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Abstract

Evidence for new physics may come from different searches, such as collider ex-
periments, cosmological bounds, astrophysical searches, or neutrino detectors. Sev-
eral open questions motivate them, for example, the hierarchy problem (HP), the
particle nature of dark matter (DM), or the inclusion of neutrino masses in the
Standard Model (SM). Specifically, the HP motivates searches at the Large Hadron
Collider (LHC). This question arises from the severe difference between the elec-
troweak (EW) and the SM ultra-violet (UV) scale ΛUV . The theory sensitivity
is observed when calculating the Higgs mass radiative corrections, which diverge
quadratically with ΛUV . The presence of a light Higgs boson suggests new physics
at the TeV scale or fine-tuning the SM. Although an additional symmetry can al-
leviate the HP, recent data from the LHC has been putting stringent bounds on
theories beyond the SM. The Little Hierarchy Problem (LHP) concerns the sensi-
tivity to the existing energy gap between the EW scale and the LHC reach scale.
Hidden sectors address the LHP. Particularly, Neutral Naturalness (NN) is a class of
models that presents a hidden SU(3) color group, which does not interact strongly
with the SM. Therefore, the light colorless top partner alleviates bounds from the
LHC and presents a unique phenomenology. NN has a distinct signature of dis-
placed vertices from colorless glueballs. In the first part of this thesis, we model
the distribution of displaced vertices at the LHC from the Folded Supersymmetry
scenario, which is a realization of NN. The second part of this thesis concerns DM
indirect searches. Although gravitational observations confirm the existence of DM,
its particle nature remains an open question. DM indirect searches look for signals
of processes where it annihilates into SM particles. Several experiments constraint
such models, including telescopes, neutrino, and cosmic-ray detectors. Specifically,
x-ray telescopes have been searching for evidence of DM particles in the keV mass
range. The most competitive ones, such as CHANDRA or XMM-NEWTON, use
charged coupled device (CCD) technology for imaging and spectroscopy. There is a
proposal for a new telescope in Earth orbit using an improved version of the detector
called skipper CCD. It is advantageous for its extremely low electronic noise. Be-
sides, astrophysical observations require a narrow opening angle. However, a broad
field of view would increase the number of events coming from the feeble interaction
between DM and light. Therefore, the new x-ray telescope with a skipper CCD
and a large opening angle will uniquely search for DM candidates. In this work, we
predict the signal from several DM scenarios: sterile neutrino decay, resonant x-ray
scattering, axion searches, and mirror stars.

Keywords: beyond the standard model, phenomenology, colorless top partners,
dark matter, indirect searches
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Resumo

Evidências de nova f́ısica podem surgir de experimentos distintos. Por exemplo,
na f́ısica de colisores, v́ınculos cosmológicos e astrof́ısicos ou detectores de neutrinos.
Diversas questōes em aberto motivam essa procura, como o problema de hierarquia
(PH), a natureza da matéria escura (ME) ou na inclusão das massas dos neutrinos
no modelo padrão (MP). Notadamente, o PH justifica a procura de nova f́ısica no
grande colisor de hadrons (“Large Hadron Collider”, LHC). Essa questão surge da
rigorosa diferença entre a escala eletrofraca e ultra violeta (UV) do MP, denotada
por ΛUV . A sensitividade da teoria é observada ao calcular correções radiativas à
massa do Higgs, as quais divergem quadraticamente com ΛUV . Logo, a presença
de um boson de Higgs leve indica evidência de nova f́ısica na escala TeV ou ajuste
fino do MP. Apesar de uma simetria adicional aliviar esse problema, dados recentes
do LHC têm imposto v́ınculos ŕıgidos em teorias além do MP. O pequeno prob-
lema da hierarquia (PPH) vem da sentividade à diferença existente entre as escalas
eletrofraca e a qual opera o LHC. O PPH pode ser referido por teorias com um setor
escondido. Especificamente, naturalidade neutra (NN) é uma famı́lia de modelos
que apresentam um grupo de cor escondido SU(3) que não interage fortemente com
o MP. Portanto, o parceiro do quark top sem cor pode ser leve, o qual alivia os
v́ınculos com o LHC e apresenta uma fenomenologia única. NN tem uma assinatura
distinta de vértices deslocados vindos de glueballs sem cor. Na primeira parte desta
tese, nós modelamos a distribuição de vértices deslocados no LHC vindos de um
cenário em Supersimetria Folded, que é uma realização de NN. A segunda parte da
tese concerne procuras indireta por Matéria Escura (ME). Apesar de observaçōes
gravitacionais confirmarem sua existência de ME, não foi provada sua natureza
como part́ıcula elementar. Procuras indireta por ME incluem processos onde a ME
se aniquilam em part́ıculas do MP. Diversos experimentos restringem esses mode-
los, como telescopios, detectores de neutrino ou raios cósmicos. Particularmente,
telescópios de raios-X têm procurado por evidências de candidatos à ME com massa
na escala keV. Os mais competitivos, como CHANDRA e XMM-NEWTON, usam a
tecnologia de charged coupled devices (CCD) para obter imagens e espectroscopia.
Existe uma proposta de um novo telescópio na orbita da Terra com uma versão
melhorada do detector chamada skipper CCD. Sua vantagem consiste em rúıdos
eletrônicos extremamente baixos. Além disso, observaçōes astrof́ısicas requerem um
ângulo de abertura estreito. Entretanto, um campo de visão amplo deve aumentar
o número de eventos vindos de interações extremamente fracas entre ME e a luz.
Portanto, o novo telescópio de raios-X com skipper CCD e um vasto ângulo de aber-
tura irá procurar por ME de uma maneira única. Neste trabalho, nós estudamos os
sinais vindo de diversos cenários: decaimentos de neutrinos estéreis, espalhamento
ressonante de raios-X, procura por axions e estrelas de matéria espelhada.

Palavras-chave: além do modelo padrão, fenomenologia, parceiros do quark
top sem cor, matéria escura, procura indireta.
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1
Introduction

The standard model (SM) describes the elementary particles and their
interactions. It is a quantum field theory that includes the electroweak
(EW) and strong interactions. The EW sector is described by the
gauge symmetry SU(2)L×U(1)Y , which is spontaneously broken into
the electromagnetic U(1)EM by the Higgs mechanism. Besides, the
color gauge group SU(3)C describes the strong interactions, which
represent the quarks and gluons propagations and interactions.

This thesis concerns the phenomenology of two different experi-
mental searches for new physics beyond the SM. The SM was con-
firmed experimentally with remarkable precision. However, there are
unanswered questions in high energy physics, such as the Hierarchy
Problem of scales (HP) and the inclusion of Dark Matter (DM). The
first one motivates the first part of the thesis; it consists of an anal-
ysis of displaced vertices from a hidden sector at the Large Hadron
Collider (LHC). Meanwhile, the second part shows a study of indirect
DM detection at a new X-ray telescope.

1.1 The standard model of particle physics

The standard model (SM) of particle physics describes with preci-
sion the elementary particles and their interactions. It is described
as the gauge symmetries SU(3)C × SU(2)L × U(1)Y . Moreover, the
matter content of the SM has three fermion families among quarks
and leptons. Firstly, the color group SU(3)C gives rise to the strong
interactions between quarks and gluons. Meanwhile, the EW sector
corresponds to the SU(2)L×U(1)Y , which is spontaneously broken into
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U(1)EM by the Higgs mechanism. This process dynamically generates
the masses of the EW gauge bosons W± and Z0, with a remaining
non-massive photon.

1.1.1 Strong interactions

Quantum Chromodynamics (QCD) is derived from the non-abelian
gauge theory with a color group SU(3)C . The classical strong interac-
tion Lagrangian describes the dynamics of quarks qa,b and gluons Ga

µ

as:

LQCD = −1

4
F a
µνF

µνa +
∑

Flavours

q̄a(i /D −m)abqb, (1.1)

wich is sumed over the flavor indices a and b. The non-abelian tensor
field F a

µν is defined by:

F a
µν = ∂µG

a
ν − ∂νGa

µ − gSfabcGb
µG

c
ν, (1.2)

where gS is the strong coupling and fabc is the structure constant,
defined by the comutator:

ifabcT c = [T a, T b], (1.3)

where the 8 SU(3)C generators T a = λa

2 are represented by Gell-Mann
matrices λa. Finally, the QCD Lagrangian in equation (1.1) has a
covariant derivative Dmu, which is defined such that the theory is
gauge invariant:

Dµ = ∂µ + igsG
a
µT

a. (1.4)

For a complete understanding, one must include gauge fixing and ghost
terms to the QCD Lagrangian, which can be found in textbooks, such
as references (1; 2).

Strongly charged elementary particles cannot be found free in na-
ture; they are always confined inside hadrons. This behavior is de-
scribed through radiative corrections. The running coupling αS =
4πg2

S is measured in a certain energy scale then evolved to higher val-
ues of energy. For instance, the strong coupling is well known at the
mass of Z boson scale αS(MZ) = 0.1184 ± 0.001 (3). Next, it can be
estimated to different energy scales µ through the beta funcion:

β =
d gS

dLog(µ)
. (1.5)
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The one loop QCD corrections the beta function is given by:

βQCD = −g
3
S

4π

(
11

3
C2(G)− 4

3
nf C(r)

)
, (1.6)

where nf is the number of fermions in a given a representation r.
Besides, C2(G) is the Casimir operator and C(r) defined by

tr[T ar T
b
r ] = C(r)δab. (1.7)

For the SM SU(3) color group, C2(G) = 3 and C(r) = 1
2 . The num-

ber of quark flavors corresponds to nf = 6. Moreover, the SM lower
infra-red (IR) validity is given by the strongly coupled QCD quan-
tum corrections at low energies, where the color interactions cannot
be described perturbatively. Finally, since the QCD beta function
negative, the strong coupling gs has large values at small energies and
is asymptotically free for high energies. Therefore, the strong interac-
tions justifies the confinement model of quarks inside hadrons.

1.1.2 Electroweak Interactions

The EW model describes the nature of weak interactions unified in
high energies with the electromagnetic interactions. S. L. Glashow in
1961 (4), S. Weinberg in 1967 (5), and A. Salam proposes the EW
model. The initial SM Lagrangian does not allow mass terms to the
gauge bosons. However, they are experimentally observed at mW =
80.379 ± 0.012 GeV and mZ = 91.1876 ± 0.0021 GeV (6). The EW
model dynamically generates gauge bosons masses by spontaneous
symmetry breaking.

The EW model initially contains the gauge symmetry SU(2)L ×
U(1)Y , where L stands for the chiral left handed representation, and
Y is the hypercharge. It simply contains massless gauge bosons Aa

µ

of SU(2) and Bµ of U(1). The flavor indices varies as a = 1, 2, 3,
and the greek indices µ, ν = 0, 1, 2, 3, 4 indicates the time-space
metric. Moreover, the model includes a potential V (φ†φ). It describes
the complex scalar field φ, which transforms as a doublet of SU(2).
Finally, the EW Lagrangian is described as:

LEW = (Dµφ)†(Dµφ)− 1

4
Aa
µνA

aµν − 1

4
BµνB

µν − V (φ†φ). (1.8)
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The strength field of the gauge bosons corresponds to:

Aa
µν = ∂µA

a
ν − ∂νAa

µ.+ gfabcAb
µA

c
ν, (1.9)

Bµν = ∂µB
a
ν − ∂νBa

µ, (1.10)

where g is the coupling. The structure constant fabc is defined by
the commutator of the SU(2) group generator ta as in equation 1.3,
which can be represented as Pauli matrices ta = σa

2 . Furthermore,
the covariant derivative Dµ is defined such that the theory is gauge
invariant:

Dµφ = (∂µ −
ig

3
Aa
µσ

a − iYφg′Bµ)φ, (1.11)

where the couplings g and g’ correspond to SU(2)L and U(1)Y respec-
tively and Y is the correspondent hypercharge.

φ

V (φ)

φ

V (φ)

Figure 1.1: Illustration of spontaneous symmetry breaking of a generic quadratic to
fourth potential .

The SU(2) symmetry in the EW Lagrangian does not allow mass
terms for the gauge bosons. They are going to be dynamically gener-
ated by the Higgs mechanism. First, the model includes a spontaneous
symmetry breaking. In this case, the potential V (φ†φ) in equation 1.8
is going to change from a quadratic massive potential V (φ†φ) = m2φ†φ

to the quartic potential:

V (φ†φ) = −m2(φ†φ) + λ(φ†φ)2, (1.12)

where the mass term also acquires a negative sign. Figure 1.1 illus-
trates the spontaneous symmetry breaking, where the radial parabula
symmetry is promoted to a quartic function, maintaining only a sym-
metry along the vertical axis.



The standard model of particle physics 5

The gauge boson mass term arises expanding the scalar field around
its vacuum expected value (VEV), which is defined by the potential’s
minimum:

〈φ〉0 = ±m
2

2λ
. (1.13)

One possible choice of the VEV is:

〈φ〉 =
1√
2

(
0

v

)
. (1.14)

where v ∼ 246 GeV. Considering the kinetical terms:

∆Lkin = (Dµφ)†(Dµφ), (1.15)

with the covariant derivative is given in equation 1.11. Therefore, first
term of the expansion is:

∆L =
1

2
(0 v)(gAa

µτ
a +

1

2
g′Bµ)(gAbµτ b +

1

2
g′Bµ)

(
0

v

)
(1.16)

which includes the mass terms for both Aa
µ and Bµ.

∆Lmass =
1

2

v2

4
[g2(A1

µ)2 + g2(A2
µ)2 + (−gA3

µ + g′Bµ)2]. (1.17)

We can identify the states A1,2
µ with the charged gauge bosons W±

µ :

W±
µ =

1√
2

(A1
µ ∓ iA2

µ), (1.18)

with mW = g
v

2
. (1.19)

In order to obtain the neutral Z0 and photon, it is necessary to rotate
A3
µ e Bµ to the mass eigenstates:(

Z0
µ

Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
A3
µ

Bµ

)
, (1.20)

where the weak mixing angle θW is defined by the couplings:

tan θ =
g′

g
. (1.21)
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Finally, the theory presents the massive EW neutral boson:

Z0
µ =

1√
g2 + g′2

(gA3
µ − g′Bµ), (1.22)

with mZ =
√
g2 + g′2

v

2
; (1.23)

(1.24)

and the ortogonal state corresponding to the non-massive photon:

Aµ =
1√

g2 + g′2
(g′A3

µ + gBµ) (1.25)

On the other hand, we only considered the first term of the scalar
expansion. The next one is obtained when the four degrees of freedom
of φ(xµ) are represented in terms of the complex fields h(xµ) and θ(xµ)
as:

φ(xµ) =
1√
2

(
0

v + h(xµ)

)
ei

θ(xµ)

v , (1.26)

In this case, the resulting kinetical Lagrangian also generates an off
diagonal interaction terms that mixes the gauge fields with a kine-
matical term of the form Aµ ∂

µθ(xµ). However, the gauge fixing can
elminate this term. Since the theory is invariant under the gauge
transformations:

Aµ → Aµ +
1

gv
∂µα(xµ) (1.27)

θ(xµ)→ θ(xµ) + fα(xµ). (1.28)

The choice of the parameters α(xµ) and θ(xµ) can fix the gauge and
avoid the problem. For instance, the unitary gauge choice states that
θ(xµ) = 0, leading to a theory with massive EW bosons and one degree
of freedom that is identified with the Higgs boson. In this case, the
potential is minimized with a VEV as v2 = µ2/y and the Higgs mass
defined as mH =

√
2y v.

Furthermore, the fermion masses are also not allowed by the gauge
symmetry. They are dynamically generated from Yukawa terms:

LY = yĒL φ eR + h.c., (1.29)

where EL is the fermion left-handed doublet and eR is the singlet repre-
sentation of the right-handed fermion. After EW symmetry breaking,
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the fermion masses are obtained as:

mf =
y v√

2
. (1.30)

To sum up, the SM of particle physics is described through the
EW symmetry breaking SU(2)L×U(1)Y → U(1)EM , and the SU(3)C
strong sector. It contains massless photons and gluons, three massive
weak bosons Z0, W±, and the Higgs boson. The matter content of the
SM includes three families of fermions, divided into quarks and lep-
tons. Section ?? briefly discussed the strong interactions, while section
?? described the EW model, in which the Higgs mechanism generates
the mass terms of the gauge bosons and fermions dynamically.

1.2 Beyond the Standard Model

Although the SM agrees precisely with the data, there are several
questions it cannot answer. For instance, it does not describe the
cosmological constant or includes gravitational interactions. Besides,
neutrinos in the SM are not massive, though the neutrino oscillation
experiments showed that they must have a mass to allow the flavor
mixing (7). There is a significant number of questions that motivate
theories Beyond the Standard Model (BSM) and searches for new
physics. In specific, this thesis analyses signals from theories BSM
motivated by two different questions. The first part concerns the study
of solutions to the Little Hierarchy Problem of scales (LHP), while the
second part studies Dark Matter (DM) searches.

1.2.1 The Little Hierarchy Problem

The Hierarchy Problem of scales (HP) motivates searches for new
physics at TeV scales. This question arises from the sensitivity of
the SM from the EW to the ultra-violet (UV). For instance, when
calculating radiative corrections to the Higgs mass, it is necessary to
include fermionic loops into the Higgs propagator, as shown in the
first diagram of figure 1.2. This calculation results in a quadratic
dependence with the UV scale ΛUV :

δm2
H = −

∑
fermions

NC yf
8π2

Λ2
UV +O(Log ΛUV ), (1.31)
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H

t

t̄

H H

t̃

H

Figure 1.2: The diagram on the left corresponds to radiative corrections to the
Higgs mass includes contributions with a fermionic loop to its propagator. The
largest contribution comes from the top loop for its high valued Yukawa coupling.
On the right, the stop diagram that cancels exactly contributions from the figure on
the left, exemplifying how the MSSM solves the HP.

where NC is the number of colors, and yf is the Yukawa coupling
of each fermion. Since the top quark Yukawa is the largest amongst
the fermions, it generates the highest contribution to this calculation.
Therefore, we are going to consider now the loop contribution of the
top quark to the Higgs mass radiative corrections. Experimentally,
the LHC has measured a light Higgs boson with mH = 125 GeV.
Therefore, ΛUV should be naturally at the TeV scale to avoid severe
fine-tuning. Since the corrections to the scalar field go quadratically to
its bare mass, the theory fine-tuning is greater than any other physical
parameter ever observed. The infrared (IR) difference to the UV scale
may reach 1 part to 1034 when considering the difference between the
electroweak and Planck scale. The desired new physics scale up to
the TeV scale can generate fine tunning of the order 1%, meanwhile
pushing the UV limit to 10 TeV drastically aggravates to 1 part of
104.

