• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.43.2014.tde-14112014-130241
Document
Author
Full name
Alysson Ferreira Morais
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2014
Supervisor
Committee
Teotonio Sobrinho, Paulo (President)
Marvulle, Valdecir
Pedra, Walter Alberto de Siqueira
Title in Portuguese
Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na rede
Keywords in Portuguese
Dualidade
Modelos de rede
Modelos de spin
Abstract in Portuguese
Neste trabalho, estudamos as dualidades entre modelos de spin em redes bidimensionais a partir de uma abordagem tensorial. Nessa abordagem, componentes de tensores são associadas aos vértices e arestas da rede de forma que a função de partição Z é construída a partir da contração dos índices dessas componentes e é, portanto, um escalar por mudanças de base da álgebra de grupo C[G] utilizada para a definição dos tensores. A partir daí, e observando que a forma das componentes fixam o modelo estudado, obtemos um modelo diferente para cada mudança de base proposta. Esses diferentes modelos possuirão, no entanto, a mesma função de partição, já que esta é um invariante sob tais transformações. De fato, haverá uma infinidade de modelos todos duais entre si. Neste ponto, fixamos nossa atenção nos modelos com spin Zn, nos quais estão incluídos o modelo de Ising, o modelo de Potts e o modelo de Ashkin-Teller-Potts. Explorando uma transformação de base específica, fomos capazes de rederivar a dualidade de Kramers e Wanniers para o modelo de Ising. Usando argumentos análogos, mostramos também que os modelos de Potts com n = 3 e 4 são autoduais e que não existe autodualidade para este modelo com n _ 5. O modelo de Ashkin-Teller-Potts foi mostrado ser autodual para todo n 2 N.
Title in English
A tensorial approach to the study of dualities between lattice spin models
Keywords in English
Dualities
Lattice models
Spin models
Abstract in English
In this work, we study the dualities between spin models in two-dimensional lattices from a tensorial approach. In this approach, we associate tensor components to the vertices and links so that the partition function Z is constructed by a contraction of the indices of the tensor components thereby making Z a scalar under change of basis of the group algebra C[G] used to de_ne the tensors. Having obtained this, and noting that the values of the components _x the studied model, we obtain a di_erent model for each basis transformation proposed. These di_erent models, however, have the same partition function since Z is invariant under these transformations. In fact we can obtain several models all dual to each other in this manner. We then focus on Zn spin models, which include the Ising model, the Potts model and Ashkin- Teller-Potts model. Exploring a speci_c basis transformation, we are able to rederive Kramers and Wanniers' duality for the Ising model. With analogous arguments, we also show that Potts models with n = 3 and n = 4 are self-dual whereas this property is lost for n _ 5. The Ashkin-Teller-Potts model is shown to be self-dual for all n 2 N.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
dissertacao_final.pdf (1.31 Mbytes)
Publishing Date
2014-11-14
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.