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generosos e incessantes esforços foram fundamentais. Sempre que sentirem orgulho de mim,
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Resumo

O desafio de estender a termodinâmica para o regime fora do equilı́brio é um problema fun-

damental na fı́sca estatı́stica que recentemente obteve muito progresso. Neste contexto surge a

termodinâmica estocástica, que descreve transformações de energia a partir da matemática dos

processos de Markov, formando um relevante ferramental na fı́sica estatı́stica moderna. Uma

das suas principais grandezas, a produção de entropia, estende a segunda lei e quantifica irre-

versibilidade temporal. Na presente tese de doutorado, estudamos diferentes problemas de ter-

modinâmica fora do equilı́brio como a inferência da produção de entropia a partir de informação

parcial e seu uso como um indicador de transições de fase. Mais especificamente, na primeira

parte, desenvolvemos um método para analisar a estatı́stica de sistemas a partir da observação

de algumas transições visı́veis e suas implicações em termodinâmica e biofı́sica. Provamos um

limite inferior para a produção de entropia superior a outras desigualdades conhecidas na lit-

eratura e estudamos como ele é saturado, também recuperamos um teorema de flutuação para

dinâmicas parcialmente observadas. Na segunda parte mostramos que a produção de entropia

localiza e identifica transições de fase contı́nuas e de primeira ordem. Flutuações de correntes

integradas na vizinhança de transições de fase de primeira ordem são consideradas, e partic-

ularmente a competição entre tempo de observação e o tempo de tunelamento interfases. Por

último, abordamos a termodinâmica de máquinas térmicas a tempo finito e suas otimizações,

em particular pelo controle do tempo de interação entre sistema e reservatórios e a interação

entre partı́culas.

Palavras-chave: Termodinâmica estocástica; transições de fase fora do equilı́brio; máquinas

térmicas; mecânica estatı́stica.



Abstract

The challenge of extending thermodynamics to the nonequilibrium regime is a fundamental

problem in statistical physics that has witnessed many developments in recent years. Stochastic

thermodynamics was developed in this context, it describes energy transformations from the

mathematics of Markov process, constituting a relevant toolbox in modern statistical physics.

One of its main quantities, entropy production, extends the second law and quantifies time

irreversibility. In the present doctoral thesis, we study distinct nonequilibrium thermodynamics

problems such as the inference of entropy production from partial information and its usage

as a phase transition indicator. More specifically, in the first part, we develop a framework

to assess the statistics of systems through the observation of a set of visible transitions and

its implications to thermodynamics and biophysics. We prove a lower bound for the entropy

production tighter than other known inequalities and study its saturation, and we also recover a

fluctuation theorem for partially observed dynamics. In the second part, we show that entropy

production locates and distinguishes continuous and first-order phase transitions. Fluctuations

of integrated currents in the vicinity of first-order phase transitions are addressed, in particular

the key interplay between observation time and inter-phase tunneling times. Lastly, we address

the thermodynamics of finite-time heat engines and their optimization, in particular through the

control of interaction time between system and reservoirs and interaction between particles.

Keywords: Stochastic thermodynamics; nonequilibrium phase transitions; heat engines; statis-

tical mechanics.
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excerpts from the original papers are transcribed here.
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“Our primary interest is frequently in processes

rather than in states. It is the life process that

captures our imagination, rather than the eventual

equilibrium state to which each organism inevitably

proceeds.”

Herbert B. Callen [1]Chapter 1

Introduction

From the atomic to cosmological scale, the celebrated theory of thermodynamics unifies the

description of phenomena involving an ensemble of particles at thermal equilibrium. It de-

scribes how equilibrium macroscopic systems are affected by macroscopic properties, such as

temperature, that emerge from the behavior of microscopic constituents. However, many rel-

evant systems in nature operate out of equilibrium and present fluxes; they are present across

all scales, such as the constant heat flow from the Sun causing life on Earth, the transport of

hormones from endocrine glands to target cells, and the movement of electrons along wires.

Typically, the macroscopic limit is characterized by a suppression of fluctuations of physi-

cal quantities, in and out of equilibrium. However, these fluctuations are crucial to understand-

ing systems on smaller scales, thus the need for a stochastic treatment. The mathematics of

stochastic dynamics, Markovian or not, combined to thermodynamics, gave rise to the field

of stochastic thermodynamics. It enables modeling mesoscopic systems under the assumption

that environmental degrees of freedom are considered to be in equilibrium and coarse-grained.

Nonequilibrium is captured by stochastic thermodynamics and manifested via the break of de-

tailed balance and the emergence of fluxes. These fluxes are amenable to a thermodynamical

description, and their fluctuations are accounted for. Even further, many results involving fluc-

tuations are unique to stochastic thermodynamics.

Recent years have witnessed many experimental validations of stochastic thermodynamics’

results, and the development of techniques to control small systems leverage its relevance to

technological applications. Many systems that were once restricted to Gedankenexperiments

are now real and more controllable, such as Maxwell demons and single-particle heat engines.

Apart from further developing stochastic thermodynamics results, a major challenge lies in ex-

10



CHAPTER 1. INTRODUCTION 11

tending its range of application; for instance, to systems with hidden degrees of freedom. When

the observer is only sensitive to partial information, coarse-graining schemes based on meso-

scopic state occupancy are usually employed. However, the whole theory of thermodynamics

is based on transformations rather than sojourns. Numerous systems of interest only provide

partial information through the occurrence of transitions, for example, electronic devices and

fermionic chains connected to monitored reservoirs, and molecular motors such as ribosomes

translocating along RNA. Here, we provide an alternative coarse-graining framework based on

transitions that reveals the dynamical and thermodynamical properties of the observation of

transformations.

A stochastic treatment also extends the prosperous field of phase transitions, in particu-

lar nonequilibrium phase transitions. We study how relevant fluxes behave during continuous

and first-order phase transitions; not only their averages, but also higher-order moments. The

behavior of entropy production rate proves to constitute a powerful tool for localizing and char-

acterizing phase transitions. A finite-time version of large deviation theory is employed to study

the statistics of fluxes in the vicinity of first-order phase transitions. For so, a notion of con-

ditional quantities is explored based on a two-state coarse-graining based on phases. These

results are applied to distinct nonequilibrium models that present phase transitions: majority

vote, Schlögl, and Potts. Despite the last being an iconic equilibrium model, its nonequilibrium

versions have attracted some attention.

Lastly, we explore the field of nonequilibrium heat engines. At all scales, useful transfor-

mations of energy are of utmost importance, and many experimental realizations of small heat

engines are being developed recently. Power and efficiency are two relevant figures of merit

for heat engines, and optimizing both at the same time is in general not feasible. Maximum

power operation often leads to the Curzon-Ahblorn efficiency, while maximum efficiency leads

to vanishing power. We explore the interplay between power and efficiency when the physical

parameters and the protocol are controlled in a collisional heat engine and an interacting two-

particle Brownian engine. We observed the relevance of asymmetric times in the first model

and how the interaction intensity affects the performance in the second.

As stated by Ludwig von Bertalanffy in 1949 [2], following Prigogine’s works, “the consid-

eration of irreversible phenomena leads to the conception of a thermodynamical, as opposed to

astronomical, time.”. This notion of time is the common denominator of the works discussed

throughout this thesis. The physicality of timescales that arise in systems of thermodynamic in-
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terest, in particular systems out of equilibrium, is discussed. We dissect the emerging rhythms,

both internal and external. Internal rhythms arise in systems that, given some conditions such as

temperature and state space, are free to evolve. They can be assessed by modeling the dynamics

or by inference schemes. Conversely, external rhythms need not be modeled since they are not

emerging, they are imposed through e.g. time-periodic forces exerted by external agents; the

reaction to such has fundamental thermodynamic consequences.

This thesis is organized as follows: Chapter 2 is a brief summary of the basics, Chap. 3

introduces the transition-based coarse-graining framework and its results, Chap. 4 addresses

nonequilibrium phase transitions, and Chap. 5 the study of heat engines. Conclusions and

discussions are drawn in the final Chap. 6. The front page of all published/submitted articles

can be found in the Appendix.



Chapter 2

Setting the stage

2.1 Mesoscopic stochastic dynamics

In contrast to the deterministic character of macroscopic thermodynamics, we resort to Marko-

vian stochastic processes to describe how the probability of mesoscopic states evolves in time.

A mesoscopic state is a coarse-grained version of the microscopic configurations based on their

energy and irrespective of the microscopic evolution, which can be described by mechanics.

For instance, the Brownian motion of pollen grains suspended in water is described by random

forces rather than individual molecule collisions.

These mesoscopic states will be used to model systems of interest, and the evolution of prob-

ability distributions describe the behavior of relevant physical quantities, such as currents, av-

erage velocities, efficiency, and entropy production. We consider continuous-time, autonomous

chains, Markovian evolution, and split the dynamics into two cases, discrete and continuous

state space.

2.1.1 Discrete state space

The case of discrete state space is known as a continuous-time Markov chain, or simply CTMC,

and sometimes known as jump processes. The time evolution of the probability mass function

follows a partial equation known as the master equation.

Setting the tempo, transition rates define exponential distributions that are followed by the

random variable known as the sojourn time, the time spent in a state before the next transition.

While the states of a Markov chain are constrained by possible system configurations, values

of transition rates are affected by external parameters since they coarse-grain environmental de-

13
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grees of freedom. In CTMCs the transitions are instantaneous, which can be seen as a timescale

separation; therefore, time is rather spent in states.

The state space is rendered by a network whose vertices represent states and edges rep-

resent transitions. Lastly, the network is assumed to be irreducible: There exists a path with

positive probability connecting each to every pair of states. This property ensures, via Perron-

Frobenius theorem, the existence of a stationary probability mass function towards which the

system relaxes to. Possible “reducible” networks are composed of the combination of discon-

nected irreducible networks, networks with absorbing states or with absorbing cycles.

Figure 2.1: Example of an irreducible network.

The Markov chain over the N states network is defined by a set of N ×N time-independent

transition rates. A transition rateWij is the mean number of jumps from state j to state i per unit

of time, given that the system is occupying j. The Markov property states that the probabilities

related to the next jump only depend on the current state; thus, the chain has no memory.

Let p(j, t) be the fraction of paths from a large ensemble that occupy state j at time t,

viz. the occupation probability, hence the mean number of transitions j → i per unit time is

Wijp(j, t) at t. Therefore, at a given time t, the total flux towards i is given by
∑

j 6=iWijp(j, t)

and outwards by
∑

j 6=iWjip(i, t), the mismatch between them is the flux of probability per unit

of time of state i, comprising the so-called master equation

d

dt
p(i, t) =

∑
j 6=i

Wijp(j, t)−Wjip(i, t). (2.1)

Alternatively, it can be expressed in matrix form1 as

d

dt
|p(t)〉 = W |p(t)〉 , (2.2)

where W is the stochastic matrix (sometimes rate matrix, evolution matrix and W-matrix), with
1Using Dirac’s notation, |p(t)〉 is a column vector with elements p(i, t), for every state i with arbitrary order.

Its transpose is the row vector 〈p(t)|. Also, |i〉 is used as a notation for the column vector with elements δij to
make reference to state i.
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transition rates as off-diagonal elements Wij and diagonal elements are defined as the negative

of exit rates Wii := −∑j 6=iWji. As a consequence, the elements in every column add up to

zero, which is a property of Markovian stochastic matrices.

The Perron-Frobenius ensures the existence of a unique stationary distribution given by the

right eigenvector of W whose eigenvalue is zero,

W |p∞〉 = 0, (2.3)

towards which the system is evolving to, and is known as stationary distribution or steady-

state 2. Its solution can be obtained by different approaches; a general and common approach

involves using Cramer’s rule, which provides the solution

p∞(i) = 〈i|p∞〉 ∝ (−1)i+jdet[W\(j,i)] ∀j, (2.4)

where W\(j,i) is the result after removing row j and column i from matrix W. Another common

general solution for the master equation is obtained using Hill’s diagram method [3], and distinct

solutions can appear for particular structures of W.

The stationary distribution can be of equilibrium or out of equilibrium, where the former

is achieved when the detailed balance condition is met: Wijp∞(j) = Wjip∞(i) ∀i, j. This

condition implies that every probability current stalls, and Eq. (2.1) vanishes term by term. It

is important to notice that the stationary distribution is a property of the stochastic matrix, as

shown in Eq. (2.4), thus the notion of equilibrium lies in the transition rates and the topology of

the CTMC.

The formal solution of the master equation (2.2) is given by the product of a propagator and

the initial state

|p(t)〉 = exp(tW) |p(0)〉 . (2.5)

A spectral decomposition of the propagator leads to p(t) =
∑N

i=1 cie
λit |vi〉, where coefficients

ci depend on the initial state |p(0)〉 and |vi〉 are the eigenvectors related to eigenvalues λi. As-

suming that the eigenvectors are non-degenerate and, since W is a stochastic matrix, all eigen-

values have a negative real part while the dominant one is zero, therefore, the long-time limit of

the occupation probability vector approaches the stationary distribution as a linear combination

2Steady-state can create confusion since the word “state” is also used for the network vertices, however it is the
most widespread nomenclature.
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of exponentials:

lim
t→∞
|p(t)〉 = lim

t→∞
etW |p(0)〉 = lim

t→∞

N∑
i=1

cie
λit |vi〉 = |p∞〉 , (2.6)

where in the last equality the coefficients were dropped due to the normalization of probabilities.

This framework also fits time-dependent transition rates, in particular the case of periodic

rates is important to the study of driven systems such as heat engines. In ergodic systems, these

distributions become time-dependent and periodic in the long-time limit.

Several systems of interest are modelled by master equations, but they often are too compli-

cated to be analytically dealt with, raising the necessity of a numerical simulation framework

for CTMCs. This framework is provided by the Gillespie algorithm [4], which draws the next

transition proportionally to the respective transition rate

P [i|j] =
Wij∑
k 6=jWkj

(2.7)

and the time interval before the next jump is exponentially distributed

P [t|j, i] =

(∑
k 6=j

Wkj

)
exp

(
−t
∑
k 6=j

Wkj

)
, (2.8)

which is referred to as a Poisson process. The Gillespie algorithm produces trajectories accord-

ingly, it is a powerful tool in particular for treating the sojourn times as random variables.

2.1.2 Continuous state space

For simplicity, we start with the one-dimensional case. The motion of a particle performing

Brownian motion along the line subject to a position-dependent force is described by a differ-

ential equation involving three forces, dissipative, external, and random:

m
d2x

dt2
= −αdx

dt
+ fext(x) + fT (t), (2.9)

where m is the mass, and α the friction coefficient (−αv is the dissipative force, also known

as drift). fext(x) is the external force applied to the particle; it depends on the position and

usually originates from a potential that, for example, can trap the particle. fT is the random

force stemming from the environment with temperature T , its average is zero since there is no
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preferential direction for the environment

〈fT (t)〉 = 0. (2.10)

The fluctuation of the random force is related to the temperature and it is not correlated over

time since the model assumes independent contributions (white noise), therefore

〈fT (t)fT (t′)〉 ∝ Tδ(t− t′). (2.11)

When the mass is negligible, Eq. (2.9) arrives at the overdamped Langevin equation for a

general external force
dx

dt
=

1

α
[fext(x) + fT (t)] . (2.12)

Notice how the friction coefficient α acts as a scale for the forces, thus we will set it to unity for

clarity and the Langevin equation is expressed as

dx

dt
= fext(x) + fT (t). (2.13)

An important property of the Langevin equation is that the net displacement is due only

to the external force, since the random force does not have preferential directions. However,

higher-order moments of the position are also related to the temperature, and thus the diffusion

depends on it.

Expanding the characteristic function of a discretized version of Eq. (2.13) [5], it is possible

to derive the evolution for the probability density, the Fokker-Planck equation

∂

∂t
P (x, t) = − ∂

∂x
[fext(x)P (x, t)] +

Γ

2

∂2

∂x2
P (x, t), (2.14)

where P (x, t) is the probability density function of a particle following a Langevin equation,

and Γ is related to the temperature through the evaluation of Eq. (2.11), 〈fT (t)fT (t′)〉 = Γδ(t−
t′).

Equation (2.14) is conveniently expressed as a continuity equation, in terms of probability

currents J (x, t):
∂

∂t
P (x, t) = − ∂

∂x
J (x, t), (2.15)
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where

J (x, t) = fext(x)P (x, t)− Γ

2

∂

∂x
P (x, t). (2.16)

The first term represents the currents due to drift and external forces, and the second term is due

to diffusion.

To solve the Fokker-Planck equation, it is necessary to consider boundary conditions, which

are usually periodic or of vanishing probabilities and probability currents at the boundaries. In

the stationary distribution, the current J (x, t) does not depend on position,

∂

∂x
J∞(x, t) = 0. (2.17)

When ever the probability currents vanish the equation above is satisfied and the stationary dis-

tribution is known as equilibrium, J∞(x, t) = 0 is the detailed balance condition for continuous

state-space. To obtain the equilibrium stationary probability density one has to find the zero of

Eq. (2.16).

The present description can be extended for an arbitrary number of particles by considering

a family of Langevin equations with uncorrelated noise functions. The joint probability density

P (x1, x2, . . . , t) will follow a multi-variate Fokker Planck equation that has can be written as

∂

∂t
P (~x, t) = −

∑
i

∂

∂xi
Ji(~x, t), (2.18)

where each current Ji has its own force fext,i and temperature Ti.

2.2 Stochastic Thermodynamics

The identification of thermodynamic quantities and transformations in the mesoscopic dynam-

ics constitutes the field of stochastic thermodynamics. Importantly, quantities can be defined

at the trajectory level, therefore they fluctuate. In traditional thermodynamics the systems are

macroscopic and fluctuations get suppressed, while in stochastic thermodynamics the fluctua-

tions are relevant and results about their behavior have been largely explored, such as fluctuation

relations.

In the framework stochastic thermodynamics, we assume that the system is in contact with

an equilibrium reservoir of temperature T whose properties are not affected by the system. It
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means that all removed degrees of freedom are assumed to relax in a much faster timescale.

This assumption is reasonable in many applications of the framework such as colloidal particles

and biological motors.

The identification of energetics in stochastic dynamics was performed by Sekimoto in Ref. [6],

and consequently the establishment of a fluctuating first law at the trajectory level. Consider

a system that obeys a Langevin equation, with external force stemming to a potential V (x, a),

which depends on the position and one external parameter. Following Ref. [6], Equation (2.13)

multiplied by a infinitesimal displacement can be expressed as

0 = −
(
−αdx

dt
+ fT

)
dx− fextdx. (2.19)

We make some identifications, −αdx
dt

+ fT is the force applied by the bath on the system

and fext = −∂V/∂x. Multiplied by dx, the former is the differential heat exchange from the

bath to the system −dQ. The latter is one of the terms in the differential potential energy

change dV = (∂V/∂x)dx + (∂V/∂a)da, while (∂V/∂a)da is identified as the infinitesimal

work dW = (∂V/∂a)da performed by the manipulation of external parameter a. Together, the

first law reads3

dW = dQ+ dV. (2.20)

For the study of entropic quantities, we start with the Gibbs entropy

S(t) = −kB

∫
P (~x, t) lnP (~x, t)d~x, (2.21)

where we set kB = 1, and whose time derivative reads

d

dt
S(t) = −

∫
∂

∂t
P (~x, t) lnP (~x, t)d~x (2.22)

= −
∫

[lnP (~x, t) + 1]
∂P (~x, t)

∂t
d~x (2.23)

This expression can be specialized in terms of the Fokker-Planck equation (2.14). As shown in

Ref. [7] (see Ref. [8] for the underdamped regime), integrating by parts, using the definition of

3This is not a proof or verification of the first law, the energetic quantities are defined in order to always satisfy
this equality.
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Ji, and the assumption that limxi→±∞ Ji = 0,

d

dt
S(t) =

∑
i

2

Γi

∫ J 2
i

P
d~x−

∑
i

2

Γi

∫
fext,iJid~x, (2.24)

where the first term is always non-negative and identified as the entropy production rate

σ :=
∑
i

2

Γi

∫ J 2
i

P
d~x, (2.25)

and the second is the entropy flux rate from the system to the environment

φ :=
∑
i

2

Γi

∫
fext,iJid~x. (2.26)

The discrete state-space version of the entropic balance is given by transition rates and

occupation probabilities [9, 10]. In terms of the probability flux from state j to i, Jij(t) =

Wijp(j, t)−Wjip(i, t), the entropy production reads

σ(t) =
1

2

∑
ij

Jij(t) log
Wijp(j, t)

Wjip(i, t)
, (2.27)

that is also known as the Schnakenberg expression, and the entropy flux

φ(t) =
1

2

∑
ij

Jij(t) log
Wij

Wji

. (2.28)

The mismatch between entropy production and entropy flux rates is, as the names suggest, the

increase in entropy of the system:

d

dt
S(t) = σ(t)− φ(t) =

1

2

∑
ij

Jij(t) log
p(j, t)

p(i, t)
. (2.29)

In the steady-state, Eqs. (2.29) and (2.24) vanish. Therefore, the entropy production rate

equals the entropy flux rate: All the entropy produced is dumped into the thermal reservoirs.

When detailed balance is satisfied, Jij = 0 and Ji = 0, therefore all fluxes stall and there is

no entropy production. Here, the importance of entropy production rate starts to emerge, as a

quantity that probes the distance to equilibrium.

Since the transition rates are consequences of the established coarse-graining, they convey
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the notion of temperature. The connection is given by the local detailed balance condition

[11] that ensures thermodynamic consistency: In the absence of external forces, the system will

relax to a Gibbs equilibrium distribution. The local detailed balance states that the ratio between

opposite transition rates equals the exponential of the entropy flux exchanged between system

and reservoir at the event of such transition,

Wij

Wji

= exp(−φij). (2.30)

The entropy flux φij can have different expressions, depending on the parameters changing

between states i and j. For instance, when the only difference between them are the energies, the

entropy flux is given by the heat exchange between system and reservoir over the temperature:

φij = exp[−(Ei − Ej)/kBT ].

In some models more than one equilibrium bath is in contact with the system of interest,

which is very common in heat engines. There exists a set of transition rates related to each

reservoir, and every set has to satisfy local detailed balance by itself to ensure thermodynamic

consistency. The total transition rate of a transition will be given by the sum of every reservoir

contribution.

Immediately, a challenge to stochastic thermodynamic becomes evident. When a transition

is not reversible, in the sense that it cannot be performed in the opposite direction, the flux

of entropy diverges. For this reason, many works assume microreversibility: The inverse of a

transition can be performed if and only if said transition can.

Lastly, Eq. (2.28) for the entropy flux has a bilinear form in terms of fluxes and the log-ratio

of directly involved transition rates. The last term is identified as the microscopic affinity or

thermodynamic force between two states [10],

Aij = log
Wij

Wji

. (2.31)

The notion of macroscopic affinities is of key importance in the thermodynamic analysis of

systems with Markovian dynamics, and it is defined as the sum of all Aij’s involved in an

oriented cycle of the network [10].
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2.3 Fluctuation and uncertainty relations

Fluctuation relations: Compared with the celebrated theory of (equilibrium) thermodynamics,

little is known about nonequilibrium. Recent years have witnessed great development in the

study of nonequilibrium thermodynamics, including stochastic thermodynamics’ first milestone

known as fluctuation relations [12–14]. Strikingly, they bridge nonequilibrium to equilibrium

processes. For instance, the Crooks fluctuation theorem [14] leads to the Jarzynski equality

[15], which states that the nonequilibrium work W involved in taking a system from one equi-

librium state to another can be related to the difference in equilibrium free energy ∆F between

them, 〈exp(−βW )〉 = exp(−β∆F ), with β denoting the inverse temperature of the reservoir.

This equality can be employed in many small-scale experiments, in particular the folding and

unfolding of RNA hairpins through optical tweezers4 [16]. A plethora of experiments verified

or applied stochastic thermodynamics results to small-scale systems, classical and quantum,

arbitrarily far from equilibrium; for examples, see Ref. [17].

Whereas fluctuation relations are properties of numerous observables, we focus in particular

on fluctuation relations for the entropy production rate. Let γτ be a trajectory over the state

space, i.e. the time series of occupied states in t ∈ {0, τ}; its time-reversed trajectory γτ is such

a sequence after transformation t → τ − t. The fluctuating entropy production over a steady

state trajectory can be expressed as the distinguishability between the probability of a trajectory

and its time reversal [18–20],

Στ [γτ ] = log
P [γτ ]

P [γτ ]
, (2.32)

where we remind that kB = 1. Its average value, simply dubbed the entropy production rate, is

given by

σ = lim
τ→∞

1

τ

∑
γτ

P [γτ ] log
P [γτ ]

P [γτ ]
= lim

τ→∞

1

τ
D (P [γτ ]||P [γτ ]) . (2.33)

Here, we observe the connection between entropy production and irreversibility, σ quantita-

tively estimates the probabilistic difference between forward and backward trajectories, reveal-

ing the arrow of time. In equilibrium the trajectories and their reverse share the same probability

since there is no preferential time direction P [γτ ] = P [γτ ], hence watching a video of an equi-

librium system in reverse is indistinguishable from the original. Therefore, entropy production

vanishes, so it is also considered a quantitative distance to equilibrium.

Entropy production is a time-asymmetric functional of the trajectory, i.e. odd under time-

4Optical tweezers are stochastic thermodynamics’ own piston.
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reversal transformation, it acquires an opposite sign when the trajectory is time reversed. From

this property and definition (2.32), a fluctuation relation can be derived for the fluctuating en-

tropy production of a steady-state trajectory, known as the detailed (steady-state) fluctuation

theorem:
P [Στ ]

P [−Στ ]
= exp{Στ}, (2.34)

where P [Στ ] =
∑

γτ
P [γτ ]δΣτ [γτ ],Στ . Equation (2.34) holds beyond the stationary distribution.

For instance, it has a conjugate probability P [−Στ ] in the denominator when the evolution is

not time-symmetric, e.g. in the presence of time-dependent driving, and it has explicit mentions

to the heat involved between system initially at distinct temperatures in exchange fluctuation

theorems [21]

Consequence of the detailed fluctuation theorem is the integral fluctuation theorem, that, as

the name suggests, is obtained from the integral of Eq. (2.34). The integral fluctuation theorem

of a trajectory’s entropy production is

〈exp (−Στ )〉 = 1. (2.35)

With no further assumptions, Jensen’s inequality leads to

〈Στ 〉 ≥ 0, (2.36)

which is known as the second law in stochastic thermodynamics5.

Negative entropy production values have been related to “violations” of the second law of

thermodynamics, they are feasible in microscopic systems due to the fluctuating character of

the quantities involved. However, Eq. (2.34) shows that the probability of negative entropy pro-

duction values is exponentially suppressed by the probability of those that are positive, leading

to a non-negative average value in Eq. (2.36), which is the result observed in macroscopic ther-

modynamics. Therefore, negative entropy production values are possible, but come from mere

fluctuations.

Lastly, when the nonequilibrium process starts and ends in equilibrium states, the entropy

production can be related to the Helmholtz free energy by Στ = −β∆F + βW . Usually τ has

to be infinitely large, that way the system naturally evolves towards an equilibrium state after

the nonequilibrium process. Plugging this result into the integral fluctuation theorem Eq. (2.35)

5It is not a proof of the second law, this property is engraved in the stochastic dynamics’ assumptions [22].
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we obtain the famous Jarzynski equality [15]

〈exp(−βW)〉 = exp(−β∆F ), (2.37)

which relates the statistics of fluctuating workW and equilibrium free energy differences.

Uncertainty relations: Ilya Prigogine, Nobel laureate “for his contributions to non-equilibrium

thermodynamics, particularly the theory of dissipative structures” [23], has noted and explored

the inseparable role of time in out of equilibrium systems. In his Nobel lecture he stated that

“we cannot propagate signals with arbitrary speed, we cannot construct a perpetuum mobile for-

bidden by the second law” [24]. Prigogine compared forbidden thermodynamics phenomena to

speed bounds in relativity.

Recently, a lot of effort has been concentrated into bounds that are exclusive to nonequi-

librium processes. These bounds relate dissipation to fluctuations [25, 26], the speed at which

tasks can be performed [27], and the indirect observation of dissipation estimators [III, 28–30].

The usefulness of such bounds goes beyond the understanding of insurmountable limits, they

can be used for inference schemes: If it is known that at least some amount A of a resource has

to be spent for a process to be observed, the observation of such a process logically leads to the

inference that A or more was spent. The fact that a lower/upper bound is established is key for

indirect observations of a physical quantity, it creates a clear connection between the inferred

and the real values when only partial information is available. Interestingly, any fluctuation

relation leads to the existence of a thermodynamic uncertainty relation [31, 32].

A second milestone in stochastic thermodynamics is the establishment of (original) thermo-

dynamic uncertainty relation, that was proposed for biomolecular systems described by Markov

dynamics [25]. They were rigorously proved, and many extensions followed [26, 33–43]. It

shows for steady-state Markov systems that the signal-to-noise ratio of any thermodynamic flux

is bounded by half the entropy production rate

〈J〉2
Var(J)

≤ Σ

2
, (2.38)

where J is an arbitrary current and Σ the average entropy production. This relation shows that

thermodynamics, through its celebrated entropy production, bounds nonequilibrium dynamics.

For precise and strong currents, there is an unavoidable production of entropy.

There are many other relevant aspects of stochastic thermodynamics that were not covered
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in this introductory Chapter, such as Maxwell demons, implications of time-dependent drivings,

decompositions of entropy production, fluctuating efficiency, active matter, computation, quan-

tum stochastic thermodynamics, and more. The field is still very active, and we expect more

milestones and applications to come.

As a final comment, we highlight the role of entropy production rate in stochastic thermo-

dynamics, supporting its regular presence throughout this thesis: It generalizes the second law

for nonequilibrium processes, measures irreversibility, distance to equilibrium and energy dis-

sipation, has particular symmetries in its probability distribution, and is connected to Lyapunov

stability of Markov processes [44]. Entropy production rate is a quantity of theoretical and

experimental interest, and it will be analyzed in distinct scenarios.



“Que metro serve para medir-nos? Que forma é

nossa e que conteúdo?”

Carlos Drummond de Andrade, “Perguntas em

forma de cavalo-marinho” [67]

Chapter 3

Transition-based coarse graining

Whenever a hydrogen atom emits a photon, a molecular motor moves along a microtubule, an

electron tunnels inside a junction, or a ribosome translates a mRNA molecule to synthesize

spike proteins, the observed phenomena arise from transitions between different states. In nu-

merous systems of interest, a particular subset of transitions emit signals that are significantly

easier to observe through the experimental apparatus, we call them visible transitions. For in-

stance, despite experimental results suggesting the existence of distinct transitions to which the

apparatus is insensitive, the rotation of a bacterial motor’s flagella can be observed in terms of

the switch of its orientation, the only two visible transitions [45]. Moreover, another example is

the directed transport of organelles by molecular motors inside cells. They are fundamental for,

e.g., neuronal function and diverse cellular activities; their motion can be tracked and studied by

imaging techniques, while the internal ATP-ADP metabolic cycle is experimentally unavailable

due to requiring very refined resolutions [46–48].

Such systems where only partial information available pose a challenge for Markov mod-

elling. Describing stochastic processes by the mathematics of Markov processes is successful

across fields: physics [49], chemistry [50–52], biology [53–55], computation [56], and oth-

ers. The Markovian description, as discussed in Chapter 2, thrives when all mesostates are

known and can be monitored, allowing for detailed thermodynamic analysis even out of equi-

librium [6, 57–60]. To address the challenge of analyzing experiments/simulations while being

aware of the absence of some data in the collected time-series, different procedures of coarse-

graining have been explored in recent years. Coarse-graining is so fundamental in equilibrium

thermodynamics that its name is scarcely mentioned, the macroscopic description of gases can

be viewed as a coarse-graining of the mechanical description of particles. These procedures

26
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Figure 3.1: Examples of systems that emit partial information through the occurrence of a
few particular transitions. (a) General scheme of a discrete state space with transitions with
all states (circles) and some transitions (black arrows) hidden, while some transitions (dashed
magenta arrows) visible to the observer. Examples of how this scenario can emerge in models
that include (b) emission/absorption of photons γ or chemical species X , and (c) a molecular
motor performing steps along a track and transitions related to displacement are detected by the
cargo’s position.

imply in reducing the degrees of freedom and can be done in many ways that will be non-

exhaustively listed here. Lumping is a procedure where two or more states are considered as

just one mesostate, the occupation of states within each mesostate are indistinguishable and the

internal transitions are hidden [11, 61]. Decimation procedures record the arrival in some par-

ticular states [28, 62, 63]. Multiplex networks have replicas of the states in different layers, and

they are used to model systems which often have the layer indicator as a hidden variable [64].

