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Abstract

Motivated by the possible applications that a better understanding of con-
sciousness might bring, we follow Tononi’s idea and calculate analytically a
complexity index for a disordered system. Utilizing the information geometry
formulation of integrated information theory, and by restricting our analysis
to bipartitions of the system, we calculate the geometric integrated informa-
tion index for the model we call Little-Sherrington-Kirkpatrick, a synchronous
dynamics version of the SK spin-glass model with quenched Gaussian interac-
tions. The effects of partitioning are taken into account by introducing site
dilution. We show that this complexity index can be used to rank the three
phases of the system in terms of its complexity, and make an analysis on how
it changes when we vary the partitioning of the system. Finally, by approxi-
mating the dynamics near-equilibrium, we briefly analyze the behavior of the
geometric integrated information index out of equilibrium.

Keywords: Statistical Mechanics; Complex Systems; Complexity Index; In-
tegrated Information; Disordered Systems.



Resumo

Motivados pelas possiveis aplicações que um melhor entendimento da consciên-
cia pode trazer, seguimos a ideia de Tononi e calculamos analiticamente um
índice de complexidade para um sistema desordenado. Utilizando a formu-
lação de geometria da informação para a teoria de informação integrada, e
restringindo nossa análise a bipartições do sistema, nós calculamos o índice
de informação integrada geométrico para o modelo que chamamos de Little-
Sherrington-Kirkpatrick, uma versão com dinâmica síncrona do modelo SK de
vidro de spin com interações Gaussianas temperadas. Os efeitos de particiona-
mento foram levados em conta introduzindo diluição de sítios. Mostramos que
esse índice de complexidade pode ser usado para classificar as três fases do sis-
tema em termos de sua complexidade e, fazemos uma análise de como ele muda
quando variamos o particionamento do sistema. Finalmente, aproximando a
dinâmica próxima do equilíbrio, analisamos brevemente o comportamento do
índice de informação integrada fora do equilíbrio.

Palavras-chave: Mecânica Estatística; Sistemas Complexos; Índices de Com-
pelxidade; Informação Integrada; Sistemas Desordenados.
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Chapter 1

Introduction

In this dissertation we investigate a model we have called the Little-Sherrington-
Kirkpatrick spin glass model, with the lens of Integrated Information Theory.

This model belongs to a very broad class of problems called Complex Systems. The
most prominent example of such systems in physics is probably the Sherrington-Kirkpatrick
spin glass [1] a tractable extension of the seminal Edwards-Anderson spin glass model [2]
that has been extensively studied since 1975. These studies yielded a very good under-
standing [3], [4] of the kind of problems such systems may exhibit, led to the development
of useful tools and raised new questions that are yet to be answered. For technical rea-
sons, we study a Sherrington-Kirkpatrick model with parallel or synchronous dynamics,
and hence the addition of Little to the name of the model [5].

The second ingredient of this work is the concept from Integrated Information Theory, a
theory first introduced in 2004 by Tononi [6] as an attempt to describe consciousness from a
first-person perspective and, in principle, to provides us with tools to infer if a given system
is conscious. This is a very ambitious idea, but the theory is still in its early days and this
work is an attempt to shed some light on Tononi’s theory applying its concepts to a complex
physical model. The main contribution of Tononi to the discussion of consciousness is
the attempt to introduce a quantitative measure Φ, a complexity index to characterize a
conscious system. Despite the long time since its introduction, the calculation of Φ and
its variants remains elusive and only very simple systems with a few degrees of freedom,
which would hardly classify as conscious, have been analyzed.

1.1 Complex Systems
The studies of complex systems is a subject that extends across all areas of science and

is used to model all sorts of problems. The understanding of such systems is crucial to
gain insight and tackle very interesting problems that may seem hopeless at a first glance.

There is no consensus on the exact definition of a complex system, but there are some
concepts that appear in most of them: complex systems are systems that present emergent
properties that cannot be reduced to properties of the individual elements, they present
multiscale phenomena and there is an interplay between order and disorder which make
this kind of systems very difficult to predict.

While a precise definition of complex is not necessary, Giorgio Parisi (see [7]) states
that a system is complex if its behavior is very dependent on its details, that is, to know the
model approximately might not help predict the exact system behavior. This sensibility
and uncertainty on the model is due to incomplete information and the formalism of
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statistical mechanics and information theory can be used to find the (potentially few)
interesting quantities that systematically describe the complicated dynamics in a simpler
manner and, with this, make predictions about the states of the system.

1.2 Complexity Indices
The study of complex systems is very challenging, and an interesting concept that tries

to encapsulate its complex behavior are the so-called complexity indices. These quantities
have found applications in many areas and they provide a way to compare different systems
or different states of the same system, and equip us with tools to classify the behavior
of complex systems. One such index that we focus here is the Integrated Information
Index. It has been introduced by Giulio Tononi in 2004 [6] as part of its Integrated
Information Theory and was firstly designed to measure the intrinsic irreducibility of a
system, a fundamental aspect for the conscious experience, according to Tononi.

1.2.1 Integrated Information Theory
Tononi’s Integrated Information Theory (IIT) can be viewed as a new approach to the

problem of consciousness: instead of trying to give a physical description for the conscious
experience, he takes as a given that the only certainty we have is our inner experiences and,
from there, proposes a quantitative measure a system ought to have in order to present
the properties he postulated for our conscious experience. A physical system that satisfy
these properties would be called a Physical Substrate of Consciousness (PSC).

The main quantity proposed by IIT that encapsulates these properties was called the
Integrated Information Index, denoted by Φ, and it is a measure of the causal influences
of the different parts of the system, how much influence parts of the systems exert on each
other that can not be reduced to small independent systems.

Since 2004 IIT has gone through many iterations and the properties postulated by
Tononi and the definition of Φ have changed, and no consensus was achieved. But the
main structure of IIT, where one assumes that the conscious experience is real and tries
to describe the properties of a physical substrate of consciousness, remained.

The postulates are at least six and throughout the different iterates of the theory have
been subject to changes, not always in the direction of clarification. On its current state
(see [8] and [9]), the postulates which try to translate the properties of the conscious
experience, can be summarized as follows:

• Existence - (or causality) Experience exists. It is an undeniable aspect of reality and
can be traced back to Descartes. A PSC must present the cause-effect potential in
order to change its own state. A measure that encapsulates this property must be
equal to zero for a system composed by independent parts.

• Intrinsicality - Experience is subjective.

• Composition - Consciousness is compositional (structured), that is, each experience
consists of multiple aspects in various combinations.

• Information - (or specificity) The perspective is specific and the measure of com-
plexity should be calculated taking into account only one state of the system, the
one that carries the most information.

• Integration - A PSC must be unified, irreducible to its independent systems.
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• Exclusion - The causal structure defined by the PSC must be definite, defined with
respect to one state, the one that maximizes the irreducibility of the system.

The reader should go to the original references in order to be fair with these authors.
However, no logician would accept such set as the desiderata of a formal theory. It sounds
more like a vague declaration of what elements an acceptable theory ought to present.
It is not possible to extract a unique tractable mathematical theory and hence many
possibilities arise when trying to translate this declaration of purpose into something that
can be calculated, measured and permits comparison between theory and experiment. The
merit lies in presenting the first attempt in history to measure and quantify consciousness.
It is certainly an unfinished chapter in the history of science.

1.2.2 Neuroscientific Applications
In 2013 Casali et al. published a paper inspired by Tononi’s idea where they tried

to define and test a neural correlate of consciousness, a marker that could identify and
measure the level of consciousness a patient presents [10]. This measure, namely the
Perturbational Complexity Index (PCI), was defined in such a way to assess the presence
of integration and differentiation, both concepts also present in the integrated information
index definition.

Their method consists in measuring the neural response to a transcranial magnetic
stimulation (TSM) and calculating PCI from this spatio-temporal data. In the TMS tech-
nique, a coil generates a strong magnetic field near the patient’s head, inducing electric
currents in the brain. The response of the neurons to this strong magnetic field is then
measured in the form of a spatio-temporal matrix. This data matrix is compressed and by
calculating the normalized algorithmic complexity (Lempel-Ziv complexity) we have the
PCI for that subject.

In addition to defining the PCI, they have tested it in subjects under different conditions
to see if this index could be used as a neural correlate of consciousness. Figure 1.1 shows
their results for patients subjected to different levels of anesthesia and for different sleep
cycles, and the comparison of their PCI with wakeful patients. There is a correlation
between their level of consciousness assessed by conventional clinical methods and the
PCI, which indicates that quantitative complexity indices can be used to discriminate
those patients.

They then turned to the application of PCI for brain-injured individuals. They have
compared patients with four types of brain injury diagnosis: vegetative state or unrespon-
sive wakefulness syndrome (VS or UWS), locked-in syndrome (LIS) and two classes in the
coma recovery spectrum, the minimally conscious state (MCS) and the emerging from the
minimally conscious state (EMCS). The PCI comparison for these subjects can be found
in figure 1.2. Again, we notice that there is a correlation between the brain-injured group
and their PCI and, by comparing it with the PCI in wakefulness, it might be used to infer
if a patient is conscious or not.

These results have motivated us to continue to investigate the complexity index and
to better understand what exactly they are measuring. The PCI used by Casali et al. is
defined operationally and is hard to use it analytically. For this reason, we turn to other
measures defined to present the same interesting properties and that might help us with
our goal.
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Figure 1.1: Comparison of PCI for subjects in different levels of anesthesia and sleep.
Image taken from reference [10].

Figure 1.2: Comparison of PCI for different types of brain-injured patients. Image
taken from reference [10].
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1.2.3 Information Geometric Framework
Another interesting work that originated from Tononi’s IIT is the 2016 M. Oizumi et al.

paper, where they derived an information geometry based framework to study complexity
measures as “distances” between probability manifolds. In all definitions of Φ, a concept
that is always present is that it is a measure of how different a system is to a disconnected
version of itself, and the information geometry notion of distance (or divergence) seems
natural to describe such a measure.

This approach is very appealing because, besides the definition of Φ being conceptually
simple, its generalization for other measures is straightforward and the tools of information
geometry are developed enough to permit calculations. For those reasons, this framework
was chosen for our analysis.

The details of this approach will be further developed in the following chapters.
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Chapter 2

Geometric Integrated Information

Information geometry is a field that combines differential geometry with information
and probability theory and presents a different way of studying relations between proba-
bility distributions. By parametrization of a family of distributions, it is possible to define
a manifold and study their properties such as curvature and distance to other distributions
[11].

In 2016, M. Oizumi, N. Tsuchyia and S. Amari used the tools available in information
geometry to develop a framework to analyse complexity measures for stochastic systems
[12]. Their approach is to measure how different the full system is to a disconnected one,
thus quantifying the strength of the influences that the disconnected elements exerts on
each other. Their calculations were performed on very small systems, with only a very
small number of units.

Let’s consider a system with N units, indexed on a set Λ ⊆ Z, |Λ| = N . We denote
by X = {xi}i∈Λ and Y = {yi}i∈Λ the system state at two consecutive times of a dis-
crete dynamics. The spatio-temporal interactions between its elements are described by
a distribution P (X,Y )1, the full model. We then define Q (X,Y ) a distribution in which
some of the influences of interest are disconnected. They postulated that the difference
between the full model and the disconnected model would be measured by the minimum
Kullback-Leibler divergence:

min
Q

DKL [P∥Q] = min
Q

∑
X,Y

P (X,Y ) log
P (X,Y )

Q (X,Y )
, (2.1)

and this quantity is a measure of the strength of the influence between the disconnected
elements.

