〈reiφ〉c

(〈r2〉e − |〈reiφ〉e|2)
3
2

−
(
〈reiφ〉e − 〈α〉u

) (
3〈r2ei2φ〉e − 6α〈reiφ〉u − 12〈β〉c

)
− 2

(
〈reiφ〉e − 〈α〉u

)3

(〈r2〉e − |〈reiφ〉e|2)
3
2

.

(4.59)
In order to check the relation between Vn and εn(α, β), we have Figure 4.10 plots events

made for n = 2 and in particular centered coordinate system such that W1,1(α, β) = 0, we
have

ε2(α, β) = −〈r
2ei2φ〉e − 2α〈reiφ〉u − 4〈β〉c
〈r2〉e − |〈reiφ〉e|2

, (4.60)
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FIGURE 4.10: Relation between V2 and ε2(α, β) event-by-event.

TABLE 4.7: Parameters used for V2 × ε2(α, β).

B (fm−5) a2 b2 c2

{0.0− 10.0} {0.0− 0.6} {0.0− 0.6} {0.0− 0.4}
P (fm−6) p2 q2

{0.0− 10.0} {0.0− 0.4} {0.0− 0.6}
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On the other case where n = 3, the behavior is really similar for a range of eccentricity
between 0 and 0.4 the plot is linear for the same value of α and β.

ε3(α, β) = −〈r
3ei3φ〉e − 3α〈r2ei2φ〉u − 12β〈reiφ〉c

(〈r2〉e − |〈reiφ〉e|2)
3
2

. (4.61)
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FIGURE 4.11: Relation between V3 and ε3(α, β) event-by-event.

TABLE 4.8: Parameters used for V3 × ε3(α, β).

B (fm−5) a3 b3 c3

{0.0− 10.0} {0.0− 0.6} {0.0− 0.6} {0.0− 0.4}
P (fm−6) p3 q3

{0.0− 10.0} {0.0− 0.4} {0.0− 0.6}

After checking these results, it was clear that both are linear for the same values of
α = 9.0 fm and β = 6.0 fm2, showing that our ansatz (4.45) make sense.
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Chapter 5

Realistic simulations

This chapter focuses on analyzing simulations considered more realistic because their ini-
tial condition fit with experimental data. We perform state-of-the-art simulations using IP-
Glasma initial conditions of Pb+Pb collisions for 2760 GeV which is the same energy of
LHC, viscous hydrodynamics, and UrQMD afterburner [61–63]. We take the fluid proper-
ties from a previous Bayesian analysis [71]. Note that because of these differences compared
to the Toy Model calculations, we expect the response coefficients κn, α and β to be different.

Any "estimator" for Vn is necessarily an approximation. Thus, once a estimator εn is
established, it is judged by how accurately it can predict Vn on event-by-event basis. A
given estimator must be an accurate estimation in particular specially-chosen event, but a
poor estimation in other events. In other words, there are fluctuating initial conditions [72]
and therefore, it is useful to define a measure of the quality of a proposed estimation that is
preferably tested over a large and diverse set of realistic collision events.

The idea is identify whether the estimator (εn) with new contributions improve, and the
natural choice to check is the linear correlation coefficient (Pearson coefficient) between the
estimator and the final flow vector Vn over the ensemble of events and as used at [36], the
Pearson coefficient can be written as

Qn =
Re {Vnε∗n}√
{|Vn|2} {|εn|2}

, (5.1)

where
{...} =

1

Nevents

∑
events

... (5.2)

Note that the numerator is an average of the scalar product of two vectors, and Qn shows
how much these two vectors are linear. It is bounded by±1, with a value of 1 obtained if and
only if the estimator gives a perfect prediction of Vn in every event. In general, larger values
(values closer to 1) indicate a better linear correlation and therefore a better estimator, and
on other hand if values are close to zero, this coefficient indicates that the estimators do not
have relation with the final state.
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5.1 Usual estimator
We can actually test this idea quantitatively by calculating a large set of events and computing
the quantity estimator in Eq. (5.1), which in this case becomes explicitly for n = 2 and 3,
respectively as

Q2 =
{υ2ε2 cos 2(Ψ2 − Φ2)}√

{υ2
2} {ε2

2}
, (5.3)

and

Q3 =
{υ3ε3 cos 3(Ψ3 − Φ3)}√

{υ2
3} {ε2

3}
. (5.4)

The approach was in previous chapters to establish a relation between initial conditions
and final state was made here, using Pearson coefficients, for the first time in [35]. The Equa-
tions (5.3) and (5.4) were calculated using only energy density contribution, these equations
are indeed in a good approximation as a vector equation and it means that the event plane Ψn

is approximately the same as the participant plane Φn in each event, and consequently the
elliptic flow V2 is proportional to the eccentricity ε2 and in the same way, the triangular flow
V3 is also proportional to eccentricity ε3.
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FIGURE 5.1: Qn(α = 0, β = 0).