Although the HP motivated the LHC to operate at the TeV scale,
experimental data restricted the main theories candidates to solve
this question. The existing gap between the EW scale and the LHC
operating energy scale may already imply fine-tuning the SM, orig-
inating the so-called Little Hierarchy Problem (LHP). For example,
the Minimal Supersymmetric Standard Model (MSSM) includes a su-
perpartner to the top quark that allows it to be natural. The new
particle is a scalar top, or stop. It generates the diagram in figure
1.2, which cancels exactly the top contribution to the Higgs mass in
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equation 1.31. However, bounds from the LHC put the stop mass at
large scale. Figure 1.3 shows results from the CMS (Compact Muon
Solenoid) collaboration of searches for the stop, which goes up to 1
TeV without any discover (8). Besides, the figure also shows that
bounds on gluino masses are even higher, reaching approximately 2
TeV. Even though the direct searches for the stop may still have some
light mass parameter space, the radiative corrections to the stop mass
include gluino contributions, which have much more strict bounds.
Therefore, these results imply in fine tunning the MSSM itself.

1.2.2 Dark Matter Searches

Dark Matter (DM) evidence comes from gravitational observations.
However, it is not included in the SM, and its particle nature is yet
to be proven. DM presents remarkable characteristics, such as its
abundance and the fact that it interacts very feeble with light. In
particular, cosmological observations indicate that only around 4%
of the total energy of the universe is baryonic. Approximately 20%
corresponds to Dark Matter (DM), and Dark Energy constitutes most
of the universe. A detailed description of DM evidence and properties
can be found in reviews and lectures, such as references (6; 9; 10).

The first reliable evidence of DM was the galaxy rotation curves.
Although Fritz Zwicky suggested the name ”DM” in 1933, Vera Ru-
bin and Kent Ford’s observations in 1978 of galaxy rotations vali-
dates the presence of the dark halo in the galaxy (11; 12). Another
evidence comes from galaxy clusters observations, such as the Bul-
let Cluster (1E0657-558) (13). The gravitational potential and weak
gravitational lensing provide information to calculate DM abundance
and its limited self-interaction (14). However, the most compelling
evidence comes from the Cold Dark Matter (CDM) assumption, the
ΛCDM paradigm (15). N-body simulations demonstrate how early
universe conditions lead to large scale structures today. They con-
clude that DM cannot be relativistic, which means it is cold or warm,
depending on the mean velocity distribution. On the other hand, Mod-
ified Newtonian Dynamics (MOND) models are an alternative to DM,
where transformations of the gravitational field obtain the physics.
However, they are less compelling than ΛCDM models, which have
more precise predictions to the Cosmic Microwave Background (CMB)
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(a) Gluino pair production.

(b) Squark pair production.

Figure 1.3: CMS bounds on supersymmetric partners production. Limitis at 95%
confidence level. (8)
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spectrum and large scale structure data (10).
Cosmological observations provide the properties of Dark Matter:

its abundance; it is dark or invisible; it is cold or warm; it is collision-
less; it is stable, and it preserves Big Bang Nucleosynthesis (BBN).
Firstly, galaxy cluster observations and the galaxy rotation curves
show that DM mass density is nearly five times greater than bary-
onic matter. For instance, Planck Collaboration measurements of the
CMB anisotropies shows that DM density Ωh2 = 0.120 ± 0.001, and
baryonic matter Ωbh

2 = 0.0224 ± 0.0001 (16). Secondly, data on the
Bullet Cluster put bounds on DM self-interaction using gravitational
lensing (9). At last, DM does not severely interact with light; the
constraints of its coupling with a photon is Γγ ≤ 1.3 × 10−5 at 95%
CL (17).

There are several theories with dark matter candidates; they cover
a spectrum from 10−22 eV to 10 solar masses. For instance, the QCD
axion lies typically in the ultralight mass spectrum, between 10−12

to 10−6 eV, while weakly interactive massive particles (WIMP) are
at the GeV until TeV scale. Moreover, primordial black holes can
reach ten solar masses and may constitute part of the DM abundance.
Baryonic matter is partially an option since massive compact halo
objects (MACHOS) can constitute at most 8% of the total dark matter
density due to microlensing effect (18; 19; 20).

Figure 1.4: DM searches can be divided into three cathegories, represented by the
diagram above. From right to left, collider experiments produces the candidates.
From top to bottom, the picture shows direct detection DM-SM scattering. At last,
from left to right the diagram shows indirect detection, where DM annihilates into
SM products.

Numerous experiments probe DM models and search for an ele-
mentary particle that justifies its evidence. They include colliders,
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neutrino detectors, telescopes, cosmic ray detectors, and cosmological
probes. DM searches are divided into three categories, which are rep-
resented in Figure 1.4. First, DM can be produced from SM particles
at colliders. Then, direct detection searches measure the recoil en-
ergy of a nucleus or nucleon interacting with a DM particle. Finally,
indirect detection requires DM annihilation. In chapter 4, we are go-
ing to study the indirect detection of DM candidates in a new X-ray
telescope.

1.3 Searches for new signals

To conclude this chapter, we give a brief description of the research
presented in this thesis. It concerns the phenomenology of two differ-
ent experimental searches for new physics beyond the SM. The first
part concerns hidden sector theories as a solution to the LHP, where
we model the displaced vertices distribution from a hidden glue at the
LHC. The second part focus on DM evidence in a new X-ray telescope.

Firstly, we present the modeling of displaced vertices at the LHC
from glueballs charged under a hidden color (21). Neutral Natural-
ness (NN) refers to a family of models candidates for solving the LHP.
They present a new color group that does not interact with the SM.
In this case, there are colorless top partners, which can solve the LHP
and present a distinct phenomenology. In particular, the production
of neutral quarks can generate colorless glueballs, which are invisible
hadrons made of gluons of a hidden sector. These can decay back into
the SM through highly suppressed interactions with the Higgs. There-
fore, the production of colorless quark partners can generate a signal
of displaced vertices at the detector, which characterizes uniquely NN
models.

Secondly, we analyze distinct DM models and their signals in a
new X-ray telescope. Telescopes play an essential role in indirect de-
tection, covering a spectrum from radio to gamma rays. Specifically,
X-ray telescopes can probe several DM models with light candidates,
typically at the keV scale. The most competitive X-ray telescopes,
such as CHANDRA (22) and XMM-NEWTON (23) uses the charged
coupled device (CCD) technology for imaging and spectroscopy. A
new experiment is proposed using an improved version of this tech-
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nology called skipper CCDs (24). It would put a different perspective
into DM indirect searches because of its low electronic noise and broad
opening angle. The second part of the thesis is an analysis of possible
distinct signals from diverse DM scenarios in the new X-ray telescope
(25).

This thesis is organized as follows. The first part concerns the
model of displaced vertices from a hidden glue in a NN realization
called Folded Supersymmetry (F-SUSY). In the second part, we an-
alyze the effect of several DM models in the new X-ray telescope.
Chapter 2 describes the NN theoretical aspects, particularly develop-
ing an F-SUSY scenario. Next, chapter 3 contains the phenomenology
of displaced vertices from colorless glueballs at the LHC. The second
part of the thesis is located in chapter 4, where we discuss the ad-
vantages of a new X-ray telescope and analyze different scenarios that
would produce a significant signal at the detector.
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Theories with a hidden glue

The first part of the thesis concerns to model the distribution of dis-
placed vertices in theories with a hidden glue (21). We are going to
consider the production of top-quark partners from a specific Neutral
Naturalness (NN) scenario called Folded Supersymmetry (F-SUSY)
(26). The NN models are proposed as a solution to the Little Hier-
archy Problem (LHP). They are a class of theories that extend the
SM with a new color gauge group and a parity Z2 symmetry. Each
NN realization uses different mechanisms to protect the Higgs mass
against radiative corrections. For instance, the F-SUSY scenario in-
cludes the presence of colorless top partners, named folded stops or
f-stops. They are charged under the new color group, and they escape
the strict bounds with the LHC because they are not charged under
the SM color.

F-SUSY is a NN model UV completed with Supersymmetry (SUSY)
in five dimensions. The daughter model is obtained by breaking SUSY
by boundary conditions in a Scherk–Schwarz mechanism (27; 28). The
final spectrum is composed of the SM particles plus colorless partners,
which have different spin numbers similar to the MSSM. A pair of
f-stops can be electrowekly produced at the LHC. In this case, they
would annihilate each other into hidden gluons, which hadronizes to
colorless long-lived glueballs. Their decay to the SM can happen while
still inside the detector, culminating in highly displaced vertices. This
chapter contains a theoretical introduction to hidden sectors, devel-
oping more specific details in the F-SUSY scenario. Meanwhile, the
hidden glue phenomenology is presented in the next chapter.
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2.1 Hidden sector

Theories with a hidden sector are presented as a solution to the LHP.
They are a class of models that extend the SM with an extra confin-
ing group. The new symmetry must protect the Higgs mass against
radiative corrections and present a distinct phenomenology, escaping
the LHC bounds. We chose to perform this calculation in the Neu-
tral Naturalness (NN) realization named Folded Supersymmetry (F-
SUSY). However, the results can be extended to different hidden glue
scenarios.

The hidden glue includes numerous theories, among them NN and
Hidden Valley models. A generic Hidden Valley (29) scenario includes
a non-abelian SU(N) group that does not interact with the SM. On the
other hand, NN is a family of models characterized by adding to the
SM a copy of the strong group SU(3)C and a parity Z2 symmetry that
interchanges the hidden and the SM color. The new confining group
would have the same properties of QCD, though it does not inter-
act strongly with the SM. Therefore, its spectrum cannot be strongly
produced at the LHC, which allows this scenario to escape the exper-
imental bounds. In this case, the LHC can produce relatively light
colorless top-quark partners through EW interactions. Several mod-
els can describe an NN scenario. The most explored in the literature
is the Twin Higgs model (30). This scenario also includes interest-
ing applications in dark matter models (31; 32; 33) while respecting
cosmological bounds (34).

In the Twin Higgs scenario, the Higgs is described as a pseudo-
Nambu Goldstone boson (pNGB) (30). First, we describe the poten-
tial with a global SU(4) as:

V (H) = −m2H†H + λ(H†H)2. (2.1)

Similar to the EW symmetry breaking in the SM, the field H acquires
a VEV at the potential’s minimum 〈|H|〉 = m2/2λ = f , breaking the
SU(4) → SU(3), which generates 7 NGBs. Then, we gauge the sub-
group SU(2)A × SU(2)B and describe the field H with two doublets
H = (HA, HB). Later, we will identify the A and B charges respec-
tively to the SM and hidden symmetry. Finally, the gauge contribution
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to the Higgs mass model is:

∆V (H) =
9g2

AΛ2

64π2
H†AHA +

9g2
BΛ2

64π2
H†BHB =

9g2Λ2

64π2
H†H, (2.2)

where gA,B is the gauge coupling of each sector. There is also a Z2

parity that imposes the couplings universality g = gA = gB, which
allows the two sectors to be written as one, which is proportional to
H † H. Furthermore, the hidden EW bosons masses are generated
from the symmetry breaking, SU(2)B × U(1)B → U(1) through the
f VEV. While the SM Higgs is left uneaten, which is identified with
the SU(2)A doublet HA. To sum up, there are two different scales,
where f is the Twin Higgs VEV, and v is the EW VEV. The physics
is sensitive to these scales. For instance, the fermion Yukawa coupling
and the Higgs decay to the invisible depend on the ratio f

v . If f = v,
the fermionic twin partners would be as light as the SM fermions, and
the Higgs decays to the invisible sector could reach up to 50% of its
total width. Therefore, for a valid phenomenological model, the Z2

symmetry must be softly broken, such that f > v (35).
Corrections to the SM Higgs mass now have a contribution from

the hidden sector. They can cancel the quadratic divergences, leaving
only a logarithm dependence to the top masses in both A and B sec-
tors. Therefore, if the hidden symmetry breaking occurs near the SM
EW scale, and the model is valid until just above the LHC operating
scale. For example, if f ∼ 800 GeV, the model UV scale is estimated
at Λ ∼ 4πf ∼ 10 TeV, and the fine-tuning is estimated at 11% (30).
Furthermore, different realizations of the TH model are possible, such
as the Mirror (30) and fraternal Twin Higgs (36). The former has a
dark sector composed of an exact SM copy. Meanwhile, the frater-
nal scenario contains only the third fermion generation, which is the
minimal matter content to avoid HP.

NN models also include the models: Orbifold Higgs (36), Quirky
Little Higgs models(37), Minimal NN (38) and Hyperbolic Higgs (39)
. First, Orbifold Higgs (36) is a generalization of the Twin Higgs
model, where the Higgs is a pNGB in an orbifolded gauge theory.
Quirky Little Higgs (37) are derived from Little Higgs models, they
can also be presented in compact extradimensional theories. The EW
symmetry SU(2)×U(1) is extended. The global symmetry is broken to
[SU(2)×U(1)]2, describing the SM, and its partners. In the Minimal
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NN (38) model, the hidden sector presents vector-like quarks and no
gauge fields. It describes the Higgs as a pNGB embedded either on a
compact extra dimension or deconstructed scenario (40). At last, the
Hyperbolic Higgs (39) is a model UV completed by a supersymmetric
theory. The scalar top partner can be entirely neutral to the SM. The
portal between the SM and the hidden sector is given by interactions
through the Higgs boson, presenting a distinct LHC phenomenology.

2.2 Folded Supersymmetry

In this work, we are going to specifically develop the hidden glue
phenomenology in the F-SUSY scenario (26), which is one particular
case of NN. This model presents a hidden sector derived from a UV
completion with a supersymmetric theory with a compact extra di-
mension. It is obtained after SUSY breaking by boundary conditions
in the Scherck-Schwarz mechanism. The UV supersymmetric theory
has the same matter content of an N = 2 SUSY, which corresponds
to twice the number of flavor indices of quarks and squarks. After
SUSY breaking, the boundary conditions are chosen, such that half
of the spectrum zero modes are eliminated in the low energy theory.
It results in accidental SUSY, which presents only SM particles and
hidden partners with different spin and color. The F-SUSY model
enjoys of bifold protection. It solves the HP in a similar way of the
MSSM since the model preserves characteristics from the SUSY at the
UV. However, the scalar top partners can be relatively light because
they are charged only under the hidden SU(3). Moreover, quantum
corrections imply that the UV SUSY must be restored above the LHC
operating scale, approximately at 10 TeV.

2.2.1 Bifold Protection

The F-SUSY model enjoys bifold protection, which is obtained when
breaking the UV SUSY theory by boundary conditions. This mecha-
nism will be fully explained in the next section. First, we introduce
the bifold protection with a toy model. It will illustrate how to obtain
the accidental supersymmetric spectrum. Firstly, the simplified model
assumes a theory with global U(N), containing a scalar singlet S that
couples with quarks Q in the fundamental representation of U(N) with
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the potential:

W = λSQ̄iQi, (2.3)

where i = 1 . . . N is the flavor indices. In this case, the singlet mass
squared m2

S is not protected against divergencies from radiative cor-
rections, similar to the HP. Therefore, this problem can be avoided
when assuming this model to be supersymmetric. In this case, W is
promoted to a superpotential and Q to a chiral superfield. It repre-
sents both quarks (q) and their scalar partners’ squarks (q̃). However,
the goal of this toy model is to obtain a non-supersymmetric theory
and still maintain the singlet mass protected.

The first step in a bifold protection mechanism is to duplicate the
number of flavors, resulting in the global symmetry U(2N). Therefore,
the spectrum contains the initial quarks and superpartners, denoted by
(qi, q̃i), with i = 1, . . . , N ; plus a complete copy of the same set (qj, q̃j),
with j = N + 1, . . . , 2N . Moreover, we impose a parity symmetry
composed by Z2R and Z2Γ. The Z2R transformation depends on the
spin of each field. Its eigenvalues are ±1, being odd for fermions and
even for bosons. Meanwhile, the Z2Γ parity is described by a diagonal
matrix:

Γm =



−1
. . .

−1
+1

. . .

−1


. (2.4)

Besides, the theory is invariant under the transformations:

S → S, (2.5)

Qi → ΓmQi, (2.6)

Q̄i → Γ∗mQ̄i. (2.7)

Therefore, this parity transformation will transform the 2N quark
flavors with a negative eigenvalue −1 for the first N components, and
positive eigenvalue +1 for the N + 1 until 2N positions. For instance,
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Figure 2.1: Scheme showing the accidentally supersymmetric spectrum. First, the
theory presents two sets of quarks and squarks, represented in the table above. The
parity under Z2Γ is written in the vertical line, at left to the table. While the Z2R

parity is just below it. We project out the odd states under the product Z2Γ×Z2R,
represented by the red cross. Only the even states are kept, which are surrounded
by the blue balloon. We observe that despite the final spectrum is similar to SUSY,
the flavor numbers of the partners are different, resulting in the accidental SUSY.

this can be visualized in the matrix form of the second line:

q1

. . .

qN
qN+1

. . .
q2N

→ Γm =



−1
. . .

−1
+1

. . .

−1


.



q1

. . .

qN
qN+1

. . .
q2N

 =



−q1

. . .

−qN
+qN+1

. . .
+q2N


(2.8)

Figure 2.1 illustrates how the bifold mechanism achieves an ac-
cidentally supersymmetric spectrum. Half of the entire spectrum is
eliminated when projecting the U(2N) chiral states over the full par-
ity Z2R × Z2Γ. The first N fermionic fields are odd under each of the
discrete symmetries. Therefore, they are invariant under the product
of both parities. Although the second half of the fermion spectrum
is also odd under Z2R, it is even under Z2, therefore, odd under the
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total symmetry. Thus the remaining set of fermions is projected out
because it not invariant under Z2R×Z2Γ. Analogously, the second half
of the bosonic fields will remain in the spectrum, and the first half is
projected out. As result, we obtain the accidental SUSY composed
of fermions (q1, . . . , qN) and scalars (q̃N+1, . . . , q̃2N). The quarks and
squarks are not superpartners because the flavor indices do not match.
However, they still protect the singlet m2

S.

Summing up, the bifold protection guaranties thatmS has no quadratic
divergences from a fermionic loop at low energies. We assumed a su-
persymmetric U(2N) theory, describing the superpotential in equation
2.3. It represents the interaction of the singlet S with the chiral Q.
Then we impose the Z2R × Z2Γ parity and project out the odd states
under the product, generating the accidental SUSY.

Finally, the singlet is protected in one loop by a non-supersymmetric
theory. However, the singlet mass is not protected at two loops, and
quadratic divergences reappear. Besides, the radiative correction to
the squarks masses squared is quadratically divergent with the UV cut-
off scale. Therefore we must restore SUSY at ΛUV not too far above
the TeV scale. When analyzing this effect in NN models, typically
ΛUV = 5 to 15 TeV is enough to escape the LHC bounds without fine
tunning the theory. The next section describes the F-SUSY model,
using an analogous the bifold protection method.

2.2.2 The Scherk–Schwarz mechanism

F-SUSY extends the SM with a new color group. The hidden sec-
tor spectrum is similar to the supersymmetric partners of the SM,
though they are charged under the additional SU(3) instead of the
usual strong interaction. The model is obtained from SUSY in a com-
pact extra dimension, which is broken by boundary conditions in the
Scherk–Schwarz mechanism (27; 28).

