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Abstract

This thesis is divided into three parts. In the first part, we attempted to measure the lifetime
of a photo-generated trion (two electrons and a hole) in quantum dots (QD) containing a
single trapped electron, by using time-resolved Faraday rotation (TRFR). The trion lifetime
is a crucial parameter in QD spin dynamics, and it is usually measured by time-resolved
photoluminescence (TRPL). However, the PL of a QD ensemble contains many overlapping
bands, due to excitons excited simultaneously, which hamper precise measurements of the
trion lifetime. The advantage of our method is that the TRFR associated with trions can be
detected as a separate signal, which is not polluted by other simultaneous excitations. Using
the TRFR method we find the trion lifetime to be τ = 0.15± 0.05 ns.

In the second part, we investigated the generation of photo-induced giant spin polarons
in EuTe, which were recently discovered by our research group. In the vicinity of the Néel
temperature, the photo-induced spin polaron magnetic moment reached nearly 700 Bohr mag-
netons, meaning that a single photon imposes spin coherence over 700 electrons. When the
excitation light intensity is increased, the total induced magnetic moment of the illuminated
region increases sublinearly. We attribute the sublinear increase to the presence of low-density
defects in the crystal, which anchor the spin polarons, and limit the maximum achievable con-
centration of spin polarons in EuTe. We estimate the density of these defects to be of the order
of 4.5× 1015 cm−3. These defects are plausibly generated during the growth process due to a
deviation from stoichiometry. We find that the excitation light also causes a small heating of
the illuminated region, which is undesirable because it favors spin disorder, but unavoidable.
The temperature dependence of the spin polaron magnetic moment is well described by the
Curie-Weiss law. In EuTe spin polarons can be generated efficiently at temperatures as high
as 100 K, which is ten times the critical Néel temperature. Above 100 K, photoinduced spin
polarons are thermally quenched with an activation energy of 11 meV.

In the third part, we present a simple, didactic and general semiclassical model, which al-
lows to convert Faraday rotation (FR) into magnetization in magnetic semiconductors. Previ-
ously existing models are based on complex quantum mechanical calculations that are limited
to the composition and electronic structure of each material investigated. In contrast, our
model requires only a semiclassical conception of spin, and of the charge polarization effects
light has in a solid. Our model is not tied on any specific electronic energy structure for the
magnetic semiconductor. The model is used to demonstrate that in europium chalcogenides,
for photon energies below the band gap, FR is directly proportional to the magnetization,
independently of the magnetic phase, temperature, or magnetic field. Furthermore, we show
that for EuX, the proportionality constant between FR and magnetization is dependent only
on the photon energy and the band gap of the semiconductor. The model is validated by
experimental measurements of FR and magnetization, using a EuSe sample.

Keywords: InGa/GaAs quantum dots, Polarons, EuTe, Faraday rotation.





Resumo

Esta tese está dividida em três partes. Na primeira parte, tentamos medir o tempo de vida
de um trion (dois elétrons e um buraco) foto-gerado em ilhas quânticas (QD) contendo um
elétron aprisionado, usando rotação de Faraday resolvida no tempo (TRFR). O tempo de vida
do trion é um parâmetro crucial na dinâmica dos spins dos QDs e geralmente é medido por
fotoluminescência (PL) resolvida no tempo. No entanto, a PL de um conjunto de QDs con-
tém muitas bandas sobrepostas, devido a excitons excitados simultaneamente, o que dificulta
medições precisas do tempo de vida do trion. A vantagem do nosso método é que a TRFR
associado aos trions pode ser detectada como um sinal separado não poluído por outras exci-
tações simultâneas. Usando o método TRFR, obtivemos um tempo de vida de τ = 0, 15±0, 05

ns.
Na segunda parte, investigamos a foto-geração de polarons magnéticos gigantes no EuTe.

Nas proximidades da temperatura de Néel, o momento magnético do polaron fotoinduzido
atingiu quase 700 magnetons de Bohr. Quando a intensidade da luz de excitação é aumentada,
o momento magnético total induzido da região iluminada aumenta sub-linearmente. Atribuí-
mos o aumento sublinear à presença de defeitos de baixa densidade no cristal, que ancoram os
polarons e limitam a concentração máxima alcançável de polarons no EuTe. Estimamos que
a densidade desses defeitos seja 4.5 × 1015 cm−3. Estes defeitos são plausivelmente gerados
durante o processo de crescimento, devido a desvios da estequiometria. Descobrimos que a luz
de excitação também causa um pequeno aquecimento da região iluminada, o que é indesejável
porque favorece a desordem dos spins. A dependência da temperatura do momento magnético
do polaron é descrita pela lei de Curie-Weiss. No EuTe, os polarons magnéticos podem ser
gerados com eficiência em temperaturas de até 100 K, dez vezes superior a temperatura crítica
de Néel do EuTe. Acima de 100 K, os polarons fotoinduzidos são termicamente extintos com
uma energia de ativação de 11 meV.

Na terceira parte, apresentamos um modelo semiclássico simples, que permite converter a
rotação de Faraday (FR) em magnetização nos semicondutores magnéticos. Modelos anteri-
ores são baseados em cálculos complexos da mecânica quântica, limitados à composição e à
estrutura eletrônica de cada material em particular. Em contraste, nosso modelo requer apenas
uma concepção semiclássica do spin e dos efeitos de polarização de carga que a luz induz em
um sólido. Nosso modelo não depende de nenhuma estrutura de energia eletrônica específica
para o semicondutor magnético. O modelo é usado para demonstrar que nos calcogenos de
európio, para energias de fótons abaixo do gap, a FR é diretamente proporcional à magneti-
zação, independentemente da fase magnética, temperatura ou campo magnético. Além disso,
mostramos que, para o EuX, a constante de proporcionalidade entre FR e magnetização de-
pende apenas da energia do fóton e do band-gap do semicondutor. O modelo é validado por
medições experimentais de FR e magnetização, usando uma amostra EuSe.

Palavras chave: Ilhas quânticas, Polarons, EuTe, Rotação de Faraday.
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Chapter 1

Introduction

The first scientist to investigate the phenomenon of magnetism was William Gilbert (1540-
1603), who introduced most of the modern terminology as "electricity" and the concept
of "magnetic poles" in magnetic materials. He also discovered that the Earth itself is a
weak magnet, by making an analogy between the way in which a suspended metal needle
was oriented as it was moved over a round piece of magnetite (Lodestone), similar to the
movement exhibited by compass needles along the surface of the Earth [1]. Despite his
achievements and that of other scientists, the fundamental origin of magnetism could not
be explained and remained as a mystery during the next three centuries. In the course of
this period, in contrast, the study of the light was fruitful. René Déscartes (1596-1650) and
Pierre Fermat (1601-1651) provided the mathematical formalism for the ray optics which
was, at the time, enough to explain most of the light characteristics, others as Willebroud
Snel Van Royal (1580-1626) rediscovered the laws of light reflection and refraction (Snell
law), Christian Huygens (1629-1695) proposed the wave theory of light, while Sir Isaac
Newton (1643-1727) postulated the particle nature of light. The further discovery of the
interference and diffraction phenomena allows the light science being firmly established.
These motivated posterior discoveries with Fresnel (1788-1827), Brewster (1781-1868) and
Malus (1775-1812), that showed that different materials as, Iceland spar, are able to split
the light in different rays unless it traverses the crystal parallel to its crystallographic axis,
discovering with this experience the polarization of the light, which was a very powerful
tool to investigate the properties of transparent materials. So, in 1845, in the course of
the experiments studying the effect of magnetic fields on glass and many other materials,
that allows the discovery of the diamagnetism, Michael Faraday (1791-1867) already fa-
mous for his discovery of the relation between electricity and magnetism, he also observed
a relationship between the magnetism and light. He realized that, when light passing
through transparent materials is exposed to a magnetic field parallel to the direction of
the light propagation, then, a rotation of the light polarization occurs, the rotation angle
of the passing light was proportional to the applied magnetic field. This phenomenon
which was called the Faraday effect was the proof that light was an electromagnetic
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phenomenon in which Faraday firmly believed, but this explanation was not very well
understood. Eighteen years later, James Clerk Maxwell, in a wonderful paper entitled the
electromagnetic theory [2], generalized the results obtained by other scientists as Coulomb,
Oersted, Ampere, Gauss, Biot, Savart, Faraday, etc. That was a major step in the search
for explaining the electromagnetic, and magneto-optical phenomena. In particular, the
Maxwell equations established the missing mathematical relationship between the electric
and magnetic systems, by describing how the change of electric fields produce a magnetic
field and vice-versa. Although magnetism and electricity could be expressed through the
Maxwell equations, the origin of the intrinsic magnetism in magnetic materials as mag-
netite and the interaction of materials with light, could not be understood uniquely from
the Maxwell equations. The understanding of the microscopic mechanisms responsible for
the Faraday rotation and other magnetic properties was achieved only after the discovery
of the electron and the development of atomic models, but principally in the first half of
XX century with the rise of quantum mechanics, the molecular fields theories [3][4], the
discovery of the lattice structure of crystalline solids and the discovery of the electron
spin. Spin is a universal property of electrons in all states of matter at all temperatures
and was postulated in 1925 in order to explain certain features of the optical spectra of
hot gases, particularly gases subjected to magnetic fields (Zeeman effect), and it later
found theoretical confirmation in quantum mechanics.

All these scientific discoveries stimulated the development of technological innovations
as the vacuum tube amplifier, that motivates the invention of the solid state transistor,
which creates a revolution in the incipient electronic field, establishing the multi-billionaire
semiconductor industry that allowed the invention of diodes, laser [5], integrated circuits
and the first computer (the digital age). Since then, semiconductor materials as silicon
have been at the center of condensed matter physics research, and started a demand
for new materials and technological advances in fabrication techniques, to create pure
and compound semiconductor crystals fabricated and engineered for specific applications,
which has led to a continuous competition for the fabrication of smaller and more efficient
technological devices. This miniaturization trend followed what was called the Moore’s
Law, which stated that the number of transistors (packing density) on a circuit would
roughly double every 18 months. That empirical law was properly valid until 1980 but
could not be sustained much longer, this is because integrating more transistors on the
same area of an integrated circuit poses new challenges when their dimensions become
of nanometric size. One of the problems is the device heating, caused by the higher re-
sistance of device due to a smaller size, which can make the device to failure. Also, the
continuous shrinking of the transistor dimensions crosses the quantum size boundaries
where the quantum mechanical phenomena become important, and the flow of electrons
can no longer be controlled as in the classical way. Then, it was necessary to find al-
ternative ways to overcome these fundamental limits. One alternative is to encode the
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1.1. LASER INDUCED MAGNETIZATION

information using one quantum characteristic of the electron: its spin.
In 1998 appeared a new field of research called spintronics [6] which in addition to elec-

tron charge, it utilizes the electron spin. This field of research begun when Albert Fert and
Peter Grunberg discovered, independently, the Giant Magnetoresistence (GMR), which
exploited the influence of the orientation of the spin of the electrons on the electrical
conduction of a multilayer sample composed of alternate ferromagnetic and nonmagnetic
layers [7, 8].

In this context, the emergence of technologies that allows us to continue studying the
spin behavior in matter is of extreme importance. The adoption of lasers as light sources,
cryogenic facilities and improved methods for the fabrication of high-quality samples, con-
stitutes fundamental tools for research in fields as optics, magnetism, and magneto-optics,
which has enormous implications if used in technological devices [9], in particular, because
of the intense search for more efficient ways to control the magnetization of ferromagnetic
materials by means other than magnetic fields, which actually take place on the order of
nanoseconds, the laser induced magnetization [10].

1.1 Laser induced magnetization

The performance of digital data storage devices essentially depends on how fast we can
store, write or read information. For example, the writing speed on a magnetic hard disc,
where the information is stored in nanometric blocks of magnetized matter in one or the
opposite direction (the 1 and 0 bites), is limited by how fast these blocks can be switched.
Therefore, it is important to study the dynamics of the spins in ferromagnetic materials
on the time scales where they change and how these spins are affected by external fields.

The simplest way of inducing a spin dynamic response in a magnetic material is by
applying an external magnetic field to align the spins and induce a macroscopic magneti-
zation. If we change the direction of the field, a reorientation of the spins is produced to
realign the magnetization to the new direction of the magnetic field. This usually hap-
pens via a coherent damped precession of spins around an external field, as described by
the Landau-Lifshitz-Gilbert equation [11, 12]. The re-orientation process can take several
nanoseconds in ferromagnetic materials, depending on the damping efficiency mechanism
in the material, provided electrons remain in equilibrium with each other during the pre-
cession. A completely different situation is observed if we induce magnetization on a
magnetic material by a light pulse.

Besides its technological relevance, the physics behind such a light induced magneti-
zation process is extremely interesting also from a fundamental perspective because it
enables extraordinary spin dynamic studies.

Different systems have been studied using lasers. Particular examples are materials
containing spatially confined electrons in quasi zero dimensional systems or intrinsic mag-
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1.2. LIGHT INDUCED MAGNETIZATION IN QUASI-ZERO DIMENSIONAL . . .

netic materials as europium chalcogenides.

1.2 Light induced magnetization in quasi-zero dimen-

sional systems

One of the main obstacles to implement the electron spin in technological devices is the
relatively short coherence time observed in semiconductor structures. The longer the spin
coherence times of conduction electrons the more useful the device is because it makes
possible to perform more operations (writing, reading) during which the coherence needs
to be retained. In this sense, due to the extensive experience with bulk semiconductor,
it is known that in order to enhance the spin coherence time, the electron spin should
be isolated from the surrounding environment as much as possible, because the spin free-
motion leads to a fast spin relaxation due to the interaction with the environment [13].
This isolation can be obtained e.g. by spin carrier localization at defect sites, or by an
electric potential of metallic gates on the surface of the semiconductor or by spatially
confining the carriers in a quasi-zero dimensional region, called a quantum dot (QD).
The fascination with these structures stems from their strongly size-dependent physical
and chemical properties intermediate between those of molecules and bulk solids. The
systematic variation of properties with size follows simple scaling laws, and quantum dots
are often described as artificial atoms.

In these artificial atoms, due to the heavy suppression of translational motion of the
charge carriers (electron, holes, etc.), empirical evidence shows that coherence times at
liquid helium temperatures can reach even the microsecond range [14], which are longer
than coherence time normally obtained of picosecond order in bulk semiconductors where
the spin-orbit is one of the major spin-flip mechanism. However, other spin-flip mecha-
nisms become important in quantum dots such as the hyperfine interaction between the
electrons and nuclear spins, and also the exchange interaction between the carriers, which
leads as well to spin decoherence.

Studying spin dynamics in single QDs is possible but demanding due to the low signal
to noise ratio. In this respect, it is common the study of systems containing an ensemble
of quantum dots. In this case, the amplitude and direction of the effective nuclear field
vary strongly from dot to dot. Thus, the average electron spin decays as a consequence of
the random distribution of the local nuclear effective field [15], and a faster dephasing of
electron spin coherence polarization occurs due to frequency precession dispersion about
a magnetic field. For the III-V group semiconductor such as (In,Ga)As quantum dots,
an ensemble spin dephasing time of a few nanoseconds at liquid helium temperature is
commonly measured [16].

Additional to the requirement of long coherence time, is the comprehension of the mag-
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1.3. LIGHT INDUCED MAGNETIZATION IN EUROPIUM CHALCOGENIDES

netization process in semiconductors materials. In the case of singly negatively charged
QD ensemble, the spins of the resident electrons are incoherent because they are uncor-
related, leading to an overall zero magnetization. However, by illuminating these QDs
with light pulses, it is possible to generate a net magnetization. This process of light-
induced magnetization was initially explained using a simple semi-classical model [17], by
which the precession of the magnetic moment is field independent, which is in contradic-
tion with experimental results. Recently, a new and more complete quantum mechanical
model was developed [18], which describes the phase and amplitude of the photo-induced
magnetization as a function of the applied magnetic field in accordance with experimental
results.

1.3 Light induced magnetization in europium chalco-

genides

Among all the intrinsically magnetic semiconductors, the family of europium chalcogenides
EuX (X = O, S, Se, Te) has attracted many scientific studies since the 1960s [19]. The
EuX peculiarities arise from their unusual coupling of the electronic, magnetic and op-
tical properties, demonstrating that the control of its spin polarization can be used in
magneto-optical devices [20][21][22][23][24][25].

In europium chalcogenides, all four compounds are semiconductors and exhibit a half-
filled Eu 4f shell, giving rise to a large magnetic moment of 7 µB, producing large satura-
tion magnetization, strong magneto-optic effects (Faraday or Kerr rotation), magnetore-
sistance, spin filtering effects, etc. The magnetic order of these moments depends on the
chalcogen atom X. Below their critical temperatures, EuO and EuS are ferromagnetics
(FM), EuTe is antiferromagnetic (AFM), while EuSe exhibits a complex pattern indicat-
ing a competition between FM and AFM order.

Initial models to explain the magneto-optical characteristics of europium chalcogenides
as the 4f-5d transition model was able to explain roughly the magnetic field dependence
of absorption spectra of EuX [26][27]. Nevertheless, the poor quality of the manufactured
samples at that time and the no total agreement with theory caused a decrease in the
interest in the EuX compounds. However, with the rise of new growth techniques, such
as molecular beam epitaxy (MBE), which allowed the fabrication of high purity and with
excellent structural quality samples, the interest in EuX materials was renewed. As a con-
sequence, it was possible to observe a rich and new magneto optical characteristic never
seen before [28][29][30][31]. Also a re-examination of the 4f-5d model with the inclusion of
the domain formation, ignored until then, enabled for the first time a complete modeling
of the absorption spectra of EuX as a function of the magnetic field, which showed a full
agreement with the experimental results [32] and motivated researches on the correlation
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1.3. LIGHT INDUCED MAGNETIZATION IN EUROPIUM CHALCOGENIDES

between the incidence of light and magnetism in EuTe. These results also yield to the
ability to detect magnetic states in EuTe through its optical spectra and the ability to
create, through the incidence of light pulses, a region of polarized spins, the so-called
magnetic polaron, which was confirmed by the results of EuTe photoluminescence [33].
The photo-induced creation of magnetic polarons had been predicted few decades ago
in magnetic semiconductors by Kasuya and Nagaev [34][35], but the observation of the
magnetic polarons and the determination of their characteristic parameters as electronic
state which originates the polaron state, their magnetic moment, the polaron volume,
lifetime or the dependence with temperature, were always a challenge, because the inter-
pretation of experiments requires elaborate theories, as in the case of diluted magnetic
semiconductors [36][37][38], and because the photo-induced EuTe polarons observed from
photo-luminescence can be measured only at very low temperatures (below 25 K) [39]
and quenched in magnetic fields [40]. Consequently, a new numerical approximation was
proposed for intrinsic magnetic semiconductors in order to obtain the EuTe magnetic
polaron parameters [41]. It was found that the magnetic polaron is constituted by the
photo-excited electron and about 1000 spin-polarized atoms surrounding it, with polaron
magnetic moment of ∼ 610 µB below the Néel temperature, and that these magnetic
polarons should exist at even higher temperatures.

Because of the giant magnetic moment of these photo-induced polarons, a small mag-
netic field of a few tens of mT can produce a full alignment of the photo-induced polarons,
which opens the prospect of using light to magnetize EuTe and use it for future applica-
tions, showing that researches in magnetization of EuX through the generation of magnetic
polarons is still an unexplored and fascinating field.
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1.4. FOCUS OF THIS THESIS

1.4 Focus of this thesis

1. The first part of this thesis describes the photo-induced magnetization of a sample
containing an ensemble of singly negatively doped (In,Ga)As/GaAs quantum dots. The
investigation is based on a recent model which explains how a circularly polarized light
pulse creates a trion state with characteristic recombination time τ , and describes the
phase and amplitude of the photo-induced magnetization as a function of the applied
magnetic field, having the trion recombination time as the one and only adjustable pa-
rameter in a fitting of the theory to the experiment, the trion recombination time is a
key parameter both for fundamental and for practical applications [42]. However, there
are limited data available, experimental and theoretical for the recombination time of
the trions, which results very sensitive to the shape, size and composition of the quantum
dots [43, 44, 45]. Measuring the trion recombination time with traditional methods involve
complications during the measurement related to the contribution of other simultaneously
excited states as excitons, dark excitons and technical complications separating exciting
and emitted light in resonant excitation measurements. This is the reason for the search
for new techniques for measuring the trion recombination time free of the mentioned
difficulties. In this section, the central goal is revealing if the time resolving Faraday
rotation represents a practical and reliable measuring method for the determination of
the trion lifetime.

2. The second part of this thesis is set on the photo-induced magnetization of a thin
film sample of EuTe by means of photo-created magnetic polarons. This is based on a
recent paper where it was demonstrated that, in EuTe, it is possible to generate magnetic
polarons with a magnetic moment of several hundred Bohr magnetons with a very long
lifetime of 15 µs at T= 5 K. It is even possible to detect magnetic polarons at temper-
atures far above its critical temperature, at temperatures as high as 150 K [46], which
can be detected using the pump-probe Faraday rotation technique. Thus, we use the
pump-probe Faraday rotation technique to determine how efficiently this light induced
magnetization mechanism can be exploited as a function of the pump intensity and tem-
perature.

3. We present a new semi-classical approach to demonstrate that in europium chalco-
genides (EuX), Faraday rotation in the transparency gap is proportional to the magneti-
zation of the sample, the proportionality constant is dependent only on the photon energy
and on the band gap of the semiconductor irrespective of the material’s magnetic phase,
temperature, or applied magnetic field.
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1.5. STRUCTURE OF THIS THESIS

1.5 Structure of this thesis

This thesis is structured in six chapters as follows: In chapter 2, we first introduce the the-
oretical concepts useful to describe the photo-induced magnetization process in magnetic
materials as quantum charged quantum dots and europium chalcogenides. In chapter 3,
we present an overview of the environment of cryogenic and optical measurements includ-
ing the setups, techniques and the equipment we used for the study of the photo-induced
magnetization. We also describe the characteristics of the sample used in the measure-
ments. In chapter 4, we discuss the results about the light-induced magnetization where
we divide this chapter in three parts, the first one is related to the photo-induced mag-
netization in an ensemble of quantum dots, the second is related to the photo-induced
magnetization in a EuTe thin film and the third one is focused on the demonstration of
the semi-classical Faraday effect formula and its experimental demonstration. Finally, the
Appendix is devoted to the details of some topics and the proofs of the equations used in
the main text.
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Chapter 2

Fundamental concepts

In this chapter, we first discuss the general properties of magnetic materials which have
the spin as the responsible for their macroscopic magnetic characteristics. We subdivide
this chapter in three parts; the first includes an explanation of the general properties of
magnetic materials, the second details the properties of optically active quantum dots,
describing their properties as boxes for carriers and the optical selection rules that apply
to the studied quantum dots in spectroscopy’s experiments, and the third part is devoted
to describing the fundamental properties of europium chalcogenides which is the material
used to study the photo-creation of magnetic polarons.

2.1 Spin physics in magnetic materials

2.1.1 Magnetic moment of electrons and atoms

The magnetic properties of matter in which we are interested in are due entirely to the
magnetic moment of the electrons. The nucleus also has a small magnetic moment, but
it is insignificant compared to that of the electrons. The ordering of these magnetic
moments in matter and the way they respond to magnetic fields allow us to classify the
bulk magnetic properties of any substance as diamagnetic, paramagnetic, ferromagnetic,
antiferromagnetic, etc. We will now examine the internal mechanisms responsible for
the observed macroscopic magnetic behavior, particularly, we will be interested in the
susceptibility of weakly magnetic substances and the saturation magnetization of strongly
magnetic ones, paying attention to the variation of these properties with temperature,
because this variation provides an important clue to the magnetic nature of the substance.

2.1.1.1 Magnetic moments of individual electrons

There are two kinds of electron motion, orbital and spin, and each one has a magnetic
moment associated with it, and both can be thought as equivalent to a circulation of
charge.
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2.1. SPIN PHYSICS IN MAGNETIC MATERIALS

The magnetic moment of an electron, due to this orbital motion, may be calculated by

µorbital = A I, (2.1)

where A is the area of the loop of the current and I is the current produced by the
electron in its motion (e = -1.6 ×10−19 C). Then, to evaluate µorbital we must know the
size and shape of the orbit and the electron velocity. Following the original Bohr theory
of the atom, the electron moving with velocity v in a circular orbit of radius r produces
a magnetic moment equal to

µorbital = (πr2)(
ev

2πr
). (2.2)

An additional postulate of the Bohr theory was that the orbital angular momentum of

the electron must be an integer multiple of
h

2π
, where h is Planck’s constant. Therefore

mevr = n(
h

2π
), (2.3)

where n is an integer number and me is the mass of the electron. Combining these
relations, we have for an electron in the first (n= 1) Bohr orbit,

µorbital =
eh

4πme

. (2.4)

Classically, the electron behaves as if it were in some sense spinning about its own axis,
and associated with this spin exists a magnetic moment and an angular momentum. It is
found experimentally and theoretically that the magnetic moment due to electron spin is
equal to

µspin =
eh

4πme

. (2.5)

Thus, the magnetic moment due to spin and the one due to the orbital motion in the first
Bohr orbit are exactly equal. This amount of magnetic moment is given a special symbol,
µB, and a special name, the Bohr magneton. Thus, we define

µB =
eh

4πme

. (2.6)

It is a natural unit of magnetic moment and is extensively used in spin physics. How
can the magnetic moment due to spin be understood physically if we do not know the
shape of the electron or the way in which charge is distributed in it ?. We can assume an
electron as a sphere with its charge homogeneously distributed over its surface, then, the
rotation of this charge can produce an array of tiny current loops as is shown in figure
2.1(a), each of which has a magnetic moment directed along the rotation axis. But if
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2.1. SPIN PHYSICS IN MAGNETIC MATERIALS

we calculate the resultant moment of all these loops, we would obtain a spin magnetic

moment of
5

6
µB instead of µB. Then, the spin of the electron, and its associated magnetic

moment, has to be accepted as a fact, consistent with wave mechanics and with a large
number of experiments of various kinds, but with no basis in classical physics. The model
of the spinning charge in Fig. 2.1(a) is therefore only an aid to visualization and it has
no quantitative significance.

Figure 2.1: (a) Classical interpretation of the orbital (l) and spin (s) magnetic moment of
a free electron as an orbiting and spinning charge. (b) Classical interpretation of magnetic
moments of an individual atom in which exist a resultant magnetic moment (L) and (S ).

2.1.1.2 Magnetic moments of individual atoms

In atoms that contain many electrons, each one spinning about its own axis with spin
S and moving in its own orbit with orbital angular moment L, the magnetic moment
associated with each kind of motion is a vector quantity, parallel to the axis of spin and
normal to the plane of the orbit, respectively. The magnetic moment of the atom is the
vector sum of all its electronic moments, and two possibilities arise:

1. The magnetic moments of all the electrons are so oriented that they cancel one
another out, and the atom as a whole has no net magnetic moment. This condition leads
to solids called diamagnetics.

2. The cancellation of electronic moments is only partial and the atom is left with
a net magnetic moment. Such an atom is often referred to, for brevity, as a magnetic
atom as is shown in figure 2.1(b).

To calculate the vector sum of the magnetic moments of all the electrons in any par-
ticular individual atom is a rather complex problem but solved in atomic physics books.
The orbital and spin angular momenta can therefore combine in (2L+1)(2S+1) ways.
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2.1. SPIN PHYSICS IN MAGNETIC MATERIALS

This is the total number of choices of the z component of L (which is the number of terms
in the series −L,−L + 1, ... , L − 1, L, i.e. (2L + 1)) multiplied by the total number
of choices of the z component of S (i.e. (2S+1) by a similar argument). From all the
possible values, the most important is the ground state which can be obtained by using
the Hund’s rules, which are based on the minimization of the energy of the electrons
in the atom. The combination of angular momentum quantum numbers is used in order
of importance, so that one first satisfies the first and then, having done this, attempts to
satisfy the second, and so on for the third.

1. Arrange the electronic wave function so as to maximize S. In this way the Coulomb
energy is minimized because of the Pauli exclusion principle, which prevents electrons
with parallel spins being in the same place, and this reduces Coulomb repulsion between
electrons.

2. The next step is, given the wave function determined by the first rule, to maximize
L. This also minimizes the energy and can be understood by imagining that electrons in
orbits rotating in the same direction can avoid each other more effectively and therefore
reduce Coulomb repulsion.

3. Finally the value of J is found using J = | L− S | if the shell is less than half full
and J =| L + S | if it is more than half full. This third rule arises from an attempt to
minimize the spin-orbit energy.

One should note that the third rule is only applicable in certain circumstances. In
many systems, atoms in a solid, transition metal ions being good examples, the spin-orbit
energies are not as significant as some other energy term such as the crystal field so that
Hund’s third rule is disobeyed. However, for rare earth ions Hund’s third rule works very
well. The calculation from first principles of the net magnetic moment of an atom in a
solid is, in general, not yet possible because of the presence of crystalline fields, and the
exact net moment must be determined experimentally.

2.1.2 Magnetization due to non interacting magnetic moments

2.1.2.1 Classical theory of paramagnetism

Lets consider a unit volume of material containing N atoms, each one having a magnetic
moment µ. Let the direction of each moment be represented by vectors drawn through
the center of a sphere of unit radius. We wish to find the number dN of moments inclined
at an angle between θ and θ+dθ due the presence of an externally applied magnetic field
B on the Z axis. In the absence of the field, the number of µ vectors passing through
unit area of the sphere surface is the same at any point on the sphere surface, and dN is
proportional simply to the area dA, which is given, as is shown in figure 2.2, by 2π sin θdθ.
But when a field is applied, the µ vectors shift toward the direction of the field. Each
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2.1. SPIN PHYSICS IN MAGNETIC MATERIALS

atomic moment then has a certain potential energy E in the field, given by

E = −µ ·B = −µB cos θ. (2.7)

In a state of thermal equilibrium at temperature T, the probability of an atom having an
energy E is proportional to the Boltzmann factor e−E/kBT , where kB is the Boltzmann
constant. Then, the number of moments between θ and θ+ dθ when the magnetic field is
applied will now be proportional to dA, multiplied by the Boltzmann factor

dN = ℵdAe−E/kBT = ℵ(2π sin θdθ)eµB cos θ/kBT , (2.8)

where ℵ is a proportionality constant, determined by

∫ N

0

dN = N. (2.9)

For brevity, we put a = µB/kBT . Then, we have

∫ π

0

ℵ(2π sin θdθ)ea cos θ = N. (2.10)

Figure 2.2: Classical interpretation of the magnetization due to an externally applied
magnetic field B in a non interacting magnetic moment system.

The total magnetic moment M in the direction of the field (Z axis), acquired by the
unit volume under consideration, is given by multiplying the number of atoms dN by the
contribution µ cos θ of each atom in that direction and integrating over the total number
of atoms

M = Mz =

∫ N

0

µ cos θdN. (2.11)
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2.1. SPIN PHYSICS IN MAGNETIC MATERIALS

Substituting equation 2.8 into 2.11, we have

M =

∫ N

0

µ cos θdN = µ2πℵ
∫ π

0

ea cos θ sin θ cos θdθ. (2.12)

By solving we obtain

M =
Nµ

∫ π
0
ea cos θ sin θ cos θdθ∫ π

0
ea cos θ sin θdθ

= Nµ

(
ea + e−a

ea − e−a −
1

a

)
= Nµ

(
coth(a)− 1

a

)
, (2.13)

where we realized that Nµ is the maximum possible moment which the material can have.
It corresponds to perfect alignment of all the atomic magnets parallel to the field, which
is a state of complete saturation. Calling this quantity M0, we have

M

M0

= coth(a)− 1

a
. (2.14)

The expression on the right is called the Langevin function, usually abbreviated to
L(a). Expressed as a series, it is

L(a) = coth(a)− 1

a
=

a

3
− a3

45
+

2a5

945
− ..., (2.15)

which is valid only for a << 1. L(a) as a function of a is plotted in figure 2.3. At large a
values, L(a) tends to 1, and for a less than about 0.5, it is practically a straight line with
slope of 1/3, as seen in equation 2.15. The Langevin principal characteristics are:

1. Saturation will occur if a =
µB

kBT
is large enough. This makes good physical sense,

because large B or low T, or both, is necessary if the aligning tendency of the field is
going to overcome the disordering effect of thermal agitation.