Also the removal of information based on the velocity of phenomena is addressed, founded by

the idea that the finite apparatus resolution will be insensitive to fast changes, giving rise to the

notion of timescale separation [65, 66], which is of particular interest to phase transitions [V],

as discussed in Chapter 2.

Unlike previously mentioned procedures, we propose a transition-based coarse graining

[VII], in touch with physical systems that only leave “footprints” at the incidence of visible

transitions. As illustrated in Fig. 3.1, the underlying dynamics takes place in a discrete state

space and some transitions (in dashed magenta) can be observed. In panel (a) a general scheme

is presented to show that states and some transitions are hidden, panel (b) illustrates the emis-

sion of a photon γ and a chemical species X , and panel (c) represents a common model for

molecular motor in which some transitions are related to mechanical motion.

Given that the visible transitions are a subset L of all possible transitions, the object of
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study is a trajectory comprised of sequences of transitions and the time elapsed between them,

which we dub inter-transition time. We consider the experimenter as an observer with the

ability to collect the visible phenomena and time them with an external clock. The output of an

experiment is therefore a time-series that can be expressed as

ΓLT : `0 `1 · · ·t0 t1 t2 tn+1

(3.1)

where ti denotes the inter-transition time between two successive transitions `i−1, `i ∈ L, and

the experiment’s duration is
∑

i ti = T .

The trajectory over the state-space γT leading to a coarse-grained observation of transitions

and inter-transition times ΓLT = ΓLT [γT ] is illustrated in Fig. 3.2 below. Over a state space

Ω = {1, 2, 3} a trajectory (black lines) takes place, but since the observer is only sensitive to

visible transitions L = {1→ 2, 2→ 1} the collected trajectory ΓLτ is limited to their occurrence

(blue and magenta arrows).

ΓLT = {(`0, t0), (`1, t1), (`2, t2), . . .}

1

2

3

t0 t1 t2 t3

γT

`0 `1 `2

Figure 3.2: Illustration of an underlying dynamics γT (black lines) over state space Ω =
{1, 2, 3} with visible transitions L = {1 → 2, 2 → 1}, and the subsequent coarse-grained
trajectory ΓLT .

Statistical properties of such trajectories are characterized from three points of view. (i)

statistical: What can be said about output probabilities from the partial information provided by

the subset of visible transitions; (ii) thermodynamical: How and to what extent thermodynamic

quantities can be inferred from the collected trajectories; (iii) biophysical: The formalism is

applied to usual biophysical models and we study how properties such as force load and disorder

show up in the measurements.

It is worth mentioning that up to this point we do not assume that all transitions are re-

versible, nor that there exists only one direct transition from one state to the other, however the
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latter case is left out of the illustrations and its implications are only explored in the discussions

Chapter 6.

3.1 First-passage time

3.1.1 Mapping and solving the problem

To study the statistics of trajectories under transition-based coarse-graining it is necessary to

assess the probabilities of sequences of jumps and inter-transition times, which is done in terms

of the conditional probability of the next transition `i+1 ∈ L given the previous `i ∈ L,

P (`i+1|`i), (3.2)

and the probability1 that the inter-transition time between them falls within [t, t+ dt),

P (t|`i, `i+1)dt. (3.3)

Notice that since these results are based on conditional probabilities, the state space distribution

is not playing a role, therefore stationary and transient states are encompassed.

In words, the question being asked is: Given the occurrence of `i, what is the probability

that the first performed visible transition is `i+1, and that it happens after time [t, t + dt)? Put

like that, it is evident that it is a first-passage time problem, we do not care about the long and

winding road the system might take, we are only interested in the next visible transition and the

time it took.

To map the problem of first-passage time of transitions onto a usual first-passage time prob-

lem we use a technique that includes redirecting every visible transitions into auxiliary absorb-

ing states. These states are introduced into the original state space and the problem is to find the

first-passage time that one of them will be reached, and which auxiliary state will be reached

first. Notice that performing a visible transition and arriving at its auxiliary state are linked

events that occur simultaneously. This technique was already used in problems of first-passage

time [68, 69]2. It is also similar to the manipulation of networks to obtain current statistics by

1We use the same notation for probability mass-function and probability density, each case can be deduced
from the domains of the variables at hand.

2This trick was suggested by Ken Sekimoto during blackboard discussions, events that are key for the progress
of theoretical physics
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creating copies of some states introduced by Hill [70, 71].

Starting from a discrete state space Ω indexed as {1, 2, . . . N}, connected by an irreducible

network from which a subset of visible transitions L is drawn, we introduce |L| auxiliary

states {si}. In the auxiliary Markov chain, each visible transition Li is directed towards si (cf.

Fig. 3.3) while the hidden transitions are unchanged. Since no transitions emerge from auxiliary

states they are sinks (absorbing states). Whenever the evolution reaches sink si the dynamics

stalls, at this very instant we are sure that visible transition Li occurred and, importantly, no

other visible transition took place since the start of the evolution. Thus, by construction, the

first-passage of a sink in the auxiliary system is equivalent to the first-passage of the respective

visible transition in the original system.

3

4

2

1

3

4

2

1

s2

s1

Figure 3.3: Left: Example of a 4 states network with hidden transitions (black arrows) and
visible transitions L = {1 → 4, 4 → 3} (dashed magenta arrows). Right: Network of the
auxiliary dynamics, where visible transitions are redirected to sinks s1 and s2.

The auxiliary state space is {1, 2, . . . , |Ω|} ∪ {s1, s2, . . . , s|L|} and the resulting auxiliary

stochastic matrix Ws, with dimensions (|Ω|+ |L|)2, has elements

[Ws]ij =


0 if i = ||Lk〉〉 and j = 〈〈Lk||, for some 1 ≤ k ≤ |L|

[W]||Lk〉〉,〈〈Lk|| if i = sk, for some 1 ≤ k ≤ |L|

[W]ij otherwise

(3.4)

The first line in Eq. (3.4) represents the exclusion of visible transitions, second line is the redi-

rection of them, and the third line comprises the hidden transitions, that are left the same.

The auxiliary stochastic matrix Ws is composed of four blocks. The top-left is the survival

matrix, a matrix that will improve to be important to express further results,

S := W −
∑
`∈L

||`〉〉〈〈`||WT||`〉〉〈〈`||. (3.5)
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Notice that 〈〈`||WT||`〉〉 is the rate of transition ` and S has dimensions |Ω|2. The survival matrix

corresponds to the original stochastic matrix subtracted of every visible transitions, and it rep-

resents the evolution constrained to the absence of visible transitions, thus the name survival,

borrowed from first-passage time theory.

As a consequence of the auxiliary dynamics construction, the bottom-left matrix is

L :=

|L|∑
i=1

〈〈Li||WT||Li〉〉 |si〉 〈〈Li||, (3.6)

a |L| × |Ω| matrix comprised of the transitions redirected to the sinks. In other words, the

visible transitions are removed from the stochastic matrix, and the remainder is S, and they are

reconstructed in the direction of sinks, unraveling L.

Lastly, the rightmost blocks are zero matrices. The top one has dimensions |Ω| × |L| and

represents that no transitions emerge from a sink to the original states, while the bottom one has

dimensions |L| × |L| and represents that there are no connection between sinks. Together they

display the sinks’ absorbing nature.

As an illustration, the auxiliary dynamics depicted in the right-hand-side of Fig. 3.3 admits

auxiliary stochastic matrices of the form

Ws =

1 2 3 4 s1 s2



[W]11 [W]12 [W]13 [W]14 0 0 1

[W]21 [W]22 [W]23 [W]24 0 0 2

[W]31 [W]32 [W]33 0 0 0 3

0 [W]42 [W]43 [W]44 0 0 4

[W]41 0 0 0 0 0 s1

0 0 0 [W]34 0 0 s2

=

 S 0

L 0
(3.7)

From first-passage time theory [72], the cumulative probability density of not occupying an

absorbing state j at time t in a Markov process starting from state i is given by the survival

function

S(t, j|i) =
∑
k 6=j

〈k| exp(tWs) |i〉 = 1− 〈j| exp(tWs) |i〉 , (3.8)

where, as discussed in Section 2, exp(tWs) is the propagator obtained from the master equa-
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tion’s solution. In words, Eq. (3.8) is the probability that the system is in any state other than

j, during time interval [t, t + dt), after being propagated from i by a master equation with

stochastic matrix Ws.

Let F(t, j|i) be the first-passage distribution, the probability density of hitting state j for the

first time by time t, i.e. it hasn’t been reached since the start of the evolution. The survival

probability at time t is equivalent to the first-passage being greater than t:

S(t, j|i) =

∞∫
t

dsF(s, j|i) = 1−
t∫

0

dsF(s, j|i), (3.9)

where the second equality comes from the fact that F is defined over the positive real num-

bers and is normalized. Differentiating both sides we obtain from Leibniz’s integral rule and

Eq. (3.8) that

F(t, j|i) = − ∂

∂t
S(t, j|i) =

∂

∂t
〈j| exp(tWs) |i〉 , (3.10)

where the first equality is a know relation between a probability measure and its cumulative.

Next, we show that the evolution between visible transitions, only comprised of visible phe-

nomena, can be obtained in terms of the survival matrix. We start with the matrix exponential

exp(tWs) =
∑∞

n=0 t
nWn

s /n!, and notice that a positive power n ≥ 1 of Ws can be expressed

in terms of an index that runs over state space Ω and the sinks:

[Wn
s ]i,j =

|Ω|∑
k=1

[Ws]i,k[W
n−1
s ]k,j +

s|L|∑
k′=s1

��
�*0

[Ws]i,k′ [W
n−1
s ]k′,j

=

|Ω|∑
k=1

[Ws]i,k[W
n−1
s ]k,j. (3.11)

For a top-left block’s element, i, j ∈ {1, 2, . . .Ω}, both [Ws]i,k and [Wn−1
s ]k,j in Eq. (3.11)

belong to the top-left block, therefore

[Wn
s ]i,j =

|Ω|∑
k=1

[S]i,k[W
n−1
s ]k,j =

|Ω|∑
k=1

[S]i,k[S
n−1]k,j = [Sn]i,j, (3.12)

where the second equality comes from the fact that positive powers can be built from n = 1,

where the first matrix will be S while the second is the identity. Bottom-left block’s elements

can also be worked out from Eq. (3.11) by noting that the first and second factors are respectively
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elements of L and S. For i, j ∈ {s1, s2, . . . s|L|} and j ∈ {1, 2, . . .Ω}, it follows that

[Wn
s ]i,j =

|Ω|∑
k=1

[L]i,k[S
n−1]k,j = [LSn−1]i,j. (3.13)

Also, the top and bottom-right blocks are found to be zero matrices. For j ∈ {s1, s2, . . . s|L|}

[Wn
s ]i,j =

|Ω|∑
k=1

[Wn−1
s ]i,k��

�*0
[Ws]k,j +

s|L|∑
k′=s1

[Wn−1
s ]i,k′��

�*0
[Ws]k′,j = 0. (3.14)

Using Eqs. (3.12), (3.13) and (3.14), the matrix exponential is

exp(tWs) =
∞∑
n=0

1

n!
tnWn

s

= 1 +
∞∑
n=1

1

n!
tn

 Sn 0

LSn−1 0


=

 exp(tS) 0

LS−1[exp(tS)− 1] 1

 ,

where 1 is the identity matrix with appropriate dimensions.

Plugging this result into Eq. (3.10) to obtain the first-passage time probability density to

reach a sink sj by time within [t, t+ dt) we obtain

F(t, sj|i) =
∂

∂t
〈sj| exp(tWs) |i〉 =

∂

∂t
〈sj|LS−1[exp(tS)− 1] |i〉

= 〈sj|L exp(tS) |i〉

= 〈sj|

 |L|∑
k=1

〈〈Lk||WT||Lk〉〉 |sk〉 〈〈Lk||

 exp(tS) |i〉

= 〈〈Lj||WT||Lj〉〉〈〈Lj|| exp(tS) |i〉 (3.15)

where we used the definition of L, Eq. (3.6), which result in the replacement of sink sj by its

respective visible transition Lj .
Now we frame the problem in terms of the inter-transition observation: Let i be the target of

the last observed transition `i and the sink be related to the next observed transition `i+1. Then,
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in terms of the notation introduced in Ref. [VII], the above equation can be expressed as

P (t, `i+1|`i) = 〈〈`i+1||WT||`i+1〉〉〈〈`i+1|| exp(tS)||`i〉〉. (3.16)

Equation (3.16) is a major result of this chapter and will be used to obtain further results.

P (t, `i+1|`i) is the probability density that the next visible transition is `i+1 ∈ L, and it occurs

after time [t, t + dt), given that the previous visible transition `i ∈ L occurred at time zero,

and no other visible transitions occurred in between. The physical interpretation of such an

expression is that 〈〈`i+1|| exp(tS) |`i〉 is a probability accounting for the propagation of initial

state |`i〉 onto 〈〈`i+1||, which is the initial state of the next consecutive visible transition, and it

is multiplied by the rate at which transition `i+1 occurs. Eq. (3.16) reads: P (t, `i+1|`i) is given

by the probability of, starting from state ||`i〉〉, reaching 〈〈`i+1|| without the performance of any

visible transition, times the rate of transition `i+1.

Lastly, it is also worth noting that survival propagator exp(tS) rules the original continuous-

time Markov chain when the visible transitions are removed. However, their values are present

in the exit rates [W]ii = −∑j[W]ji, therefore columns of S do not add up to zero, which means

that this matrix does not conserve probability. It can be interpreted as a transition matrix of a

process with probability leakages: Every time a visible transition is performed the considered

trajectory “dies”. Its spectrum is negative, which means

lim
t→∞

exp(tS) = 0 (3.17)

and Eq. (3.10) vanishes for large times, which is a necessary property of first-passage time

functions.

3.1.2 Developing the results

The result in Equation (3.16) is enough to describe the statistics of trajectories that are coarse-

grained in view of a few visible transitions since it encompasses sequences of transitions and

inter-transition times. Confronting analytical and experimental results of such nature can be

performed with the quantities listed below.

(i) Sequence of visible transitions: the occurrence probability of a pair of consecutive

transitions can be obtained by marginalizing the inter-transition time in Equation (3.16). Let

`i, `i+1 ∈ L be such a pair, the probability that `i+1 occurs, given that the previous visible
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transition was `i, is then

P (`i+1|`i) =

∞∫
0

dtP (t, `i+1|`i)

= 〈〈`i+1||WT||`i+1〉〉〈〈`i+1||
∞∫

0

dt exp(tS)||`i〉〉

= 〈〈`i+1||WT||`i+1〉〉〈〈`i+1||S−1 exp(tS)

∣∣∣∣∞
0

||`i〉〉

= −〈〈`i+1||WT||`i+1〉〉〈〈`i+1||S−1||`i〉〉, (3.18)

where in the last equality we used the fact that S is a negative matrix, all of its eigenvalues

have negative real part, therefore limt→∞ exp(tS) = 0 and det(S) =
∏

i λi 6= 0, which en-

sures the existence of S−1. The second factor in Equation (3.18) represents, for any inter-

transition time, the propagation from the target of the first transition to the source of the next

one, −〈〈`i+1||S−1||`i〉〉, while the first 〈〈`i+1||WT||`i+1〉〉 is precisely the transition rate of the next

transition. Since the process is ergodic, the first passage time of performing any of the visible

transitions at any given time (i.e. with marginalized time) is normalized

∑
`i+1∈L

F(`i+1|`i) = −
∑
`i+1∈L

〈〈`i+1||WT||`i+1〉〉〈〈`i+1||S−1||`i〉〉 = 1, (3.19)

hence probabilities P (`i+q|`i) are also normalized.

From an experiment performed up until time τ , the analysis of a collected time-series leads

to the construction of the empirical frequency for a sequence of visible transitions

Fτ (`i+1|`i) ≡
#τ (`i → `i+1)∑|L|
j=1 #τ (`i → `j)

, (3.20)

where #τ (•) counts the occurrence of an event in the recorded time-series. Due to ergodicity,

the long-time value and the ensemble average of this frequency equals to the probability in

Equation (3.18), in fact it will happen for every empirical frequency studied here: P (•) =

〈Fτ (•)〉 = limτ→∞ Fτ (•).

(ii) Inter-transition times: with no further assumptions, the inter-transition time probability
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density can be obtained from Equations (3.16) and (3.18) as a property of joint probabilities

P (t|`i, `i+1) =
P (t, `i+1|`i)
P (`i+1|`i)

= −〈〈`i+1|| exp(tS)||`i〉〉
〈〈`i+1||S−1||`i〉〉

, (3.21)

for the inter-transition time between a pair `i, `i+1 ∈ L.

Experimentally, such quantity is built by recording the inter-transition times taking place

when the desired pair of transitions occur

Fτ (t|`i, `i+1)dt ∼ histogram(t|`i, `i+1), (3.22)

which is asymptotically and on average approaching Equation (3.21).

Inter-transition time densities provide some hints about the transitions in question. For

instance, if one transition ends where the next starts, ||`i〉〉 = 〈〈`i+1||, the inter-transition time

might be infinitesimally small. This can be seen from Equation (3.21), at t = 0 ∂tP (t|`i`i+1)

and 〈〈`i+1||S||`i〉〉 share the same sign. The latter is always negative at its diagonal elements, thus

the probability value has to be positive at zero time, yielding the largest likelihood of null times

between a transition that ends where the next is rooted.

Conversely, any pair of transitions that do not satisfy above property will have an increasing

inter-transition time density at the origin. The shape of such densities contain information

about the relation between the addressed transitions, which represents a candidate for topology

inferences from measured inter-transition times.

Figure 3.4 contains inter-transition time probability densities for a system inspired by molec-

ular motors [73]. In this kind of motors the chemical transformations and state occupancy is

hidden, only two transitions are visible: forward and backward mechanical motion. Let + and

− denote transitions that cause opposite displacement of such molecular motor. Alternated pairs

of transitions +− and −+ satisfy the property ||`i〉〉 = 〈〈`i+1||, leading to an always decreasing

density that has its peak at null time, which does not happen for repeated transitions. This

property is observed in Figure 3.4.

Assuming that the survival matrix S has a non-degenerate spectrum [74] and hidden irre-

ducibility, i.e. that the state space is still irreducible after the removal of every visible transitions,

Equation (3.21)’s numerator can be expressed in terms of eigenvalues of S by 〈〈`i+1|| exp(tS)||`i〉〉 =∑N
k=1 cke

tsk , where sk are the eigenvalues, with negative real part, and ck real-valued coeffi-

cients that can be obtained by projecting the expression onto the survival matrix’s eigenbasis.
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Figure 3.4: Simulation and analytical results for inter-transition time probability densities of
a molecular motor model with visible transitions between a pair of states. Histograms for the
empirical frequency (grey bars) and analytical probabilities from Equation (3.21) (black curve)
are shown for repeated and alternated pairs of transitions. Dashed magenta lines have S’s largest
eigenvalue as slope and are arbitrarily placed for illustration purposes.

In the long-time limit the expressions asymptotically converge to the same exponential irrespec-

tive of the transitions considered, i.e.

lim
t→∞

1

t
ln [〈〈`i+1|| exp(tS)||`i〉〉] � sPF. (3.23)

where sPF is the dominant Perron-Froebenius root. Hence, all possible inter-transition time

probability densities share the same tail, an exponential decay with the largest eigenvalue of the

survival matrix. This can be observed by the dashed magenta lines in Figure 3.4.

Usually, first-passage time problems aim at evaluating mean first passage times (MFPT).

From the present results, they are of straightforward calculation, since the full probability den-

sity is at hand. It suffices to integrate it as the definition of statistical moments:

MFPT(`i, `i+1) =

∫ ∞
0

dt tP (t|`i, `i+1) = −〈〈`i+1||(S−1)2||`i〉〉
〈〈`i+1||S−1||`i〉〉

, (3.24)

and its fluctuations can be obtained by evaluation of higher-order moments. Notice how the
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value is once again obtained from matrix elements of survival matrix’s inverse.

Thus far, no assumptions on the distribution over state space were made, which is an ad-

vantage of conditional probabilities. The state space is collapsed at the target of the last visible

transition, where we root the observation. Hence all results presented until this point hold for

any state space distribution, at any given time. For the next statistical entity we have to make

the use of state space distribution.

(iii) Unconditional probabilities: assuming stationarity, the distribution over states satis-

fying W |p∞〉 = 0, the probability that a transition from a time-series is ` can be expressed

as

P (`) =
1

〈K〉〈〈`||W
T||`〉〉〈〈`||p∞〉, (3.25)

where the pre-factor ensures normalization and is the expected visible traffic rate, the mean

number of visible transition per unit of time at stationarity

〈K〉 :=
∑
`

〈〈`||WT||`〉〉〈〈`||p∞〉. (3.26)

The visible traffic rate is a value that is symmetric under time-reversal and equivalent to other

quantities that are relevant for the description of nonequilibrium stochastic systems [75], some-

times referred to as dynamical activity [76] and frenesy [77–79].

Before proceeding, two additional remarks are worth mentioning. First, part of the for-

malism can be alternatively derived from Large Deviation Theory [80]. Let Wλ be the tilted

generating matrix, it has the values of W under transformation [W]||`〉〉,〈〈`|| 7→ [W]||`〉〉,〈〈`||e
λ, for ev-

ery ` ∈ L, and λ is a counting field. The moment generating function for a current that “clicks”

every time a visible transition is performed can be calculated as
∑

y 〈y| exp(tWλ) |x〉 [81]. In

the limit of λ → ∞ it counts 1 all the trajectories where φ is zero (survival) and zero for tra-

jectories where visible transitions where performed, and the tilted matrix recover the survival

matrix S.

Second, the first-passage time of transitions developed herein generalizes the well estab-

lished result of first-passage time of a state. Consider a state i of a network and the set of all

transitions leading to it Li = {i′ → i : ∀i′ 6= i}. The first-passage time that any transition in Li
is performed is equivalent to the first-passage time of reaching i, which can be obtained from
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Equation (3.16),

P (t|j, i)dt =
∑
`∈Li

P (t, `|j)dt =
∑
`∈Li

〈〈`||WT||`〉〉〈〈`|| exp(tS) |j〉 dt, (3.27)

where the evolution starts in state j.

3.2 Entropy production inference

A central quantity to be measured in system out of equilibrium is the entropy production, as dis-

cussed in Section 2, but of difficult accessibility in many systems. In particular coarse-grained

systems miss many contributions to the entropy production, therefore inference schemes are

necessary to assess dissipation and irreversibility of systems that only emit partial information.

From Schnakenberg’s expression for the entropy production rate at stationarity [10, 30],

σ = lim
T→∞

∑
i<j

Jij(T ) ln
Wij

Wji

, (3.28)

it gets evident that entropy production depends only on the statistics of the number of transitions

per unit of time Jij(T ) between every pairs of states j → i up to a time T that is taken to infinity.

Inter-transition times do not contribute to the total entropy production rate. Jumps are weighted

by the log-ratio lnWij/Wji, which in thermodynamically consistent systems is related to energy

exchanges by local detailed balance.

The fact that transitions reveal information about entropy production and that complete mon-

itoring of systems is often not feasible has lead to the the development of works that estimate

entropy production by the transitions between a subset of visible states [28, 82, 83]. Here we

introduce a scheme that need not be supported by the visibility of states, instead, transitions are

the visible phenomena.

3.2.1 Definition and lower bound

Entropy production can be quantitatively defined as the distinguishability between the probabil-

ity of a trajectory and its time reverse [19, 20], which is done in terms of the Kullback-Leibler

divergence: D[P (x)||Q(x)] =
∑

x P (x) ln[P (x)/Q(x)] ≥ 0, a non-negative quantity that only

vanishes when P (x) = Q(x)∀x [84]. For a trajectory γ(t) defined in t ∈ [0, T ], the steady-state



CHAPTER 3. TRANSITION-BASED COARSE GRAINING 40

entropy production rate is

σ = lim
T→∞

1

T
kBD[P (γ)||P (γ)], (3.29)

where kB is Boltzmann’s constant, P (γ) is the probability that the trajectory takes value γ at the

time of evaluation. P (γ) is the probability of its time-reversed version, where P also carries a

hat since the protocol is also reversed when considering time-reversed dynamics.

Through Eq. (3.29), it gets evident why entropy production rate is a measure of irreversibil-

ity. It only vanishes when the probability of a process and its time-reverse exactly coincide, and

it increases the larger the difference between distributions of forward and backward processes.

When a system only allows for the collection of coarse-grained data, non-negative contribu-

tions for the entropy production are missed, leading to a smaller measurement of its value. This

is highlighted as a property of the Kullback-Leibler divergence [19, 85]: Given two random-

variables with well-defined probability distributions, the divergence between the joint and non-

joint probabilities satisfy D[P1(x, y)||P2(x, y)] ≥ D[P1(x)||P2(x)]. Thus, washing away the

hidden data implies in a visible entropy production σL that is smaller than the total one:

σL := lim
T→∞

1

T
kBD

(
P [ΓLT ]||P [Γ

L
T ]
)
≤ lim

T→∞

1

T
kBD (P [γT ]||P [γT ]) = σ. (3.30)

The above inequality is valid beyond the stationary state and, since it is a way of writing the

data processing inequality, establishes the entropy production rate as an information-theoretic

measure of the distance to equilibrium. It can be written in terms of relative entropies to assess

the thermodynamics of quantum systems.

It is really useful that an inequality is established between the measured and desired quanti-

ties, otherwise the measurement would have blurred meaning. An observed can always be sure

that the entropy production rate is, at least, σL.

3.2.2 Inter-transition time revealing the arrow of time

Entropy production is a measure of the distance to equilibrium. Whenever a system satisfies

detailed-balance its entropy production vanishes, as so do heat and particle net currents. Mon-

itoring a single current of a system means that it will stall at scenarios that might or might

not be in equilibrium, since parameters can be tuned to stall one current even when other cur-

rents have finite net values. Therefore, using one current to infer entropy production, as in the

thermodynamic uncertainty relation, can mislead to the conclusion of equilibrium states.



CHAPTER 3. TRANSITION-BASED COARSE GRAINING 41

Using solely the sequence of transitions within a trajectory, as in the case of single integrated

current monitoring, hinders the irreversible character of inter-transitions times. As discussed,

the coarse-grained trajectory presents information about the occurrence of transitions and the

interval between them, both can be explored to infer quantities. While the first has been exten-

sively explored, the second recently proved to entail information about irreversibility [28].

In some cases the system can be irreversible, even though the sequence of observed phenom-

ena leads to a vanishing net current. Consider the following example [illustrated in Fig. 3.5]:

A boy named Ludwig is asked to collect a parcel for his mom Katharina, as soon as he leaves

the house he tells her goodbye and goes to a post office at walking distance. Immediately after

getting there, he texts his mom saying he arrived, collected the parcel right away, and will be

heading home. After some time, the boy, struggling with such a heavy load, arrives at home and

opens the door to find the grateful mom.

0- 

TH 

Figure 3.5: Ludwig on his way to the post office and his way back home carrying a heavy
parcel. The first takes a time tM and the second a usually larger time tH.

Consider the mom as an experimenter. She is unaware of all the details of Ludwig’s path,

the only collected information is that he left home, after some time tM he arrived at the post

office, and after some time tH he got back home. At the end of the day, the son is back home.

If the mom is a regular online shopper, she will be able to ask Ludwig to collect many parcels

and gather good statistics of the process. The statistics related to the sequence of events is the

following: Every occurrence of the process involves Ludwig going out and getting back, there’s

no net movement, if Katharina interprets it as a current she will come to the conclusion that

its net value vanishes and therefore the system might be in equilibrium. However, if Katharina

have read some papers like [VII, 28, 29, 86], she knows that inter-transition times’ statistics

has to be considered as well. She then proceeds to observe that the distribution of times tM and

tH differ, precisely because the process of coming back from the post office is slower due to

the cost of carrying parcels. Thus, Katharina concludes that the process is not reversible and

she can even find a non-zero lower bound for the entropy production from inter-transition time
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measurements.

3.2.3 Visible irreversibility

Having discussed the reasoning behind asymmetry of inter-transition times contributing to irre-

versibility, we dissect the inferred entropy production and pinpoint its contribution.

To study irreversibility quantification through entropy production it is necessary to estab-

lish the definition of a time-reversed trajectory, both for the underlying process in state [Equa-

tion (3.29)] and transition spaces [right-hand-side of Equation (3.30)]. The time-reversal of a

visible trajectory is not a naive inversion of its recorded phenomena. For both cases, the un-

derlying process, taking place in state space, ought to be reversed. The observable trajectory,

depending on available apparatus, is a consequence of such.

Let γτ be a state-space trajectory comprised of visited states, arrival times, and with no

hidden information. Reversing a physical process leads to trajectory γτ , which has the same

states of γτ but in the opposite order and time goes under transformation t→ τ − t.
For ΓLτ , the coarse-grained version of γτ when only transitions in L are visible, not only the

order of transitions have to be reversed but also their directions. “Arriving at state i” is a time-

symmetric phenomena, whereas “transition j → i” is not. It gets evident the need for another

assumption when dealing with entropy production inference: The existence and visibility of

every visible transition’s reverse, i.e. (i→ j) ∈ L ⇒ (j → i) ∈ L.

Further, since inter-transition times are measured as the time preceding a visible transition,

in the time-reversed scheme they will be translated because they will now succeed that transi-

tion. A transition-based coarse-grained trajectory and its time-reversed are thus

ΓLτ = {(`0, t0), (`1, t1), . . . , (`n, tn)} (3.31)

and

Γ
L
τ = {(`n, tn+1), (`n−1, tn), . . . , (`0, t1)}. (3.32)

See Figure 3.6 for an example of state space trajectory and its coarse-grained version, and the

time reversal of both.

Notice that the last inter-transition time tn+1 is not present in Equation (3.31), as well as

t0 in Equation (3.32). In both observations, they are an immediate consequence of previously

recorded inter-transition times through
∑n+1

i=0 ti = τ .
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ΓL
τ = {(1→ 2, t0), (1→ 2, t1), (2→ 1, t2)}

1

2

3

t0 t1 t2 t3 τ

γτ

Γ̄L
τ = {(1→ 2, t3), (2→ 1, t2), (2→ 1, t1)}

1

2

3

t0t1t2t3 τ

γ̄τ

Figure 3.6: Time reversal of a trajectory. Left: A trajectory ΓLτ collected from a process over
states {1, 2, 3} (black line) with visible transitions (highlighted arrows) in L = {1 → 2, 2 →
1}, ti are inter-transition times. Right: The time-reversed process and consequent reversed
trajectory Γ

L
τ .

Irreversibility is a property related to the statistics of trajectories, and it quantifies the relative

entropy between forward and backward trajectories. For that, we study probabilities P [ΓLτ ]. We

adopt the notation

P [ΓLτ ] ≡ P (~t|~̀)P (~̀), (3.33)

where ~t is the sequence of inter-transition times between all the visible transitions ~̀. From

probability theory P [ΓLτ ] = P (~̀)P (~t|~̀).

Assuming Markovianity of the sequence ~̀, which is later proved on Section 3.3, notice that

P (~̀) = P (`0)
n∏
i=1

P (`i|`i−1) (3.34)

is the path probability of such a sequence, while inter-transition times follow

P (~t|~̀) = P (t0)
n∏
i=1

P (ti|`i−1, `i). (3.35)

The boundary terms P (`0) and P (t0) depend on events previous to the observation, however

for the long-time statistical behavior their contribution will wane.
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Standard manipulations over the inferred entropy production equation yield

σL = lim
τ→∞

1

τ

∑
ΓLτ

P [ΓLτ ] ln
P [ΓLτ ]

P [Γ
L
τ ]

= lim
τ→∞

1

τ

∑
~̀

∫
d~tP (~t|~̀)P (~̀) ln

P (~t|~̀)P (~̀)

P (~t|~̀)P (~̀)

= lim
τ→∞

1

τ

∑
~̀

∫
d~tP (~t|~̀)P (~̀)

{
ln
P (~t|~̀)
P (~t|~̀)

+ ln
P (~̀)

P (~̀)

}
(3.36)

Due to the autonomous character of the process, there is no dependence on the instantaneous

time, leading to a time-translational symmetry. Therefore, using Equations (3.34) and (3.35),

the sum above asymptotically goes to the typical term multiplied by the traffic rate,

σL = lim
τ→∞

1

τ

∑
~̀

∫
d~tP (~t|~̀)P (~̀)

{
· · ·+ ln

P (ti|`i, `i+1)

P (ti|`i+1, `i)
+ ln

P (`i)

P (`i)
+ · · ·

}
= lim

τ→∞

1

τ

∑
~̀

P (~̀)

{
· · ·
∫

dtiP (ti|~̀) ln
P (ti|`i, `i+1)

P (ti|`i+1, `i)
+ ln

P (`i)

P (`i)
+ · · ·

}

= 〈K〉
∑
`,`′∈L

P (`|`′)P (`′)

{
ln
P (`|`′)
P (`

′|`)
+D[P (t|`′, `)||P (t|`, `′)]

}
, (3.37)

which leads to the definition of entropy production rate due to transitions sequence

σ` := 〈K〉
∑
`,`′∈L

P (`|`′)P (`′) ln
P (`|`′)
P (`

′|`)
(3.38)

and to inter-transition times

σt := 〈K〉
∑
`,`′∈L

P (`|`′)P (`′)D[P (t|`′, `)||P (t|`, `′)] (3.39)

for any visible set L of reversible transitions. Notice that the sum runs over all possible pairs

of visible transitions in L, which is very natural since the sequence contribution comprises of

conditional probabilities and the inter-transition times contribution of time span between such

pairs. At equilibrium both vanish; thus, no irreversibility can be erroneously detected. Out

of equilibrium, they can vanish in different scenarios, which become evident for the case of

observing a single pair of transitions: σ` vanishes when no net current is present and σt vanishes

in ring structures. Furthermore, as proven in Ref. [87], when the hidden network either has no
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cycles or satisfies detailed balance, σt vanishes and σL = σ

3.2.4 Single current observation

A paradigmatic example of few visible transitions observation is the monitoring of a single

current. The displacement of a molecular motor, the charge flow through a junction and the

exchange of chemical species with a reservoir are some examples of systems where a single

current is being measured over time. See Figure 3.7.

hidden

+

− 1

2

34

5

6

7

Figure 3.7: Examples of single current observation schemes, two transitions in opposite direc-
tions emerge from a hidden system (left), such a system can have any topology e.g. seven states
with many transitions and a visible transition pair between two states (right).