By considering different disconnected models, Oizumi et al. were able to derive different
information theoretical quantities that can be used as measures of complexity for the
system. In figure 2.1 we can see what such disconnections look like and what quantity
can be obtained calculating (2.1). The different disconnections arise from performing the
variations on a particular manifold. Let Π be a partition of the set Λ into non-overlapping
subsets and denote by I and J components of the partition Π. Examples of the probability
manifolds that will be considered below are

MG :=
{
Q(X,Y )

∣∣Q(YI |X) = Q(YI |XI), ∀I ∈ Π
}
, (2.2)

MS :=

{
Q(X,Y )

∣∣∣∣Q(Y |X) =
∏
I∈Π

Q(YI |XI)

}
, (2.3)

1Conditional information about the details of the model is not shown for notational simplicity.
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Figure 2.1: Different information theoretic quantities achieved by different discon-
nected models. X1 and X2 (or Y1 and Y2) are two disjoint subsets of X (or Y ), and
represents the disconnected elements. Image taken from reference [12]

where XI = {xi|i ∈ I} and YI = {yi|i ∈ I}. We do not write explicitly the dependence on
the partition.

Integrated information aims to quantify the amount of “synergistic” influences the whole
system exerts on its future in excess of what the independent parts of the system do 2.
In the information geometry framework, given a partitioning Π, this can be achieved by
considering the following disconnection:

Q (YI |X) = Q (YI |XI) , (2.4)

for every component I ∈ Π.
The geometric integrated information is then defined as

ϕ = min
Q∈MG

∑
X,Y

P (X,Y ) log
P (X,Y )

Q (X,Y )
, (2.5)

where MG is the manifold (2.2) of distributions that satisfy (2.4). This is a complexity
index that is relative to the particular partition under consideration.

2.1 Integrated Information for a Bipartition
Consider a partition of the elements of the system into two groups, denoted by I and J ,

the complement of I ⊂ Λ. We define MIJ the probability manifold whose elements satisfy
the integrated information disconnection constraint (2.4) for this bipartion Π = (I, J).

Every distribution QIJ ∈ MIJ must decompose as follows:

QIJ (X,Y ) = QIJ (X)QIJ (YI |XI)QIJ (YJ |XJYI) . (2.6)

2Synergy is an unusual word in the context of phase transitions, and it probably refers to
interactions between the system’s degrees of freedom and their effect on emergent or collective
properties.
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To calculate the minimum KL divergence we use the Lagrange multiplier method.
Define

L = DKL [P∥QIJ ] + λ

(∑
X

QIJ (X)− 1

)
+
∑
XI

µ (XI)

∑
YI

QIJ (YI |XI)− 1

+

+
∑
XJ ,YI

ν (XJ , YI)

∑
YJ

QIJ (YJ |XJYI)− 1

 , (2.7)

where the Lagrange multipliers enforce the normalization of each factor in (2.6). To obtain
the extreme,

Q∗
IJ = argminL, (2.8)

impose the variations

δL
δQIJ (X)

= 0,
δL

δQIJ (YI |XI)
= 0,

δL
δQIJ (YJ |XJYI)

= 0, (2.9)

leading to conditions that Q∗
IJ , the closest one to P , must satisfy:

Q∗
IJ (X) = P (X) , (2.10)

Q∗
IJ (YI |XI) = P (YI |XI) , (2.11)

Q∗
IJ (YJ |XJ , YI) = P (YJ |XJ , YI) . (2.12)

Using these conditions, we finally derive an expression for the integrated information for a
bipartition (I, J):

ϕIJ =
∑
X,Y

P (X,Y ) log
P (Y |X)P (YI |XJ)

P (Y |XJ)P (YI |XI)
. (2.13)

Suppose, as we will show for a specific model in the next chapters, that ϕIJ depends
only on the fraction of units in one of the components; ϕIJ = ϕ(γ), with γ = |I|/|Λ|, then
a candidate for the integrated information may be the average value

Φ = ⟨ϕ(γ)⟩γ , (2.14)

where the probability of γ depends on the particular problem under consideration. We will
mainly concentrate on the properties of ϕ(γ) in the next chapters. The problem of finding
an appropriate partition, already present in [13] and central in [12], or the distribution of
partitions, P (γ), remains unsolved in general.
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Chapter 3

The Little-Sherrington-Kirkpatrick
Model

The model chosen for our analysis of the integrated information is what we called
the Little-Sherrington-Kirkpatrick (LSK) model. The model is a version of W. Little’s
attractor synchronous neural network [5] with the gaussian quenched disorder introduced
by D. Sherrington and S. Kirkpatrick on their study of the infinite range Edwards and
Anderson spin glass model [14]. The relation of the LSK to the SK model is analogous to
that of the Little model of an attractor neural network to the Hopfield model [15], studied
using the tools of statistical mechanics by Peretto [16] and Fontanari and Köberle [17].

The main reason for the choice of this model is that, besides the fact it has some
interesting features and complex behavior, it is formulated with an intrinsic dynamics
and defined through the interaction of two consecutive times, which fits perfectly the
information geometry description of the integrated information index.

3.1 The Model Definition
The system’s state is described by a set of N binary variables that takes values in

{−1, 1}. Lets denote by X = {xi}Ni=1 and Y = {yi}Ni=1 the state of the system at two con-
secutive times, then, the interaction between the variables is described by the Hamiltonian

H (X,Y |J) = −
∑
i,j

Jijxjyi, (3.1)

where J = {Jij} is a set of quenched numbers that can take positive or negative values,
and each Jij describes the interaction between the i-th and j-th elements: if it is positive,
the energy with the pair will be lower when xj and yi have the same sign and greater if
their signs are opposite.

Imposing the constraint that H (X,Y |J) has a fixed mean value E (canonical en-
semble), the maximum entropy principle (see [18]) gives as the equilibrium probability
distribution the Gibbs-Boltzmann measure

P (X,Y |J) = 1

Z
exp

β
∑
i,j

Jijxjyi

 , (3.2)

where β is a Lagrange multiplier that ensures the above constraint and can be identified
as the inverse temperature for the system β = 1/T , and Z is the partition function, that
ensures normalization.
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Figure 3.1: Transition probability function for the LSK model, with β = 1

Calculating the transition probability distribution

P (Y |X;J) =
P (X,Y |J)
P (X|J)

=
P (X,Y |J)∑
Y P (X,Y |J)

=
exp

{
β
∑

i,j Jijxjyi

}
∏

i 2 cosh
(
β
∑

j Jijxj

) , (3.3)

we recover the same distribution introduced by W. Little [5] and studied by P. Peretto
[16].

Note that this probability is a product of the transition distributions for each element,

P (Y |X;J) =

N∏
i=1

exp {βhiyi}
2 cosh (βhi)

=

N∏
i=1

P (yi|X;J) , (3.4)

where we define the field generated by the system on the element i as

hi =

N∑
j=1

Jijxj . (3.5)

That is, conditioned on the past, the elements evolve independently of each other, each
of then following a logistic function of hi, represented on figure 3.1.

3.2 Free Energy
Until now, we have not said anything about the interactions J . We are not interested

in a specific configuration of J , but in a disordered system, where the interactions are
random variables drawn, independently from anything else, from a distribution P (J).

These new random variables may evolve in the same time scale as the state variables,
or they can evolve on a very slow time scale, which can be taken to be infinitely slow, then
these are fixed random variables during the dynamics of the system. Those two types of
disorder are called annealed and quenched, respectively.

In this work, we focus on the system with quenched disorder. To find an expression for
the free energy, we consider the following constraints for the joint probability distribution

14



P (X,Y,J): ∑
X,Y

P (X,Y |J) = 1, (3.6)

∑
X,Y

P (X,Y,J) = P (J) , (3.7)

∑
X,Y

H (X,Y |J)P (X,Y |J) = E. (3.8)

With these constraints, the Shannon entropy for the joint probability distribution is

S [P (X,Y,J)] = βE + ⟨logZ⟩J + S [P (J)] , (3.9)

so, as E and S [P (J)] are constants, the maximum entropy is obtained minimizing the free
energy

F = − 1

β
⟨logZ⟩J . (3.10)

The form of the disorder we consider in this work is the one studied by D. Sherring-
ton and S. Kirkpatrick [14], where all Jij are independent of each other and all of them
distributed accordingly to

P (Jij) =

√
N

2πJ2
exp

{
− N

2J2

(
Jij −

J0
N

)2
}
, (3.11)

a normal distribution with mean J0/N and variance J2/N . Such a disorder introduce
positive and negative interactions between the elements of the system. This will lead to
frustration and will allow the appearance of a spin glass phase, under certain circumstance.

To calculate ⟨logZ⟩J we use the replica method: considering the identity

logZ = lim
δ→0

Zδ − 1

δ
, (3.12)

we calculate Zδ for integer δ and assume that the result holds for real δ in the limit δ → 0.
We can interpret each term on this product of partition functions as a replica of the system,
thus the name of the method.

Our work will be to calculate

〈
Zδ
〉
J
=

∑
{XaY a}

〈
exp

β
δ∑

a=1

∑
i,j

Jijx
a
jy

a
i


〉

J

, (3.13)

with P (J) given by equation (3.11).
Although we do not have a Hamiltonian with explicit replica interaction, when we

perform the average over the disorder, terms involving xai x
b
i and yai y

b
i will appear. So we

define the following quantities that will be used as order parameters for the system:

ma = ⟨xai ⟩rep , (3.14)
na = ⟨yai ⟩rep , (3.15)

qab =
〈
xai x

b
i

〉
rep

, (3.16)

rab =
〈
yai y

b
i

〉
rep

, (3.17)
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where ⟨·⟩rep denotes the average over the canonical distribution associated with the replica
interaction Hamiltonian

Hrep = βJ0
∑
a

nax
a + β2J2

∑
a<b

rabx
axb + βJ0

∑
a

may
a + β2J2

∑
a<b

qaby
ayb. (3.18)

The quantities m and n are the magnetization at the two consecutive times, and q and
r the replica overlaps.

Considering the Replica Symmetric ansatz, where the above parameters are symmetric
under replica index permutation, we calculate the free energy f = F/N in the thermody-
namic limit, N → ∞, in terms of the parameters m, n, q and r:

fRS = J0mn− βJ2

2
(1− q) (1− r)− 1

β

∫
Dz log 2 cosh

[
β
(
J0n+ J

√
rz
)]

+

− 1

β

∫
Dz log 2 cosh [β (J0m+ J

√
qz)] , (3.19)

where

Dz =
e−

1
2
z2

√
2π

dz, (3.20)

is the Gaussian measure with zero mean and unit variance.
Details of the calculation can be found in appendix A.

3.3 Equations of State
The equilibrium states for the model are those that minimize the free energy. Setting

the derivative of fRS with respect to m, n, q and r equal to zero, we find

n =

∫
Dz tanh [β (J0m+ J

√
qz)] , (3.21)

r =

∫
Dz tanh2 [β (J0m+ J

√
qz)] , (3.22)

m =

∫
Dz tanh

[
β
(
J0n+ J

√
rz
)]

, (3.23)

q =

∫
Dz tanh2

[
β
(
J0n+ J

√
rz
)]

. (3.24)

In equilibrium, as we expected, we have m = n and q = r (the magnetization and
replica overlap do not change). In this case, the self-consistency equations above are
exactly the same as those of the standard Sherrington-Kirkpatrick model.

Solving numerically the equations (3.21) to (3.24) we get the phase diagram on figure
3.2.

At high temperatures, with T > J0 the solution to the state equations is m = n = 0
and q = r = 0, a paramagnetic phase. For lower temperatures with T < J0 the state
equations give us a solution with m = n > 0 and q = r > 0, a ferromagnetic phase. And
finally, for low T and low J0 we have a solution with m = n = 0 and q = r > 0, a spin
glass phase where the elements are randomly frozen.

The validity of the solution we get in the replica symmetric ansatz was studied by J.
de Almeida and D. Thouless [19]. They found that the result we get is unstable in the spin
glass phase and the low temperature part of the ferromagnetic phase.
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Figure 3.2: Phase diagram for the LSK model: P denotes the Paramagnetic phase,
F denotes the Ferromagnetic phase and SG the Spin Glass phase.