Figure 5.1 shows that only the contribution of energy density makes Q2 and Q3 close to
1, which makes εen a good estimator. And although we already have a good estimator like it,
we checked whether new contributions are able to improve the estimator even more.

In this approximation, the coefficient κn from Eq. (3.27) contains all relevant information
about properties such as viscosity, as well as freeze out and subsequent evolution the system,
and this is the same in every collision event at a given centrality. Conversely the only thing
that changes from one event to the next is the initial condition, and the only aspect that
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matters is the large scale structure, and all these characteristics for this initial conditions
(IP-Glasma) are totally different than Toy Model. These large differences make the response
coefficient κn become totally different for both models.

The response coefficient κn [36] can be written as

κn =
Re {Vnε∗n}
{|εn|2}

, (5.5)

where, figure 5.2 shows that the coefficient κn does not change very much in different cen-
tralities.
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FIGURE 5.2: Response coefficient κn for different centralities.

5.2 Estimator with new contributions
Now, we are interested to check if the estimator with new contributions improves when
compared to estimator with energy density only. The Pearson coefficient as a function of α
and β was constructed, then we have

Qn(α, β) =
Re {Vnε∗n(α, β)}√
{|Vn|2} {|εn(α, β)|2}

, (5.6)

where now, we checked its values for different values of α and β.
In order to identify the maximum value of Qn(α, β) for each harmonic and in each cen-

trality, its values were checked changing α and β, where the α and β that make the Pearson
coefficient maximum were called as "best values" and are available in tables 4.1 and 4.2.
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TABLE 5.1: Best values of
α and β for n = 2.

Centrality αbest (fm) βbest (fm2)
0− 10% 5.5 31.5
10− 20% 4.5 26.5
20− 30% 3.5 23.0
30− 40% 3.0 20.5
40− 50% 2.5 18.5
50− 60% 2.0 15.5
60− 70% 1.5 13.0
70− 80% 0.5 9.0
80− 90% 0.5 6.0
90− 100% 1.0 6.5

TABLE 5.2: Best values of
α and β for n = 3.

Centrality αbest (fm) βbest (fm2)
0− 10% 0.0 26.0
10− 20% 0.0 22.0
20− 30% 0.0 20.5
30− 40% 0.0 20.0
40− 50% 0.0 19.0
50− 60% 0.0 17.0
60− 70% 0.0 14.5
70− 80% 0.0 12.0
80− 90% 0.0 12.5
90− 100% 0.0 12.5

Comparing the Pearson coefficient that has only the energy density contributing (α = 0,
β = 0) with itself using the best values of α and β, we have in Figure 4.3 the improvement
maximum for each harmonic in each centrality.
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FIGURE 5.3: Qn(0, 0), and Qn(αbest, βbest).

This improvement is not large but it exists, showing that it is possible makes an estimator
able to capture other T µν effects.

We know that in the Chapter 4, α and β were defined as independent of harmonic, but
in Tables 5.1 and 5.2 they are different. Then, an important issue to discuss is whether
these differences are significant or negligible. In order to answer this issue, we can choose
single values of α and β for Qn, compare with Qn(αbest, βbest), and check whether there are
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significant differences between them. We indeed find that estimators of equivalent quality
can be obtained with single values, independent of harmonic.

To make an even stronger test, in Figure 5.4 we show the result for a single value of α
and β for all centralities as well as harmonics. While the response coefficients are allowed
to depend on centrality, they typically have a relatively weak dependence (see Figure 5.2).
We see that a single value of α = 2.0 fm, and β = 20.0 fm2 gives an estimator of equivalent
quality, until ∼ 60% centrality, above which smaller values of α and β are favored.