The current is defined as the number of times the system jumps from a given state to another

one, without going through any other states in between, minus the number of opposite jumps.

We adopt the notation L = {+,−}, and the integrated value of the monitored current is

Jτ =
#τ (+)−#τ (−)

τ
. (3.40)

Expressions for entropy production inference get substantially simplified when dealing with

a single current and, further, reveal new physical properties. First, let’s study the transition

sequence’s contribution [Equation (3.39)]. The sum
∑

`,`′∈L leads to four terms, but two of

them vanish,

σ` = 〈K〉
{
P (+|+)P (+) ln

P (+|+)

P (−|−)
+ P (+|−)P (−)

��
�
��
�

ln
P (+|−)

P (+|−)

+ P (−|+)P (+)
��

��
��

ln
P (−|+)

P (−|+)
+ P (−|−)P (−) ln

P (−|−)

P (+|+)

}
= 〈K〉 {P (+|+)P (+)− P (−|−)P (−)} ln

P (+|+)

P (−|−)
. (3.41)
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The same happens for inter-transition times’ contribution [Equation (3.39)],

σt = 〈K〉
{
P (+|+)P (+)D[P (t|+,+)||P (t|−,−)]

+ P (+|−)P (−)
((((

((((
(((

((
D[P (t|−,+)||P (t|−,+)]

+ P (−|+)P (+)
(((

((((
(((

(((
D[P (t|+,−)||P (t|+,−)]

+ P (−|−)P (−)D[P (t|−,−)||P (t|+,+)]

}
= 〈K〉

∑
`={+,−}

P (`|`)P (`)D[P (t|`, `)||P (t|`, `)]. (3.42)

The two vanishing terms are the contribution of sequences (+,−) and (−,+), and their

inter-transition time. We dub these as alternated transitions, and they do not contribute since

they do not change under time reversal, remember that the order has to be reversed as well

as the directions. Meanwhile repeated transitions (+,+) and (−,−) account for all of the

irreversibility.

A recent important result is the thermodynamic uncertainty relation, an inequality relation

moments of any current to the entropy production of a system. It is strikingly general for steady-

state systems and describes a trade-off between precision and dissipation. It has also been used

as a tool for entropy production inference when only partial information is available. Using the

statistics of an empirical time-integrated current, the thermodynamic uncertainty relation reads

σTUR :=
2〈J〉2

Var(J)
≤ σ, (3.43)

which states that the entropy production rate is lower bounded by the average and variance of

any stationary current J = limt→∞〈
∑

i<j dijn
stat
ij (t)〉/t flowing over the system [25, 26], with

dij being the asymmetric current increment related to transition j → i and nstat
ij (t) the number

of such transitions in a time interval t. For each trajectory, the stochastic time-integrated current

J depends on the number of transitions in each direction, hence the full statistics of sequence

of transitions should contain at least the same amount of information as the statistics of J ,

therefore we conjecture σTUR ≤ σ`. Moreover the inter-transition times contribute to the entropy

production rate and goes unnoticed by 〈J〉 and Var(J), therefore the contribution σt contains

additional information such as the detection of irreversibility in the absence of net currents.

Fig. 3.8 illustrates how the entropy production inference is obtained using empirical esti-
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(a)
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visible

hidden

(b)

quantity value
P (+|+) 0.0050
P (−|−) 0.0038
P (+|−) 0.9962
P (−|+) 0.9950
P (+) 0.5003
P (−) 0.4997
〈K〉 36 s−1
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Figure 3.8: Estimating entropy production rate (kB/s) from repeated transition statistics: Illus-
tration of the inference scheme for a network depicted in (a) with the observation of transitions
+ = 1→ 2 and− = 2→ 1. From the analytical equations, we show (b) conditional and uncon-
ditional probabilities of transitions, and the value of traffic rate, inter-transition time probability
densities for (c) repeated and (d) alternated transitions. (e) In terms of a bias parameter, entropy
production σ in a solid black curve, thermodynamic uncertainty relation’s lower bound σTUR

in a magenta solid curve, results from a Gillespie simulation σsimu
L are shown in blue dots with

error bars; followed by the present results of inferred entropy production rate σL in solid blue,
and its decomposition in inter-transition times σt in dotted blue and sequence of transitions σ`
in dashed blue. The vertical line is the value of the (dimensionless) bias parameter for which
the visible current vanishes. More details: Transition rates are W24 = W34 = W41 = W43 = 1,
W14 = W21 = W32 = W42 = 20 and W12 equals the exponential of the bias parameter; in
(b)-(e) the bias parameter is fixed to 8.5; simulations were performed with a Gillespie algorithm
for 2 × 106s, the Kullback-Leibler divergence of inter-transition times was obtained with an
unbiased estimation scheme.

mates of P (±|±) and P (t|±,±) as a function of a bias parameter, a value present in transition

rates that controls the bias towards a given orientation. In a four-state multicyclic network,

panel (e) shows the entropy production rate σ (solid black line) that is indeed larger than its dis-

cussed lower bounds. The contribution from sequence of transitions σ` (dashed blue) coincides

with the thermodynamic uncertainty relation σTUR (solid magenta) and they vanish for a value

of bias parameter that stalls the current between 1 ↔ 2, which is know as stalling force. The

inter-transition time contribution is less sensitive to the bias parameter in this region. It does

not vanish at the stalling force, leading to the detection of irreversibility when no net current is

visible.

Lastly, for different values of bias parameter, a single trajectory of visible transitions and

inter-transition times from Gillespie simulations was analyzed in view of Eqs. (3.38) and (3.39)

to obtain the inferred entropy production rate σsimu
L (blue crosses), in good agreement with the
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analytical σL. Due to the Kullback-Leibler divergence in σt we employed an unbiased method

to the simulated data.

3.2.5 Kullback-Leibler estimation

Estimating entropic functionals such as the Kullback-Leibler divergence of two distributions

from finite data is known to be a non-straightforward task that often leads to systematic errors,

it constitutes a field in itself [19, 88, 89]. It is of particular importance in nonequilibrium

thermodynamics since entropy production, one of the most studied quantities, is the relative

entropy between forward and backward trajectories [19]. Consider data regarding a system in

equilibrium, biased convergence of the estimator might lead to the erroneous conclusion that the

system is out of equilibrium. Furthermore, inference schemes to deal with finite data have been

largely explored in the analytical sense, as discussed in this paper, hence the need for accurate

estimators.

The Kullback-Leibler divergence is present in Eq. (3.39) and poses a problem for the in-

ference from a time-series. The most intuitive approach involves estimating the probability

distribution from data collected from an experiment or simulation, and later evaluating the in-

tegral D[P ||Q] =
∫
P lnP/Q, however it leads to a biased estimation. A method developed

in Ref. [90] explores the comparison between the cumulative distributions of two independent

data sets to obtain an unbiased estimation of the Kullback-Leibler divergence. This method was

applied to the analysis of simulated results present in Fig. 3.8.

The code is available and ready to use in Ref. [91] with further details and illustrations

of generating visible transitions’ time-series, and evaluating Kullback-Leibler divergences and

σL. It can be of particular importance to the application of the present results, in particular

entropy production estimation from time-series, but also to any other application that involves

comparing two empirical probability distributions.

Briefly, the method consists of taking two finite data sets sampled from two independent

processes with distributions P (x) andQ(x). Linear interpolations Pc(x) andQc(x) are rendered

from the empirical cumulative distributions and for small enough ε the estimator converges to

the Kullback-Leibler divergence

1

n

n∑
i=1

ln
Pc(Xi)− Pc(Xi − ε)
Qc(Xi)−Qc(Xi − ε)

− 1→ D[P (x)||Q(x)], (3.44)
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Figure 3.9: Convergence of both contributions to the entropy production rate inferred from
simulations σsimu

L [cf. Fig. 3.8] with bias parameter 8.6. The top curve (magenta) σsimu
t is

the inter-transition times’ contribution evaluated by the biased method of first inferring the
distributions, middle curve (black) is the same but with the unbiased method [90, 91]. The
bottom curve (blue) stems from the sequence of transitions contribution from the simulated
data σsimu

` . The analytical values of both σt and σ` are shown in horizontal gray lines.

where n is the number of points Xi from the data with distribution P (x).

Figure 3.9 shows the converge of σ` and σt estimates. The value of σsimu
` has a fast conver-

gence using the empirical frequencies of transition occurrences. The top curve (biased σsimu
t )

was evaluated by estimating the probability distributions with kernel density estimations meth-

ods and numerically evaluating Kullback-Leibler divergence’s integral, leading to a clear bias

above the expected value. Using Eq. (3.44) through the resources in Ref. [91], the middle curve

(unbiased σsimu
t ) indeed shows no evident sign of bias in the estimation.

3.2.6 Ring networks

A ring network has the specific topology in which states i are only connected to both i ± 1,

consequently there is a single cycle and a single affinity [10]. See Figure 3.10 below for an

illustration. Networks with ring topology are an important particular case for the inference of

irreversibility as will be shown in the present section.

At the stationary distribution, the unique macroscopic flux can be measured from any edge

of the network since the current will be the same between any two states, i.e. [W]i+1,ip∞(i) −
[W]i,i+1p∞(i + 1) for any i. To the best of our knowledge, there was no analogous result for

the macroscopic affinity, until recently [VII]. Its value is usually assessed by the log-ratio of
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Figure 3.10: Example of a ring network with 8 states and transitions in both directions.

every transition rate along the ring ln
∏

i(Wi+1,i/Wi,i+1), it turns out that it can be obtained by

the sequence of transitions’ statistics over a single edge.

The stochastic matrix of a ring has a tridiagonal structure, plus two terms on its corners,W1N

and WN1. The probabilities of repeated transitions benefit from this form, using the relation

between inverse and adjugate of a matrix, and the Laplace expansion for the determinant, we

obtain that the effective affinity is exactly the real affinity A,

Aeff = ln
P (+|+)

P (−|−)
= ln

∏
i

Wi+1,i

Wi,i+1

= A, (3.45)

leading to a novel interpretation of the affinity on a ring in terms of conditional probabilities of

sequence of visible transitions. In this case σ` = JLA, which is the definition of entropy pro-

duction σ in a cycle, therefore σ` equals the system’s entropy production from the observation

of any single pair of opposite transitions:

σL = σ` = σ. (3.46)

The full entropy production of a ring network can be assessed by a single experiment in

which a marginal observer collects statistics of a single pair of transitions over the same edge,

ruling out the necessity of assessing all the microscopic details of stationary probabilities, tran-

sition rates, and even inter-transition times. In fact, σ` uses the same information employed to

the thermodynamic uncertainty relation.

In addition, ring structures present a symmetry in their inter-transition time densities, proven

in Refs. [VII] and [87]. It is reminiscent of the Haldane equality [92–94] and reads: The inter-

transition time probability densities between a sequence of repeated transitions are exactly the
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(a)

1 2

34

visible

hidden

(b)

quantity value
P (+|+) 0.3226
P (−|−) 0.0161
P (+|−) 0.9839
P (−|+) 0.6774
P (+) 0.5923
P (−) 0.4077
〈K〉 0.8 s−1
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Figure 3.11: For a ring with four states, ring network, and visible transitions + = 1 → 2 and
− = 2→ 1, as illustrated in (a), we show in (b) the conditional and unconditional probabilities
of transitions and the visible traffic rate. (c) is the coinciding inter-transition time densities for
repeated transitions and (d) for alternated. (e) is a summary of the entropy production rate in-
ference scheme: Entropy production σ and the sequence of transitions contribution σ` coincide,
both in solid black; inter-transition time contribution σt in dotted blue is shown to vanish; the
thermodynamic uncertainty relation σTUR is depicted in solid magenta and simulations σsimu

L in
blue dots with error bars. All transitions rates are equal to 1 apart from W14 that is the exponen-
tial of the dimensionless bias parameter, and entropy production rate dimensions are kB/s.

same3,

P (t|+,+) = P (t|−,−). (3.47)

This symmetry implies σt = 0, which is consistent with the facts that σ` = σ and σ` + σt = σ.

Fig. 3.11 shows the entropy production inference scheme for a ring network of four states.

The contribution σt vanishes for any value of bias parameter due to the equality of inter-

transition time densities for repeated transitions shown in panel (c). The values of σ and σ`

are precisely the same (solid black) as discussed in Eq. (3.46). Meanwhile, σTUR provides a

lower bound that is approximately saturated for vanishing values of bias parameter, which rep-

resents the close to equilibrium regime.

3This property might look counter-intuitive, in particular for rings with a bias towards one direction. Notice
that the orientation is given and the random variable is only the cycle duration. The time between transitions is
only ruled by the exit rates of the visited nodes, which are the same in a ring regardless of the direction performed
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3.3 Markov chain in visible transition space

We have split visible entropy production rate into its contributions from transition sequences and

inter-transition times, and the notion of time proves to be particularly important in the absence

of net fluxes. Conversely, inter-transition times play no role in integrated currents: To evaluate

an integrated current, the only quantities required are the number of each visible transition and

the total time.

We introduce the idea of transition space, where each mesoscopic “state” represents the

visible transition last performed. When delving into transition space, details of hidden jumps

and sojourn times are coarse-grained away, and inter-transition times are also lost. Delving

deeper, we can establish a process with discrete-time where a new visible transition is performed

at each step. For integrated currents, together with the notion of number of transitions per unit

of time, this will suffice. In summary, from the underlying continuous-time Markov-chain in

state space and a given set of visible transitions, a Markov chain is established in the space of

transitions, and we dub the jumps in transition space as “trans-transitions”.

Such a process has an evolution matrix M with elements P (`′|`), that can be obtained from

Equation (3.18). Notice that any survival function S(•) = 1 −
∫
F(•) [Equation (3.8)] has to

vanish for t → ∞ since ergodic systems will eventually perform any transition. Consequently,

the first-passage function F(•) is normalized. In view of the developed first-passage time of

performing a visible transition, the first-passage function is given by
∑

`i+1∈L P (t, `i+1|`i), thus

1 =

∞∫
0

dt
∑
`i+1∈L

P (t, `i+1|`i) = −
∑
`i+1∈L

〈〈`i+1||WT||`i+1〉〉〈〈`i+1||S−1||`i〉〉 =
∑
`i+1∈L

P (`i+1|`i),

(3.48)

which means that the columns of M add up to unity and the process on visible transitions space

L is Markovian.

Markovianity of the sequence of visible transitions is not an obvious property, other coarse-

graining procedures lead to non-Markovian processes unless some time-scale separation is con-

sidered [11, 28, 62].

Ergodicity in state space means that there is always a path with positive probability connect-

ing the target of a transition to the source of another, which means that there will always be a

path in space L connecting one visible transition to the other. Hence, the Markov chain defined

by M is also ergodic. Further, we assume and introduce the concept of hidden irreducibility:
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After removing transitions L from the state space, the resulting network is still irreducible. In

other words, there is always a path with positive probability connecting any states solely formed

by hidden transitions, which leads to a fully connected Markov chain in space L.

3.4 Fluctuation relations

The fluctuation relation (FR), one of the most encompassing result about nonequilibrium sys-

tems, states that, for a set of integrated currents ~c = τ ~J cumulated up to some stopping time τ ,

the log-ratio of their positive to negative probabilities is linear

log
pτ (~c)

pτ (−~c)
= ~f · ~c. (3.49)

The above relation holds at times τ beated by an external clock (upon a proper choice of initial

distribution [95], or asymptotically) only if the observer has access to (fundamentally) all cur-

rents and forces in the system’s state space, up to boundary contributions. Instead, it does not

generally hold if some of the currents are not visible.

The state space can be depicted as a graph with states as nodes and transitions as directed

links, for example

1 4

32 (3.50)

Notice that not all transitions need be reversible. We will instead focus on the statistics of a

single current, as described in Section 3.2.4. Without loss of generality we take ↑= 1 ← 2

and ↓= 2← 1 as our visible transitions, on the assumption that there are no other mechanisms

connecting 1 and 2 directly. We further assume hidden irreducibility, i.e. the existence of a

non-zero probability path between any pair of states not containing visible transitions.

For a physical picture, these transitions could be associated with measurable emission and

absorption of photons of frequency ω with a thermal bath at inverse temperature β. Local



CHAPTER 3. TRANSITION-BASED COARSE GRAINING 54

detailed balance then implies in the equality

W1,2

W2,1

= exp ~βω. (3.51)

We assume non-degeneracy, that is 1 ↔ 2 is the only transition exchanging photons of that

energy (from now on ~ω = 1), and that the temperature can be regulated.

From the transition space Markov chain 3.3 we can arrange trans-transition probabilities in

a trans-transition matrix

P :=

p(↑ | ↑) p(↑ | ↓)
p(↓ | ↑) p(↓ | ↓)

 , (3.52)

which is a discrete-time transition matrix in the following space of transitions:

↑ ↓
(3.53)

Thus, the sequence of visible transitions is a Markov chain in transition space, which by

hidden irreducibility is fully connected. This result also holds for a larger number of visible

transitions. Notice that here the Markov property is preserved by lifting the observable pro-

cess into a different space. Other decimation procedures anchored on states typically break

markovianity, which is only recovered in the limit of time-scale separation [11, 62].

The probability of transition path ~̀= {`0, `1, . . .} is

p(~̀) = p1(`1)
n−1∏
k=1

p(`k+1|`k), (3.54)

where p1(•) is the probability that the first recorded transition. We now compare it to that of

its time-reversed, both sampled from the same initial distribution, by taking their ratio. The

time-reversed of p(`|`) is itself, therefore all such terms cancel out and we are left with

p(~̀)

p(~̀)
=
p1(`1)

p1(`n)

[
p(↑ | ↑)
p(↓ | ↓)

]n↑↑(~̀)−n↓↓(~̀)
(3.55)

where n``′(~̀) is the number of times trans-transition `→ `′ occurs along the path.

Letting j(`) := δ`,↑ − δ`,↓ be the instantaneous current, signaling when a transition occurs,
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Figure 3.12: Counting of the current as per Eq. (3.57)

we focus on the integrated current

c(~̀) :=
n∑
k=1

j(`k) = n↑(~̀)− n↓(~̀). (3.56)

where n` is the number of times transition ` has been performed along the process. Notice that,

it can only take values {−n,−n+2, . . . , n−2, n}, and that it is anti-symmetric by time reversal,

c(~̀) = −c(~̀). Importantly, we can also express it in terms of the trans-transition numbers n``′

as

c(~̀) = n↑↑(~̀)− n↓↓(~̀) +
j(`1) + j(`n)

2
. (3.57)

The first term is due to the fact that occurrences of ↑↓ and ↓↑ always reset the current to its

initial value, and therefore only self-loops contribute to it. The second boundary term is less

intuitive, and is explained in Fig. 3.12.

From the probability of a path in transition-space p(~̀) we can introduce the joint probability

of a path and the value of its current

p(c, ~̀) = δc,c(~̀)p(
~̀), (3.58)

which is normalized since
∑

c,~̀ p(c,
~̀) =

∑
~̀ p(~̀) = 1.

The probability of a path can be expressed in terms of the probability of the number of its

pairs of transitions. Marginalizing over the bulk transitions, all the transitions apart from the
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first and last, we obtain

p(c, `1, `n) =
∑

`2,...,`n−1

p(c, ~̀) =
∑

`2,...,`n−1

δc,c(~̀)p(
~̀)

=
∑

`2,...,`n−1

δc,c(~̀)p1(`1)
n∏

m=2

p(`m|, `m−1)

= p1(`1)
∑

`2,...,`n−1

δc,c(~̀)[p(↑ | ↑)]n↑↑(
~̀)[p(↓ | ↓)]n↓↓(~̀)

× [p(↑ | ↓)]n↑↓(~̀)[p(↓ | ↑)]n↓↑(~̀) (3.59)

whereas for the time-reversed the effective force Aeff can be cast to express pairs of transitions

of ~̀ in terms of ~̀’s pairs:

p(−c, `1, `n−1) =
∑

`2,...,`n−1

p(−c,~̀) =
∑

`2,...,`n−1

δ
−c,c(~̀)

p(~̀)

=
∑

`2,...,`n−1

δc,c(~̀)p1(`n)
n∏

m=2

p(`m−1|, `m)

= p1(`n)
∑

`2,...,`n−1

δc,c(~̀)[p(↑ | ↑)]n↑↑(
~̀)[p(↓ | ↓)]n↓↓(~̀)

× [p(↑ | ↓)]n↑↓(~̀)[p(↓ | ↑)]n↓↑(~̀)

= p1(`n)
∑

`2,...,`n−1

δc,c(~̀)[p(↓ | ↓)eAeff ]n↓↓(
~̀)[p(↑ | ↑)e−Aeff ]n↑↑(

~̀)

[p(↑ | ↓)]n↑↓(~̀)[p(↓ | ↑)]n↓↑(~̀)

= p1(`n)e−Aeff(c−[j(`1)+j(`n)]/2)p(c, `1, `n)

p1(`1)
. (3.60)

To obtain the expression above, we used the following properties: The sum over all possible

paths is the same for the time-reversed paths
∑

`m
=
∑

`m
; reversing the path changes the

sign of the charge δc,c(`) = δ−c,c(`); pairs of repeated transitions change, n↑↑(`) = n↓↓(`) and

n↓↓(`) = n↑↑(`), while alternated do not, n↑↓(`) = n↑↓(`) and n↓↑(`) = n↓↑(`); the effective

affinity yields eAeff = p(↑ | ↑)/p(↓ | ↓); lastly, we also use Equation (3.57) c(`) = n↑↑(`) −
n↓↓(`) + [j(`1) + j(`n)]/2.
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Notice that j(`n) = −j(`n) and, introducing the potential

u(`) := Aeffj(`)/2− log p1(`), (3.61)

above expression simplifies to the joint fluctuation relation of charge and boundary transitions

p(c, `1, `n)

p(−c, `1, `n)
= exp{Aeffc+ u(`n)− u(`1)}. (3.62)

This result can acquire the fluctuation theorem form in all its glory, i.e. a pure exponential

of the current, in three different scenarios. When satisfied, the equation reads

pn(c)

pn(−c) = expAeffc, (3.63)

which is the recovery of a fluctuation relation for partial information.

The first and most obvious case is for large currents c � 1, where the contribution is

suppressed. Therefore, one should expect to see the exponential behavior for large fluctuations

of c. Secondly, the potential vanish when `1 = `n. From the collected ensemble of trajectories,

a filtering procedure of post-selecting trajectories satisfying this property will give rise to the

fluctuation relation. Lastly, the potential difference can be vanished by selecting as the initial

distribution

p1(`) ∝ p(`|`), (3.64)

dubbed preferential distribution. This particular initial distribution ensures that the potential

difference vanishes for every combination of first and final transitions of a trajectory, as can be

seen from Eq. (3.61) and the table below.

`1, `n u(`n)− u(`1), with p1(`) ∝ p(`|`)
↑, ↑ −Aeff − ln[p(↓ | ↓)/p(↑ | ↑)] = 0

↑, ↓ − ln[p(↑ | ↑)/p(↑ | ↑)] = 0

↓, ↑ − ln[p(↓ | ↓)/p(↓ | ↓)] = 0

↓, ↓ Aeff − ln[p(↑ | ↑)/p(↓ | ↓)] = 0

The statistics of a current can also be entailed in the cumulant generating function, and the

same stands for the fluctuation relation. For large values of n → ∞ the contribution from the
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Figure 3.13: The charge’s scaled cumulant generating function at long time (dominant eigen-
value of the tilted rate matrix obtained by R` → R`e

λj(`)) and at at large number of transitions
(logarithm of the dominant eigenvalue of the tilted trans-transition matrix, obtained by tilting
p(`|`′)→ p(`|`′)eλj(`)). Only the second displays the fluctuation symmetry λ→ −Aeff − λ.

potential term is suppressed and, letting gτ→∞ = limτ→∞ τ
−1 log〈eλc〉 for τ = t, n (stopping

time and stopping number of transitions) be the generating functions of the cumulants of the

stationary charge at long times/large number of transitions, the FR can be cast as the symmetry

gn→∞(λ) = gn→∞(−Aeff − λ) (3.65)

uniquely in terms of the effective force, which is known to be operationally determined by

Aeff = β − β∅ in terms of the inverse temperature β∅ that causes the current to stall [82].

Fig. 3.13 shows that the symmetry is typically not satisfied at large times for stopping time, but

only when the observation is taken at the beat of the current.

3.5 Biophysical applications

Here we apply our theoretical framework to bio-molecular machines where partial information,

stemming from the observation of few transitions, is experimentally accessible. For example,

DNA polymerase [96], data obtained from single-molecule FRET microscopy [97, 98] and op-

tical tweezers [99, 100] to resolve the displacement of a motor along a track, yet most of the

structural and chemical degrees of freedom are hidden. Inspired by these experimental limita-

tions, we first focus on two examples of biologically-relevant molecular machines in which we
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Figure 3.14: Plots of log pτ (+c)/pτ (−c), c ≥ 0 for different stopping times and processes,
for the four-state system in Eq. (3.50), current along 1 ↔ 2, a suitable choice of rates, equal
number of samples. Left: Sampling from the stationary distribution, comparison of CTMC at
clock time t, at stopping time the total number of visible transitions n, and of transition-space
Markov chain at discrete clock time n. Right: CTMC at stopping time n sampled from different
initial distributions: transition-space stationary, state-space stationary, preferential distribution,
showing that this latter lie on the the line with slope Aeffc (dashed line).

assume that one can only resolve mechanical transitions involving spatial displacements dynein

and kinesin, which serve as case studies of ring and multicyclic networks, respectively. Next,

we extend our study to motors that move in hetereogeneous tracks, and study the effect of the

degree of disorder in the statistics of transitions.

3.5.1 Molecular motors

Dyneins are cytoskeletal nano-scale motors that move along microtubules inside cells and per-

form varied range of functions, like intracellular cargo transport and beating of flagella [101,

102]. Dyneins transduce chemical energy from ATP hydrolysis into mechanical work done by

displacing loads along the microtuble.

Here, we study a unicyclic seven-state kinetic model of dynein stepping (cf. Fig. 3.15)

that has a ring topology and is described in [103, 104]. During every forward stepping cycle,

one ATP molecule binds to the dynein (D) (1→2), thereby triggering the release of the dynein

from the microtubule (MT) (2→3). This is followed by the hydrolysis of ATP that induces a

conformational change of the dynein (D∗) (3→4) and consequently leads to microtubule binding
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Figure 3.15: Sketch of the chemo-mechanical ring network for dynein with visible transitions
6 ↔ 7. The meaning of the transitions between each states and the experimentally inferred
values of the transition rates are listed in Table. 3.1.

(4→5). In the next step, release of one phosphate group Pi (5→6) is followed by a power

stroke (6→7), and release of one adenosine diphosphate molecule ADP (7→1). The different

transition rates between these discrete states and their description are listed in the Table 3.1.

We consider the setting where single molecule experiments can follow the cargo displace-

ment and therefore observe only transitions 6 ↔ 7. As discussed in Section 3.2.6 the inferred

entropy production rate for this model is exactly given by σ = σ`. From the network topology

and transition rates we evaluate σ` analytically for different values of parameters such as the

concentrations of ATP and ADP. The probabilities of a sequence of two transitions P (±|±)

and P (±|∓) are given analytically from our framework by Eq. (3.18), and the probability of a

single transition is given by Eq. (3.25).

In Fig. 3.16, we observe that entropy production rate increases as the concentration of ATP

is raised and decrease the concentration of ADP. This implies that the forward step of dynein

is associated with high dissipation compared to the backwards step. The typical dissipation

rate for biophysical systems of nanometer to micrometer size ranges between 10-1000 kBT/s

[105]. Some examples are of kinesin with dissipation rate 250 kBT/s and single RNA hairpin

with dissipation rate between 10-250 kBT/s.

We now study a stochastic model for kinesin motion [106] validated in single-molecule

experimental studies [48, 107], see Fig. 3.17 for an illustration. The model is described by

a chemo-mechanical network comprising six discrete states which describe the mechanism of

movement of kinesin on the microtubule. Notice that it has two independent cycles: “F” cycle

[(1)→(2)→ (5)→ (6)→ (1)] corresponding to the forward motion of kinesin by one step, and
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Parameter Description Value
W17 ADP release 160
W71 ADP binding 2.7×[ADP]
W21 ATP binding 2×[ATP]
W12 ATP release 50
W32 MT release in poststroke state 500
W23 MT binding in poststroke state 100
W43 linker swing to prestroke 1000
W34 linker swing to poststroke 100
W54 MT binding in prestroke state 10000
W45 MT release in prestroke state 500
W65 Pi release 5000
W56 Pi binding 0.01×[Pi]
W76 Power stroke 5000
W67 Reverse stroke 10

Table 3.1: Transition rates for the chemo-mechanical cycle for the dynein model in Fig. 3.15
(see [103, 104]). All the rate constants Wij (except W12, W32 and W67 which are in s−1µM−1)
are given in units of s−1, and the concentrations in µM. Here MT refers to the microtubule.

“B” cycle [(4)→ (5)F → (2)→ (3)→ (4)] resulting in a step backwards. The dynamics along

one F cycle is as follows: After ATP binding (1 → 2), kinesin makes a step forward (2 → 5)

in the filament, followed by ATP hydrolysis that results in the release of one ADP molecule

(5 → 6) and inorganic phosphate Pi (6 → 1). The backward B cycle proceeds similarly, with

the only difference that after the binding of ATP to kinesin a backward step along the filament

(5 → 2) occurs. Notice that, in contrast to the model example of dynein, here forward and

backward movements are driven by the hydrolysis of one molecule of ATP. The transition rate

values are listed in the Table 3.5.1. An external load force f biases the transition rates W25 and

W52 involving spatial motion:

W52(f) = W 0
52e−θfd0/kBT

W25(f) = W 0
25e(1−θ)fd0/kBT , (3.66)

where θ is the load distribution factor, d0 is the step size and f is the load force. On the other

hand, for the chemical transitions we have

Wij(f) = 2W 0
ij(1 + eχijfd0/kBT )−1Iij, (3.67)

where χij represents the mechanical strain on catalytic domains with χij = χji > 0 where

i, j 6= 2, 5 and Iij is the concentration of the molecular species involved in the transition j → i.
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Figure 3.16: Entropy production rate in kB/s for the dynein with visible transitions 6 ↔ 7,
using rates from Table 3.1 and [Pi]=1mM, in terms of [ATP] and [ADP].

We now focus on the statistics of the transitions associated with the mechanical movement

of kinesin i.e. 2 ↔ 5, which are the only ones that can be observed experimentally. For

our calculations, we have considered the concentration for ADP to be [ADP]= 70µM and

[Pi] =1mM, the load distribution factor θ = 0.65, d0 = 2kBT , χ12 = 0.25 and χ56 = χ61 =

0.15.

Figure 3.17: Sketch of the chemo-mechanical network model used to describe kinesin motion.
The only visible transitions 2 ↔ 5 are marked in dotted magenta. Here F and B denote the
cycle corresponding to the forward and backward movement of kinesin, respectively.