2. At small a value, which is normally the case, the magnetization M varies linearly
with B , as is shown in figure 2.3.
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2.1. SPIN PHYSICS IN MAGNETIC MATERIALS

Figure 2.3: Langevin function (in red) as a function of the magnetic field and temperature.
The straight line (in blue) is the approximation of the Langevin function for low values
of a.

The Langevin theory leads for small a value to L(a) ≈ a/3, and equation 2.14 becomes

M = Nµ
a

3
=
Nµ2B

3kBT
. (2.16)

Therefore, the susceptibility at constant volume, defined as

χv = lim
H→0

M

H
= lim

B→0

µ0M

B
(2.17)

can also be written as
χv =

µ0Nµ
2

3kBT
or χv =

C

T
, (2.18)

which is dimensionless in SI, or has units [emu cm−3 Oe−1] in the cgs system. This is
called the Curie Law, with Curie constant

C =
µ0Nµ

2

3kB
. (2.19)

As we saw, the Langevin theory of paramagnetism, which leads to the Curie law, is
based on the assumption that the individual carriers of magnetic moment (atoms or
molecules) do not interact with one another, and react only to the applied magnetic
field and thermal agitation. Many paramagnetics, however, do not obey this law; they
obey instead the more general Curie–Weiss law, postulated in 1907 [47] which considers
that the elementary moments do interact with one another. This interaction could be
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expressed in terms of a fictitious field caused by the magnetization of the surrounding
material which is called the molecular field Bm (at that time, it was thought that
matter was composed of molecules instead of atoms) acting in addition to the applied field
B0. Weiss assumed that the intensity of the molecular field was directly proportional to
the amount of alignment already attained, the magnetization M :

Bm = λM , (2.20)

where λ is called the molecular field constant. Therefore, the total field acting on the
material is

Bt = Bm +B0. (2.21)

Then, the Curie’s law may be written as

χv =
µ0M

Bt

=
C

T
, (2.22)

and using equation 2.21 we obtain

χv =
µ0M

B0 +Bm

=
µ0M

B0 + λM
=
C

T
. (2.23)

Solving for µ0M , we obtain

µ0M =
CB0

T − λC/µ0

. (2.24)

Therefore, the Curie-Weiss susceptibility is

χv =
µ0M

B0

=
C

T − λC/µ0

=
C

T − Tc
, (2.25)

where
Tc =

λC

µ0

=
λNµ2

3kB
. (2.26)

The Curie-Weiss temperature is a measure of the strength of the interaction because it is
proportional to the molecular field constant λ.

For substances that obey Curie’s law, figure 2.4 shows how χv varies with the tem-
perature. If we plot 1/χv versus temperature for the paramagnetic system, a straight
line will result; this line will pass through the origin (Curie behavior) or intercept the
temperature axis at T = θ (Curie–Weiss behavior). Both positive and negative values
of θ are possible. A positive value of θ indicates that the molecular field is aiding the
applied field and therefore tending to make the elementary magnetic moments parallel to
one another and to the applied field, the susceptibility is then larger than it would be if
the molecular field were absent. If θ is negative, the molecular field opposes the applied
field and tends to decrease the susceptibility.
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Figure 2.4: (a) Susceptibility and (b) inverse of susceptibility of a paramagnet following
the Curie and Curie-Weiss behaviour as a function of temperature.

2.1.2.2 Quantum theory of paramagnetism

The central postulate of quantum mechanics is that the energy of a system is not a con-
tinuous variable. When it changes, it must change by discrete amounts, called quanta
of energy. If the energy of a system is a function of an angle, then that angle can un-
dergo only discontinuous stepwise changes. This is precisely the case in a paramagnetic
substance, where the potential energy of each atomic moment µ in a field B is given by
E = −µB cos θ. In the classical theory, the energy, and hence θ, is regarded as a continu-
ous variable, and µ can lie at any angle θ to the field. In quantum theory, θ is restricted
to certain definite values θ1, θ2, ... , and intermediate values are not allowed. This re-
striction is called space quantization. The classical case is shown in Fig. 2.5(a), where
the moments can have any direction (angle θ) in the shaded area; Fig. 2.5(b) illustrates
the quantum case, in which the moments are restricted to specific directions (angle θi).

The rules governing space quantization are usually expressed in terms of angular mo-
mentum rather than magnetic moment. We must therefore consider the relation between
the orbital and the spin moments.

The orbital magnetic moment for an electron in the first Bohr orbit is given by equation
2.4

µorbital =
eh

4πme

.

If we write its corresponding (n=1) orbital angular momentum
h

2π
as l , we have for the

first orbital magnetic moment
µorbital =

e

2me

l. (2.27)
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The intrinsic spin magnetic moment for an electron is given by equation 2.5,

µspin =
eh

4πme

.

If we write its corresponding spin angular momentum (s = ±h̄/2 = ±h/4π), we have for
the spin magnetic moment

µspin =
e

me

s. (2.28)

The equations 2.27 and 2.28 can be combined into one general relation between magnetic
moment µ and angular momentum P by introducing a quantity gP :

µ = gP
e

2me

(P ), (2.29)

where gP = gL = 1 for orbital and gP = gS = 2 for spin, g is called the g factor and
e=-1.6 ×10−19 C. Then,

µorbital = gL
e

2me

(L), (2.30)

and
µspin = gS

e

2me

(S). (2.31)

Figure 2.5: Possible orientation for the magnetic moments in a paramagnet system under
an applied magnetic field in the classical case (a) and in the quantum case (b).

In an atom composed of many electrons, the angular momentum of the variously
oriented orbits combine vectorially to give the resultant orbital angular momentum of
the atom, which is characterized by the quantum number L =

∑+l
−lml . Similarly, the

individual electron spin momenta combine to give the resultant spin momentum, described
by the quantum number S =

∑+s
−sms. Finally, the orbital and spin momenta of the atom

combine to give the total angular momentum of the atom J , described by the quantum
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number J with possible values |L− S| ≤ J ≤ L+ S. Then the net magnetic moment
of the atom, usually called the effective moment µeff , is given in terms of g and J, as
we might expect by analogy with equation 2.29. The relation is

µeff = g
e

2me

J = g
e

2me

√
J(J + 1)

h

2π
= g
√
J(J + 1)µB [A.m2]. (2.32)

Because of the spatial quantization, the effective moment can point only at certain discrete
angles θ1, θ2, ... to the field. Rather than specify these angles, we specify instead the
possible values of µz, the component of µeff in the direction of the applied field B (Z
axis). These possible values are:

µeff = gmJµB, (2.33)

where mJ is the quantum number associated with Jz. For an atom with a total angular
momentum J , the allowed values of mJ are integer numbers from −J,−J + 1, ... ≤ mj ≤
...,+J − 1,+J and there are (2J + 1) numbers in this set. The µz and µeff are shown
in figure 2.5(b).

The value of J for an atom may be an integer or a half-integer, and the possible values
range from J = 1/2 to J = ∞. These extreme values have the following meanings:
J = 1/2: This corresponds to pure spin, with no orbital contribution (L = 0, J = S =
1/2), so that g = 2. Since the permissible values of mJ decrease from +J to -J in steps of
unity, these values are simply +1/2 and -1/2 for this case. The corresponding moments
µz are then µB and -µB, parallel and antiparallel to the field, respectively.
J =∞: Here there are an infinite number of J values, corresponding to an infinite number
of moment orientations. This is equivalent to the classical distribution of Fig. 2.5(a)

To compute µz or µeff we must know g, as well as J, for the atom in question. The g
factor is given by the Landé equation:

g = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (2.34)

If there is no net orbital contribution to the moment, L = 0 and J = S. Then equation
2.34 gives g = 2 whatever the value of J. On the other hand, if the spins cancel out, then
S = 0, J = L, and g = 1. The g factors of most atoms lie between 1 and 2, but values
outside this range are sometimes encountered.

The values of J, L, and S are known only for isolated atoms; it is, in general, impossible
to calculate µ for the atoms of a solid, unless certain assumptions are made. One such
assumption, valid for many substances, is that there is no orbital contribution to the
moment, so that J = S. The orbital moment is, in such cases, said to be quenched.
This condition results from the action of the electric field, called the crystalline field,
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produced by the surrounding atoms or ions in the solid on the atom or ion considered. This
field has the symmetry of the crystal involved. Thus, the electron orbits in a particular
isolated atom might be circular, but when that atom forms part of a cubic crystal, the
orbits might become elongated along three mutually perpendicular axes because of the
electric fields created by the adjoining atoms located on these axes. In any case, the
orbits are in a sense bound, or “coupled,” rather strongly to the crystal lattice. The spins,
on the other hand, are only loosely coupled to the orbits. Thus, when a magnetic field
is applied along some arbitrary direction in the crystal, the strong orbit–lattice coupling
often prevents the orbits, and their associated orbital magnetic moments, from turning
toward the field direction, whereas the spins are free to turn because of the relatively
weak spin orbit coupling. The result is that only the spins contribute to the magnetization
process and the resultant magnetic moment of the specimen; the orbital moments act
as though they were not there. Quenching may be complete or partial. Fortunately, it
is possible to measure g for the atoms of a solid, and such measurements tell us what
fraction of the total moment, which is also measurable, is contributed by spin and what
fraction by orbital motion [48].

Assuming that g and J are known for the atoms involved, we can proceed to calculate
the total magnetization of a specimen as a function of the field and temperature. The
procedure is the same as that followed in deriving the classical (Langevin) law, except
that:

1. The quantized component of magnetic moment in the field direction µz = gmJµB

replaces the classical term µ cos θ.
2. A summation over discrete moment orientations replaces an integration over a

continuous range of orientations.
Then, the energy of each moment in the direction of the magnetic field B is

E = −µ ·B = −gmJµBB. (2.35)

According to Boltzmann statistics, the probability of an atom having an energy E is
proportional to:

e−E/kBT = egmJµBB/kBT . (2.36)

If there are N atoms per unit volume, the magnetization M is given by the product of N
and the average magnetic moment resolved in the direction of the field, or

M = N

∑
gmJµBe

gmJµBB/kBT

∑
egmJµBB/kBT

. (2.37)
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After considerable manipulation, this reduces to

M = NgJµB

(
2J + 1

2J
coth

(
2J + 1

2J
a′
)
− 1

2J
coth

(
a′

2J

))
, (2.38)

where
a′ =

gJµBB

kBT
=
µzB

kBT
, (2.39)

we recognize NgJµB=Nµz, which is the product of the number of atoms per unit volume
and the maximum moment of each atom in the direction of the field. Therefore Nµz = M0

, the saturation magnetization, and we can write

M

M0

=
2J + 1

2J
coth

(
2J + 1

2J
a′
)
− 1

2J
coth

(
a′

2J

)
. (2.40)

The expression on the right is called the Brillouin function obtained in 1927. It is
abbreviated βJ(J, a′) and is shown in figure 2.6.

M

M0

= βJ(J, a′). (2.41)

Evaluating when J = ∞, the classical distribution, the Brillouin function reduces to the
Langevin function:

M

M0

= coth(a′)− 1

a′
. (2.42)

Evaluating when J = 1/2, so that the magnetic moment consists of one spin per atom,
the Brillouin function reduces to,

M

M0

= tanh(a′). (2.43)

The Brillouin function, like the Langevin, is zero for a′ equal to zero and tends to unity
as a′ becomes large. However, the shape of the curve in between depends on the value of
J for the atom involved. Moreover, the quantity a in the classical theory differs from the
corresponding quantity a′ in the quantum theory:

a =
µB

kBT
Classical, (2.44)

a′ =
µzB

kBT
Quantum. (2.45)

In the classical theory, µ is the net magnetic moment of the atom. The quantity which
corresponds to this in quantum theory is the effective moment µeff , ( and not its compo-
nent µz along the field direction).

When a is small, the function coth(a) can be replaced by (1/a +a/3). With this
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substitution, the Brillouin function, for small a′ reduces to:

βJ(J, a′) ≈ a′(J + 1)

3J
, (2.46)

and from equations 2.43 and 2.46

M = M0βJ(J, a′) = (NgJµB)βJ(J, a′) ≈ NgJµBa
′J + 1

3J

= NgJµB(
gJµBB

kBT
)
J + 1

3J
=
Ng2J(J + 1)µ2

BB

3kBT
=
Nµ2

effB

3kBT
. (2.47)

As mentioned earlier, the quantum numbers J, L, and S are usually not known for an atom
or molecule in a solid. Under these circumstances it is customary to compute the magnetic
moment from the susceptibility measurements, on the assumption that the moment is due
only to the spin component; then L = 0, J = S, and g = 2. The result is called the “spin
only” moment. The value of J (= S) is computed from the experimental value of the

constant
Nµ2

effB

3kB
.

Figure 2.6: Brillouin function as a function of magnetic field and temperature for different
J values.

2.1.3 Interacting magnetic moments: Spontaneous magnetic or-

der

Now we will consider the different types of magnetic ground state which can be photo-
induced by interactions operating between the magnetic moments in matter. The different
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ground states include; ferromagnets, in which all the magnetic moments are in parallel
alignment, antiferromagnets and ferrimagnets, in which adjacent magnetic moments lie in
antiparallel alignment, spiral or helical structures in which the direction of the magnetic
moment precesses around a cone or a circle as one moves from one site to the next, and
spin glasses in which the magnetic moments lie in frozen random arrangements.

It is well known that the dipole-dipole interaction between magnetic moments is too
much weak to explain the spin depending interaction in solids, then, we will see that
exist stronger interaction forces that are responsible for the magnetic order in magnetic
materials.

2.1.3.1 Ferromagnetism

We have seen how the Weiss hypothesis leads to the Curie–Weiss law, χv =
C

T − Tc
,

which many paramagnetic materials obey. We also saw that Tc is directly related to the
molecular field Bm, because Tc = λC/µ0 and Bm = λM , where λ is the molecular field
coefficient. If Tc is positive, so is λ, it means that Bm and M are in the same direction
or that the molecular field aids the applied field in magnetizing the material.

Above its Curie temperature Tc a ferromagnet becomes paramagnetic, and its suscep-
tibility then follows the Curie –Weiss law, with an experimental value θ approximately
equal to Tc.

The value of θ is therefore large and positive, and so is the molecular field coefficient.
This fact led Weiss to make the assumption that a molecular field acts in a ferromagnetic
substance below its Curie temperature as well as above, and that this field is so strong
that it can magnetize the substance to saturation even in the absence of an applied mag-
netic field. The substance is then self-saturating, or “spontaneously magnetized.” Before
we consider how this can come about, we must note that the theory is, at this stage,
incomplete. For if iron, for example, how can we explain the fact that it is quite easy
to obtain a piece of iron in the un-magnetized condition?. Weiss answered this objection
by making a second assumption: a ferromagnet in the demagnetized state is divided into
a number of small regions called domains. Each domain is spontaneously magnetized
to the saturation value Ms, but the directions of magnetization of the various domains
are such that the specimen as a whole has no net magnetization. The process of mag-
netization is then one of converting the specimen from a multi-domain state into one in
which it is a single domain magnetized in the same direction as the applied field. The
Weiss theory therefore contains two essential postulates: spontaneous magnetization and
division into domains.

In a ferromagnetic substance, all the magnetic moments lie along a single unique di-
rection, and this effect is generally due to exchange interactions between the spins in
the material.
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For a ferromagnet in an applied magnetic field B , the appropriate Hamiltonian, con-
sidering the exchange interaction and the energy of the spins in the magnetic field B , is

E = −
∑

ij

JijSi · Sj + gµB
∑

j

Sj ·B. (2.48)

The exchange constants Jij for nearest neighbours will be positive in this case, to ensure
ferromagnetic alignment. The first term on the right is the Heisenberg exchange energy
and the second term on the right is the Zeeman energy. To keep things simple to begin
with, let us assume that we are dealing with a system in which there is no orbital angular
momentum, so that L = 0 and J = S.

The molecular field is proportional to the magnetization, i.e,

Bm = λM . (2.49)

In the i -th site with spin Si, it exchange interacts with all the j -th neighboring sites, of
spin Sj , according to:

Ei = −2
∑

j

JijSi · Sj, (2.50)

where Jij is the exchange integral, a constant that depends on the wavefunctions of the
interacting electrons. This interaction is equivalent to a Zeeman type interaction between
the i -th site and the molecular field Bm. The energy of this interaction is given by:

Ei = −gµBSi ·Bm, (2.51)

where the sign on the right side is taken as negative, so that the exchange interaction
favors the alignment of the spins when Jij > 0.

Equating the expressions 2.50 and 2.51, we obtain the molecular field acting on the
site i as:

Bm =
2

gµB

∑

j

JijSj. (2.52)

We can approximate this expression by replacing each spin Sj by an average 〈Sj〉 which
is parallel to the magnetization of the material, so that:

Bm =
2

gµB

∑

j

Jij〈Sj〉. (2.53)

Since the exchange integrals decrease with the distance between the spins, we can re-
strict ourselves to the nearest neighbors approximation, which is to limit the sum
in equation 2.53 only to the closer sites. Assuming z nearest neighbor, whose exchange
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interaction is described by Jxc, we obtain:

Bm =
2

gµB
zJxc〈Sj.〉 (2.54)

Since all the magnetic atoms are identical and equivalent, the average value 〈Sj〉 is related
to the magnetization of the lattice through the relation

M = NgµB〈Sj〉, (2.55)

which replaced in equation 2.54 results in

Bm =
2zJxc
Ng2µ2

B

M . (2.56)

From this equation, by comparison with equation 2.49, we obtain the constant λ as:

λ =
2zJxc
Ng2µ2

B

. (2.57)

The energy of the i -th atom in a magnetic material due the presence of an effective mag-
netic field B = B0 +Bm, where B0 is the applied field assuming that the magnetization
is oriented toward the field direction, defined as the Z direction, can be written as

E = gµBJ · (B0 +Bm). (2.58)

Then,
E = gµBJz(B0 +Bm). (2.59)

This is equivalent to the energy of a paramagnet in a magnetic fieldB = B0 +Bm. This
allow us to use the result in equation 2.41, replacing B by B0 +Bm in order to get:

M(B0, T ) = M0βJ(a
′
), (2.60)

where
a
′
=
gµBJ(B0 + λM(B0, T ))

kBT
. (2.61)

These two equations must be solved simultaneously, which can be done by the graphical
method or numerically, looking at the intersection between the two magnetizations. These
equations can be written as

M(a) = M0βJ(a), (2.62)

and from equation 2.61,

M(a) =
kBT

gµBJλ
a− B0

λ
. (2.63)
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A plot of the above two curves is shown in figure 2.7 for different temperatures.
For B0 = 0, it is shown that from temperatures higher than a critical temperature Tc,

the Curie temperature, there is no intersection other than trivial and the magnetization
is always zero (not ferromagnetic state). Below the Curie temperature, there are always
two solutions, one positive and one negative and there is always a net magnetization. In
the limit T → 0 the magnetization amounts to M0.

For B0 > 0, there is always a solution (ferromagnetic state) with limit valueM0−B0/λ

at T = 0.
To find the ordering temperature, we equal the derivatives of the curves M(a) and βJ

for a → 0 . The limit for a → 0 can be calculated through an expansion of βJ(a) in a
power series in a, resulting in,

lim
a→0

β
′

J(a) =
J + 1

3J
. (2.64)

So that, on one hand, from equations 2.62 and 2.64,

M ′(a→ 0) = M0
J + 1

3J
, (2.65)

and, on the other one hand, from equation 2.63,

M ′(a) =
kBT

gµBJλ
. (2.66)

So that equating both equations which is valid at the critical temperature and when a→
0, is possible to determine the Curie temperature as

M0
J + 1

3J
=

kBTc
gµBJλ

. (2.67)

Then we have,

Tc =
(J + 1)gµBλM0

3kB
, (2.68)

or simply,
Tc = Cλ, (2.69)

where C =
(J + 1)gµBM0

3kB
, with M0 = NgµBJ . Then, we can write

C =
J(J + 1)g2µ2

BN

3kB
, (2.70)

which is the same Curie temperature of paramagnetic materials.
At high temperatures, when a << 1, the Brillouin function can be approximated by
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BJ(a) =
(J + 1)

3J
a so that the magnetization becomes

M(B0, T ) = M0
J + 1

3J

gµBJM(B0, T )

kBT
= C

(B0 + λM(B0, T ))

kBT
. (2.71)

Solving by M(B0, T ) , we obtain:

M(B0, T ) =
C

T − Tc
B0. (2.72)

So the the susceptibility becomes,

χv =
µ0C

T − Tc
, (2.73)

which has the shape of the Curie-Weiss law, which is valid in the region T > Tc.

Figure 2.7: Graphic solution for the magnetization equations M(a) and βJ(a) for the
cases B0 = 0 (a) and for B0 > 0 (b). When we have an intercept (a solution) then a net
magnetic order is possible.

2.1.3.2 Antiferromagnetism

Antiferromagnetic substances have the characteristics that they have a small positive sus-
ceptibility at all temperatures. The way in which the susceptibility of an antiferromagnetic
varies with temperature is shown in figure 2.8(a). The substance is paramagnetic above
its critical temperature called the Néel temperature TN and antiferromagnetic below it.
As the temperature decreases, χv increases but goes through a maximum at TN .

The molecular field Bm, in the paramagnetic region, is opposed to the applied field
B0; whereas B0 acts to align the magnetic moments, Bm acts to dis-align them. If we
now think of the molecular field on a very localized scale, the result is that any tendency
of a particular magnetic moment to point in one direction is immediately counteracted

27



2.1. SPIN PHYSICS IN MAGNETIC MATERIALS

by a tendency for the moment on an adjacent magnetic moment to point in the opposite
direction. In other words, the exchange force is negative, contrary to the ferromagnetic
case.

Below the critical temperature TN , this tendency toward an antiparallel alignment of
moments is strong enough to act even in the absence of an applied field, because the
randomizing effect of thermal energy is so low. The lattice of magnetic ions in the crystal
then breaks up into two sublattices, designated A and B, having moments more or less
opposed. The tendency toward antiparallelism becomes stronger as the temperature is
lowered below TN , until at 0 K the antiparallel arrangement is perfect.

We now see that an antiferromagnetic at 0 K consists of two interpenetrating and
identical sublattices of magnetic ions, each spontaneously magnetized to saturation in
zero applied field, but in opposite directions, just as the single lattice of a ferromagnetic
is spontaneously magnetized. Evidently, an antiferromagnetic has no net spontaneous
moment and can acquire a moment only when a strong field is applied to it.

We will apply the molecular field theory to the simplest possible case, namely, one for
which the lattice of magnetic ions can be divided into two identical sublattices, A and
B, such that any A ion has only B ions as nearest neighbors, and vice versa. We assume
that the only interaction is between nearest neighbors (AB) and ignore the possibility of
interactions between second-nearest neighbors (AA and BB).

We now have two molecular fields to deal with. The molecular field BmA acting on
the A ions is proportional and in the opposite direction to the magnetization of the B
sublattice:

BmA = −λMB, (2.74)

where λ is the molecular field coefficient, taken as positive. Similarly,

BmB = −λMA. (2.75)

These two equations are valid both above and below TN . We will consider the two cases
in turn.

T > TN , the paramagnetic state
In the paramagnetic region, we can find an equation for the susceptibility. Assuming

a Curie-law behavior, we have,

χv =
µ0M

B
=
C

T
, (2.76)

or
µ0MT = CB, (2.77)
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where B is the total field, applied and molecular, acting on the material.
We now write equation 2.77 for each sublattice,

µ0MAT = Ca(B0 − λMB), (2.78)

µ0MBT = Ca(B0 − λMA), (2.79)

where Ca is the antiferromagnetic Curie constant of each sublattice and B0 is the applied
field. By adding these two equations we can find the total magnetization M produced by
the field and hence the susceptibility:

µ0(MA +MB)T = Ca(2B0 − λ(MA +MB)), (2.80)

µ0MT = Ca(2B0 − λM). (2.81)

Solving for the spontaneous M,

M(µ0T + λCa) = 2CaB0. (2.82)

Then, the antiferromagnetic susceptibility is

χv =
µ0M

B0

=
2Ca

T + λC/µ0

=
C

T + TN
, (2.83)

where
C = 2Ca and TN = λCa/µ0. (2.84)

Note that, when a field is applied above TN , each sublattice becomes magnetized in the
same direction as the field, but each sublattice then sets up a molecular field in the
opposite direction to the applied field, tending to reduce both MA and MB . The result
is that the susceptibility χv is smaller, and 1/χv larger, than that of an ideal paramagnetic
in which the molecular field is zero. The two are compared graphically in Fig. 2.8, which
also shows how χv varies with temperature in a material with a large positive molecular
field, such as a ferromagnetic above its Curie point.
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Figure 2.8: (a) Antiferromagnetic susceptibility and (b) inverse of susceptibility as a
function of the temperature in a antiferromagnetic material. A comparison with a Curie
paramagnetic material with Bm = 0 and a ferromagnetic material with Bm > 0 is also
shown.

T < TN Antiferromagnetic state
In the antiferromagnetic region, each sublattice is spontaneously magnetized, in zero
applied field, by the molecular field created by the other sublattice and the total magne-
tization is zero,

M = MA +MB = 0. (2.85)

Then,
MA = −MB. (2.86)

Below TN , each sublattice is spontaneously magnetized to saturation just as a ferromag-
netic is, and we can compute its magnetization in the same way:

MA = M0AβJ(J, a′) = M0AβJ(J,
µzB

kBT
), (2.87)

B is the total field acting on the A sublattice. Since we are computing the spontaneous
magnetization, the applied field is zero (B = Bm), and we include only the molecular field
due to the B sublattice

BmA = −λMB = +λMA. (2.88)

Therefore, the spontaneous magnetization of the A sublattice is given by

MA = M0AβJ(J,
µzλMA

kBT
), (2.89)
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with a similar expression for the B sublattice. This equation can be solved graphically as
in the ferromagnetic case.

Although the net spontaneous magnetization is zero below TN , an applied field B0 can
produce a small magnetization. The resulting susceptibility is found to depend on the
angle α which the applied field makes with the axis of antiparallelism (AFM axis) in Fig.
2.9, an axis which usually coincides with an important crystallographic direction in the
crystal. For brevity, we will call this the antiferromagnetic axis. Then, we can consider
two limiting cases.

T < TN and magnetic field perpendicular to the AFM Axis.
The effect of the applied field B0 is to turn each sublattice magnetization away from the
AFM axis as shown in Fig. 2.9(a), where the vectors representing the magnetizations
of the two sublattices are drawn from one point. This rotation immediately creates a
magnetization M in the direction of the field and sets up an unbalanced molecular field
Bm in the opposite direction. The spins will rotate until Bm equals B ,

2BmA cosα = B0, (2.90)

or
2λMA cosα = B0. (2.91)

Also
M⊥ = 2MA cosα, (2.92)

Then, we have λM⊥ = B⊥, and using equation 2.84 we can define

χ⊥ =
µ0M⊥
B⊥

=
µ0

λ
=

C

2TN
. (2.93)

We note from equation 2.93 that the susceptibility perpendicular to the AFM axis is
inversely proportional to the molecular field constant, as might be expected, and it is
independent of the temperature.

31



2.1. SPIN PHYSICS IN MAGNETIC MATERIALS

Figure 2.9: (a) In an antiferromagnetic material below the Néel temperature at T= 0 K,
an applied magnetic field perpendicular to the AFM axis turns the spins in the B direc-
tion. (b) Applied magnetic field oriented parallel to the AFM axis makes to increase the
magnetization in one sublattice but decrease the magnetization in the opposite direction.

T < TN and magnetic field parallel to AFM Axis.
Suppose the field is applied in the direction of the antiferromagnetic A sublattice. Then,
the effect of the field is to increase the zero-field value of the A sublattice magnetization
MA by an amount ∆MA and decrease the corresponding value MB of the B sublattice
by an amount ∆MB, as shown in Fig. 2.9(b). The balance between the two sublattices
is upset, and a net magnetization in the direction of the field is produced:

M = (M0A + ∆MA) − (M0B − ∆MB) =| ∆MA | + | ∆MB | . (2.94)

At T = 0 K, the sublattices are saturated and there is nothing that the field can do, then
χ|| = 0. When the temperature increases, thermal fluctuations reduce the molecular field
and the field will be able to align a portion of the spins to its direction and this portions
increases as the temperature increases, so that χ|| smoothly increases with temperature
until T = TN .

If the applied field B0 makes an angle θ with the AFM axis of a particular crystal, then
the magnetizations acquired by that crystal, parallel and perpendicular to the AFM axis,
are

M|| = χ||B cos θ, (2.95)

M⊥ = χ⊥B sin θ. (2.96)
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The magnetization in the direction of the field is then

M = M|| cos θ +M⊥ sin θ = χ||H cos θ2 + χ⊥H sin θ2 (2.97)

or
χ =

µ0M

B
= χ|| cos θ2 + χ⊥ sin θ2. (2.98)

In a powder specimen or a random polycrystal, in which there is no preferred orientation
of the grains, the AFM axis takes on all possible orientations with respect to the applied
field. To find the susceptibility of a powder we must therefore average over all orientations.
This susceptibility of one crystal must then be averaged over all possible values of θ to
give the susceptibility of the powder:

χ =
µ0M

B
= χ||

1

3
+ χ⊥

2

3
. (2.99)

A plot of the temperature variation of the powder susceptibility is included in Fig. 2.10

Figure 2.10: Susceptibility parallel and perpendicular to the AFM axis in an antifer-
romagnetic material as a function of the temperature. The effective susceptibility in a

polycrystal χ = χ||
1

3
+ χ⊥

2

3
below the critical temperature is shown as a dotted line.

33



2.1. SPIN PHYSICS IN MAGNETIC MATERIALS

2.1.4 Magnetic anisotropy

This term means that the magnetic properties, for example, the magnetization (M vs B,
M vs T curves, etc.) depend on the direction in which they are measured. The most
common magnetic anisotropy are: crystal anisotropy, formally called magnetocrystalline
anisotropy, which is intrinsic to the material, other as shape anisotropy or stress anisotropy
are extrinsic or “induced.”

To clarify crystal anisotropy, lets suppose a single crystal with cubic structure cut in
the form of a disk parallel to a plane (110). This specimen will then have directions of the
form < 001 >, < 110 >, and < 111 > as diameters, as shown in Fig. 2.11. Measurements
of magnetization curves along these diameters, in the plane of the disk, will then give
information about the three important crystallographic directions.

Figure 2.11: The three principal crystallographic directions in the (110) plane of a cubic
material.

The results for a body-centered cubic structure (BCC), are shown in Fig. 2.12(a),
and those for face-centered cubic (FCC) in Fig. 2.12(b). For BCC these measurements
show that saturation can be achieved with low fields, in the < 100 > direction, which is
accordingly called the easy direction of magnetization. This tells us something about
domains in BCC in the demagnetized state. As will become clear later, a domain wall
separating two domains in a crystal can be moved by a small applied field. If we assume
that domains in demagnetized BCC are spontaneously magnetized to saturation in direc-
tions of the form < 100 >, < 010 >, < 010 >, and < 100 >, then a possible domain
structure for a demagnetized crystal disk cut parallel to (001) would be that shown in
Fig. 2.13(a). It has four kinds of domains, magnetized parallel to four of the six possible
easy directions, namely, [010], [100], [010], and [100], the other two [001] and [001] are
orthogonal to the 2D disk.
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Figure 2.12: Magnetization as a function of an applied magnetic field curves for single
crystals of the BCC (a) and FCC (b) structures.