This constancy of response coefficients gives strong evidence for our non-trivial ansatz
and validates our framework, which indeed captures these new effects of the initial conditions
of the system in an accurate way.
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Chapter 6

Conclusions

The field that study relativistic heavy-ion collisions deals with events where the nuclei are
imparted with high-energy. This energy is used to break up the nuclei, making possible to
obtain a system that consists of a "soup" of quarks and gluons. When this system evolves a
extreme high temperature, it is possible to create a new state of the matter called quark-gluon
plasma. This state behaviors as a relativistic fluid, and hence respect properties of relativistic
hydrodynamics. Under these properties, it is possible to establish a relationship between
initial condition represented by the familiar eccentricities εn and the final state represented
by the harmonic flow coefficients Vn.

In this thesis, we perform hydrodynamic response to initial conditions of only energy
density event-by-event and have confirmed the efficacy of this response. In order to include
effects from others T µν components, an ansatz (3.1) able to make these inclusions was con-
structed. Specifically, we included effects from initial momentum density T τi and initial
stress tensor T ij . This ansatz has two response coefficients (one for each new contribution)
and we have perform hydrodynamic simulations using the Toy Model to check whether the
new eccentricities make sense and whether this framework works.

Initially, the initial conditions used in Toy Model do not represent a realistic collision, but
they contain enough information to confirm that the ansatz makes sense and works. On the
other moment, IP-Glasma initial conditions were also performed in order to give validation
to our ansatz. For these initial conditions, we figured out constant values of α and β that
improve the estimator εn(α, β) compared with the usual eccentricity that depends only of
energy density εn(α = 0, β = 0). We realized that α and β behavior similarly to κn in
different centralities. Therefore, it was possible to establish constant values of α and β for
both harmonics in different centralities that maximize the Pearson coefficient, which makes
possible to give validation to ansatz.

In general, the idea these new contributions was checked and it was possible to make
these inclusions. In the future we will perform simulations using smaller collision systems
where the new effects can increase their importance.

Some questions that can be raised are the nature of the response coefficients α and β,
what can interfere them, whether it is possible to expand this improvement for all harmonics,
whether other terms of initial energy-momentum tensor can also be included, and further
improve what has already been done. They are questions prospects works which can be
made in the future.
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Appendix A

Derivation of cumulants

In order to develop the derivation of cumulants with more detail, this appendix was made in
first place, Taking a (2-D) Fourier transform of a generating function, we have

ρ(~k) =
1

2π

∫
d2xρ(~x)ei

~k·~x. (A.1)

Expanding in Maclaurin series give us

ρ(~k) ≡
∞∑
m=0

ρm(φk)k
m, (A.2)

and soon later, we expand in Fourier series and arrive at next expression

ρ(~k) ≡
∞∑

n=−∞

∞∑
m=0

ρn,mk
me−inφk . (A.3)

In order to define the cumulants, we set W (~k) from

ρ(~k) ≡ eW (~k). (A.4)

And as the same way we expand it in Maclaurin series

W (~k) ≡
∞∑
m=0

Wmk
m, (A.5)

and in Fourier series

W (~k) ≡
∞∑
m=0

∞∑
n=−∞

Wn,mk
me−inφk . (A.6)
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We start by expanding the Fourier transform in powers of k.

ρ(~k) =
1

2π

∫
d2xρ(~x)

∞∑
m=0

1

m!
(i~k · ~x)m,

=
∞∑
m=0

km
im

m!

∫
d2xrmρ(~x) cosm(φk − φ).

(A.7)

Matching the appropriate power of k gives

ρm(~k) =
im

m!

∫
d2xrmρ(~x) cosm(φk − φ). (A.8)

Projecting out the nth Fourier harmonic gives

ρn,m =
1

2π

∫
d2xρ(φk)e

inφk

=
1

2π

im

m!

∫
d2xrmρ(~x) cosm(φk − φ)einφk

=
1

2π

im

m!

∫
dφk

∫
d2xrmρ(~x) cosm(φk)e

in(φk+φ)

=
1

2π

im

m!

∫
dφk cosm(φk)e

inφk

∫
d2xrmρ(~x)einφ

=
1

��2π

im

m!
��2π

(
m
m+n

2

)∫
d2xrmρ(~x)einφ

=
im

��m!

��m!

2m
(
m+n

2

)
!
(
m−n

2

)
!

∫
d2xrmeinφρ(~x)

=
im

2m
(
m+n

2

)
!
(
m−n

2

)
!

