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Study of heavy-ion-induced fusion-fission reactions is important for understanding the

physics of nuclear matter and nuclear models. In this work, we study the mechanism of

nuclear reactions of 11B +181 Ta, 11B +197 Au, 11B +209 Bi and 7Li+208 Pb at interme-

diate energy using CRISP model and also analyze the nuclear reaction processes starting

from the initial nucleus-nucleus collision up to the fragments production. The experimen-

tal data are measured at the LNR Phasotron (JINR, Dubna, Russia) and also taken from

Ref. [1]. The fission process is studied using multimodal fission model for 7Li +208 Pb

at 245 MeV, 11B +209 Bi at 146 MeV and 11B +197 Au at 137.5 MeV energy, and pure

symmetric distribution for 11B+181Ta at 245.4 and 125.7 MeV and 11B+197Au at 255.5

MeV energy. A new branch of CRISP model has been developed to describe heavy-ion

induced reactions by implementation of the Rotating Finite Range model. Experimental

mass-yield distributions are compared with the results of the Monte Carlo simulation code

CRISP on the framework of the Random Neck Rupture model. The experimental data of

spallation products are also described by the CRISP model. The fission cross sections,

fissility and fission-fragment mass distributions are calculated and compared with experi-

mental data. We conclude that CRISP model provides a good description of intermediate

energy heavy-ion-induced fission.

Keywords: CRISP model; heavy-ion-induced fission; nucleus-nucleus collision; Ro-

tating Finite Range model; Random Neck Rupture model
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O estudo de reações de fusão-fissão induzidas por ı́ons pesados é importante para in-

tender a origem da matéria nuclear e de modelos nucleares. Neste trabalho, estudamos o

mecanismo de reações nucleares de 11B+181 Ta, 11B+197Au, 11B+209Bi e 7Li+208Pb

na energia intermediária usando o modelo CRISP e também analisamos os processos de

reação nuclear a partir de colisão inicial de núcleo-núcleo até a produção dos fragmen-

tos de reação. Os dados experimentais são medidos no LHR Phasotron (JINR, Dubná,

Rússia) e tambem de Ref. [1]. O processo de fissão é estudado usando o modelo de fissão

multimodal para 7Li +208 Pb na 245 MeV, 11B +209 Bi na 146 MeV e 11B +197 Au na

energia 137.5 MeV e a distribuição simétrica pura para as reações de 11B +181 Ta na

245.4 e 125.7 MeV e 11B +197 Au na energia 255.5 MeV foi considerada. Para descr-

ever as reações induzidas por ı́ons pesados, um ramo novo de modelo CRISP foi desen-

volvida através da implementação de um modelo Rotating Finite Range. As distribuições

de massa dos fragmentos experimentais são comparadas com os resultados do código de

simulação de Monte Carlo, CRISP, na padrão do modelo Random Neck Rupture. Os da-

dos experimentais de produtos de espalação também são descritos pelo modelo CRISP.

As seções de choque dos fragmentos de fissão, a fissilidade e as distribuições de massa

dos fragmentos são calculadas e comparadas com os dados experimentais. Concluı́mos

que o modelo CRISP fornece uma boa descrição de fissão induzida por ı́ons pesados á

energia intermediária.

Palavras-chaves: modelo CRISP; fissão induzida por ı́ons pesados; colisão de núcleo-

núcleo; modelo Rotating Finite Range; modelo Random Neck Rupture
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Chapter 1

Introduction

1.1 Introduction

Although nuclear fission was discovered about eighty years ago (in 1938), it has continued

to pose challenges in the last eight decades [2, 3, 4]. One of these challenges is heavy-ion-

induced fission reactions at intermediate energies which gives us a deep insight into the

angular momentum transferred in nucleus-nucleus collisions and the lowering of fission

barriers with increasing angular momentum. While many investigations have been done

on actinide nuclei with different projectiles in a wide range of energy, the study of heavy-

ion-induced fission on pre-actinide targets is limited.

Among the whole processes of nucleus-nucleus interaction, fission represents the most

interesting phenomenon. Fission is a slow process in the nuclear time-scale, involving de-

formation of the whole nucleus. Studies of the mass and charge distributions of the fission

fragments at intermediate energies provide important information about the dynamics of

the reaction. Cross sections determination for the interaction of charged particles and

heavy ions with nuclei reveals that the reaction mechanism for compound system forma-

tion varies with incident particle energy. The dependence of experimental data of fission

at medium excitation energies shows that at the time of determination of the charge, mass

and excitation energy, the angular momentum of the fissioning nucleus transferred in the

entrance channel of the reaction plays an essential role. Thus, the process of scission and

formation of fragments is influenced not only by the temperature, but also by the total

angular momentum of the fissioning nucleus.

1
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While fission of actinides has been investigated in details using different projectiles

as photons, protons, and heavy-ions in the large energetic scale, the study of pre-actinide

nuclei is limited. In the present work, for the first time, a systematic analysis of heavy-ion-

induced reaction and its fission fragment production is modeled with a developed branch

of Monte Carlo CRISP (acronym for Collaboration Rio-Ilhéus-São Paulo) [5] code with

multimodal fission model to describe heavy-ion-induced fission on 197Au, 181Ta, 208Pb,

and 209Bi targets at intermediate energies. Heavy-ion-induced fission has been studied by

the recently developed Monte Carlo CRISP code extended to include the rotating liquid

drop model.

Compared to CRISP model, the new version of the Liege intra-nuclear cascade model

(INCL++) [6, 7] is an equivalent code which has also been recently redesigned and now

supports heavy-ion projectiles up to mass 18 [8, 9, 10]. CRISP and INCL++ models have

many similarities, such as implementation of multi-collisional approach, Pauli blocking

and conservation of energy and momentum after each event. Besides, the extension of the

INCL++ to heavy-ion induced reactions needed the preparation of projectile and target

nuclei and to take into account the binding of the projectile nucleus which are described

in details in ref. [6], and the method of implementing nucleus-nucleus collision in CRISP

model is also discussed in Chapter 4.

The comparison of CRISP calculations with the experimental mass distribution of the

fragments provides information about the fission process and the mechanism of fragments

formation. Also, the probability of symmetric and asymmetric fission is investigated using

the so-called fissility parameter, defined as Z2/A. Besides, since heavy-ion projectiles

transfer a significant angular momentum to the system, compared to the nucleon-nucleus

collisions, in this study, the effect of imparted angular momentum on the fission barrier

and the fissility has been studied.

It is important to observe that low energy fission is determined not only by the prop-

erties of the bulk of nuclear matter as described by mass models or similar approaches,

but also the shell effects play an important role. As the excitation energy of the fission-

ing nucleus increases, those shell effects decrease [11]. For the problem studied in the

present work, shell effects may appear, for instance, in the formation of asymmetric mass

fission fragments, and the effects are summarized by the parameters related to the mass
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asymmetry. It will be shown here that for the present study, the shell effects are negligible

since the mass fragment distributions are mostly symmetric.

The Monte Carlo method used in CRISP model consists of the simulation of real

situations from the generation of random numbers and allows to simulate very complex

problems that involve the transport of particles through nuclear matter. Nuclear reactions

present a very favorable field of study for the application of Monte Carlo techniques, with

two fundamental approaches to their simulation, intranuclear cascade and evaporation-

fission competition depending mainly on the degrees of freedom involved and the energy

of the reaction.

The first step of reaction is described by an intranuclear cascade where all the nucle-

ons of the nucleus are treated as independent particles, and their movements are consid-

ered in straight lines and each two of them interact with each other when they reach the

relative distances of the order of nuclear force interaction. When this stage ends, the nu-

cleus reaches a state of thermodynamic equilibrium and can be described by macroscopic

variables, such as temperature and density of levels. From the nucleus mass number,

atomic energy, excitation energy and angular momentum, one can obtain a good statisti-

cal description of the system and can obtain expressions for the calculation of its particle

emission and nuclear fission widths.

1.2 Objectives

The main objective of this thesis is to study intermediate nucleus-nucleus reactions using

CRISP model. For this purpose, the following works have been done:

• An improvement in some formulas in Monte Carlo for Evaportion-Fission (MCEF)

stage,

• Study of heavy-ion-induced fusion-fission processes,

• Study of the effects associated with transferred angular momentum at the analysis

of fission induced by the accelerated heavy ions

• Study of different models presented to simulate nucleus-nucleus collisions,
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• Implementation of Rotating Finite Range model (RFRM) into CRISP model

• Convertion of BARFIT Fortran 77 subroutine to C++ language and making it com-

patible with CRISP code

• Insertion of BARFIT into CRISP code to acquire the correct angular-momentum-

dependent fission barrier,

• The results of CRISP are compared with experimental data.



Chapter 2

Nuclear Models

Nuclear models used in CRISP are briefly described here.

2.1 Liquid drop model

One of the most striking facts about nuclei is the “approximate constancy of nuclear den-

sity”: the volume of a nucleus is proportional to the number of A of constituents [12].

The same fact holds for liquids, and one of the early nuclear models introduced by

Bohr and Weizsacker was patterned after liquid drops; “nuclei are considered to be in-

compressible liquid droplets of extremely high density.”

The liquid drop model leads to an understanding of the trend of binding energies with

atomic number, and it also gives a physical picture of fission process. Consider a nucleus

consisting of A nucleons, Z protons, and N neutrons. The total mass of such a nucleus

is somewhat smaller than the sum of the masses of its components because of the binding

energy B which holds the nucleons together.

B

c2
= Z mp +N mn −mnuclear (Z,N). (2.1)

Bethe-Weizsacker relation for binding energy of a nucleus (A,N) is:

B = av A− asA
2
3 − asys

(Z −N)2

A
− ac

Z2

A
1
3

. (2.2)

A typical set of constants (determined by fitting the experimentally observed binding

5
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energies) is:

av = 15.6 MeV, as = 16.8 MeV,

asys = 23.3 MeV, ac = 0.72 MeV.
(2.3)

2.2 Fermi Gas model

The semi-empirical binding-energy relation obtained in the previous section is based on

treating the nucleus like a liquid drop. Such an analogy is an oversimplification, and the

nucleus has many properties that can be explained more simply in terms of independent-

particle behavior rather than in terms of the strong-interaction picture implied by the liquid

drop model.

The most primitive independent-particle model is obtained “if the nucleus is treated

as a degenerate Fermi gas of nucleons”. The nucleons are assumed to move freely, except

for effects of exclusion principle, throughout a sphere of radius R = R0A
1/3, R0 ≈ 1.2

fm. The situation is represented in Fig. 2.1 by two wells, one for neutrons and one for

protons.

Figure 2.1: Nuclear square wells for neutrons and protons. The well parameters are adjusted to
give the observed binding energy B′ [12].

Free neutrons and free protons, far away from the wells, have the same energy, and the

zero levels for the two wells are the same. The two wells, however, have different shapes

and different depths because of the Coulomb energy:

Ec =
3

5

(Z e)2

R
. (2.4)
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The bottom of the proton well is higher than the bottom of the neutron well by an

amount Ec, and the proton potential has a Coulomb barrier. Protons that try to enter the

nucleus from the outside are repelled by the positive charge of the nucleus; they must

either “tunnel” through the barrier or have enough energy to pass over it.

The wells contain a finite number of levels. Each level can be occupied by two nucle-

ons, one with spin up and one with spin down. It is assumed that, under normal conditions,

the nuclear temperature is so low that the nucleons occupy the lowest states available to

them. Such a situation is described by the term degenerate Fermi gas [13].

“Fermi gas model” considers the nucleus as a collection of non-interacting fermions

whose density is fixed somehow from the outside. The purpose of this model is to clar-

ify which of the nuclear properties is due just to the “Pauli exclusion principle” at the

given density, and how much of these properties remain to be explained by the detailed

dynamics of the interacting nucleons.

2.3 Shell model

The liquid drop and the Fermi gas models cannot explain specific properties of excited

nuclear states. Nuclei display particularly stable configurations if Z or N (or both) is one

of the “magic numbers” [12]:

2, 8, 20, 28, 50, 82, 126. (2.5)

Magic numbers say that some kind of shells exist in nuclei. Nuclides with either Z or

N equal to one of the magic numbers 2, 8, 20, 28, 50, 82, 126 are “particularly stable”.

Consider first the harmonic oscillator whose energy levels are shown in Fig. 2.2.

The group of degenerate levels corresponding to one particular value of N is called an

oscillator shell. The degeneracy of each shell is given by equation: 1
2
(N + 1)(N + 2). In

the application to nuclei, each level can be occupied by two nucleons, and consequently

the degeneracy is given by (N + 1)(N + 2).

A nucleon with orbital angular momentum l can be in two states, with total angular

momenta l ± 1
2

(Fig. 2.3). The splitting between states j = l + 1
2

and j = l − 1
2

is caused
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Figure 2.2: Three-dimensional harmonic oscillator and its energy levels [12].

by the interaction between the nucleon spin and its orbital angular momentum. Fig. 2.4

shows the level pattern for nucleons based on “shell model”.

Figure 2.3: Splitting of the states with a given value of l into two states. The spin-orbit interaction
depresses the state with total angular momentum j = l+ 1

2 and raises the one with j = l− 1
2 [12].

2.4 Collective model

Although shell model describes the magic numbers and the properties of many levels very

well, it has a number of failures. The most outstanding one is that many quadrupole mo-

ments are much larger than those predicted by shell model [14]. Such large quadrupole

moments can be explained within the concept of a shell model if the closed-shell core is

assumed to be deformed [15]. Indeed, if the core is ellipsoidal, it acquires a quadrupole

moment proportional to deformation. Quadrupole moment measures the deviation of the

shape of the nuclear charge distribution from a sphere. The existence of a quadrupole mo-

ment implies non-spherical (deformed) nuclei. The quadrupole moments far away from
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Figure 2.4: Approximate level pattern for nucleons. The number of nucleons in each level and the
cumulative totals are shown. Neutrons and protons have essentially the same level pattern up to
50. From then on, some deviations occure [12].

closed shells are so large that they cannot be due to a single particle and thus cannot be

explained by the naive shell model [12]. A deformation of core is evidence for many-body

effects, and collective modes of excitation are possible. From 1950, Bohr and Mottelson

started a systematic study of collective motions in nuclei; over the years, they and their

collaborators have improved the treatment so that today the model combines the desirable

features of shell and collective models and is called the unified nuclear model [16].

Closed shell nuclei are spherically symmetric and not deformed. The primary col-

lective motions of such nuclei are surface oscillations, like the surface waves on a liquid

drop. For small oscillations, harmonic restoring forces are assumed, and equally spaced
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vibrational levels result. Far away from closed shells, the nucleons outside the core polar-

ize the core, and the nucleus can acquire a permanent deformation. The entire deformed

nucleus can rotate, and this type of collective excitation leads to the appearance of rota-

tional bands. The deformed nucleus acts as a non-spherical potential for the much more

rapid single-particle motion; the energy levels of a single particle in such a potential can

be investigated, and the result is the Nilsson model [17].

2.5 Nilsson model

The nucleus can be treated by a shell model. Nuclei can also be considered as collective

systems that can rotate. Is there a way to weld the two models into one? Yes, the unified

model called Nilsson model. Nilsson model considers a deformed nucleus as consisting

of independent particles moving in a deformed well.