An exact solution was found by G. Parisi in 1979 [3], where he considered a specific
form for the matrix qab and find a phase transition boundary between the spin glass and
ferromagnetic phase at J0 = 1 (represented by the black line in figure 3.2)

We see that for most of the phase diagram, the replica symmetric approximation gives
a good solution, so in this work, for a first analysis, we stick to the RS ansatz bearing
in mind that for low temperatures and close to the SG-F phase boundary our solution is
wrong.

3.4 Near Equilibrium Dynamics
The dynamics of such a system is very complex and involves too many variables to

describe. However, in the equilibrium, the system is well described by the quantities
defined in the equations (3.14) to (3.17) and, by the definition of the variables {xi} and
{yi}, we have a dynamic relation between the order parameters: na and rab are the future of
the variables ma and qab, respectively. With that in mind, we might look at the equations
of state as a discrete dynamical system for the state vector (m, q). This system would be
exact only in the equilibrium, but we expect that it may be a good approximation for its
dynamics in the vicinity of the equilibrium manifold.

With this idea in mind we look at trajectories for a grid of initial conditions in the
m × q plane for the three different phases. These images can be found in the figure 3.3.
The right and left column represents the same dynamics at the same conditions, but with
a different coloring: on the left column, the earlier in the iteration, the darker the arrows
are, and on the right column, we have darker arrows for points later in the iteration, in
such a way that we can better visualize the whole dynamics.

Although our approximation is only good near the equilibrium point, we look for tra-
jectories with initial conditions all over the m× q plane. There might be some interesting
behavior and we do not lose information doing this.

In the paramagnetic and in the spin glass phases, we see that the points quickly shrink
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Figure 3.3: Comparison of the dynamics for a grid of initial conditions in the three
phases of the LSK model. The two columns present the same data. On the left as
the iteration index grows the gray level representation becomes lighter, and on the
right, darker.
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towards the equilibrium point (marked as a red cross in the graphics). However, in the
ferromagnetic phase the points seems to quickly go to a slow manifold, where we have
a dynamics that slowly carries them to the equilibrium. This qualitative discrepancy
might yield interesting results when we look at the integrated information index for this
approximated dynamical system.
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Chapter 4

Calculation of ϕ for the LSK Model

Now we calculate the integrated information index for the Little-Sherrington-Kirkpatrick
model. We note that our formula for ϕIJ , equation (2.13), does not take into account the
disorder of the LSK model. So we first need a slight modification in our formula.

4.1 Integrated Information for a Disordered System
To take into account the disorder variables J we need to consider the joint probability,

P (X,Y,J). In this case the integrated information is defined as

ϕ = min
Q∈MG

∑
X,Y

∫
dJP (X,Y,J) log

P (X,Y,J)

Q (X,Y,J)
, (4.1)

where MG is a manifold that satisfy the same disconnection constraint

Q (YI |X;J) = Q (YI |XI ;J) , (4.2)

Therefore, for a bipartition (I, J) of the system, a typical distribution QIJ ∈ MG is
decomposed as

QIJ (X,Y,J) = QIJ (J)QIJ (X|J)QIJ (YI |XI ;J)QIJ (YJ |XJ , YI ;J) . (4.3)

Defining the Langrange function

L = DKL [P∥QIJ ] + α

(∫
QIJ (J) dJ − 1

)
+

∫
λ(J)

∑
X,Y

QIJ (X,Y |J)− 1

 dJ+

+
∑
XI

∫
µ (XI ,J)

∑
YI

QIJ (YI |XI ;J)− 1

 dJ+

+
∑
XJ ,YI

∫
ν (XJ , YI ,J)

∑
YJ

QIJ (YJ |XJ , YI ;J)− 1

 dJ .

(4.4)

Now, as before, we impose that the variations of L with respect to each factor of
QIJ (X,Y,J) are zero. The variations of QIJ (X,Y |J), QIJ (YI |XI ;J) and QIJ (YJ |XJ , YI ;J)
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yield similar conditions as before:

Q∗
IJ (X|J) = P (X|J) ; (4.5)

Q∗
IJ (YI |XI ;J) = P (YI |XI ;J) ; (4.6)

Q∗
IJ (YJ |XJ , YI ;J) = P (YJ |XJ , YI ;J) . (4.7)

But, when we make the variations with respect to QIJ (J) we obtain a new condition that
the closest one to P must satisfy:

Q∗
IJ (J) = P (J) . (4.8)

Now, using these conditions, we have a formula for the integrated information (with
respect to a bipartition) for a disordered system

ϕIJ =

〈∑
X,Y

P (X,Y |J) log P (Y |X;J)P (YI |XJ ;J)

P (Y |XJ ;J)P (YI |XI ;J)

〉
J

. (4.9)

Before we begin the calculation, there is only one detail left: we have only the transition
probability for the full LSK model P (Y |X;J), but not disconnected transition probabilities
distributions. So first we need a way to take into account the partitioning and write those
probabilities.

4.2 Implementing Disconnections by Dilutions
To mimic the disconnections we consider a system with site dilution. We introduce a

new set of variables η = {ηi}Ni=1, with each ηi taking values 1 or 0, representing that the
i-th element belongs to the partition I or J , respectively.

Note that each configuration η corresponds to one and only one partitioning (I, J)
(considering that (I, J) ̸= (J, I)) and that the number of both configurations η and parti-
tions is 2N , implying a one to one correspondence. Additionally, by calculating expected
values with respect to a probability measure, P (η), we are able to average over all possible
partitions, which can be interesting in our analysis.

Therefore, modifying the interaction matrix with the new variables, it is possible to
select only the interactions we are interested in. For example, if we consider the new
interaction matrix Jijηi(1 − ηj), we immediately see that only when i ∈ I and j ∈ J the
interaction will be non zero. Thus, the Hamiltonian, in this case, is

H (X,Y |J ,η) = −
∑
i,j

Jijηi(1− ηj)xjyi = H (XJ , YI |J ,η) , (4.10)

only the interaction between xj ∈ XJ and yi ∈ YI is been considered.
In general, we use the following prescription to account for any interaction between the

21



elements of the two partitions we are interested in:

Jij →



Jijηiηj i, j ∈ I

Jij (1− ηi) (1− ηj) i, j ∈ J

Jij (1− ηi) ηj i ∈ J, j ∈ I

Jijηi (1− ηj) i ∈ I, j ∈ J

Jij (1− ηj) i ∈ I ∪ J, j ∈ J

Jijηj i ∈ I ∪ J, j ∈ I

Jij (1− ηi) i ∈ J, j ∈ I ∪ J

Jijηi i ∈ I, j ∈ I ∪ J

(4.11)

Now, we write all the transition probabilities present in equation (4.9):

P (Y |X;J ,η) =
exp

{
β
∑

i,j Jijxjyi

}
∏

i 2 cosh
(
β
∑

j Jijxj

) , (4.12)

P (YI |XI ;J ,η) =
exp

{
β
∑

i,j Jijηiηjxjyi

}
∏

i 2 cosh
(
β
∑

j Jijηiηjxj

) , (4.13)

P (YI |XJ ;J ,η) =
exp

{
β
∑

i,j Jijηi (1− ηj)xjyi

}
∏

i 2 cosh
(
β
∑

j Jijηi (1− ηj)xj

) , (4.14)

P (Y |XJ ;J ,η) =
exp

{
β
∑

i,j Jij (1− ηj)xjyi

}
∏

i 2 cosh
(
β
∑

j Jij (1− ηj)xj

) . (4.15)

Finally we are ready for the calculation of ϕIJ = ϕη.

4.3 Calculation of ϕη

With the distributions (4.12) to (4.15) the integrated information for the LSK model
is

ϕη =

〈∑
X,Y

P (X,Y |J)

[(
β

N∑
i=1

yihi −
N∑
i=1

log 2 cosh(βhi)

)
+

−

(
β

N∑
i=1

yihi|S −
N∑
i=1

log 2 cosh(βhi|S)

)]〉
J

, (4.16)

where we introduce the quantity hi|S and its complementary hi|D, defined as

hi|S =


∑

j Jijηjxj , for i ∈ I∑
j Jij (1− ηj)xj , for i ∈ J

(4.17)
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hi|D =


∑

j Jij (1− ηj)xj , for i ∈ I∑
j Jijηjxj , for i ∈ J

(4.18)

the fields generated on i by the elements in the same partition and in the different partition,
respectively. We immediately note that the total field is hi = hi|S + hi|D.

To proceed with the calculation, we rewrite this expression as

ϕη =

〈∑
X,Y

P (X,Y |J)

(
β

N∑
i=1

yihi|D −
N∑
i=1

log 2 cosh(βhi) +
N∑
i=1

log 2 cosh(βhi|S)

)〉
J

,

(4.19)
and consider the three terms separately:

ϕA = β

〈∑
X,Y

P (X,Y |J)
N∑
i=1

yihi|D

〉
J

, (4.20)

ϕB = −

〈∑
X,Y

P (X,Y |J)
N∑
i=1

log 2 cosh(βhi)

〉
J

, (4.21)

ϕC =

〈∑
X,Y

P (X,Y |J)
N∑
i=1

log 2 cosh(βhi|S)

〉
J

, (4.22)

such that ϕη = ϕA + ϕB + ϕC .
To calculate each of these terms, we consider auxiliary distributions tailored in such a

way that the above averages can be extracted from their partition functions (see appendix
B for more details).

The result we got for each of those terms are:

ϕA = 2γ (1− γ)N
[
βJ0mn+ β2J2(1− qr)

]
, (4.23)

ϕB =−N

∫
Dz

∑
y∈{−1,1}

exp
{
β
(
J0m+ J

√
qz
)
y
}

2 cosh
[
β
(
J0m+ J

√
qz
)]×

×
∫

Dζ log 2 cosh
[
β (J0m+ J

√
qz) + β2J2 (1− q) y + βJζ

√
1− q

]
, (4.24)

ϕC =γN

∫
DzS

∫
DzD

∑
yi∈{−1,1}

exp
{
β
(
J0m+ JzD

√
(1− γ)q + JzS

√
γq
)
yi

}
2 cosh

[
β
(
J0m+ JzS

√
γq + JzD

√
(1− γ)q

)] ×
×
∫

Dζ log 2 cosh
[
β (J0γm+ JzS

√
γq) + β2J2γ(1− q)yi + βJ

√
γ(1− q)ζ

]
+

+ (1− γ)N

∫
DzS

∫
DzD

∑
yi∈{−1,1}

exp
{
β
(
J0m+ JzD

√
γq + JzS

√
(1− γ)q

)
yi

}
2 cosh

[
β
(
J0m+ JzS

√
(1− γ)q + JzD

√
γq
)] ×

×
∫

Dζ log 2 cosh
[
β
(
J0(1− γ)m+ JzS

√
(1− γ)q

)
+ β2J2(1− γ)(1− q)yi + βJ

√
(1− γ)(1− q)ζ

]
.

