• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.43.2002.tde-13122013-120016
Document
Author
Full name
Silvio Luiz Thomaz de Souza
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2002
Supervisor
Committee
Caldas, Ibere Luiz (President)
Braun, Thomas
Grebogi, Celso
Viana, Ricardo Luiz
Weber, Hans Ingo
Title in Portuguese
Caos e controle em sistemas mecânicos com impactos
Keywords in Portuguese
Controle
Sistemas com impactos
Sistemas não-ideais
Teoria do caos
Abstract in Portuguese
Inicialmente, analisamos três sistemas mecânicos idéias com impactos: um oscilador com impactos, um sistema com par de impactos e uma caixa de engrenagens. Entre os impactos, o movimento é descrito por uma equação diferencial linear. Por ocasião dos impactos, introduzimos na solução analítica novas condições iniciais, de acordo com a lei de Newton para impactos. Devidos aos impactos, as trajetórias no espaço de fase são descontínuas e descritas por um mapa transcendental. Os expoentes de Lyapunov, importantes para caracterizar a natureza dos atratores obtidos, são calculados através desses mapas. Nas simulações numéricas, observamos fenômenos não-lineares como crises, intermitências, transientes caóticos e coexistências de atratores e obtemos as bacias de atração dos atratores coexistentes. Ademais, mostramos como controlar comportamentos caóticos, a partir de um forçamento de amplitude pequena, e pelo método OGY (Ott, Grebogi e Yorke) de controle de caos. Finalmente, investigamos a dinâmica de um sistema não-ideal com impactos, que é composto pelo sistema de par de impactos sobreposto ao um sistema não ideal (para qual a ação da fonte de energia depende da oscilação do sistema). A partir de simulações numéricas, identificamos fenômenos não-lineares como crise interior, intermitência e coexistência de atratores. Associado à crise interior observamos um tipo de intermitência que leva o sistema a oscilar entre três atratores caóticos. Além dessa intermitência, observamos uma outra, que envolve dois atratores periódicos e um caótico. Além disso, mostramos as bacias de atração de dois atratores periódicos coexistentes. Essas bacias possuem uma característica de bacia crivada.
Title in English
Chaos and control in mechanical systems with impacts.
Keywords in English
Chaos theory
Control
Non-ideal systems
Systems with impacts
Abstract in English
Initially, we analyze three ideal mechanical systems with impacts: an impact oscilator, an impact-pair, and a gear-box (gear-rattling). Between impacts, the motion is described by a linear differential equation. After each impact, we use the Newton law of impact to determine new initial conditions of an analytical solution. Due to impacts, the trajectories in phase space are discontinuous and described by a transcendental map. The Lyapunov exponents, important to characterize the attractors, are calculated from the transcendental map. In the numerical simulations, we observe nonlinear phenomena as crises, intermittency, chaotic behavior, and coexisting attractors. Moreover, we present the basins of attraction of the coexisting attractors. Furthermore, we show how to control the chaotic behavior, with a small perturbation and by the OGY (Ott, Grebogi, and Yorke) method. Finally, we investigate the dynamics of a non-ideal system with impacts, that is composed by an impact-pair system on a non-ideal system (in this system, the energy source actions depend on the system oscillations). From the numerical simulations, we identify nonlinear phenomena as interior crises, intermittency, for which the system oscillates among three chaotic attractors. Besides this intermittency, we observe another one. Associated to a chaotic and two periodic attractors. In addition, we show the riddle basins of attraction of the two coexisting periodic attractors.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
RE34777Souza.pdf (55.37 Mbytes)
Publishing Date
2014-02-21
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.