Since many nuclei possess large permanent deformations, nucleons do not always

move in a spherical potential. A well-known generalization is due to Nilsson, who wrote:

Vdef =
1

2
m [ω2

⊥ (x
2
1 + x22) + ω2

3 x
2
3 ] + C l · s+D l2. (2.6)

This potential describes an axially symmetric situation - the one that applies to most

deformed nuclei. The coordinates x1, x2, and x3 are fixed in the nucleus: x3 lies along the

symmetry axis, 3. C determines the strength of the spin-orbit interaction. The term D l2

corrects the radial dependence of the potential: the oscillator potential differs markedly

from the realistic potential near the nuclear surface, as shown in Fig. 2.5.

States with large orbital angular momentum are most sensitive to this difference, and

the term D l2 , with D < 0, lowers the energy of these states. Nuclear matter is nearly

incompressible: For a given form of the deformation, the coefficients ω⊥ and ω3 are thus

related. For a pure quadrupole deformation, the relation between the coefficients ω⊥ and

ω3 is expressed in terms of a deformation parameter ε:

ω3 = ω0(1−
2

3
ε), ω⊥ = ω0(1 +

1

3
ε). (2.7)
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Figure 2.5: The more realistic potential resembling the actual nuclear density distribution is re-
placed by a harmonic oscillator potential or a square well [12].

For ε2 � 1, ω2 and ω3 satisfy:

ω2
⊥ω3 = ω3

0, (2.8)

and this relation expresses the constancy of the nuclear volume on deformation. The

parameter ε is connected to the deformation parameter δ (δ = ∆R
R
) by:

δ = ε (1 +
1

2
ε). (2.9)

The intrinsic quadrupole moment can be written as:

Q =
4

3
Z 〈r2〉 ε (1 + 1

2
ε). (2.10)

Eqs. 2.6 and 2.7 show that Vdef is determined by four parameters, ω0, C,D, ε. Only

ε depends strongly on the nuclear shape. For a given nuclide, ε is found by measuring Q

and 〈r2〉 . The first three parameters, ω0, C, and D, are independent of the nuclear shape

for ε2 ≤ 1, and they are determined from the spectra and radii of spherical nuclei, where

ε = 0. Approximate values of these parameters are:

~ω0 ≈ 41A−1/3 (MeV ), C ≈ −0.1 ~ω0, D ≈ −0.02 ~ω0. (2.11)
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In the Nilsson model, as in the spherical single-particle model, it is assumed that all

nucleons except the last odd one are paired and do not contribute to the nuclear moments.

To find the wave function and the energy of the last nucleon, the Schrodinger equation

with the potential Vdef is solved numerically with the help of a computer. A typical

result for small A is shown in Fig. 2.6. The deformation lifts the degeneracy. State p 3
2

splits into two and state d 5
2

into three levels. A nucleon with total angular momentum

j in the spherical case gives rise to 1
2
(2j + 1) different energy levels, with K values

j, j − 1, j − 2, ..., 1
2
.

Figure 2.6: Level diagram in the Nilsson model. Each state can accept two nucleons [12].
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2.6 Myers-Swiatecki model

The central idea in Myers-Swiatecki model is that the energy of a nucleus is made up

of a liquid-drop part and of a shell correction, the shell correction disappearing for a

sufficiently large deformation of the nucleus [18].

From Fig. 2.7, we see that if the shell correction for the sphere is negative, as is the

case for a magic nucleus, there results a spherical equilibrium shape with unusual stability.

On the other hand, if the shell correction is sufficiently positive (as in a region away from

magic numbers), there results automatically a deformed nucleus. The amplitude of the

bump goes up and down as one moves across the periodic table in a way indicated in Fig.

2.7. This is the result of assuming the single-particle levels in the spherical potential to

be bunched into bands corresponding to the magic numbers. The shape of the bump was

assumed to be a Gaussian function of deformation, and is supposed to represent the way

in which the bunching disappears as the nucleus is distorted.

Finally, Myers and Swiatecki found the shell damping fiunction is more like the func-

tion in Fig. 2.8 than a Gaussian. The difference is that there is one wiggle (or more)

following the central bump.

Hence, a function is invented that is like a Gaussian bump in being rapidly damped,

but possesses one extra wiggle. The function is the second derivative of a Gaussian:

e−θ
2

is replaced by − 1

2
[ e−θ

2

]
′′
= (1− 2 θ2) e−θ

2

, (2.12)

where θ is a deformation variable, a measure of the eccentricity of the spheroidal nuclear

shape.

For a deformed nucleus, the deformation energy now looks like Fig. 2.9.a and the

mass sags below the liquid-drop value, which is what we want.

A semi-empirical theory of nuclear masses and deformations is presented. The po-

tential energy of a nucleus, considered as a function of N,Z and the nuclear shape, is

assumed to be given by the liquid-drop model, modified by a shell correction. The shell

correction is a simple function of N and Z and is supposed to disappear as the nucleus is

distorted away from the spherical shape. The resulting semi-empirical expression for the

nuclear deformation energy has seven adjustable parameters, four in the liquid-drop part
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Figure 2.7: The top part of the figure shows schematically how a negative shell correction leads
to a spherical shape with special stability, whereas a positive shell correction leads to a deformed
equilibrium shape. In the bottom left-hand part, the amplitude of the shell-correction bump along
the valley of stability is shown. When the amplitude exceeds a certain critical value, indicated by
the dashed line, deformed equilibrium shapes appear. The shell correction is a consequence of
the bunching of levels into bands corresponding to magic numbers, as shown schematically on the
right [18].

Figure 2.8: This is a plot of the revised shell damping function which replaces the Gaussian
function in the original mass formula. Its equation is (1 − 2 θ2) e−θ

2
, where θ is a deformation

variable [18].

and three in the shell correction. Myers-Swiatecki Revised Mass Formula is [19]:

M =M0 + E θ2 − F θ3Cos (3 γ) + S (1− 2 θ2) e−θ
2

, (2.13)
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Figure 2.9: The deformation energy is illustrated when the new shell correction is included. In (a)
shell correction for the sphere is positive, and this leads to a deformed equilibrium shape whose
mass sags below the liquid drop value. In (b) the case of a magic nucleus is illustrated, where a
secondary deformed equilibrium shape is predicted [18].

where θ is the deformation magnitude and:

M0 = MnN +MH Z − c1A+ c2A
2/3 + c3

Z2

A1/3 − c4 Z2

A
+ δ,

E = (2
5
c2A

2/3 − 1
5
c3

Z2

A1/3 )α
2
0 =

2
5
c2A

2/3 (1− x)α2
0,

F = 4
105

(c2A
2/3 + c3

Z2

A
)α3

0 =
4

105
c2A

2/3 (1 + 2 x)α3
0,

c1 = a1 [ 1− κ (N−ZA )2 ],

c2 = a2[ 1− κ(N−ZA )2 ],

α2
0 = 5 ( a

r0
)A−

2
3 .

(2.14)

M0 is the mass of an undistorted liquid drop, E a coefficient specifying the stiffness

of the liquid drop against small spheroidal distortions (and hence related to the fissility

parameter x, defined as the Coulomb energy term c3
Z2

A
1
3

divided by twice the surface

energy c2A
2
3 ). The coefficient F specifies the cubic term in the liquid-drop formula

(through which also the γ-dependence enters).
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The parameters for Myers-Swiatecki revised mass formula are:

a1 = 15.4941 MeV, a2 = 17.9439 MeV,

c3 = 0.7053 MeV (r0 = 1.2249 fm), c4 = 1.21129 MeV,

κ = 1.7826, C = 5.8 MeV,

c = 0.325, a
r0

= 0.444.

(2.15)

2.7 Brosa model

In Brosa model, two models of nuclear exit channel reactions are examined: random

neck rupture and multichannel fission. Fission was pictured as a sequence of equilibrium

states: the ground or compound state was deemed to be in equilibrium. The same prop-

erty was attributed to the nucleus at its saddle point. And even at the moment of most

violent disintegration, equilibrium was invoked. However, nuclear fission is rather an

evolution by instabilities. The word “scission” expresses violent motion somewhat better

than “fission”. Actually “scission” is intended to denote the instant of rupture [20].

There are several exit channels in spontaneous fission or low-energy induced fission.

Leaving the compound state, the nucleus may choose between various paths to disinte-

gration. The term “channel” suggests a guided evolution, and this is exactly what the new

channels are for. Instead of one fission barrier - maybe doubly humped - we see that every

nuclide has a system of them. Also at rupture, instead of one nuclear shape, several of

them can be distinguished. Since there is, in most cases, only one way out of the com-

pound state, fluctuations disregarded, the fission channels must fork. The new objects in

multichannel fission are thus bifurcation points.

The main item in random neck rupture is the prescission shape. It looks like two heads

connected by a thick neck. Neck rupture means the neck snaps when the nucleus stretches

beyond the prescission shape. Random neck rupture means it is not decided where the

neck breaks. Knowing random neck rupture, one may compute the most important exit

channel observables if the prescission shape is given. However, random neck rupture

does not itself deliver the prescission shape. Fortunately, with the fission channel calcu-

lations we can find the desired shape (in general several of them). Hence, multichannel

calculations and random neck rupture supplement each other.
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Representations of nuclear shapes are suitable for fission if the following conditions

are satisfied:

(i) A shape representation must have three essential degrees of freedom: stretching of

the nucleus, thinning of the neck and deformation to asymmetry.

(ii) A single sphere and two fragments should be among the allowed configurations.

(iii) The flatness of the neck must be an independent variable.

2.7.1 Shape parameters

Suitable set of shape parameters with obvious geometric meanings are (see Fig. 2.10):

l, r, z, c, s (2.16)

Figure 2.10: Visualization of the degrees of freedom l, r, z, c and s. The surface depicted is a
special Lawrencian shape displayed in the coordinates ρ and ζ [20].

The semilength l measures the elongation of the nucleus; we take the semilength in-

stead of the total extension since we want l to coincide with the radius rcn when the shape

is a sphere. r is the radius of the neck. As long as there is no neck, r indicates the size of

the shape’s belly; again, for the spherical “compound nucleus” r agrees with rcn. z gives

the position on the neck where the neck is thinnest or where the shape is thickest if the

neck does not yet exist. c is the curvature of the neck, with positive values if a constric-

tion exists and negative ones in the opposite case. c can be visualized as the inverse of the
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curvature radius. To be precise, we define c as r2cn
rcur

. This is not more than the multipli-

cation with a constant and has the advantage of giving c the same dimension as all these

parameters, namely length. Finally, s describes the position of the centroid. Hence, z and

s are both parameters of asymmetry, and they are both measured relative to the geometric

center of the shape.

The parameters l, r, z, c and s have the advantage of being defined for all shapes. The

shape function has the form:

ρ = ρ(ζ) ≡ ρshape(ζ : l, r, z, c, s) (2.17)

The angle φ known from cylindrical coordinates ρ, φ, ζ does not occur.

2.7.2 A real flat neck representation (prescission shape)

A representation which guarantees a “globally flat neck” is:

ρ(ζ) =


(r21 − ζ2)

1
2 ;−r1 ≤ ζ ≤ ζ1

r + a2 c [ cosh ( ζ−z+l−r1
a

)− 1] ; ζ1 ≤ ζ ≤ ζ2

(r22 − [ 2 l − r1 − r2 − ζ ]2)
1
2 ; ζ2 ≤ ζ ≤ 2l − r1

(2.18)

This class of shapes is defined for −r1 ≤ ζ ≤ 2l − r1. An example is depicted in

Fig. 2.11. Several of the parameters met in Eq. 2.18 are familiar: the semilength l,

the neck radius r, the position z of the “dent” on the neck, and the neck curvature c. A

new parameter is the extension a of the neck. With a large a, one may keep all higher

derivatives small and hence provide for a globally flat neck. The radii r1 and r2 of the

spherical heads are also new, as are the transitional points ζ1 and ζ2 where the three parts

of Eq. 2.18 join.

2.7.3 The embedded spheroids

When a nucleus scissions, it decays into fragments on which the strong surface tension

quickly smooths all the corners and edges. Therefore, we model the newborn fragments

as two spheroids in contact (see also Fig. 2.11).
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Figure 2.11: The flat-neck representation (Eq. 2.18), upper part; and the embedded spheroids
(Eqs. 2.19 and 2.20), lower part. Note the different origin of the coordinates ρ and ζ compared to
that in Fig. 2.10 [20].

Their major axes a1 and a2 are fixed by the total length 2 l and the actual rupture point

zr:

a1 =
1

2
(r1 + zr), a2 = l − 1

2
(r1 + zr). (2.19)

The minor axes b1 and b2 follow from the volume conservation:

b21 =
3

4a1

∫ zr

−r1
ρ2dζ, b22 =

3

4a2

∫ 2l−r1

zr

ρ2dζ. (2.20)

These formulas are valid if the coordinate origin is as shown in Fig. 2.11. The embed-

ded spheroids are used to estimate the repulsion between the fragments and the energies

of deformation that the fragments have immediately after formation.

2.7.4 Fundamentals of random neck rupture

Quantities such as mass yield Y (A), neutron multiplicity ν(A) and total kinetic energy

TKE(A) are the slaves of the prescission shape. The total kinetic energy TKE is an

inverse measure of the prescission shape’s length. High kinetic energies indicate a short

prescission shape, low TKEs a long one. The idea behind this is that the nucleus stretches

slowly until rupture. The prescission shape is the “last halt”. Then the rupture takes place,

and Coulomb repulsion accelerates the fragments without any hindrance.

Almost as simple is the relation of the prescission shape to the variance σ2
A of the

mass distribution Y (A). It too measures the prescission shape’s length (see Figs. 2.12.a

and 2.12.b). More precisely: it measures the length of the neck. Random neck rupture
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produces different fragments by chopping the neck at different positions. The longer the

neck, the more possibilities to chop it and the larger the variety of fragments.

Figure 2.12: Some important correlations that a prescission shape mediates. Shown are mass
yields Y (dotted lines, right-hand-side scales) and neutron multiplicities ν (solid lines, left-hand-
side scales) as functions of fragment mass number A. Part (a) shows a supershort prescission shape
and its products, part (b) the symmetric, part (c) the standard and part (d) the superasymmetrical
prescission shape [20].

The average mass number A of Y (A) expresses the asymmetry of the prescission

shape. We expect the most frequent rupture at the place where the neck is thinnest. When

the prescission shape is asymmetric, this place is shifted away from the center. Conse-

quently, mostly one light and one heavy fragment are produced, and a double-humped

yield Y (A) is obtained, as shown in Fig. 2.12.d.

To understand the neutron multiplicities ν(A), we first state the relations as rules: 1)

a large average neutron multiplicity ν is caused by a long prescission shape (see Figs.

2.12.a and 2.12.b); 2) a symmetric prescission shape gives rise to a multiplicity ν(A),

which increases steadily with the fragment mass number A, (Fig. 2.12.b), whereas an

asymmetric prescission shape causes a sawtooth, (Fig. 2.12.d). These rules are based on

the embedded spheroids to model the newborn fragments. Their deformations turn into

an excitation, and this excitation is finally released by evaporation of neutrons.
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Since long prescission shapes make fragments with large deformations, it is now clear

that long prescission shapes give rise to more neutrons, (see rule 1 above). The meaning

of rule 2 is detailed in Fig. 2.13: in an asymmetric prescission shape fragments are

embedded with about equal masses but very different deformations. They generate the

sawtooth.