(4.25)
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In all of the above equation,

Dz =
e−z2/2

√
2π

dz, (4.26)

denotes the Gaussian measure with zero mean and unit variance, and γ =
∑

i ηi/N ,
the fraction of the elements that belongs to the component I.
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Chapter 5

Results Analysis

In the last chapter we calculated the integrated information for the LSK model
in terms of its order parameters m, q, n and r:

ϕη

N
=2γ (1− γ)

[
βJ0mn+ β2J2(1− qr)

]
+

−
∫

Dz
∑

y∈{−1,1}

exp
{
β
(
J0m+ J

√
qz
)
y
}

2 cosh
[
β
(
J0m+ J

√
qz
)]×

×
∫

Dζ log 2 cosh
[
β (J0m+ J

√
qz) + β2J2 (1− q) y + βJζ

√
1− q

]

+ γ

∫
DzS

∫
DzD

∑
y∈{−1,1}

exp
{
β
(
J0m+ JzD

√
(1− γ)q + JzS

√
γq
)
y
}

2 cosh
[
β
(
J0m+ JzS

√
γq + JzD

√
(1− γ)q

)]×
×
∫

Dζ log 2 cosh
[
β (J0γm+ JzS

√
γq) + β2J2γ(1− q)y + βJ

√
γ(1− q)ζ

]
+

+ (1− γ)

∫
DzS

∫
DzD

∑
y∈{−1,1}

exp
{
β
(
J0m+ JzD

√
γq + JzS

√
(1− γ)q

)
y
}

2 cosh
[
β
(
J0m+ JzS

√
(1− γ)q + JzD

√
γq
)]×

×
∫

Dζ log 2 cosh

[
β
(
J0(1− γ)m+ JzS

√
(1− γ)q

)
+

+ β2J2(1− γ)(1− q)y + βJ
√

(1− γ)(1− q)ζ

]
. (5.1)

5.1 The γ dependence
The first thing we notice is that the dependence in the partition is only through

γ, the size of the partition: ϕη = ϕ(γ). This result was expected, since all the
elements are symmetric and nothing differentiates between then. Another obvious
fact that we confirm with our calculation is that ϕ(γ) is symmetric around γ = 1/2,
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this was also already expected because it should not matter which partition we name
I or J .

The first term, ϕA, can be easily interpreted as it is proportional to the average
energy for the LSK model

E

N
= −J0mn− βJ2(1− qr). (5.2)

It is also proportional to 2γ(1−γ)N which is the number of interactions (per number
of elements, N) between elements from the partition I with elements from the
partition J .

The rest of our expression is not that clear, and to better understand it we
calculate it numerically.

We start by choosing a typical point (J0/J, T/J) in each of the three phases
and plotting a graphic of ϕ× γ, as seen in the left column of figure 5.1. We notice
that the general behavior is very similar for the three phases: if we have a trivial
partition (γ = 0 or γ = 1) all elements will belong to one partition and there will be
no distinction between the full model and the disconnected one. Additionally, the
maximum happens when γ = 1/2 and we have the maximum number of disconnected
interactions.

In the previous paragraphs we also discussed the parabolic dependence on γ of
the first term ϕA. We can extend this discussion asking how much the rest of our
expression deviates from a parabola. This analysis can be found in the right column
of figure 5.1 for each phase, where we compare our result (in blue) with a parabola
(in orange) centered in γ = 1/2, with roots 0 and 1 and with the same maximum
value.

We notice that in the paramagnetic phase our result matches very well with
a parabola, while in the spin-glass phase we have a little difference and in the
ferromagnetic phase we have an even larger discrepancy. This behavior can be
explained when we consider the fact that in the paramagnetic phase the average
energy for the system is larger than the other phases and the term that depends on
the energy (and has a parabolic dependence on γ) dominates. At the same time,
the ferromagnetic phase is the phase with less average energy and the term that
depends on the energy is less dominant.

5.2 Map of ϕ at equilibrium
Now that we know the general behavior of ϕ when we change the size partition

γ, we proceed to analyse how ϕ varies across the phase diagram for a given γ.
We begin choosing γ = 1/2 and calculating ϕ(γ = 1/2) for all points of our phase

diagram. The result can be found in figure 5.2.
The range of values we used for the control parameters were chosen in order to

avoid values of ϕ that does not make sense: We know that the replica symmetric
solution is unstable below the de Almeida-Thouless line and yield nonsensical solu-
tions, for example negative entropy for low temperatures. In the following sections
we will see that ϕ is closely related with the entropy of the system and this negative
entropy solution will also result in negative ϕ, which is by definition absurd (ϕ is a
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Figure 5.1: Comparison of the γ-dependence for each of the three phases for the LSK
model in equilibrium. The control parameters used were: T/J = 0.5 and J0/J = 0.5
for the Spin-glass phase, T/J = 1.75 and J0/J = 1 for the Ferromagnetic phase and
T/J = 1.5 and J0/J = 0.5 for the Paramagnetic phase.
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Figure 5.2: Map of ϕ/N across the whole phase diagram for γ = 1/2.

Kullback-Leibler divergence and by Jensen’s inequality it is always positive). Thus
we omitted the low temperature region for visualization sake, always remembering
that our conclusions should be taken with a grain of salt for all the unstable region.

The first thing that is clear when we look at this map is that ϕ is typically
lower in the paramagnetic phase and higher in the spin-glass phase. This is an
interesting behavior for a complexity index, since the spin glass phase is known to
have a complex structure with an interplay between order and disorder.

To better visualize the the behavior of ϕ we have made graphics of slices at
constant J0/J (figure 5.3a) and constant T/J (figure 5.3b). In both graphics we
note a non-continuous derivative in the region of high T/J and high J0/J indicating
a second order phase transition.

Firstly, on the graphic of ϕ/N × J0/J we notice that for all temperatures ϕ is
constant (with its values depending on the temperature) for low values of J0/J and,
at some point, they begin to change. For lower temperatures this change is smooth,
but for high temperatures the change is not differentiable. These two transitions
occurs when the system goes from the spin glass phase to the ferromagnetic phase
and from the paramagnetic phase to the ferromagnetic phase, respectively. On the
first transition (spin-glass to ferromagnetic) we see a drop on the value of ϕ and on
the second one (paramagnetic to ferromagnetic) we have an increase on the value
of ϕ. Another interesting feature is that for lower temperatures the value of ϕ is
consistently higher than for lower temperatures, independently of the value of J0/J ,
and in particular on the transition from paramagnetic to spin glass we have an
increase on ϕ.

On the graphic of ϕ/N × T/J the behavior is quite different, for lower values
of J0/J all the values of ϕ is the same monotonically decreasing function of T/J ,
and around J0/J = 1 the curves present a different behavior, while also being
monotonically decreasing. Again we notice that for lower temperatures ϕ is typically
higher.
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(a) Graphics of ϕ/N×J0/J for various values
of T/J .

(b) Graphics of ϕ/N ×T/J for various values
of J0/J .

Figure 5.3: Slices from the surface plot in figure 5.2

5.3 ϕ on its way to equilibrium
Using the approximation described at the last section of chapter 3 we briefly

studied how ϕ behaves over our approximate dynamics near equilibrium described
earlier.

This analysis is an even bigger stretch on the validity of our results, just like the
dynamical system, the formula for ϕ we calculated is only correct in the equilibrium.
As this calculations are a novelty, we might as well overextend our result out of sheer
curiosity.

With that in mind, we begin considering how ϕ evolves over trajectories begin-
ning at a grid of initial conditions for the three different phases. The result can be
found in figure 5.4.

Note that the behavior is very similar for all the phases. We again notice that the
trajectories seems to go to the equilibrium very quickly in the paramagnetic phase
and slower in the ferromagnetic phase, a fact that we have already noted when we
looked at the trajectories alone (see figure 3.3). Besides this, there is no visible
pattern that distinguishes them and, if it exists, our approximation probably does
not captures it.

Another attempt to analyse this toy dynamics of ϕ was to consider a system in
equilibrium at an initial T/J and J0/J and change these values measuring how ϕ
reacts to this. We have made such study for all sort of combinations of initial and
final T/J and J0/J , but, again, we have not been able to identify a pattern or gain
information on the nature of ϕ. Some of those results can be found at figure 5.5. In
the graphics in the left column, the green dashed line represents the value of ϕ the
system had initially, and the red dashed line the value of ϕ for the new equilibrium
point. The middle column diagrams shows how the initial and final conditions are
located with respect to the phase boundaries, and on the left we have the trajectory
the system describes in the m× q plane.
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Figure 5.4: Comparison of the evolution of ϕ for a grid of initial conditions at the
three phases.
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Figure 5.5: Examples of behavior of ϕ when the equilibrium condition T/J and J0/J
is suddenly changed.
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5.4 Connection with Stochastic Interactions
In an attempt to interpret the meaning of our result, we take a step back and

look at other complexity measures. In particular we look at what is called Stochastic
Interactions (IS), for it is known that this index have a close relationship with
integrated information, as it is indicated by Ito et al. in [20].

In the geometric information framework, such complexity measure is obtained
when we consider the following statistical manifold

MS =

{
Q(X, Y )

∣∣∣∣Q(Y |X) =
∏
I∈Π

Q(YI |XI)

}
, (5.3)

that is, given a partitioning of the system Π (that we take here as a bipartition
(I, J)), is the set of distributions in which each component of Π evolves indepen-
dently. IS is then defined as

IS = min
Q∈MS

DKL [P∥Q] . (5.4)

Performing the minimization just like we did for integrated information we find

IS =

〈∑
X,Y

P (X, Y |J) log P (Y |X;J)

P (YI |XI ;J)P (YJ |XJ ;J)

〉
J

. (5.5)

Now we use the prescription for implementing disconnections by site dilution
(see equation (4.11)), to write

P (YI |XI ;J ,η) =
exp

{
β
∑

i,j Jijηiηjxjyi

}
∏

i 2 cosh
(
β
∑

j Jijηiηjxj

) , (5.6)

P (YJ |XJ ;J ,η) =
exp

{
β
∑

i,j Jij (1− ηi) (1− ηj)xjyi

}
∏

i 2 cosh
(
β
∑

j Jij (1− ηi) (1− ηj)xj

) . (5.7)

Substituting in our expression for IS we have

IS =

〈∑
X,Y

P (X, Y |J)

(
β

N∑
i=1

yihi|D −
N∑
i=1

log 2 cosh(βhi) +
N∑
i=1

log 2 cosh(βhi|S)

)〉
J

,

(5.8)
which can be identified as the same expression for the integrated information index.

Looking at the equation (5.5) we see that it can be written as a difference of
transitional entropy:

IS = S(YI |XI) + S(YJ |XJ)− S(Y |X) = ϕIJ , (5.9)

giving us, at least for this particular model, an interpretation for the geometric
integrated information index: it is a measure of how much information is gained
when we let parts of the system communicate with each other in order to predict
the future state.
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Chapter 6

Conclusions

In this work, we have proposed an analysis of complexity measures, in particular
the integrated information index, for physical systems, as an attempt to better
understand how it can be used to assess complexity in all sorts of systems. Our
main motivation was the experimental application of such indices as markers of
consciousness in patients whose brains are subject to different conditions.

Due to the large toolbox of information geometry and the very straightforward
definition of complexity measures, the information geometric framework developed
by Oizumi et al. have been chosen as our main framework. By restricting the
definition to a bipartition, we have been able to calculate an exact formula for the
integrated information index. We also made progress deriving a formula for the
geometric integrated information for quenched disordered systems.

We investigated the Little-Sherrington-Kirkpatrick model, a model that has
pretty much the same behavior as the standard Sherrington-Kirkpatrick model at
the equilibrium, but has a dynamics built-in in its definition, which may be very
useful depending on the type of problem we are trying to study. Although we have
successfully calculated its free energy and fully described the system in equilibrium
(at least in the replica symmetric ansatz), there is still much to be done when we
talk about out-of-equilibrium statistical mechanics. The near equilibrium approxi-
mation dynamics analysis did not give insight on the behavior of ϕ and should be
properly addressed in a follow-up project.

Our analysis for the LSK model has shown how ϕ changes as we go from one
phase to another: going from the paramagnetic phase to any other phase ϕ increases,
as well as going from the ferromagnetic to the spin glass phase. By looking at the
geometric integrated information index as a complexity measure, we are able to rank
the three phases of the LSK model in terms of its complexity, where the spin glass is
the most complex phase and the paramagnetic the least complex one, as one would
have expected.

We also have analyzed how ϕ depends on the partitioning. Our result shows that
for this statistically uniform model, this dependence is only through the size of the
partition and it is very similar in all three phases: ϕ goes to zero when the partition
contains zero or all the elements, and it has a maximum when the system is cut in
half.