Figure 3.18 shows the inter-transition statistics of this model obtained from the analytical
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Parameter Description Value
W 0

21 = W 0
54 ATP binding 2.0×[ATP]

W 0
12 Release of ATP 100

W 0
32 = W 0

65 ADP release 100
W 0

23 = W 0
56 ADP binding 0.02×[ADP]

W 0
25 ATP binding 0.24

W 0
52 Mechanical step 3× 105

W 0
43 = W 0

16 Hydrolysis of ATP 100
W 0

34 = W 0
61 Pi binding 0.02×[Pi]

W 0
45 Release of ATP R0

12(R0
25/R

0
52)2

Table 3.2: Transition rates for the chemo-mechanical cycle for kinesin model in Fig. 3.17 [106].
All the rate constants Wij (except W21, W23, W34, W54, W56 and W61, which are in s−1µM−1)
are given in units of s−1, and the concentrations in µM.

expressions in Eq. (3.21), which displays a rich structure due to the multicyclic structure of

the model. Our results show that apart from being defined in a network with two cycles, Fig.

3.18(a) shows that densities for repeated transitions are the same P (t|+,+) = P (t|−,−),

which in general is not true for multicyclic networks. However, in this particular case both

cycles have the same sequence of transition rates, leading to a similar inter-transition time for

the performance of each cycle. This symmetry implies that σt for the present kinesin model.

As can be seen in Fig. 3.18 (b), the alternated transitions in general have different inter-

transition time densities, but for the stall force P (t|+,−) and P (t|−,+) become similar, as can

be seen by minima in D[P (t|+,−)||P (t|−,+)]. Both for the force and the concentrations of

ATP [cf. Fig. 3.18 (c)] we observe regions of decreasing divergence, however the entropy pro-

duction rate is increasing in these regions, this is an evidence of the finding that inter-transition

times between alternated transitions do not contribute to the dissipation.

Fig. 3.19 shows entropy production rate σ and the values inferred from our approach of

observing the forward and backward mechanical transition and the thermodynamic uncertainty

relation. Fig. 3.19(a) is in terms of the external force f with a zoomed-in view around the

stalling force, for which both σL and σTUR vanish since there is no flux and no inter-transition

time asymmetry between repeated transitions. Fig. 3.19(b) is depicted in terms of the concen-

tration of ATP and (c) of ADP, from them we observe a monotonic increase of dissipation with

[ATP] while it is almost independent of [ADP]. In this model σL obtained from Eq. (3.37) in

general provides a good estimate for σ, in general overperforming the thermodynamic uncer-

tainty relation σTUR. Due to the absence of σt no dissipation is detected when no net current is

present (at stalling force).
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Figure 3.18: Exact inter-transition time statistics for the kinesin model in Fig. 3.17 with visible
transitions 2 ↔ 5. (a) Inter-transition time densities for every possible pair of transitions.
(b) Kullback-Leibler divergence for alternated transitions in terms of the external force f with
vertical line corresponding to the stalling force of fst ∼ 7.02 pN , (c) and in terms of the ATP
concentration. The rates are displayed Table 3.5.1 and [ADP] = [P] = 5µM .
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Figure 3.19: Exact analytical values for the rate of entropy production for the kinesin model in
Fig. 3.17 with visible transitions 2↔ 5: entropy production σ of the underlying Markov chain
(black curves), inferred entropy production from transition statistics σL (blue dashed line) and
estimate from the thermodynamic uncertainty relation lower bound σTUR (magenta dotted line).
(a) Values in terms of the external load force f and a zoomed-in view around the stalling force in
the inset, for this case [ATP]= 10µM , and [ADP]=[P]= 5µM . (b) In terms of the concentration
of ATP, with f = 1pN , and [ADP]=[P]= 5µM . (c) In terms of the concentration of ADP, with
f = 1pN , [ATP]= 10µM , and [P]= 5µM .
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3.5.2 Disorder on a track

In many instances, the stochastic motion of molecular machines display a disordered behavior

due to the heterogeneity of the track. For example, template-copying machines like DNA and

RNA polymerases [108] and ribosomes [109] are modelled as machines whose motion is de-

pendent on the sequence constituting the track [110, 111]. In this section, we study the effects

of track disorder during the movement of a molecular machine.

Figure 3.20: Schematic representation of our minimal stochastic model of molecular motor
motion with disorder in the composition of the track. The track comprises of two types of
sequences: A and B that appear with probabilities p and 1 − p respectively. For both types,
the motor follows the same kinetic scheme but for blue-labeled position on the track, it has a
given set of rates Wij , and for magenta-labeled position, its transition rates are multiplied by
the disorder factor, i.e., αWij . The only visible transitions are the related to translocation to the
right + = 4→ 1 and to the left − = 1→ 4.

We consider a minimal stochastic model of a molecular machine that moves along a track

by burning fuel (i.e. by hydrolysis of ATP). The machine undergoes a series of conformational

changes and translocates on a linear heterogeneous track (a polymer) composed of two types

of monomers, labeled A and B. We assume that the track is infinite (i.e. we effectively have

annealed disorder), and that the generation of the template qn ∈ {A,B}, n = {1, 2, . . .},
is an i.i.d. process such with prescribed probabilities P (qn = A) = p and P (qn = B) =

1− p for the occurrence of A and B type monomers, respectively. For our numerical study, we

generate the template before running the simulations and use the same template for every run.
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Figure 3.20 sketches the disordered nature of a track along the motion of the molecular machine.

We also assume that the motor moves following a unicyclic enzymatic reaction composed of

four internal configurational states and that only two transitions are visible 4 → 1 = + and

1 → 4 = − corresponding to forward and backward steps along the track, respectively. The

template disorder is implemented in the stochastic model as follows: When the motor reaches a

monomer of type qn, its internal configurational states within one periodicity cell are connected

by rates

W
(qn)
ij =



Wij if qn = A and i, j 6= 4, 1

αWij if qn = B and i, j 6= 4, 1

W41 if qn−1 = A and i, j = 4, 1

αW41 if qn−1 = B and i, j = 4, 1

(3.68)

where α ∈ (0, 1] is the disorder factor. This factor scales the transition rates, effectively slowing

or accelerating the transitions depending on the track position. As a convention, we have set

the transition rate related to a back step W (qn)
41 to be defined in terms of the previous monomer’s

type qn−1. Apart from specific choices of the parameters, this motor has a nonequilibrium

dynamics, evidenced by a net drift along the track. In ring topologies, we have observed that

inter-transition times do not contain irreversibility traces, which is not necessarily true for the

disordered case.

We now study how the disorder parameters α and p of this minimal model affect the inter-

transition time probability densities between pairs of repeated transitions ++ and +−, and

alternated transitions −+ and −−. From the simulation of a molecular motor on a disordered

track with four internal states, we observe in Fig. 3.21 that only the inter-transition time between

alternated transitions is affected by different levels of disorder.

Symmetry D[P (t|+,+)||P (t|−,−)] = 0 is preserved by changes in disorder, which is

already expected for the homogeneous case (α = 1, p = 0 or p = 1) and it is interesting to

note that it holds for different scenarios. Conversely, D[P (t|+,−)||P (t|−,+)] changes with

values of α and p. Asymmetry in inter-transition times of repeated transitions is insensitive to

the degree of disorder while the asymmetry for alternated transitions proves to be a meaningful

quantity to the study of molecular machines on disordered tracks. Remarkably, unlike in the

study of entropy production, only alternated transitions entail information to study levels of

disorder.
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Figure 3.21: Kullback-Leibler Divergences of the inter-transition time densities for repeated
(black circles) and alternated (magenta squares) pairs of transitions. (a) in terms of heterogene-
ity 1 − α with fixed monomer probability p = 0.5. (b) in terms of probability p of monomer
A, with fixed α = 0.2. The rates used for Gillespie simulations are W12 = W43 = 1 s−1,
W21 = W23 = W34 = 5 s−1 and W32 = W14 = W41 = 4 s−1, and visible transitions are the
ones involving translocation along the track, i.e. transitions 1→ 4 and 4→ 1.

3.6 Chapter summary

In this chapter we developed the proposal of a transition-based coarse-graining scheme to de-

scribe stochastic processes with discrete state-space. The role of time is highlighted for entropy

production inference and fluctuation relations.

Mapping the problem of visible transition statistics onto a first-passage time one, analytic

expressions are obtained and analyzed for sequence of transitions and inter-transition times.

The introduced survival matrix proves to be a powerful tool to obtain such properties and a

notation for transition space is developed. Consequently, the entropy production inferred from

a few visible transitions can be assessed and split into two contribution, from the sequence and
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the time. The sequence of transitions contain the full entropy production in ring networks, the

inter-transition times detect nonequilibrium even when no net flux is observed.

Delving into transition space, a Markov chain can be established using the previous results.

From such, a fluctuation relation is recovered when the current is observed at “its own beat”,

which rules out inter-transition times and establishes an inner notion of time.

Lastly, the framework of transition-based coarse-graining is applied to biophysical models,

illustrating it can be used as an inference tool to the common scenario of from partial informa-

tion from both sequence of transitions and inter-transitions times. The time between repeated

transitions also carry information about disorder, probing its intensity.



“More is different.”

P. W. Anderson [115]

“More is the same.”

Leo P. Kadanoff [116]Chapter 4

Nonequilibrium Phase transitions

4.1 What is a phase transition

The broadness of how phase transition concepts are defined may come as a surprise for the

unwary physicist, but so is the range of applicability of the theory. They are evidenced by sharp

changes in the properties of a system and come in all flavors. There are obvious examples such

as the boiling of water and a change in magnetization direction. There are more convoluted

phase transitions such as the superfluidity of helium, the suppression of superconductivity in

thin films, the critical opalescence of carbon dioxide, and others. Also, there are phase transi-

tions of clear relevance such as emergence of political consensus, epidemic outbreaks and the

milting of polar ice caps.

In equilibrium systems, phase transitions are defined by singularities in the free energy

derivatives [112], which give rise to sharp changes in several physical quantities1. Similar

phenomena occur even out of equilibrium, they are marked by a sudden change in the non-

equilibrium steady state [114].

In a more precise way the study of phase transitions describes such phenomena with the

introduction of two key concepts: control and order parameter. The former is a parameter that

can be tuned and affect the system’s behavior or structure, examples are temperature, magnetic

field and presence of disorder. The order parameter is an indicator of phases, vanishing when

the system is in one phase and presenting a non-zero value in the other phase, as examples we

cite the density of fluids, magnetization of magnetic systems and a tensor describing order in

1An interesting and ongoing discussion arises from the mathematical definition of phase transitions as diver-
gences in physical quantities. These divergences are only achieved in the limit of infinitely many particles, whereas
finite real systems go through phase transitions all around us [113].

69
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liquid crystals. Therefore, in a generic way, a phase transition occurs at the crossover of distinct

phases through the change of well defined values of a control parameter, it is marked by the

order parameter vanishing in one of the phases.

The modern classification embraces two types:

(i) First-order phase transitions: Also known as discontinuous phase transitions, they present

a discontinuity in the order parameter. In equilibrium, they are marked by a discontinuity

in the first derivative of the free-energy, thus their name. A particular feature is the pres-

ence of a phase coexistence region. One common example is the boiling of water, whose

control parameter is the temperature and order parameter is the density.

(ii) Continuous phase transitions: They go through a continuous vanishing in the order pa-

rameter, but not in its derivative. In equilibrium, they present a discontinuity in the second

or higher derivative of the free energy, or a divergence in one of them. The location of

continuous phase transitions is known as a critical point, and its vicinity as the criticality.

At criticality, the correlation length gets infinite and correlations present a power law de-

cay, characterized by critical exponents that give rise to universality classes. For example,

the ferromagnetic-paramagnetic Ising model phase transition is continuous.

There is a well-established theory to characterize equilibrium phase transitions, however for

systems out of equilibrium the lack of free energies poses a problem. Leveraged by the recent

success and developments of stochastic thermodynamics, the most common thermodynamic

distance to equilibrium–entropy production–has been studied in terms of how well it can typify

non-equilibrium phase transitions [II, 117–125]. As an advantage, the entropy production rate

captures important nonequilibrium traits and, depending on the system, might be easier to obtain

than the order parameter itself. Whereas a widespread and unified theory for out of equilibrium

systems is not yet established.

Nonequilibrium phase transitions encompass transitions between equilibrium phases. How-

ever, we aim for a theory of transitions between phases that are genuinely out of equilibrium,

thus equilibrium can be recovered as a particular case. Furthermore, nonequilibrium phases are

not defined as simply as in equilibrium; for instance, the coexisting phases along a first-order

phase transition have to be characterized in terms of the interactions (e.g. energy exchanges)

between them rather than only in terms of intrinsic properties [126].
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The goal of this chapter is to provide a further step in this direction, characterizing nonequi-

librium phase transitions in terms of entropy production signatures and studying how coexisting

nonequilibrium phases affect the statistics of generic fluxes.

4.2 Systems with Z2 symmetry

An important class of system are those presenting Z2 symmetry, also know as “up-down” and

“inversion” symmetry. The dynamics do not change under the change of the sign of all degrees

of freedom. An example is a spin system that presents the same dynamics if all spins are flipped,

as is the case for many Ising-like Hamiltonians, with the Ising model itself standing out as the

most important example.

Many systems with Z2 symmetry yield continuous and/or discontinuous phase transitions

between ordered and disordered phases. One example is the transition between ferromagnetic

(ordered) and paramagnetic (disordered) phases due to spontaneous symmetry breaking, in

which the ferromagnetic presents two distinct non-zero values of magnetization.

4.2.1 Mean-field description

Heuristically, a continuous phase transition in such class of models is described by the general

logistic order parameter equation:

d

dt
m = a(qc − q)m− bm3, (4.1)

where q denotes the control parameter, t is the time, and a and b are positive constants. It has two

steady solutions, the disordered phase magnetization m(D) = 0 (for all values of a and b) that is

stable for large values of q, and the ordered phase magnetizationm(S) = ±
√
a(qc − q)/b, stable

for small q. The phase transition follows the mean-field exponent βmf = 1/2 as m vanishes.

Also, Eq (4.1) behaves as m ∼ exp[a(q − qc)t] for q < qc when m� 1.

The simplest description of first-order phase transitions requires an additional term cm5 in

order to admit phase coexistence, leading to [I]

d

dt
m = a(qb − q)m+ bm3 − cm5, (4.2)

where c > 0. As before, m(D) = 0 is always a solution, which is stable for values of q >
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qb. However, along the hysteretic branch there are two additional solutions, the unstable m(U)

and stable m(S). The existence of a hysteretic branch containing three distinct solutions is a

trademark of (mean-field) discontinuous phase transitions, rendering the phase coexistence.

Starting from a positive and small value of the control parameter q, the single stable solution

is the magnetizedm(S). Increasing q leads to a phase transition at q = qf = qb+(b2/4ac), where

the magnetization m abruptly jumps from the magnetized stable state m(S)(qf ) to the non-

magnetic solution m(D) = 0. On the other hand, starting from a larger q > qf and decreasing

its value leads to a phase transition at qb from m(D) to m(S)(qb). This difference between the

location of “forward” and “backward” phase transitions forms a hysteresis located at qf < q <

qb.

Inside the hysteresis, the unstable solution m(U) splits the order parameter convergence. For

a value of q inside the hysteresis, a system with initial magnetization greater than m(U) will

converge to m(S), whereas the opposite leads to a convergence towards m(D). Outside such a

region, the evolution of the magnetization is m ∼ exp[a(qb − q)t] for initial values m0 � 1

when q > qf , and it also exponentially approaches m(S) at its vicinity when q < qb.

Figure 4.1 illustrates the mean-field description discussed above. The steady-state solutions

m(S), m(U) and m(D) are shown in red curves in terms of the control parameter q. The critical

point qc is shown as a dot in the left panel and the hysteresis is located between qb and qf in the

right panel. The curves dm/dt from Eqs. (4.1) and (4.2) are shown in the insets for different

regimes; notice that the zeroes of such a function locate the steady-state solutions and the slope

at these zeroes, d2m/dt2, provide the stability. Negative slopes refer to stable solutions (e.g. in

the left panel, the non-zero solutions for q < qc and zero for q > qc), while positive slopes are

present in unstable solutions (e.g. in the right panel, the first non-zero solutions for qb < q < qf ).

Above phenomenological relation hides the irreversible character of non-equilibrium phase

transitions, and it does not provide any information about the entropy production at the phase

transition. Therefore, we derive a general expression for the entropy production taking into

account a generic dynamics with Z2 symmetry. Based on Markovian dynamics, we deal with

systems defined over a lattice that undergo a phase transition induced by parameter q. The

starting point consists of assigning to each site i of an arbitrary lattice topology a spin variable si

that assumes values±1. The transition rate for the spin flip is given by w(si) = [1−qsig[X]]/2,

with g[X] expressing a generic dependence on a local neighborhood of spins, where−k ≤ X ≤
k is bounded between the number of neighbours of the local spin si.
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Figure 4.1: Mean-field description of a continuous (left) and first-order (right) phase transitions.
Solutions for m(q) are shown in red lines. Insets are dm/dt versus m for different values of q
[Eq. (4.1) for the left panel and Eq. (4.2) for the right one], whose zeroes represent the steady-
state solutions m(q).

Only two assumptions regarding g[X] are required. The first is that, due to the Z2 symmetry,

it is an odd function on the sign of the local spin neighborhood, g[X] = −g[−X]. Also, taking

into account that w(si) is constrained between 0 and 1, the product |qg[X]| ≤ 1 for all values of

X . These assumptions allow us to rewrite g[X] as g[X] = |g[X]|sgn[X], where sgn[X] is the

sign function.

The order parameter is the expected magnetization of a spin m = 〈si〉, and from the master

equation its evolution is described by [5]

d

dt
〈si〉 = −2〈siw(si)〉. (4.3)

By inserting the transition rate and noticing that s2
i = 1, the steady-state solution is given

by m = q〈|g[X]|sgn[X]〉 since. The steady state entropy production rate is given by σ =∑
i〈w(si) ln[w(si)/w(−si)]〉. In this case of spin-half dynamics it simplifies since there are

only two possible values:

ln
w(si)

w(−si)
=

ln 1−q|g[X]|
1+q|g[X]| if sisgn[X] = 1

ln 1+q|g[X]|
1−q|g[X]| if sisgn[X] = −1

(4.4)
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Hence, σ reads

σ =
∑
i

〈
1

2

[
sisgn[X]− q|g[X]|sgn[X]2

]
ln

1− q|g[X]|
1 + q|g[X]|

〉
. (4.5)

The one-site mean-field theory consists of rewriting the joint probability P (si, ..., sk) as a

product of one-site probabilities P (si) · · ·P (sk), from which one derives closed relations for

the correlations as function of the control parameters. Since the main marks of critical and

discontinuous phase transitions are not expected to depend on the particularities of g[X], it is

reasonable, within the mean-field theory, to replace the averages in terms of an effective value

ḡ given by

m = q〈|g[X]|sgn[X]〉 → qḡ〈sgn[X]〉, (4.6)

1

2

〈
sisgn[X] ln

1− q|g[X]|
1 + q|g[X]|

〉
→ 1

2
ln

1− qḡ
1 + qḡ

〈sisgn[X]〉, (4.7)

and
1

2

〈
|g[X]|S2[X] ln

1− q|g[X]|
1 + q|g[X]|

〉
→ ḡ

2
ln

1− qḡ
1 + qḡ

〈S2[X]〉. (4.8)

At this level of approximation, the steady entropy production per site then reads

σ

N
=

1

2
qḡ ln

1 + qḡ

1− qḡVar[sgn[X]], (4.9)

which is a non-negative quantity depending on the variance of the neighborhood sign Var[sgn[X]] =

〈sgn[X]2〉 − 〈sgn[X]〉2.

The above averages are calculated by the probabilities of having a positive or negative neigh-

borhood

P [sgn[X] = ±1] =
k∑

n=dk/2e

Ck
np

n
±p

k−n
∓ , (4.10)

and both do not add to unity in general because there is still the possibility of having sgn[X] = 0.

d...e is the ceiling function and, for sgn[X] = ±1, the coefficient Ck
n counts the possibilities

of having n out of the k spins with a ± sign. The probability of a single spin being ±1 can be

expressed in terms of magnetization as p± = (1 ±m)/2. Therefore, the moments of the sign

function read

〈sgn[X]〉 = P [sgn[X] = +1]− P [sgn[X] = −1] (4.11)
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and

〈sgn2[X]〉 = P [sgn[X] = +1] + P [sgn[X] = −1]. (4.12)

For a given k and lattice topology, Equations (4.11) and (4.12) can be calculated, providing

the value of σ. However, they become simpler in the regime of large connectivities. Note that

each term of the binomial distribution approaches a normal distribution with mean kp± and

variance kp+p−, so that

k∑
n=dk/2e

Ck
np

n
±p

k−n
∓ → 1√

2πkp+p−

∫ k

k/2

e
− (`−kp±)2

2kp+p− d`

=
1

2

√
π

{
erf

[
k(1− p±)√

2kp+p−

]
− erf

[
k(1/2− p±)√

2kp+p−

]}
, (4.13)

where erf(x) = 2π−1/2
∫ x

0
e−t

2
dt denotes the error function. Since limx→∞ erf(±x) = ±1, in

the limit of large connectivity k � 1 we have 〈sgn2[X]〉 → 1), and for small m the expressions

to

m = qḡ

[
erf
(√k

2
m
)]

, (4.14)

and
σ

N
=

1

2
ln

1− qḡ
1 + qḡ

[
m2

qḡ
− qḡ

]
. (4.15)

For continuous phase transition, we resort to the results from the logistic description, in

which at vicinity of the critical point m behaves as m ∼ (q − qc)
1/2, and thus the entropy

production rate per site behaves as

σ

N
∼ 1

2
ln

1 + qḡ

1− qḡ

[
qc − q
qḡ

+ qḡ

]
, (4.16)

for q < qc, and
σ

N
=
qḡ

2
ln

1 + qḡ

1− qḡ , (4.17)

for q > qc. Hence the entropy production rate is continuous at the critical point qc, with value

qcḡ ln[(1 + qcḡ)(1 − qcḡ)]/2. However it presents a kink detected by a discontinuity in its first

derivative, which jumps from

∂

∂q

σ

N
=

qcḡ
2

1− q2
c ḡ

2
+

1− qcḡ2

2qcḡ
ln

1− qcḡ
1 + qcḡ

, (4.18)
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when q → q−c , to
∂

∂q

σ

N
=

qcḡ
2

1− q2
c ḡ

2
− ḡ

2
ln

1− qcḡ
1 + qcḡ

, (4.19)

when q → q+
c , whose discontinuity is associated with the critical exponent αmf = 0. The above

results dissect, for a generic system with Z2 symmetry, the behavior of σ and its derivative

at the criticality. Remarkably, having the classical exponents βmf and γmf (evaluated from the

variance of the order parameter [5]), we see that the hyperscaling relation αmf+2βmf+γmf = 2

is satisfied, reinforcing that the criticality is signed by the jump in the first derivative of σ/N , in

close proximity to the specific heat discontinuity for equilibrium systems.

The above description of mean-field entropy production also correctly identifies the signa-

tures of first-order phase transitions. According to Eq.(4.2), m jumps from m(S)(qf ) to 0 at

q = qf and thereby from Eq. (4.15) the entropy production will jump from

1

2

(
qf ḡ −

m(S)(qf )
2

qf ḡ

)
ln

[
1 + qf ḡ

1− qf ḡ

]
, (4.20)

to
qf ḡ

2
ln

[
1 + qf ḡ

1− qf ḡ

]
. (4.21)

Also, m jumps from 0 to m(S)(qb) at q = qb, leading to a jump in σ/N from

qbḡ

2
ln

[
1 + qbḡ

1− qbḡ

]
, (4.22)

to
1

2

(
qbḡ −

m(S)(qb)
2

qbḡ

)
ln

[
1 + qbḡ

1− qbḡ

]
. (4.23)

This bistable behavior in the entropy production rate not only distinguishes continuous and

discontinuous phase transitions, but also properly locates the hysteretic loop.

4.2.2 Mean-field description - Majority vote model with inertia

To illustrate previous results, we study one of the simplest models presenting a non-equilibrium

phase transition, the majority vote (MV) model. In its original version, the phase transition is

continuous [127], additional features such as inertia and the lattice’s topology can give rise to

first-order phase transitions [I, 128].

The model is defined as follows: Each site i of an arbitrary lattice can assume q̄ possible
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integer values, si = {0, 1, ..., q̄ − 1}. The dynamics is ruled by the fraction of neighboring

nodes in each state and by the inertia θ, that expresses the dependence on the local spin. With

probability 1 − f (f being the misalignment parameter) the local spin si follows the majority

neighborhood spin s′i, and with complementary probability f the majority rule is not followed.

For q̄ = 2 and θ = 0, the majority vote becomes equivalent to the Ising model in contact with

two heat reservoirs, one being a source of heat at infinite temperature, and the other a sink of

heat at zero temperature [127].

Recent studies [I, 129, 130] revealed that large inertia shifts the phase transition to a first-

order one for all values of q̄. An order-disorder phase transition arises by increasing f , whose

classification (continuous or first-order) depends on θ and the lattice connectivity k. For low q̄

(q̄ < 4) and θ = 0 (inertialess regime), it is always continuous, but the increase of q̄ modifies

the symmetry properties (Z2 and C3v for q̄ = 2 and 3, respectively), hence leading to distinct

sets of critical exponents. The phase transition becomes discontinuous for larger connectivities

k when θ increases.

The n-th moment of the order parameter 〈mn〉 is calculated by the quantity

〈mn〉 =

〈∣∣∣∣∣
N∑
i=1

exp(2πisi/q̄)/N

∣∣∣∣∣
n〉

, (4.24)

with 〈•〉 denoting the ensemble average. The n = 1 is a reliable order parameter since m > 0

in the ordered phase and zero in the disordered phase. The steady entropy production rate per

site can be calculated from the entropy flux as

σ

N
=

1

N

〈
q̄−1∑
q′=1

N∑
i=1

wi(~s) ln
wi(~s)

wi(~s(q′))

〉
, (4.25)

with wi(~s) the transition rate of changing spin i to one of its q̄ − 1 other values given state

~s = {s1, . . . , sN}, and wi(~s
(q′)) the transition rate of flipping back spin i given that it has

another value ~s(j) = {. . . , si−1, q
′, si+1, . . . , sN}.

For q̄ = 2, the above transition rate is more conveniently rewritten by taking the transfor-

mation si → 2si − 1 = ±1, so the magnetization is m = 〈σi〉 and the transition rate wi(~s)
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reads

wi(~s) =
1

2
[1− (1− 2f)sisgn[X]] =


f if sisgn[X] = 1

1− f if sisgn[X] = −1

1/2 if sisgn[X] = 0

(4.26)

where the first case sisgn[X] = 1 represents when the site has the same spin of its neighbours,

the second sisgn[X] = −1 when the spin is the opposite, and the last case is arbitrary since

there is no majority in the neighborhood.

Inertia θ is inserted in the system through the neighborhood dependence according to the

following change in X:

X = (1− θ)
k∑
j=1

sj/k + θsi, (4.27)

which represents the local-dependence on the site’s spin in the decision of following or not

following the majority. When θ = 0 its own spin does not play a role. As 0 ≤ θ ≤ 1/2

increases, the more the site tends to follow its own spin, in contrast to the neighborhood’s

majority. Now for θ > 1/2 the site’s spin will always rule the value of sgn[X]. Thus the name

inertia.

From Eq. (4.3), the steady-state expression for the majority vote’s absolute magnetization

m reads

m = (1− 2f)〈sgn[X]〉. (4.28)

Due to the presence of inertia in Eq. (4.27), the local spin now contributes to sgn[X]. At the

mean-field level we assumed that the probabilities each spin is independent, thus

m =(1− 2f)

{
P [X > 0, si = 1] + P [X > 0, si = −1]

− P [X < 0, si = 1]− P [X < 0, si = −1]

}
= (1− 2f)

{
P [X > 0|si = 1]P [si = 1] + P [X > 0|si = −1]P [si − 1]

− P [X < 0|si = 1]P [si = 1]− P [X < 0|si = −1]P [si = −1]

}
, (4.29)

and the conditional probabilities read

P [X > 0|si = 1] =
k∑

n=n1

Ck
np

n
+p

k−n
− , P [X > 0|si = −1] =

k∑
n=n2

Ck
np

n
+p

k−n
− , (4.30)
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and

P [X < 0|si = 1] =
k∑

n=n2

Ck
np

n
−p

k−n
+ , P [X < 0|si = −1] =

k∑
n=n1

Ck
np

n
−p

k−n
+ , (4.31)

with

n1 :=

⌈
k(1− 2θ)

2(1− θ)

⌉
and n2 :=

⌈
k

2(1− θ)

⌉
. (4.32)

Equation (4.29) provides the evaluation of m for a given lattice topology with connectivity

k. For large values of k it simplifies to the transcendental equation

m

(1− 2f)

(
2− (1− 2f)

{
erf

[√
k

2

(
θ

1− θ +m

)]
+ erf

[√
k

2

(
θ

1− θ −m
)]})

= erf

[√
k

2
(1−m)

]
− erf

[√
k

2
(1 +m)

]

+ erf

[√
k

2

(
θ

1− θ +m

)]
− erf

[√
k

2

(
θ

1− θ −m
)]

, (4.33)

which goes to Eq. (4.14) at θ = 0, as expected.

The equation above for the complete graph k →∞ goes to the transcendental expression

m =
(1− 2f)(1 + sgn[m− θ/(1− θ)])

2− (1− 2f)(1− sgn[m− θ/(1− θ)]) , (4.34)

which, for positive values of magnetization (for negative values the analysis is analogous) has

a solution

m =

1− 2f if f < (1− 2θ)/2(1− θ)

0 if f > (1− 2θ)/2(1− θ)
(4.35)

which means that in the limit of infinite connectivity the phase transition is located at f =

(1− 2θ)/2(1− θ). For θ = 0 it is continuous and located at f = 1/2. Also, since the solution

m = 0 always exists, the hysteretic branch reaches the axis. See Figure 4.2.

Now, we turn to the majority vote’s entropy production. In order to evaluate σ/N from Eq.

(4.25) we take the ratio between wi(~s) and its reverse wi(~s(j)) given by

wi(~s)

wi(~s(q′))
=

1− (1− 2f)sisgn[
∑k

j=1 sj + kθ
1−θsi]

1 + (1− 2f)sisgn[
∑k

j=1 sj − kθ
1−θsi]

. (4.36)
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Figure 4.2: At the mean-field level, the limit of infinite connectivity k →∞ leads to a discontin-
uous phase transition when the magnetization goes below θ/(1−θ). In the left panel inertia has
a value of θ = 0.23, in the right panel the phase transition location is at f = (1− 2θ)/2(1− θ).

Inspection of the above ratio reveals that only local configurations with
∣∣∣∑k

j=1 σj

∣∣∣ greater than

kθ/(1 − θ) will contribute to σ/N , since only in these cases such a ratio is different from 1. It

is reasonable since, if the site would always follow its own spin, there would be no interactions

and each and every site would relax to its (trivial) equilibrium state.

Therefore, the neighborhood can be simplified to the subset of local configuration that con-

tribute to the entropy production X ′ ∈ X , leading to the approximation ln[wi(~s)/wi(~s
(q′))] ≈

sisgn(X ′) ln[f/(1 − f)]. The expression for the entropy production rate per site is then given

by
σ

N
=

1

2
ln

f

1− f
[
〈sisgn[X ′]〉 − (1− 2f)〈sgn[X ′]2〉

]
(4.37)

and notice that the entropy production vanishes for f = 0 and f = 0.5, since the model will be

in equilibrium.

As previously performed, the expression of the mean-field of one site is obtained by replac-

ing 〈sisgn[X ′]〉 with 〈si〉〈sgn[X ′]〉, so that

σ

N
=

1

2
ln

f

1− f
[
m〈sgn[X ′]〉 − (1− 2f)〈sgn[X ′]2〉

]
=

1− 2f

2
ln

1− f
f

Var [sgn (X ′)] ,

(4.38)

which can be obtained following the same procedure used for the magnetization and is strictly

non-negative. Using aforementioned procedures for 〈sgn[X ′]〉 and 〈sgn[X ′]2〉, the mean-field
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Figure 4.3: Panel (a) depicts the bistable behavior of entropy production rate per site σ/N and
the order parameter |m| (inset) for θ = 0.43 and k = 12. Continuous black curves denote
the stable solutions for m0 > m(U), while blue dashed curves stand for m0 < m(U). They
coincide for f > ff and f < fb, and are different inside the hysteresis fb < f < ff . Dotted
curves correspond the unstable solutions m = m(U), attained when m0 = m(U)(f). Panel (b)
shows the time evolution of entropy flux φ/N for distinct initial configurations and f = 0.078,
solid black curves for m0 > m(U) and dashed blue for m0 < m(U). The inset shows the time
evolution of |m|, where circles correspond to the analytical prediction m ∼ ea(fb−f)t, valid for
m0 � 1.

steady entropy production in the limit of k →∞ behaves as

σ

N
=

0 if f < (1− 2θ)/2(1− θ)
1−2f

2
ln 1−f

f
if f > (1− 2θ)/2(1− θ)

(4.39)

In the inertialess case θ = 0, the majority vote model in the complete graph k →∞ always has

zero entropy production since f < 0.5, as already observed in [131]. However, the presence of

inertia also moves such a system out of equilibrium in the disordered phase.