∫
d2xrmeinφρ(~x).

(A.9)

The φk integral evaluated in the Eq. (A.9) is zero any time that m < |n|, or if m− |n| is
not an even number, and otherwise is given expression.
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The cumulants can then be written in terms of the moments. The moment expansion in
terms of cumulants reads

ρ(~k) =eW (0)

[
1 + kW ′(0)

+
1

2!
k2
(
W ′′(0) +W ′(0)2

)
+

1

3!
k3
(
W (3)(0) +W ′(0)3 + 3W ′(0)W ′′(0)

)
+O(k4)

]

=
∞∑
m=0

ρm(φk)k
m =

∞∑
m=0

m∑
n=−m

ρn,mk
me−inφk .

(A.10)

Matching powers of k gives

• power 0:

ρ0 = eW (0). (A.11)

W0,0 = ln(ρ0,0) (A.12)

• power 1:

ρ1

ρ0

=
∑
n

ρn,1
ρ0

einφk = W ′(0) =
∑
n

Wn,1e
inφk (A.13)

W1,1 =
ρ1,1

ρ0,0

,

W−1,1 =
ρ−1,1

ρ0,0

.
(A.14)

• power 2:

ρ2

ρ0

=
∑
n

ρn,1
ρ0

einφk =
1

2

(
W ′′(0) +W ′(0)2

)
= W0,2 +W−1,1W1,1 +

(
1

2
W 2

1,1 +W2,2

)
ei2φk +

(
1

2
W 2
−1,1 +W−2,2

)
e−i2φk .

(A.15)

W0,2 =
ρ0,2

ρ0,0

−W1,1W−1,1

W2,2 =
ρ2,2

ρ0,0

−W 2
1,1

W−2,2 =
ρ−2,2

ρ0,0

−W 2
−1,1.

(A.16)
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• power 3:

ρ3

ρ0

=
∑
n

ρn,3
ρ0

einρk =
1

6

(
W ′′′(0) +W ′(0)3 + 3W ′(0)W ′′(0)

)
=

[
W1,3 +W−1,1W2,2 +W1,1W0,2 +

1

2
W 2

1,1W−1,1

]
eiφk

+

[
W3,3 +W1,1W2,2 +

1

6
W 3

1,1

]
ei3φk

+

[
W−1,3 +W1,1W−2,2 +W−1,1W0,2 +

1

2
W 2
−1,1W−1,1

]
eiφk

+

[
W−3,3 +W−1,1W−2,2 +

1

6
W 3
−1,1

]
ei3φk .

(A.17)

W1,3 =
ρ1,3

ρ0,0

−W2,2W−1,1 −W1,1W0,2,

W−1,3 =
ρ−1,3

ρ0,0

−W−2,2W1,1 −W−1,1W0,2,

W3,3 =
ρ3,3

ρ0,0

−W1,1W2,2 −W 3
1,1,

W−3,3 =
ρ−3,3

ρ0,0

−W−1,1W−2,2 −W 3
−1,1.

(A.18)

Finally, matching each azimuthal harmonics at each order, and substituting lower order
solutions into the higher order equations:

W0,0 = ln
[
ρ(~k = ~0)

]
, (A.19)

W1,1 =
i

2
〈reiφ〉, (A.20)

W−1,1 =
i

2
〈re−iφ〉, (A.21)

W0,2 =
1

2

i2

2!

[
〈r2〉 − |〈reiφ〉|2

]
, (A.22)

W2,2 =
1

4

i2

2!

[
〈r2ei2φ〉 − 〈reiφ〉2

]
, (A.23)

W−2,2 =
1

4

i2

2!

[
〈r2e−i2φ〉 − 〈re−iφ〉2

]
, (A.24)



Appendix A. Derivation of cumulants 54

W1,3 =
1

8

i3

2!

[
〈r3eiφ〉 − 〈r2ei2φ〉〈re−iφ〉

− 2〈r2〉〈reiφ〉+ 2〈reiφ〉2〈re−iφ〉
]
,

(A.25)

W−1,3 =
1

8

i3

2!

[
〈r3e−iφ〉 − 〈r2e−i2φ〉〈reiφ〉

− 2〈r2〉〈re−iφ〉+ 2〈re−iφ〉2〈reiφ〉
]
,

(A.26)

W3,3 =
1

8

i3

3!