Finally, we noticed that, for the LSK model, our formula for the geometric
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integrated information is equal to the stochastic interactions measure, a difference
of the transitional entropy for the disconnected model and the full model, and we
can give it a nice interpretation as the amount of information that is gained when we
let parts of the system communicate with each other in order to predict the future
state. This is a nice feature that our system has, but it would also be interesting
to study under which conditions a system has this property and how the integrated
information differs from stochastic interactions if this relation does not hold.

In conclusion, we show that the geometric integrated information index can be
used as a measure that assess the complexity of a physical system. The symmetries
present in our LSK model have facilitated our calculations, but have produced results
that does not seem very interesting at a first glance. The definition of ϕ is dynamic
and encompasses two consecutive states in time, so our equilibrium analysis only
captures a small part of its phase space and a lot more might be concluded studying
the system out of equilibrium.

A problem that was not addressed here, is the calculation of Φ, the average
of ϕ over all possible partitioning. In our case, this average would be described
by a distribution P (γ), over the all possible sizes of partitions. We believe this
prescription is related with the kind of system we are analyzing, and for the LSK
model there is no natural distribution for the partitions, so the choice is arbitrary.
Information processing systems, arising from evolution, have a modular architecture
of specialized macroscopic units and may suggest a particular partition as natural.

Thus, for future projects we might try to change the disorder, for example a
system with Hebbian interaction, that presents a different order parameter that
combines states in two different times, make a more in-depth analysis for the system
out of equilibrium, and, last but not least, investigate how the symmetries of a
synchronous system affect the behavior of the integrated information index, and
consider systems that have a natural way of partitioning.
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Appendix A

Free Energy for LSK Model

Here we perform the calculation of the free energy for the LSK model

f = − lim
N→∞

1

βN
⟨logZ⟩J , (A.1)

where the partition function Z is given by

Z =
∑
X,Y

exp

{
β
∑
i,j

Jijxjyi

}
, (A.2)

and the distribution P (J) =
∏

i,j P (Jij) with

P (Jij) =

√
N

2πJ2
exp

{
− N

2J2

(
Jij −

J0
N

)2
}
. (A.3)

Using the replica method, our work will resume to the calculation of

〈
Zδ
〉
J
=

∑
{XaY a}

〈
exp

{
β
∑
a

∑
i,j

Jijx
a
jy

a
i

}〉
J

(A.4)

Performing the average of the disorder J :

〈
Zδ
〉
J
=

∑
{XaY a}

exp

βJ0
N

∑
i,j

∑
a

xa
jy

a
i +

β2J2

2N

∑
i,j

(∑
a

xa
jy

a
i

)2
 (A.5)

〈
Zδ
〉
J
= exp

(
β2J2δN

2

) ∑
{XaY a}

exp

{
βJ0
N

∑
a

(∑
i

xa
i

)(∑
i

yai

)
+

+
β2J2

N

∑
a<b

(∑
i

xa
i x

b
i

)(∑
i

yai y
b
i

)}
(A.6)

37



Introducing integrals over Dirac delta distributions:〈
Zδ
〉
J
=exp

(
β2J2δN

2

) ∑
{XaY a}

∫ ∏
a

NdmaNdna

∫ ∏
a<b

NdqabNdrab×

× exp

{
βJ0N

∑
a

mana + β2J2N
∑
a<b

qabrab

}
×

×
∏
a

δ

(
Nma −

∑
i

xa
i

)
δ

(
Nna −

∑
i

yai

)
×

×
∏
a<b

δ

(
Nqab −

∑
i

xa
i x

b
i

)
δ

(
Nrab −

∑
i

yai y
b
i

)
(A.7)

Using the the Fourier integral representation of the delta distributions:〈
Zδ
〉
J
=exp

(
β2J2δN

2

) ∑
{XaY a}

∫ ∏
a

dmadm̂a

2π/N

dnadn̂a

2π/N

∫ ∏
a<b

dqabdq̂ab
2π/N

drabdr̂ab
2π/N

×

× exp

{
βJ0N

∑
a

mana + β2J2N
∑
a<b

qabrab + iN
∑
a

(mam̂a + nan̂a)+

+ iN
∑
a<b

(qabq̂ab + rabr̂ab)− i
∑
a

m̂a

∑
i

xa
i − i

∑
a

n̂a

∑
i

yai +

− i
∑
a<b

q̂ab
∑
i

xa
i x

b
i − i

∑
a<b

r̂ab
∑
i

yai y
b
i

}
. (A.8)

Grouping the terms that depend on the variables {Xa} and {Y a}〈
Zδ
〉
J
=exp

(
β2J2δN

2

)∫ ∏
a

dmadm̂a

2π/N

∫ ∏
a

dnadn̂a

2π/N

∫ ∏
a<b

dqabdq̂ab
2π/N

∫ ∏
a<b

drabdr̂ab
2π/N

×

× exp

{
βJ0N

∑
a

mana + β2J2N
∑
a<b

qabrab + iN
∑
a

(mam̂a + nan̂a)+

+ iN
∑
a<b

(qabq̂ab + rabr̂ab) +N logZrep

}
, (A.9)

where
Zrep =

∑
{xaya}

exp {−Hrep} , (A.10)

is the canonical partition function associated with the replica interaction Hamilto-
nian Hrep, defined as:

Hrep = i
∑
a

m̂ax
a + i

∑
a<b

q̂abx
axb + i

∑
a

n̂ay
a + i

∑
a<b

r̂aby
ayb. (A.11)

Now, the integrand in the expression for
〈
Zδ
〉
J

is an exponential with exponent
proportional to N and as we are interested in the study of the thermodynamic limit,
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N → ∞, we can apply the saddle point method to approximate the integral as

〈
Zδ
〉
J
= exp

{
β2J2δN

2
+ βJ0N

∑
a

mana + iN
∑
a

(mam̂a + nan̂a)+

+ β2J2N
∑
a<b

qabrab + iN
∑
a<b

(qabq̂ab + rabr̂ab) +N logZrep

}
, (A.12)

where, now, the parameters {ma, m̂a}, {na, n̂a}, {qab, q̂ab} and {rab, r̂ab} are the
saddle points of the exponent.

By imposing that the derivative of the exponent with respect to each one of them
is equal to zero, we find:

ma = ⟨xa
i ⟩rep m̂a = iβJ0na (A.13)

na = ⟨yai ⟩rep n̂a = iβJ0ma (A.14)

qab =
〈
xa
i x

b
i

〉
rep q̂ab = iβ2J2rab (A.15)

rab =
〈
yai y

b
i

〉
rep r̂ab = iβ2J2qab (A.16)

We immediately see that, on the saddle points, the Fourier variables are not in-
dependent from the other parameters. Substituting this relationship into the former
equations:

〈
Zδ
〉
J
= exp

{
β2J2δN

2
− βJ0N

∑
a

mana − β2J2N
∑
a<b

qabrab +N logZrep

}
,

(A.17)

Zrep =
∑

{xaya}

exp

{
βJ0

∑
a

nax
a + β2J2

∑
a<b

rabx
axb + βJ0

∑
a

may
a + β2J2

∑
a<b

qaby
ayb

}
.

(A.18)
From the equation (3.13) we see that we are interested in the limit δ → 0, so we

can linearize the expression for
〈
Zδ
〉
J

around δ = 0

〈
Zδ
〉
J
≈ 1− βNδ

(
−βJ2

2
+

J0
δ

∑
a

mana +
βJ2

δ

∑
a<b

qabrab −
1

βδ
logZrep

)
, (A.19)

and rearrange the terms

− 1

βN

〈
Zδ
〉
J
− 1

δ
≈ −βJ2

2
+

J0
δ

∑
a

mana +
βJ2

δ

∑
a<b

qabrab −
1

βδ
logZrep. (A.20)

Now, taking the limits δ → 0 and N → ∞, we have

f = lim
δ→0

{
−βJ2

2
+

J0
δ

∑
a

mana +
βJ2

δ

∑
a<b

qabrab −
1

βδ
logZrep

}
. (A.21)
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A.1 Replica Symmetric Ansatz
To proceed, we assume the ansatz that the saddle points {ma}, {na}, {qab} and

{rab} are symmetric under replica index permutation. In this case we can drop off
the replica index

ma = m q̂ab = q (A.22)
na = n r̂ab = r (A.23)

and the expression for Zrep becomes

ZRS =
∑

{xaya}

exp

{
βJ0n

∑
a

xa + β2J2r
∑
a<b

xaxb + βJ0m
∑
a

ya + β2J2q
∑
a<b

yayb

}
.

(A.24)
Introducing gaussian integrals to linearize the quadratic terms in {xa} and {ya}

ZRS = exp

{
−β2J2δ (q + r)

2

}∫
Dz (2 cosh [β (J0m+ J

√
qz)])δ ×

×
∫

Dz′
(
2 cosh

[
β
(
J0n+ J

√
rz′
)])δ (A.25)

Taking the logarithm and linearizing around δ = 0

logZRS = −β2J2δ (q + r)

2
+ δ

∫
Dz log 2 cosh [β (J0m+ J

√
qz)] +

+δ

∫
Dz′ log 2 cosh

[
β
(
J0n+ J

√
rz′
)]

. (A.26)

Then, in this ansatz, the free energy becomes

fRS = J0mn− βJ2

2
(1− q) (1− r)− 1

β

∫
Dz log 2 cosh

[
β
(
J0n+ J

√
rz
)]

+

− 1

β

∫
Dz log 2 cosh [β (J0m+ J

√
qz)] ,

(A.27)

where we already took the limit δ → 0.
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Appendix B

Φη Calculation

Our goal is to calculate

ϕη =

〈∑
X,Y

P (X, Y |J)

(
β

N∑
i=1

yihi|D −
N∑
i=1

log 2 cosh(βhi) +
N∑
i=1

log 2 cosh(βhi|S)

)〉
J

,

(B.1)
and to do so, we consider the following terms separately:

ϕA = β

〈∑
X,Y

P (X, Y |J)
N∑
i=1

yihi|D

〉
J

, (B.2)

ϕB = −

〈∑
X,Y

P (X, Y |J)
N∑
i=1

log 2 cosh(βhi)

〉
J

, (B.3)

ϕC =

〈∑
X,Y

P (X, Y |J)
N∑
i=1

log 2 cosh(βhi|S)

〉
J

, (B.4)

such that ϕη = ϕA + ϕB + ϕC .

B.1 Calculation of ϕA

To calculate ϕA we define an auxiliary system with equilibrium distribution given
by

PA (X, Y |J ,η, βS, βD) =
1

ZA

exp

{∑
i

(
βShi|S + βDhi|D

)
yi

}
, (B.5)

with disorder J described by the same prescription as the standard SK model (equa-
tion (3.11)). That is, a LSK model with elements from the same partition interacting
with temperature βS and elements from different partitions interacting with tem-
perature βD. Note that when we take βS = βD = β we recover the standard LSK
model.

Taking the derivative of ⟨logZA⟩J with respect to βD and taking βS = βD = β,

∂

∂βD

⟨logZA⟩J

∣∣∣∣
βS=βD=β

=

〈∑
X,Y

P (X, Y |J)

(∑
i

hi|Dyi

)〉
J

. (B.6)
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We note that the RHS is, except for a factor of β, equal to ϕA,

ϕA = β
∂

∂βD

⟨logZA⟩J

∣∣∣∣
βS=βD=β

. (B.7)

Our work then is to calculate ⟨logZA⟩J . To do this we use the replica method.
We calculate

〈
Zδ

A

〉
J

for integer δ:

〈
Zδ

A

〉
J
=

〈 ∑
{Xa,Y a}

exp

{∑
a

∑
i

yai
(
βSh

a
i|S + βDh

a
i|D
)}〉

J

, (B.8)

=

〈 ∑
{Xa,Y a}

exp

{∑
a

∑
i,j

Jijx
a
jy

a
i

(
βSθ

S
ij + βDθ

D
ij

)}〉
J

, (B.9)

where we introduced two new quantities, the projectors θSij = ηiηj + (1− ηi)(1− ηj)
and θDij = ηi(1 − ηj) + (1 − ηi)ηj, that take into account the cases where i and j
belongs to the same partition and to different partition, respectively.