Figure 2.13: Random neck rupture and the sawtooth shape of neutron multiplicity ν(A) [20].

As can be seen in Fig. 2.13: In the central part, (b), the prescission shape valid for

the spontaneous fission of 252Cf is depicted. More precisely, it is approximately the

standard prescission shape. Some embedded spheroids are inserted. They are marked

by numbers, 2 and 2′, for example. The 2 and 2′ fragments are produced with a large

probability because the neck of the prescission shape is thinnest at the 2 − 2′ position.

Therefore, in part (a), arrows 2 and 2′ point at the maxima of the yield Y (A). Rupture at

3 − 3′, in contrast, rarely happens due to the increased thickness of the neck. It is now

most important to notice that the split at 3−3′ gives rise to fragments that are about equal

by mass but very different by deformation. As the neutron multiplicity ν(A) increases

with deformation, the data shown in part (c) become understandable. Lines represent the

results of random neck rupture while experimental material is displayed by symbols.
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2.7.4.1 Scission as a sequence of instabilities

Ordinary fission needs at least three instabilities for its evolution:

(i) passing the barriers

Surmounting the barrier(s) is the element of fission, which was considered from

1939 on. Even today it is sometimes considered as the explanation of fission, though

it is only the first step of a complicated walk.

(ii) the shift instability

Shortly behind the last barrier, the neck starts to appear. At first it still has a bump in

the middle. Under further stretching the neck becomes perfectly flat, and after this,

it will thin in its central part. Shift instability arises, because for fission the nucleus

has to change from a spheroidal to a necked-in configuration.

(iii) the capillarity (Rayleigh) instability

Finally, the capillarity or Rayleigh instability ramps. This is the time of constriction.

The shift is stopped or, in other words, the asymmetry is frozen, and the nucleus

disrupts. Capillarity instability accomplishes what the shift instability prepares. It

takes the dent where it is and deepens it until two fragments appear.

2.7.5 Standard, superlong and supershort

There are three different prescission shapes: Standard, superlong and supershort. Stan-

dard is slightly asymmetric and of “normal” length, while superlong and supershort are

both almost symmetrical and appreciably longer or shorter than standard. These differ-

ences, being differences in mean length, are usually somewhat larger than those caused by

the fluctuations. Hence we expect separable components in the exit-channel observables.

Potential-energy calculations give us the prescission shapes. From prescission shapes,

individual yields Yc(A), total kinetic energies TKEc(A) and neutron multiplicities νc(A)

are obtained. Subscript c labels the various channels. When we wish to compare with
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measurements, we form the superpositions:

Y (A) =
∑

c pcYc(A), (pc : channel probability)

TKE(A) =
∑

c pc TKEc(A)Yc(A)/Y (A),

ν(A) =
∑

c pc νc(A)Yc(A)/Y (A).

(2.21)

where channel probabilities pc indicate how much channel c is frequented. It is normalized

as
∑

c pc = 1. All functions Yc(A), TKEc(A) and νc(A) are output of procedures of

random neck rupture. For information reduction, one may write without loss of accuracy:

Yc(A) =
1

(2πσ2
A,c)

1/2
[ exp (−(A− Ac)2

2σ2
A,c

) + exp (−(A− Acn + Ac)
2

2σ2
A,c

)], (2.22)

TKEc(A) =
A (Acn − A)

Ac (Acn − Ac)− σ2
A,c

TKEc. (2.23)

so that two functions are defined by four numbers: the average mass Ac, the mass

variance σ2
A,c, the average total kinetic energy TKEc, and the system size Acn given by

AL + AH . Random neck rupture delivers these numbers as byproducts.

In Fig. 2.14, channel probabilities pc for the three main fission channels are depicted.

The probability of the standard channel is shown by the full lines, the dashed line is related

to the superlong channel and the supershort channel is distinguished by the dots.

Figure 2.14: Channel probabilities pc as it varies with the size of fissioning system. This is a
schematic picture. We have no precise method to compute the channel weights pc [20].

This diagram tells us that for systems smaller than Acn ≈ 250, the supershort channel
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disappears and the respective probability pss is zero. For systems larger than Acn ≈ 260,

the superlong channel breaks up. The standard channel, in contrast, exists everywhere.

The drastic change of the observables is caused by drastic variation of the population

probabilities pc. This variation can be related to the relative height of barriers.

For systems smaller thanAcn ≈ 250, where we have a competition between superlong

and standard channels, the highest barriers of the channels lie behind the bifurcation, and

hence the channels have separate barriers. For systems larger than Acn ≈ 260, where we

have a competition between supershort and standard channels, there is only one highest

barrier for both channels. It is located before the bifurcation. Behind the bifurcation,

lower secondary barriers may be met. That explains why superlong and standard channels

can displace each other, whereas supershort and standard channels must coexist.

2.7.5.1 Cayley tree of nuclear fission

Fig. 2.15 shows the Cayley tree of nuclear fission. Downward motion means an increase

of semilength l, while motion to the right refers to the growth of asymmetry z. We see

that the standard channel is slightly asymmetric, while superlong and supershort chan-

nels are almost symmetric. There is a splitting of the standard channel into standard I,

standard II and perhaps even standard III (ordered with respect to asymmetry). In Fig.

2.15, supershort bifurcation, superlong bifurcation and second standard barrier are shown

to be sequential. As can be seen from the figure, the standard II prescission shape is

longer than that of the standard I shape. And the biggest shortcoming is the position of

the superlong barrier, which has much less elongation than this figure suggests. At the

bifurcation points, the nucleus might decide to enter the supershort or superlong channels

and to rupture rather at the supershort or the superlong prescission shapes.
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Figure 2.15: Cayley tree of nuclear fission. Emphasized are distinguished points of the potential
energy as minima ◦, barriers ×, bifurcation points •, prescission shapes + and their connections
(heavy lines) [20].



Chapter 3

CRISP Model

CRISP model is a simulation code which describes complex characteristics of nuclear

reactions using the Monte Carlo techniques [5]. This code has been developed for more

than three decades [5, 21, 22, 23, 24, 25] and has been used to study very different nuclear

reactions with success. A lot of good agreements are obtained between experiment and

CRISP results for photon-, proton- and electron-induced fission reactions [26, 27, 28,

29, 30, 31, 32, 33, 34, 35, 36]. Also there are some applications of CRISP, especially

for nuclear reactions, where we apply the model with success to develop new concepts

of nuclear reactors [37, 38, 39, 40, 41]. Recently, the mechanism of heavy-ion-induced

fission has been also added to CRISP model.

At intermediate and high energies, the nuclear reactions can be considered as a two-

step process, namely, the Monte Carlo Multi-Collisional (MCMC) intra-nuclear cascade

and the Monte Carlo Evaporation-Fission (MCEF) competition mechanism over the ex-

cited nuclei resulted from the cascade process.

3.1 MCMC model

At the intra-nuclear cascade step, all the processes from the first interaction of projectile

with target up to the compound nucleus thermalization are implemented. Since the CRISP

model applies the multi-collisional approach in this step, all the nucleons of the target

nucleus are involved in the process leading to a more realistic implementation of nuclear

reaction mechanisms such as Pauli exclusion principle, nuclear density fluctuations and

26
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pre-equilibrium emissions [5, 28, 31, 37].

The fast intra-nuclear cascade transfers most of the projectile energy to a few nucleons

inside the target nucleus. The implemented time-ordered sequence of collisions considers

the probability of interaction with all particles, based on their respective cross sections.

Multi-collisional approach makes it possible to verify the full nuclear dynamics such as

nuclear density fluctuations and Pauli exclusion principle in a square-well nuclear model

[5, 31]. Without Pauli blocking mechanism, stopping intranuclear cascade is not possi-

ble. During the cascade, some particles can escape from the nucleus. When the kinetic

energy of each particle inside the nucleus is below its separation energy, the intra-nuclear

cascade finishes [28]. At this point, the nucleus thermalization process begins, in which

the excitation energy is uniformly distributed among all its nucleons.

3.2 MCEF model

In the second step, the evaporation-fission competition is determined by their respective

width ratios using the Weisskopf mechanism [42] for evaporation of neutrons, protons and

α particles [23, 27, 29] and Bohr-Wheeler model [43] for fission with the fission width

calculated according to Vandenbosch and Huizenga [2], and with the help of Pearson

nuclear mass formula [44]. The evaporation widths are calculated relative to the neutron

width and are recently modified as:

Γp
Γn
'
(Ep
En

)(an
ap

)
exp

{
2
[
(apEp)

1
2 − (anEn)

1
2

]}
, (3.1)

and
Γα
Γn
'
(2Eα
En

)(an
aα

)
exp

{
2
[
(aαEα)

1
2 − (anEn)

1
2

]}
, (3.2)

for proton and alpha particle emissions, respectively. And the width ratio for fission

process is:
Γf
Γn
' Kf exp

{
2
[
(afEf )

1
2 − (anEn)

1
2

]}
, (3.3)

where

Kf = K0 an

[
2 (af Ef )

1/2 − 1
]

(
4A2/3 af En

) , (3.4)
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Table 3.1: Values of the relevant parameters in Dostrovsky’s empirical formulas.

Parameter Value

a1 18.81

a2 1.30

a3 20.07

a4 3.84

a5 18.68

a6 2.02

with K0 = 14.39 MeV. The level density parameters an, ap and aα for neutrons, protons

and alpha particles are also calculated by Dostrovsky’s empirical formulas [45]:

an =
A

a1

(
1− a2

A− 2Z

A2

)2
,

ap =
A

a3

(
1− a4

A− 2Z

A2

)2
,

aα =
A

a5

(
1− a6

A

)2
,

(3.5)

where the relevant parameters a1 to a6 for evaporation process are shown in Table 3.1; and

af = rf × an where af is the fission level density parameter with rf being an adjustable

parameter.

The energies Ei are given by:

En = E −Bn,

Ep = E −Bp − Vp,

Eα = E −Bα − Vα,

Ef = E −Bf ,

(3.6)

where E is the excitation energy of the compound nucleus, and Bn, Bp and Bα are the

separation energies for neutrons, protons and α particles, respectively, and Bf is the fis-
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sion barrier. The Coulomb potentials [46] for proton and alpha particle are, respectively:

Vp = C
Kp (Z − 1) e2

r0 (A− 1)1/3 +Rp

and Vα = C
2Kα (Z − 2) e2

r0 (A− 4)1/3 +Rα

, (3.7)

where the Coulomb barrier penetrabilities for protons and alpha particles are Kp = 0.70

and Kα = 0.83, respectively. Also, the proton radius is Rp = 1.14 fm and the alpha

particle radius is Rα = 2.16 fm. C is the charged-particle Coulomb barrier correction due

to the nuclear temperature [46]

C = 1− E

B
, (3.8)

with B being the nuclear binding energy.

After the particle emission at each step i of the evaporation process, the excitation

energy of the compound nucleus is recalculated by:

Ei+1 = Ei −Bi − Vi − εi, (3.9)

where ε is the kinetic energy of the emitted particles in the evaporation-fission stage. The

kinetic energies are calculated by CRISP via Monte Carlo simulation and according to the

Weisskopf distribution. The nuclear fission probability, Fi, is also defined as:

Fi =
(
Γf
Γn
)i

1 + (
Γf
Γn
)i + ( Γp

Γn
)i + (Γα

Γn
)i
. (3.10)

MCEF process continues until the compound nucleus fissions or a heavy residue (spalla-

tion product) remains at the end of evaporation phase (since the nucleus excitation energy

is not enough to evaporate any other particle). At this point, we can calculate the nuclear

fissility [23]:

W =
∑
i

[
i−1∏
j=0

(1− Fj)

]
Fi. (3.11)

In the evaporation-fission stage, no Q-value is calculated because the model does not

need it to calculate the probabilities of emission and fission. For fission, it is necessary to

know only the total available energy after fission, i.e., final energy after fission = current
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excitation energy - fission barrier.

Both at the evaporation-fission competition stage and at the evaporation of the fission

fragments (after the fission happens, the primary fragments may evaporate some nucleons

to reach the final fission products), the mass values of nuclides are calculated using the

semi-empirical mass formula of Pearson [44]:

M (A,Z) = Z mp+N mn+av A+asf A
2/3+

3 e2

5 r0

Z2

A1/3
+(asym+assA

−1/3)
(N − Z)2

A
,

(3.12)

where e is the elementary charge, av = −15.65 MeV, asf = 17.63 MeV, asym = 27.72

MeV and ass = −25.60 MeV.

3.3 Multi-modal fission

In CRISP, if the nucleus undergoes fission, fission-fragment mass distributions are de-

scribed by the multimodal random neck rupture (MM-RNR) model [20]. In this model,

the prescission shape resembles two heads connected by a thick neck. The nucleus de-

forms and stretches after the prescission shape. What follows is the rupture of the system

at some point along the narrowing. Using MM-RNR model, the fission process contin-

ues along several fission channels created by the collective effects of fissioning nucleus

deformation in the liquid-drop model and single-particle effects through shell-model cor-

rections which create valleys on the potential energy surface of the fissioning nucleus,

each corresponding to one particular fission mode [20, 47, 48].

MM-RNR model combines the picture of multimodal fission with the so-called ran-

dom neck-rupture phenomenon at scission and also explains the characteristic fission frag-

ment properties successfully. In this model, the fission process is considered to proceed

along several deformation channels, and fragment mass distributions are finally calcu-

lated by the uncorrelated sum of these individual fission modes, namely, symmetric (S)

and asymmetric (AS) modes. Each mode is described by a Gaussian function with the

position centered on the most probable mass fragment. The symmetric mode (S) requires

only one Gaussian, while the asymmetric (AS) mode is characterized by two Gaussians,

one for the heavy fragment and the other for the light one. The positions of the Gaussians,
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dispersion and normalization constants are determined through comparison with the ex-

perimental mass distribution. In the symmetric mode, at the saddle-point, the fissioning

nucleus (with mass Af ) has an extremely deformed shape with a long neck connecting

the two fragments with the most probable masses about Af/2. In the asymmetric mode,

the most probable values for heavy and light fragment masses (AH and AL) are close

to one of the shell numbers, due to the single-particle and structure effects in the fission

fragments. Fission cross section as a function of mass number (σA) is obtained by the

sum of three Gaussian functions corresponding to the symmetric and asymmetric modes

[49, 50, 51]:

σA = 1√
2π

[
KAS
ΓAS

exp

(
− (A−AS−DAS)2

2Γ 2
AS

)
+

K′
AS

Γ
′
AS

exp

(
− (A−AS+DAS)2

2Γ
′2
AS

)
+KS

ΓS
exp

(
− (A−AS)2

2Γ 2
S

)]
,

(3.13)

where A is the fragment mass number; the positions of the most probable mass for heavy

and light fragments are determined as AH = AS + DAS and AL = AS − DAS , respec-

tively, where AS is the mean mass number which determines the center of symmetric

mode’s Gaussian functions; Ki and Γi are the intensity and dispersion parameters of each

Gaussian function; and the shift DAS determines the center of asymmetric mode’s Gaus-

sian functions. The parameter DAS in Eq. (3.13) depends on the nuclear shell structure

and on the nuclear excitation energy. In the present work, DAS is used as a free parameter

to adjust the calculated distribution to the experimental data.