[
〈r3ei3φ〉 − 〈reiφ〉

(
3〈r2ei2φ〉 − 2〈reiφ〉2

)]
, (A.27)

W−3,3 =
1

8

i3

3!

[
〈r3e−i3φ〉 − 〈re−iφ〉

(
3〈r2e−i2φ〉 − 2〈re−iφ〉2

)]
. (A.28)
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Appendix B

Developing the generating function

B.1 Including momentum density
The generating function able to include effects of momentum density is

ρ(~x) = T ττ (~x) + α∂iT
τi(~x). (B.1)

Let us take a Fourier Fourier transform

ρ(~k) =
1

2π

∫
d2x

T ττ + α ∂iT
τi︸ ︷︷ ︸

I

 ei~k·~x. (B.2)

Solving only the term I which is possible by parts, we have

I =

∫ dv︷ ︸︸ ︷
d2x∂iT

τi(~x)

u︷︸︸︷
ei
~k·~x

=uv −
∫
vdu

=

�
�
�
�
�
��>

0

T τxei
~k̇~x

∣∣∣∣∣
+∞

−∞

+

�
�
�
�
�
��>

0

iT τyei
~k̇~x

∣∣∣∣∣
+∞

−∞

−
∫
d2xikiT

τiei
~k·~x.

(B.3)

I = −
∫
d2xikiT

τiei
~k·~x. (B.4)

ρ(~k) =
1

2π

∫
d2x

[
T ττ − αkiT τi

]
ei
~k·~x

= ρ0 − αρ1.

(B.5)

Now, expanding in Maclaurin and Fourier series, we have

ρ(~k) =
∞∑
m=0

m∑
|n|≤m

ρn,mk
me−iφk . (B.6)
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We starting by expanding the Fourier transform in powers of k.

ρ(~k) =
1

2π

∫
d2x

∞∑
m=0

1

m!
(i~k · ~x)m

[
T ττ + iαkiT

τi
]

=
∞∑
m=0

km
1

2π

im

m!

∫
d2xrm cosm(φk − φ) [T ττ + ikα|U | cos(φk − φu)] .

(B.7)

The k0 term is identical to the α→ 0 case.

ρ(~k) = ρ0 +
∞∑
m=1

km

[
im

m!

∫
d2xrm cosm(φk − φ)T ττ

iα
im−1

(m− 1)!

∫
d2x|U |rm−1 cosm−1(φk − φ) cos(φk − φu)

]
.

(B.8)

Matching the appropriate power of k gives

ρm(ρk) =
im

m!

∫
d2xrmT ττ cosm(φk − φ)

−α im

(m− 1)!

∫
d2x|U |rm−1 cosm−1(φk − φ) cos(φk − φu).

(B.9)

Projecting out the nth Fourier transform hasmonic gives

ρn,m =

∫
dφkρm(ρk)e

inφ

= ρen,m + αρun,m,

(B.10)

ρen,m =
im

2m
(
m+n

2

)
!
(
m−n

2

)
!

∫
d2xrmeinφT ττ , (B.11)

ρun,m =
im

(m− 1)!

1

2π

∫
dφkd

2xrm−1|U | cosm−1(φk − φ) cos(φk − φu)einφk

=
im

2π(m− 1)!

∫
dφkd

2xrm−1|U | cosm−1 φk cos(φk − φu + φ)ein(φk+φ)

=
im

2π(m− 1)!

∫
dφkd

2xrm−1|U | cosm−1 φk
1

2

[
ei(nφk+nφ+φk−φu+φ)

+ ei(nφk+nφ−φk+φu−φ)
]
ein(φk+φ)

=
im

2π(m− 1)!

∫
dφkd

2xrm−1|U | cosm−1 φk
1

2

[
ei(n+1)φkei([n+1]φ−φu))

+ ei(n−1)φkei([n−1]φ+φu)
]
,

(B.12)
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ρun,m =
1

2

im

��2π(m− 1)!

∫
d2xrm−1|U |

[
��2π

2m−1

(
m− 1
m+n

2

)
ei([n+1]φ−φu)

��2π

2m−1

(
m− 1
m+n−2

2

)
ei([n−1]φ+φu)

]
,

(B.13)

ρun,m =
1

2

im

��
���(m− 1)!

∫
d2xrm−1|U |

[
���

��(m− 1)!