Those projectors have the following interesting properties:(
θSij
)2

= θSij, (B.10)(
θDij
)2

= θDij , (B.11)

θSijθ
D
ij = 0, (B.12)

θSij + θDij = 1. (B.13)

Calculating the average over the disorder J ,

〈
Zδ
A

〉
J
=

∑
{Xa,Y a}

exp

J0
N

∑
i,j

∑
a

(
βSθ

S
ij + βDθ

D
ij

)
xajy

a
i +

J2

2N

∑
i,j

(∑
a

(
βSθ

S
ij + βDθ

D
ij

)
xajy

a
i

)2
 ,

(B.14)
and using the properties of θSij and θDij we can write

〈
Zδ
A

〉
J
=

∑
{Xa,Y a}

exp

J0
N

∑
i,j

∑
a

(
βSθ

S
ij + βDθ

D
ij

)
xajy

a
i +

J2

2N

∑
i,j

(
β2
Sθ

S
ij + β2

Dθ
D
ij

)(∑
a

xajy
a
i

)2
 .

(B.15)
Rearranging the terms and defining γ =

∑
i ηi/N , such that γN is the number

of elements in the partition I (and (1−γ)N the number of elements in partition J),
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we have: 〈
Zδ

A

〉
J
=exp

{
1

2
J2Nδ

[
β2
S

(
γ2 + (1− γ)2

)
+ β2

D2γ (1− γ)
]}

×

×
∑

{Xa,Y a}

exp

{
βSJ0
N

∑
a

(∑
i

ηix
a
i

)(∑
i

ηiy
a
i

)
+

+
βSJ0
N

∑
a

(∑
i

(1− ηi)x
a
i

)(∑
i

(1− ηi) y
a
i

)
+

+
βDJ0
N

∑
a

(∑
i

ηix
a
i

)(∑
i

(1− ηi) y
a
i

)
+

+
βDJ0
N

∑
a

(∑
i

(1− ηi)x
a
i

)(∑
i

ηiy
a
i

)
+

+
β2
SJ

2

N

∑
a<b

(∑
i

ηix
a
i x

b
i

)(∑
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ηiy
a
i y
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i

)
+

+
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SJ

2

N
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(1− ηi)x
a
i x

b
i

)(∑
i

(1− ηi) y
a
i y

b
i

)
+

+
β2
DJ

2

N

∑
a<b

(∑
i

ηix
a
i x

b
i

)(∑
i

(1− ηi) y
a
i y

b
i

)
+

+
β2
DJ

2

N

∑
a<b

(∑
i

(1− ηi)x
a
i x

b
i

)(∑
i

ηiy
a
i y

b
i

)}
. (B.16)
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Completing the square in each line of the above equation,

〈
Zδ
A

〉
J
=exp

{
1

2
J2Nδ

[
β2
S

(
γ2 + (1− γ)

2
)
+ β2
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]}

×

×
∑
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∑
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( 1

N

∑
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a
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−
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∑
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∑
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+
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∑
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∑
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∑
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(B.17)

Now, for each of the square term in the exponent we introduce a gaussian integral
using the identity:

eab
2

=

√
a

π

∫
e−ax2+2abxdx. (B.18)
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Ignoring the multiplicative constants, we have〈
Zδ
A

〉
J
=exp

{
1

2
J2Nδ
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∑
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∑
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∑
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∑
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}
,

(B.19)

with

ζi =
∑

{xa
i ,y

a
i }
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{
βSJ0

∑
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a

)
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a
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+

+ β2
SJ

2
∑
a<b

[(
pIab + iqIab

)
ηix

a
i x

b
i +

(
pIab + irIab

)
ηiy

a
i y

b
i

]
+
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+
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a
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b
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+
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. (B.20)

Each ζi can be interpreted as the partition function associated with the interac-
tion of the i-th component of the replicas.

Now, as we are interested in the thermodynamic limit, N → ∞, we are able to
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calculate the integrals using the saddle point method,
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Zδ

A

〉
J
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2
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∑
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+
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∑
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+
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∑
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+
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∑
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(B.21)

where the parameters now represent the saddle point of the exponent.
Now, as we are interested in the limit δ → 0, we linearize around δ = 0 and

rearrange the terms in the form of (3.13),

⟨logZA⟩J = lim
δ→0
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2
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+
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+
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(B.22)

Before we proceed, we perform the following change of variables:

mI(J)
a → imI(J)

a , (B.23)
nI(J)
a → inI(J)

a , (B.24)

q
I(J)
ab → iq

I(J)
ab , (B.25)

r
I(J)
ab → ir

I(J)
ab . (B.26)

This is a necessary step in order to ensure that the order parameters will be real.
With this, we can now set the derivative of ⟨logZA⟩J with respect to each pa-
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rameter equal to zero,

lIa =
1

N

∑
i

(ηi ⟨xa
i ⟩

rep
i + ηi ⟨yai ⟩

rep
i ) mI

a =
1

N

∑
i

ηi ⟨xa
i ⟩

rep
i (B.27)

lJa =
1

N

∑
i

((1− ηi) ⟨xa
i ⟩
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i + (1− ηi) ⟨yai ⟩
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i ) mJ

a =
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∑
i

(1− ηi) ⟨xa
i ⟩

rep
i (B.28)

lIJa =
1

N

∑
i

(ηi ⟨xa
i ⟩
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i + (1− ηi) ⟨yai ⟩

rep
i ) nI
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1

N

∑
i

ηi ⟨yai ⟩
rep
i (B.29)

lJIa =
1

N

∑
i

((1− ηi) ⟨xa
i ⟩
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i + ηi ⟨yai ⟩
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i ) nJ
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1

N

∑
i

(1− ηi) ⟨yai ⟩
rep
i (B.30)

pIab =
1

N

∑
i

(
ηi
〈
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i x

b
i
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i

+ ηi
〈
yai y

b
i
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i

)
qIab =
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∑
i

ηi
〈
xa
i x

b
i
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i

(B.31)

pJab =
1
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∑
i
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i x
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〈
yai y

b
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)
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i x
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(B.32)

pIJab =
1
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∑
i
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ηi
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i x

b
i
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+ (1− ηi)
〈
yai y

b
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)
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(B.33)

pJIab =
1

N

∑
i

(
(1− ηi)

〈
xa
i x

b
i
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i

+ ηi
〈
yai y

b
i

〉rep
i

)
rJab =

1
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∑
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〈
yai y

b
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i

(B.34)

In the above expressions, ⟨·⟩repi denotes the average over the distribution associ-
ated with the i-th component replica interaction Hamiltonian, Hrep

i , such that

ζi =
∑

{xa
i ,y

a
i }

e−Hrep
i . (B.35)

Note that there are relations between the order parameters,

lIa = mI
a + nI

a lJa = mJ
a + nJ

a (B.36)
lIJa = mI

a + nJ
a lJIa = mJ

a + nI
a (B.37)

pIab = qIab + rIab pJab = qJab + rJab (B.38)
pIJab = qIab + rJab pJIab = qJab + rIab (B.39)

Substituting in our result,

⟨logZA⟩J = lim
δ→0

{
1

2
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J
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I
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(B.40)
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ζi =
∑
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(B.41)

We note that the exponent in the expression for ζi is the same for every i when
we take βS = βD. In this case, the averages ⟨xa

i ⟩
rep
i , ⟨yai ⟩

rep
i ,

〈
xa
i x

b
i

〉rep
i

and
〈
yai y

b
i

〉rep
i

are the same for all i, and if we call them ma, na, qab and rab, respectively, we have:

mI
a = γma mJ

a = (1− γ)ma (B.42)
nI
a = γna nJ

a = (1− γ)na (B.43)
qIab = γqab qJab = (1− γ) qab (B.44)
rIab = γrab rJab = (1− γ) rab (B.45)

Now, back to a general βS and βD, to proceed we consider the replica symmetric
ansatz, just like we did with the LSK model:

mI
a = mI mJ

a = mJ (B.46)
nI
a = nI nJ

a = nJ (B.47)
qIab = qI qJab = qJ (B.48)
rIab = rI rJab = rJ (B.49)

In this ansatz we have
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∑
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b
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(B.50)

Lets define mS
i and mD

i as:

mS
i = mIηi +mJ (1− ηi) =

{
mI se i ∈ I
mJ se i ∈ J

(B.51)
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mD
i = mJηi +mI (1− ηi) =

{
mJ se i ∈ I
mI se i ∈ J

(B.52)

and with similar definitions for n
S(D)
i , qS(D)

i and r
S(D)
i , we write
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∑
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(B.53)

which can be calculated by introducing gaussian integrals for the quadratic terms.
In the first order in δ this expression results in

log ζRS
i =− J2δ

2

[
β2
S

(
qSi + rSi

)
+ β2

D

(
qDi + rDi

)]
+

+ δ

∫
Dz log

{
2 cosh

[
J0
(
βSn

S
i + βDn

D
i

)
+ Jz

√
β2
Sr

S
i + β2

Dr
D
i

]}
+

+ δ

∫
Dz log

{
2 cosh

[
J0
(
βSm

S
i + βDm

D
i

)
+ Jz

√
β2
Sq

S
i + β2

Dq
D
i

]}
(B.54)

Substituting in our expression for ⟨logZA⟩J , and taking the limit δ → 0:〈
logZRS
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(B.55)

Now we take the derivative with respect to βD and calculate at βS = βD = β.
After some straightforward calculations we finally get

ϕA = β
∂

∂βD

〈
logZRS

A

〉
J

∣∣∣∣
βS=βD=β

= 2γ (1− γ)N
[
βJ0mn+ β2J2(1− qr)

]
(B.56)
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where we used the fact that for βS = βD the equations (B.42) to (B.45) holds, and
for the replica symmetric ansatz they don’t depend on the replica index.

B.2 Calculation of ϕB

To calculate ϕB we define a auxiliary probability distribution given by

PB (X|J , λ) = 1

ZB

exp

{
λ
∑
i

log 2 cosh

(
β
∑
j

Jijxj

)}
, (B.57)

with disorder variables J distributed accordingly to equation (3.11).
Taking λ = 1 the probability PB becomes the Little probability distribution

marginalized over the future, P (X|J) =
∑

Y P (X, Y |J).
Taking the derivative of ⟨logZB⟩J with respect to λ and calculating at λ = 1,

∂

∂λ
⟨logZB⟩J

∣∣∣∣
λ=1

=

〈∑
X,Y

P (X, Y |J)
∑
i

log 2 cosh

(
β
∑
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Jijxj

)〉
J

. (B.58)

Note that the RHS is equal to −ϕB,

ϕB = − ∂

∂λ
⟨logZB⟩J

∣∣∣∣
λ=1

. (B.59)

Our work then is to calculate ⟨logZB⟩J . To do this we use the replica method.
So first we calculate

〈
Zδ

B

〉
J

for integer δ:

〈
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B

〉
J
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{Xa}

exp

{
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Jijx
a
j

)}〉
J

. (B.60)

Introducing an integral over a Dirac delta distribution,
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(B.61)
Using the Fourier representation of the delta distribution,
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(B.62)
Calculating the average over the disorder variables,
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i dŵ

a
i

2π
exp

{
i
∑
i,a

ŵa
iw

a
i + λ

∑
i,a

log 2 cosh (−iwa
i )+

+
βJ0
N

∑
i,j

∑
a

xa
j ŵ

a
i +

β2J2

2N

∑
i,j

(∑
a

xa
j ŵ

a
i

)2
 . (B.63)
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Rearranging the terms and introducing new integrals over Dirac delta distribu-
tions for the order parameters,〈

Zδ
B

〉
J
=
∑
{Xa}

∫ ∏
i,a

dwa
i dŵ

a
i

2π

∫ ∏
a

dmaduadva

∫ ∏
a<b

dqabdsab×

×
∏
a

δ

(
Nma −

∑
i

xa
i

)
δ

(
Nua −

∑
i

ŵa
i

)
δ

(
Nva −

∑
i

(ŵa
i )

2

)
×

×
∏
a<b

δ

(
Nqab −

∑
i

xa
i x

b
i

)
δ

(
Nsab −

∑
i

ŵa
i ŵ

b
i

)
×

× exp

{
i
∑
i,a

ŵa
iw

a
i + λ

∑
i,a

log 2 cosh (−iwa
i ) + βJ0N

∑
a

maua +

+ β2J2N
∑
a<b

qabsab +
1

2
β2J2N

∑
a

va

}
. (B.64)

Using the Fourier representations just like before and grouping the terms that
depends on {xa

i } and {wa
i , ŵ

a
i },〈

Zδ
B

〉
J
=

∫ ∏
a

dmadm̂a

2π/N

∫ ∏
a

duadûa
2π/N

∫ ∏
a

dvadv̂a
2π/N

∫ ∏
a<b

dqabdq̂ab
2π/N

∫ ∏
a<b

dsabdŝab
2π/N

× exp

{
iN
∑
a

m̂ama + iN
∑
a

ûaua + iN
∑
a

v̂ava + iN
∑
a<b

q̂abqab + iN
∑
a<b

ŝabsab+

+ βJ0N
∑
a

maua + β2J2N
∑
a<b

qabsab +
1

2
β2J2N

∑
a

va +N logZrep

}
.