Actually, our crystal disk, for example of 1 mm2 contains tens or hundreds of domains,
rather than the four shown in Fig. 2.13(a). However, all these domains are of only four
types, namely, those with Ms vectors in the [010], [100], [010], and [100] directions. If
a field B is now applied in the [010] direction, the [010] domain will grow in volume by
the mechanism of domain-wall motion, as indicated in Fig. 2.13(a). It is because the
magnetic potential energy of the crystal is thereby lowered; The energy of a [010] domain
in the field is -MsB per unit volume, for a [010] domain is +MsB, and for a [100] or [100]

domain is zero. Continued application of the field eliminates all but the favored domain,
until the crystal is saturated. Since experiment shows that only a low field is needed to
saturate BCC in a < 100 > direction, we conclude that our postulated domain structure is
basically correct and, more generally, that the direction of easy magnetization of a crystal
is the direction of spontaneous domain magnetization in the demagnetized state.

In FCC, figure 2.12(b) shows that the direction of easy magnetization is of the form
< 111 >, the body diagonal of the unit cell.
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Figure 2.13: Domain structures in a BCC substance if one magnetic field is applied parallel
(a) or not parallel (b) to some AFM axis.

Figure 2.12(a) shows that fairly high fields are needed to saturate BCC in a < 110 >

direction. For this orientation of the field, the domain structure changes as in Fig. 2.13(b).
Domain wall motion, in a low field, occurs until there are only two domains left, each with
the same potential energy. The only way in which the magnetization can increase further
is by rotation of the Ms vector of each domain until it is parallel with the applied field.
This process is called domain rotation. Domain rotation occurs only in fairly high fields,
because the field is then acting against the force of crystal anisotropy which is usually
fairly strong. Crystal anisotropy may therefore be regarded as a force which tends to hold
the magnetization in certain equivalent crystallographic directions in a crystal. When the
rotation process is complete, the domain wall disappears, and the crystal is saturated.

Because the applied field must do work against the anisotropy force to turn the mag-
netization vector away from an easy direction, there must be energy stored in any crystal
in whichMs point in a non easy direction. This is called the crystal anisotropy energy
E. This energy can be expressed in terms of a series expansion of the direction cosines of
Ms relative to the crystal axes. In a cubic crystal, letMs pointing to a non easy directions
make angles α, β, θ with the crystal axes. Then,

E = K0 +K1(cosα2 cos β2 + cos β2 cos θ2 + cosα2 cos θ2) +K2(cosα2 cos β2 cos θ2 + ...),

(2.100)
where K0, K1, K2, ... are constants for a particular material at a particular temperature
and are expressed in J/m3 (SI). Higher powers are generally not needed, and sometimes
K2 is so small that the term involving it can be neglected. The first term, K0, is inde-
pendent of angle and is usually ignored, because normally we are interested only in the
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change in the energy E when the Ms vector rotates from one direction to another.
When K2 is zero, the direction of easy magnetization is determined by the sign of K1.

If K1 is positive, then E100 < E110 < E111, and < 100 > is the easy direction, because E
is a minimum when Ms is in that direction. If K1 is negative, E111 < E110 < E100, and
< 111 > is the easy direction. When K2 is not zero, the easy direction depends on the
values of both K1 and K2.

Physical origin of the crystal anisotropy: spin-orbit coupling
It is known that the exchange energy is isotropic, depending only on the angle between
adjacent spins and not on the direction of the spin axis relative to the crystal lattice,
then, this spin–spin interaction do not contribute to the crystal anisotropy. There is also
a coupling between the spin and the orbital motion of each electron. When an exter-
nal field tries to reorient the spin of an electron, the orbit of that electron also tends to
be reoriented. But the orbit is strongly coupled to the lattice and therefore resists the
attempt to rotate the spin axis. In most materials, the orbital magnetic moments are
almost entirely quenched. This means that the orientations of the orbits are fixed very
strongly to the lattice due to the strong orbit-lattice coupling, meaning that even large
fields cannot change them. The energy required to rotate the spin system of a domain
away from the easy direction, which we call the anisotropy energy, is just the energy
required to overcome the spin–orbit coupling. This coupling is relatively weak, because
fields of a few hundred Oersteds or a few tens of kiloamps per meter are usually strong
enough to rotate the spins. We can also speak of a spin–lattice coupling (“lattice” consists
of a number of atomic nuclei arranged in space, each with its surrounding cloud of orbital
electrons) and conclude that it too is weak.

The strength of the anisotropy in any particular crystal is measured by the magnitude
of the anisotropy constants K1, K2, etc. Although there seems to be no doubt that crys-
tal anisotropy is due primarily to spin-orbit coupling, the details are not clear, and it is
generally not possible to calculate the values of the anisotropy constants in a particular
material from first principles.

Nor is there any simple relationship between the easy, or hard, direction of magnetiza-
tion and the way atoms are arranged in the crystal structure. Thus, in iron, which is BCC,
the direction of greatest atomic density, i.e., the direction in which the atoms are most
closely packed, is < 111 >, and this is the hard axis. But in nickel (FCC), the direction
of greatest atomic density is < 110 >, which is an axis of medium hard magnetization.
When iron is added to nickel to form a series of face-centered cubic solid solutions, the
easy axis changes from < 111 > to < 100 > depending on the percentage of iron [48].
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Anisotropy in antiferromagnetics
In antiferromagnets, in zero magnetic field, the spins of the two sublattices are parallel,
to an important crystallographic axis. When a field is applied perpendicular to the AFM
axis, the sublattice magnetizations rotate away from this axis, as shown in Fig. 2.10(a),
until the reverse molecular field equals the applied field. Actually, there is another force
tending to resist the rotation of the spins, and that is the crystal anisotropy which tends
to bind the spin directions to the AFM-axis. Inclusion of an anisotropy term does not
alter the main conclusions reached before, but anisotropy forces are responsible for the
spin flopping. When a substance of susceptibility χv is magnetized by a field B, its
magnetization M is χvB/µ0 and its potential energy in the field is −χvB2/µ0. In an
antiferromagnetic below the Néel temperature, χ⊥ is greater than χ||. This means that
the state with spins perpendicular to B is of lower energy than that in which spins are
parallel and antiparallel to B. Thus, when B is parallel to the spin directions and the
AFM-axis, as in Fig. 2.14(a), there is a tendency for the spin directions to rotate into
orientation perpendicular to AFM axis, counteracting the binding of the spin to the AFM-
axis direction by the crystal anisotropy forces. As the field increases, a critical value will
be reached when these forces are overcome at magnetic field B1. The magnetization for
the antiferromagnet parallel magnetic field is shown in Fig. 2.14(a). There is no effect
until the spin-flop transition at magnetic field B1, above this field the magnetization
increases steadily until saturation is reached at magnetic field B2. If the anisotropy effect
is very strong, another effect can occur. In this case, no spin-flop occurs. Instead we get a
spin-flip transition, i.e. the magnetization of one sublattice suddenly reverses when the
magnetic field reaches a critical value B3 , and the system moves in a single step to the
ferromagnetic state [49]. This is illustrated in Fig. 2.14(b).
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Figure 2.14: (a) Magnetization for applying magnetic field parallel to an antiferromagnet
axis. Initially nothing happens but then there is a spin-flop transition to a spin-flop
phase at B1. The magnetic field then rotates the moments until saturation is achieved
at the field B2. (b) If there is a strong preference for the spins to lie along the parallel
direction, there is a spin-flip transition at B3. Both figures show the expected curves for
absolute zero. Finite temperature will round off the sharp corners. This is also known as
a metamagnetic transition.
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2.2 Spin physics in semiconductor quantum dots

2.2.1 Semiconductor quantum dots

Semiconductor QDs are quasi-zero-dimensional nano-crystals, with carriers confined in
all three dimensions. This happens when the dimensions of typically direct band-gap
semiconductor hetero-structures are reduced to the order of 2-100 nm. In this situation,
the energy of the confined carriers can not be obtained, as normally, from the periodic
potential of the crystal, the Bloch waves, that extent over an entire crystal. For quantum
dots, the energy of the carriers depends on the potential energy due to the confinement,
which is not periodic, and the periodic potential can be considered as a perturbation.
The approximate solution for the energy of the carriers in this system shows that the
confinement leads the characteristic continuous conduction and valence bands, typically
observed in bulk semiconductors to be replaced by discrete energy levels, with a density
of states resembling a sequence of delta functions. For this reason, quantum dots are also
called artificial atoms. These discrete energy levels are closely related to the shape, size,
surrounding materials, and external fields applied to the QDs.

2.2.2 Spin-orbit interaction in quantum dots

In the classical electrodynamics, any moving particle as an electron orbiting its nucleus in
an atom, will be affected by the electric field produced by its positively charged nucleus
and will also experience a magnetic field. This is because in the electron rest frame, the
charged nucleus is seen to circle around it, which creates a current accompanied by its
surrounding magnetic field B that interacts with the spin of the electron with magnetic
moment µS in the form,

E = −µS ·B. (2.101)

This magnetic field is parallel and proportional to the electron orbital angular momentum
L,

B =
1

meec2

1

r

∂U(r)

∂r
L, (2.102)

where me is the electron mass, e is the electron charge, c is the light velocity and U(r) is
the potential energy of the electron in the central field which depends on the particular
orbit that the electron is in. The electron angular momentum is proportional to the
electron spin magnetic moment S (Eq. 2.31),

µs = gS
e

2me

S = gS
µB
h̄
S, (2.103)
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where e = −1.6 × 10−19 C. Then, following equations 2.102 and 2.103, the interaction
between the magnetic field and the spin magnetic moment can be written as

E = αL · S, (2.104)

where the proportionality constant α =
1

meec2

1

r

∂U(r)

∂r
gS
µB
h̄

can be written as depending

on the quantum numbers n and l.
When two or more kinds of angular momentum interact with each other, the total

angular momentum can be transferred from one to the other. Then, due the spin-orbit
coupling, the angular momentum can be transferred between L and S, but only the to-
tal angular momentum J = L + S is conserved. As an example, in an atom with two
electrons, each has its own angular momentum J1 and J2 , but only the total angular
momentum Jt = J1+J2 is conserved. Then, the spin-orbit interaction energy couples the
previously separate terms for L and S, resulting in that these two are no longer conserved
separately, but only the total angular momentum J is conserved.

The coupling of spin and orbital angular momentum, and its resulting energy splitting,
is what finally enables optical orientation of carrier spins in semiconductors, as the pho-
ton does not couple to the carrier spins directly. The photon interacts with the orbital
state where the electron is in. However, as pure spin states are no longer the eigenstates
of the Hamiltonian, the spin-orbit coupling is also responsible for many spin relaxation
mechanisms.

2.2.3 Energy levels in quantum dots from the III-V group

In particular, the quantum dots based on the III-V group cover a huge range of different
electronic properties, among them, for the case of (In,Ga)As QDs, it is known that they
have a direct gap, which means that in the energy (E )-momentum (k) space the minimum
of the conduction band lies exactly above the maximum of the valence band, which makes
them suitable for optical studies at the Γ-point (k = 0). At this point, the energy difference
between the top of the valence band and the minimum of the conduction band is the band
gap energy Eg. In the III-V group compounds, the states in the conduction energy level
have properties equivalent to s-type atomic orbitals and the valence energy level have
properties equivalent to p-type atomic orbitals. So the electrons at the conduction
band minimum have zero orbital angular moment (l=0) since they occupy an s-like orbital.
In contrast, holes at the top of the valence energy levels have orbital angular moment (l=1)
because they occupy a p-like orbital.

Due to the spin-orbit interaction, the energy states for the electron (s=1/2) must be
studied considering the total angular momentum J = L + S with quantum numbers j,

41



2.2. SPIN PHYSICS IN SEMICONDUCTOR QUANTUM DOTS

l and s, respectively, and their quantum numbers for their projections on one axis (Z
axis) Jz, ml and ms, respectively. From the angular momentum addition theory in the
Appendix, the values for the quantum number j are integer or semi-integer numbers given
by:

|l − s|, |l − s|+ 1, ... ≤ j ≤ ..., l + s− 1, l + s, (2.105)

and the values for the quantum number mj are given by,

−j,−j + 1, ... ≤ mj ≤ ...,+j − 1,+j. (2.106)

Then, we can affirm:
For the conduction energy levels (l=0, s=1/2), the possible values for the total angular

momentum are given by |0−1/2| ≤ j ≤ |0+1/2|. That is j = 1/2, and then the projection
of its angular momentum are mj = ±1/2. This is a doubly degenerate sub-band.

For the valence energy levels (l=1, s=1/2), the possible values for the total angular
momentum are given by |1 − 1/2| ≤ j ≤ |1 + 1/2|. that is j=(1/2, 3/2). For j=1/2,
the corresponding projections along the Z axis are mj = ±1/2 resulting in a doubly
degenerate band which are split from the j=3/2 states by the spin-orbit interaction. The
two j=1/2 states referred to as split-off bands and are typically a few hundreds of meVs
above j=3/2 states (∆so ≈ 0.3 eV in GaAs). When j = 3/2 holds, four possibles values
for the projections exists mj = ±1/2 and ±3/2 and can be separated into the light-hole
(lh) band for (mj = ±1/2) and theheavy-hole (hh) band for (mj = ±3/2). The light
hole states are typically tens of meVs below the heavy hole states. Thus, the hole ground
state is composed of the doubly degenerated states mj = +3/2, originating from ml =
+1 and ms = +1/2, and mj = -3/2, originating from ml = -1 and ms = -1/2.

In bulk semiconductors, the heavy hole and the light hole bands are degenerated at
k=0 as is shown in Fig 2.15(a). Near the Γ-point, in the E vs k space, the bulk dispersion
relation of the band structure is parabolic in the effective mass approximation and the
energy bands for the conduction, heavy hole valence, light hole valence and split off band
valence, can be written as:

Ec(k) = Eg +
h̄2k2

2m∗e
, (2.107)

Ehh(k) = − h̄
2k2

2m∗hh
, (2.108)

Elh(k) = − h̄
2k2

2m∗lh
, (2.109)

Eso(k) = −∆so −
h̄2k2

2m∗so
, (2.110)
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where m∗e is the electron effective mass, m∗hh is the heavy hole effective mass, m∗lh is the
light hole effective mass and m∗so is the effective split-off hole mass. But in QDs, both
strain and quantum confinement split the remaining degeneracy of the hh and lh with a
energy ∆s as is shown in figure 2.15 (b) producing quantized states for carriers in these
levels [50].

Figure 2.15: Energy levels under the effective mass approximation in (a) III-V group bulk
semiconductor and in (b) III-V group semiconductor QD, where the degeneracy between
the hh and lh levels disappears.

2.2.4 Interaction of III-V group quantum dots with light: Exci-

tons

The optical excitation consists in transferring, by means of photons, an electron from a
confined state in the valence band to a confined state in the conduction band, leaving
a hole in the valence band. Due the confinement in a quantum dot, the pair electron-
hole remain bounded and a large Coulomb energy is induced producing what is called
a (neutral) exciton state X0 (lh-exciton or hh-exciton, depending on the kind of hole
involved in the optical excitation).

In a III-V group quantum dot, as the (In,Ga)As QDs, the hole ground state in the
valence band is the doubly degenerated heavy hole state with jz = +3/2 and jz = -3/2.
Then, including the two possible spin states of an electron in the conduction band, four
spin combinations are possible for a photo-excited hh exciton: ↑⇑, ↓⇑, ↑⇓ and ↓⇓, where
↓ (↑) represents an spin down (up) electron with total angular momentum projection
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-h̄/2 (+h̄/2) and ⇓ (⇑) represent an spin down (up) hole with total angular momentum
projection -3h̄/2 (+3h̄/2). The total projection of the angular momentum on the Z axis
Jtz of these four possible combinations are Jtz = Je

z + Jhh
z = +2,+1,-1,-2 in units of h̄

respectively, conventionally denoted by: |+ 2 >, | − 2 >, |+ 1 > and | − 1 >.
Circularly polarized photons of right or left polarizations have angular momentum

on the direction of their propagation equal to +1 or -1 (in units of h̄) and have zero
spin. Thus, when optical excitation is due to a circularly polarized photon, its angular
momentum is distributed between the photo-induced electron in the conduction band
and the hole in the valence band according to the angular momentum conservation
principle determined by the band structure of the semiconductor. Then, the following
selection rules should be obeyed for an optical transition between two electronic states,

∆j = ±1 ∆mj = ±1 and ∆s = 0. (2.111)

These constraints distinguish the bright exciton states |+1〉 = |−1/2〉e−|−3/2〉hh and
|− 1〉 = |+ 1/2〉e−|+ 3/2〉hh from the dark exciton states |+ 2〉 = |+ 1/2〉e−|− 3/2〉hh
and | − 2〉 = | − 1/2〉e − |+ 3/2〉hh. We call bright the excitons states in which an optical
recombination by radiatively emission of a photon is possible and dark those that can not
decay optically due to their larger angular momentum. These transitions are depicted in
figure 2.16.

Figure 2.16: Selection rule allowed transitions in a III-V group QD due to a photon with
± h̄ angular momentum.

44



2.2. SPIN PHYSICS IN SEMICONDUCTOR QUANTUM DOTS

2.2.5 Charged excitons in III-V group quantum dots: Trions

The quantum dot ground state may already be populated by a resident electron in
the lowest conduction energy level or a resident hole on the top of the valence band, due
to either residual or intentional dopant carriers, which modify the original energy levels.
Thus, after a generation of an electron-hole pair in a charged quantum dot, the new
discrete levels can be populated by two electrons in the same energy level with opposite
spin states, due to Pauli exclusion principle, in singlet configuration or with high energy
excitation by two electrons in different energy levels in triplet configuration or singlet
configuration, giving rise in addition to the holes to multiple charged excitons states.
The state consisting of either two electrons and a hole is called a negative trion (X−),
and the state consisting of two holes and one electron is called a positive trion (X+).
The lowest energy levels for the neutral and charged excitons are depicted in figure 2.17.

In contrast to neutral excitons, the charged excitons in doped QDs with resident
electrons or holes provide an experimental tool for investigating the spin dynamics of
electrons or holes separately, because in trions, the spins of both the two electrons or
the two holes are aligned antiparallel (singlet), and thus, there is no net electron-hole
exchange interaction in a (singlet) trion.

Figure 2.17: Lowest energy levels for the neutral exciton and charged excitons. A biexciton
is a composite of two electrons and two holes.

For a singly negatively charged quantum dot, the ground state is occupied by one
electron in the lowest energy level of the conduction band, the state eS. An optical
excitation in this case corresponds to a transition between a single electron state to a
negative trion state, the state of two electrons and one hole confined in the QD, which
can be the trion ground state Ss or higher energy states as Sp or Tp, as is shown in figure
2.18. From the Pauli exclusion principle, it is clear that the trion ground state transition
is possible only if the state which is going to be occupied by the photo-created electron
is free. Hence, for the case of a right circularly polarized incident photon, a trion ground
state may be created if the dot is initially occupied by a spin-up (+1/2) electron but not
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if the electron in the dot is initially in the spin-down (-1/2) state. This suppressing of
the optical transition depending on the spin of the electron in the QD is referred as Pauli
blocking.

Figure 2.18: Possible transitions in a III-V group singly negatively doped quantum dot by
light excitation using a right circularly polarized light. The trion ground state is the Ss
state which is possible only if the QD ground state with resident electron is in the (+1/2)
state.

2.2.6 Optical orientation of spins in a ensemble of negatively

charged QDs.

Electron spin coherence can be generated in an ensemble of singly negatively charged
quantum dots along one axis (Z-axis) if the dots are excited by light with energy at least
resonant with band-gap of the quantum dots and able to transfer its angular moment.
The absorbed light generates in each dot a superposition of a partially polarized resident
electron and a trion consisting of two electrons (resident and photo-excited) and a
hole. Even after the radiative recombination of the trion, the partially polarized resident
electron spin (magnetic moment) oriented at an angle with respect to an externally applied
magnetic field B normal to Z direction (along the Y-axis), feel a torque that tries to align
it along the direction of the magnetic field. Consequently, the optically oriented electron
spins precess in the X-Z plane about this field with a frequency given by ωe = ge,yµBB/h̄,
where ge,y is the electron g-factor along the field, producing an oscillating magnetization
on the Z-axis component. The precession continues until scattering leads to reduction
of this magnetization and the magnetic moment point on the magnetic field direction
after a coherence time T2 as is shown in Fig. 2.19(a). An example of the photo-induced
magnetization profile obtained in this situation as a function of time is shown in Fig.
2.19(b). The evolution as function of the time can be modeled by an exponentially
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damped harmonic oscillator function Mz = e−t/T
∗
2 cos(ωet).

In general, experimentally observed signals may look more complicated, as for example
due in-homogeneous magnetic field or due to multiple carriers with different g-factor
(precession frequencies) and dephasing times, leading to shorter dephasing times, referred
as T ∗2 .

For an ensemble of electron spins, this produce a macroscopic magnetization that can
be measured using standard techniques.

Figure 2.19: (a) Time evolution of the precession of the ensemble of spins about transverse
magnetic field B (blue), the effective spin component on the Z axis is shown in red. (b)
Magnetization profile on the Z axis produced by a single QD (blue), T2 is the coherence
time of a single quantum dot, for an ensemble of QDs (red), T ∗2 is the coherence time.

2.2.7 Review of the model for light induced magnetization in n-

doped QDs ensemble

Here the basic ideas of the most recent quantum mechanical model [18] for the process of
photo-induced magnetization in a singly negatively doped ensemble of quantum dots are
summarized.

We first consider a singly charged QD submitted to a magnetic field along the Y-axis.
The electron’s spin Hamiltonian will be described by:

H = −µ ·B = −(−g
h̄
µBSy)By =

g

h̄
µBBySy =

1

2
gµBByσy =

1

2
h̄Ωσy, (2.112)

47



2.2. SPIN PHYSICS IN SEMICONDUCTOR QUANTUM DOTS

where σy =

(
0 −i
i 0

)
is the y-Pauli matrix, Ω =

geB

2me

is the Larmor precession frequency,

g is the g-factor, e = +1.6 × 10−19 C is the electron charge, By is the magnetic field on
the Y axis, and me is the electron mass.

In equilibrium, the electron spin will be polarized along the Y-axis. Therefore, at a
given instant before the arrival of the exciting light pulse, at t= 0, the QDs spin function
will be given by:

Ψ(t < 0) =
1√
2
| ↑ −i ↓〉. (2.113)

Figure 2.20: Pump-probe pulses with magnetic field perpendicular to the optical axis 100
(Voigt geometry) for photo-induced magnetization in a ensemble of QDs.

At t= 0, a right hand circularly polarized light σ+ pulse resonant with the eS → SS

or eS → Sp (Singlet) transition energy travelling along the Z-axis hits the QD as is
shown in figure 2.20, and instantaneously the QD spin function Ψ(t < 0) change to:

Ψ(t = 0) =
1√
2
| ↑↓ ⊗ ⇑ −i ↓〉. (2.114)

As the time progress, the paired electrons in the first spin wave function component do

not precess (because S = +
1

2
− 1

2
= 0), but the hole, as well as the resident electron do

precess, so the wave function Ψ(t = 0) evolves in time to:

Ψ(0 < t < tr) =
1√
2
| ↑↓ ⊗χh(t)− iχe(t)〉, (2.115)

where χh(t) is the spin function of the precessing hole, and χe(t) is the spin function of
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the precessing electron, which is obtained applying the time evolution operator (e
−
iHt

h̄ )

to | ⇑〉 and | ↓〉, respectively.
When the trion recombines at the recombination time t = tr, different models use

different consideration for this instant. Previous model assumes that the hole can recom-
bine with equal probability either with the spin-up or the spin-down electron of the trion.
However, in the present model [18], it is considered that the hole precess coherently, so in
the moment of the recombination t = tr, the hole spin will have an specific orientation. In
consequence, the recombination probabilities for the spin-up and spin-down electrons will
be different and depend on the hole precession dynamics. In the frame of this model, the
simplest version considers that the hole spin do not precess and just the electron spin do
precess. This simplification of the general model, called static hole model, conserve the
essential physics of the process and is an excellent approximation of the general case and
allow us working with concise expressions. Then, we consider that in the recombination
instant t = tr, the static hole captures the same photo-excited electron which originate
it, this is, a spin-down electron, then the wavefunction is written as:

Ψ(t = tr) = | ↑ −iχe(t)〉 =
1√
2
| ↑ −i cos

Ω

2
tr ↓ +i sin

Ω

2
tr ↑〉. (2.116)

The spin lifetime of photo-excited electrons is limited by the recombination process, but
not in the case of the not excited resident electrons. After the recombination of the trion,
the evolution of the Ψ(t = tr) state in time, after applying the time operator in (t− tr),
can be written as:

Ψ(t > tr) =
1√
2
{[i sin

Ω

2
t+ cos

Ω

2
(t− tr)]| ↑〉+ [−i cos

Ω

2
t+ sin

Ω

2
(t− tr)]| ↓〉}. (2.117)

Then, the expectation value of the time dependent photo-induced magnetic moment can
be calculated as:

〈σ(t > tr)〉 =

∫
Ψ∗(t > tr)σΨ(t > tr)dτ. (2.118)

When is considered the average of the recombination time for all the QDs in the ensemble.

〈σ(t > tr)〉 =

∫
〈σ(t > tr)〉dP (tr), (2.119)

where 〈σz(t > tr)〉 is the z-component of 〈σ(t > tr)〉 and dP (tr) =
e
−
tr
τ

τ
is the probability

for recombination occurs at the interval tr and tr+dtr, and τ is the trion recombination
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time. Thus, finally we can obtain:

〈σ(t > tr)〉 =
1

2

Ωτ√
1 + Ω2τ 2

e

−t
T ∗2 cos(Ωτ + (

π

2
− arctan(Ωτ)). (2.120)

Or

〈σ(t > tr)〉 = Ae

−t
T ∗2 cos(Ωτ + φ). (2.121)

That is, the amplitude of the photo-induced magnetization is A =
1

2

Ωτ√
1 + Ω2τ 2

and the

phase of the magnetization oscillations is φ =
π

2
− arctan(Ωτ) as is shown in figure 2.21.

These describe the precession movement of the photo-induced magnetic moment in the
ensemble.

Figure 2.21: Phase (a) and amplitude (b) of the photo-induced magnetization in an
ensemble of III-V group negatively doped QDs predicted by the quantum mechanical
model presented in [18].
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2.3 Spin physics in europium chalcogenides

2.3.1 Europium chalcogenides

Europium (Eu) belongs to the metallic elements known as rare earths, those comprising
the lanthanide series and is the element of atomic number 63, which has the electronic
distribution [Eu] = [Xe]4f 76s2, where [Xe] represents the electronic distribution equiv-
alent to a neutral Xenon atom, and can make an ionic bond with a chalcogen forming
the binary compounds known as europium chalcogenides (EuX), where X= chalcogen.
Chalcogens as O, Se, S, Te, Po, belong to 16 group of periodic table of elements and can
bind with metallic elements giving rise to metallic chalcogenides. The common feature to
all chalcogens is that they have six electrons in the valence shell, so they have a tendency
to receive two electrons to fulfill its valence shells according to the Octet Rule. EuX are
materials of great interest, mainly because of its magnetic properties associated with the
Eu2+ ions, which have a large magnetic moment (µ ≈ 8 µB). The EuX ionic crystals
are intrinsically magnetic and have a high density of Eu2+ ions in the lattice structure,
giving to these materials one of the largest magnetic moments found in a semiconductor.
Various properties of the EuX are related to their atomic structure and electronic energy
levels. In EuX, the ionic bond takes place when the pair of valence electrons 6s2 from Eu
atom migrate to chalcogens orbit so that the atoms become ionized and remain bonded by
the attractive potential between the Eu2+ positive charges and the X2− negative charges.
The aggregation of these two elements in an ionic binary compound furnishes a crystalline
solid of face centered cubic structure (FCC), as illustrated in figure 2.22.

Figure 2.22: The face centered cubic structure in a europium chalcogenide EuX crystal.

The electronic distribution of the Eu2+ cation is [Eu2+]=[Xe]4f 7. The seven remaining
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electrons are distributed in a f orbital. In the ground state, the seven f-shell electrons are
distributed according to Hund’s rules. The first rule says that the individual spins, si, are
distributed in a way to maximize the spin multiplicity, 2S + 1, where S =

∑7
i=1msi is the

total spin of the atom. The higher multiplicity is obtained when the seven electrons have
the same spin projection, ms = +1/2, totaling S = 7/2. The orbital angular momentum
L, of a subshell of quantum number is given by L =

∑+l
−lml where ml is the projection on

the Z-axis of the orbital angular momentum of each electron. As the f subshell can hold
14 electrons, it is half-filled. By the first Hund’s rule, all seven electrons have the same
spin projection and therefore each electron has a different projection ml, so that the sum
in L vanishes (L=0). The total angular momentum, J = L+ S, is given simply by the
spin term, so Hund’s first rule suffices to determine the ground state of Eu2+.

The fact that all the spins in the subshell have the same ms projections implies a high
magnitude of the magnetic moment of Eu2+ ion, which classically is given by µ = gµBS =

7µB and in quantum theory is given by µ = gµB
√
S(S + 1) ∼ 8 µB. On the other hand,

the X2+ anion has its valence shell filled with eight electrons, so that the chalcogens do
not contribute to EuX magnetism.

The Eu2+ ions in EuX exchange interact with each other and when the energy of
this interaction is higher than the thermal energy, the exchange interaction originates a
magnetic ordering of Eu2+ spins. These ordering will be described through the mean field
theory in the next section.

2.3.2 Magnetic order in EuX crystals

The mean field theory is a theoretical approximation that shows to be sufficient to explain
most of the magnetic properties of EuX, as its magnetic order. In general, the exchange
interaction has a limited reach and therefore it should not be significant on sites far away
from each other. Thus, it will be considered interactions with the nearest, next-nearest
and next-next nearest neighbors only. Any atom in a FCC lattice of size l possess 12
nearest neighbors (NN) located at a distance l

√
2/2 along the cubic diagonal, 6 next-

nearest neighbors (NNN) at distance l along the cubic axis and 24 next-next nearest
neighbor (NNNN) located at a distance

√
3l/2 as is shown in figure 2.23.
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Figure 2.23: An Eu+2 atom within the face centered cubic structure, colored in yellow,
has 12 nearest neighbors, colored in green, 6 next-nearest neighbors coloured in blue and
24 next-next nearest neighbor coloured in purple.

To implement the mean field approximation, it is necessary to divide the lattice into
a number of sublattices that ensures that there are no interactions between elements in
the same sublattice. In a face centered cubic lattice, this condition of non-intra-sublattice
interactions can be achieved by dividing the lattice into eight inter-penetrating sublattices,
so that each Eu2+ ion contained in a sublattice labeled as 1 of the material has two NN
and 4 NNNN on sublattices labeled as 2,3,4,6,7 and 8. Also this ion has six NNN on
another sublattice labeled as 5 as is shown in figure 2.24.

The effective field acting on an atom on the i -th sublattice is the composition of
the molecular field due to exchange interactions with all neighboring sites. Then, the
molecular field due to each sublattice is proportional to its magnetization, so that

Bi = B0 +
8∑

j=1

λijMj, (2.122)

where Mj is the magnetization of the j -th sublattice, B0 is the external magnetic field
and the molecular field constants are obtained from equation 2.57:

λij =
8(2zijJij)

Ng2µ2
B

, (2.123)

where zij is the number of equivalent spins surrounding the i-site (NN, NNN, NNNN, etc),
and whose interactions with the j -th site are described by the same exchange constant
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Jij. The eight factor account for the number of sublattices, as discussed above, it grants
that no intra-sublattice interactions are present, that is, λii = 0. By symmetry Jij = Jji

and so λij = λji. The magnetization of each sublattice depends on the external field and
on the molecular field due to the other sublattices.

Figure 2.24: The eight sublattices in an Eu+2 atom within the face centered cubic struc-
ture.