Figure 4.3 summarizes some of the results discussed so far for discontinuous transitions.

Taking into account a neighborhood of k = 12 sites and distinct inertia values, the order pa-

rameter |m| [see Inset of Fig. 4.3(a)] jumps at ff and fb. The time evolution of |m| follows the

theoretical prediction m ∼ ea(fb−f)t for m0 � 1 [see the Inset of Fig. 4.3(b)]. Discontinuities

are also presented in the entropy production at the same locations. Along the hysteretic branch,

the entropy flux per site φ/N(t) converges to two well-defined values, σ0/N and σ1/N .

As stated above, the entropy production presents a kink at f = fc for continuous transitions,

a value for which the derivative is discontinuous and locates the critical point fc. For the in-

ertialess case or even for low θ, the entropy production increases monotonically before fc and
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decreases afterward. This can be understood by inserting q = 1 − 2f and g[X] = sgn[X] into

Equation (4.14),

m = (1− 2f)erf

(
m

√
k

2

)
, (4.40)

and the entropy production rate per site is given by

σ

N
=

1

2
ln

f

1− f

[
m2

1− 2f
− (1− 2f)

]
. (4.41)

At the vicinity of the critical point, where m is expected to be small, the right-hand side of

Equation (4.40) can be expanded in a Taylor series; hence,

m ∼ (fc − f)1/2, (4.42)

where we find βmf = 1/2 as the mean-field critical exponent, and

fc =
1

2

{
1−

√
π

2k

}
(4.43)

is the critical point.

From Eq. (4.42), entropy production behaves as

σ

N
→


1−2f

2
ln 1−f

f

[
1− 12

k
fc−f

(1−2f)2

]
f → f−c

1−2f
2

ln 1−f
f

f → f+
c

(4.44)

and therefore σ is continuous at the criticality. Whereas its first derivative σ′ ≡ ∂σ/∂f is

discontinuous, with a jump of size

∆
[ σ
N

]
f=fc
∼
√

1

k
ln

1−
√
π/2k

1 +
√
π/2k

, (4.45)

hence consistent with the exponent αmf = 0. Importantly, the maximum of σ not necessarily

corresponds to the critical point, ruling out its importance as a phase transition locator, even if

it is suggestive for the inertialess case. Figure 4.3 illustrates above results for continuous phase

transitions. The phase transition is located by a discontinuity in the first derivative.

Lastly, in Fig. 4.5 we plot the phase diagrams for k = 12 and k = 20 evaluated through by

the entropy production analysis previously described. We see that both phase transition location
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Figure 4.4: Left panels show entropy production in terms of the misalignment parameter and
for different values of inertia, and the order parameter as insets. Right panels show entropy
production’s derivative σ′ ≡ ∂σ/∂f . Top panels are results for connectivity k = 4 and bottom
panels for k = 12. The gray curve in panel (c) stands for the k → ∞ behavior to the right of
the critical point as described in Eq. (4.39).
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and its classification are in full agreement with those obtained from order parameter analysis

(see e.g. Fig. 1 in reference [129]).
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Figure 4.5: Panels (a) and (b) show the mean-field phase diagrams for k = 12 and k = 20
through analysis of entropy production. Black solid and red dashed lines correspond to the
values of ff and fb, respectively. They coincide for continuous transitions but are different for
discontinuous.

4.2.3 Beyond the mean-field theory

In addition to the mean-field theory, we present a general analytical description of the entropy

production behavior in continuous and first-order phase transitions on regular lattices as well

as complex networks. Verifying the theoretical predictions and building on them, numerical

simulations for the majority vote model will be performed for distinct network topologies in the

following section.

Dicontinuous transitions in regular Lattices: Distinct works [I, 129, 130, 132] have attested

that discontinuous phase transitions yield stark differences in regular and complex networks. In

the first case, it emerges through sudden changes of |m|, its variance χ = N [〈m2〉 − |m|2] and

other quantities whose scaling behavior goes with the system volume N .

In the vicinity of q0 the correlation length is finite for an arbitrary first-order phase transition,

the probability distribution can be approximately written as a sum of two independent Gaussian

distributions, from which one extracts a scaling behavior with the system volume [I, 132–134].

More specifically, the probability distribution is given byPN(m) = P
(o)
N (m) + P

(d)
N (m), where
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P
(α)
N (m) is associated to the phase α (with order parameter mα):

P
(α)
N (m) =

√
N√
2π

exp[N{∆qm− (m−mα)2/(2χα)}]
[F ′o(∆q;N) + F ′d(∆q;N)]

. (4.46)

The parameters χα and ∆q ≡ qN − q0 correspond to the distribution width and the “distance”

to the coexistence point q0, respectively.

Although in principle the assumption of two independent Gaussians cannot properly de-

scribe a “weak” discontinuous phase transition, in which an overlap between P
(o)
N (m) and

P
(d)
N (m) is expected, its reliability has been verified in several examples of non-equilibrium

phase transitions with distinct properties [132, 133], even in some cases with the presence of

overlapping.

Despite the steady entropy production rate displaying a non-trivial dependence on the sys-

tem features and on generic correlations of type 〈si〉, 〈sisi+1〉, 〈sisi+1si+2〉 and so on, Schnaken-

berg’s expression for σ depicts it as the ensemble average of a fluctuating quantity, enabling us

to resort to previous ideas based on the central limit theorem. The generality of the distribution

of order parameters for tackling phase coexistence [132] suggests the extension of a similar

relationship for the steady entropy production. More concretely, we assume that at the steady

state the fluctuating entropy production rate σf is distributed as PN(σf) = P
(o)
N (σf) + P

(d)
N (σf),

where P (α)
N (σf) is given by

P
(α)
N (σf) =

√
N√
2π

exp
[
N{∆qσf − (σf − σf

α)2/(2χ̄α)}
]

[Fo(∆q;N) + Fd(∆q;N)]
, (4.47)

and each Gaussian is centered at σf
α with width of the α peak being χ̄α. Given that PN(σf) is

normalized, each term Fo(d) then reads

Fα(∆q;N) =
√
χ̄α exp

{
N∆q

[
σf
α + χ̄α∆q/2

]}
(4.48)

for α = {o, d}.
The steady entropy production is straightforwardly calculated as σ =

∫∞
−∞ σ

fPN(σf)dσf,

which is read as

σ =

∑
α(σf

α + χ̄α∆q)Fα(∆q;N)

Fo(∆q;N) + Fd(∆q;N)
. (4.49)

Near phase coexistence, in which ∆q is expected to be small, the terms O(∆q) dominate over
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O(∆q)2 and Eq. (4.49) can be approximately rewritten as

σ ≈
√
χ̄oσ

f
o +

√
σ̄f
dσ

f
d exp

{
−N [(σf

o − σf
d)∆q]

}
√
χ̄o +

√
χ̄d exp{−N [(σf

o − σf
d)∆q]}

. (4.50)

Note that in the large volume limit N →∞, Equation (4.50) reproduces the jump from φo and

φd when ∆q → 0− and ∆q → 0−(+), respectively. Remarkably, the curves for different values

of N cross at the transition point ∆q = 0, at

σ∗ ≈
√
χ̄oσ

f
o +
√
χ̄dσ

f
d√

χ̄o +
√
χ̄d

. (4.51)

The crossing point clearly discerns continuous and discontinuous phase transitions and can be

used as an indicator of the phase coexistence, as observed in Ref. [135] (Figs. 7 and 8) for a

chemical reaction model.

Discontinuous transitions in complex networks: The mean-field descriptions is more power-

ful for describing complex networks rather than regular lattices; the presence of structure cannot

be captured by this technique. The phase coexistence in complex networks is akin to the mean-

field results [I, 129, 130, 136], whose behavior is generically characterized by the existence of

a hysteretic loop and bistability.

The order parameter presents a spinodal line in which, along the hysteretic loop, the system

will converge to one of the possible steady states depending on the initial configuration. In

order to locate the “forward transition” point qf , the system is initially placed in an ordered

configuration and the control parameter q is increased by an amount δ, whose final state at q

is used as the initial condition at q + δ, until the order parameter discontinuity is observed.

Conversely, the “backwards transition” point qb is pinpointed by starting from the disordered

phase and decreasing q until the order parameter jump takes place. Entropy production also

captures these features, which can be viewed through a general argument for order-disorder

phase transitions.

The order parameter behaves as 〈si〉 ∼ N−1/2 in the disordered phase, and the mean-field

behavior of the correlations is given by 〈sisi+1 · · · si+n〉 ≈ 〈si〉〈si+1〉 · · · 〈si+n〉 = N−n/2.

Hence, in the thermodynamic limit, all correlations will vanish in the disordered phase and σ

will depend solely on control parameters. Conversely, 〈sisi+1 · · · si+n〉 presents a well-defined

non-zero value in the ordered phase, and σ depends not only on the control parameters but also

on correlations. Therefore, the jumps at qf (from m1 ≡ m(qf ) 6= 0 to 0) and qb (from 0 to
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m2 ≡ m(qb) 6= 0), commonly viewed in terms of order parameter, will also be present in the

entropy production.

The presence of bistability implies that φ(t) will converge to one of the two well-defined val-

ues, since along the hysteretic branch the system behaves either as in the disordered or ordered

phase, depending on the initial condition. Although this argument is valid for a generic order-

disorder phase transition, it is expected to describe other types of phase transitions, provided the

order parameter and correlations also present a hysteretic behavior. Thereby, both cases reveal

that the entropy production behavior also embraces phase coexistence traits commonly treated

in terms of the order parameter.

Continuous phase transitions: Albeit characterized by the vanishing of the order parameter

|m| and algebraic divergences of other quantities at the criticality, the behavior of quantities

becomes rounded due to finite-size effects. According to the standard finite-size scaling, they

behave as |m| = N−β/ν f̃(N1/ν |ε|), χ = Nγ/ν g̃(N1/ν |ε|) with f̃ and g̃ being scaling functions

and ε = (q − qc)/qc the scaled distance to the critical point.

Typically, qc is located by choosing a quantity that intersects for distinct system sizes. For

order-disorder phase transitions, the Binder cumulant U4 fulfills the above requirement [137],

whose crossing value U∗0 depends on the lattice topology and the symmetry properties. Some

papers [117, 138] have described similar scaling relations for entropy production. Close to the

criticality, σ is continuous

σ − σc ∼ (qc − q)1−α, (4.52)

and its first derivative σ′ ≡ ∂σ/∂q diverges at q = qc:

σ′ ∼ (qc − q)−α. (4.53)

Due to finite-size effects, it is reasonable to assume that σ′ behaves as σ′ = Nα/ν h̃(N1/ν |ε|),

with h̃ being an appropriate scaling function. From the exponents β, α and γ, we wish to check

whether the hyperscaling relation α + 2β + γ = 2, fulfilled in the mean-field theory approach,

is also satisfied in different scenarios for continuous phase transitions.

4.2.4 Beyond mean-field - Majority vote model with inertia

Here, we go back to the majority vote model introduced in Section 4.2.2 and already analyzed

on a theoretical basis, and perform a numerical analysis based on Monte Carlo simulations.
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For a given network topology with fixed size N , misalignment parameter f , and inertia θ, a

site i is chosen randomly. Its spin value si is updated (si → s′i) according to the transition rate

ws′i = (1− θ)
k∑
j=1

δ(s′i, sj)/k + θδ(s′i, si), (4.54)

where the sum runs over the k nearest neighbors of the site i. With probability 1−f , si changes

to the majority neighborhood spin s′i, and with complementary probability f the majority rule is

not followed. A Monte Carlo step corresponds to repeating this procedure N times, that is, trial

N of updating a randomly drawn spin. After repeating the above dynamics with a sufficient

number of steps (in order of 106 Monte Carlo steps for the model studied), the system attains a

stationary steady state that might or might not be in equilibrium.

Random-regular networks are complex networks in which every site has the same fixed

number of neighbors k, while the connections are randomly distributed. They have been gener-

ated through a configuration model scheme [139]: For a system with N nodes and connectivity

k, we first start with a set of Nk points, distributed in N groups, each of which contains ex-

actly k points. Next, one chooses a random pairing of points between groups and then creates a

network linking nodes i and j if there is a pair containing points in the i-th and j-th sets, until

Nk/2 pairs are obtained. If the resulting network configuration presents a loop or duplicate

links, the above process is restarted.

The increase of connectivity k in bidimensional topologies is achieved by extending the

range of interaction neighborhood. For example, k = 4, 8, 12 and 20 include interactions be-

tween the first, first to second, first to third, and first to fourth next neighbors, respectively, as

sketched in Fig. 4.6.

Discontinuous phase transitions: Figure 4.7 exemplifies these predictions for the majority

vote model in bidimensional lattices with k = 20 and θ = 0.375. The entropy production curves

follow the theoretical predictions of the Eqs. (4.50) and (4.51) (continuous lines in panels (a)

and (b)), whose intersection among curves occurs at fc = 0.05084(5), in excellent agreement

with estimates obtained from standard techniques [132]. The alternative phase transition loca-

tors are the maximum of χ that leads to fc = 0.0509(1), the minimum of Binder’s cumulant

leading to f = 0.0510(1), and the equal area of the order parameter distribution leading to

fc0.0509(1). Panel (d) shows the scaling of these indicator with the system size, all of them

converge to the same value.
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Figure 4.6: Local neighborhood for a bidimensional lattice. The central site in red is connected
to its first (1), second (2), third (3) and fourth (4) next neighbors.

Under transformation y = (f − f0)N the entropy production collapses into a single curve

[inset of Fig. 4.7 (c)], reinforcing the reliability of Eq. (4.50) for describing σ at the phase

coexistence region. Out of the scaling regime (f > f0 for large N ), σ/N depends solely on

the control parameters f and θ, as can be seen in the inset of panel (a). Discussed trademarks

of entropy production in a phase transition will be verified by simulations for the Schlögl and a

nonequilibrium version of the Potts model in Section 4.3.5.

Considering the case of complex structures, Fig. 4.8 depicts the main results for the majority

vote model in a random-regular network with k = 20, θ = 0.3 and N = 104. The entropy

production reveals the existence of a hysteretic loop [panel (a)] located at the interval fb =

0.055 < f < ff = 0.15, in complete equivalence with the order parameter branch [panel (b)].

For higher inertia values (inset), the bistability extends over 0 ≤ f ≤ ff , both for magnetization

and entropy production rate, similar to the limit of k →∞ discussed in Eq. (4.39).

As we observed, phase transitions can be located from the analyses of entropy production,

therefore, phase diagrams can be raised. They are shown in Fig. 4.9 for both regular and com-

plex networks, indicating the role of inertia in the phase transition order: Large enough inertia

leads to discontinuous phase transitions, and the hysteretic region increases as θ grows. The

hysteretic loop can be seen in panel (b) as the distance from forward (black lines and circles)

and backward (red dashed lines and crosses) values.
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lines hit the axis, i.e. the inferred value for N → ∞ limit. Insets: (a) σ/N for more values of
f , (b) σ/N under transformation y = (f − f0)N .
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Figure 4.10: q̄ = 3 majority vote model in a regular lattice with k = 20 and θ = 0.32. In
similarity to Fig. 4.7, the panels respectively show entropy production rate (and its collapse
under y = (f − f0)N ), order parameter, variance, and the critical point localization from the
maximum of χ.

On the contrary, Figures 4.10 and 4.11 depict the main results for the bidimensional and

random-regular structures for q̄ = 3, in which the symmetry C3v leads to an entirely different

critical behavior from the q̄ = 2 case. However, the phase coexistence behavior is analogous

to the previous ones, including the existence of bistability (complex networks), crossing among

curves at the transition point (f0 = 0.14160(5)) and scaling with the system volume (regu-

lar structures). Thereby we reinforced the robustness of our findings at discontinuous phase

transitions.

Continuous phase transitions: Previous results show that regardless of the value of inertia θ

[I], the phase transition remains continuous in regular structures when k < 20, and the critical

exponents are consistent with β = 1/8, γ = 7/4 and 1/ν = 1 [127]. Figure 4.12 illustrates

continuous phase transition traits in terms of the entropy production.

Although σ is finite and continuous at the critical point [panel (a)], σ′ increases without
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limits as N → ∞ [panel (b)], eventually leading to a divergence. For finite systems, σ′N

evaluated at f = fc increases logarithmically with N , to which a critical exponent of α = 0 is

associated [panel (d)].

Figure 4.13 extends the analysis to random-regular structures. In that case, the critical

behavior follows exponents β/ν = 1/4, γ/ν = 1/2 and 1/ν = 1/2 [140], rather different

from mean-field values β = 1/2, γ = 1 and 1/ν = 2, and those from regular lattices observed

in Fig. 4.12.

In similarity to the bidimensional case, σ(fc) is finite while σ′N(fc) logarithmically increases

with the system size, which is also consistent to a logarithmic divergence and exponent α = 0.

Such conclusions are reinforced by appealing to the hyperscaling relation α + 2β + γ = 2.

Having the values of β and γ, we re-obtain α = 0 in both cases.

Lastly, the q̄ = 3 case is characterized in regular lattices by the critical exponents β = 1/9
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and γ = 13/9. According to the hyperscaling relation, the exponent associated with the entropy

production should be α = 1/3. Recently, the value α = 0.32(2) has been obtained from

numerical simulations in Ref. [141], in full accordance with our theoretical predictions.

4.3 Two-state coarse graining of phase transitions

The previous analysis provided a general description of the entropy production behavior along

continuous and first-order phase transitions, now we address particularities of the latter. First-

order phase transitions present a region of phase coexistence marked by a hystersis, within

which quantities such as the stochastic entropy production rate have a bimodal probability dis-

tribution. Moreover, the characteristic time of jumps between phases (viz. the metastability

lifetime) increases exponentially with the system volume. Hence, different timescales emerge

and their consequences on the statistics of integrated currents such as entropy production will

be addressed [V].

The average entropy production rate has been found to be always finite around the transition

point, with the first derivative either diverging, in continuous transitions [II, 60, 117, 118, 121,

125, 142], or presenting a jump in discontinuous ones [II, 118, 124]. These clear signatures

suggest, in fact, that the average entropy production could even be used to classify the type of

transition. Conversely, the behavior of higher order statistics, such as the variance, is much

less understood. Currents fluctuate at the stochastic level; therefore, they are associated to

probability distributions. Understanding the behavior of said distributions constitutes a major

area of research, as they form the basis for extending the laws of thermodynamics towards the

microscale, providing insights into non-trivial properties of non-equilibrium physics.

As stated previously, the crucial aspect of first-order transitions is that when the volume

V is large, the transitions between coexisting phases become exponentially suppressed. The

system will thus be governed by two very distinct timescales, one describing fast relaxation

within each phase and another describing seldom transitions between the phases. The latter will

be referred to as the metastability lifetime τm, and usually grows exponentially with V [143]

(for continuous transitions these divergences are algebraic).

Cumulants of thermodynamic currents are usually assessed via numerical approaches, such

as Monte Carlo simulations [II], or large deviation theory [122, 144–148]. In both cases, cumu-

lants are computed from long-time sample averages, integrated over a large enough time win-
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dow τ and relying on the system’s ergodicity. Although the considered stochastic processes are

indeed ergodic for finite-sized systems, estimating currents around a phase transition can lead to

an apparent ergodicity breaking. Evaluating Jτ = 〈Jτ 〉/τ from an ensemble average will cor-

rectly sample every possible state. However, when 〈Jτ 〉 is obtained from the long-time limit,

there can be a sampling bias for large systems due to the discussed exponential metastability

lifetime increase, the system will be stuck within the phase of the initial state for τ � τm, will

produce a few jumps for τ in the order of τm, and will ultimately meet ergodicity for τ � τm.

As a consequence, the order of the limits τ →∞ and V →∞ becomes non-trivial [149]. Evi-

dently, this necessary integration time can surpass the age of the universe, becoming unfeasible

in experiments or simulations, thus the need to study the role of integration time τ throughout

different timescales.

In this section, we approach this issue by introducing the idea of conditional currents: The

value of integrated entropy production conditional to the system being in a given phase. We

focus, in particular, on the diffusion coefficient (scaled variance). We formulate a finite-time

large deviation theory, which neatly highlights the non-trivial interplay between τ and τm. This

is then specialized to a minimal 2-state model, that is able to capture the key features of the

problem and also provides useful predictions. These are then tested on two paradigmatic exam-

ples of discontinuous transitions: Schlögl’s model of chemical kinetics, and a 12-states Potts

model subject to two baths at different temperatures.

4.3.1 Large deviation theory

We consider a continuous-time discrete state space Markov process X(t) that undergoes a dis-

continuous phase transition when the control parameter λ crosses a value λc. Its dynamics is

ruled by the master equation

d

dt
pi(t) =

∑
j

{
Wijpj −Wjipi

}
:=
∑
j

Wijpj, (4.55)

where Wij ≡ Wj→i denotes the transition rates from j to i, Wii ≡ −
∑

j 6=iWji, and we assume

ergodicity. In the following, the non-equilibrium stationary distribution is denoted by p∞i
2.

At the vicinity of the phase transition the coexistence of phases leads to a mixed sampling of

phases when integrated currents are being measured. We consider the generic thermodynamic

2More details on the stochastic modelling can be found in Chapter 2
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integrate current evaluated up to time τ to be

Jτ =

τ∫
0

dt
∑
i,j

dijδX(t−),iδX(t+),j, (4.56)

where δij is the Kronecker delta, X(t±) is the state of the system immediately before and after

a transition and dij is a time anti-symmetric function dij = −dji, which defines the current in

question. Its average Jτ and diffusion coefficient (scaled variance) Dτ are defined as

Jτ = 〈Jτ 〉/τ, Dτ =
(
〈J 2

τ 〉 − 〈Jτ 〉2
)
/(2τ). (4.57)

In the limit τ →∞, such a current will behave according to a large deviation principle [146].

But due to the sensitive interplay between τ and τm, we will not assume τ →∞, as is custom-

ary. Instead, we will analyze the behavior of Jτ as a function of τ . More specifically, our

interest is in the regime where τ is large compared to the “within-phase” relaxation timescales,

but not necessarily larger than the metastability lifetime τm. It turns out that Jτ ≡ J is indepen-

dent of τ , irrespective of whether τ is large or not [146]. Conversely, for Dτ , this will be the

case iff τ � τm.

For a given control parameter λ tuning the phase coexistence, one can generically label the

distinct phases as 0 (for λ < λc) and 1 (for λ > λc). To study the contributions of each of

them, we establish a partition of the set of states Ω into two subsets, Ω0 and Ω1, representing

each phase. The criteria for doing so is model dependent, and will be discussed further below.

We monitor the phases by defining an indicator random variable (henceforth called the phase

indicator)

It ≡ I(X(t)) =

0 X(t) ∈ Ω0

1 X(t) ∈ Ω1

(4.58)

which specifies in which phase the system is at time t. The probability of finding the system in

phase 1, in the stationary distribution, is then q ≡ E(It) = Pr(It = 1). For readability, we will

also use the notation q1 = q and q0 = 1− q, when convenient.

The main feature we introduce in such a study is the notion of conditional currents, given

which phase α = {0, 1} the system is in. Inserting the identity 1 = (1 − It) + It inside the
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integral (4.56) allows us to define the current when the system is in phase 1 as

Jτ |1 =

τ∫
0

dt It+
∑
i,j

dijδX(t−),iδX(t+),j. (4.59)

The current Jτ |0 is defined similarly, but with 1 − It instead. There is an ambiguity here as to

whether we use It− or It+ . But this only affects those jumps occurring at time t in which It− =

0(1) and It+ = 1(0), which are extremely rare compared to all others. It is important to clarify,

at this point, that while the current (4.59) is conditioned on which phase the system is in, the

dynamics itself is unconditional; that is, the system is still allowed to transition freely between

phases. One could also analyze the currents for a conditional dynamics, where a reflecting

barrier is placed between the phases, trapping the system in one phase or another. The relation

between these two scenarios will be discussed further.

From Eq. (4.59), the total current (4.56) is then recovered as

Jτ = Jτ |0 + Jτ |1, (4.60)

an identity which holds at the stochastic level.

The conditional first moments are defined as

µα =
E(Jτ |α)

τqα
, (4.61)

where the factor of qα in the denominator is placed to compensate for the varying times the

system spends in each phase. The average current is thus decomposed as

J = (1− q)µ0 + qµ1. (4.62)

As with J , the conditional averages µi will be shown below to also be independent of τ .

Similarly, we define conditional diffusion coefficients

Dτ |α =
E(J 2

τ |α)− E(Jτ |α)2

2τqα
, (4.63)

which represent the fluctuations of the system within each phase. From Eq. (4.60), we therefore
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see that the diffusion coefficient Dτ in Eq. (4.57) is split in three terms

Dτ = (1− q)Dτ |0 + qDτ |1 + Cτ , Cτ :=
1

τ
Cov

(
Jτ |0,Jτ |1

)
, (4.64)

where Cov(A,B) = 〈AB〉 − 〈A〉〈B〉 is the covariance between conditional currents A and B,

and is expected to be significant only in the vicinity of the transition point.

To shed light on the behaviour of conditional currents, we consider here a finite-time ver-

sion of large deviation theory [9, 80, 150, 151], and then adapt results to the conditional case.

Let Gτ (η) = 〈eηJτ 〉3 denote the moment generating function associated to the current (4.56).

Decomposing it as

Gτ (η) =
∑
i

E(eηJτ |Xτ = i)pi(τ) =
∑
i

Gi(η), (4.65)

we find that the entries Gi(η) will evolve according to equation

dGi(η)

dτ
=
∑
j

Lij(η)Gj(η), (4.66)

where the tilted operator L(η) depends on both the transition matrix W in Eq. (4.55), and the

type of current in question, according to

L(η)ij = eηdijWij, (4.67)

where, recall, dii = 0. To evaluate J and Dτ , we only require the series expansion of L(η),

which we write as

L(η) = W + ηL1 + η2L2, (4.68)

for matrices L1(2) given by

(L1)ij = Wijdij, (L2)ij = Wijd
2
ij/2. (4.69)

3η is a real-valued parameter that carries many names. Depending on the field’s jargon, it can be referred to as
tilting parameter, counting field, Lagrange parameter and even frequency, since by η → −η a Laplace transform
emerges.
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4.3.2 Finite-time large deviation theory

Now, we derive expressions for the first and second current moments from the large deviation

theory. Unlike standard treatments, the main difference here is that we focus on finite integration

times τ . The starting point is Eq. (4.66), describing the evolution of the entries Gi(η) of the

moment generating function. Treating it as a vector |G(η)〉 and from its series expansion in

powers of η, we have that

|G(η)〉 = |p∞〉+ η|g1〉+ η2|g2〉+ . . . , (4.70)

where |p∞〉 is the steady-state of W. Combining this with the series expansion of the tilted

operator, L(η) = W + ηL1 + η2L2, and collecting terms of the same order in η, we have the

following system of equations

d

dτ
|p∞〉 = W|p∞〉, (4.71)

d

dτ
|g1〉 = L1|p∞〉+ W|g1〉, (4.72)

d

dτ
|g2〉 = L2|p∞〉+ L1|g1〉+ W|g2〉. (4.73)

From these, the moments can be obtained from the property 〈J n
τ 〉 = [dnGτ (η)/dηn]η=0, the

first and second moments are

E(Jτ ) = 〈1|g1〉, E(J 2
τ ) = 2〈1|g2〉, (4.74)

Equation (4.71) is automatically satisfied. The solution of Eq. (4.72), with |g1(τ = 0)〉 = 0, is

given by

|g1(τ)〉 =

τ∫
0

dτ ′eW(τ−τ ′)L1|p∞〉. (4.75)

For concreteness, we assume that W is diagonalizable. The eigenvalues are λi, right eigen-

vectors are W|xi〉 = λi|xi〉 and left eigenvectors are 〈yi|W = 〈yi|λi. From the irreducibility

of the network, the steady-state is unique, thus one eigenvalue must be zero, say λ0 = 0. The

corresponding eigenvectors are then |x0〉 = |p〉 and 〈y0| = 〈1|. We can then write

eWτ = |p∞〉〈1|+
∑
i 6=0

eλiτ |xi〉〈yi|. (4.76)
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The eigenvectors satisfy 〈1|p∞〉 = 〈yi|xi〉 = 1 and 〈1|xi〉 = 〈yi|p〉 = 0. Thus, plugging (4.76)

in (4.75), we find

|g1(τ)〉 = |p∞〉〈1|L1|p∞〉 τ +
∑
i 6=0

eλiτ − 1

λi
|xi〉〈yi|L1|p∞〉 (4.77)

and by taking the inner product 〈1|g1〉, it follows that the second term vanishes and we obtain

the first moment for arbitrary values of τ given by

〈Jτ 〉 = 〈1|L1|p∞〉 τ ≡ J. (4.78)

Turning now to the second moment, the solution of Eq. (4.73) reads

|g2(τ)〉 =

τ∫
0

dτ ′eW(τ−τ ′) (L2|p∞〉+ L1|g1(τ ′)〉) . (4.79)

Since Eq. (4.74) depends only on 〈1|g2〉, Eq. (4.76) together with the fact that 〈1|xi〉 = 0 leads

to the following expression

〈1|g2(τ)〉 =

τ∫
0

dτ ′
{
〈1|L2|p∞〉+ 〈1|L1|g1(τ ′)〉

}
. (4.80)

Notice that the inner product in the first term is time-independent. For the integration of the

second term we use Eq. (4.77), leading to

〈1|g2(τ)〉 = 〈1|L2|p∞〉 τ +

τ∫
0

dτ ′
τ ′∫

0

dτ ′′〈1|L1e
W(τ ′−τ ′′)L1|p∞〉. (4.81)

From the above expression and the first moment squared, Dτ is given by

Dτ = 〈1|L2|p∞〉+
1

τ

τ∫
0

dτ ′
τ ′∫

0

dτ ′′〈1|L1e
W(τ ′−τ ′′)L1|p∞〉 −

J2τ

2
. (4.82)

and by carrying out the integrals, we finally have that

Dτ = 〈1|L2|p∞〉+
∑
i 6=0

〈1|L1|xi〉〈yi|L1|p∞〉
(
eλiτ − 1− λiτ

λ2
i τ

)
. (4.83)
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This expression makes clear that Dτ will sensibly depend on the interplay between τ and

all eigenvalues λi of W. In the limit of integration times much larger than relaxation times

τ � 1/|λi| ∀i the term eλiτ − 1 may be neglected, and the scaled variance simplifies to the

widely used expression from large deviation theory

Dτ = 〈1|L2|p∞〉 − 〈1|L1W
+L1|p∞〉, (4.84)

where W+ =
∑

i 6=0 λi |xi〉 〈yi| is the Moore-Penrose pseudoinverse of W expressed in the

singular value decomposition fashion.

Within the coexistence region, there will appear a clear separation of time scales in the

eigenvalues λi. At least one eigenvalue will be very small, of the order λi ∼ −1/τm, while all

others will be much larger (describing the within-phase dynamics). If τ is large compared to

these time scales, but not with respect to τm, then the approximation taking Eq. (4.83) to (4.84)

will not hold true. Since τm scales exponentially with volume, as we approach the thermo-

dynamic limit V → ∞, larger and larger values of τ must be considered. This is a direct

illustration of the non-commutativity of the limits τ →∞ and V →∞.

4.3.3 Conditional cumulants

Eqs. (4.78) and (4.82) also apply to the conditional currents (4.59). One simply has to modify

accordingly the tilted operator L(η) or, equivalently, the matrices L1 and L2 in Eq. (4.69). For

each conditional currentJτ |α, we define a projection operator Πα such that Πα
ij = δi,j

∑
k∈Sα δj,k;

i.e., it projects onto the states Sα associated with phase α = 0, 1. The corresponding tilted op-

erator will then be defined similarly, but with a current of the form dαij = dijΠ
α
jj , which means

that one should instead use matrices L1Πα and L2Πα.