The Monte Carlo CRISP code follows the history of the entire process from the first

interaction of projectile with target up to the fission and spallation, considering all stages

in between. Since the fission fragments are unstable nuclei, they are allowed to evaporate

by the Weisskopf statistical evaporation model. At the end, the final fission and spallation

products shall be compared to the experimental data. Therefore, contrary to experiment,

using CRISP model, we can calculate two types of fissioning nuclei: before (Af ) and after

(Aff ) post-fission evaporation, where AH + AL = Aff and AS = Aff/2.

The fragment charge distribution can also be estimated by considering the Gaussian
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Table 3.2: Parameters used to determine the calculated charge distribution.

Parameter Value

µ1 2.53

µ2 0.395

γ1 0.92

γ2 0.003

functions in the form [52, 53]:

σ(A,Z) =
σ(A)

ΓZ π1/2
exp

(
− (Z − Zp)2

Γ 2
Z

)
, (3.14)

where σ(A,Z) is the independent cross section of the nuclide (Z, A), σ(A) is the total

isobaric cross section of the mass chain A, Zp is the most-probable charge for that isobar,

and ΓZ is the width of the charge distribution. Parameters of charge distribution determine

the position of residue nucleus concerning stable isotopes with maximum yield in isobaric

chain. The parameters Zp and ΓZ are the linear functions of the mass numbers of fission

fragments:

Zp = µ1 + µ2A, (3.15)

and

ΓZ = γ1 + γ2A, (3.16)

where the parameter values for µ1, µ2, γ1 and γ2 are shown in Table 3.2. The CRISP code

has adapted to consider the multimodal model by the use of Eqs. (3.13) and (3.14).

Once the fragments (A1, Z1) and (A2, Z2) are determined, the excitation energy E is

distributed as the excitation energy of the fragments depending on their respective mass

numbers. To calculate the kinetic energy of each fragment, we start from the conservation

of energy and linear momentum:

T = E +Q = E +M (A,Z)−m1 (A1, Z1)−m2 (A2, Z2), (3.17)
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where M is the mass of the fissioning nucleus, and m1 and m2 are the masses of fission

fragments, all calculated by the Pearson semi-empirical mass formula. The Q-value is

only implemented here in the calculation of the kinetic energy of fission fragments.

The kinetic energy of fission fragments is calculated by:

T = T1 + T2 =
p21

2m1

+
p22

2m2

, (3.18)

where p1 and p2 are the linear momenta of the fragments (p1 = p2). Consequently:

T = T1 + T2 =
p21
2

( 1

m1

+
1

m2

)
=
p21
2

(m1 +m2

m1m2

)
. (3.19)

Therefore, the kinetic energy of each fragment is:

T1 =
m2

m1 +m2

T and T2 =
m1

m1 +m2

T. (3.20)

CRISP model successfully describes nuclear reactions triggered by probes such as

photons, protons and electrons [27, 21, 22, 23, 24, 25, 37, 35], and recently, has been

extended to consider heavy ions as the incident projectiles. The mechanism of heavy-ion

induced nuclear reactions has been covered in a new branch of the Monte Carlo CRISP

code in the framework of the rotating liquid drop model.

In the intranuclear cascade stage, we are restricted to the collision of spherical-spherical

nuclei. In the evaporation-fission phase, we use the statistical models of Weisskopf and

Bohr-Wheeler. They allow the calculation of the probability of emission of protons, neu-

trons, alpha particles or nuclear fission as a function of E, A, Z and angular momentum L

(for nucleus-nucleus collisions). In the equations entered in the latter phase (evaporation-

fission), CRISP does not consider any specific form of nuclei, it is only necessary to use

the values of E, A, Z and L.
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3.4 Additions and improvements of CRISP model

In this section, I explain the improvement I have done in CRISP model, in the evaporation

width ratios formulas.

3.4.1 Correction in MCEF (evaporation width ratios)

Based on Weisskopf model, the relative probability of emission of two particles i and j is

obtained by:

Γi
Γj

=
γi
γj

(Ei
Ej

) aj
ai
exp

{
2
[
(aiEi)

1
2 − (aj Ej)

1
2

]}
, (3.21)

where ai and aj are the level density parameters; and γi is calculated by:

γi =
g m

π2 ~3
, (3.22)

where g is the number of states for the spin of particle. g = 2 for neutrons and protons

and g = 1 for α-particles. And m is mass of particle i. mp ≈ mn and mα ≈ 4mn. Hence:

γp
γn

=
gp
gn
× mp

mn

=
2

2
× 1

1
= 1, (3.23)

γα
γn

=
gα
gn
× mα

mn

=
1

2
× 4

1
= 2. (3.24)

Consequently, the ratio for proton emission is:

Γp
Γn

=
(1Ep
En

)(an
ap

)
exp

{
2
[
(apEp)

1
2 − (anEn)

1
2

]}
, (3.25)

and for α-particle emission is:

Γα
Γn

=
(2Eα
En

)(an
aα

)
exp

{
2
[
(aαEα)

1
2 − (anEn)

1
2

]}
. (3.26)
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3.4.1.1 Level density parameters in the old formulas

The primary level density parameters used in CRISP were based on the following equa-

tions [25]. Level density parameter for neutron emission was:

an = (0.134A− 1.21)× 10−4A2 MeV −1. (3.27)

And level density parameter for proton and α-particle emissions were:

aj = rj an, (3.28)

where rp = rα = 1, hence: ap = aα = an. And we see that:

ap = aα = an =⇒ an
ap

=
an
aα

= 1. (3.29)

Consequently, the ratios become:

Γp
Γn

=
(Ep
En

)
exp

{
2
[
(apEp)

1
2 − (anEn)

1
2

]}
, (3.30)

Γα
Γn

=
(2Eα
En

)
exp

{
2
[
(aαEα)

1
2 − (anEn)

1
2

]}
. (3.31)

3.4.1.2 Level density parameters in the new formulas

In the last few years, Dostrovsky’s empirical formulas [45] are applied in CRISP model

to calculate level density parameters:

an = A
a1
(1− a2 A−2Z

A2 )2,

ap =
A
a3
(1 + a4

A−2Z
A2 )2,

aα = A
a5
(1− a6

A
)2,

(3.32)

which means:

an 6= ap 6= aα. (3.33)

Therefore, an
ap

and an
aα

should not be omitted!
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Hence, the evaporation width ratios are modified as the following:

The ratio for proton emission becomes:

Γp
Γn

=
(Ep
En

)(an
ap

)
exp

{
2
[
(apEp)

1
2 − (anEn)

1
2

]}
, (3.34)

and for α-particle emission becomes:

Γα
Γn

=
(2Eα
En

)(an
aα

)
exp

{
2
[
(aαEα)

1
2 − (anEn)

1
2

]}
. (3.35)

To compare between the old formulas used in CRISP (Eqs. (3.30) and (3.31)) and

the corrected formulas (Eqs. (3.34) and (3.35)), we considered the projectile proton with

initial energy of 1000 MeV colliding with the target nucleus 238U , and compared the

results of two formulas for the spallation for a fixed atomic number Z = 88 (Fig. 3.1).

We also compared the results of fission for a fixed atomic number Z = 90 (Fig. 3.2).

As expected, due to the small differences in the values of level density parameters,

their ratios (an
ap

and an
aα

) are near 1, and hence, the difference between the old formulas and

the corrected formulas is not significant. Although the correct formulas have been now

inserted in CRISP.
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Figure 3.1: Comparing the results of the spallation for a fixed atomic number Z = 88 using the
old formulas in CRISP and the corrected formulas.

Figure 3.2: Comparing the results of the fission for a fixed atomic number Z = 90 using the old
formulas in CRISP and the corrected formulas. Both results are identical.



3.4. Additions and improvements of CRISP model 38

3.4.2 Implementation of heavy-ion reactions

3.4.2.1 Ion Event Generator

A new research line is started in CRISP model to investigate the heavy-ion collisions.

For this aim, a new event generator is created by one the collaborators to provide the

possibility to run intra-nuclear cascade models for ion incident beams. The advantage of

the implemented model is that it works much better for light ions, compared to past that

we considered the incident ion as a bunch of particles that could be added to the nuclear

structure of the target.

3.4.2.2 Angular-momentum-dependent fission barrier

In the present study, using the ion event generator added in the cascade stage, I improved

the mcef stage by introducing the rotating finite range model (RFRM) [54, 55] (which is a

model to calculate the angular-momentum-dependent fission barrier, especially for heavy-

ion collisions) and adding the angular-momentum-dependent fission barrier to CRISP by

implementing RFRM model in C++ language and making it compatible with CRISP code

and finally, extending it with Nix model. The details of this improvement and the results

of the CRISP model are expressed in the following chapters.



Chapter 4

Heavy-ion-induced nuclear reactions

4.1 Nucleus-nucleus collision model in CRISP

In heavy-ion-induced nuclear reactions, we have a projectile nucleus (a1, z1) with energy

T that is launched against a target nucleus (A, Z). The trajectory of the projectile nucleus

is influenced by the Coulomb potential between the colliding nuclei, given by:

Vc =
z1 Z e

2

r
, (4.1)

where r is the distance between the centers of charge. The trajectory of the projectile

nucleus is classically determined by this potential until the moment of contact. At this

moment, the process of nucleonic transference starts in the direction projectile-target [56].

4.1.1 Initial conditions and point of contact

The first part of the problem consists of determining the coordinates of the nuclei when

contact is made. This can be done in the relative coordinate system of the nuclei, which

is represented in Fig. 4.1, where ~r is the relative position vector and φ is angle between ~r

and the positive z-direction which is the direction in which the projectile moves.

In this system, the trajectory is described by [57]

A

r
= ε cos (φ− φ0)− 1, (4.2)

39



4.1. Nucleus-nucleus collision model in CRISP 40

Figure 4.1: System of coordinates used to describe the nucleus-nucleus collisions in CRISP [56].

with parameters given by

A = l2

r α
,

ε =
√

1 + 2T l2

µα
,

φ0 = cos−1
(
1
ε

)
.

(4.3)

Here, l is the angular momentum, α = z1 Z e
2, T is the kinetic energy of the two-body

system in relation to its relative velocity. As we are only interested in the classical solution

of the Rutherford dispersion, we consider the reduced mass of the system µ = A1A2

A1+A2
. In

the intranuclear cascade, we are considering transferring nucleons, one by one, from the

projectile nucleus to the target nucleus. Since the energy of all nucleons and the potentials

of the nuclei are known, it is possible to balance the energy without explicitly using the

Q-value.

The angular mometum is randomly chosen between 0 and the maximum value lmax in
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such a way that [58]

l = lmax
√
s, (4.4)

where s is a random number uniformly distributed in the interval [0, 1]. The maximum

angular momentum, lmax, refers to the maximum impact parameter b = R1 + R2 + dr

such that

lmax = b P, (4.5)

where P is the momentum of the two-body system in the relative reference frame and R1

and R2 are the radii of the nuclei. dr = 2 fm is considered for the peripheral collisions,

explained in detail in Sec. 4.1.3.

In the relative reference frame, there are four generalized variables, r, pr, φ and l.

They obey the following initial conditions:

r0 =∞,

p0 =
√
2µT ,

φ0 = 0,

l0 = l.

(4.6)

In this way, the nuclei make contact if Eq. (4.2) has a solution for the angular coordi-

nate when r = Rc = R1 +R2 + dr. In this point, the generalized coordinates assume the

values

r = Rc,

p =
√
2µ (T − Vc (Rc)),

φ = φ0 − cos−1
(

A
Rc

+1

ε

)
,

l = l.

(4.7)
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The cartesian coordinates are expressed as follows

~r = (− r sinφ, 0, r cosφ),

~p = (p sin (θ − φ), 0, p cos (θ − φ)),

θ = sin
(

l
r p

)
.

(4.8)

In order to take into account the three dimensions of the cartesian space, a random

rotation around the z-direction is performed.

4.1.2 Nucleonic transference from projectile to target

At the moment of contact between the nuclei, the possibility that the nucleons from the

projectile reach the target surface and initiate an intranuclear cascade must be considered.

For each nucleon of the projectile that reaches the target, the interaction is similar to the

nucleon-induced reactions already calculated by CRISP.

At the moment of contact, two events are taken into account regarding the nucleons

from the projectile: their interaction with the surface of the projectile and with the surface

of the target. If a nucleon of the projectile interacts with the projectile’s surface, it is

reflected in such a way as to conserve the tangencial component of the linear momentum

and invert the radial component. On the other hand, if the nucleon hits the target, the

transference is done in a way that guarantees energy conservation and follows the Pauli

exclusion principle. In addition, a Lorentz transformation is performed since, by default,

the movements of the nucleons are described according to a reference frame located al-

ways at the center of their own nucleus. In other words, at the moment of nucleonic

transference, the entire description is moved to the reference frame at the center of the

target. The intranuclear cascade inside the target nucleus then follows.

No disipative process is considered in the initial phase of the reaction. Indirectly,

when a nucleon is transferred, the Lorentz equations have to be applied to calculate the

momentum in the target nucleus referential, thus the momentum of that nucleon (after

being transferred) depends on its initial momentum in the Fermi gas of the projectile

nucleus and of the collective momentums of the nuclei. Therefore, when that nucleus



4.2. Excitation energy and angular momentum 43

transfers momentum in future collisions, it transfers energy between the collective and

intrinsic degrees of freedom as well.

4.1.3 Peripheral collisions

During the calculation of the interaction between two nuclei, one could choose to select

the interaction of only those nucleons from the projectile that make geometric contact with

the target’s surface, considerting a radius R = r0A
1/3 for the target. However, this strict

selection leaves out the interaction of nucleons that pass very close to the target, a situation

not very realistic. After careful study of the nucleon-nucleon interaction cross sections

already implemented in CRISP, it was observed that above 100 MeV the interaction can

occur at an impact parameter no larger than 2 fm. This fact was taken into account by

considering an effective radius for the target given by R + dr, with dr = 2 fm. This

consideration is made only in the context of the initial interaction.

4.2 Excitation energy and angular momentum

Let’s suppose the following reaction:

(a1, z1) + (A, Z) = (Af , Zf ) + nucleons. (4.9)

Let’s assume that Af < A. In order to calculate the excitation energy, a new nucleus

(A, Z) is constructed at ground state and A−Af +Z −Zf neutrons and Z −Zf protons

are removed. The result is necessarily a Af , Zf nucleus at ground state. The excitation

energy is the difference between the kinetic energy of all nucleons in the actual residual

nucleus and the ground state version. This calculation is expressed by

E∗ =

Af∑
i=1

Ti −
Af∑
i=1

T ′i , (4.10)

where Ti is the kinetic energy of the ith nucleon of the residual nucleus and T ′i is the

kinetic energy of the ith nucleon of the ground state version of the same nucleus.

In case Af > A, the excitation energy is the difference between the kinetic energy of

all nucleons that entered the target and the ones that left.
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The angular momentum is calculated as:

L =
∑

lin −
∑

lout, (4.11)

where lin is the angular momentum of the entering nucleon, coming from the projectile

nucleus, and lout is the angular momentum of the emitted nucleon.