In a system where the magnetizations of all sublattices point in the field direction, the

result M(B0, T ) = M0βJ(y) with y =
gµBJ(B0 + λM(B0, T ))

kBT
[51] can be used (param-

agnetic behavior), and the magnetization of the sublattice i, for a magnetic field oriented
in the Z direction is given by

Mi =
M0

8
βJ(

gµBJBi

kBT
), (2.124)

where M0 was replaced by M0/8 because every sublattice contains an eighth of the mag-
netic atoms of the crystal. As Bi depends on the magnetization of the other sublattices,
equation 2.124 represents a system of eight coupled equations, whose analytical solution
is quite complicated. However, in the high temperatures limit, even in a system with a
magnetic anisotropy, the magnetizations of all sublattices point in the field direction. At
this condition, in this temperature range we can use the first term of the power series

expansion of Brillouin’s function βJ(x) ∼ (J + 1)

3J
x, simplifying the system to:

Mi =
CBi

8T
=

C(B0 +
∑8

j=1, λijMj)

8T
, (2.125)
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where C =
gµB(J + 1)M0

3kB
is the Curie constant. By adding the eight equations 2.125 we

have:
8∑

i=1

Mi =
8∑

i=1

CBi

8T
=

C

8T

8∑

i=1

(B0 +
8∑

j=1

λijMj), (2.126)

and we can rewrite it as:

8∑

i=1

Mi =
CB0

T
+

8∑

i=1

Mi
C

8T

8∑

j=1

λij ⇒
8∑

i=1

Mi(1−
C

8T

8∑

j=1

λij) =
CB0

T
. (2.127)

The above expression in round brackets is independent of i due to translational equivalence
of atoms in the lattice, that is, each atom has the same number and type of interaction
of any other, so that the term in round brackets can be extracted from the summation:

(1− C

8T

8∑

j=1

λj)M =
CB0

T
, (2.128)

where M =
∑8

i=1Mi, that equation can be rewritten as

M =
CB0

(1− C

8T

∑8
j=1 λj)T

, (2.129)

that provides exactly the Curie-Weiss law

χ =
C

T − Tc
with Tc =

C

8

8∑

j=1

λj. (2.130)

The constant Tc is the Curie-Weiss temperature. Remembering equation 2.123 and using
M0 = NgµBJ , we obtain that

Tc =
2J(J + 1)

3kB

8∑

j=1

zijJij. (2.131)

Thus, for a FCC lattice, by the eight-sublattices division, one Eu atom has two NN and 4
NNNN placed in the six neighbouring sublattices, and six NNN contained in the remaining
sublattice, so that

∑8
j=1 zijJij = 6 × 2J1 + 6 × 4J3 + 1 × 6J2 where J1, J2 and J3 are

the exchange constants of an atom with its NN, NNN and NNNN, respectively. Thus the
Weiss temperature for the EuX are given by:

Tc =
2J(J + 1)

3kB
(12J1 + 6J2 + 24J3). (2.132)

In general, the transition temperatures depend on the magnetic ordering of the spins, these
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transitions are characterized by the temperature Tt, above of which the magnetization
of each sublattice vanishes. To determine Tt, we go back to equation 2.125 and write
explicitly the system of equation for (i=1,2,..., 8),

+M1 −
C

8T
λ12M2 − · · · C

8T
λ18M8 =

C

8T
B0

... . . . ... (2.133)

− C

8T
λ81M1 −

C

8T
λ82M2 · · · +M8 =

C

8T
B0.

The above system of equations only has nonzero solutions to Mi if and only if its charac-
teristic determinant is zero, which defines an equation for the critical temperature.

We take the sublattice that contains 6 NNN of an atom in sublattice i= 1 as the one
labelled as j=5. In this description:

λ15 =
8(2× (6J2))

Ng2µ2
B

and λ16=5 =
8(2× (2J1 + 4J3))

Ng2µ2
B

. (2.134)

We can do the same for the other sublattices following a cyclic criteria, for example, for
an atom in the sublattice i=2 the NNN are contained in the sublattice j=6 and we have:

λ26 =
8(2× (6J2))

Ng2µ2
B

and λ26=6 =
8(2× (2J1 + 4J3))

Ng2µ2
B

. (2.135)

So we can define,

a0 =
8T

C
, λ0 =

16

Ng2µ2
B

, a1 = −λ0(2J1 + 4J3) and a2 = −λ0(6J2).

(2.136)
Then, we get the matrix

A =




a0 a1 a1 a1 a2 a1 a1 a1

a1 a0 a1 a1 a1 a2 a1 a1

a1 a1 a0 a1 a1 a1 a2 a1

a1 a1 a1 a0 a1 a1 a1 a2

a2 a1 a1 a1 a0 a1 a1 a1

a1 a2 a1 a1 a1 a0 a1 a1

a1 a1 a2 a1 a1 a1 a0 a1

a1 a1 a1 a2 a1 a1 a1 a0
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Making det A = 0, we obtain three real solutions to the system, corresponding to,

(a) a0 = −6a1 − a2 ⇒ T = Cλ0(12J1 + 6J2 + 24J3)/8, (2.137)

(b) a0 = 2a1 − a2 ⇒ T = Cλ0(6J2 − 4J1 − 8J3)/8, (2.138)

(c) a0 = a2 ⇒ T = −Cλ0(6J2)/8. (2.139)

Each of these roots corresponds to a different system which is possible and indeterminate,
that is, admits infinite solutions. However, it is possible to obtain relations between the
magnetizations of each sublattice.
For the (a) root, the solutions imply

M1 = M2 = M3 = M4 = M5 = M6 = M7 = M8. (2.140)

This corresponds to a ferromagnetic ordered system, where the magnetizations of all
sublattices point in the same direction, and we can obtain a Curie’s temperature

Tc =
2J(J + 1)(12J1 + 6J2 + 24J3)

3kB
=

63(2J1 + J2 + 4J3)

kB
. (2.141)

For the (b) root, the solutions have the form,

M1 = M5, M2 = M6, M3 = M7, M4 = M8 = −(M1 +M2 +M3). (2.142)

These conditions can generate more than one kind of magnetic ordering, however, if one
makes the choice M1 = M2 = −M3 = −M4, the obtained ordering is the so-called type-I
antiferromagnetic order (AFMI), where the spins contained in the planes defined by
the cubic axes (for example the X-Y planes) are ferromagnetically ordered between them,
however the neighboring planes magnetizations point in opposite directions so that the
whole material is antiferromagnetic. In this case, the Néel’s temperature is

TAFMI
N =

2J(J + 1)(6J2 − 4J1 − 8J3)

3kB
=

(−42J1 + 63J2 − 84J3)

kB
. (2.143)

For case (c) root, and using the restriction

M1 = −M5, M2 = −M6, M3 = −M7, M4 = −M8. (2.144)

We get the type-II antiferromagnetic arrangement (AFMII), where as well as in type-I
AFM, the ferromagnetic planes are distributed alternately with reversed magnetizations.
The difference is that in this case, the FM planes are the planes perpendicular the diag-
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onals of the cube. At this condition, the ordering temperature is given by

TAFMII
N =

2J(J + 1)(−6J2)

3kB
=

(−63J2)

kB
. (2.145)

We can note that in this case, the NN and NNNN exchange do not influence the Néel’s
temperature. Thus, through the simple Weiss effective field model, it was possible to
reach the different magnetic orderings found in EuX at temperatures below the critical
temperatures, which were determined in terms of the J1, J2 and J3 exchange constants.

Figure 2.25: AFM type I ordering (left) and AFM type II ordering (right) in an FCC
structure.

In figure 2.25 it is possible to see the FM planes composed of the NN, NNN and
NNNN of a given lattice site in yellow. Using this theory is possible to predict the FM
and the AFM type I and type II, where the magnetic state is then determined by the
relative distribution of the total magnetization of these planes. In addition to the derived
orderings from the choices made to solve the equations system, other magnetic orderings
can be present in EuX, always formed by successive FM planes, which can be distributed
in ↑↑↓↓ pattern [52] or even ferrimagnetic orderings ↑↑↓↑↑↓. However other theory needs
to be applied.

By knowing the magnetic orderings that occur in each EuX, their respective critical
temperatures and the spin’s orientation evolution with applied magnetic field, it is possible
to determine the value of the exchange constants in the mean field model.
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2.3.3 Evidence of the formation of magnetic polarons in EuTe

2.3.3.1 Absorption spectra of EuTe vs magnetic field

The basic idea of the model for the absorption spectrum consists in the transition of
one electron from a 4f valence level to a 5d conduction band built from Eu atomic levels
[53].

The absorption dependence on the magnetic field is determined by the d-f exchange
interaction characterized by the exchange integral Jdf , between the electron in the excited
5dt2g state and the magnetic field-oriented 4f 7 lattice spins. Above the spin-flop field
of 0.08 T, the crystal contains a single domain described by two magnetic sublattices,
oriented at an angle θ with respect to the magnetic field direction as is shown in the top
right-hand side inset of Fig. 2.26.

The angle θ can be obtained by minimizing the molecular field energy of the i-th lattice
spin in the FCC structure [54],

Ei = −gSµBSB cos θ − 6J1S
2 − 6(J1 + J2)S2 cos 2θ. (2.146)

Thus,

cos θ =





B
BSAT

, if B < BSAT

1, if B ≥ BSAT ,
(2.147)

where BSAT = −24(J1+J2)S
gSµB

, J1 = 0.04 ± 0.01 K and J2 = −0.15 ± 0.01 K are the
nearest neighbor and next-nearest neighbor exchange constants, gS = 2, and µB is the
Bohr magneton.

Henceforward, we use the experimental value BSAT = 7.2 T (Ref. [55]) (This internal
field is achieved when the applied field is 8.3 T due to the demagnetization effect). Due to
spin conservation in the electric-dipole absorption process, immediately after excitation,
the electron spin is oriented along the spin of a magnetic sublattice; moreover, following
the Franck-Condon principle, the electronic transition takes place at fixed spatial and spin
coordinates of the lattice; hence, the magnetic field dependence of the exchange energy
of the absorbing state will be given by the Heisenberg hamiltonian,

Hdf = −2
N∑

i

J(r −Ri)Sd · Si, (2.148)

where J(r−Ri) is the interaction constant associated with each lattice site. If we assume
that the electron wavefunction is uniformly distributed in the N lattice sites with which
it has appreciable overlap and is zero in the remaining sites, we can define the exchange
constant, Jdf , which characterizes the interaction of the photoexcited electron with any
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of the N overlapped sites, so we can write,

Hdf = −2
Jdf
N

N∑

i

Sd · Si (2.149)

Hdf = −2
Jdf
N

(
N

2
Sd · S1 +

N

2
Sd · S2) (2.150)

Hdf = −1

2
JdfS(1 + cos 2θ) (2.151)

where S1 and S2 are the spins in the sublattices 1 and 2, respectively, Jdf is the exchange
constant between the d and f states, Sd = 1/2 is the electron spin. Then, ∆hνabs =
1
2
JdfS(1 + cos 2θ) which according to Eq. 2.147 gives the quadratic dependence on B

shown by the dashed line in Fig. 2.26, in agreement with experiment.

∆hνabs = −JdfS cos2 θ. (2.152)

The maximum absorption redshift establishes JdfS = 0.13 eV.

Figure 2.26: Absorption bandgap and zero phonon line (ZPL) peak position as a function
of the applied magnetic field [51].
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2.3.3.2 Emission spectra of EuTe vs magnetic field

A typical near-gap EuTe photo-luminescence (PL) spectra as a function of excitation
power are shown in Fig. 2.27(a). At large excitation powers (20 W/cm2), a narrow
emission at 1.92 eV is seen (MX1) and near 1.87 eV (MX2), in agreement with Ref
[56]. However, when the excitation power is reduced to 2 mW/cm2, the PL develops an
ensemble of equally spaced lines M0, that combine into an emission band of total width
60 meV with a maximum at 1.88 eV at zero magnetic field. When a magnetic field B, is
applied in the Faraday geometry, the MX0 lines show a giant redshift of 37 meV/T, up
to a saturation field.

Fig. 2.27(b) shows theMX0 emission for samples of thickness 1, 1.5, and 4.2 µm, at B =
9.5 T. The spacing between the lines comprising the MX0 luminescence is independent of
the thickness of the epitaxial layer, demonstrating that the line structure is not related to
Fabry-Perot interference causing modulation of the PL intensity of epitaxial EuTe grown
on BaF2 substrates [57]. The MX0 lines are better resolved in thicker layers because
they arise from luminescent regions that are further away from the BaF2/EuTe interface,
whose adjacency contains many structural defects due to the 6% lattice mismatch [58].

Figure 2.27: (a) PL spectra as a function of excitation power for an epitaxial EuTe layer
of thickness 1.0 µm. (b) PL spectra for excitation power 1 mW/cm2 [51] .

A Poisson distribution of intensities
e−SSN

N !
, N= 0,1,2,... , fit very well the MX0

lineshape at all fields, as shown by the thin black line in Fig. 2.27(b) for B = 9.5 T,
demonstrating that all MX0 lines arise from the same electronic transition coupled to a
vibrational mode [59]. The fitting yields the energy position of the zero-phonon line (ZPL)
(N=0) as a function of B, the Huang-Rhys coupling strength S= 1.5, the half-width of the
individual lines δ = 7.8 meV, and line spacing hν =17.5 meV. The latter matches exactly
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the energy of the LO-phonon in EuTe, [60] which identifies the vibrational mode involved
in the MX0 emission.

Before recombination, the photo-excited electron relaxes the exchange energy by flip-
ping its spin towards a direction midway between the two sublattices, as shown schemat-
ically in the inset at the bottom left-hand side in Fig. 2.26. Then, the exchange energy
of the photo-excited electron in the relaxed X -state with the lattice spins is,

Hxf = −2
Jxf
N

N∑

i

Sx · Si (2.153)

= −2
Jxf
N

(
N

2
Sx · S1 +

N

2
Sx · S2), (2.154)

where Sx = 1/2 represents the relaxed electron spin. We assume that the photo-excited
electron spin makes an angle φ with the direction of the magnetic field B. Then,

Hxf = −JxfSxS (cos(θ − φ) + cos(θ + φ)) . (2.155)

By minimizing this expression as a function of φ in the equilibrium (
∂Hxf

∂φ
= 0) we obtain

φ = 0 and then,
Hxf = −JxfS cos θ. (2.156)

Therefore, the magnetic field dependent shift of the ZPL will be given by

∆hνZPL = −JxfS cos θ, (2.157)

which from equation 2.147 gives a linear dependence on B as shown by the solid line in
figure 2.26, in agreement with experiment which saturates at lower magnetic field. Here,
another parameter, Jxf , was introduced to characterize the exchange interaction between
the relaxed photo-excited electron and the lattice spins. The value of JxfS is determined
by the maximum redshift of the ZPL prior to saturation, giving JxfS = 0.27 eV.

2.3.3.3 Evidence of the formation of magnetic polarons

The exchange interaction energy between a single i-th lattice spin and the relaxed photo-
excited electron given from equation 2.153 is equal to ∆x = −|ψ2

i |JxfS cos θ, where |ψ2
i | is

the amplitude of the photo-excited electron wave function at the i -th lattice site. When
a photo-excited electron is present, this energy must be added to the energy of the i -th
lattice spin in non excited state,

Ei = −gSµBSB cos θ − 6J1S
2 − 6(J1 + J2)S2 cos 2θ − |ψ2

i |JxfS cos θ. (2.158)
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By minimizing this expression as a function of θ in the equilibrium (
∂Ei
∂θ

= 0), we obtain

cos θ
′
= −gSµBSB + Jxf |ψ2

i |
24(J1 + J2)S2

=
B +Bx

BSAT

, (2.159)

where Bx =
Jxf |ψ2

i |
gSµB

. Then, we can observed that the additional term ∆x favors the

alignment of the lattice spins with the spin of the photo-excited electron, to form a
magnetic polaron, consisting of a conduction-band electron localized in space by a
photo-excited hole and the attractive exchange field generated by the spins of the europium
atoms within the range of the electronic wave function. Within a radius R around the
electron, the tilt angle of the lattice spins is decreased from θ to θ′ during the polaron
lifetime (before recombination), as shown schematically in the bottom left-hand side inset
in Fig. 2.26. When ∆x is introduced into Eq. 2.146, the saturation field decreases by

∆BSAT =
Jxf
gSµB

|ψi.|2 (2.160)

If we assume a constant amplitude of the electron wavefunction, as is shown in Fig.

2.28 (a), we can approximate |ψi|2 =
1

N
, then ∆BSAT =

Jxf
gSµBN

becomes a function of

JxfS = 0.27 eV. Then, using S=7/2 and the value ∆BSAT = 1.2 T (see Fig. 2.26), we
can obtain,

1.2 [T ] =
0.27× (2/7) [eV ]

N × 2× 5.78× 10−5 [eV/T−1]
→ N ≈ 500, (2.161)

where N =
4

3
πR3 4

a3
is the number of Europium atoms within the polaron radius R and

a = 6.6 Å is the EuTe lattice parameter. Then we obtain R ∼ 3.6 a.
The tilt angle θ′ of the lattice spins at B = 0, within the magnetic polaron radius,

is determined by cos θ
′

= ∆BSAT

BSAT
to give cos θ

′ ∼ 80◦. Using θ′ , the energy relaxation
of the electron-lattice system due the magnetic polaron formation (the magnetic polaron
binding energy, EB) can be estimated, through EB = JxfS cos θ

′ ∼ 45 meV. If we subtract
EB from the Stokes shift of 430 meV (see Fig. 2.26), the difference of 385 meV is too
large to be attributed to an electron-hole Coulomb binding energy. This is indicative that
the MX0 luminescence arises from the de-excitation of an electronic state lying below the
5dt2g conduction band, as also observed for the MX1 luminescence. The absorbing and
luminescent electronic states being different from one another also explains the numerical
difference in the respective parameters JdfS and JxfS.
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Figure 2.28: (a) Photo-excited electron wavefunction of constant amplitude inside the
magnetic polaron. (b) The two antiferromagnetic sublattices are indicated by vectors S1

and S2, under the effect of the resultant magnetic field B, i.e., the superposition of an
external field and the exchange field of the photo-excited electron, indicated by vector S.
The lighter arrows indicate the sublattice spin orientation in the absence of a photo-excited
electron. At any distance to the polaron center, both sublattices are tilted by the same
angle θ′ with respect to the perpendicular to their unperturbed equilibrium orientation
indicated by the horizontal dashed line. The angle formed by the two sublattices due the
applied magnetic field only at any distance is equal to θ.

2.3.4 Theoretical properties of magnetic polarons in EuTe

This section answer fundamental questions such as: what is the internal spin structure of
the magnetic polarons, how can these polarons be generated efficiently, what is the polaron
binding energy or how high temperature affect these polarons. This section answers these
questions on the basis of a theoretical model and its confrontation with results of magneto-
optical experiments. For this, a Schrodinger equation for the polaron was formulated and
resolved by using both a variational and a self-consistent method.

To describe the localized photo-excited electron, the envelope-wave-function approach
[61] is employed. In an isotropic crystal such as EuTe, the photo-excited electron is
described by a spherically symmetric envelope wave function ψ(r), where r is the distance
to the center of the polaron as is shown in Fig. 2.29 (a).

The total energy of a photo-excited electron surrounded by a cloud of canted lattice
spins (measured in respect to the energy of a free Bloch electron) is given by the sum:

Epol = K + UCoul + Exf + Eff + EZ , (2.162)

where K represents the kinetic energy of the photoexcited electron, UCoul is its Coulomb
energy in the field of the photoexcited hole, Exf = Exf (Jxf , S, a, Ri, φ(Ri)) is the xf
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exchange energy,
Hxf = −2

∑
JxfSx · Si (2.163)

= −2Jxf (
1

2
)S
∑

(cos(π/2− φ(Ri)) + cos(π/2− φ(Ri)))
a3

8
|ψ(Ri)|2 (2.164)

→ Hxf = −JxfS
∑

sin(φ(Ri))
a3

4
|ψ(Ri)|2, (2.165)

where Jxf is the constant for the exchange interaction between the photo-excited electron
and the lattice spins, S = 7/2 is the spin of an Eu atom, a is the EuTe lattice parameter,
Ri is the distance from the i -th lattice spin to the center of the polaron, φ(Ri) is the

canting angle of the i -th lattice spin, and
a3

4
|ψ(Ri)|2 is the probability of the electron to

be at the position Ri in the volume of one EuTe atom, as shown in Fig. 2.29 (b).
Eff = Eff (J1, J2, S, B,Ri, φ(Ri)) is the change in the lattice ff energy induced by the

photo-excited electron (Eff (with polaron)-Eff (without polaron)),

∑
−6J1S

2−6(J1 +J2)S2 cos 2(π/2−φ(Ri))−
∑
−6J1S

2−6(J1 +J2)S2 cos 2θ (2.166)

→ Eff = −
∑

12(J1 + J2)S2(sin2 φ(Ri)− cos2 θ), (2.167)

where J1 and J2 are the first and second neighbor ff exchange constants, respectively.
EZ = EZ(B, S,Ri, φ) is the change in the Zeeman energy of the lattice spins, induced by
the photo-excited electron (Ez(with polaron)-Ez(without polaron)),

=
∑
−(−gSµBS)B cos(π/2 + φ(Ri))−

∑
−(−gSµBS)B cos(π − φ(Ri)) (2.168)

→ Ez = −
∑

gSµBSB(sinφ(Ri)− cos θ) (2.169)
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Figure 2.29: (a) Photo-excited wavefunction with radial dependence inside the magnetic
polaron. (b) The two antiferromagnetic sublattices are indicated by vectors S1 and S2,
under the effect of the resultant magnetic field B, i.e., the superposition of an external
field and the exchange field of the photo-excited electron, indicated by vector S. The
lighter arrows indicate the sublattice spin orientation in the absence of a photo-excited
electron. At a given distance, Ri, to the polaron center, both sublattices are tilted by the
same angle φ with respect to their unperturbed equilibrium orientation indicated by the
horizontal dashed line.

By minimizing the total energy in respect to φ(Ri) we obtain

sinφ(Ri) =





1, if A|ψ(r)|2 +B/BSAT > 1

A|ψ(r)|2 +B/BSAT , otherwise
, (2.170)

where A = − JXfa
3

96(J1 + J2)S
. Taking advantage of the continuum approximation [62],

whereby the discrete distribution of Eu spins in the crystal lattice is replaced by a con-
tinuous one, with a density of spins equal to 4/a3 characteristic of the face-centered cubic
lattice, the polaron problem can be formulated in terms of a very succinct writing the
equation:

Exf + Eff + EZ =

∫ ∞

0

|ψ(r)|2Vpol4πr2dr, (2.171)

here Vpol(r) is the self energy which unifies EXf +Eff +EZ with an specific value at the
position r, which is not possible using the complicated original expression.

The hamiltonian operator is given by:

Hpol = − h̄2

2m∗r2

d

dr
(r2 d

dr
)− k e

2

εr
+ Vpol(r). (2.172)
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And the polaron energy

Epol =

∫ ∞

0

ψ∗(r)Hpolψ(r)4πr2dr. (2.173)

The first term in Eq. 2.172 is the kinetic energy operator (m∗ is the effective mass of
the photo-excited electron), the second term is the Coulomb interaction operator between
the electron and the photo-excited hole, which is screened by a dielectric constant ε, and
Vpol(r) is the self-energy term, which unites the ff , xf, and Zeeman energies in a single
compact and concise expression.

Now we consider the polaron of radius R as composed of a core of ferromagnetic center
of radius rc and an external part of radius r such rc ≤ r ≤ R.
For r ≤ rc,

we have sinφ(Ri) = 1, then Exf + Eff + EZ can be written as,

= JxfS
∑ a3

4
|ψ(Ri)|2 + 12(J1 + J2)S2

∑(
1− (

B

BSAT

)2

)
− gSµBSB

∑
(1− B

BSAT

).

(2.174)
By using

12(J1 + J2) =
Jxfa

3

8AS
and gSµB =

Jxfa
3

4ABSAT

(2.175)

Also the continuous approximation,

∑
f(Ri)

a3

4
|ψ(rRi)|2 →

∫
f(r)|ψ(r)|24πr2dr, (2.176)

we obtain

Exf + Eff + EZ = −JxfS
∫ ∞

0

(
1− (1− (B/BSAT )2)

2A|ψ(r)|2
)
|ψ(r)|24πr2dr. (2.177)

Similarly, for r > rc, sinφ(Ri) = A|ψ(Ri)|2 +
B

BSAT

and we obtain

Exf + Eff + EZ = −JxfS
∫ ∞

0

(
A

2
|ψ(r)|2 +B/BSAT

)
|ψ(r)|24πr2dr. (2.178)

Then we can summarize,

Vpol(r) = −JxfS





1− (1− (B/BSAT )2)

2A|ψ(r)|2 , if r < rc

A

2
|ψ(r)|2 +B/BSAT , otherwise

, (2.179)

where rc is the radius of the spherical ferromagnetic core at the center of the polaron and
we have to note that is ψ(r) dependent.

67



2.3. SPIN PHYSICS IN EUROPIUM CHALCOGENIDES

The ground state of the polaron is given by the minimum energy solution of the
Schrodinger equation:

Hpolψ(r) = Epolψ(r). (2.180)

The Schrodinger equation must be solved by using the self-consistent method [63] because
the confining potential Vpol(r) is dependent on the wave function, as Eq. 2.179 shows.
Alternatively, an approximate solution can be found by using the variational method.
Although less accurate, the variational method has the advantage of producing a fully

analytical solution. A Bohr’s wave function was here used ψ(r, aB) =
e−r/aB√
πa3

B

and the

effective Bohr radius aB is the variational parameter.
It was used the numerical values of the parameters in Ref [41]. Figures 2.30 and 2.31(a)

show the results of the calculations obtained both by the self-consistent and variational
methods. The variational results found for B = 0 T is aB = 1.27 a. Figure 2.30(a) shows
the polaron part (the total is polaron part + Coulomb part) of the confining potential,
Vpol(r), and the radial probability distribution associated with the envelope wave function
of the confined electron for B = 0 T. The self-consistent Vpol(r) is less confining than
the variational one and the self-consistent orbital is more extended. The energy of the
photo-excited electron bound state is found to be -0.0942 eV for the variational method,
and -0.0860 eV for the self-consistent one. Figure 2.30(b) shows the sine of the canting
angle as a function of distance to the polaron center. The variational calculation produces
a ferromagnetic core of radius rc = 0.95 a, whereas the self-consistent result is rc = 0.47
a. Given that the nearest neighbour distance in the face-centered cubic EuTe lattice is
0.71 a, then a small ferromagnetic core is predicted by the variational model, but no
ferromagnetic core is expected in the self-consistent approximation.

Figure 2.30: (a) Polaron ground state energy obtained by the self consistent method
(red curves) and the variational method (black curves) at B = 0 T. Vpol(r) (solid line),
probability density (dashed line), and energy of the ground state (dotted line). (b) Radial

dependence of the canting angle, bSF =
BSF

BSAT

.
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In the idealized picture above, the photo-excited electron is allowed to polarize all
lattice spins, no matter how distant they are from the polaron center. In reality, the
polarization action of the photo-excited electron is limited to the region where the effective
magnetic field generated by the photo-excited electron wins the competition with other
sources of effective magnetic fields; for instance, the magnetic anisotropy [49], which is
described by a spin-flop field of BSF ∼ 0.1 T [65]. Consequently, the polaron radius will
be finite. The radius of the polaron can be estimated by taking the spin-flop field as a
measure of the minimum effective field that the photo-excited electron must generate in
order to have any effect on the lattice polarization. Then the polarization action of the
photo-excited electron on the lattice spins, which is measured by how much this photo-
excited electron changes the (sine of the) canting angle, which from Eq. 2.170 is given
by A|ψ(r)|2 + 0, must be greater than the change in sinφ that would be caused by a
magnetic field of magnitude BSF , which is simply BSF/BSAT [39]. Thus the polaron
volume is defined by the values of r that satisfy the inequality:

A|ψ(r)|2 ≥ BSF/BSAT . (2.181)

The equality occurs at r = Rpol and by using the Bohr’s wave function ψ(r, aB) =
e−r/aB√
πa3

B
produces an analytical expression for the polaron radius, if the variational approximation
is used, it gives Rpol = 3.6 a for B= 0 T, and if the self-consistent approximation is used
it gives Rpol = 4.0 a is found numerically from the equality of the condition in Eq. 2.181.

The average canting angle of the lattice spins within the polaron will be given by:

< sinφ >= Ω−1
pol

∫ Rpol

0

sinφ(r)4πr2dr, (2.182)

where Ωpol =
4

3
πR3

pol is the polaron volume, which gives < φ >= 7◦ for the variational
model and < φ >= 5◦ for the self consistent one.

Thus, the total magnetic moment of a polaron can be estimated to be:

Mpol = ΩpolMSAT 〈sinφ〉, (2.183)

where MSAT =
4gSµBS

a3
is the saturation magnetization of the crystal, which gives

Mpol = 650 µB and Mpol = 610 µB in the variational and self-consistent method, re-
spectively. When the applied magnetic field intensity reaches BSAT , the lattice spins
attain complete ferromagnetic alignment, and the polaron potential becomes a constant,
Vpol(r) = −JxfS, as Eq. 2.179 shows. In this limit, the variational Bohr function becomes
an exact solution of the polaron Hamiltonian. Indeed, the variational and self-consistent
calculations converge to a single result as B → BSAT , as Fig. 2.31(a) shows. However,
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the self consistent result, which is an exact solution of the polaron Schrodinger equation,
produces a polaron radius that is almost independent of the magnetic field and varies by
at most ∼ 5 %, whereas the variational result for Rpol varies linearly with B, and can be
increased by as much as 20 % by the application of a magnetic field.

Figure 2.31: (a) Magnetic-field dependence of the polaron binding energy (solid lines) and
of the polaron radius (dashed lines) obtained by the self-consistent (lighter curves) and
the variational methods (darker curves). (b) Calculated magnetic polaron binding energy
(left scale) and magnetic moment (right scale) as a function of temperature.

Based on the above theory, valid for T = 0 K, predictions can be made for polaron
effects in the high-temperature limit, T � TN , when the EuTe system approaches para-
magnetic behavior. The magnetic moment of a polaron can also be estimated in the
high-temperature limit, which can be observed in figure 2.31(b). It is deduced that, in
EuTe, at 0 K, a polaron binding energy is 27 meV. However, this binding energy does
not carry the usual meaning of thermal stability, because it decreases drastically when
the sample is warmed up. For instance, at T = 100 K, the binding energy is already
reduced to only 6 meV. The thermal destruction of a polaron is brought about by thermal
fluctuations of the spin lattice that suppress the electron’s self-energy. Photoluminescence
excitation spectra of EuTe demonstrate that the photo-generation of polarons becomes
increasingly inefficient when the energy of the pumping photon is increased above the
band gap.

This theory is in good agreement with measurements of the zero phonon line as a
function of magnetic field and temperature, and it could be applied to other polaronic
systems.

Due to the high value of the binding energy, the polarons must exist at higher tempera-
tures (kBT (300K) ≈ 25 meV). This motivates the search for experimental demonstration
of these results.
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2.3.5 Detection of photo-induced magnetic polarons by Faraday

rotation technique

In this section it is demonstrated an experimental tool to measure photo-excited magnetic
polarons in the europium chalcogenide Eute, which is achieved using a two-color pump-
probe photo-induced Faraday rotation technique. This method can be used at any
temperature and field, unlike photoluminescence studies reported before.

The energy of the pump photons is tuned at the EuTe band gap at 2.2 eV, whereas the
probe photon energy was a value below the EuTe band gap (1.86 eV). A magnetic field is
applied normal to the surface of the sample (Faraday geometry), which is parallel to the
[111] crystalline direction of the sample [see Fig. 2.32(a)]. For optical excitation it be used
a variety of monochromatic sources: A xenon lamp passing through a monochromator,
a frequency-doubled Nd:YAG laser, or the frequency-doubled mode-locked Ti-sapphire
tunable laser emitting pulses with the typical duration of 1.5 ps at a frequency of 76
MHz. The probe light source can be a semiconductor laser or the fundamental pulses of
a mode-locked tunable Ti-sapphire laser. The excitation light is modulated at 2.33 kHz
using a chopper or at 50 and 100 kHz using a photo-elastic modulator. The photoinduced
Faraday rotation signal obtained result independent from the polarization of the optical
excitation. For measuring the Faraday rotation angle of the linearly polarized probe beam,
a homodyne technique based on phase-sensitive balanced detection can be used.