Firstly, we describe the compactification of the extra dimension in
the five-dimensional space (~x, y). The fifth y dimension is described
in an orbifold of symmetry S/Z2. The orbifold topology is obtained
by reducing a circle of symmetry S with a Z2 parity. Figure 2.2 shows
the compactification process. The circle with radius R is reduced to
a segment of length L = πR. Besides, the Z2 parity identifies every
point of the upper hemisphere with its opposite on the lower part. The
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orbifold is characterized by two fixed points at y = 0 and y = πR, and
the periodicity f(y) = f(y + πR). Each superfield is described in the
5D Lagrangian. When integrating out the extra dimension, we impose
the periodicity and the field equation of motion. The resulting wave
functions correspond to tower of Kaluza-Klein (KK) modes, where
each state mass increases with 1/R (41; 42).

S1/Z2

0 πR

Figure 2.2: The orbifolding mechanism. The circle symmetry S is reduced to a
segment by a parity Z2 symmetry. The Z2 identifies every point of the upper hemi-
sphere with the opposite one in the lower one. The final orbifold is a segment of size
πR with two fixed points at the edges.

The F-SUSY models can be UV completed with an extradimen-
sional supersymmetric theory. The minimum N=1 extradimensional
matter content in 5D corresponds to the N=2 spectrum in four dimen-
sions. Therefore, we are going to describe the N=1 five-dimensional
physics as an N=2 four-dimensional spectrum in each of the orbifold’s
points. The appendix A presents details on SUSY and the N=2 matter
content. For now, it suffices to remind that the supersymmetric alge-
bra is an extension of the Poincaré group. It is described by charged
operators QS and Q†S that interchange the fermionic or bosonic degrees
of freedom. For example, the MSSM spectrum can be constructed
from a single N=1 Q charge. However, it is possible to extend the
theory up to the N=4. Moreover, the N=1 SUSY has a global U(1)R
connecting each state to its superpartners. Meanwhile, the N=2 case
extends the global symmetry to SU(2)R, and the matter content can
be represented as a doublet. Figure 2.3 shows the UV theory matter
content with N=2 SUSY in the bulk and N=1 in the fixed points.
Furthermore, the positions of the orbifold are connected by a SU(2)R
rotation.

The Scherk-Schwarz mechanism breaks SUSY by choosing different
N=1 SUSY in the two fixed points. Besides, the SU(2)R parameter
is chosen to break SUSY fully, and the boundary conditions select
the desired spectrum in a similar way to the previous bifold example.
The spectrum selection depends on the wave function transformation
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N=2N
=

1

N
=

1

Figure 2.3: The supersymmetric theory with an extra dimension has the same matter
content of N=2 SUSY. The spectrum in the orbifold’s bulk corresponds to an N=2
theory. However, boundary conditions are chosen such that each fixed point will be
a different N=1, which will break SUSY.

properties under reflections about the fixed points y = 0 and y = πR,
which respectively correspond to the parity Z and Z’. Each of these
transformations will act on the parity character of each particle wave-
function Φ(y):

Z[Φ(y)] = ZΦ(−y), (2.9)

Z ′[Φ(y − πR)] = Z ′Φ(−y + πR). (2.10)

We choose the SU(2)R and different SUSY theories in each fixed
point to break the SUSY. Therefore, the zero-mode states that are
odd under the product Z × Z ′ will be projected out, analogously to
the previous example in figure 2.1.

As argued before, instead of describing the N=1 SUSY in 5D, we
will use the 4D N=2 language, which describes the same matter con-
tent. The super quark hypermultiplet Q̂ is composed of fermions
q, qc, and bosons superpartners q̃, q̃c. It can be decomposed as
Q̂= (Q,Qc) eingenstates of Z, where the chiral superfields Q = (q, q̃)
and Qc = (qc, q̃c) . Meanwhile, eingenstates of Z’ are written as
Q′ = (q′, q̃′) and Q′c = (q′c, q̃c′). Both decompositions of the hyper-
multiplet Q̂ are linked by a general SU(2)R rotation:[

q′

(q
′c)†

]
= eiασ2

[
q

(qc)†

]
. (2.11)

The angle choice α = π/2 corresponds to the maximum twist (43),
which selects the symmetry where quarks and scalar partners zero
modes have different flavor indices.

To sum up, the F-SUSY can be obtained through the UV comple-
tion. The high energy model is supersymmetric in an extra dimension
with a SU(2N) gauge group. The Scherk–Schwarz mechanism breaks
the SUSY by choosing different boundary conditions for each field in
the orbifold’s fixed points. The minimal daughter theory must have an
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extended color group SU(3)SM ×SU(3)hidden×Z2 and an accidentally
supersymmetric spectrum of quarks and colorless f-squarks. However,
a more complex F-SUSY model can be built. For example, it can be
obtained by the symmetry breaking SU(6)→ SU(3)× SU(3)× U(1)
using suitable boundary conditions (26).

2.2.3 Folded Supersymmetry as an extension of the SM

A realistic F-SUSY model can be built as an extension of the SM. The
final theory contains the extended color sector SU(3)A×SU(3)B×Z2.
Assuming that the SM color comes from the A group SU(3)SM ≡
SU(3)A and the hidden color from the extra group SU(3)B, the final
spectrum must contain the SM quarks qA, uA and colorless squarks
q̃B, ũB. The same boundary condition assures the presence of hidden
gluons after SUSY breaking. The most straightforward gauge the-
ory is [SU(3)A × SU(3)B × ZAB

2 ] × SU(2)L × U(1)Y , describing the
SM symmetry plus the extended color sector and a parity ZAB

2 inter-
changing the vector superfields of the two SU(3) gauge groups. We
will only discuss the color extension because the EW gauge sector will
not change under the ZAB

2 parity. As discussed in the previous section,
the theory is UV completed with a supersymmetric model in a com-
pact extra dimension. The SUSY is broken by boundary conditions,
which select only half of the spectrum, which contains the SM quarks
and the colorless f-squark.

The bulk hypermultiplets are composed of chiral superfields, which
contain quarks and their scalar partners:

Q̂iA(3, 1, 2, 1/6), Q̂iB(1, 3, 2, 1/6) (2.12)

ÛiA(3̄, 1, 1,−2/3), ÛiB(1, 3̄, 1,−2//3) (2.13)

D̂iA(3̄, 1, 1, 1/3), Q̂iB(1, 3̄, 1, 1/3), (2.14)

where the index i = 1, 2, 3 is for the 3 generations, and all the particles
are charged under the minimal F-SUSY symmetry [SU(3)A×SU(3)B×
ZAB

2 ]× SU(2)L × U(1)Y . Besides, the leptons will arise from :

L̂iA(1, 1, 2,−1/2), L̂iB(1, 1, 2,−1/2) (2.15)

ÊiA(1, 1, 1, 1), ÊiB(1, 1, 1, 1) (2.16)

The choice of boundary conditions must be made to obtain the
acidental SUSY spectrum. The N = 1 superfields Q̂iA are decomposed



Folded Supersymmetry 25

as (QiA, Q
c
iA) or (Q′iA, Q

′c
iA). The boundary conditions are chosen, such

that QiA is even, and Qc
iA is odd under the Z × Z ′ transformation.

In addition, Q′iA is even and Q′ciA is odd under Z’. These conditions
effectively project out the scalar zero modes, leaving only the fermions.
An analogous process occurs to ÛiA, D̂iA, L̂iA and ÊiA. On the other
hand, superfields Q̂iB present different boundary conditions such that
QiB is even, and Qc

iB is odd under Z. Besides, Q′iB is odd and Q′ciB
is even under Z’. This project out the fermions zero modes, and only
scalars remain. This conditions are also chosen for the fields ÛiB, D̂iB,
L̂iB and ÊiB.

Furthermore, the minimal F-SUSY model solves the LHP, with a
Yukawa potential similar to the MSSM. In the UV completion, the
Higgs is extended to two doublets HU and HD. Considering the
Yukawa superpotential between the Higgs superfield HU and the third
generation quarks takes the form:

W = δ(y)λt[Q3AHUU3A +Q3BHUU3B], (2.17)

where δ is the Dirac distribution function, which localizes the Higgs in
y = 0. The HiggsHU = (hu, h̃u) transforms with the Z parity such that
only hu remains in the theory. The superpotential in equation 2.17
is invariant under ZAB

2 . On the other hand, the two Higgs doublets
are localized at y = 0, and the boundary condition at y = πR does
not respect the ZAB

2 . This localization guarantees the cancellation
of quadratic divergences at one loop. The low energy potential after
SUSY breaking is given by:

LY = (λthuqAuA + h.c.) + λ2
t |q̃Bhu|2 + λ2

t |ũBhu|2. (2.18)

This potential has the same form as the Yukawa terms in the MSSM,
which ensures that the Higgs mass does not present quadratic diver-
gencies in radiative corrections at one loop. However, the top partners
cannot be strongly produced since they are charged under the hidden
color, escaping the strict bounds with the LHC.

However, the F-SUSY model is valid up to a relatively low ΛUV

scale. Although the Higgs enjoys bifold protection at one loop, the
scalar masses of stops are not protected and diverge at one loop. Thus,
the Higgs mass is not protected at two loops, and the radiative cor-
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rections to the Higgs mass squared is:

δm2
H = −3λt

4π2
m̃2
tLog

1

Rm̃t
, (2.19)

where the top coupling λt ∼ 1, m̃t is the folded stop mass and R
is the size of the orbifod. The UV cutoff ΛUV can be estimated as
1/R. The fine tuning considering the Higgs mass sensitivity to the
top contributions can be calculated as

FT =
m2
H

2δm2
H

100% (2.20)

which implies that ΛUV should be from 5 to 15 TeV. For instance, for
m̃t = 800 GeV and ΛUV = 5 TeV the fine tuning is estimated as 9%,
and for m̃t = 500 GeV and ΛUV = 15 TeV the fine tuning is 12%.
Therefore, the UV-cutoff of this theory must be relatively low, and
SUSY must be restored at 5 to 10 TeV scale.

2.2.4 F-squark masses

In the next chapter, we are going to study the f-squark production at
the LHC. We have argued that the f-squarks cannot interact strongly
with the SM, which allows them to be relatively light. However, they
can be electroweakly produced, generating a distinct signal at the
collider of highly displaced vertices. At last, to understand the f-
squark phenomenology, we first show in this section how to estimate
their masses.

In the MSSM. squark masses are zero if SUSY is exact. However,
in the compact extra dimension, each fermionic field generates a KK
tower of excited states. When breaking SUSY by the Scherk–Schwarz
mechanism, the f-squarks gain soft masses generated by loop contribu-
tions from a sum over KK modes. However, only propagators passing
through both fixed points y = 0 and y = πR contribute to m2

Q. We
can use the result from references (44) and (45), which considered
SUSY breaking in extradimension theories. The f-squark masses are
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estimated at 1 loop as:

m2
Q = K

1

4π4

(
4

3
g2

3 +
3

4
g2

2 +
1

36
g2

1

)
1

R2
(2.21)

m2
U = K

1

4π4

(
4

3
g2

3 +
4

9
g2

1

)
1

R2

m2
D = K

1

4π4

(
4

3
g2

3 +
1

9
g2

1

)
1

R2

m2
L = K

1

4π4

(
3

4
g2

2 +
1

4
g2

1

)
1

R2

m2
E = K

1

4π4
g2

1

1

R2
,

where K is a dimensionless constant K ' 2.1, R is the radius of the
orbifold and g3, g2 and g1 are the couplings of SU(3), SU(2)L and
U(1)Y . The soft masses are finite and inversely proportional to the
extra dimension length R as m2

Q ∝ 1
R . Therefore, we may estimate

these masses to range from the GeV scale until . 5 TeV. Moreover, the
third generation has corrections to the squark masses from the Yukawa
potential. The first and second-generation have much smaller Yukawa
couplings, so their contribution will not affect the mass calculations.
This contribution is calculated in reference (26), which demonstrates
that the third generation masses must include:

m2
3Q = K

y2
t

8π4

1

R2
, (2.22)

m2
3U = K

y2
t

4π4

1

R2
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3

Distribution of Displaced Vertices
from hidden glue

Hidden sectors were presented as a solution to the LHP. Theories
with a hidden glue protect the Higgs mass against radiative correc-
tions while escaping bounds with LHC. The hidden glue collider phe-
nomenology is extensive, including processes such as Higgs portals or
excited Z ′ states (46; 29). In particular, we are going to study the
electroweak (EW) production of f-squarks (26). The f-squarks can ei-
ther be produced in a charged or neutral current channel. The first
has a resonant Wγ signal, putting bounds on f-squarks masses. While
displaced vertices or a significant fraction of missing energy character-
ize the production through neutral currents. If a pair of f-squarks is
produced, they will annihilate promptly into folded gluons, which in
turn hadronize to hidden glueballs. These are pure glue objects, which
do not leave a trace at the detector since they are charged under the
hidden confining group. However, the hidden glueballs can decay back
into the SM through a higher-dimension operator involving the Higgs.
Then the lifetime can be estimated, potentially resulting in highly dis-
placed vertices. We will model the FF that provides information on the
average multiplicity of glueballs. Using this, we calculate the distri-
bution of displaced vertices (21) at the LHC. Although we performed
this calculation in the Folded Supersymmetry (F-SUSY) model, this
signature characterizes different hidden glue scenarios (46), and the
result can be extended to other hidden sector models.
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3.1 F-squark production at the LHC

In the F-SUSY scenario, the f-squarks are charged under the SM EW
gauge group. In this case, they can be directly produced at the LHC
from charged W± or neutral Z, γ currents. In QCD, if a pair of heavy
quarks are produced, then the string between them would break when
approaching the confinement scale, allowing new pairs of quarks to
be formed. Each of them hadronizes and produce each a jet signal
in the detector. However, the hidden sector does not present the
soft hadronization mechanism because there are no hidden light f-
squarks with masses comparable with its confining IR scale ΛIR, which
is of order few GeV, as will be discussed in section 3.1.2. Therefore,
f-squark production can form bound states that have an extremely
short lifetime compared to the collider time. Therefore, f-squarks can
promptly produce the lightest states of hidden mesons or glueballs,
which are invisible to the detector. However, they can decay to the SM,
generating different signals. The charged current f-squark production
generates Wγ resonance, while the other channel has the signature of
highly displaced vertices or large fraction missing energy (47).

First, let us consider the production of a ũ and a d̃ through an
s-channel W . The hidden sector dynamics will be similar to QCD,
although they are independent of each other. To differentiate it from
the SM color sector, we use the name quirky dynamics (48). A quirky
string bounds the pair and forms an excited state, similar to QCD.
This new state softly radiates and promptly hadronizes to a scalar
meson. It cannot decay into hidden glueballs because its ground state
is electrically charged. The hidden meson promptly decays to W (49),
forming a Wγ resonance signature. The current limit from ATLAS
searches at 8 TeV(50) restrain the f-squark masses at 320, 445, 465
GeV assuming the production of 1, 2, and 3 f-squark generations re-
spectively (51). Besides, reference (52) shows the sensitivity to f-
squarks masses at the LHC Run 2. Although Wγ new resonances
are a significant search, it is evidence for numerous other scenarios in
BSM physics. Meanwhile, the neutral currents production of a pair
of f-squarks potentially culminates in highly displaced vertices, which
characterizes uniquely hidden sector models.

The diagram in figure 3.1 shows the neutral current production of



F-squark production at the LHC 31

q

q

Z, γ

q̃

q̃

Figure 3.1: Feynman diagram of two SM quarks producing a pair of f-squarks
through neutrally charged currents.

f-squarks from SM quarks q + q → (Z or γ) → q̃ ˜̄q. The partonic
cross section can be convoluted with a parton distribution function
(PDF) to obtain the process from the initial proton collision p+ p→
(Z or γ) → q̃ ˜̄q. Figure 3.2 shows the resulting cross-section, which
is calculated using FeynRules and Madgraph with the center of mass
energy at 13 TeV. In section 2.2.4, we estimated the f-squark masses
and concluded that the left ones are heavier than the right-handed
f-squarks. In the cross section calculation, we have included only the
light right-handed squarks, which have approximately the same mass:

mũR = md̃R
= mc̃R = ms̃R = mb̃R

. (3.1)

We excluded the heavier states right handed f-stop and all the left
handed squarkes. The latter have the contribution from SU(2)L,
as shown in the equation describing mq̃L in the set of equations in
2.22. While the third familiy has the additional contribution from its
Yukawa interaction, shown in the two equations in 2.23.

The pair of f-squarks cannot go far apart from each other because
the QCD’ splitting is exponentially suppressed by e−m

2
q/Λ

2
IR. There-

fore, the only possibility for them is to go back into a bound state
called squirkonium. The squirkonium would softly radiate photons
and hidden gluons until the f-squarks annihilate each other into a pair
of hard hidden gluons, which hadronizes to folded glueballs. This pro-
cess would happen promptly in collider time. According to reference
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Figure 3.2: Cross Section of a pair of f-squarks production at the LHC at 13 TeV
center of mass energy.

(47), the time scale for photon radiation is given by:

tRad ∼
3

8π αF

m3
q̃

Λ4
IR

, (3.2)

which is order 10−18 seconds for a strong hidden coupling of αF ∼ 0.08,
ΛIR ∼ 5 GeV and mq̃ ∼ 800 GeV. Therefore, we are going to consider
the production of a pair of f-squarks to decay promptly to hard hidden
gluons, which in turn will hadronize to folded glueballs.

3.1.1 Glueball lifetime

Glueballs are pure glue objects predicted by QCD. However, they were
never observed experimentally because of the presence of light quarks,
which hadronize to different states that mix with the glueballs. In
F-SUSY, the f-squarks are too heavy for this contamination to take
place, allowing the existence of pure glueballs. After the production
of f-squarks at the collider, the lightest state for the hidden gluons
to hadronize are a 0++ glueballs, which are invisible to the detector.
However, they can decay back into the SM (46) through a dimension-
6 operator mediated by the Higgs. If this process occurs while still
inside the detector, it generates highly displaced vertices. We are
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going to calculate the glueball lifetime to estimate the typical decay
length in an F-SUSY scenario. The hidden glueballs decay to the SM
also includes d=4 operators involving gauge bosons and 0±+ and 2±+

states. However, the electroweak bosons decays are significant only
if the colorless top partners are lighter than the SM top quarks. A
full study of the hidden glueballs states and decays can be found in
reference (53).

Glueballs decay back into SM particles through the SM-like Higgs
doublet H portal (46; 54). In QCD, the visible gluons couple to the
Higgs through a top loop. Analogously, the hidden gluons can also
couple to H through a top partner loop, as long as mt̃ >> mH . This
interaction is described by the effective dimension six operator:

δL(6) =
αF
3π

y2

M 2
|H|2G̃µνG̃

µν (3.3)

=
αF
3π

y2

M 2
vhG̃µνG̃

µν, (3.4)

where H is the SM Higgs doublet, G̃µν is the hidden gluon field strength
and αF the folded coupling, which is estimated in 3.1.2. The second
line represents the VEV v and the Higgs field h after EW symmetry
breaking H → (0, (v+h)/

√
2)T . The coupling y2

M2 is model dependent,
which can be calculated for different NN models (46).