Taking also into account the factor qα in the denominator, Eq. (4.78) yields

µα =
1

qα
〈1|L1Πα|p∞〉. (4.85)

Proceeding similarly to Eq. (4.82), we find

Dτ |α =
〈1|L2Πα|p∞〉

qα
+

1

τqα

τ∫
0

dτ ′
τ ′∫

0

dτ ′′〈1|L1ΠαeW(τ ′−τ ′′)L1Πα|p∞〉 − µ2
αqατ

2
. (4.86)
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Lastly, to obtain the covariance in Eq. (4.64), we simply subtract the combination (1−q)Dτ |0 +

qDτ |1 from Dτ in Eq. (4.82). Recalling that Π0 + Π1 = 1, this then yields

Cτ =
1

τ

τ∫
0

dτ ′
τ ′∫

0

dτ ′′〈1|L1Π0eW(τ ′−τ ′′)L1Π1|p∞〉

+
1

τ

τ∫
0

dτ ′
τ ′∫

0

dτ ′′〈1|L1Π1eW(τ ′−τ ′′)L1Π0|p∞〉 − q(1− q)µ0µ1τ. (4.87)

Concerning the timescales of the discontinuous transition, we notice that all diffusion coef-

ficients, Dτ , Dτ |α and Cτ , are subject to a similar dependence, which is ultimately associated

with the matrix eW(τ−τ ′). Thus, we expect that all quantities should scale similarly with τ .

Up to this point, the conditioning is placed over the current. A system (presenting discon-

tinuous phase transition) evolves following a usual master equation and the observables are

conditioned to the phase. Alternatively, the dynamics can be conditioned to a phase by con-

struction of the stochastic process. Let the transition matrix be given by

W =

W00 W01

W10 W11

 , (4.88)

referring to the two subsets S0 and S1 of each phase. A conditional dynamics, given phase α, is

one governed by the restricted matrix Wαα (with appropriate adjustments at the boundaries to

ensure that it remains a proper transition matrix).

We can similarly adapt Eqs. (4.78) and (4.82) to this case. Let |p∞α 〉 denote the steady-state

of the intra-phase dynamics Wα. For large system sizes, both coexisting phases will be well

separated, which will be quite similar to q−1
α Πα|p∞〉. Applying Eq. (4.78) will then yield exactly

the same first moment µα in Eq. (4.85). Hence, as far as the first moments are concerned, the

distinction between conditional currents and conditional dynamics is thus irrelevant.

However, for the diffusion coefficients, this is absolutely crucial. The reason is associated

with the matrix exponential eW(τ ′−τ ′′) in Eq. (4.82). Conditioning on the dynamics would lead

instead to a matrix eWαα(τ ′−τ ′′). Since Wαα is essentially ΠαWΠα (except for small modifica-

tions at the boundaries), we therefore see that the problem amounts to the difference between

ΠαeW(τ ′−τ ′′)Πα (conditioning on the currents) and eΠαW(τ ′−τ ′′)Πα (conditioning on the dynam-

ics). The two objects are drastically different. The diffusion coefficients obtained by condi-



CHAPTER 4. NONEQUILIBRIUM PHASE TRANSITIONS 105

tioning the dynamics, which we shall henceforth refer to as γτ |α, will thus be fundamentally

different from the diffusion coefficients Dτ |α in Eq. (4.63).

An intuitive argument as to why this is the case goes as follows. Currents (4.59) are inte-

grated over a certain time interval τ . Hence, its diffusion coefficient will depend on correlations

between different instants of time, and these are dramatically affected by the long timescale τm

introduced by the discontinuous transition. In fact, let us define Zt =
∑

i,j dijδX(t−),iδX(t+),j ,

so that Eq. (4.59) can be written as

Jτ |1 =

τ∫
0

dt ItZt. (4.89)

The corresponding second moment will thus be

〈J 2
τ |1〉 =

τ∫
0

dt

τ∫
0

dt′ 〈ItIt′ZtZt′〉. (4.90)

Therefore, it depends, among other things, on the correlations between It and It′ , which decays

very slowly around the transition point. For instance, in the simplest case where one can assume

a Markovian 2-state evolution for It (as will in fact be considered further in Sect. 4.3.4), one

has

C(t− t′) = Cov(It, It′) = q(1− q)e−(t−t′)/τm , (4.91)

which will thus decay very slowly over time for large systems. This means that Dτ |α in

Eq. (4.63) will depend very sensibly on the interplay between τ and τm. In contrast, the dif-

fusion coefficients γα, for the conditional dynamics, will not. And hence, even for moderately

large τ , one expects it to be τ -independent.

4.3.4 Lumping of phases

Many discontinuous non-equilibrium transitions can be approximated, for large volumes V , by

a 2-state model [143], where each state accounts for a distinct coexisting phase. All inter-phase

degrees of freedom are lumped into a single state, viz. 0 and 1, and every possible jump between

phases are reduced to transitions 0 ↔ 1. That is, one essentially reduces the dynamics to the

monitoring of the phase indicator It. In general, the dynamics of It will be non-Markovian,

as this would represent a hidden Markov chain. Instead, a minimal model is one in which the
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dynamics of It can be assumed to be Markovian, which is justified when V is sufficiently large.

In this case, instead of the full master equation (4.55), we may restrict the dynamics to

d

dt
qi =

∑
j=0,1

Wijqj, W =

−a b

a −b

 . (4.92)

Here, a and b respectively represent the rates for the system to jump between states 0 → 1 and

1→ 0 of the minimal model, that is, the rates at which phase transitions occur. The steady-state

yields q ≡ q1 = E(It) = a/(a + b). Moreover, the metastability lifetime in this case reads

τm = 1/(a + b). For large volumes, τm increases exponentially, as well as a and b decrease

exponentially. Considering the same observation time window, phase transitions become more

rare with system size, which is precisely the aim of the present study.

Finally, from Eq. (4.92) one can compute the two-time correlation function, which is given

in Eq. (4.91). And since It can take on only two values, once C(t − t′) is known, we can

reconstruct the full joint distribution Pr(It = i, It′ = i′) from the properties of the covariance,

for arbitrary times t, t′, as

Pr(It = i, It′ = i′) =



q2 + C(t− t′) i = i′ = 1,

(1− q)2 + C(t− t′) i = i′ = 0,

q(1− q)− C(t− t′) i 6= i′.

(4.93)

Close to λc, the transition rates a and b will usually behave, up to polynomial corrections, as

a ∼ e−V (c0−ca∆λ), b ∼ e−V (c0+cb∆λ), (4.94)

where c0, ca, cb > 0 are constants and ∆λ = λ−λc. Note how the rates are indeed exponentially

decreasing with V . Transitions hence become rare when V is large. From (4.94) we also get

τm ∼ ec0V , which is the aforementioned exponential dependence. Finally,

q = (1 + e−cV∆λ)−1, (4.95)

where c = ca + cb > 0; hence q changes abruptly from 0 to 1 as λ crosses λc, as illustrated in

Fig. 4.14(a).
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Figure 4.14: Predictions of the minimal model of discontinuous transitions. (a) The probability
q = (1 + e−cV∆λ)−1 of finding the system in phase 1, for increasing volumes (depicted by the
arrow). (b) q(1− q), which is non-negligible only in the vicinity of the transition point. (c) The
quantity (e−τ/τm − 1 + τ/τm)/(τ/τm) appearing in Eq. (4.99). It tends to unity when τ � τm.
(d) Prototypical behavior of the diffusion coefficient (4.99) as a function of volume, for a fixed
τ . When V is such that τ � τm, the diffusion coefficient grows exponentially with V . But for
a fixed τ , as V is increased, one must eventually cross the point τ ∼ τm, after which the scaling
becomes at most polynomial (due to the possible dependences of µi, Di on V ). Parameters:
c0 = ca = cb = λc = 1, µ0 = V/2, µ1 = 2V , γ0 = γ1 = V .

Since conditional averages are weakly dependent on ∆λ, from J = (1− q)µ0 + qµ1 we see

that the average current is given by

J =
µ0e

−cV∆λ + µ1

1 + e−cV∆λ
, (4.96)

that also changes abruptly around λc, interpolating from µ0 to µ1. It is worth mentioning that

this relation is similar to Eq. (4.50), obtained from a Gaussian approach.

Unconditional diffusion coefficient: From the two-state model, the cumulants of a current,
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up to order λ2, can be obtained from the tilted operator [152]

L(λ) =

−a+ λµ0 + λ2γ0 b

a −b+ λµ1 + λ2γ1

 (4.97)

:= W + λL1 + λ2L2. (4.98)

where γi are the diffusion coefficients conditioned on the dynamics, not the currents.

Using Eq. (4.99) we can obtain the diffusion coefficient Dτ , using the two-state transition

matrix W we find that its stationary state is |p〉 = (1 − q, q), the non-zero eigenvalue is λ1 =

−1/τm, and its right and left eigenvetors are given by |x1〉 = (−1, 1) and |y1〉 = (−q, 1 − q).

Hence, using the explicit forms of L1 and L2 in Eq. (4.98), we get

Dτ = γ + q(1− q)(µ1 − µ0)2 τmf(τ/τm), (4.99)

where γ ≡ (1− q)γ0 + qγ1 is independent of τ and

f(t) ≡ (e−t − 1 + t)/t. (4.100)

The interesting part is the last term in Eq. (4.99). First, it depends on q(1 − q), which is non-

negligible only in the vicinity of the transition point (Fig. 4.14(b)). Second, it depends on the

interplay between τ and τm through the function f , which is shown in Fig. 4.14(c).

When τ � τm we get f(τ/τm) ' τ/2τm, so that Eq. (4.99) can be approximated to

Dτ ' γ + q(1− q)(µ1 − µ0)2τ/2, τ � τm, (4.101)

which is thus linear in τ . Conversely, when τ � τm, we get

Dτ ' γ + q(1− q)(µ1 − µ0)2 τm, τ � τm, (4.102)

which is independent of τ , but linear in τm. Hence, when V is large, this will become ex-

ponentially dominant. As a consequence, the large volume diffusion coefficient will actually

become independent of the γi, and will instead be governed essentially by the mismatch in con-

ditional averages (µ1 − µ0)2, in agreement with previous studies on Schlögl’s model [122]. In

other words, the fluctuations in integrated current at large volumes are governed by the distance
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between the phases rather than by their own fluctuations.

This offers another explicit illustration of the order of limits issue, which we depict graph-

ically in Fig. 4.14(d): For a given τ , as we increase V the diffusion coefficient will at first

increase exponentially according to Eq. (4.102). But if τ is fixed, then a point will always be

reached around which τ ∼ τm. And beyond this point, the scaling will be given by Eq. (4.101),

which is at most polynomial in V (due to a potential polynomial volume dependence of µi, γi).

Even though these results were developed for a 2-level model, they are still expected to hold

for a broad class of discontinuous transitions. The reason is that, as discussed in Ref. [153],

the eigenvalues and eigenvectors of the two-level transition matrix (4.92) are connected to some

of the eigenvalues and eigenvectors of the full matrix W in Eq. (4.55). But, in addition, the

full W will also have several other eigenvalues associated to the within-phase dynamics. Thus,

the step from Eq. (4.83) to (4.99) only assumes that τ is much larger than all other λi, so that

within-phase terms can be neglected.

Conditional diffusion coefficients: We can also use this minimal model to relate the diffusion

coefficients Dτ |i in Eq. (4.63) to the parameters µi, γi. To do so, we use Eq. (4.86) with W now

replaced by the two-state matrixW in Eq. (4.92). As a result, we find

Dτ |1 = γ1 + µ2
1(1− q)τmf(τ/τm), (4.103)

Dτ |0 = γ0 + µ2
0qτmf(τ/τm), (4.104)

Cτ = −2q(1− q)µ0µ1τmf(τ/τm), (4.105)

which can be combined together in the form (4.64), to yield Eq. (4.99). All conditional quan-

tities are thus found to scale similarly with τ , according to the function f in Eq. (4.100). This

allows us to conclude that even the conditional diffusion coefficients will be dominated by

jumps between phases, and will be negligibly affected by the internal fluctuations within each

phase. We find this result both relevant and non-trivial.

It is also interesting to notice how the sign of the covariance (4.105) depends only on the

signs of µ0 and µ1. A positively correlated covariance means that fluctuations above (below)

average in one phase tend to lead to fluctuations above (below) the average in the other; and

vice-versa for C < 0. We see in Eq. (4.105) that the covariance will be negative whenever

µ0, µ1 have the same sign.
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4.3.5 Schlögl’s model

In this Section we verify previous results in a model with a nonequilibrium discontinuous phase

transition, the “second Schlögl model” [154]. It represents an ideal laboratory for testing our

main prescriptions as it presents an exact solution, and was recently analyzed in Ref. [122].

The model describes a system with 3 chemical species, A, B and X , supporting two types

of chemical reactions:

2X + A
k1−−⇀↽−−
k−1

3X, B
k2−−⇀↽−−
k−2

X. (4.106)

Here k±1, k±2 are kinetic constants that account, respectively, for catalytic, spontaneous creation

and spontaneous annihilation of X . The concentrations of A and B are fixed at a and b due to

the presence of chemostats. The dynamics of pn(t) = P (X(t) = n), for n = 0, 1, 2, . . ., is then

described by the master equation [143, 153]

ṗn = fn−1pn−1 + gn+1pn+1 − (fn + gn)pn, (4.107)

where

fn :=
ak1n(n− 1)

V
+ bk2V, (4.108)

gn :=
k−1n(n− 1)(n− 2)

V 2
+ k−2n. (4.109)

The concentration x(t) = X(t)/V presents a bistable behavior for large V [153], which is

determined by the roots of the differential equation governing the deterministic behavior of x

for large volumes
dx

dt
= ak1x

2 + bk2 − k−1x
3 − k−2x = 0. (4.110)

The bistable region is defined as the interval in the control parameters for which this equation

has three real roots, x0, x
∗, x1. The first and last represent stable states for the most likely

density within each phase, whereas x∗ is unstable and serves as the phase separator. Hence, we

define the phase-indicator in the Schlögl’s model as a random variable It such that It = 1 when

X(t) > V x∗ and 0 otherwise.

For concreteness, we choose as thermodynamic current the entropy production Jτ = στ .

Whenever there is a transition, the net current (4.56) changes by an increment δστ defined
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according to the following rules:

2X + A
k1−−−→ 3X δστ = µA,

3X
k−1−−−−→ 2X + A δστ = −µA,

(4.111)

X
k−2−−−−→ B δστ = µB,

B
k2−−−→ X δστ = −µB,

where µA = ln ak1/k−1 and µB = ln k−2/bk2.

The model was simulated using the Gillespie algorithm. We fix ak1 = k−2 = 1, bk2 = 0.2,

and take as control parameter the chemical potential gradient ∆µ = µB−µA = ln [(k−2ak1)/(k−1bk2)].

For these parameters, the phase coexistence point in the thermodynamic limit occurs at ∆µ0 ∼
3.047 [122]. Figs. 4.15(a) and (b) present a basic characterization of the steady-state. First,

in Fig. 4.15(a) we show the numerically computed metastability timescale τm, as a function

of the volume V , confirming the exponential dependence with V . This is obtained by collect-

ing the mean first passage time Txi→x∗ for the system to go from each stable point x0(1) to

the unstable point, x∗. The rates a and b in Eq. (4.92) are then given by a = (2Tx0→x∗)
−1

and b = (2Tx1→x∗)
−1 [155], from which we determine τm = 1/(a + b). Second, Fig. 4.15(b)

characterizes the probability q of finding the system in phase 1, as a function of ∆µ − ∆µ0,

for different values of V , where markers are simulation data and the curves are a fit of q =

(1 + e−cV (∆µ−∆µ0))−1; both agree very well for large volumes and/or small ∆µ−∆µ0. This is

expected, since Schlögl’s model is known to have a well defined 2-state limit [143, 153] when

V is large.

Sample stochastic trajectories of the current Jτ [Eq. (4.56)] as a function of τ are shown in

Fig. 4.15(c), for fixed ∆µ = 3.35 and V = 10. Red and blue curves represent the situations

where the system start in phases 1 and 0 respectively. For short τ the curves tend to remain well

separated, so that Jτ behaves as either Jτ |1 or Jτ |0. The corresponding statistics of Jτ , shown in

the inset, would thus be a prototypical bimodal distribution. Conversely, when τ � τm ∼ 40,

transitions between the phases begin to occur, which cause the corresponding distribution to

change to unimodal.

The conditional mean current and diffusion coefficients are shown in Fig. 4.15(d)-(g). For

concreteness, we focus on the special point q = 1/2; i.e., where the two phases are equally
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Figure 4.15: Conditional currents for Schlögl’s model, computed using the Gillespie algorithm.
(a) τm vs.V . (b) q vs. ∆µ − ∆µ0 for different values of V . Solid lines are a fit of q = (1 +
e−cV (∆µ−∆µ0))−1. (c) Stochastic trajectories of Jτ/τ vs. τ , starting either in phase 1 (red) or
phase 0 (blue). The insets show the corresponding histograms at different times τ . (d)-(g) Mean
and diffusion coefficient as a function of V , with τ = 103 and ∆µ fixed by setting q = 1/2. (d)
Conditional means µ0(1) [Eq. (4.61)]. (e) Diffusion coefficient Dτ [Eq. (4.57)]. (f) Conditional
diffusion coefficients Dτ |i [Eq. (4.63)]. (g) The ratio r in Eq. (4.112), as a function of V , for
different values of τ . Other parameters: a = k1 = k2 = k−2 = 1 and b = 0.2.

likely. As this depends on V , for each volume we first fix ∆µ as the point where q = 1/2. This

reduces the free parameters to V and τ only. The conditional averages µ0(1) as a function of

the volume are shown in Fig. 4.15(a). They are both found to be extensive in V , as expected;

moreover, the activity in phase 1 is generally much larger, causing µ1 � µ0.

Conversely, the diffusion coefficient Dτ (Fig. 4.15(e)) and their conditional counterparts

Dτ |i (Fig. 4.15(f)) are both exponential in V , in line with previous studies [122]. For large

volumes, these are also well described by the third term in Eq. (4.99) (or (4.103)-(4.104)). We

confirm this by plotting in Fig. 4.15(g) the ratio

r =
Dτ

q(1− q)(µ1 − µ0)2τmf(τ/τm)
, (4.112)

where all quantities in the rhs are computed independently from the simulations. One can also

consider similar definitions for r0(1). Since the γi are at most polynomial in V , if this ratio tends

to r → 1 when V is large, it serves as a confirmation that, for large V , the model effectively
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Figure 4.16: Characterization of the 12-state Potts model in contact with two thermal baths of
temperatures T1 and T1 + ∆T (with fixed ∆T = 0.9). (a) Order parameter ϕ vs. T1 for different
volumes V . Inset: metastability lifetime τm vs. V . (b) Finite-size analysis of the transition point
T1V vs. V −1, yielding the asymptotic value T01 = 0.0651(1). Inset: distribution of ϕ at T1V , for
different volumes. (c) Phase probability q vs. T1, again for different volumes. The continuous
lines are fits of q = [1 + Qe−V c(T1−T10)]−1. (d) Average entropy production rate as current J
[Eq. (4.57)], which closely follows the behavior of q.

behaves as the 2-state minimal model of Sec. 4.3.4. As is clear in Fig. 4.15(g), this is indeed the

case.

The results verified here in the Schlögl model were also verified in a version of the Potts

model, the 12-state Potts model connected to two baths at different temperatures [V]. It is de-

fined on a regular lattice and exhibits a nonequilibrium phase transition under a different mech-

anism. Despite the absence of an exact solution, all main features about the phase transition and

statistics about entropy production fluctuations are present, see Figs. 4.16 and 4.17.
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Figure 4.17: Unconditional and conditional diffusion coefficients for the 12-state Potts model.
(a) Dτ vs. V for different values of τ . (b) τ |i and Cτ vs. V with τ = 5 × 106. (c) Dτ vs.τ
for different V . (d) Dτ |i and Cτ vs. τ for V = 1600. Continuous lines in (c) and (d) are the
theoretical predictions from Eq. (4.99). (e) The ratio (4.112) between Dτ and the predictions of
the minimal model, Eq. (4.99), which tends to unity for large volumes. Curves are for different
values of τ . (f) Same, but for r|0 (main plot) and r|1 (inset). In all curves, for each V , we fix
T1 as the value T1V for which q = 1/2. Other details are as in Fig. 4.16.
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4.4 Chapter’s summary

This chapter discussed how nonequilibrium phase transitions can be typified by proper entropy

production signatures, as well as a detailed study of its statistics at the phase coexistence region,

in particular the interplay between metastability lifetime and integration time windows.

The importance of this study lies in the fact that nonequilibrium phase transitions are not un-

derstood as well as their equilibrium counterparts, in which case methods based on free energies

are well established and documented. Here, we explore how to characterize these transitions

without losing track of the intrinsic irreversibility.

The description of both continuous and discontinuous phase transitions can be carried out

in terms of entropy production, a property particular to nonequilibrium phenomena. Using a

mean-field description of systems with Z2 symmetry, Gaussian approximations and numerical

simulations of complex and regular structures, we showed that the phase transition can be lo-

cated and its possible to classify if the transition is first-order or continuous. Furthermore, the

hysteresis can be located (first-order) and critical exponents can be obtained (continuous).

For continuous phase transitions, the set of critical exponents that comprise universality

classes is a major area of investigation. The critical exponent α is related to the specific heat, a

quantity that can only be defined in equilibrium. Since it is related to the variation of heat and

inspired by Clausius heat theorem, we obtained this exponent from the derivative of entropy

production rate and observed that the hyperscaling relation is satisfied. This result suggests

further research on the nonequilibrium critical exponents obtained from entropy production, in

particular beyond the considered Z2 class of systems and/or mean-field.

In the case of first-order transitions, the phase coexistence gives rise to an apparent ergodic-

ity breaking close to the transition for large systems. The statistics of thermodynamic currents

becomes greatly affected by the integration time window and poses a problem in characterizing

phase transitions, which are known to occur in the very limit of large systems.

To account for the currents in each of the coexisting phases, we introduce the idea of con-

ditional statistics by exploring the currents conditioned to a given phase and also the currents

over conditioned dynamics. From a finite-time version of large deviation theory, we obtained

general relations for the unconditional and conditional cumulants of a generic current, which

can be entropy production itself. We also proposed a minimal model that captures all essential

features of the problem.

The behaviors obtained were verified with numerical simulations of physical systems: iner-
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tial majority-vote, Schlögl’s second model, and Potts models.



Chapter 5

Heat engines

Heat engines leveraged the development of equilibrium thermodynamics in the 19th century.

Recent developments enable scaling down heat engines to the mesoscopic level, where the fluc-

tuations and the net energy fluxes share the same order of magnitude. In addition to engineered

devices that convert heat into useful work, many processes in nature are described as stochas-

tic heat engines, notably many biophysical motors [104, 106, 156]. The environment-induced

fluctuations are key to exploring the main features of heat engines and how to manipulate them.

Hence, accounting for randomness is needed, and the results of stochastic thermodynamics

have been widely applied to a plethora of small heat engines [157–176]. Inquiries into entropy

production lead to conclusions about the efficiency and power of motors [VII, 152, 170, 177].

The two most important figures of merit of a heat engine are power and efficiency, which are

regarded as fluctuating quantities in stochastic thermodynamics. The famous Carnot efficiency

upper limit now bounds the average efficiency, 〈η〉 ≤ ηC = 1−TC/TH, with TC and TH being the

cold and hot reservoir temperatures. This bound, which dates back to 1824 [178], represents

the efficiency of a perfectly reversible engine that can be achieved in the quasistatic regime.

Out of equilibrium, dissipation represents the loss of useful energy to the environment, and thus

the interest in its quantification. A perfectly efficient engine working reversibly operates very

slowly. If we imagine periodic operation of the machine, it translates into a diverging period τ ,

which is clearly unfeasible and, even further, a vanishing power (useful energy per unit of time).

Since the role of time is closely connected to the interplay between power and efficiency, it can

be explored by tuning the total period of operation or the intervals involved in the protocol.

This chapter deals with above points by considering two types of nonequilibrium meso-

scopic engines: those composed of two-level systems and Brownian particles. In the first part,

117
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we study a two-level system (viz. quantum dot) that alternately interacts with two reservoirs,

constituting a collisional sequential heat engine [IV]1. Collisional models, e.g. a system inter-

acting sequentially and repeatedly with distinct environments instead of a continuous interaction

with all reservoirs, have been considered a suitable description of engineered reservoirs [179].

In particular, we mention the case of quantum systems, in which the reservoir is conveniently

represented as a sequential collection of uncorrelated particles [180]. Additionally, the colli-

sional approach provides a realistic description of systems interacting with small fractions of

the environment or even those evolving under the influence of distinct drivings [181, 182]. In

particular, many aspects of a stochastic pump in which a single-level quantum dot is connected

sequentially and periodically to different reservoirs have recently been discussed [183–186],

here we focus on the fraction of interaction time [IV].

We introduce the idea of adjusting the interaction time asymmetry to optimize engine perfor-

mance. Despite the simplicity of the system, it presents the regimes of heat engine, refrigerator,

heater, and accelerator, highlighting the importance of searching for optimized protocols [159,

169, 186, 187]. As a first finding, asymmetric interaction times play an important role in en-

hancing power output. Also, as an extra advantage, efficiencies become somewhat greater than

the endoreversible Curzon-Ahlborn efficiency ηCA = 1−
√
TC/TH [163, 188, 189].

In the second part, we present another class of engines composed of a pair of interacting

Brownian engines. Brownian particles are often at the core of small-scale heat engines [158,

190–198]. Most of them are based on single-particle engines; significant theoretical [157, 159,

173, 179, 199–205] and experimental [158, 206, 207] results have recently been carried out.

Distinct questions can be raised about the interaction and driving forces contribution to the

engine’s performance. The protocol has many degrees of freedom that can be optimized to

meet different goals [IV, 159, 167, 168, 188]. Understanding the role of interaction can provide

a bottom-up perspective for the emergence of collective effects in many-body engines[124, 208,

209].

A first relevant characteristic of the considered model is that each Brownian particle evolves

under the action of a time-dependent force, which is arguably the simplest way to take Brownian

particles out of equilibrium [191, 192], and systems with time-dependent driving have been

shown to outperform steady-state systems [41, 210, 211]. Secondly, the system presents an

interaction between particles modeled by a potential that depends on both positions. Fluxes

1A generalization of such a model for an arbitrary number of reservoirs was explored in Ref. [III] to compare
different thermodynamic uncertainty relations for systems with periodic driving.
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Figure 5.1: Sketch of a quantum dot periodically and sequentially placed in contact with a hot
(during a time τH) and a cold (during a time τ − τH) reservoir. When in contact with a reservoir,
the quantum dot receives a particle with rate ωi and donates a particle with rate ωi (i being H
for the hot reservoir and C for the cold one). When the quantum dot is occupied, its energy
increases by ε.

are established through interaction, in contrast to single-particle descriptions. Other works

involving interacting particles are restricted to time-independent driving [198, 212].

5.1 Asymmetric interaction in a collisional model

5.1.1 Collisional two-level system

The present model [cf. Fig. 5.1] consists of a two-level system, namely the quantum dot, that

has energy ε when occupied by an electron and zero when empty. It is placed in contact with

a hot equilibrium reservoir (H) for the interval τH, with which it can exchange a particle. The

interaction with the hot reservoir ceases and the system is instantaneously placed in contact with

a cold reservoir (C), this interaction lasts for an interval τ−τH and at its end the contact is broken

and the period finishes. In realistic scenarios the instantaneous reservoir swap is achieved by

having distinct timescales for the interactions and the switchings.

When the system is empty and in contact with the hot reservoir, it can receive a particle

with rate ωH, whereas if it is filled, it can pass the particle with rate ωH; analogously for the

cold reservoir. Since the reservoirs are assumed to be in thermal equilibrium, the occupation
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probability of the quantum dot evolves toward an equilibrium value peq
i ≡ ωi/(ωi + ωi) when

in contact with a unique reservoir i ∈ {H,C}. The connection between microscopic transition

rates and intensive macroscopic thermodynamic quantities follows the Fermi-Dirac distribution

peq
i = [e(ε−µi)/Ti + 1]−1, where µi the chemical potential, Ti the temperature and the Boltzmann

constant is set to 1. Note that this is consistent with the local detailed balance condition ωi/ωi =

e−(ε−µi)/Ti , ensuring thermodynamic consistency and connection with macroscopic quantities.

Therefore, the temperature of each reservoir is given by

Ti =
µi − ε

logωi/ωi
. (5.1)

The ratio of the transition rates ωi/ωi carries an important physical meaning, it quantifies the

willingness of the reservoir to concede a particle to the quantum dot, with equilibrium regime

being reached for ωH/ωH = ωC/ωC.

Since the system is ergodic, and provided that the reservoirs do not share the same tem-

perature and potential, it will evolve toward a periodic non-equilibrium steady-state that is not

preserved under time-reversal t → τ − t, exhibiting its irreversible character. In contrast, if

both reservoirs are equivalent, the quantum dot will reach an equilibrium steady-state as a sys-

tem in contact with a single reservoir would. Interestingly, when the relation ωH/ωH = ωC/ωC

is satisfied, the occupation probability will be time-independent and the state might be named

pseudo-equilibrium, since the difference in chemical potential and temperature compensate.

We start the analysis in a hybrid manner: During the interaction with the i-th reservoir, the

evolution has continuous-time and its transition matrix is given by

Wi ≡

−ωi ωi

ωi −ωi

 . (5.2)

Let pi(t) be the occupation probability at time t, and index i states that the system is in

contact with reservoir i at time t. The master equation therefore has piecewise time-dependent

rates,

d

dt

1− pi(t)
pi(t)

 = (WHδi,H + WCδi,C)

1− pi(t)
pi(t)

 , (5.3)
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which is simplified to an expression

d

dt
pi(t) = ωi − (ωi + ωi)pi(t) (5.4)

that highlights that at each interaction the equilibrium state is given by ωi/(ωi + ωi).

This is a system of two differential equations and can be solved by noticing that pi(t) has

to be continuous, therefore at the non-equilibrium steady state it follows that pH(τH) = pC(τH),

and pH(0) = pC(τ) takes into account that the system has to return to the initial state after a

cycle, consisting of the boundary conditions. Under those conditions, the exact solution is given

by

pH(t) =
ωH

ωH + ωH
− e

−(ωH+ωH)t[1− e−(ωC+ωC)(τ−τH)]

1− e−(ωH+ωH)τH−(ωC+ωC)(τ−τH)

ωHωC − ωHωC

(ωH + ωH)(ωC + ωC)
, t = [0, τH] (mod τ)

(5.5)

and

pC(t) =
ωC

ωC + ωC
−e
−(ωC+ωC)(t−τH)[1− e−(ωH+ωH)τH ]

1− e−(ωH+ωH)τH−(ωC+ωC)(τ−τH)

ωHωC − ωHωC

(ωH + ωH)(ωC + ωC)
, t = [τH, τ ] (mod τ).

(5.6)

The net particle flux per unit of time is given by the change in occupation probability during

an interaction, given by JH := [pH(τH) − pH(0)]/τH for the hot reservoir and JC := [pC(τ) −
pC(τ − τH)]/(τ − τH) for the cold one2. At the stochastic level these fluxes Ji can be regarded as

the number of particles exchanged with the i-th reservoir, taking into account their directions,

over the total time in which reservoir and quantum dot interacted along the trajetory.

Since no electron accumulation in the quantum dot is possible, all particles leaving a given

reservoir must enter the other one, such that JH + JC = 0, and the fluxes read

JH = −JC =
1

τ

(1− e−(ωH+ωH)τH)(1− e−(ωC+ωC)(τ−τH))

1− e−(ωH+ωH)τH−(ωC+ωC)(τ−τH)

ωHωC − ωHωC

(ωH + ωH)(ωC + ωC)
. (5.7)

Since transition rates and time intervals are always positive, the factor with exponentials on

the right-hand side is always positive and can reach zero in specific limits. The sign of the

rightmost factor, and therefore the sign of the fluxes, depends on how both reservoirs differ

through Eq. (5.1).

We pause to make a few comments: (i) such results recover the findings from Refs. [III,

2Notice that both fluxes point from the resevoir to the quantum dot. In thermodynamics, it is fundamental to
keep track of the fluxes’ directions to understand the meaning of energy flows and characterize devices.
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183] for symmetric interaction times (τH = τ/2); (ii) the hot reservoir is “more willing” to

concede particles than the cold reservoir when ωH/ωH > ωC/ωC, implying that JH > 0 and

JC < 0, which is consistent with a flux from hot to cold; (iii) the period τ only provides a

time scale for the model and will be henceforth treated as τ = 1, this property becomes evident

if fluxes, transition rates, and interaction times are scaled by a given factor, which would not

change Eqs. (5.5)-(5.7); (iv) the present system can operate as a heat engine, refrigerator, heater

or accelerator, provided the parameters ωi and ωi (or equivalently, ε, µi and Ti) are conveniently

adjusted.