As seen in Fig. 2.33(b), the PFR shows a step-like increase when the energy of
the pump photons resonates with the EuTe band gap, demonstrating that the PFR is
provoked by photo-generated free conduction band carriers.

Figure 2.32: (a) Geometry of the pump-probe Faraday rotation experiment. The magnetic
polarons in a longitudinal magnetic field are excited and probed by light. (b) PFR as a
function of the pump energy at T = 5 K and B = 0.2 T [46].

By studying the shape of the measured PFR signal as a function of the magnetic
field, and using the linear relation between the Faraday rotation and the magnetization,
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a curve of the photo-induced magnetization is obtained. This curve has the remarkable
characteristics:

1. Resonant at the pump energy of the EuTe band-gap.
2. Is zero at zero applied magnetic field.
3. PFR saturates rapidly as expected for magnetic polarons with huge magnetic mo-

ment.
4. PFR saturates at the expected theoretical value.
Then, the polarons can be considered as a paramagnetic system and the PFR curve

can be described by a Langevin function and it is therefore sensitive to the temperature
of the sample, whose shape determines the magnitude of the magnetic moment of an
individual polaron, independently of the calibration of the measuring setup. Thus, the
PFR signal is a direct measure of the photo-induced magnetization component along the
probe wave vector [66]. Figure 2.32(b) shows the typical PFR signal obtained at T = 5 K,
as a function of the magnetic field. Remarkably, the magnetic moment estimated using
the Langevin function does not require any knowledge of the properties of an individ-
ual polaron, such as its lifetime, generation efficiency and circular birrefringence, which
is needed if the polaron magnetic moment is estimated from the absolute value of the
Faraday rotation angle.

Figure 2.33: (a) Typical photo-induced Faraday rotation (PFR) signal as a function of
the applied magnetic field at T = 5 K. (b) PFR as a function of the pump modulation
frequency at T = 5 K and B =0.2 T [46].

Notice that the photo-generated hole is strongly localized in a Eu site, therefore it
should not generate an effective exchange field, in contrast to the photo-excited electron.
If we assume that the magnetic moment of a polaron is free to point in any direction
except for the Zeeman interaction, the photo-induced magnetization will be described by
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the Langevin formula (see, for instance, Ref. [66])

L(x) = coth(x)− 1

x
with x =

µpolB

kBT
, (2.184)

where µpol is the magnetic moment of an individual polaron. The S-like shape of the
Langevin function dependence on field is determined by the one and only parameter, the
magnetic moment of the individual particles forming a paramagnet. Therefore, it defines
uniquely the magnitude of the polaron magnetic moment. Figure 2.33(a) shows that
Eq. 2.184 provides an excellent fit of the experimental data, where the polaron magnetic
moment best fit value is µpol = 544 µB.

The polaron lifetime was investigated by examining the dependence of the intensity
of the PFR signal on the modulation frequency of the pump light, which for a single
exponential recombination kinetics is given by

PFR(f) =
PFR(0)√

1 + 4π2f 2τ 2
pol

. (2.185)

Figure 2.33 (b) shows that Eq. 2.185 fits the experimental data very well and yields
the polaron lifetime τpol = 15 µs. This result is in perfect agreement with the lifetime
estimated using the absolute value of the PFR angle [see Fig. 2.33(b)] and the low-field
Verdet constant for EuTe [67].

The paramagnetic behavior plus the large value of the magnetic moment of a polaron
(540 µB at 5 K) suggests that the photo-excited magnetic polaron ensemble can be classi-
fied as superparamagnetic (non interacting and with large magnetic moment particles), if
the concept defined by Bean [68] is used. To test this further, the measured PFR was plot-

ted as a function of the dimensionless variable x =
µpolB

kBT.
, in which case all curves collapse

into a single Langevin function as depicted in Fig. 2.33(a), confirming the legitimacy of
the superparamagnetic polaron model.
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Chapter 3

Materials and methods

The appropriate understanding of the operating principle of the equipment used during
scientific experiments is fundamental for correct measurements and rigorous analysis of
the data, allowing the experimentalist to obtain right conclusions of the physical phe-
nomena of interest and avoiding erroneous results. Hence, in this chapter, we introduce
the experimental environment for magneto-optical and cryogenic experiments and also
the techniques utilized for the study of the ultrafast photo-induced magnetization mea-
surements in this thesis. The techniques are the time-resolved Faraday rotation, the
time-resolved differential transmission, photoluminescence, photo-induced Faraday rota-
tion, bulk Faraday rotation, and superconducting quantum interference devices (SQUID)
measurements. These methods rely on the optical determination of the magnetization via
photo-induced excitation.

3.1 Environment in cryogenics experiments

The most relevant issues are: the cooling schemes, the vacuum technology, the cryostats
and the superconducting magnets, which will be described in the following lines.

3.1.1 Cooling elements

A cryogenic experiment is dominated commonly by the need of getting a sample cold
and keeping it cold, at temperatures below the boiling point of nitrogen N2 (77.4 K)
and around the boiling point of helium 4He (4.2 K). The best way to achieve that, is by
using liquefied gases, as liquid nitrogen (LN2) or liquid helium (LHe), which first provides
cooling by interchanging heat with the sample and its surroundings, which absorbs the
liquid latent heat maintaining the temperature at the boiling point, and then, warming
up the liquid from the boiling point temperature evaporating the liquid to vapor.

For example, if we need to cool a system from room temperature down to 4 K, then,
commonly first it is cooled to 77 K using liquid nitrogen and then liquid helium is used,
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and not cooled using just liquid helium, since nitrogen is about a thousand times cheaper
than helium per Joule of latent heat, and because the heat capacity of the components
in a cryostat system drops sharply with temperature, so by the time it has reached 77 K,
most of the heat has already been removed from the cryostat and too much less helium
is needed.

Liquefied gases are normally stored and transported in a double-walled with vacuum
isolated flask called dewar, in which, both walls join at their necks and the volume between
the two walls is on a vacuum to minimize heat transfer by conduction or convection from
the environment into the liquefied gas.

The properties of common liquefied gases are summarized in the next table and are
compared with water.

Liquefied gas boiling temperature Freezing temperature Latent heat

Water 373 K (+100.0◦ C) 273 K (0◦ C) 2265 kJ/kg
Nitrogen 77.4 K (-195.8◦ C) 63.2 K (-269◦ C) 200 kJ/kg
Helium 4.2 K (-268.9◦ C) commonly not freezes at 1 atm. 21 kJ/kg

3.1.2 Vacuum pumps

Vacuum equipment is necessary for cryogenic experiments for many reasons. A vacuum
barrier reduces conduction as heat loss mechanism between a cold system and its envi-
ronment which is at higher temperature. Second, because vacuum pumps are needed to
evacuate recipients with liquefied gases in order to reduce the vapor pressure, because an
atmosphere with significant proportions of gas affects cooling power.

The most common vacuum pumps used in cryogenic experiments are the mechanical
vane pumps which are oil-based vacuum pumps, that can be used to obtain, depending
on the system, a pre-vacuum or even medium vacuum, achieving pressures of 10−2 or 10−3

mbar. The pumping mechanism is purely mechanical, consisting of a series of rotor and
vanes in contact with oil in a chamber that force the gas we want to evacuate, for exam-
ple, air, entering to the pump from the inlet to get trapped in the oil and be transported
through the chamber with the help of vanes to the outlet, where the gas exits the system
as the pump turns as is shown in figure 3.1. The oil acts as a lubricant and also allows
the pumping of some corrosive gases, as it protects the metal to some degree.

In cryogenic experiments however, it is commonly necessary to reach pressures lower
than those achievable by the mechanical rotary pump. Then, rotary pumps are often used
as roughing pumps before a more sophisticated vacuum technology, as turbo-molecular
pumps. Turbo-molecular pumps are capable of reaching pressures down to 10−8 mbar and
must be backed with a mechanical rotary pump. In this pump, gas molecules can be given
momentum in the desired direction by repeated collision with a moving solid surface, this
is a rapidly spinning turbine rotor which "hits" gas molecules from the inlet of the pump

75



3.1. ENVIRONMENT IN CRYOGENICS EXPERIMENTS

towards the exhaust in order to create or maintain a vacuum.

Figure 3.1: There are four stages of operation in a typical rotary vane pump. (a) Induction:
the rotation of the rotor induces the gas into the pumping chamber. The volume occupied
by the gas increases due to the crescent space created by the rotor. The gas pressure
decreases in proportion to the increase in its volume (Boyle’s law). This draws the gas
into the pump and generates the required vacuum. (b) Isolation: the uppermost vane
passes the inlet port, sealing it off from the gas being pumped. (c) Compression: further
rotation compresses and heats the gas ahead of the lowermost vane, reducing its volume
due to the decreasing space between the rotor and stator. (d) Exhaust: as the lowermost
vane continues its rotation, the pressure in front of it increases sufficiently to force the
exhaust valve open, discharging the gas at a pressure slightly above atmospheric.

3.1.3 Cryostat

Cryostat is the container where the sample at temperature experiment is in. The simplest
cryostat configuration is the bath cryostat, which contains tens of liters of liquefied gas,
commonly liquid helium and liquid nitrogen used to keep a sample at low temperature.
Bath cryostats require substantial shielding to achieve the necessary thermal insulation for
economical experiments. Shielding generally consists of vacuum barriers to insulated the
internal cryostat temperature from room temperature, the vacuum barriers are obtained
with pumps. The cryostat includes pressure control mechanisms and high-temperature
control system to keep the system under the desired low temperature. Depending upon
needs and availability, cryostat using liquid helium can be closed cycle recipients with
complicated internal structures to permit a continuous flow to fill and recovery the evap-
orated cooling elements or can be filled with the liquefied gases using external dewars.
The sample under study is normally located at the bottom and center of this cryostat
in a variable temperature insert system (VTI) where the temperature is controlled at
detail by balancing the effect of heating and cooling to provide a stable temperature in an
area of interest by flowing liquid helium from the reservoir to the sample space through
a capillary tube using a needle valve and heating the sample using an integrated heater
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mounted close the sample as is shown in figure 3.2. The temperature can be decreased
even below the liquid helium temperature by pumping the vapors above the liquid to
reduce the pressure to its lowest possible level. In this way, it is achievable to reduce the
temperatures down to 2.2 K (Lambda point). Cryostats commonly include two super-
conducting coils in the bottom of the cryostat used to apply magnetic fields in parallel
or perpendicular direction to the surface of the sample if it is required and commonly
includes also four glass windows, two parallel and two perpendicular to the axis of the
coil, that allow to an external light source, like a laser, an access to the sample and make
possible measurements with the reflected, transmitted or with the luminescence of the
sample.

For our experiments, it was used a liquid helium (LHe) cooled Oxford cryostat, which
operates in temperatures between 1.5 K and 300 K. The temperature was controlled with
a LakeShore 340 controller, using Cernox temperature sensors positioned in the VTI inside
the cryostat and at the sample holder which was specially designed to each measurement.
In the data acquisition setup, a computer using a Delphi program was used to control
devices as VTI system used to control the sample temperature, the mechanical delay line
used to establish the time depending experiments, the power supply to set the magnetic
fields (current-to-field system), the detection and amplification of the sample signals, etc.

Figure 3.2: Basic internal structure of a bath cryostat used in our experiments.

77



3.1. ENVIRONMENT IN CRYOGENICS EXPERIMENTS

3.1.4 Superconducting Magnets

Probably the highest impact application for superconductors is be used as a wire for super-
conducting magnets. Unlike resistive magnets, superconducting magnets do not require
the application of an external voltage (current flow) to maintain the magnetic field. At
the expense of refrigeration, this aspect is exploited in superconducting magnets to limit
helium evaporation rate during operation by the use of the called persistent magnet
mode. The persistent mode occurs when it is still super-current in the coils, but the
external power supply (used to supply current to the magnet) has been turned off. To
achieve the persistent mode, a superconducting switch is wired in parallel to the main coil
windings, and a small heater is placed near this switch as is shown in figure 3.3. When
ramping the magnet, heat is applied, causing the switch to go to resistive (no supercon-
ductor state) and therefore acting effectively as a broken wire in the circuit, dropping all
applied voltage over the magnet coils. To establish the persistent mode, heat is removed
from the superconducting switch (switch pass to superconducting state), thereby isolating
the coils, so the external power supply can be removed, leaving a persistent supercurrent
in the windings. It is important to remember that if the field needs to be changed or quit
after entering to the persistent mode, then, it must be slowly ramped, it is, the power
supply must be ramped to the correct voltage corresponding to the current in the magnet,
and the superconducting switch must then be activated before any changes in the voltage
across the magnet circuit can be made (to avoid going abruptly from the superconducting
to the resistive state). Typical decay rates in persistent mode are some µT/min. Due
to their small resistances and the huge amount of energy held within the circuit, of the
order of a megajoule, superconducting coils are able to produce huge back EMF’s when
the current is ramped up or down. This inductance forces users to ramp at sufficiently
slow rates to avoid transitioning the wires to the non-superconducting state dissipating
the energy, thereby quenching the magnet with a plume of Helium from the magnet bath
vent and potentially damaging the cryostat.

Superconducting magnets are capable of magnetic fields in the neighborhood of 20 T
without the need for high voltage power supplies. The most common winding geometries
for superconducting lab magnets are a continuous solenoid or split pair. Magnetic field
homogeneity is always a concern, and standard superconducting solenoids have flat mag-
netic field profiles over a centimeter at the center field up to one part per thousand.

In our experiments, the cryostat is equipped with an LHe cooled superconducting coil
to generate a uniform magnetic field at sample holder’s position from up to 7 T, which
can have its direction reversed by command of the Oxford power supply.
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Figure 3.3: Basic operating principle for ramping a superconducting magnet from zero
field to the persistent mode. (a) Initial state (zero field) (b) Slowly charging the magnet
coupled to a heated superconducting wire. (c) In persistent mode, the magnet is short-
circuited to the superconducting wire by turned-off the heater. (d) Current source can be
turned off and experiments can be done.

3.2 Magneto-optical measurements

Among the existing magneto-optical methods to study the spin dynamic in magnetic ma-
terials, the ultrafast magneto optical techniques allow us to study fundamental processes
in magnetism, such as short lived spin coherence, spin precession, photo-induced magne-
tization, spin-orbit and exchange interactions, etc. Phenomena that normally occur from
the nanosecond to the femtosecond time scale.

To investigate and understand such ultrafast phenomena, the experiments commonly
require to implement optical setups. It is important to know the characteristics of the
devices used in these experiments, explained in this section. The main measurement
techniques involved using optical setups are the time-resolved Faraday rotation (TRFR)
and time-resolved differential transmission (TRDT) spectroscopy, which are used to mea-
sure spin and carrier relaxation dynamics, respectively. Other magneto-optical techniques
which are used in this thesis include photoluminescence, photo-induced Faraday rotation
and SQUID measurements, also explained in this section.

3.2.1 Optical setup

In this section, we are going to describe the optical components used in the optical setup
we use to perform our magneto-optical experiments.

79



3.2. MAGNETO-OPTICAL MEASUREMENTS

3.2.1.1 Laser light sources

Probably the most common laser used in scientific research is the Ti:Sapphire laser.
Its preeminence is due to its large gain bandwidth or range of frequencies determined by
Ti:Sapphire gain media (much larger than others as rare-earth-doped gain media). The
maximum amplification gain and efficiency are obtained around 800 nm with possible
tuning range between 650 nm to 1100 nm, which makes possible to generate ultrashort
pulses in the femtosecond or picosecond domain.

Ti:sapphire lasers are normally pumped with a continuous-wave (CW) laser beam
of several watts of pump power (sometimes even 20 W). For this, there is a wide range
of possible pump wavelengths, which however are located in the green spectral region
(with the absorption peak at ≈ 490 nm), where powerful laser diodes are not available.
For example, 514 nm argon ion lasers, which are powerful, but very inefficient, expensive
to operate and bulky. However, now is widely used the frequency-doubled solid-state
lasers based on neodymium-doped gain media with wavelength typically of 532 nm, with
a slightly reduced pump absorption efficiency (light that can be used for amplification)
compared with 514 nm. Direct diode pumping at shorter wavelengths, e.g. at 455 nm
with GaN-based laser diodes, is also possible, but with substantially reduced pump ab-
sorption.

Titanium-sapphire is especially suitable for pulsed lasers (mode-locked) since an ul-
trashort pulse inherently contains a wide spectrum of frequency components. This is due
to the inverse relationship between the frequency bandwidth of a pulse and its time dura-
tion because they are conjugate variables. However, titanium-sapphire can also be used
in continuous wave CW lasers with extremely narrow linewidths tunable over wide range
frequencies in the visible and near-infrared region.
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Figure 3.4: (a) Mira 900 model Ti:Sapphire ultrashort laser pumped with a continuous-
wave Verdi G pump laser. (b) Simplification of the operating principle of a CW laser, the
laser from the source bounce between the mirrors of the resonator leading to the formation
of standing waves or modes with a discrete set of frequencies, known as the longitudinal
modes of the particular cavity. Each of these modes oscillates independently, with no
fixed relationship between each other. This modes are amplified in the resonator by the
gain medium, the out-coming laser has random phases. (c) Pulsed lasers can be obtained
in the resonator by using a modulator which introduce a well-defined and fixed phase
relationship between the modes in the resonator. If the phases are locked then there is a
constructive interference between the modes at an instant and a destructive interference
at other times, the output will appear as (ultrafast) pulses.

In our experiments, the pump laser used was a Ti:Sapphire tunable and mode-lockable
Mira 900 laser pumped by a CW semiconductor laser model Verdi G both supplied by
Coherent as is shown in figure 3.4. The output wavelength for all reported experiments was
tuned in detail for each experiment. In pulsed operation (mode-locked), the pulses in the
near-infrared wavelength range were produced with a frequency of 75.6 MHz corresponding
to a pulse period of 13.2 ns and with a pulse duration of near 2 ps (spectral width of near
meV), significantly shorter than all characteristic relaxation times of the studied systems.

3.2.1.2 Beam-splitters

Non polarizing beam-splitter (BS) cubes: are optical devices used to divide an
incident laser beam into two different beams while maintaining the incident light polar-
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ization. The beam separation occurs at an interface within the cube, often made of two
triangular glass prisms which are glued together with some transparent resin or cement.
The thickness of that layer is used to adjust the power splitting ratio for a given wave-
length, typically, half of the light incident is reflected and the other half is transmitted as
is shown in figure 3.5 (a). Additionally, beam-splitters can be used in reverse to combine
two different beams into a single one.

Figure 3.5: (a) Beam-splitter separates an incident beam into reflected and transmitted
beams, the power ration between these beams for a wavelength range is normally 1:1. (b)
Polarizing beam-splitters separates the reflected and transmitted beams into its S and P
components.

Polarizing beam-splitters (PBS) cubes: in this device, instead of glass, is used
a birefringent crystalline media or a resin with a dielectric coating, designed as either
spectrally broadband or narrow-band to separate an incident unpolarized or polarized
monochromatic beam into its components perpendicular and parallel to the plane of
incidence, the S and P polarization components, respectively, as is shown in figure 3.5(b).

In our experiments was used a beam-splitter cube to divide the laser from the Coherent
Mira 900 into the pump and probe beams. Also, we use a polarizing beam-splitter to
obtain the reference and transmitted beams in the time-resolved differential transmission
experiments.
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3.2.1.3 Collimating and focusing lens

Collimating is the process of accurately aligning a light beam in a parallel fashion. For
optical measurement, this ensures that the light has minimal spread as it propagates be-
cause of its natural tendency to diverge as it travels through an optical setup. For this, is
common to use a set of optical lens (glass or polymer commonly with one curved surface
to modify the wavefront curvature of the incident light to focus, defocus or collimate this
beam) at appropriate focal distances. By the use of converging lens with manual steering
location is also possible to focus a light beam with high precision onto specific spot posi-
tions.

In our experiments, we use collimating lens in different positions on the optical table.
For the pump beam, it is very important because it goes through the delay line and for
different positions of the delay line it travels different distances until the sample surface.
This is, the delay scan causes a drift of the diameter of the Gaussian beam; as a result,
the photon density changes. To minimize this unwanted effect, the beam is collimated in
such a way that the neck of the Gaussian beam is kept in the middle of the delay line.

Also, after the pump and probe pulses are delayed with respect to each other, modu-
lated and intensity tuned, they had to be focused on the sample position. With manual
steering mirrors, lens and pin-holes, the pump and probe were aligned near parallel to
each other (angle between them was ≈ 3◦) and directed normal to the entrance window
of the cryostat. Both the pump and probe beams were then focused with precision on the
same point (concentric on the sample surface position inside the cryostat) by adjusting
mechanically the lens position. For time-resolved Faraday rotation analysis this spatial
overlap is crucial. For this purpose, the pump spot size is adjusted so that it exceeds the
probe spot size at the location of pump-probe overlap in the sample plane as is shown in
figure 3.6. Such configuration guarantees that the signal will not change by small varia-
tions of the probe position or the probe spot size due to beam divergence while scanning
the delay. Preliminary alignment of the spot overlapping is done by directing and focusing
the beam on the sample and using an infrared video camera, which shows the position of
spots on the sample.
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Figure 3.6: (a) Lens are used in our setup for collimating and focusing the light beams.
For example, to focus the beams at the sample position inside the cryostat. (b) The pump
and probe beams are concentric (inset) where the pump beam diameter is bigger than the
probe diameter.

3.2.1.4 Delay line

In order to obtain temporal resolution in pump-probe experiments, the pump and probe
are time delayed one relative to the other by making one of these beams travel through a
computer-controlled mechanical delay line, based on a mobile retro-reflector (piece that
reflects beams precisely back towards their source) mounted on a rail that induces the
time delay between pump and probe beams, by changing the optical path length of the
beam in it while the other has a fixed path.

Commonly, the pump beam is directed to the delay line because it is preferable to have
a very stable beam path for the probe beam which is the beam later analyzed using the
detectors. The probe beam is directed via a fixed and relatively simple path, to roughly
equalize the optical path lengths of the pump beam, by successive reflections on a set of
mirrors. The length of this path determines the range of the pump-probe delay time. To
access to longer delay times, the beam could be aligned such that it passes twice the delay
line.
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In our experiments, the mechanical delay line used had 0.5 m, allowing time delays up
to 3.33 ns for a single pass. The optical path was adjusted so that it allowed time delays
between -0.75 ns and 3.5 ns with a precision below ∼ 50 fs.

Figure 3.7: (a) The delay line makes possible time- resolved measurements by changing the
path of an incident beam at each step of the moving retro-reflector. (b) Unidimentional
"Walk the beam" process to align the beam in the delay line. The objective is to pass
the beam through pin-holes 1 and 2 by changing the position of mirrors 1 and 2. This
iterative process start by making d2i = 0 using mirror 2 (beam pass through pinhole 1)
and then making d1i = 0 by using mirror 1 (beam pass through pinhole 2) at this point
d2i is not zero again but closer than before, the process start again until convergence.

3.2.1.5 Optical modulation

An optical modulator is a device which can be used for manipulating a property of a laser
beam. Depending on which property of light is controlled, modulators are called intensity
modulators, phase modulators, polarization modulators, frequency modulators, etc.

A photo-elastic modulator (PEM) is an optical device used to modulate the polar-
ization of incident light. It is based on the photo-elastic effect, in which a transducer,
mechanically, due stretching and compressing stress, change the birefringence (refractive
indexes) of the transparent plate of the PEM, exhibiting a birefringence proportional to
the strain which changes periodically at the frequency of the modulator fM . For example,
a linearly polarized monochromatic light impinging at 45 degrees to the PEM optical axis
can be thought of as the sum of two components, one parallel and one perpendicular
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to the optical axis of the PEM. The birefringence introduced in the plate retard one of
these components more than the other, that is the PEM acts as a tunable wave plate.
Typically it is adjusted to be either a quarter wave or half wave plate at the peak of the
oscillation. For the quarter wave plate case, the amplitude of oscillation is adjusted so
that at the given wavelength one component is alternately retarded and advanced 90 de-
grees relative to the other, so that the exiting light is alternately right-hand and left-hand
circularly polarized at the peaks. The periodicity of these polarizations are normally from
a modulator oscillator at frequency fM and is used to drive a phase-sensitive detection,
the demodulation.

In our experiments, to create non-equilibrium spin polarization in time resolved Fara-
day rotation in a sample with charged quantum dots, circularly polarized light is needed.
For that reason, the pump pulse after being delayed is passed through a photo-elastic
modulator. The transmitted beam oscillates from left to right circular polarization at 50
kHz. For photo-induced Faraday rotation measurements in the EuTe sample, modulation
was obtained by using a mechanical chopper at frequency modulation of 2.33 khz.

3.2.1.6 Intensity tuning line

The pump and the probe beams intensities were controlled by using an intensity controller
line composed of an optical pin-hole (small circular hole through which light can be
transmitted), and a λ/2 wave-plate followed by a linear polarized aligned at 45 degrees of
the PEM optical axis to regulate the light intensity through this array. The power ratio
of the pump and probe was about 20 mW (pump) to 10 mW (probe) for time-resolved
Faraday rotation measurements.
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Figure 3.8: (a) Intensity tuning line to control the intensity of the pump and probe beams.
(b) Pulsed beam can be represented as a periodical signal (commonly at 75.6 MHz),
the polarization of this signal can be modulated with the frequency of the modulator
(commonly at 50 kHz) to produce a periodical circularly polarized light signal.

3.2.1.7 Homodyne detection: frequency demodulation

In general, optical radiation can be measured by direct detection of the intensity falling
on a photo-detector. However, the performance on direct detection can be limited by
extreme low signals or due to the presence of unavoidable noise currents in the detector,
which reduce the signal to noise ratio. Hence, it may be advantageous in certain circum-
stances to use improved detection techniques as the heterodyne detection method or the
homodyne detection method.
Homodyne detection: Is a detection method for extracting information encoded in an
oscillating signal of interest called "data signal" modulated in frequency and/or phase, by
comparing this signal with a reference strong oscillation that would not modify if the data
signal did not carry information. Homodyne signifies that the reference frequency (i.e.
modulator or chopper frequency) equals the data signal frequency (i.e. virtually derived
from the same source). The fundamental concept behind the homodyne detection is to
improve the signal to noise ratio, for this, a lock-in amplifier synchronized with the
reference frequency is used to efficiently reject the background noise due to pump scatter,
laboratory lights, etc., by isolating and amplifying the data signal, commonly, the probe
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signal, which carries all the information in the experiments.
Homodyne balanced detection: A remaining problem of homodyne detection is that
excess noise of the reference oscillator directly affects the signal. This is avoided with a
balanced setup where a beam-splitter separate the data signal into two signal directed
to the photo-detector. With an electronic circuit, it is possible to obtain the difference
between the two photo-currents. That difference is to first order not influenced by noise
of the reference oscillator.

In our experiments, we used a balanced homodyne detection system to suppress back-
ground signals or low-frequency noise and to monitor the Faraday rotation. To improve
the sensitivity of the experiment, the pump beam was modulated with the frequency mod-
ulator fM ≈ 100 kHz, that modulates the periodic pump excitation. After passing through
the sample, the probe beam was splitted for in orthogonal polarization components to ar-
riving at an auto-balanced Nirvana photo-detector supplied by Newport interfaced with
the lock-in amplifier as is shown in figure 3.9. For more details see the Appendix section.

Figure 3.9: (a) After passing through the sample, the probe beam passed through a λ/2
plate in order to regulate the intensity of its two orthogonal polarization components
arriving to a balanced detector. (b) Balanced detection is based on the subtraction of the
noise common to both channels of the photo-detector.
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3.2.2 Time-resolved Faraday rotation

It has been proven to be the most reliable tool to detect the optically induced spin dy-
namics in a semiconductor nanostructure and monitor its temporal decay. The operating
principle of this magneto-optical technique is the following: the sample is exposed to a
homogeneous magnetic field, typically oriented perpendicular to the sample optical axis
(Voigt geometry) chosen to coincide with the growth direction of the sample, or parallel to
the sample optical axis (Faraday geometry). Then, an intense ultrafast laser pulse which
can be manipulated in energy, intensity, polarization and duration called pump pulse,
is used to excite the sample electrons and temporally re-orient the sample electron spins,
therefore, creating a macroscopic spin polarization. This polarization is probed by a sub-
sequent linearly polarized weaker in energy laser pulse called probe pulse, which rotate
their polarization plane in ∆θF (Faraday rotation effect) after propagation through
the sample which is spin-polarized due the pump, this rotation is proportional to the
magnetization ∆M in the optical axis direction. The probe pulse is time delayed relative
to the pump pulse by using a delay line. Therefore, is possible to measure the sample
Faraday rotation which is a measure of the spin polarization along the optical axis as a
function on time, this is done typically over times shorter than the repetition period of
the pump pulse, commonly 13.2 ns.

More details of the measurement technique are explained in the Appendix section A.2.

Figure 3.10: Setup for the time-resolved Faraday rotation experiments. The obtained
signal ∆θF (t) (Faraday rotation) is proportional to the magnetization ∆M(t) in the optical
axis direction.

3.2.3 Time-resolved differential transmission

The experiment is a pump-probe technique used to inquire the dynamics of the carriers
by probing the temporal evolution of the relaxation of photo-excited carriers in which,
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the pump light produces a small variation ∆T in the amount of probe light that crosses
the sample, because part of the light is absorbed by the sample and used to excited the
carriers. Then, the following time-delayed probe pulses (which arrives much before the
recombination of the photo-excited electron) have more probability to cross the sample
because part of the carriers is already excited by the pump. Thus, the temporal evolu-
tion of ∆T has a continuously decreasing behavior, commonly an exponential decreasing
behaviour.

In our experiments, the laser used was a Ti:Sapphire tunable and mode-lockable Mira
900 laser supplied by Coherent with a spectral width of 1 meV, corresponding to a pulse
duration of about 2 ps. The output wavelength for all reported experiments was λ = 880

nm. In pulsed operation, pulses of a few picoseconds in duration were produced with
a frequency of 76 MHz, corresponding to a pulse period of 13.2 ns. These pump and
probe pulses are typically taken from the same laser source and are used to measure the

differential transmission
∆T (t)

T (0)
, which is defined as,

∆T

T
=
T (t)− T (0)

T (0)
, with T (t) =

I(t)

I(0)
(3.1)

where T (0) is the probe transmittance at t=0 when the pump light hits the sample
and T(t) is the probe transmittance at time t, where t is the delay time after excitation.

More details of the measurement technique are explained in the Appendix section A.3.

Figure 3.11: Setup for the time resolved differential transmission experiments.

3.2.4 Photoluminescence

Photoluminescence (PL) is a standard characterization technique that allows us to obtain
the spectrum of the emission energies of a sample. A laser with energy higher than
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the band-gap of the semiconductor sample is used to photo-excite its electrons. The
excited electrons with energy above the conduction band of the material eventually fall to
the lowest available non-radiative energy level after losing some energy through releasing
phonons and then spontaneously recombine through various recombination paths available
to the valance band emitting luminescence in the form of photons of different energies.
A spectrum of the intensity of the luminescence as a function the emitted energy is
obtained, the peaks in the spectrum represent a direct measure of the energy levels in the
semiconductor.

For our measurements was used a Ti:Sapphire Mira 900 laser supplied by Coherent
in continuous wave with wavelength of 800 nm to excite the sample inside an Oxford
Cryostat at T= 10 K. The sample luminescence was directed to an optical fiber and then
analyzed with a Triax 550 spectrometer. Inside the spectrometer, the incoming light was
separated into their frequency components by a diffraction grating and directed to a liquid
nitrogen cooled charged coupled device (CCD), where the intensity of each frequency is
measured by the acquisition system.