The coefficient y2

M2 in the F-SUSY scenario is analougous to the
MSSM calculation in reference (55). Considering a theory with two
scalar top partners t̃L, t̃R with masses mt̃L,R

:

Lt̃ = |t̃L|2(m2
t̃L

+ y2
t |H|2) + |t̃R|2(m2

t̃R
+ y2

t |H|2), (3.5)

where yt is the SM top Yukawa coupling. The contribution to the
higher dimensional operator hGG in equation 3.4 arises by integrating
out the scalar top partner. This results in

y2

M 2
=

1

16 v2

(
m2
t

m2
t̃L

+
m2
t

m2
t̃R

)
, (3.6)

where mt and v are the SM top mass and EW symmetry breaking
VEV.

The hidden glueball G lifetime estimated from the decay width to
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a SM product XSM is:

Γ(G→ XSM) ≈

(
1

12π2

y2

M 2

v

m2
h −M 2

G̃

)2

× (3.7)

×(4παFFG)2 Γh→XSM
(M 2

G̃
),

where Γh→XSM
(M 2

G) is the SM Higgs decay width to the same final
product, which corresponds to that of an off-shell Higgs evaluated
replacing the Higgs mass with the glueball mass mh → MG̃. The
hadronic matrix element creating the glueball from the gluon operator
is parametrized in terms of its decay constant:

FG = 〈0|Tr [G̃µνG̃
µν]|G̃〉 (3.8)

We take QCD lattice calculation (56) as an estimative for FG:

4παF FG̃=f0r
−3
0 ≈2.3M

G̃3,(3.9)

where f0 = 167± 16, and r0 can be expressed in terms of the glueball
mass MG̃ = a0r

−1
0 , with a0 = 4.16± 0.12.

The colorless glueball decay width is proportional to high powers
of the glueball mass MG̃ and the f-squark right mass mq̃R:

Γ(G̃→ XSM) ∝
M 7

G̃

v2m4
q̃R

. (3.10)

Since the Higgs decay width back to the SM depends simply on MG̃,
then the hidden glueball lifetime will be particularly sensitive to its
mass.

Finally, the signal from the production of f-squarks can be of dis-
placed vertices or missing energy depending on the glueball lifetime.
The decay length L = c/τ = cΓ with MG = 12 − 60 GeV is estimated
to cover a large range from microns to kilometers (46). However, the
hidden glueball lifetime is extremely sensitive to its mass, which varies
with the confining IR scale. In the next section, we estimate the hid-
den sector strong coupling, which is necessary to calculate the glueball
mass in terms of other parameters of the F-SUSY scenario.
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3.1.2 Hidden confining scale

The strong folded coupling may be calculated from contributions to
the beta function of a non-Abelian field theory with scalar fields:

βF (NS) = − g3
F

(4π)2

(
11

3
C2 −

NS

3
Cr

)
, (3.11)

where gF =
√
αF 4π is the folded coupling, NS is the number of scalars,

the Casimir for SU(3) are C2 = 3 and Cr = 1/2. We calculate the
running coupling constant through the beta function:

µ
∂gF
∂µ

= βF (gF ). (3.12)

In chapter 2, we argued that the bifold mechanism does not protect
the Higgs mass at two-loop. Thus SUSY must be restored not to far
above the TeV scale, typically ΛUV ∼ 10 TeV. Therefore, the running
of the strong coupling in equation 3.11 must coincide with the SM
strong coupling at the UV cutoff:

αF (ΛUV ) = αSM(ΛUV ) (3.13)

Therefore, we use this boundary condition at the UV to calculate the
evolultion of the hidden constant αF .

Moreover, equation (3.11) depends on the number of scalars existing
at the energy scale evaluated. For an energy scale at ΛUV , there must
be NS = 12 because of the six f-squarks, considering right and left
helicity. Half of them are integrated out below the left-handed f-squark
mass. Finally, at a scale below the right-handed scalar mass, there
is only the hidden gluons contribution. We estimated the f-squark
masses in section 2.2.4, which shows that the contribution to the left-
handed mq̃L coming from the SU(2)L sector difference is approximate:

m2
q̃L
' m2

q̃R
+K

1

4π4

3

4
g2

2ΛUV , (3.14)

where g2 is the EW coupling.
Therefore, using the scalar beta function in equation (3.11) and the

running equation 3.12, we estimate the folded strong coupling gF1(µ)
at a scale µ up to the ΛUV :

g2
F1(µ) =

g2
F (UV )

1 + 32π2 g2
F (UV )βF (12) Log(ΛUV

µ )
(3.15)
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Figure 3.3: The F-SUSY spectrum in terms of the energy scale. The folded coupling
is determined by the scalar beta function with the boundary condition at the UV
from equations 3.11 and 3.13; where ΛUV is typically 5 to 10 TeV. The f-squarks
mass are calculated at one loop, and the difference mq̃L −mq̃R ∼ O(100) GeV from
equation 3.14. Besides, bounds on Wγ shows that mq̃R > 320 - 465 GeV (57).
Moreover, the mass Glueball is determined by the the confinement scale ΛIR, which
is estimated from the folded coupling.
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Figure 3.4: Strong folded coupling αF as a function of energy scale

However, for energies between f-squarks masses mq̃L and mq̃R, one
must integrate out half of squarks contributions and obtain the run-
ning coupling constant:

g2
F2(µ) =

g2
F1(mq̃L)

1 + 32π2 g2
F1(mq̃L)βF (6) Log(

mq̃L

µ )
. (3.16)

At last, for energies below the right-handed f-squarks masses mq̃R the
contribution of all f-fsquarks are integrated out resulting in the running
coupling constant:

g2
F3(µ) =

g2
F2(mq̃R)

1 + 32π2 g2
F2(mq̃R)βF (0) Log(

mq̃R

µ )
(3.17)

In conclusion, the running of the strong folded coupling g is repre-
sented in Figure 3.4.

The lightest state is the scalar glueball 0++, and its mass scales
between 4.7ΛIR < MG < 11ΛIR (58). Figure 3.5 represents it in terms
of the mass of the f-squark mq̃ and the UV scale ΛUV . As discussed
before, the strong coupling boundary condition depends on the UV
scale, while the number of scalars varies with the mass of the right
handed f-squark. Fixing those two parameters, we can estimate the
IR confinement scale matching the 0-loop and 1-loop beta function
(59):

ΛIR = mq̃ exp

(
− 6π

(11× 3− nS)αF (µ)

)
(3.18)

where the nS is the number of fermions in the theory and the hidden
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Figure 3.5: glueball mass in terms of f-squark mass for ΛUV = 5, 7, and 10 TeV.

strong coupling at a given energy scale µ is αF (µ) =
g2F (µ)

4π , as estimated
in the Figure 3.4.

To sum up, the last section showed that it is possible to observe
displaced vertices inside the LHC detectors. However, the glueball
lifetime is extremely sensitive to its mass, thus leading to a wide range
of possible values of decay length from microns to km. Moreover,
figure 3.5 shows that it is possible to have relatively light glueballs
in an F-SUSY scenario. It was calculated for right-handed f-squark
mass above 500 GeV, restoring SUSY above LHC operating scale.
We are now going to study in more detail the hadronization process
from folded gluons to glueballs in order to estimate the distribution
of displaced vertices at the LHC.

3.2 Hadronization of hidden gluons

We now model the hadronization process of glueballs from hidden glue.
The FF describes the mechanism of a parton to result in a hadron.
The production cross-section convoluted with the FF estimates the
number of glueballs produced per gluon. Finally, in section 3.3, we
use this function and the glueball lifetime to calculate the average
number of displaced vertices through the length of the LHC detectors.

3.2.1 Fragmentation Function

Partons are elements that compose hadrons. They are never observed
free because of confinement from strong interactions. The Fragmen-
tation Function (FF) gives the process of a parton to form a hadron
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in a given energy scale (60; 61; 3). It is analogous to the distribution
functions (PDF), which gives them a process to occur with an initial
parton inside a hadron. There is also the hadronization string model,
where each parton forms a gluon string. Its tension produces a pair
of lighter particles, originating havier bound states. We are going to
model the hidden gluon to the glueball process as a FF distribution.

Suppose a parton k, with energy Ek is produced at the collider.
The function describing a forming hadron h with energy Eh is given
by the FF Dh

k(z), where the variable z is defined by

z ≡ Eh

Ek
, (3.19)

with 0 ≤ z ≤ 1. This function must be normalized so the total
fragmenting into any available energy is one:∫ 1

zmin

z Dh
k(z)dz = 1, (3.20)

where zmin = mh/Ek is kinematically defined by the hadron’s lowest
momentum.

Furthermore, the FF convoluted with the differential cross-section
describes the entire process of two elements A and B generating a
hadron h plus any other product X:

dσ

dEh
(AB → hX) =

∑
k

∫
dσ

dEk
(AB → kX)× (3.21)

×Dh
k

(
Eh

Ek

)
dEk

Ek
,

which is summed over every parton k and integrated in the energy
Ek. Finally, the average number of hadrons h produced can also be
calculated by integrating the FF:

〈nhk〉 =

∫ 1

zmin

Dh
k(z)dz, (3.22)

where 〈nhk〉 is the average multiplicity of the hadron h.

In standard QCD, the FF is obtained from experimental data at
a given energy scale. To predict them at higher energies, they are
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evolved using Dokshitzer Gribov Lipatov Altarelli Parisi (DGLAP)
equations:

dDh
k(z, t)

dt
=
α(t)

2π

∫ 1

0

dw

w
Dh
k(z/w)P (w), (3.23)

where the variable t is defined by t ≡ Log(µ2), µ is the energy scale
at which the function is evaluated, and the strong coupling α(t) was
calculated in section 3.1.2. The splitting function P (w) characterizes
each parton contribution to the FF (62). The process of the hadroniza-
tion of folded gluons into glueballs will only need the gluon splitting
function Pgg (1).

3.2.2 Gluon splitting function

Splitting functions describe how the energy is divided through par-
tons. For instance, the formation of hidden glueballs from a hidden
glue uses the gluon fragmentation function to distribute the initial
state energy into an average N glueball. Splitting functions cannot be
directly measured at the collider, and they usually contain a collinear
singularity factor. However, recent studies show a different prospect
from the analysis of jet substructures (63). In this work, we are going
to use the usual QCD gluon splitting function to describe the fragmen-
tation of hidden gluons to glueballs. This section will illustrate the
aspects of the gluon splitting function needed to model the FF. How-
ever, a more in-depth analysis can be made, which will be introduced
in the appendix B.

The gluon splitting function can be expanded perturbatively in
terms of the strong coupling α(t). In this work we will only use leading

order terms α(t)
2π P

(0)
gg (64), which is described by:

P 0
gg(z) = 6

(
1− z
z

+
z

[1− z]+
+ z(1− z) +

11

12
δ(1− z)

)
. (3.24)

The term z
[1−z]+ in the above equation is taken in the limit to the right

of z going to 1. The Dirac delta function δ(1− z) corresponds to the
value of the following term at z = 1. The gluon splitting function
must be carefully treated numerically since it diverges at z = 0 and
z = 1. It can be properly calculated in terms of moments using the
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Mellin transformation (MT),

f(z, t) =

∫ 1

0

dx xz−1f(x, t). (3.25)

To transform the gluon splitting function it sufices to use the trans-
formations given in the table 3.1 (64).

f(z) MT of f(z)
δ(1− z) 1
zρ 1

x+ρ

Table 3.1: Mellin transforms of functions f(z)

Therefore, the gluon splitting function in Mellin space is given by:

Pgg(x) = 2× 3×
(

11

12
+

1

x(x− 1)
+

1

(x+ 1)(x+ 2)
− S1(x)

)
, (3.26)

where S1(x) is the harmonic sum:

S1(x) =
x∑
k=1

1

k
. (3.27)

However, the sum S1(x) clearly diverges for large values of x. Refer-
ence (65) presents a numerical approach to treat harmonic sums by
expanding S1(x) is in terms of Sr(x, r):

S1(x, r) = Sr(n+ r)−
r∑

k=1

1

k + x
, (3.28)

where Sr is defined as:

Sr(x) = γE + Ψ(x+ 1), (3.29)

Ψ(x) = Log(x)− 1

2x
− 1

12x2
, (3.30)

where γE is the Euler gamma constant. The constant r is chosen to
be a large number such that 1

|x+r| is small even for low values of x.
The second approximation is taken for small values of x, where the

gluon splitting function is no longer valid. In this case we can use the
leading Log expansion of the gluon splitting function (3; 64) is:

Pgg(x) = −1

4

(
x− 1−

√
(x− 1)2 24

α(t)

π

)
. (3.31)
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The limit for small x is typically taken at

α(t) Log2(1/x) ≈ 1 (3.32)

The FF far from z=1 is approximated in a Taylor expansion ac-
cording to reference (64). The FF in a low x behaviour is:

D(x) ∝ 1

x
exp

[
− 1

2σ2
(ξ − ξp)2

]
, (3.33)

where x is the Mellin transform variable, and the parameters σ, ξ and
ξp are defined as:

ξ = Log
1

x
, (3.34)

ξp =
4π

4 b(NS)αF
, (3.35)

σ2 =
4π

24 b(NS)

√
2π

3α3
F

. (3.36)

The coupling αF in the F-SUSY scenario is estimated in section 3.1.2
. We estimate the low x approximation to be valid for values 0 <

x < 0.15. For a more precise calculation, it is necessary to include
higher orders of the Log expansion from the gluon splitting function,
and resummation over the strong coupling αS (66). However, we are
going to use only the leading Log expansion in equation 3.31.

3.2.3 Glueball Fragmentation Function

The FF Dh
k(z) are often parameterized as:

D(z) = N(1− z)β, (3.37)

where N is the normalization. Each process is characterized by choos-
ing the parameter β that agrees with experimental data at a given
energy. To calculate the FF in different energies, we can use the
DGLAP evolution in equation 3.23.

The hidden gluon to glueball FF is challenging to model, since
we do not have measurements to find the boundary condition of the
DGLAP evolution. Therefore, we assume an initial condition at an
energy scale µ0. The most plausible hypothesis is to model it as a pion
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produced from a valence quark due to similarities of QCD sum rules
(67). This function is described at

√
s = 30 GeV as a linear function

in (1− z) (68), aka β = 1. Imposing the normalization condition 3.20,
the hidden glue at µ0 = 30 GeV is modeled as:

DV (z) = 6(1− z). (3.38)

We implemented two strategies to model the hidden glue FF. The
first one we performed the DGLAP evolution in Mellin space, which
is detailed in Appendix B. However, there were many numerical is-
sues, and the final average multiplicity was not increasing with energy.
Meanwhile, the second strategy used the results for the asymptotic av-
erage multiplicity as a function of the energy (64). In this case, the
average multiplicity is calculated using the gluon splitting function in
the Mellin space, where the singularities in terms of low x, or z → 1
have been resumed. To calculate the FF of hidden gluons to glueballs
we use the initial condition in equation 3.38 with β0 = 1. The integral
of this initial input gives the average number from equation 3.22 of
N0 = 2.5 glueballs per gluon. The FF evolution for higher energies is
made through the asymptotic average number resulting from the final
DGLAP evolution in an energy t = Log(µ):

〈N(t)〉 = N0Exp

{
1

b(NS)

√
6

παF
+

(
1

4
+

5NS

54πb(NS)

)
LogαF

}
.

(3.39)
We estimate the value of β in the new energy scale by comparing the
average number calculated in 3.39 with the one in equation 3.22.

Finally, figure 3.6 is the estimated FF of hidden glue to glueballs.
The calculation was performed supposing the low z matching point at
zM = 0.1, the glueball mass fixed at MG̃ = 15, 20, 30 GeV and ΛUV = 7
TeV. The different colors red, blue, orange, and violet corresponds
respectively to the hidden gluon energy at 300, 500, 700, and 900
GeV. We also used other matching points and showed that the final
result does not change drastically (21).

3.3 Distribution of displaced vertices at the LHC

We showed that the production of f-squarks in the LHC could gen-
erate highly displaced vertices. The pair of particles would promptly



44 Distribution of Displaced Vertices from hidden glue

(a) MG = 15 GeV.

(b) MG = 20 GeV.

(c) MG = 30 GeV.

Figure 3.6: FF of hidden gluons to glueballs supposing the low z matching point at
zM = 0.1, the glueball mass at MG̃ = 15, 20, and 30 GeV and ΛUV = 7 TeV. The
different colors red, blue, organge, and violet respectively correspond to the hidden
gluon energy at 300, 500, 700, and 900 GeV.
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annihilate each other into dark gluons, which hadronizes to invisible
glueballs. We estimated the FF, which gives the average multiplic-
ity of glueballs per gluon. Although these objects are invisible to the
detector, they can decay to the SM through high order operators in-
volving the Higgs. We now convolute the multiplicity and lifetime of
the glueball to estimate the distribution of displaced vertices.

To estimate the possible signals in the detector, we calculate the
average number of decays up to a certain position L from the initial
vertex. This is obtained by integrating the FF D(z, µ) at an energy
scale µ with the probability of decay at the distance L.

NDV (L) =

∫
dzD(z, s)(1− e−

L
LG ), (3.40)

where the mean life τG gives the decay length LG as:

LG = cτG
z

zmin
. (3.41)

The glueball lifetime is the inverse of the decay width τ = 1/Γ, which
is calculated from equation 3.10.

Figure 3.7 shows the results of the multiplicity of events from the
interaction point to a given position L from the primary collision point.
The hidden glueball decay width in equation 3.10 already shows that
the results are susceptible to its mass, which is proportional toM 7

G. We
performed this calculation varying the glueball mass as MG̃ = 15, 20
and 30 GeV. The right-handed f-squarks masses define the hard f-gluon
energy, which is fixed at 300, 500, and 700 GeV, where the horizontal
lines are the total multiplicity. To compare the decay length with the
dimensions of the LHC detectors, we also drew the vertical dashed
lines marking the ATLAS layers. The full detector is approximately
10 m long, and the dashed lines correspond to the length of each
sector: inner tracker, electronic and hadronic calorimeter, and the
muon system.

We observed that the decay width in equation 3.10 is extremely
sensitive to the glueball mass. It also is sensitive to the f-squark mass,
which dictates the gluon energy. This sensitivity is also present in
the results of figure 3.7. The first case to analyze is the results of
a light glueball with MG̃ = 15 GeV. The light f-squark can produce
signals located up to the muon system. However, when increasing the
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(a) MG = 15 GeV.

(b) MG = 20 GeV.

(c) MG = 30 GeV.