(B.65)

where Zrep is a the partition function associated with the replica interaction Hamil-
tonian Hrep,

Zrep =
∑
{xa}

∫ ∏
a

dwadŵa

2π
exp {−Hrep} , (B.66)

Hrep = −i
∑
a

ŵawa − λ
∑
i,a

log 2 cosh (−iwa
i ) + i

∑
a

m̂ax
a + i

∑
a<b

q̂abx
axb+

+i
∑
a

ûaŵ
a + i

∑
a<b

ŝabŵ
aŵb + i

∑
a

v̂a (ŵ
a)2 . (B.67)

Using the saddle point method, we are able to calculate the integrals over the
order parameters. Expanding the solution in first order in δ and rearranging the
terms in the same way as the replica identity (equation (3.13)) we have:

⟨logZB⟩J = lim
δ→0

{
iN

δ

∑
a

m̂ama +
iN

δ

∑
a

ûaua +
iN

δ

∑
a

v̂ava +
iN

δ

∑
a<b

q̂abqab +
iN

δ

∑
a<b

ŝabsab+

+
βJ0N

δ

∑
a

maua +
β2J2N

δ

∑
a<b

qabsab −
βJ2N

2δ

∑
a

va +N logZrep

}
,

(B.68)
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where the order parameters are now the saddle points.
Setting the derivative of ⟨logZB⟩J with respect to to each parameter equal to

zero, we have the equations for the saddle points:

m̂a = iβJ0ua ma = ⟨xa⟩rep (B.69)

ûa = iβJ0ma ua = ⟨wa⟩rep (B.70)

q̂ab = iβ2J2sab qab =
〈
xaxb

〉
rep (B.71)

ŝab = iβ2J2qab sab =
〈
wawb

〉
rep (B.72)

v̂a =
i

2
β2J2 va =

〈
(wa)2

〉
rep (B.73)

where, again, ⟨·⟩rep denotes the average over the canonical distribution associated
with the replica interaction Hamiltonian.

With these relations, we can write

⟨logZB⟩J = lim
δ→0

{
−βJ0N

δ

∑
a

maua −
β2J2N

δ

∑
a<b

qabsab +N logZrep

}
, (B.74)

and

Zrep =
∑
{xa}

exp

{
βJ0

∑
a

uax
a + β2J2

∑
a<b

sabx
axb

}∫ ∏
a

dwadŵa

2π
exp

{
i
∑
a

ŵawa+

+ λ
∑
a

log 2 cosh (−iŵa) + βJ0
∑
a

maw
a + β2J2

∑
a<b

qabw
awb +

1

2
β2J2

∑
a

(wa)2
}
.

(B.75)

Now we consider the replica symmetric ansatz, where the saddle points are sym-
metreic under replica index permutation:

ma = m (B.76)
ua = u (B.77)
qab = q (B.78)
sab = s (B.79)

In this ansatz the replica interaction pertition function becomes

ZRS =
∑
{xa}

exp

{
βJ0u

∑
a

xa + β2J2s
∑
a<b

xaxb

}∫ ∏
a

dwadŵa

2π
exp

{
i
∑
a

ŵawa+

+ λ
∑
a

log 2 cosh (−iŵa) + βJ0m
∑
a

wa + β2J2q
∑
a<b

wawb +
1

2
β2J2

∑
a

(wa)2
}
.

(B.80)

The summation over {xa} can be easily performed, yielding

exp

{
−1

2
β2J2sδ

}∫
Dz
(
2 cosh

[
β
(
J0u+ J

√
sz
)])δ

, (B.81)
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where Dz is the normalized gaussian measure, with zero mean and unit variance.
Taking the logarithm:

logZRS =− 1

2
β2J2sδ + log

∫
Dz
(
2 cosh

[
β
(
J0u+ J

√
sz
)])δ

+

+ log

∫ ∏
a

dwadŵa

2π
exp

{
i
∑
a

ŵawa + λ
∑
a

log 2 cosh (iŵa)+

+ βJ0m
∑
a

wa +
1

2
β2J2q

(∑
a

wa

)2

+
1

2
β2J2 (1− q)

∑
a

(wa)2
}
.

(B.82)

Introducing yet another gaussian integral for the remaining quadratic term in
the exponent and factoring the integrals in the index a,

logZRS =− 1

2
β2J2sδ + log

∫
Dz
(
2 cosh

[
β
(
J0u+ J

√
sz
)])δ

+

+ log

∫
Dz

[∫
dwdŵ

2π
exp

{
iŵw + λ log 2 cosh (iŵ)+

+ β (J0m+ J
√
qz)w +

1

2
β2J2 (1− q)w2

}]δ
. (B.83)

Now we linearize in δ around δ = 0,

logZRS
rep =− 1

2
β2J2sδ + δ

∫
Dz log 2 cosh

[
β
(
J0u+ J

√
sz
)]

+

+ δ

∫
Dz log

∫
dwdŵ

2π
exp

{
iŵw + λ log 2 cosh (iŵ)+

+ β (J0m+ J
√
qz)w +

1

2
β2J2 (1− q)w2

}
, (B.84)

and we finally have an expression for ⟨logZB⟩J :〈
logZRS

B

〉
J
=− βJ0Nmu+

1

2
β2J2Nqs− 1

2
β2J2Ns+N

∫
Dz log 2 cosh

[
β
(
J0u+ J

√
sz
)]

+

+N

∫
Dz log

∫
dwdŵ

2π
exp

{
iŵw + λ log 2 cosh (iŵ)+

+ β (J0m+ J
√
qz)w +

1

2
β2J2 (1− q)w2

}
(B.85)

Now we are able to take the derivative with repect to λ and set λ = 1,

ϕB = − ∂

∂λ

〈
logZRS

B

〉
J

∣∣∣∣
λ=1

=−N

∫
Dz

exp
{
−1

2
β2J2 (1− q)

}
2 cosh

[
β
(
J0m+ J

√
qz
)]×

×
∫

dwdŵ

2π
[log 2 cosh (iŵ)] exp

{
iŵw + log 2 cosh (iŵ)+

+ β (J0m+ J
√
qz)w +

1

2
β2J2 (1− q)w2

}
(B.86)
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After some manipulation we find that this can be written as:

ϕB =−N

∫
Dz

∑
y∈{−1,1}

exp
{
β
(
J0m+ J

√
qz
)
y
}

2 cosh
[
β
(
J0m+ J

√
qz
)]×

×
∫

Dζ log 2 cosh
[
β (J0m+ J

√
qz) + β2J2 (1− q) y + βJζ

√
1− q

]
(B.87)

where Dζ is also a gaussian integral with unit variance and vanishing mean.

B.3 Calculation of ϕC

The third and last term we need to calculate is

ϕC =

〈∑
X,Y

P (X, Y |J)
∑
i

log 2 cosh
(
βhi|S

)〉
J

, (B.88)

where hi|S is, again, the field defined as

hi|S =


∑

j Jijηjxj para i ∈ I∑
j Jij (1− ηj)xj para i ∈ J

(B.89)

To do so, we consider the following probability distribution:

PC (X, Y |J ;λS) =
1

ZC

exp

{
β
∑
i,j

Jijxjyi + λS

∑
i

log 2 cosh
(
βhi|S

)}
. (B.90)

Taking the derivative of ⟨logZC⟩J with respect to λS and calculating at λS = 0

∂

∂λS

⟨logZC⟩J

∣∣∣∣
λS=0

=

〈
1

Z

∑
X,Y

[∑
i

log 2 cosh
(
βhi|S

)]
exp

{
β
∑
i,j

Jijxjyi

}〉
J

,

(B.91)
we recover the average we are interested in.

Therefore we need to calculate the free energy for this auxiliary distribution. We
again turn to the replica method, where we first calculate:〈
Zδ

C

〉
J
=

〈 ∑
{Xa,Y a}

exp

{
β
∑
i,j

∑
a

Jijx
a
jy

a
i + λS

∑
i,a

log 2 cosh

(
β
∑
j

θSijJijx
a
j

)}〉
J

(B.92)
where θSij = ηiηj + (1− ηi) (1− ηj) is the same projector we used for the calculation
of ϕA, and, together with θDij = ηi (1− ηj) + (1− ηi) ηj, have the properties (B.10)
to (B.13).

Introducing an integral over a Dirac delta distribution:〈
Zδ

C

〉
J
=

〈 ∑
{Xa,Y a}

∫ ∏
i,a

δ

(
wa

i − iβ
∑
j

θSijJijx
a
j

)
dwa

i

× exp

{
β
∑
i,j

Jij
∑
a

xa
jy

a
i + λS

∑
i,a

log 2 cosh (−iwa
i )

}〉
J

. (B.93)
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Using the Fourier representation of the delta:

〈
Zδ

C

〉
J
=

∑
{Xa,Y a}

∫ ∏
i,a

dwa
i dŵ

a
i

2π

〈
exp

{
β
∑
i,j

Jij
∑
a

xa
jy

a
i + λS

∑
i,a

log 2 cosh (−iwa
i )+

+i
∑
i,a

ŵa
iw

a
i + β

∑
ij

θSijJij
∑
a

xa
j ŵ

a
i

}〉
J

.

(B.94)

Taking the average over the disrder variables J

〈
Zδ

C

〉
J
=

∑
{Xa,Y a}

∫ ∏
i,a

dwa
i dŵ

a
i

2π
exp

{
i
∑
i,a

ŵa
iw

a
i + λS

∑
i,a

log 2 cosh (−iwa
i )+

+
βJ0
N

∑
ij

∑
a
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jy

a
i +

βJ0
N

∑
ij

θSij
∑
a

xa
j ŵ

a
i +

β2J2

2N

∑
ij

[∑
a

xa
j

(
yai + θSijŵ

a
i

)]2 .