2m−1
(
m+n

2

)
!
(
m−n−2

2

)
!
ei([n+1]φ−φu)

+ ���
��(m− 1)!

2m−1
(
m+n−2

2

)
!
(
m−n

2

)
!
ei([n−1]φ+φu)

]
,

(B.14)

and finally ρu(α)n,m is

ρun,m =
im

2m
(
m+n

2

)
!
(
m−n

2

)
!

∫
d2xrm−1

[(
m− n

2

)
ei([n+1]φ)U∗

+

(
m+ n

2

)
ei([n−1]φ)U

]
,

(B.15)

and hence the general moment is

ρn,m =
im

2m
(
m+n

2

)
!
(
m−n

2

)
!

[∫
d2xrmeinφT ττ

− α
(
m+ n

2

)∫
d2xrm−1ei(n−1)φU

− α
(
m− n

2

)∫
d2xrm−1ei(n+1)φU∗

]
.

(B.16)

Similarly as made in Appendix A the cumulants are

W1,1(α) =
i

2

[
〈reiφ〉e − 〈α〉u

]
, (B.17)

W0,2(α) =
1

2

i2

2!

[
〈r2〉e − α〈re−iφ〉u − α〈reiφ〉u∗ − |〈reiφ〉e − 〈α〉u|2

]
, (B.18)

W2,2(α) =
1

4

i2

2!

[
〈r2ei2φ〉e − 2α〈reiφ〉u −

(
〈reiφ〉e − 〈α〉u

)2
]
, (B.19)
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W3,3(α) =
1

8

i3

3!

[
〈r3ei3φ〉e − 3α〈r2ei2φ〉u −

(
〈reiφ〉e − α〈α〉u

)
·
(

3
(
〈r2ei2φ〉e − 2α〈reiφ〉u

)
− 2

(
〈reiφ〉e − 〈α〉u

)2
)]
,

(B.20)

B.2 Including stress tensor
Now, the generating function able to include effects of stress tensor only is

ρ(~x) = T ττ (~x)− β∂i∂jT ij(~x), (B.21)

and taking the Fourier transform, we have

ρ(~k) =
1

2π

∫
d2x

T ττ − β ∂i∂jT ij︸ ︷︷ ︸
II

 ei~k·~x, (B.22)

Its possible to solve II by parts as

II =

∫ dv︷ ︸︸ ︷
d2x∂i∂jT

ij

u︷︸︸︷
ei
~k·~x

=uv −
∫
vdu

=
�
��

�
��

��*0

∂iT
ijei

~k·~x

∣∣∣∣∣
+∞

−∞

−
∫
d2xiki∂jT

ijei
~k·~x

=−
∫
d2xiki∂jT

ijei
~k·~x︸ ︷︷ ︸

III

.

(B.23)

And III we solved by parts too as

III =

∫ dw︷ ︸︸ ︷
d2x∂jT

ij

v︷︸︸︷
ei
~k·~x

=vw −
∫
vdw

=

�
�
�
�
�
��>

0

T ijei
~k·~x

∣∣∣∣∣
+∞

−∞

+

∫
d2xi2kikjT

ijei
~k·~x,

(B.24)
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and II is equal to

II = −
∫
d2xkikjT

ijei
~k·~x. (B.25)

Now, let us go back to Eq. (B.22), and later we will develop and simplify the contraction
kikjT

ij .

ρ(~k) =
1

2π

∫
d2x

T ττ − β IV︷ ︸︸ ︷
kikjT

ij

 ei~k·~x
= ρ0 + ρ1 + βρ2.

(B.26)

The contraction IV is well understand as

IV = kiT
ijkj =

(
kx ky

)
1×2

(
T xx T xy

T yx T yy

)
2×2

(
kx
ky

)
2×1

, (B.27)

making the second contraction, we have

IV =
(
kx ky

)
1×2

(
kxT

xx + kyT
xy

kxT
yx + kyT

yy

)
2×1

. (B.28)

Then, IV simplified is

kikjT
ij =K2

xT
xx + kxkyT

xy + kxkyT
yx + k2

yT
yy

IV =K2
xT

xx + 2kxkyT
xy + k2

yT
yy,

(B.29)

IV = k2T xx cos2 φk + 2k2T xy cosφk sinφk + k2T yy sin2 φk

= k2T xx cos2 φk + k2T xy sin 2φk + k2T yy sin2 φk,
(B.30)