Figure 3.7: The average multiplicity of displaced vertices from the collision point
to the position L. Each plot fixes the glueball at MG̃ = 15, 20, and 30 GeV, and
ΛUV = 7 TeV. The different colors orange, blue and violet correspond respectively
to the hidden gluon energy at 300, 500, and 700 GeV. The horizontal lines are the
average multiplicity, an the vertical dashed lines marking the ATLAS layers.
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f-squark mass, it is most likely to decay at distances more significant
than the detector length, showing a large fraction of missing energy.
For an increasing mass of the glueball, the situation is much different.
The second plot considers MG̃ = 20 GeV, where there may be traces
from the electromagnetic (EM) calorimeter to the muon chambers.
Although the heavy 700 GeV right-handed f-squark is most likely to
decay in the last section, we observe that 2/3 of the events are inside
the detector for a lighter f-squark, divided almost equally between the
calorimeters and the muon system. Most of the events are inside the
detector for MG̃ = 30 GeV, including a large fraction inside the EM
calorimeter, showing the possibility of detecting vertices anywhere in
the detector multiple times.

Therefore, it is necessary to search for displaced vertices in all seg-
ments of the detectors. The plots in figure 3.7 show that the system is
susceptible to relatively small changes in the glueball mass. Only 5 to
10 GeV differences imply a distinct multiplicity of the events in each
sector of the detector. We observed that the more massive glueball
states of 20 and 30 GeV are more likely to have a unique signature,
while the lightest may culminate in searches identified with a large
fraction of missing energy.

3.4 Discussions

The search for long-lived particles (LLP) is a recurrent discussion
among theorists and experimentalists (69). Despite the challenging
analysis, there are searches for hadronic LLP in ATLAS, CMS, and
LHCb. They are mostly motivated by SUSY and Hidden Valley mod-
els. First, ATLAS presented a data analysis for two hidden objects
decaying in the hadronic calorimeter (70; 71), and decays within the
muon system or inner detector (72). There are also decays in associ-
ation with large missing energy (73; 74). Second, CMS searches for
displaced jets includes both Run 1 and 2 (75; 76; 77), and the analysis
in multijet events (78). At last, LHCb searches include one and two
all-hadronic displaced vertices (79; 80).

However, theories with an EW production of the hidden sector
escape current bounds from the LHC. The cross-section in figure 3.2
is under one fb, while the analysis made in the LHC considers larger



48 Distribution of Displaced Vertices from hidden glue

values, which are comparable with QCD production. Therefore, the
results for the future High Luminosity LHC are promising for the
search of displaced vertices from the hidden glue. Although the results
were obtained in the F-SUSY scenario, the FF is model-independent
and can be applied for different hidden glue scenarios. For example,
the Quirky Little Higgs model scenario is very similar to F-SUSY.

To sum up, figure 3.7 shows the final distribution of displaced ver-
tices. We have modeled the FF to obtain the multiplicity of hidden
glueballs from an f-squark EW production. The hidden glueball life-
time is very sensitive to its mass. Thus the signature in the collider
may vary from missing energy to multiple vertices at any sector of the
detector. Future searches must include multiple displaced vertices on
each side of the detector, and analysis through the whole detector.



4
Dark matter indirect searches with a
skipper CCD telescope on a satellite

The second part of the thesis concerns dark matter (DM) indirect
searches. Although gravitational observations have proven the exis-
tence of DM, there is no evidence of its particle nature. Several exper-
iments are searching for candidates of DM, including collider searches,
direct, and indirect detection. The later probes processes where the
DM candidates generate SM particles. For instance, indirect detection
includes cosmic rays experiments, neutrino detectors, and astronomi-
cal observations. Especially, X-ray band telescopes can detect rare sig-
nals at the keV energy scale. The most competitive X-ray telescopes,
such as CHANDRA and XMM-NEWTON, use charge-coupled devices
(CCD) for imaging and spectroscopy. CCDs are used in industry and
science. They are composed of silicon semiconductors that are capable
of capturing precise pixel size photon signaling (81; 82; 83; 84). How-
ever, this technology has a significant electronic noise of an average
2 e− root-mean-squared (rms) per pixel. The skipper CCD can lower
it to 0.068 e− rms per pixel by improving the CCDs with a multiple
readout technique, allowing it to measure a single electron signal in
the silicon band. The skipper CCD is the most sensitive electromag-
netic (EM) calorimeter that can operate at temperatures order of 100
K. Furthermore, astrophysical observations require telescopes with a
narrow opening angle. However, since DM interactions with light are
extremely weak, it is compelling to launch a new telescope with a large
field of view (FOV) to analyze a large volume and increase the number
of events. In this chapter, we describe an ongoing project where we
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Figure 4.1: The CCD structure is composed of a small depletion region (white), gate
electrodes (blue), and the buried p channel (yellow). When the incoming photon
reaches the depletion, it deposes its energy due to the photoelectric effect. Then,
the charges are confined under the gate, in the buried p channel, as represented by
the yellow cloud in the picture. The electron package is stored in a pixel, which is
defined by the gate electrodes. Each electrode varies the voltage V (red) to move
the package to the next gate in the series until reaching a readout at the end of the
pixel line.

study different DM models and their potential signals in a new skipper
CCD telescope with a broad FOV on a satellite.

4.1 X-ray telescopes

Photon emission lines coming from DM annihilation can probe the par-
ticle nature of Dark Matter indirectly. DM indirect searches include
experiments such as neutrino detectors, cosmic rays, and astronomical
observations. Notably, the X-ray telescopes put bounds on new light
particles while detecting photons in an energy band of 100 eV to 100
keV. The X-ray telescopes were first sent to space in 1962. They are
essential to study stars, galaxies, quasars, and other kinds of cosmic
objects (85). However, indirect DM detection requires exact measure-
ments because the interactions with light are feeble, and the X-ray
presents an extensive background. Charged Coupled Devices (CCD)
are capable of distinguishing such rare signatures due to its precision
and low energy resolution. The most competitive X-ray telescopes,
such as Chandra and XMM-Newton, use CCDs for both imaging and
spectroscopy (22; 23).

The CCD is a solid-state electronic device developed in 1970 (81;
82; 83; 84) with applications in the industry, particle physics detection
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and astronomy. The detector is based on a semiconductor silicon
substrate. The signal is generated because of the photoelectric effect.
The incident photon produces electron-hole pairs proportionally to its
energy, which is on average of one electron-hole pair for each 3.7 eV
absorbed. Figure 4.1 represents the CCD structure in three layers:
gate, depletion, and buried p channel. The depletion corresponds to
the active region where most of the photon absorption occurs. It is
a silicon structure between the poly gate electrodes and the buried
channels. The gate structure on the surface of the detector defines the
pixel boundaries. After the photoelectric effect, the gates apply an
electric field to store the charges on a volume in the p silicon buried
channel, as represented by a yellow cloud in figure 4.1. At last, a chain
of series gates varies the voltage in order to move the electron package
from one gate to another until reaching the end of the line, where a
single readout channel is located. Furthermore, thermal fluctuations
may also promote the number of electrons in the silicon conduction
band, called dark current. Therefore, the CCDs must operate in low
temperatures.

The photon signal in the CCD can generate digital imaging or spec-
troscopy with small pixel size and excellent precision. Optical imaging
usually uses two-dimensional CCDs with pixel sizes −20µm ×20µm
and area of the order of 1 cm2. Figure 4.2 is a scheme of the pixel
two dimensional CCD detector, where photons can be detected in the
pixel-sized precision. For example, the Chandra telescope has 10 CCD
detectors for both imaging and spectroscopy (86). It operates at the
temperature of 144K to 183K, with 1024 by 1024 pixels of 23.985 µm.
The effective area is of 110 cm2 at 0.5 keV; 600 cm2 at 1.5 keV; and
40 cm2 at 8.0 keV. The effective area for Chandra depends on the ge-
ometric mirror area, reflectivity, the detector quantum efficiency, and
diffraction grating efficiency. The minimum row readout time is 2.8 ms
and the system noise of 2 e− rms per pixel. On the other hand, CCDs
have high electronic noise, which can be severely suppressed using the
improved version of this technology called skipper CCD (24).

The first proposition of a skipper CCD (87; 88) included the mul-
tiple readout technique, using a floating output gate, which reduces
low-frequency readout noise. However, this detector generated spuri-
ous charges (89). The operating skipper CCD (24) couples the floating
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Figure 4.2: The CCD is a two-dimensional detector divided into a large number
of precise pixels. The signal generated in a single pixel can be located with its
decreasing intensity width represented by the shades of blue in the picture.

gate output stage to a small-capacitance sense node and isolate both
from noise sources. It is capable of measuring electric charges in a
single pixel in multiple, independent, and non-destructive events, as
shown in figure 4.3 from reference (24). The skipper CCD accuracy
allows it to measure individually one to thousands of electrons, count-
ing optical and near-infrared photons. It is the most sensitive EM
calorimeter that operates at temperatures as low as 140K. The skipper
CCD properties are listed in table 4.1 from references (24; 90). Fur-
thermore, the fabrication process does not require major modifications
in the usual CCD to obtain the non-destructive readout. Therefore,
it can be implemented at a low cost in existing CCD manufacturing.

Characteristic Value Unit
Format 4126× 866 pixels

Pixel Scale 15 µm
Thickness 200 µm

Operating Temperature 140 Kelvin
Number of amplifiers 4

Readout time (1 sample) 10 µs/pix/amp
Readout Noise (1 sample) 0.068 e−rms/pix

Table 4.1: Skipper CCD properties listed from (24; 90)

In this work, we analyze the possibility of using a skipper CCD
as an experiment for indirect detection of Dark Matter. The skipper
CCD is a competitive device compared with other telescopes. It is
advantageous because of its low electronic noise of 0.068 e−rms/pix,
while usual CCD detectors have a few e−rms/pix. Besides, most oper-
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Figure 4.3: Measurements of single electron charges in a skipper CCD, with 4000
samples per pixel, and bin width of 0.03 e−. The plot on the top is a low-light level
illumination, the peak at 0 e− has rms noise of 0.068 e− rms/ pix. The graphic below
is a high-light level illumination, where the peak at 777 e− has the noise of 0.086 e−

rms/ pix. The Gaussian fits have χ2 = 22.6/22 and χ2 = 19.5/21, respectively. The
two measurements demonstrate integer electron peaks distinctly resolved, and the
single-electron sensitivity over a large dynamical range. Plot from reference (24).
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ating X-ray telescopes have a narrow FOV. They usually give the FOV
as the aperture angle of each two-dimensional direction, of the order
of ((10− 30)′ × (10− 30)′), which is useful for astronomical research.
However, for indirect DM searches, it is useful to analyze a large vol-
ume of space since the interactions with the SM are feeble. Therefore,
it is compelling to launch a new experiment with a significant angle
aperture, typically of the order o 20o × 20o.

Table 4.2 compares the proposal of a satellite with a skipper CCD
with the most competitive operating X-ray telescopes: XMM-Newton
(23; 91; 92), Chandra (22), Suzaku (93) and Swift (94). The table
lists the energy band, noise, FOV, and energy resolution. It shows
that the skipper CCD would have a much lower electronic noise and
larger FOV, while its other characteristics are similar to the other
experiments. Its calibration curve lies over 0.1 keV to 15 keV, in-
cluding X-rays and optical photons. Telescopes based on CCD cam-
eras have high values of energy resolution; for example, XMM-Newton
EPIC camera full width at half maximum FWHM ≈ 100 eV for 2
keV. However, the skipper CCD would have a threshold at 3 eV and
∆E . 10 eV. Therefore, it would have a much more improved energy
resolution of the order E/∆E ∼ 1000. Reference (95) claims that
SXS microcalorimeter in ASTRO-H also has low energy resolution
FWHM < 7 eV, though its FOV is narrow, about 3′ × 3′.

Experiment En. Band (keV) Noise (e−rms/pix) FOV En. Resolution ( E
∆E

)
Skipper CCD 0.1-15 0.068 20o × 20o ∼ 1000

Chandra 0.1 -10 2 30′ × 30′ 9-35
Newton 0.1-15 5 33′ × 33′ 20-50
Swift 0.2-10 1 23.6′ × 23.6′ 42

Suzaku 3- 79 2.5 17′ × 17′ 20 - 100

Table 4.2: Comparison between skipper CCD proposal and the most competitive
operating X-ray telescopes. The FOV is usually given for a two dimensional area,
which is order of 17′ × 17′ wide in a common X-ray telescope. However, the new
experiment would have a broad opening angle, in the order or 20o × 20o.

Cosmological bounds severely suppress the interaction of DM par-
ticles with an EM field. However, the new telescope would have low
electronic noise and large FOV, which should significantly increase the
number of events over the vast X-ray background. It is compelling to
launch a new telescope in Earth orbit, which should be relatively low
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cost and scientifically significant. In the next section, we compute the
signal of X-ray photons arriving at this detector using various DM
models, in order to estimate their sensitivity to new physics.

4.2 X-ray signatures from DM models

Indirect searches using the new skipper X-ray telescope around Earth
can probe several DM models. Dark Matter indirect detection can be
studied in detail in lectures such as (96). We propose to calculate the
incoming X-ray flux in different scenarios: sterile neutrino decays, res-
onant scattering, scattering with nuclei from the Earth, axion searches
using the Earth magnetic field, and searches for mirror stars. We es-
timate the new detector sensitivity to new physics over the galactic
X-ray background.

The first scenario we analyze is motivated by the XMM-Newton
and Chandra observations of the Perseus cluster, and the Andromeda
galaxy shows a 3σ excess around 3.5 keV (97; 98) and from the Galac-
tic Center (GC) (99). One possible explanation for this excess is keV-
range relic neutrino decays (100; 101). In this scenario, sterile neu-
trinos formed in the early universe can form part of DM, depending
on the production model (102; 101). In this case, the 7 keV sterile
neutrino would decay into an active neutrino and a photon, generat-
ing the excess in the spectrum. However, the significance of the signal
is not strong enough to prove the DM particle existence. It is nec-
essary to increase the energy resolution of the detector (103), which
can be achieved with a skipper CCD. Furthermore, the large opening
angle would increase the number of events. Our results show that it
is necessary to expose the telescope to the GC for only five minutes
to obtain a significant signal over the background.

In the second scenario, we suppose that DM particles interact in
an effective Lagrangian containing an EM dipole (104). In this case,
a fermionic neutral field χ1 interacts with X-rays through a resonant
excited state χ2. The signal generated can be either an absorption
line or an excess, where the incoming photon energy probes roughly
the mass squared difference between the two fermions. The same
interaction is also present in the third scenario of scatterings with
nuclei from the Earth. In this case, the incoming DM flux contains
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the fermionic χ1 field, which scatters with a nucleus inside the planet
resulting in the excited state χ2, which in its terms decays back to
γχ1. The final decay must occur outside the atmosphere since most of
the X-rays are absorbed by matter. Therefore, the telescope can also
be sensitive to signals captured by pointing towards Earth.

The fourth scenario includes axion searches, and it also requires the
detector to point to Earth. Axion like particles may be converted to
X-ray photons in the presence of a magnetic field (105). It is possible
to use the Earth magnetic field to capture this effect (106). Although
the strength is weak, a large opening angle telescope pointing to the
planet would integrate a large volume, which may increase the detector
sensitivity. At last, the final scenario considers mirror stars, which
were proposed in a hidden sector scenario (107; 108). They would have
an SM nugget and dark mirror particles in the surrounding. These
new objects can be probed through X-ray emissions coming from the
mixing between the SM photon and dark photons.

In order to estimate the sensitivity to new physics in the telescope,
we first calculate the incoming X-ray flux φ at a given photon energy
Eγ:

dφ

dEγ
=

dNγ
dEγ

Areadetector × exposure time
, (4.1)

The count of photons Nγ is obtained assuming the detector is pointing
to a certain source at a distance d, as shown in figure 4.4. Suppose this
flux is coming from a differential volume dV located at the telescope
line of sight ~l with a certain DM number density nχ. Therefore, Nγ

should be proportional to nχ divided by the superficial area that the
line of sight covers, multiplied by the probability of interaction Pint
and integrated over all possible ~l:

Nγ =

∫ ∞
0

l2dl

∫
FOV

dΩnχPint, (4.2)

where the FOV is restricted by the opening angle and dΩ = 2πd(cos(θ)).
The physics of this process determines the probability Pint, which is
calculated from the cross section, or the decay rates of each scenario.
The telescope sensitivity will also depend on its energy resolution,
besides the extensive X-ray background. If the incoming flux can
overcome these two restrictions, then the model can be probed with
this experiment.
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Figure 4.4: Scheme of the telescope reach pointing to a source at a distance d. We
calculate the incoming photons flux produced at a differential volume dV , which is
delimited by the detector line of sight ~l with an opening angle θ.

4.3 Sterile neutrinos and the 3.5 keV line

Neutrino physics can play an essential role in DM models. One possi-
ble candidate extends the SM electroweak sector with additional mas-
sive right-handed or sterile neutrinos (100). Sterile neutrinos, as a can-
didate of DM, must obey cosmological bounds. Particularly large scale
structure simulations determine that the relic neutrino mass should be
between (0.1 - 1.0) keV to form warm dark matter. Other mechanisms
may be obtained in cold and hot scenarios (100; 101) The sterile neu-
trino couple directly to left-handed or active neutrinos. The most
efficient production mechanism is via neutrino oscillations. Mean-
while, they can decay to three active neutrinos or generating a photon
and active neutrino. The radiative decay mode is much more relevant
experimentally, producing a quasi-monochromatic photon line at an
energy corresponding to half the sterile neutrino mass. The mass mix-
ing term between the sterile and active neutrino generates a parameter
θν, which controls most of its phenomenology. For instance, the decay
width of νS → ν + γ is proportional to sin2(2θν).

Since early universe models predict the relic neutrinos to be in the
keV range, its decay to X-rays could explain the XMM-Newton ob-
servations of the Perseus cluster and the Andromeda galaxy (97; 98)
and from the GC (99), which has > 3σ excess around 3.5 keV. On ref-
erence (109), Figueroa Feliciano et al. propose an experiment similar
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to the skipper CCD on a satellite: a telescope with and large FOV on
a Rocket. In this case, the X-ray detector is a microcalorimeter that
operates at low temperatures at 50 mK. They show that a 7 keV neu-
trino decay would generate a signal in the detector after an exposure
time of 300 s. We have reproduced this calculation for a skipper CCD
in a satellite and confirmed a similar exposure time of approximately
five minutes to have a significant effect.

To predict the total flux arriving at the telescope, we may first
suppose an infinitesimal volume containing a dark matter density mass
ρ at a distance defined by the line of sight ~l as illustrated in figure
4.4. The flux is calculated generically in equations 4.1 and 4.2 for a
DM number density nχ and a probability of interaction Pint. In this
scenario, we assume the number density is:

nχ =
ρ

ms
, (4.3)

where ρ is the DM halo mass density profile and ms = 7 keV, the
mass of the sterile neutrino. Moreover, the probability of interaction
Pint depends on the decay rate Γ, which is limited because the DM
candidate must have a considerable lifetime in order to preserve cos-
mological bounds from the early universe.

The decay rate depends on the mixing angle θν between the active
and sterile states, as shown in reference (110).

Γ =
9αG2

Fm
5
s sin2 2θν

1024π4
= (1.38× 10−29s−1)

(
sin2 2θν

10−7

)( ms

1 keV

)5

.