Figure 3.12: Setup for photoluminescence experiments. The excitation light was a cw
light of λ = 800 nm at T= 10 K.

3.2.5 Photo-induced Faraday rotation

Is a pump-probe technique used to detect the photo-induced rotation ∆θF of the polar-
ization plane of a linearly polarized probe pulse due to the Faraday effect when it crosses
a sample which is photo-magnetized ∆M due the pump pulse. This Faraday rotation is
analyzed as a function of an applied magnetic field and temperature.

In our experiments, the photo-induced Faraday rotation signals were measured by
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using a two-color pump-probe technique. The pump light source was a frequency-doubled
Nd:YAG laser (2.33 eV) supplied by Cobolt, focused on the sample with a Gaussian profile
of 150 µm full width at half maximum. The Faraday rotation probe was a semiconduc-
tor laser of photon energy 1.86 eV, this photon energy is below the EuTe gap for any
field and temperature used in our measurements, so the probe does not photo-excite any
electron-hole pairs, and hence it does not induce any magnetic polarons. A magnetic field
was applied normal to the surface of the sample, which is parallel to the [111] crystalline
direction of the sample. The experiments were performed using a variable-temperature
from 5 K until 110 K optical cryostat containing a superconductive coil to generate a
magnetic field applied in the Faraday geometry. The pump was modulated at 2.33 kHz
using a mechanical chopper. The Faraday rotation angle of the linearly polarized probe
beam was measured by using a polarization bridge containing a New Focus Nirvana bal-
anced detector coupled to a lock-in referenced to the chopper frequency.

More details of the measurement technique are explained in the Appendix section A.2.

Figure 3.13: Setup for the photo-induced Faraday rotation experiments.

3.2.6 Bulk Faraday rotation

Sometimes called bulk Faraday rotation, is used to measure the absolute value θF of the
Faraday rotation of a linearly polarized probe light which crosses a magnetized M sample
due to an applied magnetic field at some temperature.

In our experiments, the bulk Faraday rotation was measured by using uniquely a probe
light in the setup. The probe light source was a semiconductor laser of photon energy
1.86 eV. (same energy as in the photo-induced Faraday rotation case). A magnetic field
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was applied normal to the surface of the sample, which is parallel to the [111] crystalline
direction. The experiments were performed using a variable-temperature optical cryostat
containing a superconductive coil to generate a magnetic field applied in the Faraday
geometry. The Faraday rotation angle was measured by using a polarization bridge con-
taining a New Focus Nirvana balanced detector. In this case without a pump-probe signal
difference, the cryostat windows contribute to the Faraday rotation as an additional sig-
nal. The way to isolate just the contribution associated to the sample is by measuring the
bulk FR value of the window cryostat without the sample and then subtract this value
from the total bulk FR signal related to the sample and cryostat windows.

More details of the measurement technique are explained in the Appendix section A.1.

Figure 3.14: Setup for the bulk Faraday rotation experiments.

3.2.7 Superconducting Quantum Interference Device magnetom-

etry

Sometimes called SQUID measurements, is one of the most effective and sensitive ways
of measuring magnetic properties, commonly utilized in magnetometers due to their ex-
treme sensitivity to magnetic fields weaker than 10−14 T. SQUID devices are based upon
Josephson junctions, which consist of two superconducting materials (generally niobium
alloys) connected by a weak link of non superconductor material, with the property that
below the superconducting transition temperature, the superconductors have a complex
wavefunction Aeiθ, where the amplitude and phase depends on the material and temper-
ature, etc. When it interfaces with a non-superconducting material, the superconducting
wavefunction can extend a finite distance into the non-superconducting material, thus,
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the two superconductor with wavefunctions Aiθ11 and Aiθ22 , have a a phase difference
(θ1 − θ2 = ∆θ) across the junction, which corresponds to a zero voltage super-current
due gradient phase, Is = Ic sin(∆θ), that allows quantum tunneling between the two su-
perconductors without bulk transport. The SQUID measurements takes this principle by
connecting these two superconductors with two Josephson junctions and a hole in the
middle. Now, the current that flows through the device is a function both of the phase
difference between the two superconductors and the magnetic flux (φ) through the hole.
When the sample is moved up and down it produces an alternating magnetic flux in the
hole which leads to an alternating output voltage. By locking the frequency of the readout
to the frequency of the movement, the magnetometer system can achieve the extremely
high sensitivity for ultra small magnetic signals produced by a sample.

A clear example of the precision of SQUIDs is their ability to detect, and actually dis-

cover, that magnetic flux is quantized in units of φ0 =
h

2e
= 2.0678× 10−15 [T.m2] where

h is Planck constant, and e is the electron charge. In particular, it is the only method
which allows to directly determine the magnetic moment of a sample in absolute units.

Figure 3.15: Basic operating principle of SQUID system to detect magnetic fields.
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3.3 Samples

3.3.1 Sample preparation: Molecular beam epitaxy method

Is the most common method used to fabricate high quality samples because allows a high
degree of control of the composition of the sample almost at the atomic scale. It takes
place in a chamber at high or ultra-high vacuum (10−8 or 10−12) mbar and high temper-
ature. A monocrystalline substrate acts as a seed and then atoms of the same or another
element (the difference in lattice parameters is refereed as lattice mismatch) is deposited
at low rate to allow an ordered film growth, continuing the substrate crystallographic
direction (epitaxyal growth). In particular, it enabled hetero-epitaxial growth: the possi-
bility to grow materials of different composition monolayer by monolayer.

There are three standard growth mechanism: layer by layer (Frank-van der Merwe
method), clustering (Volmer Weber) and the intermediate method Stranski-Krastanov.

Stranski-Krastanov method

The process start with a semiconductor material being deposited on another different
semiconductor, the upper material initially assumes exactly the crystal arrangement of
the material below because the upper material has a higher preferred atomic spacing,
however, due a mismatch strain between the two different materials a compressive strain
accumulates in the crystal. After only a few atomic layers (critical thickness), the strain
is relieved spontaneously through the formation of 3D dots bulging upwards in order to
reduce the mismatch strain.
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Figure 3.16: Illustration of the formation of InAs quantum dots ensembles by MBE. (a)
InAs atoms are deposited over a InGa substrate. (b) Several atomic layers of InAs are
formed until a critical thickness. (c) Spontaneous formation of QDs is produced in order
to reduce the mismatch strain. (d) Alternativelly, QDs are doped using Si atoms. (e)
Quantum dots are capped using InGa atom layers.

To avoid the deterioration of the optical properties of the QDs caused principally by
surface oxidation, the QD structures composed of lower-bandgap material are embedded
in a surrounding matrix of higher-bandgap semiconductor fabricated normally of the
substrate material. Strong changes can occur during the subsequent capping, allowing
the QD emission properties to be finely tuned, if for instance the QD emission needs to
be blue-shifted or tuned to the sensitive range of silicon charge-coupled device (CCD)
cameras, a capping and annealing step may be used.

Normally a flat film of the QD semiconductor atoms called wetting layer (WL) is still
present after the growth of the quantum dots, this produce a quasi-continuum energy
level close the discrete energy states of the QDs due the two-dimentional confinement of
the carriers in this film.
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3.4 Samples in this thesis

3.4.1 Quantum dot ensemble sample

The studied sample was grown by molecular beam epitaxy with Stranski-Krastanov
method on a [100]-oriented GaAs substrate and consist of an heterostructure contain-
ing (In,Ga)As/GaAs self assembled QDs. The occupation by a single electron per dot
was obtained by modulation-doping with Si-dopant density roughly equal to the dot den-
sity to obtain an average occupation of one electron per dot. The sample contained 10
layers of (In,Ga)As QDs, separated by wide GaAs barriers, and Si δ-doping sheets 15
nm above and below each QD layer. The obtained QDs are typically lens-shaped with a
diameter of tens of nanometers and several nanometers in height, densities are typically
in the range of 1010 cm−2. Given the nature of the growth process, quantum dots are ran-
domly located on the sample and are not identical, existing a dot to dot size fluctuation
and they differ in their shape and chemical composition. In order to shift the emission
range of the sample into the excitation wavelength range of the Ti:Sapphire lasers and
detection sensitivity range of the detectors, the sample was thermally annealed for 30 s
at 950◦ C using the rapid thermal annealing RTA technique, causing intermixing between
the dots and the barrier materials due to the Ga diffusion into the InAs QDs, resulting
in an increase in the QD band gap and a blue shift in the photoluminescence compared
with the as grown sample, so its photoluminescence emission occurs around 1.42 eV (λ =
876 nm).

The (In,Ga)As/GaAs sample was growth at the department of Applied Physics in the
Eindhoven University of Technology in Eindhoven, The Netherlands, by the researcher
Prof. Dr. Paul Koenraad.

3.4.2 Europium telluride sample

The EuTe sample was grown by MBE on a (111)-oriented BaF2 substrate [69]. The
thickness of the EuTe epitaxial layer was 1.3 µm, and the epitaxial layer was capped with
BaF2 to ensure total protection of the EuTe surface from oxidation. The thickness of the
protective layer was 200 nm. BaF2 is completely transparent in the wavelength range
used in this work, therefore the thickness of the protective layer is not critical for the
present study.

The epitaxial EuTe samples were grown at the Associated Laboratory of Sensors and
Materials (Laboratório Associado de Sensores e Materiais - LAS), at the National Institute
of Space Research (Instituto Nacional de Pesquisas Espaciais - INPE) in São José dos
Campos, SP, by the researchers Prof. Dr. Eduardo Abramof, Prof. Dr. Paulo Rappl
and Dr. Beatriz Díaz. A detailed description of the growing and characterization can be
found in reference [70].
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Chapter 4

Results

4.1 Light induced coherent spin precession in singly-

negatively charged quantum dots

The present section is assigned to the experimental estimation of the trion recombination
time by using the time resolved Faraday rotation method. We want to know if this method
is a viable technique compared with other existing methods.

Selection of the pump pulse energy
To estimate the trion lifetime τ through Faraday rotation measurements, we first se-

lect a suitable wavelength of the pump beam by using the photoluminescence spectra
of the QD ensemble shown in figure 4.1. For quantum dot ensembles, the emission line
width provides a measure of the dot uniformity. The focused pump beam had a typical
diameter of 150 µm, which for a sample with dot density of 1010 cm−2, results in the si-
multaneous excitation of ∼ 106 quantum dots. As a consequence, the resultant spectrum
is inhomogeneously broadened owing to unavoidable fluctuations in dot size, shape, and
composition. We can observe in this spectra a measure of the dot uniformity, the char-
acteristic inhomogeneous broadening of an QD ensemble with a broad full width at half
maximum (FWHM) of 24.3 meV. The PL spectra is peaked at 876 nm (1.42 eV), then,
in order to obtain a strong signal for TRFR measurements, we select a pump wavelength
near this maximum.
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Figure 4.1: (Right) PL spectra at T = 10 K for the n-doped (In,Ga)As quantum dot
ensemble. The black arrow indicates the selected wavelength of the pump beam for the
TRFR measurements. (Left) Representation of energy levels for single and for an ensemble
of inhomogeneous QDs.

Time resolved Faraday rotation measurements as a function of the delay time between
the pump and the probe were performed using different applied magnetic fields, from 0.1
T up to 1.5 T. By scanning the pump wavelength across the photoluminescence peak
sides, it was found that for pump wavelengths longer than 900 nm, a very low TRFR
signal was obtained, revealing a too small amount of photo-excited electrons. On the
other hand, pump wavelengths shorter than ∼ 870 nm was avoided in order to not excite
higher energy states as triplets Ts, depicted in Fig. 4.1, which are not considered in the
model employed in this work. The laser tuned to wavelength in the near resonant case
with λ = 880 nm near the maximum of the photoluminescence spectra shown in Fig. 4.2
gives the best results and was the pump wavelength selected for the TRFR.

Time resolved Faraday rotation measurements
Using a pump wavelength of 800 nm, TRFR measurements were performed under differ-
ent magnetic fields. The profile of the TRFR oscillations as a function of time correspond
to the component of the photo-induced magnetization on the optical axis in the sample.
It should be noted that for times longer than ∼ 0.5 ns, the photo-excited electron-hole
pair has already recombined, and the detected magnetization is reduced only to the con-
tributions arising from the remaining precessing resident electrons in the charged QDs.
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Figure 4.2: Fitted experimental data of the magnetization oscillations obtained from
TRFR measurements for different magnetic fields with λpump = 880 nm for times longer
than the trion recombination time.

As expected, due the linear relation between the spin frequency precession and the
magnetic field, it can be observed that the Larmor precession frequency Ω = geeB

2me
becomes

higher as we increase the magnetic field. The decrease of the amplitude of the oscillations
in time is due to the decreasing component of the magnetization in the optical axis due
to the addition of spin precession of inhomogeneous quantum dots as observed in PL with
different size and composition, leading to variations in the electron g-factor which produce
variation in the precession frequencies which on turn, leads to dephasing. As expected,
the Faraday rotation (magnetization) has the typical behavior of a damped oscillation,
which following the model in [18] can be described as,

θF (t) = Ae
− t

T∗2 cos(Ωt+ φ). (4.1)

On the frame of the present model, the phase φ of the photo-induced magnetization is
expressed by a function of the applied magnetic field having the trion recombination
time τ , as the only one parameter in a fitting of the theory and the experiment, φ =
π
2
− arctan(Ωτ), where Ω is the frequency of the oscillations which is dependent on the
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magnetic field. In a similar way, the amplitude of the oscillations A, can also be described
by a function of the magnetic field. This amplitude has the trion recombination time τ
and the saturation amplitude A0 as the parameters for the fitting with the experimental
values, A = A0Ωτ√

1+(Ωτ)2
. The experimental values of the phase and the amplitude of the

oscillations together with the plot of the theoretical expressions are depicted in Fig. 4.3.
A good agreement between them is achieved. The fitting process for t > 0.5 ns give us
the value of the trion recombination time τ = 0.15 ± 0.05 ns with an uncertainty related
to magnetic field uncertainty.

The obtained values of the Larmor frequency Ω and the coherence time T ∗2 , given by
the theoretical expressions Ω = geeB

2me
, and T ∗2 = h̄

µB∆gB
are shown in figure 4.3(c) and (d).

Figure 4.3: Fitted data for the phase (a) and (b) amplitude of the magnetization of the
electron spin ensemble on the optical axis. Figures (c) and (d) shows the Larmor frequency
and the dephasing time of the QD ensemble as a function of the magnetic field.

Time resolved differential transmission measurements
Time resolved differential transmission measurements with magnetic fields, in the same
range used in the TRFR measurements (0.1 T-1.5 T) and in the resonant case λ =
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800 nm were performed to compare the obtained value of the recombination time of
the trion obtained by TRFR. The curves are shown in Fig. 4.4 (a) A bi-exponential
decaying dynamics can be noted for different magnetic fields, which can be better seen
in a logarithm scale where a linear behaviour is observed as is shown in Fig. 4.4 (b).
Fitting these linear dependence with the magnetic field we obtain an almost constant
recombination time value 0.33 ±0.01 ns for magnetic fields up 1.2 T. This recombination
time increases from 0.34 ns to 0.38 ns for magnetic fields higher than 1.2 T, as is shown in
figure 4.4(c). From the bi-exponential decaying behaviour observed, we can substract the
short living component and we obtain the long living component with a recombination
time value of τlong = 1.8 ns for magnetic fields higher than 1 T, as can be seen in Fig.
4.4(d).

Figure 4.4: TRDT signals for magnetic fields between 0 T to 2 T in linear (a) and
logarithm scales (b), respectively. Figure (c) shows the magnetic field dependence of the
short living component of the recombination time and (d) shows the TRDT long living
component of the recombination time.

The long living states producing the long recombination times appearing for magnetic
fields higher than 1 T is probably associated with dark excitons that result enhanced at
high magnetic fields. In that way, the interval for magnetic fields considered for the fitting

102



4.1. LIGHT INDUCED COHERENT SPIN PRECESSION IN SINGLY- . . .

was shortened up to 1 T, then, the phase and amplitude in the TRFR measurements were
again fitted with better agreement with the theory as is shown in figure 4.3, where we
obtain from the fitting the trion recombination time τ = 0.17 ns. However, this value
is different for a factor of approximately two compared with the recombination time
value ∼ 0.33 ns obtained using the TRDR method. This is because, until now, we were
considering the ideal situation with signals associated to pure trion carriers, but, due to the
imperfect fabrication process of the quantum dot ensemble, an unavoidable concentration
of undoped and multiply doped QDs are present in the sample. In this situation, particles
as excitons, and bi-excitons can optically be excited by the pump light, and these states
also contributes to the time resolved differential transmission measurements. The estimate
of the trion recombination time with TRDT results inaccessible due to the superposition
of the recombination time of the trion and the other species, specially because in general,
the trion has a lifetime comparable to that of the exciton, and can even interfere in the
long-term magnetization signal if their lifetime is long enough. In the present case, the
obtained recombination time by TRDT is almost twice the recombination time obtained
by TRFR due to the presence of excitons with probably a longer recombination time.
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4.1.1 Conclusions

The use of the TRFR to obtain the trion recombination time in a singly negatively
doped quantum dot ensemble, by means of a fitting process of the experimental photo-
induced magnetization data with their theoretical expressions for the phase and amplitude
formulated in [18], which have the trion lifetime as the only one parameter when examined
as a function of the magnetic field, let us to conclude:

1. This offers a new method free of complications related to separating incident and
emitted lights in the resonant case or pollution signals related to other excited states.
It also offers an exclusive technique to estimate the trion lifetime in QDs samples
with high dot density (∼ 1010 cm−2), considering that a measurement of the trion
lifetime is normally obtained from single QDs in low density sample (∼ 108 cm−2).
The results obtained using this method yields a trion lifetime τ = 0.15± 0.05 ns.

2. However, this method has its own uncertainty, yielding different values of τ if it
is measured repeated times. Although this is a good theoretical method it is not
practical because is time consuming for good alignment in the setup.

3. TRDT measurement done under resonant conditions yields a longer recombination
time ∼ 0.33± 0.01 ns because of the unavoidable inclusion of signals related to
excitons which are present in the very beginning of this measurement, in contrast
with TRFR which extracts the information from time intervals where no longer
excitons are present.
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4.2 Photo-induced magnetization in EuTe

4.2.1 Calculation of the local magnetic field in EuTe thin films

To calculate the local magnetic field in the EuTe sample, we first have to obtain the
value of the local photo-induced magnetization, because, as we will see later, the internal
magnetic field has a linear dependence on the magnetization inside the sample.

In Ref. [72], it was established the relation between the Faraday rotation angle θF
and the magnetization M inside the material. The Faraday rotation angle of the light
that crosses an uniformly magnetized sample of thickness dsample can be converted into
its magnetization by using the relation:

θF = VMdsample, (4.2)

where V is called the Verdet constant, which we also determine from measuring the DC
Faraday rotation (bulk Faraday rotation) measurements at the probe beam wavelength,
at T= 5 K, as a function of the applied magnetic field. As was explained in Chapter 3,
during this measurement, there is no pump light, and to isolate the sample bulk Fara-
day rotation signal, the contribution coming from the cryostat windows was measured
separately by taking off the sample. Figure 4.5(a) depicts the bulk FR signals related
to the cryostat windows which shows a linear behaviour with slope m= -21.6 mrad/T,
displaying fixed value at any temperature in the range between 4 K-150 K. The total
signal related to the contribution of the window cryostat and the sample is also shown in
figure 4.5(a), and the signal related just to the sample obtained subtracting the previous
signals θF (sample) = θF (sample+windows) − θF (windows). As expected, we found that the Fara-
day rotation is independent of the intensity of the probe because the probe beam used is
well within the EuTe transparency-wavelength range. Also, as shown in Fig. 4.5(b), the
Faraday rotation depends linearly on the applied magnetic field Bapp,

θF = m(T )Bapp, (4.3)

where m(T) is the slope of the θF vs Bapp curve at temperature T. For T= 5 K, m(T = 5
K) = 8.6 mrad/T, and because of the linear dependence with the Faraday rotation, the
magnetization is also linear with respect to Bapp, so in the saturation,

M =
MSAT

BSAT
Bapp, (4.4)

where
MSAT

BSAT
is the slope of the M vs Bapp curve at T= 5 K as described in [28], with

MSAT = nEuµEu = 9.03× 105 A/m as the saturation magnetization, where nEu = 4/a3 is
the concentration of Eu atoms in the FCC lattice with parameter a = 6.6 Å, µEu = gµBS
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is the magnetic moment of an Eu2+ atom, g = 2 is the gyromagnetic factor, µB is the
Bohr magneton, and BSAT = 8.3 T is the saturation field in the Faraday geometry [28].
Hence, the Verdet constant, for the probe wavelength λ =665 nm, can be found from the
saturation at T= 5 K as

θSATF = VMSATdsample = m(T = 5K)BSAT . (4.5)

Then, we obtain,

V =
BSATm(T = 5K)

dsampleMSAT
= 0.061rad/A. (4.6)

Figure 4.5: (a) Bulk Faraday rotation due to the window cryostat (lightblue) and total
Faraday rotation due window cryostat and bulk EuTe sample (pink). (b) DC Faraday
rotation due to the bulk EuTe sample as a function of the applied magnetic field at T =
5 K and T = 50 K.

Being determined by the electronic energy structure, the Verdet constant will remain
approximately constant as a function of temperature and magnetic field, as long as the
electronic energy structure and the band gap are not modified. It is well known that the
EuTe band gap changes when the lattice spins are strongly polarized, but this requires
magnetic fields above 3 T at liquid helium temperatures [67], and proportionally larger
fields at higher temperatures. Because the magnetic fields used here are low in comparison,
we can safely assume that the Verdet constant is independent of temperature and magnetic
field for all the experimental results presented here.

The value of the Verdet constant allow us to convert the Faraday rotation angle into
magnetization. To determine the internal magnetic field, which is smaller than the applied
one due to the demagnetization field, we use the relation between the demagnetization
field and the magnetization Bdemag = µ0M in the Faraday geometry [73] used within the

106



4.2. PHOTO-INDUCED MAGNETIZATION IN EUTE

epitaxial layer. Hence, the local (internal) magnetic field will be given by,

Bint = Bapp − µ0M. (4.7)

Substituting M from Eq. 4.2, and using θF = m(T )Bapp, where m(T) is the slope of the
Faraday rotation angle as a function of Bapp at the temperature T, we obtain,

Bint = Bapp − µ0
θF

dsampleV
= Bapp − µ0

m(T )Bapp

dsampleV
. (4.8)

Then, the ratio
Bint

Bapp

will be given by,

Bint

Bapp

= 1− µ0
m(T )

dsampleV
. (4.9)

The ratio Bint/Bapp, calculated by using equation 4.9, is plotted in figure 4.6(b) as a

function of the temperature. The sharp downfall of the
Bint

Bapp

ratio in the vicinity of

10 K is because EuTe is an antiferromagnet, and its temperature-dependent magnetic
susceptibility shows the characteristic cusp at the Néel temperature (see, for instance,
Ref. [74]). Therefore, according to Eq. 4.7, the absolute value of the internal field Bint

is expected to show a corresponding downward cusp at the Néel temperature, as indeed
observed in Fig. 4.6 (b).

Figure 4.6: (a) Pump penetration depth dpol and sample thickness dsample. (b) Relation
between the applied magnetic field and the internal magnetic field in Faraday geometry
for a thin film EuTe sample.

By using the results of the preceding preliminary analysis, we can convert the measured
photo-induced Faraday rotation, as a function of applied magnetic field Bapp into photo-
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induced magnetization as a function of the internal magnetic field Bint. Figure 4.7 shows
the photo-induced Faraday rotation signal (PFR) at T= 5 K as a function of the internal
field for a pump intensity of 10 mW/cm2. The photo-induced Faraday rotation angle
was converted into magnetization by using the Verdet constant determined before and
assuming that the thickness dpol of the layer where magnetic polarons are photo-generated

is equal to the pump-light penetration depth i.e., dpol =
1

α
, where α = 10 µm−1 is the

absorption coefficient at the pump wavelength [67]. The photo-induced magnetization
scale obtained in this way is shown on the right-hand side of Fig. 4.7.

Figure 4.7: Photo-induced Faraday rotation (PFR) signal as a function of the internal
magnetic field at T = 5 K.

The photo-induced Faraday rotation signal shown in Fig. 4.7 has all the characteristics
expected for an ensemble of photo-excited polarons. First, the signal shows a resonance
when the energy of the pump photons meets the EuTe band gap [67]. Second, the signal is
zero at B = 0 T, because at B = 0 T there is no preferential direction in space, therefore
photo-excited magnetic polarons will point randomly, and the net magnetic moment of
the sample will remain zero. Third, the photo-induced signal tends to saturate rapidly
when a magnetic field is applied, exactly as expected for magnetic polarons with large
magnetic moment of several hundreds of Bohr magnetons.
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4.2.2 Calculation of the quantum efficiency of the polaron gener-

ation

Assuming that the photo-excited polarons do not diffuse, the saturation value of the
photo-induced Faraday rotation seen in Fig. 4.7, ∆θSATF = 0.12 µ rad, can be converted
to the average photo-induced saturation magnetization (due all the magnetic moments of
the polaron) as

〈∆M〉SAT =
∆θSATF

dpolV
= 2.2× 10−5MSAT , (4.10)

where dpol = 1/α, with α = 10 µm−1. This value can be compared with the theoretical
value expected for photo-induced polarons in saturation,

〈∆M〉SAT = npol µpol, (4.11)

where µpol ∼ 610 µB is the magnetic moment of a polaron at T= 5 K [39], and npol is
the steady-state population of magnetic polarons when the sample is illuminated with
pump intensity p. The inertial effective mass of a magnetic polaron has been predicted
to increase exponentially with the ratio of the polaron radius and the lattice parameter,
Rpol/a [71]. Because in our case this ratio is quite large, Rpol/a ∼ 4 [41], we expect the
photo-induced magnetic polarons to be quite heavy and immobile, and they, therefore,
remain in the layer penetrated by the pump light (dpol). In this case, the steady-state
polaron population will be given by kinetics equation for the polaron generation,

dnp
dt

= G− np
τ0

, (4.12)

where G is the polaron average generation rate per unit volume within the light penetra-
tion depth 1/α, np is the is the polaron density at time t and τ0 is the polaron lifetime.

Then, in the stationary case, we have

dnp
dt

= 0 ⇒ np = npol = Gτ0. (4.13)

In this condition, when the material is illuminated until saturation, we can calculate G
taking into account the quantum efficiency, χ, of polaron generation which is defined as

χ =
Number of created polarons
Number of incident photons

. (4.14)

We consider the absorbed incident energy per unit of time and volume,

E =
pA

Adpol
, (4.15)
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where p is the intensity of the pump beam incident on the surface of the sample and A
is the cross-section area of the sample. Thus, the rate of polaron generation per unit of
time and per unit of the volume is given by

G = χ
Energy per unit of time and volume

Energy of one photon
[m−3]. (4.16)

Replacing the values for the energy per unit of time and volume and the energy of one
photon hν, we have

G = χ

αpA

A
hν

⇒ G = χ
pα

hν
. (4.17)

Here, τ0 = 15 µs is the polaron lifetime at T = 5 K which was obtained in Ref. [46].
All parameters determining 〈∆M〉SAT (p, T ) = npol(p, T )µpol(T ) = G(p)τ0(T )µpol(T ) are
known, except for the quantum efficiency, so comparing Eqs. 4.10 and 4.11, we obtain
the relation:

〈∆M〉SAT = 2.2 10−5MSAT = npol(p) µpol(T ) = G(p) τ0(T ) µpol(T ). (4.18)

From this equality, we can obtain the quantum efficiency at T= 5 K, yielding χ ∼ 0.09.
This result is very reasonable and can be taken as further evidence that photo-induced
magnetic polarons are the source of the photo-induced Faraday rotation signal observed.

Again by using equation 4.17 and relying on the deduced quantum efficiency, the steady-
state polaron population for p = 10 mW/cm2 is found to be npol = 3.6 × 1015 cm−3.

Therefore, the average distance between polarons is estimated to be d = 2(
3

4πnpol
)1/3 ∼

120 aEuTe where, aEuTe, is the EuTe lattice parameter. Taking into account that the
radius of a polaron is Rpol ∼ 4 aEuTe, then the distance between polarons is two orders
of magnitude greater than the polaron radius, hence it can be assumed that polarons are
non-interacting.

4.2.3 Photo-induced magnetic polarons as a function of the pump

intensity

With the established photo-induced Faraday rotation signal due to optically generated
and non interacting magnetic polarons with magnetic moment equals several hundreds
of Bohr magnetons, we can conjecture that the magnetization of a magnetic polaron
ensemble will obey a Langevin function, which describes a paramagnetic system in the
classical limit. In this hypothesis, the magnetization associated with a photo-induced
magnetic polaron ensemble will be given by

〈∆M(B, T )〉 = npol µpol L(x), (4.19)
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where the Langevin function is given by

L(x) = coth(x)− 1

x
with x =

µpolB

kBT
, (4.20)

where kB is the Boltzmann constant. Notice that, below the Néel temperature, the
magnetic moment of the polaron is known from photoluminescence studies to be 610
µB [39][41], hence in that temperature range there are no free parameters in Eq. 4.19.
Nevertheless, to test the validity of our Langevin conjecture, we have fitted the photo-
induced magnetization data taken at T = 5 K with Eq. 4.19, whereby the polaron
magnetic moment is the sole adjustable parameter. The fitted curve is depicted by the
solid line in Fig. 4.7, yielding µpol ∼ 600 µB. This coincides almost exactly with the
known value, which demonstrates that the magnetization of the photo-induced magnetic
polaron ensemble indeed follows a Langevin function.

Next, we investigate the possibility of generating a higher population of photo-induced
polarons by increasing the pump intensity. Figure 4.8 (a) shows the dependence of the
PFR as a function of pump intensity for T = 5 K. As the pump intensity is increased, a
linear background appears, whose slope is proportional to the pump intensity, suggesting
a heating effect.

Figure 4.8: Photo-induced Faraday rotation vs the internal magnetic field for different
pump intensities at T = 5 K (a) and at T= 50 K (b).

In order to take into account the heating effect in the Faraday rotation, we analyze
the effect of a variation of the bulk temperature on the magnetization M(T,B).

A temperature increase of the bulk by ∆TBulk will cause a change in its magnetization
given by

∆M(B, T ) =
∂M

∂T

∣∣∣∣
B

∆TBulk. (4.21)

Here ∆M(B, T ) = ∆M represents the change in magnetization due to sample heating
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produced by the pump-beam within the penetration depth dpol = 1/α. From PFR, this
change in magnetization can be written following from Eq. 4.2 as

∆M(B, T ) =
∆θF
V dpol

, (4.22)

where the experimental ∆θF includes the contribution of the polaron and thermal effect.
At sufficiently large magnetic fields, when the polaron magnetization is saturated, only a
thermal effect can contribute to the slope of ∆M .

Similarly,
∂M

∂T

∣∣∣∣
B

is also related to the bulk Faraday rotation,

∂M

∂T

∣∣∣∣
B

=
1

V dsample

∂θF
∂T

∣∣∣∣
B

. (4.23)

Therefore, substituting Eqs. 4.23 and 4.22 in Eq. 4.21, and resolving for ∆TBulk, we get

∆θF
V dpol

=
1

V dsample

∂θF
∂T

∣∣∣∣
B

∆TBulk ⇒ ∆TBulk =
dsample
dpol

∆θF
∂θF
∂T

∣∣∣∣
B

, (4.24)

with the linear dependence

∆θF = m(p)B and
∂θF
∂T

∣∣∣∣
B

= n(T )B, (4.25)

where m(p) and n(T) are the slopes of the curves ∆θF vs B and
∂θF
∂T

∣∣∣∣
B

vs B, respectively.