5.1.2 The role of asymmetric switching

Once obtained the probability distribution in Eqs. (5.5) and (5.6), we can establish the con-

nection between stochastic dynamics and thermodynamics by identifying the energetic fluxes

as in Chapter 2. Per period, the net heat flowing from a reservoir to the quantum dot is

Q̇i ≡ (ε − µi)J i, and the net chemical work related to particle transport is Ẇ
chem

i ≡ µiJ i,

where i = {C,H}. By definition, these quantities are identified preserving the first law Q̇C +

Q̇H + Ẇ
chem

C + Ẇ
chem

H = 0.

We set the output power to the chemical work performed by the quantum dot P := −(Ẇ
chem

H +

Ẇ
chem

C ). Since efficiency is typically a measure of “what you get and what you give”, corre-

sponding to the ratio between power and input heat. In the heat engine regime, the net efficiency

is given by

η :=
P

Q̇H

= 1− µC − ε
µH − ε

= 1− TC lnωC/ωC

TH lnωH/ωH
≤ 1− TC

TH
. (5.8)

Notice that it can be obtained only in terms of the macroscopic parameters in the first equality,

or in terms of the transition rates specified by the following conditions at the heat engine regime:

ωC

ωC
<
ωH

ωH
< 1, and µH < µC < ε (5.9)

are met, ensuring TH > TC and the positiveness of both temperatures, the power output, and the

heat extracted from the hot reservoir.

We pause again to make some comments: (i) the condition for an equilibrium steady state

ωH/ωH = ωC/ωC leads to Carnot efficiency; (ii) the heat engine regime also implies that heat

flows from the quantum dot to the cold reservoir, Q̇C < 0; (iii) since efficiency does not depend

on τH and τ , η, it is independent of the protocol. In contrast, the power output P depends on
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both τH and τ , so we have the freedom to choose time intervals that enhance the power with no

losses to the net efficiency.

In order to exploit distinct possibilities of optimizing the engine performance, the next sec-

tions will be devoted to power maximization with respect to the protocol asymmetry and its

complete maximization (also taking into account the reservoir properties). Since the extracted

power increases monotonically with the ratio between temperatures, the analysis will be carried

out for finite fixed ratios TC/TH.

Best protocol: A relevant timescale, the characteristic time tchar is the typical relaxation

time towards the equilibrium state. Since there are two equilibrium states (associated with each

thermal reservoirs), it is defined as the largest between characteristic times tHchar ≡ 1/ (ωH + ω̄H)

and tCchar ≡ 1/ (ωC + ω̄C). By considering such timescale, Fig. 5.2 depicts the interplay between

power output, period, characteristic time, and the fraction of time spent in contact with the hot

reservoir τH/τ .

In all cases, the chemical potentials and the energy are fixed, providing η = 1/3 for the

chosen parameters. A common trait of all panels is that the power output (and also the heat

extracted) vanishes for τH/τ near 1 or 0. This is expected since the quantum dot would be “vir-

tually” in contact with a single reservoir and reach equilibrium, and hence the net fluxes vanish.

It should be noted that the value of τH for which the power is maximized barely changes with the

ratio τ/tchar, but it is extremely dependent on the other parameters of the model. Furthermore,

for a constant value of τ/tchar, the power output can be noticeably different, being very sensitive

to τH/τ , and the best choice of τH/τ is roughly independent of τ/tchar. The unique value of

τH that maximizes the P for a given value of τ and the other parameters can be numerically

obtained from the transcendental equation

(ωH + ωH)

(ωC + ωC)

e−(ωH+ωH)τH [1− e−(ωC+ωC)(τ−τH)]2

e−(ωC+ωC)(τ−τH)[1− e−(ωH+ωH)τH ]2
= 1, (5.10)

whose values were used in Fig. 5.2 to obtain the white dashed lines.

In order to obtain a qualitative insight about the best value of τH/τ , we observe that the

quantum dot needs to interact with a reservoir during a period comparable to its characteristic

time so its state is effectively affected. Therefore, characteristic times provide a notion for how

long a good engine will interact with each reservoir–e.g. if tHchar � tCchar the hot reservoir needs to

interact very briefly compared to the cold one, so we can expect that a good protocol will present

a small τH/τ . Hence, it is reasonable that good performance protocols will present interaction
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Figure 5.2: Power outputs in terms of τ/tchar and τH/τ , for distinct control parameters. Each
dashed black curve represents an increment of 10−4 in the value of the power, the white dashed
curve represents the values of τH/τ that maximize the power for each value of τ/tchar. For
all panels, we set µH = 0.4 and µC = 0.6 and energy ε = 1. The remaining parameters
are (a) TH = 0.4, TC = 0.1, ωH = 0.04, ω̄H = 0.18, ωC = 0.01 and ω̄C = 0.55; (b)
TH = 2.0, TC = 0.5, ωH = 0.64, ω̄H = 0.86, ωC = 0.06 and ω̄C = 0.13; (c) TH = 3.5, TC =
1.2, ωH = 0.09, ω̄H = 0.11, ωC = 0.71 and ω̄C = 0.99; (d) TH = 0.4, TC = 0.1, ωH =
0.13, ω̄H = 0.58, ωC = 0.01 and ω̄C = 0.55.

times around the characteristic times of each reservoir. This is exemplified in Fig. 5.2, where

tHchar/(t
H
char + tCchar) gives approximately 0.7, 0.1, 0.9 and 0.4 for panels a, b, c and d, respectively,

in fair agreement with the best value of τH/τ observed in the plots. Since the efficiency is

protocol independent, as a rule of thumb we should choose very small values of τ , in agreement

with [213, 214], and maximize the power output with respect to τH. Although small, we recall

that the period τ should be sufficiently larger than the time required to switch the interaction of
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the quantum dot from one reservoir to another, similar to the symmetric case [183, 185].

An interesting question that may be raised about this best protocol procedure is: How much

do we gain by tuning τH instead of just letting the quantum dot be half the period in contact

with each reservoir (symmetric case)? In order to answer such a question, Fig. 5.3 depicts the

density plots of the ratio between power output for τH to the power output for the symmetric

case P̄ (τH)/P̄ (τ/2) as a function of both τH/τ and TC/TH. As the temperature changes (with

fixed ω̄i, ε and µi), tchar also changes due to Eq. (5.1). Hence, comparisons between Figs. 5.2

and 5.3 should take this change into account.

Here, we used the same values of chemical potentials and energy as in Fig. 5.2. As can be

seen, by properly tuning τH one can increase the power output by more than 25% [Figs. 5.3(a)

and 5.3(e)] compared to the symmetric case. However, in order for the tuning to be more

effective, the transition rates ω̄H and ω̄C must be distinct, adding an asymmetry to the system.

Figs. 5.3(c) and 5.3(d) reveal that the ratio P̄ (τH)/P̄ (τ/2) is less than or equal to 1 for ω̄H = ω̄C.

Finally, by comparing Fig. 5.3(a) with Fig. 5.3(b), and Fig. 5.3(e) with Fig. 5.3(f), we notice

that the tuning of τH can increase the power output for ω̄H greater or smaller than ω̄C, leading

to τH smaller or larger than τ/2, respectively. For ω̄H > ω̄C the region of greater enhancement

corresponds to the high efficiencies and power outputs (small TC/TH).

Complete maximization of power: In addition to optimization in terms of the protocol (τ

and τH) the chemical potentials and temperatures can be properly chosen to enhance the heat

engine, which will be done by optimizing the transition rates.

Figure 5.4 depicts the behavior of the resulting values for τH/τ , ωH/ω̄H and ωC/ω̄C when

power is maximized in terms of protocol and transition rates. Values of ωH and ωC are chosen

over a square grid with values ranging from 0.1 to 2 with steps of 0.05, for each of these values

we obtain the maximizing τH, ωH and ωC. The results are displayed as the minimum, mean, and

maximum values, as three curves from bottom to top.

Although the resulting ωH/ω̄H and ωC/ω̄C vary slightly with rates ω̄H and ω̄C, an opposite

trend is verified for τH, which is very sensitive to the choice of transition rates. This suggests

that a good choice of time protocol is the most relevant parameter for power maximization.

This finding is reinforced by examining the behavior of maximized values of power in Fig. 5.5.

Continuous lines represent minimum, mean, and maximum values of optimal power when only

τH is tuned (best protocol) and the rates are fixed at “reliable” but non-maximized choices,

while dashed lines refer to complete maximization. The curves show no significant difference
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Figure 5.3: Density plots of the power as a function of τH and TC/TH divided by the symmetric
case power. Each dashed black curve represents an increment of 0.1 in the value of the power
and the white dashed curve represents the value of τH that maximizes the power for each value
of TC/TH. For all panels, we set τ = 1, µH = 0.4, µC = 0.6 and ε = 1. The remaining
parameters are (a) TH = 2.0, ω̄H = 0.86 and ω̄C = 0.14; (b) TH = 0.4, ω̄H = 0.16 and
ω̄C = 0.69; (c) TH = 2.0, ω̄H = 0.5 and ω̄C = 0.5; (d) TH = 0.4, ω̄H = 0.5 and ω̄C = 0.5; (e)
TH = 0.3, ω̄H = 0.86 and ω̄C = 0.14; (f) TH = 3.0, ω̄H = 0.16 and ω̄C = 0.69.
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Figure 5.4: Values of τH/τ (red dotted), ωH/ω̄H (black continuous) and ωC/ω̄C (blue dashed)
after the maximization of power for fixed temperatures and τ = 1. The maximum, mean and
minimum value for each quantity is presented for different values of ω̄H and ω̄C, more details in
the text.
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Figure 5.5: Maximum power output Pmax versus TC/TH for τ = 1 and the same grid used in
Fig. 5.4, where maximum (black), mean (blue) and minimum (red) values of maximum power
are displayed. Continuous lines account for the maximization in terms of τH only, while dashed
lines represent the maximization in terms of τH, ωH/ωH and ωC/ωC.

between them.

Lastly, the efficiency at maximal power ηMP is compared to the well-established Curzon-

Ahlborn efficiency and Carnot in Figs. 5.6 and 5.7, respectively, for different temperatures.

Similarly to Figs. 5.4 and 5.5, the optimization is carried out for all values of ω̄H and ω̄C over a
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Figure 5.6: Ratio between the efficiency at maximum power ηMP and the Curzon-Ahlborn ef-
ficiency ηCA versus TC/TH for ε = 1 and τ = 1. The lines represent their locci of maximum
(black continuous), mean (blue dashed) and minimum (red dotted) values obtained for the same
grid used in Fig. 5.4.

grid.

Except for some specific choices of ωH and ωC in a small range of TC/TH between 0.4

and 1, the maximization provides an efficiency slightly higher than the Curzon-Ahlborn value.

As is the case for Carnot and Curzon-Ahlborn efficiencies, Eqs. (5.1) and (5.8) show that ηMP

depends only on the temperature ratio and not on the specific value of TH. When TC/TH → 0

and 1, all efficiencies collapse at the asymptotic values 1 and 0, respectively.
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Figure 5.7: Ratio between efficiency at maximum power ηMP and Carnot ηC versus TC/TH for
ε = 1 and τ = 1. The lines represent their locci of maximum (black continuous), mean (blue
dashed) and minimum (red dotted) values obtained for the same grid used in Fig. 5.4.
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Figure 5.8: Scheme of the two-particle Brownian engine. Each particle is subject to a tem-
perature Ti, potential Vi and time-dependent external force F̃i. The particles are coupled by a
harmonic interaction with stiffness κ.

5.2 Interacting Brownian engine

5.2.1 Dynamic and thermodynamic description

In this Section we consider another route for studying the efficiency of thermal engines com-

posed of Brownian particles. Previous works, both theoretical and experimental, focused on

single-particle engines. Here, we consider an engine composed of two interacting Brownian

particles [VI]. In particular, we explore the interplay between driving amplitude, frequency,

and interaction between particles in the machine’s operation.

The model is composed of two interacting underdamped Brownian particles i = {1, 2} with

equal mass m, each subject to a distinct time-dependent external force F̃i(t), in contact with
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a thermal bath of temperature Ti at all times, and coupled to a potential that depends on both

positions Vi(x1, x2), as illustrated in Fig. 5.8. Their positions and velocities, xi and vi, evolve

in time according to the following set of Langevin equations:

dv1

dt
=

1

m
F ∗1 (x1, x2) +

1

m
F̃1(t)− γv1 + ζ1, (5.11)

dv2

dt
=

1

m
F ∗2 (x1, x2) +

1

m
F̃2(t)− γv2 + ζ2, (5.12)

and
dx1

dt
= v1,

dx2

dt
= v2, (5.13)

where γ is the friction parameter. There are eight forces that act on the system: Two forces

F ∗i (x1, x2), related to the harmonic potentials and the interaction between particles, two exter-

nal driving components F̃i(t), dissipative friction forces −γvi, and stochastic forces ζi(t). The

first forces can be described as derivatives of a potential Vi given by F ∗i (x1, x2) = −∂Vi/∂xi,
whereas the stochastic forces are white noise due to the environment: 〈ζi(t)〉 = 0 and 〈ζi(t)ζj(t′)〉 =

2γkBTiδijδ(t − t′)/m. The above set of Langevin equations is associated with the probability

distribution P (x1, x2, v1, v2, t), whose time evolution is governed by the respective Fokker-

Planck-Kramers equation:

∂P

∂t
= −

2∑
i=1

(
vi
∂P

∂xi
+ [F ∗i + F̃i(t)]

∂P

∂vi
+
∂Ji
∂vi

)
, (5.14)

where

Ji = −γviP −
γTi
m

∂P

∂vi
. (5.15)

is interpreted as a “flux current” of a continuity equation, and the equilibrium condition is met

by Ji = 0, as in Section 2.

If the temperatures of both particles are equal and the external forces are absent, the proba-

bility distribution converges to the Gibbs equilibrium distribution at large times, P eq(x1, x2, v1, v2) ∝
e−E/T , where E is the total energy of the system.

The time evolution of a generic average
〈
xni v

m
j

〉
can be obtained from the Fokker-Planck-

Kramers equation (5.14) for suited boundary conditions. We assume the reasonable condition

that P (x1, x2, v1, v2, t) and its derivatives vanish when xi or vi approaches to ±∞, which paves

the way for integration by parts. More specifically, we are interested in obtaining expressions
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for thermodynamic quantities, such as the heat exchanged between particles and their reservoirs,

and the work performed by each external force on its particle. Their expressions can be obtained

from the time evolution of the mean energy 〈E〉, together with the Fokker-Planck-Kramers

equation, and being consistent to the first law of thermodynamics [8, 59]:

d〈E〉
dt

= −
2∑
i=1

(Ẇi + Q̇i), (5.16)

where Ẇi is the rate of work done on particle i due to the external force F̃i(t),

Ẇi = −mF̃i(t) 〈vi〉 , (5.17)

and Q̇i is the rate of heat delivered to reservoir i. An expression for the heat can be derived

from the above two equations:

Q̇i = γ
(
m
〈
v2
i

〉
− Ti

)
. (5.18)

Similarly, the time evolution of the entropy of the system S = −〈lnP (x1, x2, v1, v2)〉 (once

again kB = 1) is the difference between the entropy production rate σ and entropy flux rate φ

from the system to the thermal reservoirs given by

σ =
m

γ

2∑
i=1

1

Ti

∫
J2
i

P
dx1dx2dv1dv2, (5.19)

and

φ = −
2∑
i=1

m

Ti

∫
viJidx1dx2dv1dv2, (5.20)

respectively. Note that σ ≥ 0, whereas φ can be conveniently rewritten in terms of the ratio

between Q̇i and temperature Ti:

φ =
∑
i

γ

(
m〈v2

i 〉
Ti

− 1

)
=

2∑
i=1

Q̇i

Ti
. (5.21)

5.2.2 Harmonic potentials and periodic driving

Having obtained the evolution of positions and velocities, and their connections to relevant

thermodynamic quantities for the study of engines, we turn the calculation of thermodynamic

quantities. We consider that the potential is the combination of an harmonic trap and interaction
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between particles,

Vi =
ki
2
x2
i +

κ

2
(xi − xj)2, (5.22)

with associate forces given by

F ∗i = −kxi − κ(xi − xj). (5.23)

We also consider external forces F̃1(t) and F̃2(t) as the work sources 1 and 2, with same fre-

quency ω, distinct amplitudes and distinct phases, characterized by a lag δ, in similarity to

Refs. [173, 192, 215, 216]. Hence, the external forces are given by

F̃1(t) = X1 cos (ωt), F̃2(t, δ) = X2 cos [ω(t− δ)]. (5.24)

From Eq. (5.16) and due to the fact that 〈E〉 is a state function, the work per period in the

nonequilibrium steady state is obtained by the integration over a period:

Ẇ i = − ω

2π

2π/ω∫
0

F̃i(t)dt (5.25)

and the heat exchanged per period is

Q̇i = κ(Tj, Ti) + γ
ωγ

2π

2π/ω∫
0

〈vi〉2(t)dt, (5.26)

where Tj is the temperature of particle j 6= i, κ = γκ2/[2κ2 + 2γ2(κ + k)] is the thermal

conduction [8, 217], and we used the covariance cov(vi, vi) = 〈v2
i 〉 − 〈vi〉2 obtained from the

Fokker-Planck-Kramers equation.

The heat and work can be related to the second law of thermodynamics as follows: In

the nonequilibrium steady state the entropy production over a cycle is promptly obtained from

Eq. (5.21) and can be related to the average work and heat according to

σ =
4T 2

4T 2 −∆T 2

[
− 1

T
(Ẇ 1 + Ẇ 2) + (Q̇1 − Q̇2)

∆T

2T 2

]
, (5.27)

where T = (T1 + T2)/2 and ∆T = T2 − T1. The steady-state entropy production per period

can also be viewed as sum of two components: σ = ΦT + Φf , where the former, ΦT , is the flux
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of entropy due to the temperature difference

ΦT =
4κ∆T 2

4T 2 −∆T 2
, (5.28)

and the latter due to external forces

Φf = L̃11X
2
1 + (L̃12 + L̃21)X1X2 + L̃22X

2
2 . (5.29)

Above expressions might suggest that we are working on the linear regime (close to equilib-

rium), but they are exact. In order to relate them with thermodynamic fluxes and forces, we are

going to perform the analysis of a small temperature difference ∆T between thermal baths. By

introducing the thermodynamic forces f1 = X1/T , f2 = X2/T and fT = ∆T/T 2, σ is given

by

σ ≈ J1f1 + J2f2 + JTfT , (5.30)

where flux i (i = 1, 2 or T ) is associate with force fi and given by the following expressions

Ẇ 1 = −TJ1f1, Ẇ 2 = −TJ2f2 and Q̇1 − Q̇2 = 2JTfT . From them, it follows that fluxes

assume bilinear forms J1 = L11f1 + L12f2, J2 = L21f1 + L22f2, and JT = LTTfT . In this

linear stochastic thermodynamics approach, one can identify the Onsager coefficients:

L11 = L22 =

(
Tγω2

2

)
γ2ω2 + (ω2 − (k + κ))

2
+ κ2[

γ2ω2 + (ω2 − k)2] [γ2ω2 + (ω2 − (k + 2κ))2]
, (5.31)

L12 =

(
Tκω

2

)
2γω (κ+ k − ω2) cos(δω)− [γ2ω2 − (ω2 − (k + κ))2 + κ2] sin(δω)[

γ2ω2 + (ω2 − k)2] [γ2ω2 + (ω2 − (k + 2κ))2]
, (5.32)

L21 =

(
Tκω

2

)
2γω (κ+ k − ω2) cos(δω) + [γ2ω2 − (ω2 − (k + κ))2 + κ2] sin(δω)[

γ2ω2 + (ω2 − k)2] [γ2ω2 + (ω2 − (k + 2κ))2]
, (5.33)

and

LTT = κT 2. (5.34)

All other Onsager coefficients are zero, revealing that there is no coupling between fT and f1

or fT and f2. Hence, heat cannot be converted into work and vice-versa, while work can be

exchanged between both work sources. Thus we explore the present engine as a work-to-work

converter in later sections.

We pause to make some comments: (i) for ∆T = 0, expressions for Lij’s (i = 1 and 2)
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are exact and valid for arbitrary large values of fi’s; (ii) one can verify that L11 = L22 ≥ 0

and (L12 + L21)2 ≤ 4L11L22 in agreement with the second law of thermodynamics; (iii) The

non-diagonal Onsager coefficients L12 and L21 are not the same, except for the lag-less case

δ = 0; (iv) in the regime of low and large frequencies, all coefficients behave as ω2 and 1/ω2

(diagonal) and 1/ω4 (non-diagonal for δ = 0), respectively; (v) the non-diagonal coefficients

vanish for sufficiently weak interactions while the diagonal is finite, consistently with a quasi-

decoupling between particles. Conversely, when the coupling parameter is very strong, κ →
∞, all coefficients remain finite and coincide with those for a single Brownian particle in a

harmonic potential subjected to both external forces [192]; (vi) for large ∆T , Eq. (5.18) states

that the heat exchanged with thermal bath i has two contributions: The first, coming from

external forces, has the form Aif
2
i + Bififj + Cif

2
j (with coefficients Ai, Bi and Ci listed

in Ref. [VI]) and it is stricly non-negative. Hence, coefficients satisfy Ai ≥ 0 and Ci ≥ 0

and B2
i − 4AiCi ≤ 0. The second term, coming from the difference of temperatures, can be

positive or negative depending on the sign of Tj − Ti. In the absence of external forces, the

entropy production reduces to Eq. (5.28); (vii) expressions for coefficients L̃ij’s appearing in

Eq. (5.29) are exact and hold beyond linear regime listed (large forces and/or large difference

of temperatures) between thermal baths; (viii) the interplay between both terms can change the

direction of the heat flowing per cycle, implying that the coupling parameter can change the

regime of operation of the engine, from heater to heat engine and vice-versa, as κ is increased

and decreased. Similar findings have also been observed for two coupled double-quantum-dots

[218] and coupled spins [219].

5.2.3 Efficiency as a work-to-work converter

By considering for instance particle i = 2 as the work source, the heat engine regime satisfies

P = Ẇ1 ≥ 0 so, according to Eq (5.18), the system will receive heat when T1 � T2 or

T2 � T1, respectively consistent with Q̇1 < 0 or Q̇2 < 0. Conversely, when the difference of

temperatures between thermal baths is small and/or when forces f1/f2 are large, both particles

do not necessarily receive heat from the thermal bath and only input work can be converted into

output work. Such class of engines is known as work-to-work converters.

Since Q̇1 and Q̇2 are non-negative for equal temperatures, consistently with the system
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Figure 5.9: For the work-to-work regime, panels (a) and (b) depict the efficiency η and power
output P versus strength force X1 = Tf1 for distinct interaction parameters κ and ω = 1. In
(c) and (d), the same but for distinct values of ω and κ = 2. Inset: Maximum efficiency ηmE,f1
versus κ for distinct ω’s. In all cases, we set X2 = Tf2 = 1, T = 0.3, δ = 0 and k = 0.1.

dumping heat into the thermal baths, Eq. (5.36) reduces to the ratio between work sources:

η ≡ − P
Ẇ 2

= −L11f
2
1 + L12f1f2

L21f2f1 + L22f 2
2

, (5.35)

where the second term in the right-hand side of Eq. (5.35) was re-expressed in terms of Onsager

coefficients and thermodynamic forces.

Figure 5.9 depicts, for δ = 0, the main features of the efficiency and power output by ana-

lyzing the influence of interaction κ and frequency ω. We find that stronger interaction between

particles improves substantially the machine performance. Properly tuning κ not only changes

the operation regime, from heater to a work-to-work converter (engine), but also increases the

power, efficiency and the range of operation [e.g. the possible values of f1 within the same

engine regime, cf. panels (a) and (b)].

Unlike the engine, in the heater operation mode (often called dud engine), work is extracted

from both work sources (Ẇ 1 and Ẇ 2 > 0). For sufficiently strong interactions, maximum

efficiencies increase towards the ideal limit ηmE,f1 → 1 achieved as κ → ∞ (inset). There

are two range of output forces for the engine operation: In the first, for k + κ > ω2, f1 has



CHAPTER 5. HEAT ENGINES 136

0 π /2ω π /ω 3π /2ω 2π /ω

-2

-1

0

1

2

δ

T·
f 1

1 → 2

1 → 2

2 → 1

2 → 1

heater

heater

Figure 5.10: Operation modes diagram of X1 = Tf1 versus δ for the work-to-work converter.
Symbols 1 → 2 and 2 → 1 correspond to the engine and in which there is, respectively,
conversion from Ẇ 1 < 0 into Ẇ 2 > 0 and Ẇ 1 > 0 into Ẇ 2 > 0. The word “heater”
corresponds to the dud regime. Parameters: X2 = Tf2 = γ = ω = 1, k = 0.1, T = 0.3 and
κ = 2.

opposite direction to f2 [panels (c) and (d)]. The increase of frequency in such a case reduces

the machine efficiency until it vanishes for ω2 = k+κ. Conversely, f1 has the same direction to

f2 when k+κ < ω2, with optimal frequencies ωmE and ωmP ensuring maximum efficiency and

power. The maximum efficiency frequency is given by ωmE =
√
k + κ+

√
k + κ+ κ2, with

efficiency and power given by Eq. (5.35). Whenever ωmE is independent on the ratio f2/f1,

ωmP depends on them.

Finally, the engine behaves very inefficiently for ω � 1. This can be understood by the

fact that the system presents some inertia, quantified by a relaxation timescale, and does not

properly respond to abrupt changes when the frequency is too large.

Next, we examine the influence of a phase difference between harmonic forces. Figure 5.10

represents an operation mode diagram, showing that the existence of a lag between driving

forces not only controls the power and efficiency, but can also guide the operation modes of

the machine. In other words, depending on the value of δ, the work is extracted from the

work source 1 and dumped into 2, η = −Ẇ 2/Ẇ 1, or vice-versa, η = −Ẇ 1/Ẇ 2, or work

can be extracted from both work sources and released as heat. For some values of forces, the

three regimes can be achieved by solely changing the lag. Such changes of conversion in the

operation mode share some similarities with some theoretical models for kinesin in which the

range chemical potentials and mechanical forces can rule the energy conversion (chemical into

mechanical and vice-versa) [220].
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Figure 5.11: For the same parameters of Fig. 5.10, the efficiency η (left) and power output
P (right) versus X1 = Tf1 for distinct phase differences δ. Dashed and continuous lines
correspond to the conversion from Ẇ 1 into Ẇ 2 and vice-versa, respectively. Circles and stars
denote the maximum efficiency and maximum power, respectively.
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Figure 5.12: For the same parameters from Fig. 5.10, the efficiency η (left) and power output
P (right) versus phase difference δ for distinct X1 = Tf ′1s. Continuous and dashed lines
correspond to the conversion from Ẇ 2 into Ẇ 1 and vice-versa, respectively. Circles and stars
denote the maximum efficiency and maximum power, respectively.

Figures 5.11 and 5.12 show efficiency and power for fixed values of X1 and δ, slices of

Fig. 5.10. We can see that, for the parameters involved, choosing values of force and lag dras-

tically change both efficiency and power, however, the efficiency is still far from the regime of

perfect work-to-work conversion η = 1. In general, maximum power and maximum efficiency

are attained at close values.

Different strategies to optimize the heat engine are discussed in Ref. [VI]. Therein, the

authors discuss the consequences of maximizing efficiency and power in terms of output force,
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interaction, lag, and all of them simultaneously.

5.2.4 Different temperatures

In this section, we derive general findings for the case of each particle placed in contact with a

distinct thermal bath. We shall restrict our analysis to k+κ > ω2. Although the power output P
is the same as before, the efficiency may change due to the emergence of heat flow and therefore

its maximization will occur, in general, for distinct output forces and phase differences when

compared with the work-to-work converter. The efficiency η of such a case then reads:

η = − P
Ẇ2 + Q̇i

. (5.36)

Contrasting with the work-to-work converter, in which particles only dump heat to the reser-

voirs [and therefore heat is not considered in Eq. (5.35)], the temperature difference may be

responsible for some heat flow between reservoirs through the system. The difference in tem-

perature affects the velocity fluctuations but it does not change its average 〈vi〉, therefore the

output power P is unaffected by ∆T . Thus, the efficiency will always decrease as the tempera-

ture gap increases.

The discussed regime in which the system receives heat from one reservoir is achieved when

the parameters satisfy specific conditions, the threshold values separating regimes are denoted

fh and δh. For a reservoir i that provides heat, they can be obtained from Q̇i(fh, δ) = 0 for

some fixed δ, or analogously for δh and fixed f . For small temperature differences, the range

of possible parameters fulfilling Q̇i < 0 is small. However, large temperature differences yield

heat fluxes with ease.

Despite that all calculations are exact, expressions for efficiency and their maximizations

become involved since they also depend on coefficients Ai, Bi, and Ci. To obtain some insight

about its behavior in the presence of heat flux, let us perform an analysis for ∆T � 1 and

∆T � 1. In the former limit, η is approximately given by η ≈ −(Ẇ 1/Ẇ 2)(1 − Q̇i/Ẇ 2). In

terms of Onsager coefficients,

η ≈ −L11f
2
1 + L12f1f2

L22f 2
2 + L12f2f1

(
1 +

Q̇i

T (L22f 2
2 + L21f2f1)

)
, (5.37)

where the input heat Q̇i < 0 evidently decreases the efficiency.
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Figure 5.13: For distinct temperature differences, left and right panels depict the efficiency
versus Tf1 (for δ = 0) and versus δ (for Tf1 = 1), respectively. The vertical lines denote
the values of fh and δh in which heat stalls. The red curves show the work-to-work efficiency.
Parameters: T = 0.3 + ∆T/2, ω = 1, k = 0.1, κ = 5 and Tf2 = 1.

For the limit of a large temperature difference ∆T � 1, the efficiency is approximately

given by

η ≈ − T

κ∆T

(
L12f1f2 + L11f

2
1

)
, (5.38)

revealing that η decreases asymptotically as ∆T−1. Recalling that the terms in parentheses do

not depend on temperature, η � 1, with maximum values ηmE and ηmE,δ.

To illustrate above findings, Fig. 5.13 exemplifies the efficiency for distinct and small ∆T =

T2 − T1 for fixed δ = 0 and f1 = 1. When there is a temperature difference, ∆T 6= 0, the

efficiency is always lower than in the ∆T = 0 work-to-work regime. The heat influx Q̇i stalls

for parameters fh and δh, shown by vertical dashed lines, causing an efficiency collapse between

different regimes. As stated previously, the power P is the same as in Fig. 5.9(b) for κ = 5.

Since Q̇1 and Q̇2 exhibit distinct dependencies of f1 and δ, the amount of heat received will be

different when ∆T > 0 or < 0.

5.3 Chapter summary

In Section 5.1 we explored how asymmetric protocols are important to enhance an engine’s

performance. Considering a stochastic pump composed of a quantum dot alternately colliding

with two reservoirs, we observed that proper optimization of the power output can lead to a gain

greater than 25% when compared to the symmetric case.

Fine-tuning the time protocol is suggested to be more relevant for the optimization than other

parameters involved. Moreover, adjusting the protocol should be easier than independently
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tuning the pair temperature and chemical potential. In fact, the choice of a “good” (instead of

optimal) engine together with optimized time provides a reliable recipe for obtaining an almost

optimal engine in terms of power output, whose associate efficiencies are usually somewhat

larger than the Curzon-Ahlborn one, but much larger than the symmetric case efficiency.

Adding the role of interaction in heat engines, Section 5.1 explored the behavior of a two-

particle Brownian engine with time-dependent driving forces. The time symmetry between both

forces is broken with the introduction of a lag parameter δ, which plays a role in the regime of

operation and performance.

We focused on the work-to-work conversion and observed that the intensity of interactions

increases both power and efficiency. The frequency of driving oscillation and input force in-

troduce non-trivial effects on the regime of operation, and a temperature difference preserves

output power while decreasing efficiency. It is also worth noting that in the case of infinitely

strong coupling, κ → ∞, our results reduce to those of a single particle with two external

forces [192]; and, at constant temperature, our system can be mapped onto a general Ornstein-

Uhlenbeck process [221].



“And all this science I don’t understand it’s just my

job five days a week”

Elton John in Rocket Man

Chapter 6

Conclusions and Discussions

Throughout this thesis, we have studied phase transitions, stochastic thermodynamics, heat

engines, and the interplay between them. In particular, we have explored how the passage

of time is amenable to thermodynamic analysis and its role across all the aforementioned fields.

We have shown that nonequilibrium phase transitions can be characterized by stochastic

thermodynamics quantities, displaying similarities to the well-established study of equilibrium

transitions [II]. For periodic driving systems, we have shown that the thermodynamic uncer-

tainty relations are generally loose and with no clear favored bound [III]. Lastly, we have

explored fluctuations, performance, and the role of distinct ingredients, such as interaction, in

heat engines [IV, VI].