(4.4)
According to the reference (110) observations fix the mixing angle

10−11 ≤ sin2(2θν) ≤ 10−10. (4.5)

. For a ms = 7 keV sterile neutrino, its lifetime will be order of
τ ∼ 1027 to 1028.

Therefore, using equations 4.1, 4.2, and 4.3, the total incoming flux
φ is given by:

φ =
Γ

ms

1

4π

∫
FOV

∫ ∞
0

ρ(r(l, θ))dldΩ, (4.6)

where we used the decay rate Γ from equation 4.4. The density profile
depends on r, which is the distance from the differential volume to the
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GC. We can observe in figure 4.4 that its dependece with the line of
sight is:

r2 = l2 + d2 − 2ld cos(θ) (4.7)

Figure 4.5: NFW profile of DM distribution through the galactic halo.

Finally, we integrate this flux over the full space using a DM den-
sity profile of the galactic halo, for example, the Navarro–Frenk–White
profile (NFW) (111). Figure 4.5 illustrates this profile, which is mod-
eled as:

ρNFW (r, rS, ρ) =
ρ

( r
rS

)(1 + r
rS

)2
, (4.8)

where rS = 20 kpc is a scale radius determined from simulations in
(112; 113).

Figure 4.7 shows the flux of incoming photons in a telescope de-
pending on the pointing direction defined by the angle α, where α =
π/2 means that it is pointing towards the GC. Although the GC is
a powerful source, it has a significant background. Figure 4.8 shows
the background composed of all X-ray flux from non-DM origin; it in-
cludes emissions from low mass X-ray binaries; cosmic X-ray; thermal
components from the galactic diffuse background and ionized neu-
tral atoms from the interstellar medium. Reference (109) estimates
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Figure 4.6: Definition of the pointing angle α

the background using results from Suzaku observations of the Galac-
tic Ridge and GC to estimate the contribution from diffuse thermal
emission (114); ASCA observations to contribute with the cosmic X-
ray background from unresolved extragalactic sources (115); and the
ROSAT All-Sky Survey – Bright Source Catalogue (92) to estimate
the contribution from point sources in the field.

For an energy of 3.5 keV, the background flux is approximately
φB = 4.6 cm−2s−1keV−1 as shown in figure 4.8. Therefore, we esti-
mate the time necessary to accumulate data until achieving five sigma
significance

S =
Nγ√
NB

, (4.9)

where the new physics number of events is

Nγ = φγ∆A∆t, (4.10)

and the background number of events is

NB = φBEγ∆A∆t. (4.11)

We may estimate the time using the CCD treshold energy

Eγ = 0.003 keV, (4.12)

and the flux coming from DM decay φγ = 0.033s−1 per unit of detector
area. Therefore, the exposure time for a 5σ signal is of 307 seconds,
approximately 5 minutes.
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Figure 4.7: Flux of incoming photons with ms = 7 keV depending on the pointing
angle α, where α = π

2
when the satellite is pointing directly to the GC.

In conclusion, the new telescope is sensitive enough to probe the
excess in the 3.5 keV line from the XMM-Newton observations of
the Perseus cluster and the Andromeda galaxy. A sterile neutrino
decay could explain this effect. We also supposed that the number
density is supposed to be the DM NFW profile. In this case, the new
skipper CCD satellite with a θ = 20o opening angle would only need
five minutes to have a significant signal when pointing directly to the
GC. Therefore, this experiment will improve the sensitivity to x-ray
probing the hypothesis that DM can be composed of 7 keV sterile
neutrinos.

4.4 Eletromagnetic dipole effective Lagrangian

One of the most remarkable characteristic of Dark Matter is its feeble
interaction with light. Cosmological observations put strict bounds on
the coupling of DM candidates and photons. However, it is possible
to have a model that generates a dipole interaction through a higher-
order operator suppressed by a significant energy scale. In particular,
we have consider a model where the DM candidate (χ1) has a nearby
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Figure 4.8: Background X-ray flux from the GC produced from non DM sources.
The energy bins are 3 eV wide. (109).

excited state χ2 coupled to the effective Lagrangian:

L =
−i
2
χ̄2σµν

(a+ bγ5)

M
χ1F

µν, (4.13)

which describes the interaction of the two fermions χ1 and χ2 with the
EM field tensor. The energy scale M supresses the couplings a and b.
Moreover, χ1 is a long-lived DM candidate, while χ2 excited state is
more massive than χ1, which allows the decay χ2 → χ1γ.

We are going to consider two possible scenarios where the new
fermions generate distinct signals in an X-ray telescope. The first is
a resonant scattering between photons and DM from a source (104).
Meanwhile, the second hypothesis assumes that χ1 scatters with a
nucleus inside Earth, resulting in an excited state χ2 that decays back
into χ1γ towards the detector. This was calculated for direct detection
experiments in references (116; 117).

The first scenario is X-ray resonant scattering. We assume that
photons can scatter with the fermion χ1 through the resonant fermion
χ2, as illustrated by the diagram 4.9a. In reference (104), Profumo
et al. propose a dark line spectrum from this process. They describe
a dip in the incoming flux of photons localized at the resonant en-
ergy. The phenomena would happen because a small portion of the
flux would be deflected away from its original path, as shown in figure
4.9b. On the other hand, this calculation was made considering the
narrow FOV of the existing telescopes. For a large opening angle,
there will also be the contribution of scattered photons into the detec-
tor generating an excess, which may be dislocated from the resonant
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(a) γχ1 scattering process.

(b) Photons scattered out of the de-
tector generating an absorption pat-
tern.

(c) Flux of incoming photons that
will produce a resonance signal.

Figure 4.9: The figure (a) is a Feynman diagram representing the scattering process
generated by the interaction of the effective Lagrangian in 4.13. The next two
diagrams represent the two possible signals in the telescope. First, the incoming
photons are deflected away, which produces an absorption line. Second, photons are
scattered into the detector producing a resonance.

energy, as represented in figure 4.9c.

The scattered photon would be characterized by the resonant en-
ergy Eres in the center of mass (CM) frame, which is given by:

Eres =
m2

2 −m2
1

2m1
, (4.14)

where and m1,2 is the χ1,2 mass. This allows a broad parameter space,
which is determined by the detector energy scale and the ratio R = m1

m2
,

with 0 < R < 1. For a typical CCD X-ray telescope reach, the energy
range that can be detected is between 0.1 to 15 keV, which restricts
the parameter space as shown in figure 4.10. However, cosmological
bounds further restrict the parameter space. According to reference
(104), the most stringent limits come from: red giants, Lyman-α forest
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data, Super Nova events and BBN. Large scale structure formation
from Lyman-α forest data implies that the smallest possible mass for
DM restricts m1 & 10 keV (118). This bound restrict the parameter
space in figure 4.10 to only values above the dashed green line, which
corresponds approximately to R > 0.5.

Figure 4.10: Parameter space m2 in terms of R = m1

m2
. The blue and orange full

lines show the fermionic masses that can be probed by the detector’s energy range
at 0.1 and 15 keV respectevely. The dashed line corresponds to the Lyman-α bound
of m1 > 10 keV. Thus the shaded area corresponds to the allowed parameter space
that will be probed by the skipper CCD telescope.

Moreover, the effective Lagrangian coupling in equation 4.13 must
be highly supressed in order to respect the astrophysical constraints.
For this purpose, we define the parameter M̃ as:

M̃ 2 =
πM 2

|a|2 + |b|2
, (4.15)

and the parameter η = m2

M̃
. One cosmological process to consider is to

avoid excessive energy loss in stars.

Mainly χ1χ2 pair production in plasma decay can delay the helium
ignition in low-mass red giants. It can be translated to the bound:

m2 .
2ωP

(1 +R)
(4.16)

where the plasma frequency is ωP ≈ 8.6 keV (119; 120) and

8× 10−31 . Rη2 . 2× 10−19. (4.17)
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Furthermore, data from Super Nova SN 1987A event with core plasma
frequency ωP ≈ 10 MeV restrict m2 . 2ωP/(1 +R) (120) and

2× 10−21 . Rη2 . 2× 10−17. (4.18)

Finally, BBN also restrict the parameter space since it is sensible to
the number of degrees of freedom in the ealy universe. The fermions
χ1,2 can contribute to the total energy density and expansion rate if
they are in thermal equilibrium before the nucleosynthesis (119). This
implies that m2 . 2(1MeV )/(1 +R) and

Rη2 . 2× 10−20. (4.19)

To sum up, the lower bound is taken from supernova and upper
bound from BBN:

2× 10−21 . Rη2 . 1.7× 10−20. (4.20)

Figure 4.11 shows the allowed parameter space. The horizontal lines
are the bounds from supernova and BBN, while the diagonal lines
correspond to R = 0.5, 0.9, and 0.99. Reference (104) also states
that there are bounds from EW precision tests and accelerators, but
cosmological bounds are more restrictive constraints to the parameter
space.

4.4.1 Dark Line

Firstly, we are going to calculate the absorption patter in figure 4.9b.
In this one-dimensional scenario, the incoming X-ray flux is deflected
from its path, generating a dip on the total flux. This calculation is
reproduced from reference (104). It is a reasonable assumption for
narrow FOV telescopes, such as Chandra and XMM-Newton. How-
ever, the signal in the large FOV telescope has the contribution of
X-rays that are scattered towards the detector.

Considering the possible parameter space, we have chosen 3 points
to evaluate the X-ray incoming flux. Fixing the resonance energy at
15 keV, we choose to evaluate points A, B and C, which are described
in table 4.3. It is possible to fix the fermion masses that respect
the telescope sensitivity in figure 4.10. Meanwhile the scale M̃ must
respect the cosmological bounds in equation 4.20, which is represented
in figure 4.11



66 Dark matter indirect searches with a skipper CCD telescope on a satellite

R m1 (keV) m2 (keV) M̃ (keV)
A 0.5 10 20 1010

B 0.9 128 142 1012

C 0.99 1477 1492 1013

Table 4.3: Points A, B and C with Eres = 15 keV.

Figure 4.11: Parameters R = m1/m2 and η = m2/M̃ in terms of the cutoff energy
M̃ . The shaded area corresponds to the allowed parameter space considering cos-
mological bounds. The horizontal lines are the most strict bounds from Super Nova
and BBN in equation 4.20, while the diagonal lines corresponds evaluating points
A, B and C without fixing M̃ , which are chosen in the dots such that the scale is
minimum.

The interaction of the two fermions with the photon is given by the
dipole Lagrangian in equation 4.13. To calculate this process cross
section, we assume a narrow resonance process in the diagram 4.9a,
which is described as the Breit-Wiegner cross section in the CM frame:

σγχ1
=

2π

2p2
CM

(m2Γχ2
)2

(s−m2
2)

2 + (m2Γχ2
)2
, (4.21)

where pCM is the photon momentum and m2 is χ2 mass. The decay
width Γχ2

is given assuming that it decays is only to χ1γ final state:

Γχ2
=

1

M̃ 2

(m2
2 −m2

1)
3

m3
2

. (4.22)

Kinematically, the photon momentum pCM is calculated as:

p2
CM =

m2
1 − s
4s

, (4.23)
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where s = m2
1 + 2Eγ

√
p2 +m2

1− p cos θ with Eγ the incoming photon
energy and p the DM initial momentum.

Another DM characteristic is that it is cold. Halo DM velocity is
distributed from the order of 10 km/s until 1000 km/s. It is repre-
sented by the Maxwell-Boltzman distribution with a Sv velocity dis-
pertion:

f(p) =

√
2

π

p2e
−p2

2a2

a3
, (4.24)

with a = m1Sv. Therefore we can use equations 4.21 to 4.24 and
calculate the total cross section:

σTOT =

∫
dpf(p)

∫ 1

−1

d(cos θ)σγχ1
, (4.25)

where we integrated over all possible values of the momentum p, which
is estimated as pmin = m110 km/s until pmax = m1104 km/s. Figure
4.12 shows the total cross sections of each point in table 4.3, for Eres =
15 keV and R = 0.5, 0.9 and 0.99.

Figure 4.12: Total cross section for Eres = 15 keV. The colors green, orange and
blue corresponds respectively to the points A, B, and C with R = 0.5, 0.9 and 0.99.

The signal may only be detected if the total cross section width is
greater or comparable with the telescope energy resolution. According
to reference (121), the cross section can be simplified as:

< σ >res=
3π2

2

Γm1

E3
res p

, (4.26)

in the limit of Γ� Eres. Integrating in the Maxwell-Boltzman distri-
bution of momenta p:

σ(Eγ = Eres) =
3π3/2

√
2

Γ

E3
resσv

, (4.27)
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Figure 4.13: Energy width in terms of Sv average velocity, the full red, green, orange
lines correspond to Eres = 5, 10 and 15 keV. For a skipper CCD with minimum
∆E & 3 eV, the detection is restricted to the shaded area.

where p ' m1σv.
The hipothesis of finding a narrow width signal, integrated over a

Maxwell-Boltzmann distribution of velocities gives a well distributed
cross-section. Thus the DM velocity distribution dictates the Doppler-
broadened width. Therefore,it is a good approximation to parametrize
the cross section as a Gaussian (121):

σ(E) = σ(Eres)exp

[
−(E − Eres)

2

2(σvEres)2

]
(4.28)

Therefore, we can estimate the width to be proportional Sv is the
DM escape velocity ∆E/E ∝ Sv, which must be comparable with the
energy resolution of the detector. Figure 4.13 shows the energy width
in terms of Sv for Eres = 5, 10 and 15 keV. Suppose the new skipper
CCD can reach ∆E ∼ 3 eV, than the parameter space is restricted
such Sv > 60 km/s at 15 keV, and limited to Eres > 5 keV.

Figure 4.14 shows the total flux of deflected incoming photons
∆Flux = dφ

dEγ
. It is normalized by an initial source flux F0:

F0 =
dφsource
dEγ

=

(
1 keV

Eγ

)2
dφ0

dEγ
. (4.29)

This result is obtained by integrating the initial flux with the proba-
bility of interaction

P = 1− e−σnl (4.30)
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where σ is the total cross section given by equation 4.25,the DM num-
ber density is n = ρ/m1, and l is the line of sight distance. In this
case, we assume an isotropic DM density of ρ0 = 0.34 GeV/cm3. Be-
sides, we used the main velocity in the galactic halo as Sv ∼ 120 km/s
(122).

The resultant absorption pattern is the total flux subtracted with
∆Flux/F0. However, ∆Flux/F0 is much smaller than the initial flux
for this energy range F0 ∼ 4 10−3dφ0/dE to be represented in a single
figure. Although the signal will have a width large enough for the
energy resolution of the skipper CCD, the absorption pattern flux is
at most a fraction on order 10−9 of the source F0, which gives the
number of incoming photons.

Figure 4.14: Flux of deflected incoming photons. The colors green, orange and blue
corresponds respectively to the points A, B, and C with R = 0.5, 0.9 and 0.99.

We have observed that the narrow cross-section gains a significant
width after considering the velocity distribution. Figure 4.13 shows
that the total width is directly proportional to the Sv. Therefore, we
observe that to have a signal with the detector energy resolution; we
should have the resonant energy Eres > 5 keV and Sv > 60 km/s. The
total flux for Eres = 15 keV and Sv > 60 km/s is at most order 10−12 of
the incoming source flux F0. However, the number of incoming X-rays
from the GC source at 15 keV F0 ∼ 0.2 photons per second per area
per energy. Using a similar calculation from equation 4.9, to have a
significant signal S=5 in 1 cm2 detector, it would take order 1014 s.
Therefore, it is not possible to obtain a significant absorption signal
with the new telescope, assuming an isotropic distribution of dark
matter and pointing to the GC. The Coma cluster is also a possible
source of X-rays. However, Chandra measurements are in the range of
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(0.1–2.4) keV, which also escapes the detector energy resolution. On
the other hand, reference (104) shows how this model can be probed
in gamma rays telescopes.

4.4.2 Shifted resonances

We are now going to consider the second possible signature of the
X-ray resonant scattering. This process consists of the scattering of
photons towards the detector, as in figure 4.9c. In this case, X-ray
photons are going to add a resonance pattern in the flux located at
slightly smaller resonance energy.

This process is calculated analogously to the previous deflected pat-
tern. The integrated flux in the detector rest frame is normalized to
the same initial source flux F0:

Flux =

∫
d3pf(p)

∫
nσ
d2

r2
F0F (α)

1

4πl2
l2dl(2π) sin θdθ, (4.31)

where n is the dark matter isotropic number density, σ is the cross
section given by equation 4.21 and f(p) is the Maxwell-Boltzman dis-
tribution in equation 4.24, d is the distance to the source, r is the
infinitesimal volume coordinate, l is the line of sight, and θ is the
opening angle. However, the Breit-Wiegner cross section in equation
4.21 is valid at the center of mass (CM) frame. Therefore, the function
F (α) is the angular function that characterizes the boost to the frame
of the telescope. We assume χ2 is produced unpolarized and decay
back to χ1γ isotropically in its frame rest. Then the angular function
F (α) is defined as the probability of interaction over the FOV of the
telescope Ωt:

Fα =
Pint
dΩt

=
dNγ

NγdΩα
, (4.32)

where α is the outgoing photon deflection angle in relation to the in-
coming direction. Since the number of photons Nγ must be conserved,
we have: ∫

F (α)dΩα = 1, (4.33)

Therefore, by comparing equation 4.33 for both CM and the telescope
frame, one finds the relation:

F (αχ) = Fcm
d(cos(αcm))

d(cos(αχ))
, (4.34)
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which is normalized to a constant Fcm = 1/(4π) at the CM frame.
Here, αcm,χ1

is the deflected angle of the outgoing photon at the CM
and the detector rest frame respectively. Furthermore, β is the relative
velocity between the two frames given by the Lorentz transformation.
Figure 4.15 represents the boost from CM to the χ1 frame rest. For
the outgoing photon, the boost is taken in the z direction, such that it
will affect the z component of the photon momentum. However, the
parallel direction x should be invariant:

E = γ(Ecm − βpcm), (4.35)

Pz = γ(pz, cm − βEcm), (4.36)

Px = Px, cm, (4.37)

with γ = 1/
√

1− β2 and

γ =
m1 + Ein

m2
. (4.38)

Therefore, the relation between the two outgoing angles αCM,χ is ob-
tained by calculating:

cos(αχ) =
Pz
Eout

, (4.39)

Replacing equation 4.37 in the last one, we obtain:

cos(αχ) =
β + cos(αcm)

1 + β cos(αcm)
. (4.40)

From equation 4.34 the final angular function is:

F (αχ) =
1

4π

1− β2

1− β cos(αχ)
. (4.41)

Moreover, the total flux in equation 4.31 can be calculated in terms
of the line of sight and the opening angle θt, which has a geometrical
relation with

αχ = arctan

(
d sin(θ)

d cos(θ)− r

)
(4.42)

where d is the distance to the source and r the postion of the infinites-
imal volume. We are going to integrate the flux over the line of sight,
then the function r in terms of l, θt is given by the cosine law:

r =
√
l2 + d2 − 2d l cos θt (4.43)
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Figure 4.15: Scheme of the boost from CM to χ1 rest frame

To sum up, we obtained the integrated flux in equation 4.31 with
the Breit-Wiegner cross section in equation 4.21 boosted with the an-
gular function 4.41. The crucial difference between this calculation
and the previous absorption flux is that it does not simply depend
on the incoming resonance Eres in equation 4.14 but on the outgoing
photon energy. The kinematical energy conservation gives the incom-
ing photon energy Ein in terms of the outcoming photon energy Eout

and the angle αχ as:

Ein =
m1Eout

m1 − Eout + Eout cos(αχ)
. (4.44)

Replacing equations 4.42 in 4.44 it is possible to calculate this energy
in terms of the opening angle and line of sight:

Ein =
Eoutm1

−Eout +m1 + Eout

√
1− d2 sin θ2t

d2+l2−2d l cos θt

(4.45)

Our numerical evaluations showed that the flux is more intense around
low values of θt, where Ein ∼ Eout. Therefore, the width could be
approximately ∆E with the second order taylor expansion of Ein for
θt → 0:

Ein ≈ Eout +
d2E2

outθ
2
t

2(d− l)2m1
, (4.46)

∆E ≈ d2E2
outθ

2
t

2(d− l)2m1
. (4.47)

Figure 4.16 shows the estimated energy width in terms of the mass
m1. The shaded area delimits the parameter space by taking into
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Figure 4.16: Estimated width ∆E in terms of the mass m1 fixing Eres = 1, 5 and
15 keV, which correspond respectively to the red, green and orange lines. The
horizontal line represents the detector treshold energy of 3 eV. The shaded area
shows the parameter space that will be constrained by the experiment.

account the detector threshold energy of 3 eV, and the energy range
from 1 to 15 keV. Therefore, in order to represent the allowed param-
eter space, we have chosen to calculate the flux in two specific points
D and F with resonance energy of 5 and 15 keV, respectively, which
are detailed in table 4.4. The choice of the points also respects the
cosmological bounds in equation 4.20, as shown in figure 4.17 The
complexity of the incoming energy in terms of the outgoing in equa-
tion 4.45 makes the numerical calculation hard when integrating the
total flux. It will be interesting to treat this numerical problem more
carefully when performing a full analysis or simulation of the data.