4.3 Angular momentum in heavy-ion-induced nuclear re-

actions

The angular momentum imparted by the heavy-ion projectile to the target nucleus at in-

termediate energies is considerable compared to the nucleon-nucleus and photonuclear

interactions. Based on the dynamic model described in [59], in heavy-ion induced fusion-

fission processes, the initial relative kinetic energy and angular momentum of the pro-

jectile are converted into the intrinsic excitation energy and spin of the fused compound

system leading to the increase of fission probability [60]. The concept of the dynamical

force equilibrium is considered to determine the critical, maximum and average angular

momenta in the entrance reaction channel. This equilibrium is determined by the bal-

ance of the macroscopic surface energy, Coulomb energy, and the rotational energy. The

critical angular momentum for the compound system is the critical value up to which pro-

jectile and target can still fuse. For angular momenta higher than this critical value, the

contact configuration of projectile and target nuclei cannot fuse and will separate so the

compound nucleus is not formed.

Since the angular momentum transferred in heavy-ion reactions is significant, the ro-

tating liquid drop model and the effects of angular momentum on lowering fission barriers

have been studied since 1960s [61, 62, 63, 64, 65], although it took one decade so that

heavy-ion research gains its popularity among the nuclear physicists. At that time, the

fission barrier dependence on angular momenta of rotating nuclei was discussed by Pik-

Pichak [63] showing that by the increase of angular momentum, fission-barrier height

decreases. Fig. 4.2 depicts a general behaviour of this dependency of fission barriers

on angular momenta in heavy-ion induced nuclear reactions. Several models present this
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fission barrier dependence on angular momenta of rotating nuclei [59, 60, 66, 54, 55].

Figure 4.2: General predictions of fission barriers for different angular momenta [54].

4.3.1 Rotating liquid drop model (RLDM)

One of these models is the standard rotating liquid drop model (RLDM) introduced by

Cohen, Plasil and Swiatecki [66]. In this model, it is assumed that a rotating nucleus can

be described by a uniformly rotating, macroscopic liquid drop. This model predicts that,

for nucleus-nucleus interactions, the angular momentum transferred by the accelerated

heavy ion during the reaction leads to the decrease of fission barrier and consequently

increase of fission cross section. However, this dependence can be neglected in the case

of nucleon-nucleus and gamma-nucleus interactions at intermediate energies, since only

a small angular momentum is imparted to the nucleus by incident nucleons.

The angular-momentum-dependent fission barrier height, Bf (A,Z, L), can be calcu-

lated by the rotating liquid drop model. However, the analyses performed by this model

resulted in higher fission barriers compared to the experimental data showing that for

heavy-ion induced fission and spallation, the rotating liquid drop model written by Co-

hen et al. [66] cannot reproduce the experimental data, and the calculated fission-barrier

heights had to be modified by an appropriate scaling factor which has been reported to
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be between about 0.5 and 0.9 [67, 68, 69, 70, 71, 72, 73, 74]. This reduced factor value

changes rather arbitrarily for different reactions and no systematic trend has been derived

among them [75].

4.3.2 Rotating finite range model (RFRM)

In 1980s, the rotating finite range model (RFRM) presented by Mustafa et al. [54] and

Sierk [55] was revealed as a refinement in RLDM. The improvements in RFRM in com-

parison with RLDM are in the nuclear shapes and in the calculations of the surface,

Coulomb, and rotational energies. In RFRM model, equilibrium shapes and fission bar-

riers of rotating nuclei have been calculated using a macroscopic two-center model, with

a finite-range nuclear force and a diffuse nuclear surface [54, 55]. The two-center-model

shape parametrization allows for triaxial shape variations and a continuous transition from

one-center to two-center shapes with a smooth neck. The surface energy is calculated

with the Yukawa-plus-exponential folding function of Krappe, Nix, and Sierk [76], which

incorporates the effects of the finite range of the nuclear force and the diffuse nuclear sur-

face, and both the Coulomb and rotational energies are calculated with surface diffuseness

described by a Yukawa folding function.

To itemize the changes of the Sierk macroscopic model of rotating nuclei (RFRM)

relative to the RLDM:

• The surface energy of the liquid-drop model is replaced by the Yukawa-plus-exponential

nuclear energy, which models effects of the finite range of the nuclear force, nuclear

saturation, and the finite surface thickness of real nuclei;

• The Coulomb energy is calculated for a charge distribution with a realistic surface

diffuseness;

• The rotational moments of inertia are calculated for rigidly rotating nuclei with

realistic surface density profiles;

• The parameters of the model for the various contributions to the energy of the nu-

cleus provide a better fit than do those of the liquid-drop model to nuclear ground-

state masses and fission barriers of non-rotating nuclei;
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• A flexible shape parametrization is used which allows accurate estimation of the

convergence of results as a function of the number of degrees of freedom of the

nuclear shapes considered;

• Accurate modeling of the triaxial nuclear shapes occurs; and

• A precise calculation is made of the value, slope, and curvature of the potential-

energy surface by means of numerical quadrature.

With this model, the properties of points of equilibrium corresponding to nuclear

ground states and fission saddle points can be calculated. The results are qualitatively

similar to those of the rotating-liquid-drop model, but there are significant quantitative

differences in fission-barrier heights and moments of inertia.

Insertion of Yukawa-plus-exponential finite-range macroscopic model [76] has led

to lower fission barriers in RFRM. This decrease in barriers is the result of the strong

attraction between the surfaces of the two nascent fragments at the saddle point which

are about to separate [77, 78]. Using RFRM, the calculated data are consistent with

the experimental value of fission-barrier heights and thus, scaling factors are no longer

required.

To study heavy-ion induced nuclear reactions using CRISP model, we have imple-

mented RFRM to calculate the angular momentum dependent fission barrier,Bf (A,Z, L),

as a function of mass (A) and charge (Z) number and angular momentum (L) [55]:

Bf (A,Z, L) = B0
f (A,Z)× h (A,Z, L), (4.12)

where B0
f (A,Z) is the fission barrier at L = 0 and:

h (A,Z, L) =


1 + δ2 L

2 + δ3 L
3 : L ≤ L20

1 + γ2 l
2 + γ3 l

3 + γ4 l
4 + γ5 l

5 : L > L20

(4.13)

where l = L
Lmax

, Lmax is the value of L where the barrier disappears, L20 is the value of

L where calculated barrier height is 20% of B0
f (A,Z), and L80 is the value of L where

calculated barrier height is 80% of B0
f (A,Z). The four quantities B0

f (A,Z), L20, L80
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and Lmax are approximated by fitting to calculated values functions of the form:

pm(A,Z) =

NA−1∑
i=0

NZ−1∑
j=0

C
(m)
ij Pi(η)Pj(µ), (4.14)

where pm represents B0
f (A,Z), L20, L80 or Lmax; η = A/400; µ = Z/100; Pk is an

ordinary Legendre polynomial; and NA and NZ are the number of terms in the resulting

A and Z series for fixed Z and A, respectively. The values of δi and γi are expressible in

terms of the last three of these pm’s [55].

To calculate the angular momentum dependent fission barrier using RFRM model, a

FORTRAN 77 computer subroutine called BARFIT is written by Sierk [55] which calcu-

lates the height of the barrier and the energy of the rotating ground state for given values

of Z,A and L. To be able to insert this code in CRISP, I have converted it from Fortran

77 to C++ language, made it compatible with CRISP and implemented it in CRISP code.

The converted BARFIT code into C++ can be found in Appendix A.

4.3.2.1 Extension of RFRM with Nix model

In BARFIT subroutine code, fission barriers at L = 0 are calculated from a 7th order fit

in two variables for Z values from 20 to 110, resulting to 638 fitted barriers. These 638

barriers are fit with an RMS deviation 0.10 MeV by this 49-parameter function.

Although the results of this code for angular momentum dependent fission barrier

are relatively reliable, to apply a nuclear physics model instead of using fitted values of

Sierk’s code, as the next step of refining fission-barrier height in CRISP model, instead

of using the fitted values of BARFIT for B0
f (A,Z), I implemented the Nix model for

B0
f (A,Z) and merged it to Eq. (4.12).

Fission-barrier height at zero angular momentum calculated by the Nix formula [79]

has the form:

B0
f (A,Z) = as ×

[
1− k

(N − Z
A

)2 ]
× A2/3 F (x), (4.15)
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where as = 17.9439 MeV, k = 1.7826, and N = A− Z. The function F (x) with:

x =
Z2/A

p× {1− k [(N − Z)/A]2}
, (4.16)

and p = 50.88 is defined in Ref. [79]. By this work, I was able to interpret the experimen-

tal data within the theoretical framework of rotating liquid drop model by inserting RFRM

and Nix models into CRISP. Results of CRISP and its comparison with experimental data

are discussed in chapter 5.



Chapter 5

Results and Discussion

In this work, we have studied the reaction of 11B ions with 181Ta target at 245.4 and

125.7 MeV, with 197Au target at 255.5 and 137.5 MeV and with 209Bi target at 146 MeV

energy, and also the reaction of 7Li ions with 208Pb target at 245 MeV energy. The results

of CRISP model are compared with the experimental data measured at the LNR Phasotron

(JINR, Dubna, Russia) and for 181Ta and 209Bi taken from Ref. [1].

5.1 Mass-yield distribution

The mass-yield distribution determined for the reactions induced by heavy-ion projectiles

at intermediate energies are presented in Figs. 5.1, 5.2 and 5.3, with inclusion the fission

product range, spallation and the light fragment production on either side. From these

figures, one can see the clear-cut distinction between spallation or deep spallation and

fission mass ranges.

The CRISP results before applying any modification in fission-barrier height, when

only fission barrier at zero angular momentum (B0
f (A,Z)) was performed are shown in

Figs. 5.1a, c, 5.2a, c and 5.3a, c. And the results of CRISP after inclusion of angular

momentum concept for the heavy-ion induced collisions based on RFRM and Nix model

are shown in Figs. 5.1b, d, 5.2b, d and 5.3b, d.

A large hump consisting of the heavy residues in the mass range close to the target

mass can be observed. And the processes connected to the production of such nuclei

would be spallation or deep spallation. The region of light nuclides with mass A < 40

50
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(a) 181Ta + 245.4 MeV 11B with B0
f (A,Z) (b) 181Ta + 245.4 MeV 11B with RFRM + Nix

(c) 181Ta + 125.7 MeV 11B with B0
f (A,Z) (d) 181Ta + 125.7 MeV 11B with RFRM + Nix

Figure 5.1: Mass-yield distributions for the reaction of 11B ions with 181Ta target at 245.4 and
125.7 MeV energy. The blue solid line indicates the results of the fission cross sections as a
function of fragment mass A and the red dotted line corresponds to the spallation cross section,
both calculated by the CRISP code, (a) and (c) without any modification in CRISP with the fission
barrier at L = 0, and (b) and (d) after inserting RFRM and Nix models. The experimental data
(solid squares) are taken from Ref. [1].
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Figure 5.2: Mass-yield distributions for the reaction of 11B ions with 197Au target at 255.5 and
137.5 MeV energy. The blue solid line indicates the results of the fission cross sections as a
function of fragment mass A and the red dotted line corresponds to the spallation cross section,
both calculated by the CRISP code, (a) and (c) without any modification in CRISP with the fission
barrier at L = 0, and (b) and (d) after inserting RFRM and Nix models.
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(a) 209Bi + 146 MeV 11B with B0
f (A,Z) (b) 209Bi + 146 MeV 11B with RFRM + Nix
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(c) 208Pb + 245 MeV 7Li with B0
f (A,Z)
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Figure 5.3: Mass-yield distributions for the reaction of 11B ions with 209Bi target at 146 MeV
energy and the reaction of 7Li ions with 208Pb target at 245 MeV energy. The blue solid line
indicates the results of the fission cross sections as a function of fragment mass A and the red
dotted line corresponds to the spallation cross section, both calculated by the CRISP code, (a)
and (c) without any modification in CRISP with the fission barrier at L = 0, and (b) and (d)
after inserting RFRM and Nix models. The experimental data (solid squares) for the reaction of
11B +209 Bi at 146 MeV is taken from Ref. [1].
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u contains the intermediate mass fragments (IMFs). IMFs are particles with A > 4 u

but lighter than fission fragments and can be formed through the following processes: i)

they could be the counterpart pair of products in the mass region of A ∼ 140− 185 u for
181Ta target, A ∼ 180 − 205 u for 197Au target, A ∼ 170 − 215 u for 209Bi target, or

A ∼ 195 − 215 u for 208Pb target, due to spallation or deep spallation processes, where

the excited nuclei shall evaporate not only nucleons and light charged particles but also

heavier particles in the IMF region; ii) according to the intranuclear cascade model [80],

IMFs could be produced by the disintegration of highly excited residual heavy nuclei after

evaporation of some nucleons. As can be seen from Figs. 5.1, 5.2 and 5.3, CRISP model

cannot reproduce the IMF region yet.

The major region in mass-yield distribution is at the mass range of A = 40 − 135

u for 181Ta target, A = 55 − 145 u for 197Au, A = 45 − 165 u for 209Bi and A =

40 − 180 u for 208Pb which are the results of binary fissions. The mass and energy

distributions of fission fragments in this area are caused by the valley structure of the

deformation potential energy surface of a fissioning nucleus, successfully described by

MM-RNR model [20]. The same analysis is also done with other reactions [35] at high

energies where the shoulders of asymmetry were more obvious.

As explained in Sec. 4.3, CRISP model uses Eq. (4.12) to consider the dependency

of compound nucleus fission barrier on angular momentum (RFRM). Regarding Fig. 4.2,

this dependency decreases the fission barrier height and according to Eq. (3.6), it increases

the fission cross section. The final effect of considering angular momentum dependent fis-

sion barrier on the fission cross section is shown in Figs. 5.1, 5.2 and 5.3. The significant

difference in the fission cross sections (blue lines) in the left and right columns of Figs.

5.1, 5.2 and 5.3 is a result of the decrease in fission barrier height as a consequence of

angular momentum. This result illustrates how the transferred angular momenta of the

reactions increase the fission cross sections due to the decrease of fission barrier heights.

The CRISP results of fission cross sections are achieved with the parameters shown

in Tables 5.1, 5.2 and 5.3 using the multimodal fission model. Although very subtle, it

is possible to see small shoulders in the experimental data of 11B +197 Au reaction at

137.5 MeV (asymmetric fission), but not for the reactions of 11B +197 Au at 255.5 MeV

and 11B +181 Ta at 125.7 and 245.4 MeV energies (symmetric fission). The shoulders of
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Table 5.1: Parameter values of Eq. (3.13) used to determine experimental and calculated mass
distributions; and fission (σf ) and total (σtot) cross sections of 11B +181 Ta reaction at 245.4 and
125.7 MeV energies.

Parameter 11B +181 Ta (245.4 MeV) 11B +181 Ta (125.7 MeV)

Experiment CRISP Experiment CRISP

KS 73.15 ± 3.7 73.0 24.0 ± 1.2 24.0

ΓS 13.3 ± 0.51 13.5 12.61 ± 0.48 12.8

KAS – – – –

ΓAS – – – –

DAS – – – –

σf (mb) 35.8 ± 5.4 33.66 12.1 ± 1.8 13.08

σtot (mb) 1981.0 ± 300.0 1687.4 1875.0 ± 280.0 2175.17

asymmetry are more obvious in the reactions of 11B+209Bi at 146 MeV and 7Li+208Pb at

245 MeV energy. Hence, in CRISP model, the fission cross section as a function of mass

number in the reaction of 146 MeV 11B ions with 209Bi, 137.5 MeV 11B ions with 197Au

and 245 MeV 7Li ions with208Pb target are well described by the sum of three Gaus-

sian functions, corresponding to symmetric and asymmetric fission modes (Eq. (3.13)),

but in the reactions of 11B ions with 181Ta target at 245.4 and 125.7 MeV energies and

with 197Au at 255.5 MeV, only the symmetric fission component of the mass distribution

is considered. The experimental total reaction cross section is computed by summing

the cross section of fission, spallation and light nuclide production. The total reaction

cross sections calculated by CRISP are also tabulated in Tables 5.1, 5.2 and 5.3 summing

the fission and spallation cross sections. The mass-yield distributions calculated by the

CRISP code reproduce the shape of the experimental distributions. The total fission cross

sections computed by CRISP are also in a good agreement with the experimental ones.