(B.95)

Rearranging the terms:

〈
Zδ
C

〉
J
=

∑
{Xa,Y a}

∫ ∏
i,a

dwa
i dŵ

a
i

2π
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i
∑
i,a

ŵa
i w

a
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∑
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+
βJ0
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∑
a

(∑
i
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)(∑
i

yai

)
+

βJ0
N

∑
a

(∑
i

ηix
a
i

)(∑
i

ηiŵ
a
i

)
+

+
βJ0
N

∑
a

(∑
i

(1− ηi)x
a
i

)(∑
i

(1− ηi) ŵ
a
i

)
+

+
β2J2

N

∑
a<b

(∑
i

xai x
b
i

)(∑
i

yai y
b
i

)
+

1

2
β2J2Nδ+

+
2β2J2

N

∑
a<b

(∑
i

ηix
a
i x

b
i

)(∑
i

ηiy
a
i ŵ

b
i

)
+ β2J2γ

∑
i,a

ηiy
a
i ŵ

a
i +

+
2β2J2

N

∑
a<b

(∑
i

(1− ηi)x
a
i x

b
i

)(∑
i

(1− ηi) y
a
i ŵ

b
i

)
+

+ β2J2 (1− γ)
∑
i,a

(1− ηi) y
a
i ŵ

a
i +

+
β2J2

N

∑
a<b

(∑
i

ηix
a
i x

b
i

)(∑
i

ηiŵ
a
i ŵ

b
i

)
+

1

2
β2J2γ

∑
i,a

ηi (ŵ
a
i )

2+

+
β2J2

N

∑
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(∑
i

(1− ηi)x
a
i x

b
i

)(∑
i

(1− ηi) ŵ
a
i ŵ

b
i

)
+

+
1

2
β2J2 (1− γ)

∑
i,a

(1− ηi) (ŵ
a
i )

2

 . (B.96)
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where we define γ =
∑

i ηi. That is, γ is the fraction of elements in the partition I
(and 1− γ is the fraction of elements in the partition J).

Again we introduce integrals over delta distributions and use its Fourier repre-
sentation:〈
Zδ
C

〉
J
=

∫ ∏
a

dmadm̂a

2π/N

∫ ∏
a

dmI
adm̂

I
a

2π/N

∫ ∏
a

dmJ
adm̂

J
a

2π/N

∫ ∏
a

dnadn̂a

2π/N

∫ ∏
a

duI
adû

I
a

2π/N

∫ ∏
a

duJ
adû

J
a

2π/N
×

×
∫ ∏

a<b

dqabdq̂ab
2π/N

∫ ∏
a<b

dqIabdq̂
I
ab

2π/N

∫ ∏
a<b

dqJabdq̂
J
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2π/N

∫ ∏
a<b

drabdr̂ab
2π/N

∫ ∏
a<b

dsIabdŝ
I
ab

2π/N

∫ ∏
a<b

dsJabdŝ
J
ab

2π/N
×

×
∫ ∏

a<b

dtIabdt̂
I
ab

2π/N

∫ ∏
a<b

dtJabdt̂
J
ab

2π/N

∫ ∏
a

dvIadv̂
I
a

2π/N

∫ ∏
a

dvJa dv̂
J
a

2π/N

∫ ∏
a

dτ Iadτ̂
I
a

2π/N

∫ ∏
a

dτJa dτ̂
J
a

2π/N
×

× exp

{
βJ0N

∑
a

(
mana +mI

au
I
a +mJ

a

)
+ β2J2N

∑
a<b

(
qabrab + 2qIabt

I
ab + 2qJabt

J
ab + qIabs

I
ab + qJabs

J
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)
+

+
1

2
β2J2N

∑
a

[
2γτ Ia + 2 (1− γ) τJa + γvIa + (1− γ) vJa

]
+

1

2
β2J2Nδ+

+ iN
∑
a

(
mam̂a +mI
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I
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aû
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a û
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∑
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I
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J
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I
ab + sJabŝ

J
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I
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J
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)
+

+ iN
∑
a

(
vIav̂

I
a + vJa v̂

J
a + τ Ia τ̂

I
a + τJa τ̂

J
a

)
+
∑
i

log ζi

}
, (B.97)

where ζi is the partition function associated with the interaction between the i-th
component of the replicas, and it is given by:

ζi =
∑

{xa
i ,y

a
i }

∫ ∏
a

dwa
i dŵ

a
i

2π
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ŵa
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a
i + λS
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+−i
∑
a

[
m̂ax

a
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aηix
a
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a
i

]
+

+−i
∑
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a
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i + q̂Iabηix

a
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b
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a
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b
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+ ŝIabηiŵ
a
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b
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b
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v̂Iaηi (ŵ

a
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a
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2 + τ̂ Iaηiy
a
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a
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a
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a
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.

(B.98)

Using the saddle point method we are able to calculate the integrals over the
order parameters in the limit N → ∞. Then, as we are interested in the limit δ → 0,
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we linearize the result around δ = 0 and rearrange the terms in the form of (3.13):

⟨logZC⟩J = lim
δ→0

{
βJ0N

δ

∑
a

(
mana +mI

au
I
a +mJ

au
J
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+
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∑
a<b

(
qabrab + 2qIabt

I
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J
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+

+
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∑
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]
+
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I
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I
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)
+
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∑
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I
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J
a + τ Ia τ̂

I
a + τJa τ̂

J
a

)
+

1

δ

∑
i

log ζi

}
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where the parameters represent the saddle points.
To find the saddle points, we take the derivative of ⟨logZ⟩J with respect to each

parameter and set it equal to zero:

m̂a = iβJ0na ma =
1

N

∑
i

⟨xa
i ⟩

rep
i (B.100)

m̂I
a = iβJ0u

I
a mI

a =
1

N

∑
i

ηi ⟨xa
i ⟩

rep
i (B.101)

m̂J
a = iβJ0u

J
a mJ

a =
1

N

∑
i

(1− ηi) ⟨xa
i ⟩

rep
i (B.102)

n̂a = iβJ0ma na =
1

N

∑
i

⟨yai ⟩
rep
i (B.103)

ûI
a = iβJ0m

I
a uI

a =
1

N

∑
i

ηi ⟨ŵa
i ⟩

rep
i (B.104)

ûJ
a = iβJ0m

J
a uJ

a =
1

N

∑
i

(1− ηi) ⟨ŵa
i ⟩

rep
i (B.105)
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q̂ab = iβ2J2rab qab =
1

N

∑
i

〈
xa
i x

b
i

〉rep
i

(B.106)

q̂Iab = iβ2J2
(
sIab + 2tIab

)
qIab =

1

N

∑
i

ηi
〈
xa
i x

b
i

〉rep
i

(B.107)

q̂Jab = iβ2J2
(
sJab + 2tJab

)
qJab =

1

N

∑
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(1− ηi)
〈
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i x

b
i
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i
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r̂ab = iβ2J2qab rab =
1

N

∑
i

〈
yai y

b
i

〉rep
i
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ŝIab = iβ2J2qIab sIab =
1
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∑
i

ηi
〈
ŵa

i ŵ
b
i
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i
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ŝJab = iβ2J2qJab sJab =
1
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∑
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(1− ηi)
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ŵa

i ŵ
b
i
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i
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t̂Iab = 2iβ2J2qIab tIab =
1
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∑
i

ηi
〈
yai ŵ

b
i
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i
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t̂Jab = 2iβ2J2qJab tJab =
1
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∑
i

(1− ηi)
〈
yai ŵ

b
i

〉rep
i
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v̂Ia =
i

2
β2J2γ vIa =

1

N

∑
i

ηi
〈
(ŵa

i )
2〉rep

i
(B.114)

v̂Ja =
i

2
β2J2 (1− γ) vJa =

1

N

∑
i

(1− ηi)
〈
(ŵa

i )
2〉rep

i
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τ̂ Iab = iβ2J2γ τ Ia =
1

N

∑
i

ηi ⟨yai ŵa
i ⟩

rep
i (B.116)

τ̂Ja = iβ2J2 (1− γ) τJa =
1

N

∑
i

(1− ηi) ⟨yai ŵa
i ⟩

rep
i (B.117)

where ⟨·⟩repi denotes the average over the distribution associated with the i-th com-
ponent replica interaction Hamiltonian, Hrep

i , such that

ζi =
∑

{xa
i ,y

a
i }

∫ ∏
a

dwa
i dŵ

a
i

2π
e−Hrep

i . (B.118)

We note that some order parameters depends on each other. So we use these
relationships to write:

⟨logZC⟩J = lim
δ→0

{
−βJ0N

δ

∑
a

(
mana +mI

au
I
a +mJ

au
J
a

)
+

1

2
β2J2N +

1

δ

∑
i

log ζi+

− β2J2N

δ

∑
a<b

(
qabrab + 2qIabt

I
ab + 2qJabt

J
ab + qIabs

I
ab + qJabs

J
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)}
(B.119)
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and

ζi =
∑

{xa
i ,y

a
i }

∫ ∏
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a
i

2π
exp

{
i
∑
a

ŵa
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2yai ŵ
a
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}
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For λS = 0, we calculate the integral over {wa
i }, resulting in a delta distribution

δ (ŵa
i ). Thus, when we calculate the order parameters, the ones that involves aver-

ages of {ŵa
i } will be zero. In fact, in this case, the only ones that will be non zero

is:

ma =
1

N

∑
i

⟨xa
i ⟩

rep
i qab =

1

N

∑
i

〈
xa
i x

b
i

〉rep
i

(B.121)

mI
a =

1

N

∑
i

ηi ⟨xa
i ⟩

rep
i qIab =
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N

∑
i

ηi
〈
xa
i x

b
i

〉rep
i
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mJ
a =

1

N

∑
i

(1− ηi) ⟨xa
i ⟩

rep
i qJab =

1

N

∑
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(1− ηi)
〈
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i x

b
i
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na =
1

N

∑
i

⟨yai ⟩
rep
i rab =

1

N

∑
i

〈
yai y

b
i

〉rep
i

(B.124)

Additionally, if we look at ζi for λS = 0,

ζi =
∑

{xa
i ,y

a
i }

exp

{
βJ0

∑
a

nax
a
i + β2J2

∑
a<b

rabx
a
i x

b
i + βJ0

∑
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may
a
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qaby
a
i y

b
i

}
(B.125)

we recover the partition function for the LSK model, as expected. In particular we
notice that it is symmetric in the index i. Therefore the averages ⟨·⟩repi present in
the order parameters expressions will be equal for all i:

⟨xa
i ⟩

rep
i = ma

〈
xa
i x

b
i

〉rep
i

= qab (B.126)

⟨yai ⟩
rep
i = na

〈
yai y

b
i

〉rep
i

= rab (B.127)

and we can write

mI
a = γma qIab = γqab (B.128)

mJ
a = (1− γ)ma qJab = (1− γ) qab (B.129)
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Now, back to a general λS, we consider the replica symmetric ansatz. In this
ansatz the order parameters no longer depends on the replica index, and we write
ζi as:

ζRS
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For the sake of clarity, we define the quantities

σ2
i|S = ηi

(
γ − qI

)
+ (1− ηi)

(
1− γ − qI

)
(B.131)

and

ρSi = ηiρ
I + (1− ηi) ρ

J (B.132)
ρDi = (1− ηi) ρ

I + ηiρ
J (B.133)

for ρ = m, q, u, s, t.
In terms of these quantities, we have
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(B.134)
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and performing the average over {xa} and completing the squares,

ζRS
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Introducing gaussian integrals for the quadratic terms we notice that the integrals
factor in the replica index a
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i =exp

{
−1

2
β2J2

(
r + 2tSi + sSi + q +

(
σS
i

)2)
δ

}
×

×
∫

Dz

(
2 cosh

[
β

(
J0
(
n+ uSi

)
+ Jz

√
r + 2tSi + sSi

)])δ

×

×
∫

DzS

∫
DzD

 ∑
yi∈{−1,1}

∫
dwidŵi
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(ŵi + yi) +

1

2
β2J2

(
σS
i

)2
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Taking the logarithm and linearizing around δ = 0

log ζRS
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Now we are finally able to substitute in the expression for ⟨logZC⟩J and take
the limit δ → 0.
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Taking the derivative with respect to λS and calculating at λS = 0 we get ϕC
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∑
i

∫
DzS

∫
DzD

( ∑
yi∈{−1,1}

∫
dwidŵi
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After some manipulations we were able to get an expression for ϕC
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This expression can be developed even further by separating the sum over i into
two sums, one over i ∈ I and another over i ∈ J , and by doing this we get a
expression with the explicit dependence in γ
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