Eres (keV) R m1 (keV) m2 (keV) M̃(keV )
D 5 0.9 42 47 5× 1011

F 15 0.5 10 20 2× 1011

Table 4.4: Chosen points D and F from parameter space to represent possible X-ray
signals. In particular, M̃ values are chosen to obey the bounds in equation 4.20

Figure 4.18 shows the flux of photons arriving in a telescope located
in Earth orbit at a distance of 8 kpc from a source with isotropic
dark matter density distribution of ρ = 0.34 GeV/cm3. As in the
previous case, we divide the incoming flux by the source flux described
in equation 4.29, which is represented by a blue horizontal line in
both plots. The first plot was calculated in a set with Eres = 5 keV,
R = 0.9, m1 = 42 keV, while the second Eres = 15 keV, R = 0.5,
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Figure 4.17: Parameters R = m1/m2 and η = m2/M̃ in terms of the cutoff energy
M̃ . The shaded area corresponds to the allowed parameter space considering cos-
mological bounds. The horizontal lines are the most strict bounds from Super Nova
and BBN in equation 4.20, while the diagonal lines corresponds evaluating points D
and F without fixing M̃ , which are chosen in the dots.

m1 = 10 keV. Both of them show income photons flux 2 to 3 orders of
magnitude greater than the source and displaced in a smaller energy
range than the initial Eres = 5, 15 keV. However, the boost performed
shows that the scattering angle is not isotropic, and the distribution
of the estimated flux can vary one order of magnitude in each energy
bin. The dispersion of the result with Eres = 5 keV shows a primary
peak at Eγ = 4.995 with a order 0.01 keV width as predicted in the
estimation of figure 4.16. Meanwhile the other flux spreads under the
Eres = 15 keV with a maximum in Eγ = 14.8 keV and approximately
width of 1.5 keV slightly larger than the previous estimation of 0.1
keV.

Assuming a source at the GC with a flux of 0.2 photons per second
per area per energy. We may use equation 4.9 to estimate the time
of exposure of 1 cm2 detector with 3 eV threshold energy. For the
resulting flux at 15 keV, the maximum is obtained at 0.1 times the
source flux. It would be necessary 4×105 seconds, about five days for a
five sigma significance. On the other hand, the 5 keV resonance would
have the maximum flux at approximately the same order of magnitude
from the source: F0 = 4 photons per area per time per energy. It would
take 2080 seconds to have a significant signal. Therefore, the telescope
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would be sensitive to the incoming resonant excess, which is slightly
shifted from its original resonance energy anisotropically in order 0.1
keV below the CM resonant energy.

4.5 Further research

Other scenarios would produce a signal in the X-ray telescope. This
project will include the analysis of luminous DM (116; 117), axion
detection using Earth magnetic field (106), and mirror stars (107; 108).
All of them can produce X-ray emissions and probe the particle nature
of DM in the telescope.

The scattering of Dark Matter particles with nuclei inside the Earth.
Reference (116) proposes that the same EM dipole effective lagrangian
in equation 4.13 can generate X-ray photons coming from Earth. Fig-
ure 4.19 schematizes the reaction. In this case, the fermion χ1 scatters
inelastically with a nucleus within the planet producing the excited
state χ2, which decays back into χ1γ after traveling towards the de-
tector. However, we are going to consider only the probability of χ2

decaying only outside the Earth atmosphere, since X-rays are attenu-
ated as they pass through matter.

This model is particular, which is to consider that the initial DM
flux should vary in time and latitude (123). Assuming the DM wind
comes from the direction of Cygnus, the incoming flux should vary
because of the Sun motion relative to the galaxy, as shown in fig-
ure 4.20; the anisotropic rock overburden, and also anisotropic dark
matter scattering angle. Furthermore, the daily rotation of the Earth
causes sidereal-daily modulation of the signal. The DM signal will
be evident if the daily modulation is measured, which should be able
to separate it from the background. Therefore, the next step in this
work is to calculate the signal produced at the skipper CCD telescope.
It would be interesting if it can capture the modulated signal when
pointing to the Earth.

Furthermore, other possible models would produce a signal if the
telescope points towards Earth. It involves axion detection using
Earth magnetic field (106). Although it is a weak strength, when
integrated over the total volume, it can give a significant signal.

The final scenario is of mirror stars (107; 108). The hidden sector



76 Dark matter indirect searches with a skipper CCD telescope on a satellite

model Twin Higgs (30) was discussed as a neutral naturalness scenario
in chapter 2. It includes either a complete or partial copy of the SM
is, which connects back to the usual SM only through Higgs portals.
A hidden sector can also motivate DM models since it is possible to
build hidden hadrons and atoms (31; 33; 32), and it is cosmologically
viable (34). Particularly, there is a hypothesis of mirror stars, which
are supposed to be a star with an SM matter nugget and the sur-
rounding made of dark sector particles. The mixing between the SM
photon and dark photon can generate an X-ray emission. (107; 108).
A future calculation will analyze this scenario to estimate its signal in
the skipper CCD telescope.

4.6 Conclusions

This ongoing project analyses possible scenarios in DM to estimate
the new telescope sensitivity to each of them. We presented the re-
sults for the sterile neutrino decay and the resonant scattering of a
fermionic DM with light. Several X-ray telescopes use CCD tech-
nology for imaging and spectroscopy, such as Chandra and XMM-
Newton. An improved version of the detector called skipper CCD
lowers the electronic noise significantly. It uses floating readout gates
that allow measuring multiple and independent events. It is the most
sensitive microcalorimeter operating above the liquid nitrogen temper-
ature. Furthermore, the most competitive telescopes have a narrow
FOV for precise astrophysics measurements. However, for indirect DM
searches, it is interesting to build a new telescope with a large open-
ing angle. Since DM interactions with light are feeble, the broad FOV
allows the detector to analyze a larger volume in space and increase
the number of events (109).

Both X-ray telescopes XMM-Newton and Chandra have measured
a 3.5 keV line at three sigma significance. One of the most acceptable
model to fit this possible signal is the relic neutrino decay. In this
scenario, we suppose the 7 keV sterile neutrino decays to a photon
and an active neutrino. Besides, we assumed that the NFW profile
gives the DM number density. In this case, the new skipper CCD
satellite with a θ = 20o opening angle would only need five minutes
to have a significant signal when pointing directly to the GC. This
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experiment is sensitive to the model where DM is composed of 7 keV
sterile neutrinos. Furthermore, it will improve the sensitivity to x-ray,
probing the 3.5 keV line existence.

The second scenario considers the resonant scattering off DM. The
interaction is given by an EM dipole effective lagrangian. This pro-
cess may generate two different signals: the usual resonant excess and
an absorption line (104). The latter comes from X-rays that were
supposed to arrive at the detector but were deflected from its path.
However, the total flux estimated for the energy range of (0.1 - 15)
keV is not comparable to the X-ray source. If considering the Coma
Cluster source, the absorption line will escape the detector energy res-
olution while the estimated flux from the GC varies between 10−18

to 10−9 of the background. Reference (104) shows how this scenario
can be probed in gamma rays telescopes with narrow FOV. On the
other hand, the broad opening angle adds contributions from resonant
X-rays scattered towards the telescope. They have a much more signif-
icant effect, where we considered two example cases with 5 and 15 keV
resonant energies. The isotropic distribution of DM can produce flux
in the same order of the source for 5 keV resonance, and the 15 keV
case can be ten times larger than the source flux. The GC background
is of 4 and 0.2 photons per second per area per energy considering the
5 and 15 keV resonance cases. Then it would take at least 2080 or
4× 105 seconds to have a significant signal in each case. Furthermore,
this scenario signature is characterized to be shifted from the usual
resonant energy. The CM rest frame produces a well-distributed dis-
persion in the flux around Eres = m2

2−m2
1

2m1
. The telescope rest frame

distributes the data anisotropically, and the maximum flux reached
was found in order 0.1 keV below the CM resonant energy.
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(a) Results for point D, where Eres = 5 keV, R = 0.9, m1 = 42
keV

(b) Results for point F, where Eres = 15 keV, R = 0.5, m1 = 10
keV

Figure 4.18: Normalized flux obtained from the resonant scatering towartds the
detector. Assuming both points in table 4.4. The blue horizontal line in both plots
represents the source flux F0 in equation 4.29
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Figure 4.19: Scheme of incoming χ1 flux scattering with a nuclei in Earth, which
produces the χ2 excited state. The later will travel outside the planet and decay
back into χ1γ which can be detected in an X-ray telescope.

Figure 4.20: Representation of the daily modulation velocity calculation. Suppos-
ing the DM wind comes from Cygnus direction, the detection in Earth should be
calculated summing the velocity with the translation movements of the planet and
solar system with respect to the galaxy.
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5
Conclusions

This thesis concerns the sensitivity of two different detectors to new
physics. The first part shows the distribution of displaced vertices from
hidden glue in the LHC, where we model the Fragmentation Function
(FF) of glueballs in the Folded Supersymmetry (F-SUSY) scenario.
It is a Neutral Natural (NN) realization, proposed to solve the LHP.
The second part of the thesis regards DM indirect searches using a
new X-ray telescope. X-ray signals constrain several DM models, in-
cluding sterile neutrino decays, resonant scatterings, DM scattering
within Earth, axions, and mirror stars. Curiously, the last scenario is
a NN realization, where the star has SM nugget and the surrounding
composed of the hidden sector particles described by the mirror Twin
Higgs.

5.1 Displaced vertices at the LHC

The Hierarchy Problem (HP) has motivated most of the LHC searches
for new physics. The first line of the chart in figure 5.1 shows the main
BSM theories candidates to solve the HP. They present top partners
that have been searched at the LHC through strong direct production.
Mainly, the supersymmetric particle is the scalar stop, while compos-
ite Higgs and extra dimensions search for different fermionic states.
However, stringent bounds pushed new physics to a high energy scale,
giving place to the Little Hierarchy Problem (LHP). An alternative is
to search for colorless top partners from a Hidden sector. NN mod-
els are presented as a solution to the LHP; it extends the SM with a
new SU(3) group. In this case, the top partners cannot be strongly
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produced because they would be charged only under the new group.

NN includes distinct scenarios such as F-SUSY, Quirky Little Higgs,
and Twin Higgs. They are organized in figure 5.1 in accordance to
SM gauge charge and spin (46). F-SUSY phenomenology includes
direct EW production of scalar f-stops, while Quirky Little Higgs sim-
ilarly generates the fermionic colorless top partners. The Twin Higgs
model includes a copy of the SM gauge group that only interacts with
the usual through Higgs portals. Moreover, there is a hypothetical
model with scalar singlets, which is represented with an interrogation
mark(46). It does not exist an explicit theory with an SM-singlet
scalar top partner. However, only a few channels would allow its dis-
covery, which only includes Higgs-portal observables. Figure 5.1 also
shows that the hidden glueballs are present in all NN phenomenol-
ogy. The Twin Higgs phenomenology includes exotic Higgs decays to
the glueballs. Meanwhile, pure glue objects can be produced from
the direct EW production of colorless top quark partners in F-SUSY
and Quirky Little Higgs. Displaced vertices in from the hidden glue
characterize the NN models uniquely. We have studied the f-squark
production in the LHC and modeled the hadronization of hidden glue-
balls.

In this work, we obtained the distribution of displaced vertices in
the F-SUSY scenario. This signature arrives from the EW production
of f-squarks at the LHC. After the pair of f-squarks arises, they anni-
hilate each other to hidden gluons, which hadronizes to glueballs. We
modeled the FF of hidden gluon to glueball to estimate their average
multiplicity. As a result, figure 3.7 shows the multiplicity of displaced
vertices along the LHC detector length. We observe that this signa-
ture is extremely sensitive to the glueball mass MG̃. For instance,
when MG̃ = 15 GeV, most of the vertices are in the last part of the
detector or beyond, which can be identified with significant missing
energy events. However, when increasing the mass by 5 and 10 GeV,
we observe a more substantial fraction of the events distributed over
the detector lengths. Therefore, it is possible to obtain multi-vertex
events at any part of the detector, possibly in more than one element
at the same time.

It is challenging to analyze data in search of multiple displaced
vertices in different segments of LHC detectors. However, there is
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Figure 5.1: The chart organizes the theories candidates to solve the HP according to
the top partner’s spin and gauge interaction (46). LHC bounds restricted the strong
production of new physics from SUSY, composite Higgs, and extra dimensions.
However, NN models escape these bounds presenting colorless top partners. F-SUSY
and Quirky Little Higgs particles can be electroweakly produced in the collider, while
Twin Higgs phenomenology includes Higgs portals. A hypothetical scalar singlet
model is represented as an interrogation mark. All NN models may present colorless
glueballs. However, only F-SUSY and Quirky Little Higgs are characterized by the
hidden glue displaced vertices. Twin Higgs phenomenology includes mirror glueballs
in exotic Higgs decays.
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an effort to search for long-lived particles in the LHC (69), includ-
ing the proposal of a new detector called MATHUSLA (124) that
would cover a more considerable distance over 100 m. However, the
EW neutral current production of f-squarks escape currently displaced
vertices bounds because the cross sections producing these events are
below a 1fb. It is necessary to consider large luminosities to see the
new physics above background. Therefore, NN exotic phenomenology
will be sensitive at future colliders such as the high luminosity HL-
LHC, FCC-hh, LHeC, and FCC-eh (125). Future research will analyze
HL-LHC detectors simulations with better modeling of the glueballs
resulting from soft f-gluon radiation in the event after f-squark anni-
hilation (126). Furthermore, future research depends on the parton
shower Monte Carlo simulation that can fix the average multiplicity
at a specific energy.

5.2 Indirect searches with a new X-ray telescope

The proposal of a new telescope with a skipper CCD and broad FOV is
relevant for indirect DM searches. It would be launched in a satellite
in Earth’s orbit, which is a relatively low-cost experiment in high
energy physics. We have calculated the sensitivity of the new X-
ray detector in two different scenarios: sterile neutrino decays and
resonant scattering.

Several X-ray telescopes use CCD technology for imaging and spec-
troscopy, such as Chandra and XMM-Newton. However, there is now
an improved version of the detector called skipper CCD with signifi-
cantly low electronic noise. Its floating readout gates allow multiple
and independent events measurements. It is the most sensitive mi-
crocalorimeter operating above the liquid nitrogen temperature. Fur-
thermore, the most competitive telescopes have a narrow FOV for
precise astrophysical measurements. However, indirect DM searches
require a broad opening angle because of its weak interactions with
light. The large FOV allows the detector to analyze a large volume in
space and increase the number of events (109).

The first scenario we analyzed is the sterile neutrino decay, which
is motivated by the 3.5 keV excess. Both X-ray telescopes XMM-
Newton and Chandra have measured a 3.5 keV line at 3 sigma signif-
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icance. One of the most acceptable model to fit this possible signal is
the relic neutrino decay. In this scenario, we suppose the 7 keV sterile
neutrino decays to a photon and an active neutrino. We also assumed
that the NFW profile gives the DM number density. In this case, the
new skipper CCD satellite with a 20o opening angle would only need
five minutes to have a significant signal when pointing directly to the
Galactic Center (GC). Therefore, the experiment will be sensitive to
the model where DM is composed of 7 keV sterile neutrinos. Further-
more, it will improve the sensitivity to x-ray, probing the 3.5 keV line
existence.

The second scenario considers the resonant scattering off DM. The
electromagnetic dipole effective lagrangian may generate two different
signals: the usual resonant excess and an absorption line (104). The
latter comes from X-rays that were supposed to arrive at the detector
but were deflected from its path. However, the total flux estimated
for the energy range of (0.1 - 15) keV is not comparable to the X-ray
source. If considering the Coma Cluster source, the absorption line
will escape the detector energy resolution while the estimated flux from
the GC varies between 10−18 to 10−9 of the background. Although the
X-ray telescope is not sensitive to this search, reference (104) shows
how this scenario can be probed in gamma rays telescopes with narrow
FOV.