In addition to the fission, we calculated the spallation products mass distribution

through the spallation process in which only one heavy fragment with a mass close to

the target mass is formed. The results are shown in Figs. 5.1, 5.2 and 5.3, where we ob-

serve that at higher mass numbers, the CRISP computations show a fair agreement with
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Table 5.2: Parameter values of Eq. (3.13) used to determine experimental and calculated mass
distributions; and fission (σf ) and total (σtot) cross sections of 11B +197 Au reaction at 255.5 and
137.5 MeV energies.

Parameter 11B +197 Au (255.5 MeV) 11B +197 Au (137.5 MeV)

Experiment CRISP Experiment CRISP

KS 308.75 ± 15.1 308.0 119.7 ± 11.2 250.0

ΓS 12.61 ± 0.89 12.5 11.57 ± 0.67 11.5

KAS – – 1.77 ± 0.02 0.1

ΓAS – – 2.8 ± 0.1 2.8

DAS – – 40.0 ± 1.6 40.0

σf (mb) 785.0 ± 118.0 633.17 601.8 ± 90.3 626.2

σtot (mb) 1749.0 ± 263.0 1674.6 1651.02 ± 248.0 1645.4

Table 5.3: Parameter values of Eq. (3.13) used to determine experimental and calculated mass
distributions; and fission (σf ) and total (σtot) cross sections of 7Li +208 Pb reaction at 245 MeV
and 11B +209 Bi reaction at 146 MeV energy.

Parameter 7Li+208 Pb (245 MeV) 11B +209 Bi (146 MeV)

Experiment CRISP Experiment CRISP

KS 1220.0 1215 177.0 ± 5.9 730.0

ΓS 12.74 12.72 12.90 ± 0.50 12.7

KAS 0.048 28 8.60 ± 0.09 5.0

ΓAS 10.0 9.5 2.86 ± 0.11 6.0

DAS 52.5 53.5 39.0 ± 1.5 37.5

σf (mb) 634.6± 95.0 557.9 1263.0 ± 189.0 1135.16

σtot (mb) 1118.4 ± 167.9 1820 2754.0 ± 413.0 2934.72
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the experimental data in the spallation region. While as the spallation product mass num-

ber decreases, the CRISP model calculations take distance from the experimental results,

which shows that CRISP still needs to be modified for spallation process.

Also comparison between the left and right columns of Figs. 5.1, 5.2 and 5.3 confirms

that for heavy-ion induced fusion-fission reactions, the fission barrier is dependent on the

angular momentum, and by the increase of projectile energy, the transferred angular mo-

mentum increases and as a result, the fission barrier decreases which consequently results

in the increase of fission cross section. As aforementioned, BARFIT code uses fitting

method to calculate fission-barrier height at zero angular momentum, B0
f (A,Z). To have

a more precise calculation, we used the Nix model to compute B0
f (A,Z) and merged

it with BARFIT code and implemented in CRISP model. As it is obvious from Figs.

5.1, 5.2 and 5.3, the angular momentum dependent fission barrier height, Bf (A,Z, L),

and accordingly the fission cross section are well reproduced in the rotating liquid drop

framework by applying RFRM and Nix model in the CRISP code leading to an acceptable

explanation of experimental data by CRISP model.

5.2 Pre- and post-scission nucleons

The Monte Carlo CRISP code simulates the entire process of a nuclear reaction from the

first interaction of projectile with target nucleus up to the production of fission fragments

and spallation. When a nucleus fissions, two unstable fission fragments are produced

which can evaporate by the Weisskopf statistical evaporation model. At the end, the final

fission and spallation products shall be compared to the experimental data. Therefore,

contrary to experiment, using CRISP model, we can calculate fissioning nuclei (Af ) at

the moment of fissioning, and the summation of binary-fission fragments (Aff ) after post-

scission evaporations, where AH + AL = Aff and AS = Aff/2.

Pre-scission nucleons are emitted during the cascade and after the formation of equi-

librated compound nucleus at the evaporation-fission competition. After the system ap-

proaches the scission point, post-scission nucleons are emitted by evaporation from the

primary fragments to the fission products. With the CRISP model, we are able to calcu-

late the average number of pre- and post-scission emitted neutrons and protons, separately
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Table 5.4: Mean mass number (AS); mean mass of the fissioning nucleus (Af ) after evaporation of
pre-scission nucleons from the compound nucleus; mean mass of the summation of binary-fission
fragments (Aff ) after evaporation of post-scission nucleons from the fragments; average number
of pre-scission neutrons (νpre n), pre-scission protons (νpre p), post-scission neutrons (νpost n),
and post-scission protons (νpost p); and the average number of total emitted nucleons (νT ) of
11B +181 Ta reaction at 245.4 and 125.7 MeV energies.

Parameter 11B +181 Ta (245.4 MeV) 11B +181 Ta (125.7 MeV)

Experiment CRISP Experiment CRISP

AS 88.7 ± 0.6 89.07 90.5 ± 0.3 90.06

Af – 179.9 – 181.5

Aff 177.4 ± 1.2 178.14 181.0 ± 0.6 180.12

νpre n – 10.09 – 8.42

νpre p – 2.01 – 2.08

νpost n – 1.75 – 1.38

νpost p – 0.01 – 0

νT 14.6 ± 2.0 13.86 11.0 ± 1.5 11.88

(reported in Tables 5.4, 5.5 and 5.6). The comparison between the pre- and post-scission

nucleons shows that the average number of pre-scission nucleons is higher than the av-

erage number of post-scission ones indicating that the pre-scission evaporation chain is

longer. Besides, the neutron evaporation of the systems indicates a large contribution for

the production of neutron-deficient nuclides. Also the sum of these contributions gives

the average number of total emitted nucleons (νT ). This analysis shows that CRISP model

describes these experimental data fairly well as a result of well describing the mechanism

of the nucleons emission in the pre- and post-scission stages of the nuclear reaction (also

shown in Tables 5.4, 5.5 and 5.6).
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Table 5.5: Mean mass number (AS); mean mass of the fissioning nucleus (Af ) after evaporation of
pre-scission nucleons from the compound nucleus; mean mass of the summation of binary-fission
fragments (Aff ) after evaporation of post-scission nucleons from the fragments; average number
of pre-scission neutrons (νpre n), pre-scission protons (νpre p), post-scission neutrons (νpost n),
and post-scission protons (νpost p); and the average number of total emitted nucleons (νT ) of
11B +197 Au reaction at 255.5 and 137.5 MeV energies.

Parameter 11B +197 Au (255.5 MeV) 11B +197 Au (137.5 MeV)

Experiment CRISP Experiment CRISP

AS 99.0 ± 0.5 98.63 97.0 ± 0.7 97.48

Af – 198 – 199.9

Aff 198 ± 1.0 197.26 194 ± 1.4 194.96

νpre n – 5.75 – 5.34

νpre p – 4.25 – 2.76

νpost n – 0.73 – 4.84

νpost p – 0.01 – 0.10

νT 10.0 ± 1.5 10.74 14.0 ± 2.1 13.04
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Table 5.6: Mean mass number (AS); mean mass of the fissioning nucleus (Af ) after evaporation of
pre-scission nucleons from the compound nucleus; mean mass of the summation of binary-fission
fragments (Aff ) after evaporation of post-scission nucleons from the fragments; average number
of pre-scission neutrons (νpre n), pre-scission protons (νpre p), post-scission neutrons (νpost n),
and post-scission protons (νpost p); and the average number of total emitted nucleons (νT ) of
7Li+208 Pb reaction at 245 MeV and 11B +209 Bi reaction at 146 MeV energy.

Parameter 7Li+208 Pb (245 MeV) 11B +209 Bi (146 MeV)

Experiment CRISP Experiment CRISP

AS 103 ± 0.9 102.1 104.0 ± 1.4 104.3

Af – 208.7 – 212.8

Aff 206 204.2 208.0 ± 2.8 208.6

νpre n – 5.15 – 5.59

νpre p – 1.15 – 1.61

νpost n – 4.31 – 4.15

νpost p – 0.19 – 0.05

νT 9.0 ± 2.0 10.8 12.0 ± 1.6 11.4
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5.3 Fissility parameter

Chung et al. [81, 82] showed that it is possible to use an empirical expression to estimate

the probability of symmetric and asymmetric fission cross sections. Based on Chung et

al.’s studies, there is a close relation between the contribution of symmetric and asymmet-

ric fission modes and the fissility parameter. The empirical formula suggested by Chung

et al. [82] for the critical value of the fissility parameter is:

(Z2
f/Af )cr. = 35.5 + 0.4 (Zf − 90), (5.1)

where Zf and Af are the charge and mass number of the fissioning nucleus, respectively.

According to Chung et al. [81, 82], for reactions with a higher abundance of fissioning

nuclei above the critical fissility parameter, the symmetric fission mode is dominant, while

for the predominance of fissioning systems below the critical fissility line, the main fission

channel would be asymmetric. The more population of fissioning systems above critical

fissility line implies the higher probability of obtaining a symmetric mass distribution.

Comparing fission fragment mass distributions presented in Figs. 5.1, 5.2 and 5.3, we

see that for the reactions of 11B ions on 181Ta target at 245.4 and 125.7 MeV energies and

on 197Au target at 255.5 MeV, the symmetric fission mode is the only dominant channel,

while for the reactions of 11B ions with 197Au at 137.5 MeV and 209Bi at 146 MeV, and
7Li ions with 208Pb at 245 MeV energy, the asymmetric fission mode is also evident. The

contribution of fissioning systems above and below the critical fissility parameter can be

analyzed with the help of CRISP model. For each simulation case i in the CRISP code, we

calculate the charge Zf (i) and massAf (i) of the fissioning nucleus, and obtain the fissility

paramter (Z2
f/Af )i for that bin. The average mass and charge number of the fissioning

systems, and the average and critical fissility parameters are brought in Table 5.7. For the

reactions of 11B ions with 209Bi target at 146 MeV and with 197Au at 137.5 MeV and 7Li

ions with 208Pb at 245 MeV, the difference between Z2
f/Af and (Z2

f/Af )cr. is less than the

three other reactions, as a result of the narrow shoulders of asymmetric fission channel;

while for the reactions of 11B ions with 181Ta at 245.4 and 125.7 MeV energies and with
197Au at 255.5 MeV, this difference is higher, asserting the pure symmetric fission mode

of the three latter reactions.
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Table 5.7: Charge and mass number of the fissioning system and the average fissility parameter
(Z2

f/Af ) calculated by CRISP for the 11B +181 Ta reaction at 245.4 and 125.7 MeV energies,
11B+197Au reaction at 255.5 and 137.5 MeV, 7Li+208Pb reaction at 245 MeV and 11B+209Bi
reaction at 146 MeV energy. The critical fissility parameter (Z2

f/Af )cr. is also presented.

Reaction Energy (MeV) (Zf , Af ) Z2
f/Af (Z2

f/Af)cr.

11B +181 Ta 245.4 (76, 180) 32.09 29.9

11B +181 Ta 125.7 (76, 182) 31.74 29.9

11B +197 Au 255.5 (81, 200) 32.8 31.9

11B +197 Au 137.5 (80, 198) 32.3 31.5

7Li+208 Pb 245 (84, 211) 33.44 33.1

11B +209 Bi 146 (86, 213) 34.72 33.9

Fig. 5.4 illustrates the distribution of the fissility parameter, Z2
f/Af , of the fission-

ing nuclei as a function of Zf . Its abundance is also given by the right column, where

the darker color denotes the larger counts of fissility parameter in that region and vice

versa. As can also be seen from Fig. 5.4, while there is roughly a complete distribution

of fissioning systems above the critical fissility line for the reactions of 11B +181 Ta at

245.4 and 125.7 MeV energies and 11B +197 Au at 255.5 MeV (due to pure symmetric

distribution), a small distribution of fissioning systems below the critical fissility line is

obvious for the reactions of 11B +197 Au at 137.5 MeV, 7Li +208 Pb at 245 MeV and
11B +209 Bi at 146 MeV, affirming the presence of asymmetric fission channel for these

reactions. Besides, the most contribution of the fissioning systems for all six reactions

are located above the critical fissility line, confirming that the predominant fission mode

is symmetric. This is due to the fact that the process of symmetric or asymmetric fission

depends on shell effects that decrease in its intensity as the excitation energy of the fis-

sioning system increases. As can be observed in the experimental data and also CRISP

results, asymmetric fission is negligible for all cases studied here, indicating that the shell

effects can be disregarded in the calculations.
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(a) 181Ta + 245.4 MeV 11B (b) 181Ta + 125.7 MeV 11B
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(c) 197Au + 255.5 MeV 11B
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(d) 197Au + 137.5 MeV 11B
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(e) 208Pb + 245 MeV 7Li (f) 209Bi + 146 MeV 11B

Figure 5.4: Color map distribution of the fissility parameter Z2
f/Af for the fissioning systems of

the reactions 11B +181 Ta at 245.4 and 125.7 MeV energies, 11B +197 Au at 255.5 and 137.5
MeV, 7Li +208 Pb at 245 MeV and 11B +209 Bi at 146 MeV. The solid red line corresponds to
the critical fissility parameter as a function of Zf [81, 82].
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5.4 Fissility

Another interesting parameter which is worth calculating is the fission probability (fis-

sility) derived by the ratio of fission cross section (σf ) to the total reaction cross section

(σtot). As can be seen in Table 5.8, the calculated values of fissility by CRISP model

lie successfully within the uncertainties of the experimental determination, except for the
7Li +208 Pb reaction where the computed fissility by CRISP has a lower value. Also

comparing the fissilities taken by CRISP and experiment for heavy-ion induced collisions

with the ones for proton-induced fissions [83] shows that the fission probabilities induced

by 11B ions is about one order higher than the fissilities induced by protons at the same

intermediate energy ranges. It confirms that the higher angular momenta which are trans-

ferred by heavy-ions to the pre-actinide 181Ta and 209Bi targets lead to higher rotational

energies transferred to the compound nuclei which consequently increase the fission cross

sections and fissilities (compared to the nucleon-induced collisions).
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Table 5.8: Fissility of the 11B+181 Ta and p+181 Ta reactions at 245.4 and 125.7 MeV energies,
11B +197 Au and p+197 Au reactions at 255.5 and 137.5 MeV energies, 7Li+208 Pb reaction at
245 MeV and the fission probability of the 11B +209 Bi and p+209 Bi reactions at 146 MeV.