IV =k2T xx
(
ei2φk + e−i2φk + 1

4

)
+ k2T xy

(
ei2φk − e−i2φk

2i

)
− k2T yy

(
ei2φk + e−i2φk − 1

4

)
,

(B.31)

which is the same that

IV =
1

2
k2ei2φk

[(
T xx − T yy

2

)
− iT xy

]
︸ ︷︷ ︸

c∗

+
1

2
k2e−i2φk

[(
T xx − T yy

2

)
+ iT xy

]
︸ ︷︷ ︸

c

+ k2

(
T xx + T yy

2

)
︸ ︷︷ ︸

T
2

.
(B.32)
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The form more simplified of kikjT ij is

kikjT
ij = k2

(
1

2
ei2φkC∗(~x) +

1

2
e−i2φkC(~x) +

T (~x)

2

)
. (B.33)

Expanding in Maclaurin and Fourier series, we have

ρ(~k) =
∞∑
m=0

m∑
|n|≤m

ρn,m(β)kme−iφk . (B.34)

We starting by expanding the Fourier transform in powers of k.

ρ(~k) =
1

2π

∫
d2x

∞∑
m=0

1

m!
(i~k · ~x)m

[
T ττ + βkikjT

ij
]

=
1

2π

∫
d2x

∞∑
m=0

1

m!
(i~k · ~x)m

[
T ττ + βk2

(
C

2
e−i2φk +

C∗

2
ei2φk +

T

2

)]
=

∞∑
m=0

km
1

2π

im

m!

∫
d2xrm cosm(φk − φ)

[
T ττ − βk2

(
C

2
e−i2φk +

C∗

2
ei2φk +

T

2

)]
.

(B.35)
The k0 term is identical to the β → 0 case.

ρ(~k) = ρ0 + ρ1 +
∞∑
m=2

km

[
im

m!

∫
d2xrm cosm(φk − φ)T ττ

+ β
im−2

(m− 2)!

∫
d2xrm−2 cosm−2(φk − φ)k2

(
C

2
e−i2φk +

C∗

2
ei2φk +

T

2

)]
.

(B.36)

Matching the appropriate power of k gives

ρm(φk) =
im

m!

∫
d2xrmT ττ cosm(φk − φ)

−β im

(m− 2)!

∫
d2xrm−2 cosm−2(φk − φ)

(
C

2
e−i2φk +

C∗

2
ei2φk +

T

2

)
.

(B.37)

Projecting out the nth Fourier transform hasmonic gives

ρn,m =

∫
dφkρm(ρk)e

inφ

= ρen,m + ρcn,m,

(B.38)

ρεn,m =
im

2m
(
m+n

2

)
!
(
m−n

2

)
!

∫
d2xrmeinφT ττ , (B.39)
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ρcn,m =
im

2π(m− 2)!

∫
dφkd

2xrm−2 cosm−2(φk − φ)

(
C

2
e−i2φk +

C∗

2
ei2φk +

T

2

)
einφk

=
im

2π(m− 2)!

∫
dφkd

2xrm−2 cosm−2 φk

(
C

2
e−i2(φk+φ) +

C∗

2
ei2(φk+φ) +

T

2

)
ein(φk+φ)

,
(B.40)

ρcn,m =
im

��2π(m− 2)!

∫
d2xrm−2

[
��2π

2m−2

(
m− 2
m+n−4

2

)
C

2
ei(n−2)φ

+
��2π

2m−2

(
m− 2
m+n

2

)
C∗

2
ei(n−2)φ

+
��2π

2m−2

(
m− 2
m+n−2

2

)
T

2

]
,

(B.41)

ρcn,m =
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and finally
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And now we have a general form for its moments can written as
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im

2m
(
m+n

2

)
!
(
m−n

2

)
!

[∫
d2xrmeinφT ττ

−β(m+ n)

(
m+ n

2
− 1

)∫
d2xrm−2ei(n−2)φC

−β(m− n)

(
m− n

2
− 1

)∫
d2xrm−2ei(n+2)φC∗

−β(m+ n)(m− n)

∫
d2xrm−2einφ

T

2

]
.

(B.44)

As the same way as made before, the cumulants can written as

ρ0,2(β) =
1
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And the inclusion of both contributions together is trivially made with a sum of the two
results.
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