On the other hand, the broad opening angle adds contributions
from resonant X-rays scattered towards the telescope. They have a
much more significant effect, where we considered two example cases
with 5 and 15 keV resonant energies. The isotropic distribution of
DM can produce flux in the same order of the source for 5 keV res-
onance, and the 15 keV case can be ten times larger than the source
flux. The GC background is of 4 and 0.2 photons per second per area
per energy, considering both resonance cases. Then it would take at
least 2080 or 4× 105 seconds to have a significant signal in each case.
Furthermore, The CM rest frame produces a well-distributed disper-
sion in the flux around Eres = m2

2−m2
1

2m1
. However, in the telescope rest

frame, the scattering angle is not isotropic; the results were found to
have an excess distributed in energies slightly lower than Eres. Thus
this scenario signature is characterized to be shifted from the usual
resonant energy.
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We conclude that the new telescope can probe the two scenarios
above. The sterile neutrino would need only 5 minutes of exposure
time to have a significant signal, while an excess from resonant scat-
terings may take 7 to 35 minutes, depending on the fermionic masses.
Future research will include the analysis of fermionic DM scattering
through Earth, axion searches using Earth’s magnetic field, and mir-
ror star searches. However, these results also depend on assumptions
on the DM density profiles. Therefore, measurements from the new
telescope would give us information not only about the particle na-
ture of DM but also probe DM characteristics such as its mass density
distribution.
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A

Supersymmetry

The Hierarchy Problem (HP) is a hint for new physics at TeV scale.
Many theories are candidates as solutions, protecting the Higgs mass
from radiative corrections. The two most commons solutions of the
HP are supersymmetric extensions and composite Higgs models. In
supersymmetry (SUSY) the Higgs is an elementary scalar, there is
a global symmetry imposing a transformation between fermions and
bosons that generates superpartners to the SM particles. SUSY solves
the HP in a natural way and the Higgs mass is automatically protected
when included counterterms corrections from scalar superpartners. In
composite Higgs models, the Higgs is a pseudo Nambu-Goldstone bo-
son from the spontaneous breaking of a global symmetry, analogous
to the pion in QCD.

However, bounds on LHC have been pushing the scale of new
physics to a few TeV scale, which is higher than expected, generat-
ing a small fine tuning. Colorless Top Partners models are presented
to avoid the Little Hierarchy Problem (LHP). This class of theories
contains SM plus an extra color group linked with a parity symmetry.
New particles won’t interact strongly with SM, which explains why
they have not been found, yet they still can lay between EW and TeV
scale. This work will treat the phenomenology of F-SUSY, a Color-
less Top Partner model daughter from supersymmetric theories. This
chapter explains some concepts well stablished from SUSY, necessary
to understand the F-SUSY scenario.



90 Supersymmetry

A.1 Supersymmetry

Supersymmetric extensions of the SM can be used to solve the HP.
For a review one may read references (127) and (128). The minimal
supersymmetric standard model (MSSM) describes all SM particles
plus their superpartners. All fermions have a scalar partner, which
are called sfermions of sleptons and squarks. The supersymmetric
partners are represented with a tilde eg: ẽL, ẽR a are selectrons, su-
perpartners of left and right handed electrons respectively. Gauge
bosons transform in an adjoint representation, its conjugated state is
the same as the boson, so their fermionic partners must have equal
left-right representations. In the MSSM, gauge bosons will also have
gauginos fermionic partners: SU(3) gluinos, SU(2)× U(1) winos and
binos before EWSB, then after there are zino and photino.

Higgs supermultiplets have two copies in a supersymmetric theory.
This is because only one Higgsino will not cancell anomalies. Also,
since the superpotential must be holomorphic, the Higgs chiral super-
field cannot be complex conjugate to give masses to down and up type
fermions. Therefore we need both Higgs Hu and Hd. So there are two
supermultiplets with Y = ±1

2 . : Hu with Y = 1
2 , couples to the up

quark in the yukawa interaction, and have electric charges (H+
u , H

0
u),

T3 = (1
2 ,−

1
2); Hd with Y = −1

2 , couples to the down quark in the
yukawa interaction, and have electric charges (H0

d , H
−
d ), T3 = (1

2 ,−
1
2).

Superpartners have the same couplings and masses as the SM par-
ticles. However, since the selectron particle has not been detected,
this indicates that SUSY must be broken as a mechanism to generate
masses for the superpartners. In the MSSM, the symmetry is softly
broken by adding a term to the lagrangian:

LSUSY + Lsoft. (A.1)

The soft term generates a mass msoft that contributes to the higgs
mass quantum corrections as:

m2
H = m2

soft

λ

16π2
ln

ΛUV

msoft
, (A.2)

where λ is schematic for dimensionless couplings to the Higgs. This
means that the Higgs mass is sensitive to the MSSM simmetry break-
ing scale. Since the LHC has found a light Higgs, this scale cannot
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be too high. However, the LHC has not found any supersymmetric
partner, so the MSSM itself became fine tuned.

A.1.1 Algebra

SUSY is an extention of Poincaré group. It describes any particle
plus its superpartner with different spin. SUSY is represented by the
algebra operators QS, Q†S :

QS|fermion〉 = |boson〉 (A.3)

QS|boson〉 = |fermion〉, (A.4)

where QS, Q†S have spin 1
2 . Note that SUSY is a simmetry in the

space-time. It obeys the algebra of commutators:

{QS, Q
†
S} = P µ, (A.5)

{QS, QS} = {Q†S, Q
†
S} = 0 and (A.6)

[P µ, QS] = [P µ, Q†S],= 0 (A.7)

where P µ is the particle’s quadrimomentum, curly braces represent
anti-commutators and squared brackets are commutators. The su-
persymmetric irreducible representation can be described as a super-
multiplet containing both bosonic and fermionic states. If |Ω〉, |Ω′〉
are states with different spin, member of a same supermultiplet, then
both states can be written in terms of QS, Q†S operators, its eigenval-
ues are propotional to P 2, so both particle and superpartner have the
same masses. QS, Q†S commute with gauge generators, which means
that both states also carry the same coupling, such as electric charge,
isospin and color.

Another important formalism used in supersymmetric theories is
the Weyl fermion representation. Writing a Dirac spinor ΨD as:

ΨD =

(
ξα
χ†α̇

)
, (A.8)

the left-handed Weyl spinor corresponds to ξα , while χ†α̇ is the right
handed Weyl spinor indicated by a dotted index α̇. A Weyl represen-
tation explicitates the helicity of each state, which is easily observed
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due to the projection of the dirac spinor. Note that the hermitian
conjugate of a left handed Weyl fermion is a right handed Weyl spinor
and vice versa.

The number of bosons must be the same as the number of fermions.
It is straightforward to demonstrate it if one observes the operator
(−1)2s, where s is spin eigenvalue, so that it takes the value of +1 for
bosons and −1 for fermions. The completeness relation

∑
i |i〉〈i| = 1,

then results in: ∑
i

〈i|(−1)2sP µ|i〉 = 0. (A.9)

Since this sum is proportional to number of bosons minus number of
fermions, then they must be equal.

The simplest supermultiplet is called chiral supermultiplet, com-
posed by a Weyl fermion, which has two helicities (nF = 2), and two
real scalars (nB = 2). For a spin 1 boson (nB = 2), it must have one
fermionic superpartner (nF = 2).

SUSY are characterized by the number (N ) of supercharges QS.
N=1 SUSY corresponds to one charge operator QS, N=2 correspond
to two of them and so on. In subsection A.1.4 shows that a five dimen-
sional supersymmetric theory corresponds to a N=2 SUSY spectrum
in terms of four dimensional fields.

A.1.2 Wess-Zumino Model

The simplest non interacting supersimmetric model describes a chiral
supermultiplet, with a single left handed two component Weyl fermion
ψ and its superpartner complex scalar φ. The lagrangian can be sep-
arated with a fermionic and a scalar term:

L = Lscalar + Lfermion. (A.10)

This is a Wess-Zumino Lagrangian, written as:

Lscalar = ∂µφ∗∂µφ, (A.11)

And

Lfermion = iψ†σ̄µ∂µψ. (A.12)
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It must be invariant under supersymmetric transformations, trans-
forming the scalar field in the fermionic and vice versa.

δφ = εψ, δφ∗ = ε†ψ†, (A.13)

δψα = −i(σµε†)α∂µφ, δψ†α̇ = i(εσµ)α̇∂µφ
∗, (A.14)

where ε is two component Weyl fermion infinitesimal parameter. How-
ever, the lagrangian in equations (A.11) and (A.12) summed is not
invariant under the supersymmetric transformations above. In order
to close the algebra off-shell, one must introduce an auxiliary field F,

Lauxiliar = F ∗F. (A.15)

The dimensions of F is mass squared, and its SUSY transformation
rules are:

δF = −iε†σ̄µ∂µψ, δF ∗ = i∂µψ
†σ̄µε. (A.16)

The auxiliary field motion equation is F = F ∗ = 0, so the lagrangian
has 4 degrees of freedom on-shell, two from the scalar field plus another
two from fermion. However off-shell fermions fields ψ have four degrees
of freedom, thus the auxiliary field F with two degrees of freedom is
used to conserve the number of bosons summed with the two ψ scalar
fields. Therefore, the non interacting supersymmetric lagrangian for
a collection of chiral supermultiplets is

Lfree = −∂µφ∗i∂µφi + iψ†
i

σ̄µ∂µψi + F ∗iFi. (A.17)

Interactions in the lagrangian may be introduced in the most general
way as:

Lint =

(
−1

2
W ijψiψj +W iFi + xijFiFj

)
+ c.c.− U, (A.18)

where W ij, W i, xij and U are polynomials in the scalar fields, besides
c.c. stands for complex conjugate. However, the terms U and xij are
not invariant under supersymmetric transformations, so they cannot
exist in Lint. Thus the final interaction lagrangian must be:

Lint =

(
−1

2
W ijψiψj +W iFi

)
+ c.c., (A.19)



94 Supersymmetry

The term W ij is a polynomial of scalar fields with dimension of mass.
It can be written in terms of the matrix mass term M ij and a yukawa
coupling yijk between the scalar and two fermions:

W ij = M ij + yijkφk. (A.20)

Defining the superpotential as W:

W ij =
δ2

δφiδφj
W, (A.21)

then the superpotential is the object:

W =
1

2
M ijφiφj + yijkφiφjφk. (A.22)

The term W i is defined from the superpotential as:

W i =
δ

δφi
W =

1

2
M ijφj + yijkφjφ

k. (A.23)

It is possible now to write supersymmetric interactions of the chiral
supermultiplet. For a more detailed description one may read refer-
ences (127) and (128).

A.1.3 Supersymmetric Gauge Theory

A gauge supermultiplet is composed of a massless gauge boson Aa
µ and

a two component Weyl fermion gaugino λa, where a is the number of
generator in the adjoint representation of the gauge group. The gauge
transformation is written as:

Aa
µ → Aa

µ + ∂µΛa + gfabcAb
µΛc, (A.24)

λa → λa + gfabcλaΛc. (A.25)

Analogous to the auxiliary field F introduced in the free lagrangian,
for a gauge lagrangian to be invariant under gauge transformations,
there must be a real bosonic auxiliary field Da. It must satisfy the
equation of motion (Da)∗ = Da and has dimensions of mass2. Thus
the gauge lagrangian is written as:

Lgauge = −1

4
F aµνF a

µν + iλ†aσ̄µ∆µλ
a +

1

2
DaDa, (A.26)
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where the Yang-Mills strength tensor is:

F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µA
c
ν. (A.27)

The covariant derivative of the gaugino field is:

∆µλ
a = ∂µλ

a + gfabcAb
µλ

c (A.28)

A.1.4 Extended SUSY

The minimal supersymmetric SM is a four dimensional supersymmet-
ric theory that can be constructed with one operator QS (N = 1). In
four dimmensions, the maximum extension of a supersymmetric model
is N = 4, with 16 conserved supercharges. Section 61 of Shifman’s
book (129) describes extended SUSY for N = 2 and N = 4. It is
interesting for this work to understand the extension of N = 2 SUSY
because it will be described in five dimensions, to achieve the same
spectrum of a four dimensional N = 1 theory.

First, lets consider massive particles in N = 2 SUSY extension.
Suppose they are at a rest referential such as Pµ = (m, 0, 0, 0). They
are going to be written in a SO(3) spin representation. Suppose that
a state |j jz〉 with spin j and (2j+ 1) quantum numbers jz. The
extended superalgebra is:

{QI
Sα, (Q

J
Sβ)†} = 2mδ{αβ}δ

{IJ} (A.29)

{QI
Sα, Q

J
Sβ} = 0, (A.30)

where I, J is equal to 1 or 2.
Suppose the massive particle is at a state |j jz〉, assuming that

QI
Sα|j jz〉 = 0. It it possible to construct 22N(2j + 1) states from 4

annihilation and 4 creation operators. If the initial state |j jz〉 has
spin 0, then 22N states will exist with spin either 0, 1

2 or 1.
The massless states will be described in a referential such Pµ =

(E, 0, 0, E). In this case, the algebra is described as:

{Q1
Sα, (Q

2
Sβ)†} = 4Eδ{IJ}

[
1 0
0 0

]
, (A.31)

with I, J = 1, 2. In this case, a state |b〉 with helicity λ will gen-
erate 22N states from creation and annihilation operators. One can
construct the state (Q1

S)†|b〉 with λ+ 1
2 and (Q1

S)†(Q2
S)†|b〉 with λ+ 1.
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However, CPT transformations impose that only λ = −1
2 may exist.

Thus the spectrum is composed of one massless hypermultiplet

λ = (−1

2
, 0, 0,

1

2
), (A.32)

and two supermultiplets

λ = (0,
1

2
,
1

2
, 1) (A.33)

λ = (−1,−1

2
,−1

2
, 0). (A.34)

This gives the matter content of the extended N=2 SUSY. In chap-
ter 2, we use this description to describe the UV completion of the
F-SUSY scenario. In this case, the theory is derived from a super-
symmetrical model in an extra dimension. The 5D matter content of
the N=1 SUSY is equivalent to the one in the 4D N=2 model. There-
fore, when describing the physics in the UV theory, we used the N=2
language.



B
Quantum Chromodynamics

Neutral naturalness (NN) models extend the SM with a copy of the
strong sector. The new physics behaves like QCD, however they are
not charged under the SM SU(3)C . Chapter 3 shows the NN phe-
nomenology of hidden glueballs from a Folded Supersymmetry sce-
nario. The EW production of f-squarks in the LHC generates highly
displaced vertices in the detector. We calculate the distribution of
displaced vertices by modeling the Fragmentation Function (FF) of
hidden gluons to glueballs.

The FF gives the hadronization of a parton to a hadron at a given
energy. In QCD, FF are measured in a certain energy than evolved
to higher energies in a DGLAP evolution. This process is usually
described in the Mellin space. In this appendix, we show the Mellin
transformation in the first section, then perform numerical calculations
to evaluate the DGLAP evolution of gluons to glueballs FF.

B.0.1 Mellin Transform

Mellin transform’s definition is given by:

F (x) =

∫ ∞
0

zxf(z)
dz

z
, (B.1)

denoting F(x) the Mellin transform of a function f(z), where x is a
complex number (130).

The convolution of n functions in x space transforms in such a way
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that the integrals become a product.

F (x) =

∫
f1

(
z1

z2

)
f2

(
z2

z3

)
. . . fn−1

(
zn−1

zn

)
fn(zn)

dz1

z1

dz2

z2
. . .

dzn
zn
,

(B.2)
so that we have

F (x) = F1(x)F2(x) . . . Fn(x). (B.3)

The Mellin inverse transformation can be written as:

f(z) =
1

2iπ

∫
C

z−xF (x)dx. (B.4)

To proof the inversion form, we are going to find the relation between
Mellin and Fourier transformation. Once this is done, it is straightfor-
ward to find Mellin’s inverse. First, the relation between a Mellin and
Laplace transformation is easily obtained through the variable change

z = e−u, du = −e−udz, (B.5)

such that

F (x) =

∫ +∞

−∞
f(e−u)e−uxdu. (B.6)

Thus the Mellin transform described in equation (B.1) in terms of
u and t variables is equivalent to a Laplace transformation of f(e−u)
with respect to x.

Mellin[f(z), x] = Laplace[f(e−u), x]. (B.7)

Also, taking another variable change x = c + 2iπβ, one can find the
relation between Mellin and Fourier transform.

F (x) =

∫ +∞

−∞
f(e−u)e−uce−2iπβudu, (B.8)

Mellin[f(z), x] = Fourrier[f(e−u), β]. (B.9)

It is clear that the inverse Fourrier transform of a funcion f̂(β) to
f̃(u) is given by:

f̃(u) =

∫ +∞

−∞
f̂(β)e2iπβudβ. (B.10)
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So the inversion of equation (B.8) from f(z) = f(e−ut) to F (x) =
F (c+ 2iπβ will respect equation (B.10),

f(e−u)e−uc =

∫ +∞

−∞
F (c+ 2iπβ)e2iπβudβ. (B.11)

Going back to the original x an z variables, since x = c+ 2iπβ and
e−u = z,

f(z) = z−c
∫ +∞

−∞
f̂(c+ 2iπβ)z2iπβdβ, (B.12)

one can find Mellin’s inversion formula by construction.

f(z) =
1

2iπ

∫ c+∞

c−∞
f̂(x)z−xdx. (B.13)

Thus the inversion formula can be interpreted as an integral in the
contour C, with Re(x)=c, through all the imaginary line. This contour
is represented in figure B.1, where the line R(s) lies on the right to the
poles.

B.0.2 DGLAP evolution in x-space

The DGLAP evolution of a FF must be obtained by the differential
equation in (3.23). The solution of this evolution is easily found in
Mellin space, taking the transformation in equation (B.1) of the D(z)
into Dx(x). The product between the splitting and FF on the right
side of equation (3.23) is obtained by the convolution of two functions
in terms of Mellin moments:

F (x) =

∫ 1

0

zxf (1)(z)f (2)(x/z)
dz

z
. (B.14)

Note that the definition of a Mellin transform the integration limit
goes to infinity instead of 1. Since FF are similar to a probability,
they are not defined for values greater than 1. So from now on all
transforms are taken in this limit.

In terms of Mellin moments the differential equation becomes sim-
ply

∂Dx(x, t)

∂t
=
α(t)

2π
P (x)Dx(x, t), (B.15)
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Im

Re

R(s)

φ

c

Figure B.1: Contour taken at R(s), with c lying on the right of the function poles.

with a solution:

Dx(x, t) = eP (x)ψ(t)D0(x), (B.16)

where D0(x) is the Mellin transform of the FF at the initial energy
scale. The function ψ(t) represents the energy dependence in this
evolution, it can be obtained replacing (B.16) into (B.15).

ψ(t) =

∫
α(t)

2π
dt. (B.17)

Thus, we found the solution of an evolved FF in Mellin space, with
the input function and calculating the dependence with the energy
scale. The next step is to take the inversion formula (B.4):

D(z, µ) =
1

2iπ

∫
C

Dx(x, µ)z−xdx, (B.18)

where C is the contour chosen to be a vertical line in the complex
plane R(s) = c, c a real number that lies in the right of all poles. This
integral is then taken from c− i∞ to c+ i∞. The constant c must be
chosen such that the integral I below is convergent (131).

I =

∫ 1

0

dxxc−1Dx(x) (B.19)

Figure B.1 represents the contour taken in the inverse Mellin trans-
form. The crosses are poles of the functions, so the contour R(s) lies
on the right of all of them. From Cauchy’s theorem, one may readjust
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this contour by an angle φ as long as it is not too close to the diver-
gencies, such as shown by the dashed line in the picture. Numerically,
it should be interesting to choose an angle so the integral (B.18) con-
verges faster. These calculations have been made numerically with the
QCD-PEGASUS fortran package (132). In this work I have not used
this package, but recalculated the inverse Mellin transform using this
reference’s parameters.
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