Then, we can finally write the equation for ∆TBulk as,

∆TBulk =
dsample
dpol

m(p)

n(T )
(4.26)

The slope of
∂θF
∂T

was taken from Fig. 4.9 (a), and the slope of θF was taken from the

high-field limit in Figs. 4.8 (a) and 4.8 (b). Then, the temperature increase ∆TBulk

calculated from Eq. 4.26 is shown as a function of the pump intensity in Fig. 4.9(c).
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Figure 4.9: (a) Faraday rotation due the bulk EuTe sample as a function of temperature
for various magnetic fields. (Notice that for our sample the observed Néel temperature
is slightly larger than the accepted value of 9.6 K for EuTe, in agreement with direct

measurements reported in Ref. [69]). (b) The dependence of
∂θF
∂T

on B shows a linear
behaviour. (c) The deduced temperature modulation of the illuminated region is shown
as a function of the pump intensity for T = 5 K and T = 50 K.

The interpretation in terms of a heating effect is confirmed by the photo-induced Fara-
day rotation curves as a function of intensity, done at T= 50 K [Fig. 4.8(b)]. Because
for EuTe, the Faraday rotation dependence has the typical behavior of an antiferromag-
net, with a maximum at the Néel temperature [see Fig. 4.9 (a)], the slope of the thermal
background seen in the PFR signal should change from positive to negative when we cross
the Néel temperature. This is exactly what we observe, as can be seen from Fig. 4.8(a)
for T = 5 K, where the thermal background has a positive slope, and Fig. 4.8(c) for T =
50 K, where the slope of the background signal is negative. The temperature modulation
at T = 50 K was found by using Eq. 4.26, and it is also shown in Fig. 4.9(b). At T =
50 K the heating effect is smaller than at T = 5 K due to a larger heat capacity of the
EuTe crystal [75].

Another aspect worthy of comment is that, upon closer inspection of Fig. 4.9(c), the
temperature modulation ∆T presents a slightly sub-linear dependence on pump intensity.
This can be attributed to the fact that, for a larger excitation power, the effective volume
excited by light increases, because the threshold excitation light penetrates deeper into
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the sample. In this case, the temperature increase for doubled excitation power will obvi-
ously be less than doubled, which explains the sub-linear behavior of ∆T on the excitation
power.

Having subtracted the linear thermal background from the ∆θF vs B curves, as de-
duced above, the saturation polaron magnetization ∆θSATF for every pump intensity was
extracted and it is plotted in Fig. 4.11. ∆θSATF increases sub-linearly with pump intensity,
indicating that polarons are less and less efficiently generated when the pump intensity is
increased.

Taking into account that optical absorption leads to an exponentially decreasing of the
incident pump intensity p0 below the surface of the sample, then, the pump intensity at
the depth x can be written as:

p(x) = p0e
−αx. (4.27)

Then, the intensity retained in a layer of width dx of the sample is given by

dp(x) = αp0e
−αxdx. (4.28)

Therefore, the number of polarons created in a volume of cross section A and depth x is
given by

G(x) =
Number of polarons created in Adx

Adx
=

χ
Adp(x)

hν
Adx

, (4.29)

which can be written as
G(x) =

χαp0e
−αx

hν
. (4.30)

However, this value is limited to a maximum value of photo-generated polarons that we
represent by nD. Then, in the stationary case when the number of photo-generated
polarons np is below the saturation case, we have

dnp(x)

dt
= G(x)− np(x)

τ0

= 0 ⇒ npol = G(x)τ0. (4.31)

In this situation, the concentration of photo-generated polarons at a depth x below the
surface will be given by,

npol(x) = χ
αp0e

−αx

hν
τ0. (4.32)

Here we can observe that in the saturation case, which we define happening at depth x0

when npol = nD. Then, if we use Eq. 4.32, we can write

nD = χ
αp0e

−αx0

hν
τ0 ⇒ x0 =

1

α
ln(

χαp0τ0

nDhν
). (4.33)

114



4.2. PHOTO-INDUCED MAGNETIZATION IN EUTE

If we define
nDhν

χατ0

= pD, we note that this is the minimum intensity necessary to produce

a polaron generation saturation in the sample. Hence, we can use this to identify the
saturation depth x0 as

x0 =
1

α
ln(

p0

pD
)




x0 < 0, if p0 < pD Saturation does not exist at any point

x0 > 0, if p0 > pD Sample presents saturation until x = x0

.

(4.34)

Figure 4.10: (a) Saturation level is obtained until depth x0 when the pump p0 is higher
than the critical value pD. (b) For pump intensity lower than the critical intensity, then
no saturation is obtained at any depth in the sample.

Then, we can calculate the total number of photo-generated polarons in the sample

Npol =

∫ ∞

0

np(x)Adx. (4.35)

To obtain Npol we again separate the two different cases, when the intensity of the pump
light is higher or lower than the critical intensity pD,

Npol =

∫ ∞

0

npol(x)Adx =





∫∞
0
χ
αp0e

−αx0

hν
τ0Adx, if p < pD

∫ x0
0
nDAdx+

∫∞
x0
χ
αp0e

−αx0

hν
τ0Adx, if p > pD

. (4.36)

The results of these integrals are summarized in the next equation, where we also take
into account that the photo-induced Faraday rotation is proportional to the number of
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photo-excited polarons in the sample, and then we can write,

∆θSATF ∼
∫ ∞

0

npol(x)Adx =





nD
α

p

pD
, if p0 < pD

nD
α

(1 + ln
p

pD
), if p0 > pD

, (4.37)

where pD = nDhν
χατ0

. Equation 4.37 gives a photo-induced Faraday rotation angle that
increases linearly with pump intensity for p < pD and logarithmically for p > pD. Figure
4.11 shows that Eq. 4.37 provides a very good fit of our data, whereby nD is the single
adjustable parameter, yielding nD = 4.5 × 1015 cm−3. This is again far less than the

concentration of polarons that would completely fill the excited layer, (
4

3
πR3

pol)
−1 = 1.3×

1019 cm−3. We attribute the limited concentration of polarons that can be photo-generated
to their binding by residual defects of concentration nD.

For T= 5 K, we can calculate the critical intensity pD and the saturation depth x0 for
p0= 10 mW/cm2,

pD =
nDhν

χατ0

=
4.5× 1015[cm−3] 3.73× 10−19[J ]

0.09× 107[m−1] 15× 10−6[s−1]
= 12.5 mW/cm2

⇒ x0 = dpol ln(
p0

pD
) = 10−7[m] ln

(
10[mW/cm2]

12.5[mW/cm2]

)
= −0.02 µm.

(4.38)

This is a negative value because it does not exist a depth for saturation for this intensity
which is below the saturation intensity.
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Figure 4.11: Dots show the photo-induced Faraday rotation angle at saturation as a
function of the pump intensity. The full line shows a fit of the dots with Eq. 4.37, which
yields the maximum polaron concentration to be nD = 4.5× 1015 cm−3.

At T = 5 K, these bound polarons are long-lived with lifetime is 15 µs [46] and
therefore have a supremacy over magnetic polarons seen in the photoluminescence, which
have a much shorter lifetime, of the order of a nanosecond [57]. The shorter lifetime
implies a stationary concentration of magnetic polarons that is four orders of magnitude
smaller, and effectively only the long-lived magnetic polarons will be observed in the
photo-induced Faraday rotation. A plausible source of defects at a low concentration of
the order of 1015 cm−3 is the unbalanced stoichiometry of the Eu and Te atomic fluxes
during the MBE growth. It should be observed that the binding of polarons to defects
provides further support for our previous assumption that photo-excited polarons remain
localized in the penetration layer of the pump light and do not diffuse into the interior of
the EuTe crystal.

4.2.4 Photo-induced magnetic polarons as a function of the tem-

perature

In this part, we studied how the magnetic polarons are affected by temperature.
From equation 4.19, the equation for the PFR can be rewritten as,

∆θF (B, T ) = ∆θSATF (T ) L(
µpolB

kBT
), (4.39)
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where ∆θF (B, T ) is the photo-induced Faraday rotation at a magnetic field B and at tem-
perature T, and ∆θSATF (T ) is the corresponding saturation value, depicted in Fig. 4.7.
Then, the PFR as a function of the magnetic field was measured for various temperatures
and it was fitted using Eq. 4.39, yielding two parameters for each temperature: the mag-
netic moment of the photo-induced magnetic polaron, µpol(T ), and the Faraday rotation
saturation ∆θSATF (T ) (see Fig. 4.7). It is worth pointing out that the polaron magnetic
moment is the only parameter defining the smoothness of the step, so the value for µpol
obtained from the fit is independent of any other parameter entering Eq. 4.39, such as
the polaron lifetime and steady-state population, which depend on temperature.

We can consider the polaron magnetic moment dependence with temperature by re-
laying on another formalism. The polaron magnetic moment can be given by the average
magnetization inside the polaron multiplied by the polaron volume as is shown in Fig 4.12

µpol =
4

3
πR3

pol〈M〉, (4.40)

where 〈M〉 is the average EuTe magnetization within the magnetic polaron sphere under
the action of the exchange field of the photo-excited electron, Bxf ∼ 1 T [33][41], which
we can approximate as

〈M〉 = nEu µEu βS(Bxf , T ), (4.41)

where βS is the Brillouin function. The magnetization outside the polaron is zero.

Figure 4.12: Antiferromagnetic spins inside and outside the magnetic polaron in EuTe.

In the high temperature condition βS(x) ∼ S + 1

3S
x. We also consider the antiferro-

magnetic system for T > TN , in this situation we have the separate magnetization for
each sublattice

〈MA〉 = nEu µEu
S + 1

S

gµBS

kBT
(Bxf − λ〈MB〉). (4.42)
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and
〈MB〉 = nEu µEu

S + 1

S

gµBS

kBT
(Bxf − λ〈MA〉). (4.43)

We know the total magnetization is 〈MA〉+ 〈MB〉 = 〈M〉. Thus, a Curie-Weiss approxi-
mation [73] can be obtained

〈M〉 = nEu µEu
gµB(S + 1)

3kB

Bxf

T + TN
. (4.44)

Figure 4.13 shows the polaron magnetic moment as a function of temperature so obtained.

Figure 4.13: Temperature dependence of the magnetic moment of a polaron. For compar-
ison, the dashed line is given by the magnetic moment associated with the polaron sphere
obtained by using Eq. 4.40.

It can be seen that the Curie-Weiss law describes the data quite well, without any
adjustable parameter.
Finally, Fig. 4.14 shows a plot of the photo-induced Faraday rotation saturation, ∆θSATF (T )

as a function of temperature, obtained from the fit of the experimental PFR and the the-
oretical values estimated by considering the proportionality between the Faraday rotation
in saturation and the polaron population in steady-state given by

dnp
dt

= G− np
τ0

− np
τ ′

= 0, (4.45)

where is considered now the recombination due to thermal effects with recombination
time τ ′ and we consider τ ′ = τ0e

−EA/kBT which gives

∆θSATF (T ) ∼ const× eEA/kBT (4.46)
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Figure 4.14: Temperature dependence of the photo-induced Faraday rotation angle at
saturation. Above T ∼ 100 K, ∆θSATF decreases exponentially with a characteristic ac-
tivation energy of EA = 11 meV. The inset shows schematically the magnetic polaron
energy level, the ground state (when the photo-excited electron is absent), and the ther-
mally activated state, which drains the polaron population when the temperature of the
sample is increased.

Above T = 100 K, the photo-induced Faraday rotation decreases exponentially with
an activation energy of about 11 meV. The rapid decrease of the photo-induced Faraday
rotation signal is interpreted in terms of the thermal activation of a fast recombination
channel, which causes a reduction of the polaron lifetime and hence of the steady-state
polaron population. The thermally activated magnetic polaron quenching process is il-
lustrated by the energy-level scheme shown in the inset of Fig. 4.14.
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4.2.5 Conclusions

1. In conclusion, we have shown that EuTe can be magnetized by light through optical
generation of magnetic polarons, with a quantum efficiency of χ ∼ 0.09 and a maxi-
mum concentration, which is about 4.5×1015 cm−3 in the case of the sample studied
in this work. Such a low concentration is evidence that the magnetic polarons are
bound to defects, plausibly generated during the growth process due to a deviation
from stoichiometry. We believe that photo-generated polarons remain in the light-
penetration depth layer, and do not diffuse into the interior of the crystal. A path
to clarify this point would be to investigate samples with an intentional deviation
from stoichiometry and check if the deviation correlates with the maximum polaron
concentration. At low temperatures, the polarons are immobile and do not diffuse
out of the illuminated volume. The polaron population can be thermally quenched,
with an activation energy of 11 meV, which could be due to thermally activated
recombination, or to polaron diffusion out of the path of the probe beam. Thus, we
demonstrated a novel approach for the optical manipulation of magnetic states in
EuTe, which in principle should be valid for any intrinsic magnetic semiconductor,
as well as for diluted semiconductors and for hybrid ferromagnetic-semiconductor
structures.

2. The results shown here for EuTe should remain valid for all europium chalcogenides
as EuSe and as well as for other magnetic semiconductors with a large band-lattice
exchange interaction. The magnetic polaron ensemble forms a paramagnet that is
fully controlled by light within a host that has ideal optical quality.
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4.3 Conversion of Faraday rotation into magnetization

in europium chalcogenides

4.3.1 Faraday rotation basics

A linearly polarized wave along the X-axis can be described by:

E = E0 cos(kz − ωt)x̂. (4.47)

This linearly polarized light beam can be expressed as the superposition of two rays of
equal intensity, one of which is circularly polarized according to the right-hand rule (RCP),
and the other according to left-hand one (LCP):

E =
1

2
ERCP +

1

2
ELCP , (4.48)

where
ERCP = E0 cos(kz − ωt)x̂− E0 sin(kz − ωt)ŷ (4.49)

and
ELCP = E0 cos(kz − ωt)x̂+ E0 sin(kz − ωt)ŷ. (4.50)

In general, the refractive index will be different for the RHC and the LCP in a birefringent
material, then we have k → k± =

ωn±
c

, where n± is the refractive index, and the plus or
minus sign applies to RCP or LCP, respectively, and we can write

ERCP = E0 cos(
ωn+

c
z − ωt)x̂− E0 sin(

ωn+

c
z − ωt)ŷ (4.51)

and
ELCP = E0 cos(

ωn−
c
z − ωt)x̂ + E0 sin(

ωn−
c
z − ωt)ŷ. (4.52)

Thus, after traversing a distance z in the optical medium, and using the relation for the

wave in the vacuum ω = kc =
2πc

λ
, the travelling wave become

E = E0 cos

(
(n− + n+)π

2λ
z − ωt

)(
cos(

(n− − n+)π

λ
z)x̂+ sin(

(n− − n+)π

λ
z)ŷ

)
. (4.53)

This beam is still linearly polarized, but the plane of polarization has been twisted by an
angle θF , the FR angle, which per unit length and at the wavelength λ is given by

θF =
(n− − n+)π

λ
. (4.54)
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This formula shows that circular birefringence, i.e. the inequality between n+ and n−, is
the source of FR and is the origin for the classical model for the Faraday rotation which
is shown in the Appendix B.1

In general, semiconductor materials will contain several valence bands contributing to
the birefringence. Photons of energy within the band gap of the semiconductor are closest
to resonance with the top valence band, hence the polarization effects of lower lying bands
can be discarded in a first examination.

The amplitude of the circular polarization induced in the crystal by the rotating electric
field of the incoming light in the X-Y plane, is given by,

P±0 = Nα±(ω)E0 (4.55)

where α± is the electronic polarizability of the atoms forming the valence band and is a
measure of how easy it is to induce a moment in a material with an electric field. N is the
number density of atoms in the solid, and E0 is the electric field amplitude of the RCP
or LCP incident wave. It should be emphasized that α is the polarizability of an atom
embedded in the solid, it is not the polarizability of an isolated atom. These polarizabili-
ties are different from one another because the polarization of atoms, by light within the
bandgap, is a perturbation and resonance effect. The electron-photon interaction reso-
nance depends on the spacing between electronic energy levels, which in the solid differ
from that of the isolated atom, due to energy band formation, hence the polarizability of
an embedded atom differs from that of an isolated one.

On the other hand, taking the photo-induced polarization to be the number density
times the atomic polarizability, modified due to the atoms being embedded in the solid,
as by (4.55), is known to provide a very good description of the linear optical properties of
nonmetallic solids (see, for instance, Ref. [82], section 1.4, formula (1.4.16), which justifies
the application of Eq. (4.55) to describe the Faraday effect in europium chalcogenides.

Using the relation connecting the refractive index to the electronic polarizability [80]
and demonstrated in the Appendix section B.2,

n2
± = 1 +

N

ε0
α±(ω), (4.56)

we arrive at
n− − n+ =

n2
− − n2

+

2n0

=
N

ε0

(α−(ω)− α+(ω))

2n0

, (4.57)

where n0 =
(n− + n+)

2
is the refractive index that the material would have, if no other

valence band was present except the one under scrutiny, and ε0 = 8.85×10−12 F/m is the
vacuum permittivity.

Equation 4.57 shows that for FR to be present, the induced polarization current in
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the valence orbitals must be different for LCP and RCP. This is explored in the models
below.

4.3.2 A semiclassical model connecting FR to the magnetization

in europium chalcogenides

In EuX, the highest valence band states are formed by 4f orbitals of the Eu atom [78],
which are buried deep within the ion, beneath the filled 5p shell, hence the characteristics
of the isolated orbital are well preserved [83], therefore the spin of the Eu atom, S=7/2,
is maintained in the crystal.

In the semiclassical approach, the magnetic moment, or spin, of an atom, is associated
with a circulating electrical current, whose direction and magnitude are described by a
vector S. Let us inspect the interaction of the incident linearly polarized light with an
average Eu atom in the solid, whose spin S makes an angle θ with the direction of light
propagation, as is shown in figure 4.15.

Figure 4.15: The electric field E of the linearly polarized light is equivalent to the super-
position of RCP (top) and LCP light of equal amplitude (bottom), carrying an angular
momentum of +` and −`, respectively.

We express the incident light as a superposition of RCP and LCP, which carry an
angular momentum +` and -`, respectively, along the direction of light path. The angular
momentum vector of the incoming RCP or LCP light can be divided into two compo-
nents, parallel and perpendicular to the vector S, as shown in figure 4.15. By symmetry,
in a direction perpendicular to S, RCP and LCP will induce identical polarizations in
magnitude, but in opposite directions, totaling zero. Therefore, birefringence must be
associated with the circular polarization light induces parallel to S, which is proportional
to the projection of the light angular momenta onto S. Hence, when the angle between
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S and the direction of light travel is increased from zero to θ, the induced polarization is
reduced by a factor of cos θ, i.e,

P± = Nα±‖ E0 cos θ, (4.58)

where α±‖ is the circular electronic polarizability of the solid, when its spins are fully
aligned with the direction of light travel (θ = 0 in figure 4.15).

On the other hand, the magnetization projection in the direction of light propagation,
M, is given by

M = Nµ∗ cos θ (4.59)

hence a comparison between equations 4.58 and 4.59 leads to

P± =
M

µ∗
α±‖ E0. (4.60)

Equating 4.60 and B.8 gives

α± =
M

MSAT
α±‖ (4.61)

where MSAT = Nµ∗ is the saturation magnetization. Substituting 4.61 in 4.57, and using
4.54, we get,

θmagF =
πNM

λε0MSAT

α−‖ − α+
‖

2n0

. (4.62)

Equation 4.62 shows that the contribution from Eu atoms to the FR is proportional to
their magnetization, the proportionality coefficient being determined by the polarizabil-
ity. Because the polarizability is determined by the electronic energy structure, the ratio
θF/M will remain unchanged as long as the relative position of the electronic energy lev-
els, as well as their occupation, is invariant. In a semiconductor, the essential parameter
is the energy gap, Eg, between the valence and the conduction bands. If kBT � Eg, the
occupation of the electronic energy levels will be unchanged, which gives a measure of
the range of temperatures in which θF/M is expected to be constant in EuX, except for
deviations due to band gap variations. Thus θF/M behaves in the same fashion as the
refractive index of dielectrics, which is also tied to variations of the band gap [84, 85].
As long as the photon energy is within the band gap, which is the situation considered
in this work, contributions from other valence bands will generally be much smaller, due
to their excitations being off-resonance with the incident photons, and the central result
given by Eq. 4.62 will remain valid.

The significance and the value of the semiclassical model, with which the proportion-
ality between FR and magnetization was demonstrated as expressed by Eq. 4.62, based
on a simple argument of forced oscillations and symmetry, can be well appreciated if we
compare our model to the full quantum mechanical calculation, described in detail in
Ref. [79], which requires the use of perturbation theory, Wigner rotations of spins, and
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statistical averaging. The end result is the same, but the semiclassical model is much
simpler and transparent.

4.3.3 Test of the semiclassical model in the magnetic semicon-

ductor EuSe

In the previous section it was argued that in EuX FR is proportional to the magneti-
zation. In this section this hypothesis is thoroughly tested using the magnetic semicon-
ductor EuSe. This material was chosen for the test because of its very rich magnetic
phase diagram, therefore by applying a magnetic field and adjusting the temperature,
the proportionality between FR and magnetization can be tested in all possible magnetic
scenarios.

The EuSe crystalline samples were grown by molecular beam epitaxy (MBE) onto
(111) BaF2 substrate. Because of the almost perfect lattice constant matching (a = 6.1
Å and a = 6.6 Å for EuSe and BaF2, respectively), the EuSe layer was bulklike and
nearly unstrained [89]. The EuSe epilayer sample was a thickness of 2.5 µm. The mag-
netization was measured using a SQUID magnetometer, which had a magnetic moment
resolution better than 10−11 Am2 . The FR was measured using a linearly polarized beam
from a semiconductor laser as the monochromatic light source, and a polarization bridge
containing balanced photodetectors.

Figure 4.16: (a) Lines depict FR, for photons of energy 1.865 eV, while dots represent
magnetization, as a function of applied magnetic field, for T = 5, 20 and 60 K. The
magnetic field was applied perpendicular to the EuSe epitaxial layer. (b) Ratio θF/M as
a function of temperature for photons with energy 1.865 eV (full circles) and 1.699 eV
(triangles). The error bars were estimated at 15 percent at low temperatures but increase
towards room temperature, when the contribution to the epilayer becomes comparable
to that of the substrate. Below T = 20 K, θF/M increases slightly for 1.865 eV, which
is explained by the concomitant narrowing of the band gap, shown by the empty circles,
taken from Ref. [86].
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The contribution coming from the substrate to the FR was measured separately, using
a substrate piece without the epilayer, and subtracted from the FR produced by the EuSe
epilayer.

In fields up to 0.2 T at all temperatures, both the magnetization and the FR angle
displayed a linear dependence on B : typical results are shown in figure 4.16(a). It can
be seen that the slopes of θF and M vary several orders of magnitude with temperature,
however, the ratio θF/M , obtained from the slopes for B < 0.2 T,

θF
M

=
dθF/dB

dM/dB
(4.63)

and shown in figure 4.16(b) for the 4.8-300 K interval, remains constant. The vertical bars
represent the estimated experimental error, which increases towards room temperature,
when the response from the substrate becomes comparable to that of the epilayer, both
in θF as well as in M measurements.

Figure 4.17: (a) Magnetic phase diagram of the studied EuSe layer. The full and open
dots represent data obtained from M vs B (T = const) and M vs T (B = const) traces,
respectively. The magnetic field was applied parallel to the surface of the epitaxial sample.
The solid lines are guides to the eye. The dotted line shows that at T = 1.7 K a magnetic
field drives EuSe through an antiferromagnetic (AFMII), a ferrimagnetic (FiM), and a
ferromagnetic (FM) phase. (b) Magnetization (solid line) and FR at h̄ω = 1.55 eV (dots),
as a function of magnetic field, at T = 1.7 K. The magnetic field was applied perpendicular
to the surface of the epitaxial sample. When B is applied perpendicular to the layer, the
AFMII-FiM and FiM-FM phase boundaries are shifted to B = 0.17 T and B = 1.04 T,
respectively, due to the demagnetization effect [87]. Vertical lines show the boundaries
between the magnetic phases indicated.

For the photon energy of 1.865 eV, which is in near resonance with the band gap,
θF/M increases slightly when the sample is cooled below 20 K. This is explained by the
concomitant narrowing of the gap (depicted by the empty circles), which makes the light
even closer to resonance with the band gap, which enhances the FR angle, as explained
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at the end of this section.

Figure 4.18: (a) Ratio of the FR, at the indicated photon energies, to the magnetization,
as a function of magnetic field, for T = 1.7 K. At low fields, the ratio increases beyond
the estimated uncertainty of 15 percent; (b) EuSe band gap as a function of B, obtained
from optical absorption measurements as shown in the inset. The absorption experiments
are detailed in Ref. [88]

In the temperature interval 4.8-300 K examined so far, EuSe is in the paramagnetic
phase, because its Néel temperature is TN = 4.75 K [77]; the magnetic phase diagram
of our sample was measured, and it is shown in figure 4.17(a). To investigate θF/M
in the phases other than the paramagnetic one, the magnetization and FR, at various
photon energies, were measured at T = 1.7 K as a function of field. At this temperature
the magnetic field drives the EuSe sample through an antiferromagnetic, a ferrimagnetic,
and a ferromagnetic phase, as figure 4.17(a) shows (see also [90]). A comparison of
the magnetization and FR curves can be seen in figure 4.17(b), both exhibit an almost
identical dependence on B, minor differences in the B -dependencies are within the range
of the experimental uncertainties. The dependence of θF/M on B is shown in fig. 4.18(a),
for various photon energies. At low fields, θF/M remains at the same value measured in
the paramagnetic phase up to 300 K.
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Figure 4.19: Electronic levels in EuTe. (a) Under a strong magnetic field, the Eu spins are
aligned ferromagnetically, and the absorption spectrum shows a strong magnetic circular
dichroism, whereby the RCP and LCP absorption peaks, corresponding to transitions
from the Eu atoms in the S7/2 state to the 5dt2g conduction band, are split by ∼ 19λf ,
where λf is the spin-orbit coupling constant for the Eu3+ ion [91] (b) RCP and LCP
optical transitions between the valence band formed by 5p orbitals of the Te atoms and
a conduction band formed by 6s Eu states [78, 86].

Increasing the field, θF/M increases and tends to a saturation. This process can be
understood within the frame of the semiclassical model. When B is increased at T =
5 K, the EuSe band-gap narrows, as shown in figure 4.18(b), because the applied field
imposes ferromagnetic order over a paramagnetic lattice, which lowers the energy of the
conduction electrons due to the band-lattice exchange interaction. The dichroic spectrum
showing the LCP/RCP splitting was investigated in Ref. [91]. A similarly large band-
gap red-shift of about 100 meV by applying a magnetic field is also observed in YIG
[92], and it is also associated with the conduction band-lattice exchange interaction. As
figure 4.18 shows, the band-gap red-shift saturates around 2.5 T. The increase of the FR
angle with increasing applied magnetic field is because the photon energy of the incident
light becomes closer to resonance with the bandgap, which implies that the electronic
polarizability increases, as the classical Lorentz model of forced atomic oscillators predicts.

4.3.4 Proportionality constant between magnetization and FR in

europium chalcogenides

We already showed that in EuX FR is proportional to the magnetization. Here we go a
step forward and determine the proportionality coefficient in EuX, using their well-known
specific electronic energy structure, sketched in figure 4.19 [78]. First we shall estimate the
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weight of the various valence bands to the FR. Using quantum mechanical time-dependent
perturbation theory B.3 [82] applied to EuTe it can be shown that (See Appendix B.4)

α± =
1

2

∑

n

| µ±gn |2
Eng − h̄ω

, (4.64)

where | g〉 represents the ground state of energy Eg, described by an electron in the valence
band, | n〉 represents the excited states of energy En, corresponding to an electron in the
conduction band, Eng = En − Eg, and µ±gn is the electric dipole matrix element

µ±gn = −e < n | x+ iy | g〉 (4.65)

Equation (4.64) shows that the coupling through light between the ground and excited
electronic states determines the induced polarization current.

In EuTe, when the spins are aligned with the direction of light by the application
of a large magnetic field, the band-edge optical absorption becomes strongly dichroic
[88, 91, 93, 94] and shows two narrow peaks, one for LCP and another for RCP, split by
∼ 19λf [91], where λf is the spin-orbit coupling constant for the Eu3+ atom, as sketched
on figure 4.19(a). The circular dichroism is associated with optical transitions between
the valence level, 8S7/2, formed by the magnetic Eu atoms, into the 5dt2g conduction
band. The equal height of the two lines implies that | µ+

gn |2∼| µ−gn |2∼ µ2
gn. Taking the

approximated absorption spectrum into account, the equation 4.64 leads to

α−|| =
1

2

µ2
df

Eg − h̄ω
, α+

|| =
1

2

µ2
df

Eg + 19λf − h̄ω
. (4.66)

Substituting (4.66) in (4.62), and using (4.56), we get

θmagF ≈ π

λ

M

MSAT

n2
0 − 1

2n0

19λF
Eg − h̄ω

. (4.67)

In obtaining (4.67), the condition 19λf � Eg − h̄ω was assumed, which requires the in-
coming photons to be sufficiently away from resonance with the band gap.

It must be emphasized, however, that to arrive at (4.67), we did not make any ap-
proximation concerning the EuX band edge electronic energy structure and we did not
substitute the energy bands of EuTe by zero width atomic energy levels. We worked
within the frame of the full (8S7/2-valence band, 5dt2g-conduction band) model, which
is specific for EuX, that model has successfully described such effects as the continuous
evolution of a 500 meV broad featureless absorption band at zero field to a doublet of
sharp dichroic lines in high fields [88, 91, 93, 94], as well as second harmonic generation
[95, 96], linear dichroism [97], and Faraday rotation [79, 98] in EuTe and EuSe. We simply
exploited the well-known experimental fact that at high fields, when all Eu spins align
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ferromagnetically, two birrefringent narrow lines emerge in the optical absorption thresh-
old of EuX, their width being much less than the band gap [91, 93, 94], which has nothing
to do with a substitution of bands by energy levels.

Now we shall inspect the contribution to the FR coming from valence bands generated
by completely filled atomic states, whose magnetic moment is zero. In EuTe, just below
the 8S7/2 valence state, there is a valence band built from 5p6 shells of the Te atoms [78],
which can be polarized by the incoming light through the dipole allowed admixture of
empty 6s states, as indicated on the right-hand side in figure 4.19. In the absence of a
magnetic field, the 5p-band will give no birefringence, because optical absorption associ-
ated with 5p → 6s transitions will be identical in position and strength for RCP and LCP.
But when a magnetic field is applied, the RCP and LCP absorption bands are split by
the Zeeman energy, gµBB. Then, proceeding exactly in the same way as when obtaining
(4.67), the diamagnetic contribution to the FR is found to be

θdiamagneticF ∼ −π
λ

n2
1 − 1

4n1

gµBB

Eg − h̄ω
, (4.68)

where n1 is the refractive index associated with the diamagnetic valence band. Equation
4.68 shows that the diamagnetic FR is proportional to the magnetic field, in stark con-
trast to the contribution from the magnetic valence band, given by Eq. (4.67), which is
proportional to the magnetization.

Dividing (4.67) by (4.68), the relative weight of the diamagnetic FR is found

∣∣θ
diamagnetic
F

θmagneticF

∣∣∼ MSAT

M

gµBB

19λF
, (4.69)

where n0 ∼ n1 was used. Given that gµBB = 0.116 meV/T, and that 19λf = 180 meV
[91], then the diamagnetic FR will generally be much smaller than the magnetic one.