Transition-based coarse-graining: Under the sole assumption of Markovian underlying dy-

namics, we built on first-passage time problems to develop a framework for the study of systems

where partial information stems from a few visible transitions [VII]. From analytical expres-

sions, we have shown how to generate the transition statistics. On the other hand, we have

shown how the collected statistics convey information about the internal (thermo)dynamics.

With such a framework, it is possible to make predictions, fit models, test candidate models,

and infer topology and thermodynamic quantities through the (in)equalities presented.

Entropy production can be lower bounded by visible entropy production, which can be split

into two distinct contributions: A contribution from sequences of transitions and one from inter-

transition times, hence establishing the physicality of such terms. This lower bound can be cast

in the form of an efficiency upper bound for molecular motors in terms of its displacement.

Through equations for conditional probabilities of transitions, we connect continuous-time

Markov chains to respective discrete-time Markov chains. A fluctuation relation can be re-

141
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covered by analyzing transition statistics when the observer keeps track of an internal notion of

time, the total number of transitions [VIII]. Finally, an algorithm for the evaluation of Kullback-

Leibler divergence was implemented and made open-source, which is relevant for evaluating the

visible entropy production and comparing general time-series across disciplines.

These results were verified and illustrated with the Gillespie simulations of arbitrary net-

works, and experimentally-validated biophysical models of dynein and kinesin. A minimal

model for template-directed polymerization reveals that the statistics of transitions can probe

the presence of disorder.

Phase transitions: We have shown how entropy production can be used as a tool to charac-

terize nonequilibrium phase transitions in similarity to order parameters in equilibrium transi-

tions, while keeping track of the distance to equilibrium [II]. It can be used to detect the location

of the phase transition, whether continuous or first-order, critical exponents, and the region of

phase coexistence. These results were verified in the inertial majority vote model [I].

For first-order phase transitions, we studied the fluctuation of integrated currents through a

finite-time version of large deviation theory [V]. Both the statistics of currents conditioned to

a phase and a two-state model coarse-graining reveal how integration times turn the bimodal

distribution into unimodal, details of how the variance scales non-trivially with the volume and

how intra-phase variances contribution to the current fluctuations become negligible for large

systems. These results were numerically verified in the second Schlögl’s model and a 12-states

Potts model.

Heat engines: Tuning the interaction time of sequential engines is a powerful route for the

performance optimization and conveniently accessible in the form of a protocol rather than a

change of temperatures or energies. In a model of interacting Brownian engines, we observed

how lag can change the regime of operation, and interaction strength enhances both efficiency

and power.

Comparing TURs in an exact periodically driven system: The usefulness of any bound is

closely related to its tightness. Therefore, we quantitatively explored how loose thermodynamic

uncertainty relations can be for the purpose of inferring entropy production in [III]. For sys-

tems under time-periodic driving, the original thermodynamic uncertainty relation does not hold

[210, 211, 222]. However, we applied distinct extensions of the thermodynamic uncertainty re-

lation valid for time-periodic systems [38–43] to an exactly solvable model of a collisional heat

engine. We observed that, far from equilibrium, all inequalities are orders of magnitude loose
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in most regimes, and some increase indefinitely. This fact raises the need for more special-

ized bounds and inference schemes, such as hyperaccurate currents [223, 224] and the use of

information from waiting times [VII, 28, 29, 87].

Future perspectives: Apart from potential applications of such findings to numerous systems

of interest, many of which are already cited in the introductory Chapter 1, many possibilities are

open for developing the provided theoretical tools. The conditions related to tightness of entropy

production and efficiency bounds can be explored; transition statistics is a promising tool for

probing disorder and could be established as such if more detailed analyses are performed; the

behavior of entropy production can be explored for more symmetry classes; fluctuations at the

phase coexistence region can be explored for quantities such as work by using time-dependent

rates [225, 226]; optimization of heat engines can be combined with previously known methods

(see e.g. Refs. [IV, 159, 167, 168, 188]); modulation of excited level can be included in the

engines to introduce an additional possibility to extract work.

Promising research also arises from the combination of the three major themes presented

in this thesis. The transition-based coarse-graining framework can be connected to phase tran-

sitions to study systems where the inter-phase dynamics is hidden, while phase transitions are

visible, not restricted to only two phases. Transition-based coarse-graining can also be ap-

plied to heat engines for the study of fluctuating efficiency [157, 227] and multi-terminal ma-

chines [228]. Finally, heat engines can be composed of many interacting bodies that go through

a phase transition or operate at the criticality/coexistence, which will lead to consequences in

engine performance [124, 209, 229–231].
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[136] Jesús Gómez-Gardeñes et al. “Explosive Synchronization Transitions in Scale-Free

Networks”. In: Phys. Rev. Lett. 106 (12 Mar. 2011), p. 128701.

[137] Kurt Binder. “Finite size scaling analysis of Ising model block distribution functions”.

In: Zeitschrift für Physik B Condensed Matter 43.2 (1981), pp. 119–140.
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développer cette puissance”. In: Annales scientifiques de l’École Normale Supérieure.
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Fundamental ingredients for 
discontinuous phase transitions in 
the inertial majority vote model
Jesus M. Encinas1, Pedro E. Harunari1, M. M. de Oliveira2 & Carlos E. Fiore1

Discontinuous transitions have received considerable interest due to the uncovering that many 
phenomena such as catastrophic changes, epidemic outbreaks and synchronization present a 
behavior signed by abrupt (macroscopic) changes (instead of smooth ones) as a tuning parameter 
is changed. However, in different cases there are still scarce microscopic models reproducing such 
above trademarks. With these ideas in mind, we investigate the key ingredients underpinning the 
discontinuous transition in one of the simplest systems with up-down Z2 symmetry recently ascertained 
in [Phys. Rev. E 95, 042304 (2017)]. Such system, in the presence of an extra ingredient-the inertia- has 
its continuous transition being switched to a discontinuous one in complex networks. We scrutinize the 
role of three central ingredients: inertia, system degree, and the lattice topology. Our analysis has been 
carried out for regular lattices and random regular networks with different node degrees (interacting 
neighborhood) through mean-field theory (MFT) treatment and numerical simulations. Our findings 
reveal that not only the inertia but also the connectivity constitute essential elements for shifting the 
phase transition. Astoundingly, they also manifest in low-dimensional regular topologies, exposing a 
scaling behavior entirely different than those from the complex networks case. Therefore, our findings 
put on firmer bases the essential issues for the manifestation of discontinuous transitions in such 
relevant class of systems with Z2 symmetry.

Spontaneous breaking symmetry manifests in a countless sort of systems besides the classical ferromagnetic- 
paramagnetic phase transition1,2. For example, fishes moving in ordered schools, as a strategy of protecting them-
selves against predators, can suddenly reverse the direction of their motion due to the emergence of some external 
factor, such as water turbulence, or opacity3. Also, some species of Asian fireflies start (at night) emitting unsyn-
chronized flashes of light but, some time later, the whole swarm is flashing in a coherent way4. In social systems 
as well, order-disorder transitions describe the spontaneous formation of a common language, culture or the 
emergence of consensus5.

Systems with Z2 (“up-down”) symmetry constitute ubiquitous models of spontaneous breaking symmetry, and 
their phase transitions and universality classes have been an active topic of research during the last decades1,2,6. 
Nonetheless, several transitions between the distinct regimes do not follow smooth behaviors7–9, but instead, 
they manifest through abrupt shifts. These discontinuous (nonequilibrium) transitions have received much less 
attention than the critical transitions and a complete understanding of their essential aspects is still lacking. In 
some system classes, essential mechanisms for their occurrence10, competition with distinct dynamics11,12, phe-
nomenological finite-size theory13 and others14–17 have been pinpointed.

Heuristically, the occurrence of a continuous transition in systems with Z2 symmetry is described (at a mean 
field level) by the logistic equation = −m am bmd

dt
3, that exhibit the steady solutions m = 0 and = ±m a b/ . 

The first solution is stable for negative values of the tuning parameter a, while the second is stable for positive 
values of a. For the description of abrupt shifts, on the other hand, one requires the inclusion of an additional 
term + cm5, where c > 0 ensures finite values of m. In such case, the jump of m yields at =a b

c4

2
, reading ± b c/2 . 

Despite portrayed under the simple above logistic equation, there are scarce (nonequilibrium) microscopic models 
forecasting discontinuous transitions18.
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Entropy production as a tool for characterizing nonequilibrium phase transitions

C. E. Fernández Noa, Pedro E. Harunari, M. J. de Oliveira, and C. E. Fiore
Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil

(Received 21 November 2018; published 3 July 2019)

Nonequilibrium phase transitions can be typified in a similar way to equilibrium systems, for instance, by
the use of the order parameter. However, this characterization hides the irreversible character of the dynamics
as well as its influence on the phase transition properties. Entropy production has been revealed to be an
important concept for filling this gap since it vanishes identically for equilibrium systems and is positive for
the nonequilibrium case. Based on distinct and general arguments, the characterization of phase transitions in
terms of the entropy production is presented. Analysis for discontinuous and continuous phase transitions has
been undertaken by taking regular and complex topologies within the framework of mean-field theory (MFT) and
beyond the MFT. A general description of entropy production portraits for Z2 (“up-down”) symmetry systems
under the MFT is presented. Our main result is that a given phase transition, whether continuous or discontinuous
has a specific entropy production hallmark. Our predictions are exemplified by an icon system, perhaps
the simplest nonequilibrium model presenting an order-disorder phase transition and spontaneous symmetry
breaking: the majority vote model. Our work paves the way to a systematic description and classification of
nonequilibrium phase transitions through a key indicator of system irreversibility.

DOI: 10.1103/PhysRevE.100.012104

I. INTRODUCTION

Thermodynamics states that while certain quantities in-
cluding the energy are ruled by a conservation law, the entropy
is not conserved. In the general case of a system coupled
with an environment, the time variation of entropy dS/dt has
two contributions: the flux to the reservoir � and the entropy
production rate � [1,2], that is,

dS

dt
= �(t ) − �(t ). (1)

Since in the steady state the time variation of S vanishes,
dS/dt = 0, � = � and all entropy produced must be deliv-
ered to the environment.

The entropy production has been the subject of consid-
erable interest in physics [3–7], population dynamics [8],
biological systems [9], experimental verification [10], and
others. A microscopic definition of entropy production, in the
realm of systems described by a master equation, is given by
the Schnakenberg expression [11]:

�(t ) = kB

2

∑
i j

{WjiPi(t ) − Wi jPj (t )} ln
WjiPi(t )

Wi jPj (t )
, (2)

where Wji is the transition rate from the state i to state
j with associated probability Pi(t ) at the time t , and Wi j

denotes the reverse transition rate. Equation (2) implies that
�(t ) is always nonnegative because (x − y) ln(x/y) � 0, van-
ishing when the detailed balance Wi jPj − WjiPi = 0 is ful-
filled. Thus, it distinguishes equilibrium from nonequilib-
rium systems. Defining the nonequilibrium entropy by S(t ) =
−kB

∑
i Pi(t ) ln Pi(t ), a microscopic relation for the flux �(t )

is obtained:

�(t ) = kB

∑
i j

Wi j ln
Wi j

Wji
Pj (t ). (3)

Equation (3) constitutes an alternative (and advantageous)
formula for evaluating the steady entropy production, since
it corresponds to an average that can be evaluated from the
transition rates and it will be the subject of analysis in the
present paper.

Despite the recent advances of stochastic thermodynamics,
a fundamental question is whether entropy production can
be utilized as a reliable tool for typifying nonequilibrium
phase transitions. Different studies have been undertaken in
this direction [4,7,8,12–18]. Some of them [4,7,8,18] indi-
cate that continuous phase transitions can be identified by
a divergence of the first derivative of � whose associated
exponent plays an analogous role to the specific heat. Other
features, such as stochastic thermodynamics of many-particle
systems at phase transitions to a synchronized regime have
also been investigated [14,16,17]. Despite such a progress,
a theoretical description of the entropy production at phase
transition regimes, mainly in the context of discontinuous
phase transition, has not been satisfactorily established yet.

In this paper we present a characterization of phase transi-
tions in terms of the entropy production. Our study embraces
the analysis of continuous and discontinuous phase transitions
within the framework of mean-field theory (MFT) and be-
yond MFT. It is based on general considerations about the
probability distribution related to the phase coexistence. The
description of continuous phase transition takes into account
the extension of finite-size scaling ideas and hyperscaling
relations to nonequilibrium systems. A general description of
entropy production for Z2 (“up-down”) symmetry systems in
the realm of MFT is presented. Our main result is that a given

2470-0045/2019/100(1)/012104(10) 012104-1 ©2019 American Physical Society
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Exact statistics and thermodynamic uncertainty

relations for a periodically driven electron pump
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Abstract. We introduce a model for a periodically driven electron pump that

sequentially interacts with an arbitrary number of heat and particle reservoirs. Exact

expressions for the thermodynamic fluxes, such as entropy production and particle flows

are derived arbitrarily far from equilibrium. We use the present model to perform a

comparative study of thermodynamic uncertainty relations that are valid for systems

with time-periodic driving.
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Maximal power for heat engines: Role of asymmetric interaction times

Pedro E. Harunari,1,* Fernando S. Filho ,1,† Carlos E. Fiore ,1,‡ and Alexandre Rosas2,§

1Instituto de Física da Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil
2Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58059-900 João Pessoa, Brazil

(Received 18 December 2020; revised 2 March 2021; accepted 4 May 2021; published 9 June 2021)

The performance of endoreversible thermal machines operating at finite power constitutes one of the main
challenges of nonequilibrium classical and quantum thermodynamics, engineering, and others. We introduce
the idea of adjusting the interaction time asymmetry in order to optimize the engine performance. We consider
one of the simplest thermal machines, composed of a quantum dot interacting sequentially with two different
reservoirs of heat and particles. Distinct optimization protocols are analyzed in the framework of stochastic
thermodynamics. Results reveal that asymmetric interaction times play a fundamental role in enhancing the
power output and that maximizations can provide an increase of more than 25% compared with the symmetric
case. As an extra advantage, efficiencies at maximum power are slightly greater than the endoreversible Curzon-
Ahlborn efficiency for a broad range of reservoir temperatures.

DOI: 10.1103/PhysRevResearch.3.023194

I. INTRODUCTION

The efficiency of any heat engine is bounded by Carnot
efficiency ηC = 1 − TC/TH, with TC and TH being the cold
and hot reservoir temperatures. It constitutes one of the main
results of thermodynamics and is one of the distinct formu-
lations of the second law. Such an ideal limit was introduced
by Carnot in 1824 [1,2] and consists of a reversible machine
composed by two isothermal and two adiabatic quasistatic
strokes. Although it is a universal upper bond valid for all
engines, irrespective of their designs, compositions, or nature,
whether classical [3,4] or quantum [5,6], such an (ideal) limit
is impractical, not only due to imperfections in the machine
construction, which increases the dissipation, but also because
its achievement would demand the machine to operate in a
fully reversible way during infinitely large times, implying its
operation at a null power (finite work divided by infinite time).

Thus it is usually desirable to build thermal machines to be
as efficient as possible operating at finite power outputs. One
of the main findings for endoreversible thermal machines is
the Curzon and Ahlborn efficiency [7], in which the efficiency
at maximum power is given by ηCA = 1 − √

TC/TH. Such a
remarkable finding has also been derived in several distinct
works (see, e.g., Refs. [8,9]), and despite not possessing the
same universal status as the Carnot efficiency, it provides a

*pedroharunari@gmail.com
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powerful guide as to the operation of nonequilibrium engines
under more realistic situations and sheds light on the con-
struction and performance of small-scale engines (nanoscopic
devices) working in a maximum power regime from the
tools of stochastic thermodynamics [3,4,9–24]. In this context,
single-level quantum dots have been proposed as prototype
machines, whose simplicity allows detailed investigation of
their performances at maximum power [25–27].

Collisional models, e.g., a system interacting sequentially
and repeatedly with distinct environments (instead of contin-
uous interaction with all the reservoirs), have been considered
as a suitable description of engineered reservoirs [28]. Among
the distinct situations for that, we mention the case of quantum
systems, in which the reservoir is conveniently represented
as a sequential collection of uncorrelated particles [29,30].
Additionally, the collisional approach attempts to provide re-
alistic systems interacting only with small fractions of the
environment or even those evolving under the influence of
distinct drivings over each member [31,32]. Particularly, many
aspects of a stochastic pump in which a single-level quan-
tum dot (QD) is connected sequentially and periodically to
different reservoirs have been discussed lately for symmetric
interaction times [33–35].

In this paper, we introduce the idea of adjusting the in-
teraction time asymmetry in order to optimize the engine
performance. The present approach is rather different from
some findings [10,19,36,37] exactly because we explore this
adjustment of the interaction time; that is, the interaction time
is the focus of our study. Despite the simplicity of the system,
its large applicability and richness allow its usage as heat en-
gine, refrigerator, heater, or accelerator, hence highlighting the
importance of searching for optimized protocols. As a main
finding, under suited situations, asymmetric interaction times
play an important role in the enhancement of power output.
Also, as an extra advantage, efficiencies become somewhat
greater than the endoreversible Curzon-Ahlborn efficiency.

2643-1564/2021/3(2)/023194(7) 023194-1 Published by the American Physical Society
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Current fluctuations in nonequilibrium discontinuous phase transitions
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Discontinuous phase transitions out of equilibrium can be characterized by the behavior of macroscopic
stochastic currents. But while much is known about the average current, the situation is much less understood for
higher statistics. In this paper, we address the consequences of the diverging metastability lifetime—a hallmark
of discontinuous transitions—in the fluctuations of arbitrary thermodynamic currents, including the entropy
production. In particular, we center our discussion on the conditional statistics, given which phase the system is
in. We highlight the interplay between integration window and metastability lifetime, which is not manifested in
the average current, but strongly influences the fluctuations. We introduce conditional currents and find, among
other predictions, their connection to average and scaled variance through a finite-time version of large deviation
theory and a minimal model. Our results are then further verified in two paradigmatic models of discontinuous
transitions: Schlögl’s model of chemical reactions, and a 12-state Potts model subject to two baths at different
temperatures.

DOI: 10.1103/PhysRevE.104.064123

I. INTRODUCTION

In microscopic systems, currents of heat, work, and en-
tropy production must be treated as random variables, which
fluctuate over different runs of an experiment [1,2]. This rep-
resents a paradigm shift in thermodynamics, and has already
led to fundamental advancements in the field, such as fluc-
tuation theorems [3–8] and, more recently, the discovery of
thermodynamic uncertainty relations [9–13]. It also entails
practical consequences, e.g., in the design of Brownian en-
gines [14–17], molecular motors [18–21], information-driven
devices [22,23], and bacterial baths [24]. In these systems,
both the output power [13,25] and the efficiency [26–29]
may fluctuate significantly, leading to possible violations of
macroscopic predictions, such as the Carnot limit [14].

A scenario of particular interest is that of nonequilibrium
steady states (NESSs), which occur when a system is placed
in contact with multiple reservoirs at different temperatures
Ti and/or chemical potentials μi. NESSs are characterized
by finite currents of energy and matter, and thus also a fi-
nite entropy production rate σt [1,30–33]. At the stochastic
level, these become fluctuating quantities, associated to a
probability distribution. Understanding the behavior of said
distributions constitutes a major area of research, as they
form the basis for extending the laws of the thermodynam-
ics towards the microscale, providing insights in nontrivial
properties of nonequilibrium physics. Of particular inter-
est is their behavior across nonequilibrium phase transitions
[34]. Most of our understanding, however, is centered on the

*fiorecarlos.cf@gmail.com
†pedroharunari@gmail.com
‡gtlandi@gmail.com

average current. For instance, the average entropy production
rate has been found to be always finite around the transition
point, with the first derivative either diverging, in continuous
transitions [35–41], or presenting a jump in discontinuous
ones [38,39,42]. These clear signatures suggest, in fact, that
the average entropy production could even be used to classify
the type of transition. Conversely, the behavior of higher order
statistics, such as the variance, is much less understood.

Cumulants of thermodynamic currents are usually assessed
via numerical approaches, such as Monte Carlo simulations
[39], or large deviation theory (LDT) [7,43–47]. In both cases,
cumulants are computed from long-time sample averages, in-
tegrated over a time window τ . Ultimately, one is interested in
taking τ → ∞, at least in principle. But in systems presenting
discontinuous transitions this can become an issue, since the
phase coexistence is characterized by states with very long
metastability lifetimes τm. In fact, τm increases exponentially
with the system volume V , which is a consequence of the dis-
continuous nature of the transition (for continuous transitions
these divergences are algebraic). As a consequence, the order
of the limits τ → ∞ and V → ∞ becomes nontrivial [48].

In this paper we approach this issue by introducing the idea
of conditional currents, given which phase the system is in.
We focus, in particular, on the diffusion coefficient (scaled
variance). We formulate a finite-time large deviation theory,
which neatly highlights the nontrivial interplay between τ and
τm. This is then specialized to a minimal two-state model,
that is able to capture the key features of the problem and
also provides useful predictions. These are then tested on two
paradigmatic examples of discontinuous transitions: Schlögl’s
model of chemical kinetics, and a 12-state Potts model subject
to two baths at different temperatures.

This paper is organized as follows: Section II presents the
main concepts and assumptions considered. The conditional

2470-0045/2021/104(6)/064123(10) 064123-1 ©2021 American Physical Society
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Obtaining efficient thermal engines from interacting Brownian
particles under time-periodic drivings
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We introduce an alternative route for obtaining reliable cyclic engines, based on two interacting Brownian
particles under time-periodic drivings which can be used as a work-to-work converter or a heat engine. Exact
expressions for the thermodynamic fluxes, such as power and heat, are obtained using the framework of stochastic
thermodynamic. We then use these exact expression to optimize the driving protocols with respect to output
forces, their phase difference. For the work-to-work engine, they are solely expressed in terms of Onsager
coefficients and their derivatives, whereas nonlinear effects start to play a role since the particles are at different
temperatures. Our results suggest that stronger coupling generally leads to better performance, but careful design
is needed to optimize the external forces.

DOI: 10.1103/PhysRevE.105.024106

I. INTRODUCTION

Small-scale engines operating out of equilibrium have
received significantly increasing attention in the last years,
especially because several processes in nature (mechanical,
biological, chemical and others) are related to some kind
of energy conversion (e.g., mechanical into chemical and
vice versa) [1–3]. The constant fluctuating flow of energy
constitutes a fundamental feature fueling the operation of
nonequilibrium engines which is well described by the frame-
work of stochastic thermodynamics [1].

Entropy production plays a fundamental role in nonequilib-
rium thermodynamics. It satisfies fluctuation theorems [4,5],
general bounds also known as thermodynamic uncertainty re-
lations (TURs) [6–13] and general trade-offs between power,
efficiency, and dissipation [14,15]. Here we look at a case
study of a cyclic heat engine in which the nonequilibrium fea-
tures are due to distinct thermal reservoirs and time-dependent
external forces. We focus on systems with time-dependent
driving for two reasons: first, time-dependent driving is ar-
guably the simplest way to drive Brownian particles out of
equilibrium [16,17] and second, systems with time-dependent
driving have been shown to outperform steady-state systems
[18–20].

Brownian particles are often at the core of nanoscaled heat
engines [16,17,21–28]. Most of them are based on single-
particle engines and have been studied for theoretical [29–38]
and experimental [21,39,40] settings. On the other hand, the
number of studies on the thermodynamic properties of inter-
acting chains of particles are limited and often constrained
to time-independent driving [28,41]. The scarcity of results
[42], together the richness of such system, raises distinct and

relevant questions about the interaction contribution to the
performance, the interplay between interaction and driving
forces, and choice of protocol optimization. The last is a field
in itself with many recent works focusing on the optimization
of distinct engines in terms of efficiency and/or power [32,43–
46].

In this work we conciliate above issues by introducing an
interacting version of the underdamped Brownian duet [47],
in which each particle is subject to a distinct thermal bath and
driving force. The existence of distinct parameters (interac-
tion between particles, strength of forces, phase difference,
and frequency) provides several routes for tackling optimiza-
tion that will be analyzed using the framework of stochastic
thermodynamics. In order to exploit the role of distinct pa-
rameters, analysis will be considered for the (simplest) system
composed of two Brownian particles. Two different situations
will be addressed. Initially, we consider the case in which the
thermal baths have the same temperature (interacting particle
work-to-work converter) [17], in which maximizations are
solely expressed in terms of Onsager coefficients and their
derivatives. We then advance beyond the work-to-work con-
verter by including a temperature difference between thermal
baths and general predictions are obtained for distinct set of
temperatures.

Distinct types of optimization will be introduced and an-
alyzed: maximization of output power and efficiency with
respect to the output forces, phase difference between external
forces, and both of them. We obtain expressions for efficiency,
power, and the optimization parameters in both regimes of
maximum efficiency and maximum power. Results reveal that
the coupling parameter is found to monotonically enhance
both efficiency and/or power, highlighting the importance of
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What to learn from a few visible transitions’ statistics?
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1Instituto de F́ısica da Universidade de São Paulo, 05314-970 São Paulo, Brazil
2Complex Systems and Statistical Mechanics, Department of Physics and Materials Science,

University of Luxembourg, L-1511 Luxembourg, Luxembourg
3ICTP – The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy

4Department of Physics, Indian Institute of Science Education and Research, Tirupati 517507, India
(Dated: August 18, 2022)

Interpreting partial information collected from systems subject to noise is a key problem across
scientific disciplines. Theoretical frameworks often focus on the dynamics of variables that result
from coarse-graining the internal states of a physical system. However, most experimental appa-
ratuses can only detect a partial set of transitions, while internal states of the physical system are
blurred or inaccessible. Here, we consider an observer who records a time series of occurrences of one
or several transitions performed by a system, under the assumption that its underlying dynamics is
Markovian. We pose the question of how one can use the transitions’ information to make inferences
of dynamical, thermodynamical, and biochemical properties. First, elaborating on first-passage time
techniques, we derive analytical expressions for the probabilities of consecutive transitions and for
the time elapsed between them, which we call inter-transition times. Second, we derive a lower
bound for the entropy production rate that equals to the sum of two non-negative contributions,
one due to the statistics of transitions and a second due to the statistics of inter-transition times.
We also show that when only one current is measured, our estimate still detects irreversibility even
in the absence of net currents in the transition time series. Third, we verify our results with nu-
merical simulations using unbiased estimates of entropy production, which we make available as an
open-source toolbox. We illustrate the developed framework in experimentally-validated biophysical
models of kinesin and dynein molecular motors, and in a minimal model for template-directed poly-
merization. Our numerical results reveal that while entropy production is entailed in the statistics of
two successive transitions of the same type (i.e. repeated transitions), the statistics of two different
successive transitions (i.e. alternated transitions) can probe the existence of an underlying disorder
in the motion of a molecular motor. Taken all together, our results highlight the power of inference
from transition statistics ranging from thermodynamic quantities to network-topology properties of
Markov processes.

Keywords: stochastic thermodynamics, biophysics, inference, first-passage times

I. INTRODUCTION

Model systems in physics [1], chemistry [2–4], biol-
ogy [5–7], and computation [8] are routinely described
by Markov processes, which are also amenable to ther-
modynamic analysis [9–13]. This approach thrives when
there is full knowledge of the system’s internal state, but
in most practical applications experimental apparatuses
access few degrees of freedom or have a finite resolution,
thus only partial information is available. One example
is the rotation of flagella in a bacterial motor [14]: ob-
servation of orientation switches in the direction of the
bacteria’s flagella suggests the existence of internal states
that are hidden from the observer.

The problem of measuring partial information, or of
coarse-graining degrees of freedom, is usually framed in
terms of the internal state of a system [15–20]. However,
in most practical applications, an external observer only
measures “footprints” of one or several transitions, rather
than the internal state itself, as sketched in Fig. 1(a).

∗ pedroharunari@gmail.com
† edgar@ictp.it

These footprints may be due to physical degrees of free-
dom satisfying microscopic reversibility, in which case it
is possible to talk about their energetic and entropic bal-
ance, as sketched in Fig. 1(b) where the observer can
detect the emission and absorption of a photon γ, or the
production or consumption of a chemical species X. Fi-
nally, Fig. 1(c) sketches the motion of a molecular motor
(e.g. a kinesin) along a periodic track (e.g. microtubule).
The motor undergoes structural changes followed by a
translocation step associated to the consumption of some
resources (e.g. adenosine triphosphate). The only visi-
ble transitions are in this case the forward and backward
steps along the track. As explained below, this situa-
tion is customary in experiments where the motion of a
microscopic bead attached to the motor can be used to
detect spatial displacements along the track while confor-
mational changes and chemical fuel consumption remain
undetectable to the experimenter [21].

Significant developments in single-molecule experimen-
tal techniques with biological systems at cellular and
sub-cellular level have been reported over the last few
decades [22]. For example, the motion of biomolecu-
lar machines involved in cellular transport such as ki-
nesin [23], dynein [24, 25] and myosin [26] has been
resolved at the sub-nanometer resolution. Examples
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The beat of a current
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The fluctuation relation, milestone of thermodynamics based on Markov processes, is only estab-
lished when a set of fundamental currents can be measured and all transitions are reversible. Here
we prove that it also holds for systems with hidden transitions (possibly irreversible) if observations
are carried “at their own beat”, that is, by stopping the experiment after a given number of visible
transitions rather than after the elapse of an external clock time. This suggests that thermodynamics
may be best described by Markov processes in the space of transitions, rather than states.

PACS numbers: 05.70.Ln, 02.50.Ey

Consider the “symbolism of atomic measurements”,
as Schwinger called quantum mechanics [1]: transitions
in the energy spectrum of atoms were then only visible
through spectral lines, i.e. the emission of photons. Or
else, consider a chemical reactor fed by the in- and out-
take of some controlled species: while flows can be mon-
itored, the abundance of the reactants is only accessible
by scanning with devices that involve internal degrees of
freedom – e.g. magnetic, vibrational, electronic (NMR,
UV/Vis and infrared [2–5] spectroscopy). Yet again, con-
sider myosins carrying cargoes on actin filaments: their
motion can be monitored via imaging techniques, but not
their ATP-ADP metabolic cycle [6–8].

The physics of open systems is a discourse about
transitions and transformations. However, our modern
understanding based on continuous-time Markov chains
(CTMC) is tightly bound to notions of the system’s in-
ternal state. Take the fluctuation relation (FR), the most
encompassing result about nonequilibrium systems, stat-
ing that for currents c cumulated up to some stopping
time τ the log-ratio of their positive to negative proba-
bilities is linear

log
pτ (c)

pτ (−c) = f · c. (1)

The above relation holds at times τ = t beated by an
external clock (upon a proper choice of initial distribution
[9], or asymptotically) only if the observer has access to
(fundamentally) all currents and forces in the system’s
state space, up to boundary contributions. Instead, it
does not generally hold if some of the currents are not
visible.

The main result of this manuscript is that a local cur-
rent c = n↑ − n↓, that is the number of times a certain
transition denoted ↑ occurs minus that of the opposite
transition ↓, obeys the FR when it is counted “at its own
beat”, namely the number of times τ ≡ n = n↑ + n↓
that either ↑ or ↓ are performed, regardless of what hap-
pens within the system in the meanwhile. The second
main contribution is the introduction of the formalism
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FIG. 1: Plots of log pτ (+c)/pτ (−c), c ≥ 0 for different stop-
ping times and processes, for the four-state system in Eq. (2),
current along 1↔ 2, a suitable choice of rates, equal number
of samples7. Left: Sampling from the stationary distribution,
comparison of CTMC at clock time t, at stopping time the
total number of visible transitions n, and of transition-space
Markov chain at discrete clock time n. Right: CTMC at
stopping time n sampled from different initial distributions:
transition-space stationary, state-space stationary, preferen-
tial distribution, showing that this latter lie on the the line
with slope f∅c (dashed line).

of Markov chains in the space of transitions, rather than
states, which we prove to correctly describe the statistics
of observables at total number of visible transitions.

This latter claim is sustained by the left panel of Fig. 1,
comparing log pτ (c)/pτ (−c) in different simple numeri-
cal experiments with a CTMC at fixed-t and at fixed-n,
and with the transition Markov chain: the latter two are
equivalent. Here the FR, which holds asymptotically, is
not observed due to the low number of transitions n.
The right-hand panel shows that it is instead recovered
in terms of an effective force f∅ [10], provided the initial
state is sampled from a preferred initial distribution.

The Letter is self-contained, but in the Supplementary
Material (marked with numbered superscriptsi) we give
derivations and details.

ar
X

iv
:2

20
5.

05
06

0v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

0 
M

ay
 2

02
2