Reaction Energy (MeV) Fissility

Experiment CRISP
11B +181 Ta 245.4 0.018 ± 0.003 0.020

p+181 Ta 245.4 0.0025 [83] –
11B +181 Ta 125.7 0.0065 ± 0.0010 0.0060

p+181 Ta 125.7 – –
11B +197 Au 255.5 0.45 ± 0.09 0.38

p+197 Au 255.5 0.025 [83] –
11B +197 Au 137.5 0.36 ± 0.07 0.38

p+197 Au 137.5 0.016 [83] –
7Li+208 Pb 245 0.57 ± 0.17 0.31

p+208 Pb 245 – –
11B +209 Bi 146.0 0.46 ± 0.07 0.39

p+209 Bi 146.0 0.075 [83] –
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5.4.1 Possible mechanisms to the formation of IMFs

As described in Sect. 5.1, IMFs are produced by the emission of light elements through

different processes during the nucleus-nucleus reaction. As can be observed in Figs. 5.1

and 5.3, there is a large range of light fragments with A < 40 u that are not explained by

CRISP, as well as part of the heavy fragments with A ∼ 140− 170 u for 181Ta target and

with A ∼ 170− 200 u for 209Bi target. The discrepancies between data and calculations

can have their origins in two points: (i) there are some missing channels in the CRISP

model; (ii) the spallation process with high angular momentum is not correctly described

by CRISP. We will see that these two factors shall contribute to the partial disagreement

between calculation and experiment.

Initially, we observe the remarkable agreements in the fission fragment mass regions

after the effects of angular momentum are included in the fission potential. Hence, we

consider that the fission mechanism is correctly described in our model, as well as all the

mechanisms happening before fission takes place, namely, the initial interaction between

the nuclei and the intranuclear cascade. From here, we conclude that the disagreement

observed in other regions of the fragment mass distribution is due to a bad description

of the spallation mechanism or due to some mechanisms competing with spallation that

is missing in our model. Our intention here is not to include the missing channel in our

model, but rather try to evaluate what this mechanism could be.

We noticed some similarities between IMF and spallation regions and tried to give an

explanation about the possible mechanisms that could lead to the formation of these light

and heavy fragments. The idea is that there is a mechanism that competes with fission

and spallation which can produce heavy fragments by emission of clusters with A < 40

u. At this point, we can make further considerations about the possible mechanism that

is producing the excess of light fragments clearly observed in the experimental data: we

see that this mechanism does not interfere with fission, which is correctly reproduced, but

competes with spallation. The possible explanation for this behavior is that fission will

happen only in the first steps of the evaporation chain, while the hypothetical mechanism

would be a decay channel that mostly occurs after several steps in the evaporation, when

a few nucleons and alpha particles were already evaporated. This can be a consequence

of the fact that the fission probability decreases fast as the nuclear mass decreases. Also,
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this mechanism is likely to be a binary process, with a light fragment with mass up to 40

u being emitted and leaving a heavier counterpart with mass in the range between that of

fission fragments and that of spallation.

Two possible hypothesis can be drawn from the above considerations: either most of

the excitation energy is spent in the emission of the light fragment in the binary process;

or the large fragment still has enough energy to evaporate more nucleons. Let us suppose

that this process leads to the formation of two cold fragments, so no more nucleons can be

emitted. In this case, beingAl andAh the mass numbers of the light and heavy fragments,

respectively, the distribution of the light fragment mass is related to the distribution of the

heavy fragment, since their masses are related by Al +Ah = A0, where A0 is the mass of

the nucleus that is undergoing the hypothetical binary process. We will assume that the

distribution of the light fragment mass is given by the Gaussian function:

P (Al) = p0 exp
[
− 0.5

(Al − p1
p2

)2 ]
(5.2)

where p0, p1 and p2 are fitting parameters shown in Table 5.9. The distribution of the

heavy fragment will be, therefore, given by P (A0 − Al), where A0 is to be determined

by the following method: we observe that for small values of Al, the mass of the heavy

fragment is close to A0 and therefore is in the region where the spallation peak gives a

significant contribution to the total fragment mass distribution. On the other hand, we

know from the considerations made above that A0 should be somewhat smaller than the

spallation peak, in order to not interfere significatively with the fission process. Therefore,

we adjust the parameter A0 in order to best fit the mass region of the smaller heavy frag-

ments produced through the hypothetical mechanism, that is, the mass range just above

the fission fragment mass region.

Since the binary process should compete with spallation, the total fragment mass dis-

tribution is obtained by summing the contribution from this mechanism to the spallation

distribution. The results are presented in Fig. 5.5 and show that the introduction of this

hypothetical mechanism could, indeed, improve the results, as the light fragment region

can be accurately described and the mass region between the fission and spallation regions

has also improved. While applying this mechanism for the reaction of 11B ion with 209Bi

at 146 MeV results in a fairly good agreement between the CRISP and experimental data,
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Table 5.9: Parameters used to determine the distribution of the light fragment mass.

Parameter 11B +181 Ta 11B +181 Ta 11B +209 Bi

(245.4 MeV) (125.7 MeV) (146 MeV)

Value Value Value

p0 3.99 2.66 25.9

p1 4.34 5.65 -1.12

p2 10.65 9.85 13.1

A0 176 173 204

some disagreement still persists in the region close to the spallation peak for the reactions

of 11B +181 Ta at 245.4 and 125.7 MeV energies, and it can indicate that the spallation

process is not described in our model with the necessary accuracy. The CRISP model can

give accurate results for spallation induced by photons, electrons or protons [32, 35, 84],

but it was not tested before for the case of nucleus-nucleus reactions, when the high an-

gular momentum can introduce important effects, as we observed in the case of fission.

Therefore, we can suppose that, in the same way that the introduction of angular momen-

tum dependency of the fission barrier is fundamental to obtain accurate results for fission

cross section, similarly the effects of angular momentum in the evaporation of neutrons,

protons and alpha particles may be relevant. If these effects enlarge the spallation peak

at the left side which corresponds to lighter spallation products, the agreement with ex-

periment could be improved. We will investigate this possibility, as well as the possible

additional binary mechanism, in a future work.
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(a) 181Ta + 245.4 MeV 11B (b) 181Ta + 125.7 MeV 11B

(c) 209Bi + 146 MeV 11B

Figure 5.5: The same as the right column of Figs. 5.1 and 5.3. The black dash-dotted line corre-
sponds to the results of the Gaussian fit to the IMF experimental data and the black dashed line
is obtained by summing contribution from this mechanism to spallation distribution and indicates
the addition of IMF cross section to the counterpart pair of products in spallation region.
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Conclusion

In this work, a systematic analysis of the fragment mass distributions is performed by

comparing the results of a developed branch of Monte Carlo CRISP model for nucleus-

nucleus reactions extended in the framework of the rotating liquid drop model. Since in

heavy-ion induced reactions, a significant amount of angular momentum is transferred

to the system, compared to the nucleon-nucleus and photonuclear collisions, fission-

barrier heights and consequently fission cross sections are calculated by implementation

of RFRM and Nix model.

A qualitative analysis of fissioning systems is done by estimating the probability of

different fission modes using the Z2
f/Af criterion proposed by Chung et al. [81, 82]. The

contribution of fissioning systems above and below the critical fissility parameter, and the

pre- and post-scission emitted nucleons are described well using CRISP model.

Furthermore, heavy-ion induced fission, mass yield distribution of fission fragments

and the effects associated with transferred angular momentum such as the angular mo-

mentum dependent fission barrier height and the fissility of the fissioning nuclei are well

described by the new extended CRISP model. In conclusion, the results obtained after the

implementation of rotating finite range model into the CRISP code are in good agreement

with experimental data.

Besides, a possible mechanism is proposed for the formation of IMFs and the mass

fragments between the fission and spallation regions. It is seen that the introduced hypo-

thetical mechanism is able to describe the aformentioned regions fairly well. This work

has opened the possibility to further studies on the new proposed mechanism and on the

70
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spallation by including angular momentum effects in evaporation of nucleons.

Just as fission-barrier heights are necessary for the calculation of fission and spallation

cross sections, so are moments of inertia necessary for calculations of fission-fragment

angular distributions. To calculate the three principal-axis moments of inertia of the

saddle-point shape of a nucleus with given values of Z,A, and L using RFRM model,

a FORTRAN 77 computer subroutine called MOMFIT is written by Sierk [55]. To be

able to use this code in CRISP, I have converted it from Fortran 77 into C++ language.

The next step in the future study can be the implementation of MOMFIT code into CRISP

model to be able to calculate the rotational energy of the compound nucleus and describe

the heavy-ion reaction better.



Chapter 7

Appendix

7.1 Appendix A

Converted BARFIT subroutine into C++ language and implemented into CRISP code is

brought here.

72
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  1 #include <iostream> 

  2 #include <cstdlib> // for exit() 

  3 #include <math.h> 

  4 using namespace std; 

  5 using std::cerr; 

  6  

  7 int A;  // mass number 

  8 int Z;  // atomic number 

  9 double l;  // angular momentum 

 10 int i, j, k, m, n;  // variables for loops 

 11  

 12 double bfis, bfis0, egs, segs; 

 13  

 14 double aa, zz, a1, a2, aj, ak, amax, amax2, amin, amin2, q, qa, qb, x, y, z; 

 15  

 16 double el, el20, el80, ell, elmax, sel20, sel80, selmax; 

 17  

 18 double pl[10], pz[10], pa[10]; 

 19  

 20 double* lpoly(double x, int n){ // To return an array from function, it must be defined as a pointer.  

 21  

 22     static double temp[10]; // We define static to have a specific location in memory for array temp[10].  

 23  

 24     temp[0] = 1.0; 

 25     temp[1] = x;  

 26  

 27     for (int i=2; i<n; i++){ 

 28  

 29         int ii = i+1; 

 30  

 31         temp[i] = ((2.*ii-3.) * x * temp[i-1] - (ii-2.) * temp[i-2]) / (ii-1.); 

 32  

 33     } 

 34  

 35     return temp; 

 36  

 37 }; 

 38  

 39 int main(int argc, char ** argv){ 

 40  

 41     //double lx2 = AngularMomentum().X()*AngularMomentum().X(); 

 42     //double ly2 = AngularMomentum().Y()*AngularMomentum().Y(); 

 43     //double lz2 = AngularMomentum().Z()*AngularMomentum().Z(); 

 44  

 45     //l = sqrt(lx2 + ly2 + lz2); 

 46  

 47     const double egs1[5][7] = { 

 48         {-1.781665232e6, 4.358113622e6, -4.804291019e6, 3.505397297e6, -1.740990985e6, 5.492532874e5, -9.229576432e4}, 

 49         {-2.849020290e6, 6.960182192e6, -7.666333374e6, 5.586825123e6, -2.759325148e6, 8.598827288e5, -1.431344258e5}, 

 50         {9.546305856e5, -2.381941132e6, 2.699742775e6, -2.024820713e6, 1.036253535e6, -3.399809581e5, 5.896521547e4}, 

 51         {2.453904278e5, -6.262569370e5, 7.415602390e5, -5.818008462e5, 3.035749715e5, -9.852362945e4, 1.772385043e4}, 

 52         {3.656148926e5, -9.026606463e5, 1.006008724e6, -7.353683218e5, 3.606919356e5, -1.108872347e5, 1.845424227e4}, 

 53     }; 

 54  

 55     const double egs2[5][7] = { 

 56         {4.679351387e6, -1.137635233e7, 1.237627138e7, -8.854155353e6, 4.290642787e6, -1.314924218e6, 2.131536582e5}, 

 57         {7.707630513e6, -1.870617878e7, 2.030222826e7, -1.446966194e7, 6.951223648e6, -2.095971932e6, 3.342907992e5}, 

 58         {-2.718115276e6, 6.669154225e6, -7.334289876e6, 5.295832834e6, -2.601557110e6, 8.193066795e5, -1.365390745e5}, 

 59         {-9.845252314e5, 2.413451470e6, -2.656357635e6, 1.909275233e6, -9.129731614e5, 2.716279969e5, -4.417841315e4}, 

 60         {-1.107173456e6, 2.691480439e6, -2.912593917e6, 2.048899787e6, -9.627344865e5, 2.823297853e5, -4.427025540e4}, 

 61     }; 

 62  

 63     const double egs3[5][7] = { 

 64         {-3.600471364e6, 8.829126250e6, -9.781712604e6, 7.182555931e6, -3.579820035e6, 1.122573403e6, -1.839672155e5}, 

 65         {-5.805932202e6, 1.422377198e7, -1.575666314e7, 1.156915972e7, -5.740079339e6, 1.777161418e6, -2.871137706e5}, 

 66         {1.773029253e6, -4.473342834e6, 5.161226883e6, -3.941330542e6, 2.041827680e6, -6.714631146e5, 1.153532734e5}, 

 67         {4.064280430e5, -1.073350611e6, 1.341287330e6, -1.108259560e6, 5.981648181e5, -1.952833263e5, 3.423868607e4}, 

 68         {7.419581557e5, -1.845960521e6, 2.083994843e6, -1.543982755e6, 7.629263278e5, -2.328129775e5, 3.738902942e4}, 

 69     }; 

 70  

 71     const double egs4[5][7] = { 

 72         {2.421750735e6, -5.883394376e6, 6.387411818e6, -4.550695232e6, 2.182540324e6, -6.518758807e5, 9.952777968e4}, 

 73         {4.107929841e6, -9.964568970e6, 1.079547152e7, -7.665548805e6, 3.646532772e6, -1.070414288e6, 1.594230613e5}, 

 74         {-1.302310290e6, 3.198405768e6, -3.517981421e6, 2.530844204e6, -1.228378318e6, 3.772592079e5, -6.029082719e4}, 

 75         {-5.267906237e5, 1.293156541e6, -1.424705631e6, 1.021187317e6, -4.813626449e5, 1.372024952e5, -2.023689807e4}, 

 76         {-6.197966854e5, 1.506909314e6, -1.629099740e6, 1.141553709e6, -5.299974544e5, 1.505359294e5, -2.176008230e4}, 

 77     };  

 78     

 79     const double egs5[5][7] = { 

 80         {-4.902668827e5, 1.231673941e6, -1.429330809e6, 1.114306796e6, -5.873353309e5, 1.895325584e5, -2.969272274e4}, 

 81         {-8.089034293e5, 2.035989814e6, -2.376692769e6, 1.868800148e6, -9.903614817e5, 3.184776808e5, -4.916872669e4}, 

 82         {1.282510910e5, -3.727491110e5, 5.216954243e5, -4.718718351e5, 2.742543392e5, -9.500485442e4, 1.596305804e4}, 

 83         {-1.704435174e4, 4.071377327e3, 7.268703575e4, -1.215904582e5, 9.055579135e4, -3.406036086e4, 5.741228836e3}, 

 84         {8.876109934e4, -2.375344759e5, 3.008350125e5, -2.510379590e5, 1.364869036e5, -4.380685984e4, 6.669912421e3}, 

 85     }; 

 86  

 87     // cout << "egs1: " << egs1[0][0] << endl; 

 88      // const double egscof[5][7][5] = { 

 89      //     {egs1[5][7], egs2[5][7], egs3[5][7], egs4[5][7], egs5[5][7]} 

 90      // }; 

 91  

 92     double egscof[5][7][5]; 

 93  

 94     for (int i = 0; i < 5; ++i) 

 95     { 

 96         for (int j = 0; j < 7; ++j) 

 97         { 

 98             egscof[i][j][0] = egs1[i][j]; 

 99         } 

100     } 

101  

102     for (int i = 0; i < 5; ++i) 

103     { 

104         for (int j = 0; j < 7; ++j) 

105         { 

106             egscof[i][j][1] = egs2[i][j]; 

107         } 

108     } 

109  

110     for (int i = 0; i < 5; ++i) 

111     { 
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112         for (int j = 0; j < 7; ++j) 

113         { 

114             egscof[i][j][2] = egs3[i][j]; 

115         } 

116     } 

117  

118     for (int i = 0; i < 5; ++i) 

119     { 

120         for (int j = 0; j < 7; ++j) 

121         { 

122             egscof[i][j][3] = egs4[i][j]; 

123         } 

124     } 

125  

126     for (int i = 0; i < 5; ++i) 

127     { 

128         for (int j = 0; j < 7; ++j) 

129         { 

130             egscof[i][j][4] = egs5[i][j]; 

131         } 

132     } 

133  

134     // cout << "egscof: " << egscof[1][1][4] << endl; 

135  

136     const double emncof[5][4] = { 

137         {-9.01100e+2, 1.35355e+4, -3.26367e+3, 7.48863e+3}, 

138         {-1.40818e+3, -2.03847e+4, 1.62447e+3, -1.21581e+4}, 

139         {2.77000e+3, 1.09384e+4, 1.36856e+3, 5.50281e+3}, 

140         {-7.06695e+2, -4.86297e+3, 1.31731e+3, -1.33630e+3}, 

141         {8.89867e+2, -6.18603e+2, 1.53372e+2, 5.05367e-2}, 

142     }; 

143  

144     const double elmcof[5][4] = { 

145         {1.84542e+3, -2.24577e+3, 2.79772e+3, -3.01866e+1}, 

146         {-5.64002e+3, 8.56133e+3, -8.73073e+3, 1.41161e+3}, 

147         {5.66730e+3, -9.67348e+3, 9.19706e+3, -2.85919e+3}, 

148         {-3.15150e+3, 5.81744e+3, -4.91900e+3, 2.13016e+3}, 

149         {9.54160e+2, -1.86997e+3, 1.37283e+3, -6.49072e+2}, 

150     };    

151  

152     const double emxcof[7][5] = { 

153         {-4.10652732e6, 1.08763330e7, -8.76530903e6, 6.30258954e6, -1.45539891e6}, 

154         {1.00064947e7, -2.63758245e7, 2.14250513e7, -1.52999004e7, 3.64961835e6}, 

155         {-1.09533751e7, 2.85472400e7, -2.35799595e7, 1.65640200e7, -4.21267423e6}, 

156         {7.84797252e6, -2.01107467e7, 1.70161347e7, -1.16695776e7, 3.24312555e6}, 

157         {-3.78574926e6, 9.48373641e6, -8.23738190e6, 5.47369153e6, -1.67927904e6}, 

158         {1.12237945e6, -2.73438528e6, 2.42447957e6, -1.54986342e6, 5.23795062e5}, 

159         {-1.77561170e5, 4.13247256e5, -3.65427239e5, 2.15409246e5, -7.66576599e4}, 

160     }; 

161  

162     const double elzcof[7][7] = { 

163         {5.11819909e+5, -1.13269453e+6, 1.37543304e+6, -8.56559835e+5, 3.28723311e+5, 4.15850238e+4, -1.82751044e+5}, 

164         {-1.30303186e+6, 2.97764590e+6, -3.65808988e+6, 2.48872266e+6, -1.09892175e+6, 7.29653408e+4, 3.91386300e+5}, 

165         {1.90119870e+6, -4.54326326e+6, 5.47798999e+6, -4.07349128e+6, 2.03997269e+6, -4.93776346e+5, -3.03639248e+5}, 

166         {-1.20628242e+6, 3.00464870e+6, -3.78109283e+6, 3.12835899e+6, -1.77185718e+6, 6.01254680e+5, 1.15782417e+5}, 

167         {5.68208488e+5, -1.44989274e+6, 1.84131765e+6, -1.62394090e+6, 9.96051545e+5, -4.01308292e+5, -4.24399280e+3}, 

168         {5.48346483e+4, -1.02026610e+5, 1.53669695e+4, 1.19797378e+5, -1.53305699e+5, 9.65968391e+4, -6.11477247e+3}, 

169         {-2.45883052e+4, 6.27959815e+4, -6.96817834e+4, 4.25737058e+4, -1.12982954e+4, -3.49596027e+3, 3.66982647e+2}, 

170     };    

171      

172     Z=65; 

173     l=50; 

174  

175     if(Z<19 || Z>111){ 

176             bfis = 0.0; 

177             segs = 0.0; 

178             selmax = 0.0; 

179  

180             std::cout << "*  *  *  *  barfit is called with  Z  less than 19 or greater than 111.  bfis is set to 0.0.  *  *  *  *" << endl; 

181  

182             return bfis, segs, selmax; 

183     } 

184  

185     if(Z>102 && l>0){ 

186             bfis = 0.0; 

187             segs = 0.0; 

188             selmax = 0.0; 

189  

190             std::cout << "*  *  *  *  barfit is called with Z  greater than 102 and  L  not equal to zero.  bfis is set to 0.0.  *  *  *  *" << endl

191  

192             return bfis, segs, selmax; 

193     } 

194  

195     A = 153; 

196     el = l; 

197     amin = 1.2*Z + 0.01*Z*Z; 

198     amax = 5.8*Z - 0.024*Z*Z; 

199  

200  

201     if(A<amin || A>amax){ 

202             bfis = 0.0; 

203             segs = 0.0; 

204             selmax = 0.0; 

205  

206             std::cout << "*  *  *  *  barfit is called with  A outside the allowed values *  *  *  *" << endl; 

207  

208             return bfis, segs, selmax; 

209     } 

210  

211     aa = A/400.0; 

212     zz = Z/100.0; 

213     bfis0 = 0.0; 

214  

215     // double * pl = lpoly (0.28, 3); // pl is defined as a pointer.  

216     //Since the function lpoly returns an array or a pointer, we can assign lpoly to the pointer pl. 

217      

218     // cout << pl[1] << endl; 

219     // cout << *(pl+1) << endl; // another way to return the arrays. 

220  

221     double * temppz = lpoly (zz, 7);  

222  

223     for (int i = 0; i < 7; i++) 
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224     { 

225         pz[i] = *(temppz+i); 

226     } 

227  

228     double * temppa = lpoly (aa, 7); 

229  

230     for (int i = 0; i < 7; i++) 

231     { 

232         pa[i] = *(temppa+i); 

233     } 

234  

235     for (int i = 0; i < 7; i++) 

236     { 

237         for (int j = 0; j < 7; j++) 

238         { 

239             bfis0 = bfis0 + elzcof[j][i] * pz[j] * pa[i];  

240         } 

241     } 

242  

243     // cout << pa[1] << ", " << pz[1]  << endl; 

244     cout << bfis0 << endl; 

245  

246     egs = 0.0; 

247     segs = egs; 

248     bfis = bfis0; 

249  

250     amin2 = 1.4*Z + 0.009*Z*Z; 

251     amax2 = 20 + 3.0*Z; 

252  

253     if((A<amin2-5.0 || A>amax2+10.0) && l>0){  

254             bfis = 0.0; 

255             segs = 0.0; 

256             selmax = 0.0; 

257  

258             std::cout << "*  *  *  *  barfit is called with  A outside the allowed values for nonzero  L *  *  *  *" << endl; 

259  

260             return bfis, segs, selmax; 

261     } 

262  

263     el80 = 0.0; 

264     el20 = 0.0; 

265     elmax = 0.0; 

266  

267     for (int i = 0; i < 4; i++) 

268     { 

269         for (int j = 0; j < 5; j++) 

270         { 

271             el80 = el80 + elmcof[j][i]*pz[j]*pa[i]; 

272  

273             el20 = el20 + emncof[j][i]*pz[j]*pa[i]; 

274         } 

275     } 

276  

277     sel80 = el80; 

278     sel20 = el20; 

279  

280     for (int i = 0; i < 5; i++) 

281     { 

282         for (int j = 0; j < 7; j++) 

283         { 

284             elmax = elmax + emxcof[j][i]*pz[j]*pa[i]; 

285         } 

286     } 

287  

288     selmax = elmax; 

289  

290     if (l < 1) 

291     { 

292         return bfis, segs, selmax; 

293     } 

294  

295     x = sel20/selmax; 

296     y = sel80/selmax; 

297  

298     if (el > sel20) 

299     { 

300         aj = (-20.0*pow(x, 5) + 25.0*pow(x, 4) - 4.0)*pow(y-1, 2)*y*y; 

301  

302         ak = (-20.0*pow(y, 5) + 25.0*pow(y, 4) - 1.0)*pow(x-1, 2)*x*x; 

303  

304         q = 0.20/((y-x)*pow((1.0-x)*(1.0-y)*x*y, 2)); 

305  

306         qa =  q*(aj*y - ak*x); 

307  

308         qb = -q*(aj*(2.0*y + 1.0) - ak*(2.0*x + 1.0)); 

309  

310         z = el/selmax; 

311  

312         a1 = 4.0*pow(z, 5) - 5.0*pow(z, 4) + 1.0; 

313  

314         a2 = qa*(2.0*z+1.0); 

315  

316         bfis = bfis*(a1 + (z-1.0)*(a2 + qb*z)*z*z*(z-1.0)); 

317     }else{ 

318  

319         q = 0.20/(pow(sel20, 2)* pow(sel80, 2)*(sel20-sel80)); 

320  

321         qa =  q*(4.0*pow(sel80, 3) - pow(sel20, 3)); 

322  

323         qb = -q*(4.0*pow(sel80, 2) - pow(sel20, 2)); 

324  

325         bfis = bfis*(1.0 + qa*pow(el, 2) + qb*pow(el, 3)); 

326     } 

327  

328     if (bfis <= 0) 

329     { 

330         bfis = 0; 

331     } 

332  

333     if (el > selmax) 

334     { 

335         bfis = 0; 
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336     } 

337  

338 // -------- Calculating rotating ground state energy ------------ 

339  

340     if (el > selmax && l!=1000) 

341     { 

342         return bfis, segs, selmax; 

343     } 

344  

345     ell = el/elmax; 

346  

347     if (l == 1000) 

348     { 

349         ell = 1.0; 

350     } 

351  

352     double * temppl = lpoly (ell, 9);  

353  

354     for (int i = 0; i < 9; i++) 

355     { 

356         pl[i] = *(temppl+i); 

357     } 

358  

359     for (int k = 0; k < 5; k++) 

360     { 

361         for (int m = 0; m < 7; m++) 

362         { 

363             for (int n = 0; n < 5; n++) 

364             { 

365                 egs = egs + egscof[n][m][k]*pz[m]*pa[k]*pl[2*n]; 

366             } 

367         } 

368     } 

369  

370     segs = egs; 

371  

372  

373     if (segs < 0) 

374     { 

375         segs = 0; 

376     } 

377  

378     cout << "bfis: " << bfis << endl; 

379      

380     cout << "segs: " << segs << endl; 

381      

382     cout << "selmax: " << selmax << endl; 

383  

384     return bfis, segs, selmax; 

385  

386 } 
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mekhina. Interaction of 11B with 209Bi and 181Ta targets at intermediate energies.

Phys. Rev. C, 94:024618, Aug 2016.

[2] Robert Vandenbosch and John R Huizenga. Nuclear Fission. Academic Press., New

York, 1973.

[3] D. Hilscher, I. I. Gontchar, and H. Rossner. Fission dynamics of hot nuclei and

nuclear dissipation. Physics of Atomic Nuclei, 57:1187–1199, July 1994.

[4] Wikipedia contributors. Nuclear fission — Wikipedia, the free encyclopedia, 2020.

[Online; accessed 6-September-2020].

[5] A Deppman, S B Duarte, G Silva, O A P Tavares, S Anéfalos, J D T Arruda-Neto,
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Extension of the liège intra nuclear cascade model to light ion-induced collisions for

medical and space applications. Journal of Physics: Conference Series, 420:012065,

mar 2013.

[10] A. Boudard, J. Cugnon, S. Leray, and C. Volant. Intranuclear cascade model for a

comprehensive description of spallation reaction data. Phys. Rev. C, 66:044615, Oct

2002.

[11] K. Mahata, S. Kailas, and S. S. Kapoor. Fission barrier, damping of shell correction,

and neutron emission in the fission of a ∼ 200. Phys. Rev. C, 92:034602, Sep 2015.

[12] Ernest M. Henley and Alejandro Garcia. Subatomic Physics. World Scientific Pub-

lishing Co. Pte. Ltd., 3rd edition, 2007.

[13] Amos DeShalit and Herman Feshbach. Theoretical Nuclear Physics: Nuclear struc-

ture. Wiley, 1st edition, 1974.

[14] C. H. Townes, H. M. Foley, and W. Low. Nuclear quadrupole moments and nuclear

shell structure. Phys. Rev., 76:1415–1416, Nov 1949.

[15] James Rainwater. Nuclear energy level argument for a spheroidal nuclear model.

Phys. Rev., 79:432–434, Aug 1950.

[16] Aage Bohr. On the quantization of angular momenta in heavy nuclei. Phys. Rev.,

81:134–138, Jan 1951.

[17] S. G. Nilsson. Binding states of individual nucleons in strongly deformed nuclei.

Kgl. Danske Videnskab, Selskab. Mat.-fys. Medd., 29:1 – 69, 1955.



Bibliography 79

[18] William D. Myers and Wladyslaw J. Swiatecki. Anomalies in nuclear masses.

Lawrence Radiation Laboratory, University of California, Berkeley, California,

1966.

[19] William D. Myers and Wladyslaw J. Swiatecki. Nuclear masses and deformations.

Nuclear Physics, 81(1):1 – 60, 1966.

[20] Ulrich Brosa, Siegfried Grossmann, and Andreas Müller. Nuclear scission. Physics

Reports, 197(4):167 – 262, 1990.

[21] T. Kodama, S. B. Duarte, K. C. Chung, and R. A. M. S. Nazareth. Cluster approach

to intranuclear cascade for relativistic heavy-ion collisions. Phys. Rev. Lett., 49:536–

539, Aug 1982.
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code for nuclear evaporation and fission calculations. Computer Physics Communi-

cations, 145(3):385 – 394, 2002.

[24] I Gonzalez, C Barbero, A Deppman, S B Duarte, F Krmpotić, and O Rodriguez.
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Photofissility of actinide nuclei at intermediate energies. Phys. Rev. Lett., 87:182701,

Oct 2001.

[28] A. Deppman, G. Silva, S. Anefalos, S. B. Duarte, F. Garcı́a, F. H. Hisamoto, and

O. A. P. Tavares. Photofission and total photoabsorption cross sections in the energy

range of shadowing effects. Phys. Rev. C, 73:064607, Jun 2006.

[29] A. Deppman, O. A. P. Tavares, S. B. Duarte, J. D. T. Arruda-Neto, M. Gonçalves,
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[32] A. Deppman, E. Andrade-II, V. Guimarães, G. S. Karapetyan, O. A. P. Tavares, A. R.

Balabekyan, N. A. Demekhina, J. Adam, F. Garcia, and K. Katovsky. Superasym-

metric fission of heavy nuclei induced by intermediate-energy protons. Phys. Rev.

C, 88:064609, Dec 2013.

[33] E. Andrade-II, G. S. Karapetyan, A. Deppman, A. R. Balabekyan, N. A. Demekhina,
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