We shall take a step further to investigate in more detail the proportionality coefficient
between magnetization and FR. We rewrite equation (4.67) as

θF
M

=
Eg − h̄ω
h̄ω

∼ constant, (4.70)

where the constant is determined by the materials refractive index, spin-orbit coupling
constant, and saturation magnetization. Equation (4.70) was tested by plotting θF/M as
a function of photon energy, using data taken in a wide temperature and magnetic field
range, covering all EuSe magnetic phases, and figure 4.20 shows the result. It can be seen
that the data points deviate from the average of 0.03 rad/A by at most 15 percent, which is
the estimated error bar in our experiment, also shown in figure 4.20. The deviation at lower
energies is larger, because the FR angle is smaller, hence the experimental error is larger.
This is quite remarkable, because the data shown in figure 4.20 covers a 300 K temperature
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and a 0-7 T magnetic field interval, respectively, where all possible magnetic phases occur,
and where the ratio θF/M changes by an order of magnitude, and where M and θF vary
several orders of magnitude, nevertheless (4.70) remains constant within experimental
error. This not only validates our semiclassical model, but it makes equation (4.70)
a practical formula to describe θF/M in all circumstances, substituting a full complex
quantum-mechanical calculation in EuX.

Figure 4.20: Measured ratio θF/M multiplied by
Eg − h̄ω
h̄ω

, as a function of photon energy,
for various magnetic fields at T = 1.7 K, and in 1.7-300 K interval, for fields B ≤ 0.2 T.
The thickness of the EuSe epilayer was 2.5 µm. The average is shown by the full line, and
a 15 percent deviation is shown by the dashed lines.

Equation (4.70) should remain valid for other intrinsic magnetic semiconductors, in
which a valence level is formed by strongly localized atomic orbitals with nonzero mag-
netic moment. For the case of magnetic semiconductors where the top valence band is
diamagnetic, FR will be a superposition of one component proportional to the magneti-
zation and another proportional to B. As an example, GdN has a top valence band built
from nitrogen 2p states [99], situated above the localized 8S7/2 valence state of the Gd
rare earth atoms (i.e., the position of the p valence band and of the localized 8S7/2 va-
lence level, shown in figure 4.19 for EuTe and EuSe, are inverted in order). The magnetic
circular dichroism observed in GdN [100] is an indication that FR will also be connected
to the magnetization in this system. However, because in GdN the p valence band forms
the band-gap, for below-the-gap FR the diamagnetic contribution may be of the same
magnitude as the ferromagnetic one, making a more complicated scenario. An analysis of
the relationship between FR and magnetization in GdN and its dependence on the photon
energy will require a separate investigation.
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4.3.5 Conclusions

We developed a semiclassical model to show that in europium chalcogenides the FR is
proportional to the magnetization. The model is based on classical physics concepts only.
Our model for FR in the magnetic semiconductors EuX adds to the well known classical
model of FR in a diamagnetic semiconductor, forming a didactic picture of the diversity
of the FR in different solids. The model is validated by data taken on EuSe in a large
temperature and magnetic field range, covering all possible magnetic phases. Moreover,
we provided a formula connecting the Faraday rotation angle, the magnetization, the
photon energy and the semiconductor band gap, which is a valuable practical solution for
the conversion of FR into magnetization, at any temperature and magnetic phase in any
member of the EuX family.
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Appendix A

Magneto-optical measurements details

A.1 Measurement of bulk Faraday rotation using an

autobalanced photodetector system

When a linearly polarized probe light hits the sample under an externally applied magnetic
field in the direction of the light beam, it produces a Faraday rotation angle θF . The
objective of the experiment is to measure the absolute value of this rotation θF . The
setup used in the experiment is presented in Fig. A.1.

Figure A.1: Setup for measuring bulk Faraday rotation

The probe light, which carries the information of the rotated angle after passing
through the sample, in its way to the detector, pass first through a λ/2 plate and later is
splitted into its orthogonal components by a beam splitter, these orthogonal component
signals are sent to the detector. The value of the intensity of the orthogonal components
of the probe light are obtained from the Malus law:

I|| = I0 cos2 θ and I⊥ = I0 sin2 θ. (A.1)

To eliminate any possible noise in the laser, the autobalanced mode of the detector is used,
in which, for an accurate operation condition, we adjust the probe intensity using the λ/2

135



A.1. MEASUREMENT OF BULK FARADAY ROTATION USING AN . . .

plate such as IREF/ISIG ∼ 2 , where IREF is the intensity of the signal that arrives to
the REF channel of the detector and ISIG is the intensity of the signal that arrives to the
SIG channel of the detector. The value of these intensities are expressed in terms of a
constant αX , which characterize the optical coupling and depend of the detector.

ISIG = αSIGI|| =⇒ ISIG = αSIGI0 cos2 θF , (A.2)

IREF = αREF I⊥ =⇒ IREF = αREF I0 sin2 θF . (A.3)

In these conditions, in the auto-balanced mode of the detector, we have the values of the
outputs of the detector:

V auto
SIG = −10×R× ISIG, (A.4)

V auto
LIN = 100×R× [ISIG(f)− gIREF (f)], (A.5)

V auto
LOG = −ln(1/g − 1), (A.6)

where R is the responsivity of the detector, g =
ISIG

IREF
is a value obtained automatically

for the internal detector circuitry, and IX(f) is the variation of the intensity in the X
channel detected at the modulated frequency f. Now we use the automatically obtained
g value in the detector in autobalanced mode:

g =
ISIG
IREF

=
αSIGI0 cos2 θF
αREF I0 sin2 θF

=
αSIG
αREF

1

tan2 θF
, (A.7)

And from Eq. A.6
1

g
= e−V

auto
LOG + 1 =

αREF
αSIG

tan2 θF . (A.8)

Then
θF = arctan

√
αSIG
αREF

(1 + e−V
auto
LOG). (A.9)

Thus, finally on the computer, we calculate the absolute value of θF from measuring
the output the autobalanced detector V auto

LOG. The value of
αSIG
αREF

∼ 1, was previoslly

determined experimentally.

θF = arctan

√
(1 + e−V

auto
LOG). (A.10)

We can set θF =0 for B= 0 put an magnetic field dependence.
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A.2 Measurement of the photo-induced Faraday rota-

tion using an autobalanced photodetector system

When a pump light mechanically modulated at frequency f hits the sample, it produces
a small variation ∆θF , in the Faraday rotation angle θF of the linearly polarized probe
light. The objective of the experiment is to measure the absolute value of ∆θF . The used
setup in the experiment is presented in Fig. A.2.

Figure A.2: Setup for measuring photo-induced Faraday rotation

The probe light, which carries the information of the rotated angle after passing
through the sample, in its way to the detector, pass first through a λ/2 plate and later is
splitted into its orthogonal components by a beam splitter, these orthogonal component
signals are sent to the detector. The value of the intensity of the orthogonal components
of the probe light are obtained from the Malus law:

I|| = I0 cos2 θF , (A.11)

I⊥ = I0 sin2 θF . (A.12)

To eliminate any possible noise in the laser, the auto-balanced mode of the detector is
used, in which, for an accurate operation condition, we adjust the probe intensity using
the λ/2 plate such as IREF/ISIG ∼ 2 , where IREF is the intensity of the signal that
arrives to the REF channel of the detector and ISIG is the intensity of the signal that
arrives to the SIG channel of the detector. The value of these intensities are expressed
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in terms of a constant αX , which characterize the optical coupling and depend of the
detector.

ISIG = αSIGI|| =⇒ ISIG = αSIGI0 cos2 θF , (A.13)

IREF = αREF I⊥ =⇒ IREF = αREF I0 sin2 θF . (A.14)

In these conditions, in the auto-balanced mode of the detector, we have the values of the
outputs of the detector:

V auto
SIG = −10×R× ISIG, (A.15)

V auto
LIN = 100×R× [ISIG(f)− gIREF (f)], (A.16)

V auto
LOG = −ln(1/g − 1). (A.17)

where R is the responsivity of the detector, g =
ISIG

IREF
is a value obtained automatically

for the internal detector circuitry, and IX(f) is the variation of the intensity in the X
channel detected at the modulated frequency f. From Eq. A.11 and Eq. A.12

ISIG(f) = ∆ISIG = −αSIGI02 cos θF sin θF∆θF = −αSIGI02 sin 2θF∆θF . (A.18)

IREF (f) = ∆IREF = −αREF I02 cos θF sin θF∆θF = −αREF I02 sin 2θF∆θF . (A.19)

Replacing the R value from Eq. A.15 in A.16 we obtain

V auto
LIN = −10×R× V auto

SIG

{ISIG(f)

ISIG
− IREF (f)

IREF

}
. (A.20)

Replacing the obtained values for ISIG(f) and IREF (f) we obtain:

V auto
LIN =

40V auto
SIG ∆θF

sin 2θF
. (A.21)

Here we are interested in the ∆θF value and not in θF , then, to eliminate the θF value we
recall the automatically obtained g value:

g =
ISIG
IREF

=
αSIGI0 cos2 θF
αREF I0 sin2 θF

=
αSIG
αREF

1

tan2 θF
. (A.22)

Also from Eq. A.17
1

g
= e−V

auto
LOG + 1 =

αREF
αSIG

tan2 θF . (A.23)
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Then
θF = arctan

√
αSIG
αREF

(1 + e−V
auto
LOG). (A.24)

And from Eq. A.24 and Eq. A.21 we have:

V auto
LIN =

40V auto
SIG ∆θF

sin 2
{

arctan

√
αSIG
αREF

(1 + e−V
auto
LOG)

} . (A.25)

This is the output of the auto-balanced detector which goes to the lock-in amplifier.
And the value of ∆θF is:

∆θF =

sin 2
{

arctan

√
αSIG
αREF

(1 + e−V
auto
LOG

}
V auto
LIN

40V auto
SIG

. (A.26)

The lock-in amplifies this signal and operates just with the signal at the frequency f of
the modulator. The output of the lock-in will be:

V lock−in =
√

2{first harmonic amplitude of the entering signal} =
√

2V auto
LIN . (A.27)

case 1: Modulation from a chopper

Now, in the particular case of a square modulation by a chopper:

V lock−in =
√

2(
2

π
V0) =

√
2(

2

π
|V auto
LIN |). (A.28)

Figure A.3: Square modulated signal with frequency f generated for the chopper.

Thus, finally, on the computer, we calculate the absolute value of ∆θF from measuring
the output of the lock-in V lock−in and the outputs of the autobalanced detector V auto

LOG, V auto
LIN
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and V auto
SIG .

∆θF =
πV lock−in

80
√

2V auto
SIG

sin 2
{

arctan

√
αSIG
αREF

(1 + e−V
auto
LOG)

}
V auto
LIN . (A.29)

case 2: Modulation from a photo-elastic modulator

In the particular case of a sinusoidal modulation by a photo-elastic modulator:

V lock−in =
√

2(V0) =
√

2(|V auto
LIN |). (A.30)

Figure A.4: Sinusoidal modulated signal with frequency f generated for the chopper.

Thus, finally, on the computer, we calculate the absolute value of ∆θF from measuring
the output of the lock-in V lock−in and the outputs of the autobalanced detector V auto

LOG, V auto
LIN

and V auto
SIG

∆θF =
V lock−in

40
√

2V auto
SIG

sin 2
{

arctan

√
αSIG
αREF

(1 + e−V
auto
LOG)

}
V auto
LIN . (A.31)

The value of
αSIG
αREF

∼ 1, which was previouslly determined.
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A.3 Measurement of the time resolved differential trans-

mission using an auto-balanced photo-detector sys-

tem

When a pump light mechanically modulated by a chopper at frequency f hits the sample,
it produces a small variation ∆I, in the intensity I0 of the probe light. The objective of
the experiment is to measure the differential variation ∆I/I of the probe light that pass
through the sample, which is proportional to the differential transmission ∆T/T , which

is defined as
T pump − T

T
, with T =

I

I0

. The used setup in the experiment is presented in

Fig. A.5.

Figure A.5: Setup for measuring time-resolved differential transmission

The time delayed probe light, before passing through the sample is splitted in two
equally intense beams, the first one goes directly to the REF channel of the detector and
the second one crosses the sample with intensity I arriving to the SIG channel of the
detector. The value of the intensity of the these signal can be written as:

ISIG = I + I(f) = I + ∆I and IREF = I0. (A.32)

In these conditions, in the auto-balanced mode of the detector, we have the values of the
outputs of the detector:

V auto
SIG = −10×R× ISIG, (A.33)
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V auto
LIN = 100×R× [ISIG(f)− gIREF (f)], (A.34)

V auto
LOG = −ln(1/g − 1). (A.35)

where R is the responsivity of the detector, g =
ISIG

IREF
is a value obtained automatically

for the internal detector’s circuitry, and IX(f) is the variation of the intensity in the X
channel detected at the modulated frequency f.

From Eq. A.33 we have:

R =
−V auto

LIN

10ISIG
. (A.36)

Replacing this value in Eq. A.34 and taking into account that IREF (f) = 0 because this
value does not depend of the periodic pump pulse, we have:

V auto
LIN = −10V auto

SIG

ISIG(f)

ISIG
. (A.37)

This is the output of the auto-balanced detector which goes to the lock-in amplifier.
The lock-in amplifies this signal and operates just with the signal at the frequency f

of the modulator. The output of the lock-in will be:

V lock−in =
√

2{first harmonic amplitude of the entering signal} =
√

2V auto
LIN . (A.38)

In the particular case of a square modulation by a chopper:

V lock−in =
√

2(
2

π
V0) =

√
2(

2

π
|V auto
LIN |). =⇒ V auto

LIN =
π

2
√

2
V lock−in. (A.39)

Then
−10V auto

SIG (
∆I

I
) =

π

2
√

2
V lock−in. (A.40)

Thus, finally, on the computer, we calculate the absolute value of
∆I

I
from measuring the

output of the lock-in V lock−in

∆I

I
= − π

20
√

2

V lock−in

V auto
SIG

. (A.41)

As we said before, ∆I/I is proportional to the differential transmission ∆T/T , and we are
interest just in its relative temporal evolution and not in its exact absolute value, then,
we can write:

∆T

T
= αV lock−in, (A.42)
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where α = − π

20
√

210RISIG
is a constant.
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Appendix B

Mathematical Proofs of equations

B.1 Classical model of FR in diamagnetic materials

To build a contrast between FR in a magnetic semiconductor, i. e. one that contains atoms
with unpaired electrons, to FR in a diamagnetic semiconductor, whose electrons are all
paired, let us review very briefly the well-known classical model for FR in the diamagnetic
semiconductor. This simple classical model is based on the Lorentz oscillator model of
atoms and it is described in detail in Ref. [76].

Linear polarization is a superposition of RCP and LCP of equal amplitudes. For a
non-magnetic atom, its angular momentum (orbital and spin) is zero, therefore there is
no spatial orientation of the atom. Hence, by symmetry, both RCP and LCP will induce
equal and opposite polarization currents, therefore there will be no FR. However, if a
magnetic field is applied in the direction of light travel (i. e., in the Faraday geometry),
then the Lorentz force will have opposite effects on the LCP and RCP induced polarization
currents, which become different from one another, and FR emerges. In the linear regime,
the FR in this case is proportional to the intensity of the applied magnetic field.

The following derivation assumes that the electrons having mass m and charge e in the
medium behave according to classical mechanics under the combined effect of an external
electromagnetic wave E and a constant applied magnetic field B in the propagation
direction (Z axis) as is shown in Fig. B.1. The interaction of an electromagnetic field
with a material occurs via perturbations to the electrons in atomic or molecular orbitals
forming the bands. The differential equation governing the electron movement is given
by

mr̈ = −mω2
0r + e(E + ṙ ×B), (B.1)

where ω0 is the absorption frequency of the material. Separating, for simplicity, this
equation in the X and Y components we obtain,

mẍ = −mω2
0x+ eE0 cosωt+ eBẏ (B.2)
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and
mÿ = −mω2

0y + eE0 cosωt+ eBẋ. (B.3)

Figure B.1: Classical model for the FR. The electrons in the material become polarized
following the combined effect of the rotating electric field E of a circular polarized light
and a magnetic field B in the propagation direction of the light. This effect is different
for RCP and LCP light.

Solving these equations, we obtain the transverse motion of an electron in the X-Y
plane,

rRCP = r+ =
eE0

m(ω2
0 − ω2) + eBω

(cos(kz − ωt)x̂ + sin(kz − ωt)ŷ)

= E+(cos(kz − ωt)x̂ + sin(kz − ωt)ŷ) where E+ =
eE0

m(ω2
0 − ω2) + eBω

(B.4)

and

rLCP = r− =
eE0

m(ω2
0 − ω2)− eBω (cos(kz − ωt)x̂− sin(kz − ωt)ŷ)

= E−(cos(kz − ωt)x̂ + sin(kz − ωt)ŷ) where E− =
eE0

m(ω2
0 − ω2)− eBω .

(B.5)

The induced dipole moment p of a single atom in the material is given by

p± = e r± =
e2

m(ω2
0 − ω2)± eBω E0

±, (B.6)

where E0
± indicates the RCP (LHC) case for the plus (minus) sign. In general, the dipole
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moment p is indeed proportional to the electric field and the amplitude of the circular
polarization induced in the crystal by the rotating electric field of the incoming light in
the X-Y plane, is given by [80, 81],

p± = α±(ω)E0, (B.7)

where, for our case, α±(ω) =
e2

m(ω2
0 − ω2)± eBω . If there are N atoms in a unit volume,

the polarization P , the dipole moment per unit volume is given by

P± = Np± = Nα±(ω)E0
±. (B.8)

The amplitude of the polarization we can write as

P± = Np± = Nα±(ω)E0, (B.9)

Since
εE0

± = ε0E0
± + P±. (B.10)

Also using the definition

ω =
kc

n
= kv c2 =

1

ε0µ0

and v2 =
1

εµ
. (B.11)

We can get
n2 =

εµ

ε0µ0

, (B.12)

where we assume µ ≈ µ0. Then, replacing the electric field dependence of the polarization
in equation B.10 we obtain

ε± = ε0 +Nα±(ω). (B.13)

Then
n2
± = 1 +

N

ε0
α±(ω) = 1 +

N

ε0

e2

m(ω2
0 − ω2)± eBω . (B.14)

We can even calculate the approximation

n2
− − n2

+ ≈
Ne2

ε0

2eωB

m2(ω2
0 − ω2)2

. (B.15)

And finally we get the well-know equation

θF =
π

λ
(n− − n+) =

πNe2

λε0n0

eω

m2(ω0 − ω2)2
B, (B.16)

where n0 =
n− + n+

2
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B.2 Connecting refractive index to the electronic po-

larizability

We want to find first what kind of electromagnetic waves can exist in a dielectric material
in which there are no extra charges other than those bound in atoms. So we have

ρ = −∇ · P and J =
∂P

∂t
. (B.17)

In this situation, the Maxwell equations then become:

∇ ·E(r, t) = −∇ · P
ε0

, (B.18)

∇×B(r, t) = µ0ε0
∂E(r, t)

∂t
+ µ0

∂P

∂t
, (B.19)

∇×E(r, t) = −∂B(r, t)

∂t
, (B.20)

∇ ·B(r, t) = 0, (B.21)

where E(r, t), B(r, t), ε0, and µ0 represents the electric field, the magnetic field, the per-
mittivity and the permeability, respectively.

These equations describe the propagation of the electromagnetic fields within and at
the boundary of the material.

In order to obtain analytical expressions for E(r, t) andB(r, t), we are going to find dif-
ferential equations for these fields from the Maxwell equations and the following vectorial
identity:

∇× (∇×A) = ∇(∇ ·A)−∇2A, (B.22)

where A is a vector field. Then, taking the curl of equation B.20 we have:

∇× (∇×E(r, t)) = −∂(∇×B(r, t))

∂t
. (B.23)

Replacing equations B.19, B.20 and B.23 in equation B.22 where we change A by E(r,t)
we obtain

∇2E(r, t)− µ0ε0
∂2E(r, t)

∂t2
= − 1

ε0

∇(∇ · P ) + µ0
∂2P

∂2t
. (B.24)

So instead of the wave equation, we now get that the D’Alembertian of E is equal to two
terms involving the polarization P . Since P depends on E , we can have a solution for
this master equation.
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We consider the case for the electric field

E± =
(x̂± iŷ)

2
E0e

i(kz−wpt). (B.25)

We know that any function of (z − vt) represents a wave that travels with speed v. The
exponent of equation B.25 can be writen as

ik(z − ωp
k
t). (B.26)

So equation B.25 represents a wave with the phase velocity

vph =
ωp
k
. (B.27)

The index of refraction n is defined by letting

vph =
c

n
. (B.28)

Thus, equation B.25 becomes

E± =
(x̂± iŷ)

2
E0e

i(ωpnz/c−wpt). (B.29)

So we can find n by finding what value of k is required if equation B.25 is to satisfy the
master equation, and then using

n =
kc

ωp
. (B.30)

In an isotropic material, the polarization has no variation with the coordinates, so ∇·P =

0, and we get rid of the first term on the right hand of the master equation. Also, since we
are assuming a linear dielectric, P will also vary as eiωpt, and ∂2P

∂2t
= −ωpP . the Laplacian

in the master equation becomes simply ∂2E
∂2t

= −k2E , so we have

−k2 (x̂± iŷ)

2
E0 +

ω2
p

c2

(x̂± iŷ)

2
E0 =

−ω2
p

ε0c2
P . (B.31)

Now we let assume for the moment that since E is varying sinusoidally. We can set P
proportional to E , and we write

P = NαE. (B.32)

If we consider the circular polarization case we can write

P± = Nα±E = Nα±
(x̂± iŷ)

2
E0e

i(kz−wpt). (B.33)
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Then E0 drops out of B.29 and we find

k2 =
ω2
p

c2
(1 +

N

ε0

α). (B.34)

We have found the a wave like B.25, with a number k given by B.30, will satisfy the
master equation. Using B.31 the refractive index is given by

(
ck

ωp
)2 = n2 = 1 +

N

ε0

α. (B.35)

We can put the specific case for the RHP and the LCP light as

n2
± = 1 +

N

ε0

α±. (B.36)
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B.3 First order time-dependent perturbation theory

Time-dependent perturbation theory, developed by Paul Dirac and explained in Saku-
rai [101], studies the effect of a time-dependent perturbation W(t) applied to a time-
independent Hamiltonian H0. Since the perturbed Hamiltonian H(t) = H0 + W (t) is
time-dependent, so are its energy levels and eigenstates.

We will briefly examine the method behind Dirac’s formulation of time-dependent per-
turbation theory. Choose an energy basis |ψn〉 for the unperturbed system.

Let cn(t) be the components of the unperturbed wavefunction | Ψ(t)〉 in the | ψn〉 basis

| Ψ(t)〉 =
∑

n

cn(t) | ψn〉 with cn(t) = 〈ψn | Ψ(t)〉. (B.37)

We define Wnm = 〈ψn | W (t) | ψm〉. The Schrodinger equation is

ih̄
d

dt
| Ψ(t)〉 = (H0 +W (t)) | Ψ(t)〉. (B.38)

Multiplying this equation by 〈ψn | and using B.37 we obtain

ih̄
d

dt
cn(t) = Encn(t) +

∑

k

Wnkck(t) where ωnk =
En − Ek

h̄
. (B.39)

The substitution cn(t) = an(t)e−iEnt/h̄ in B.39 gives

ih̄
d

dt
an(t) =

∑

k

Wnkak(t)e
iωnkt. (B.40)

We can write
an(t) = a0

n(t) + λa1
n(t) + λ2a2

n(t) + .... (B.41)

We seek solution for the first order approximation in λ. For t < 0 we assume the system
to be in the state | ψi〉, so according to B.37 and the relation between an(t) and cn(t), we
have

an(t = 0) = δni. (B.42)

If we substitute B.41 in B.40 and equate the coefficients of λ on both sides of the equation,
we obtain (by using B.42)

ih̄
d

dt
a1
n(t) =

∑

k

Wnk(t)e
iωnkta0

k(t) =
∑

k

Wnk(t)e
iωnktδki = Wni(t)e

iωnit, (B.43)

which we can integrate to finally obtain

a1
n(t) =

1

ih̄

∫
Wnk(t)e

iωnktdt. (B.44)
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B.4 First order time-dependent electronic polarization

We now study the specific case of the perturbation given by the incidence of a circularly
polarized monochromatic electromagnetic wave traveling along the Z direction carrying
an electric field

E± =
(x̂± iŷ)

2
E0e

i(kz−wpt) = E0±e
i(kz−ωt), (B.45)

where E0± =
(x̂± iŷ)

2
E0 and the plus sign is associated with a righ-hand circularly

polarized wave (RHP) and the minus sign with a left-hand circularly polarized one (LHC).
The circulating electric field of the incident wave will induce a circulating polarization
vector in the material. The interaction between an electron and the electromagnetic wave
can be described by the perturbation,

W (t) = −µ · E± with µ = −e
∑

i

ri, (B.46)

where µ is the electric dipole momentum operator for the electrons involved in the exci-
tation and -e is the charge of the electron.

Making the inner product, we have

W (t) =
e

2
(xx̂+ yŷ + zẑ) · (x̂± iŷ)E0e

i(kz−wpt). (B.47)

Then
W (t) =

e

2
(x± iy)E0e

i(kz−wpt). (B.48)

The induced circular polarization in a medium, when electrons are in a state | Ψ(t)〉 is
given by the expectation value,

〈P 〉 = N〈Ψ(t) | µ | Ψ(t)〉 (B.49)

where N is the density of electrons. Then, the lowest dipole order contribution to the
polarization linear in the electric field amplitude of the incident wave can be obtained
from,

〈P 〉 = N〈Ψ0
n + Ψ1

n(t) | µ | Ψ0
n + Ψ1

n(t)〉, (B.50)

where the linear contribution is given by

〈P 1〉 = N(〈Ψ0
n | µ | Ψ1

n(t)〉+ 〈Ψ1
n(t) | µ | Ψ0

n〉). (B.51)

The right term, the "antiresonant" term, can be discarded. Then

〈P 1〉 = N〈Ψ0
n | µ | Ψ1

n(t)〉. (B.52)
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In order to obtain this expectation value, we need the first order approximation wave
function Ψ1

n(t) when is perturbed by a time-dependent function W (t) = −µ · E±.
By using general relation obtained in the section above, the equation B.44

a1
n(t) =

1

ih̄

∫
〈ψn | Wnk(t) | ψk〉eiωnktdt. (B.53)

For this particular case we have W (t) = −µ · E±, then we get

a1
n(t) =

1

ih̄

∫
〈ψn | −µ · E± | ψk〉eiωnktdt (B.54)

=
e

2ih̄

∫
〈ψn | x± iy | ψk〉E0e

i(kz−wpt)eiωnktdt (B.55)

=
e

2ih̄
〈ψn | x± iy | ψk〉E0e

ikz

∫
eiωnkte−iwptdt. (B.56)

Solving the integral we obtain

= − e

2h̄
〈ψn | x± iy | ψk〉E0e

ikz e
i(ωnk−ωp)t

ωnk − ωp
. (B.57)

Finally, we get

a1
n(t) =

1

2

Vnke
iωnkt

Enk − Ep
ei(kz−ωpt), (B.58)

where Enk = h̄ωn−h̄ωk, Ep = h̄ωp and Vnk = −e〈ψn | x±iy | ψk〉 = −2〈ψn | µ | ψk〉·E0±.
From this, we can obtain the first order state of the perturbed wavefunction

|Ψ1(t)〉 =
∑

n

c1
n(t)|ψn〉, (B.59)

which we can write as
|Ψ1(t)〉 =

∑

n

a1
n(t)e−iωnt|ψn〉. (B.60)

Or
|Ψ1(t)〉 =

∑

n

1

2

Vnke
iωnkt

Enk − h̄ωp
ei(kz−ωpt)e−iωnt|ψn〉. (B.61)

Finally

|Ψ1(t)〉 =
1

2

∑

n

Vnke
−iωkt

Enk − h̄ωp
ei(kz−ωpt)|ψn〉. (B.62)

Also, | Ψ0〉 is the solution of the unperturbed Schrodinger equation

| Ψ0〉 = e−iωkt | ψk〉. (B.63)
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Then, the linear contribution of the induced polarization (B.52) can be writen as,

〈P 1〉 = N〈ψge+iωgt | µ | 1

2

∑

n

Vnke
−iωgt

Eng − h̄ωp
ei(kz−ωpt)|ψn〉. (B.64)

This can be simplified to,

〈P 1
±〉 =

N

2

∑

m

〈ψg | µ | ψm〉Vmk
Emg − h̄ωp

ei(kz−ωp)t. (B.65)

Remembering that Vmg = 2〈ψm | µ | ψg〉E0±, we can write this equation as

〈P 1
±〉 = N

∑

m

〈ψg | µ | ψm〉〈ψm | µ | ψg〉E0±

Emg − h̄ωp
ei(kz−ωp)t. (B.66)

Or

〈P 1
±〉 = N

∑

m

µgm [µmg · E0±]

Emg − h̄ω
ei(kz−ωpt) where E0± =

x̂± iŷ
2

E0, (B.67)

where µgm = 〈ψg | µ | ψm〉, µmg = 〈ψm | µ | ψg〉 and µ = −e∑ ri. On the other hand,
remembering the definition of the polarization P

P± = Nα±E0±e
i(kz−ωpt). (B.68)

We can equate this equation with equation B.67 and we obtain

N
∑

m

µgm [µmg · E0±]

Emg − h̄ω
ei(kz−ωpt) = Nα±E0±e

i(kz−ωpt). (B.69)

Then
α± =

∑

m

µgmµmg

Emg − h̄ωp
. (B.70)

Finally we can write, for the particular case of the circularly polarized light we calculated

α± =
1

2

∑

m

| µ±gm |2
Emg − h̄ωp

, (B.71)

where µ±gm = −e〈ψg | x± iy | ψm〉

153



Appendix C

Publications

154



PHYSICAL REVIEW B 95, 045205 (2017)

Photoinduced giant magnetic polarons in EuTe
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Photoinduced magnetic polarons in EuTe, with a magnetic moment of several hundred Bohr magnetons, were
investigated as a function of pump intensity and temperature by pump-probe Faraday rotation. The quantum
efficiency for optical generation of magnetic polarons is found to be 0.09. The pump-intensity dependence of
the photoinduced Faraday rotation shows a sublinear increase, from which we deduce that the population of
photoexcited polarons is limited by a maximum value of 4.5×1015 cm−3. This is four orders of magnitude less
than the concentration of polarons that would completely fill the crystal, which suggests that the photoexcited
polarons are anchored by defects. In addition to the generation of polarons, at high pump densities the modulated
pump light also causes a small alternating heating of the illuminated region. The temperature dependence of
the polaron magnetic moment is well described by the Curie–Weiss law. Above 100 K, polarons are thermally
quenched with an activation energy of 11 meV.

DOI: 10.1103/PhysRevB.95.045205

Optical manipulation of the magnetic state of matter is
a topic of current interest both from the fundamental point
of view as well as due to its high relevance in respect
to technological applications [1]. Magnetic semiconductors
represent a family of materials with a huge potential for fast
optomagnetism [2–4], yet they remain largely unexplored
in respect to optical manipulation of their magnetic state.
Europium telluride is an intrinsic magnetic semiconductor
of the face-centered cubic structure, where an europium
spin S = 7/2 is associated with every lattice site. EuTe is
an antiferromagnet with a Néel temperature of TN = 9.6 K,
hence its equilibrium magnetization is zero. Recently it
was demonstrated that in EuTe light in resonance with the
band gap can generate magnetic polarons with a magnetic
moment of several hundred Bohr magnetons at temperatures
as high as 100–150 K [5–7]. A magnetic polaron consists of a
conduction-band electron localized in space by a photoexcited
hole and the attractive exchange field generated by the spins
of the europium atoms within the range of the electronic wave
function. Magnetic polarons have been widely studied in di-
luted magnetic semiconductors (see, for instance, Refs. [8,9]).
In intrinsic magnetic semiconductors, the theory of magnetic
polarons was first studied by Kasuya and Nagaev [10,11].
A variational approximation to describe magnetic polarons
is described in Ref. [12]. In Ref. [6], the more sophisticated
self-consistent field approximation was used, and the theory
was used to extract magnetic polaron parameters from the EuTe
low temperature photoluminescence, which was measured
as a function of applied magnetic field. It was found that,
for EuTe, the magnetic polaron is described by a sphere
of radius RPol ≈ 4 (in units of the EuTe lattice parameter),
which is nearly independent of temperature and field, and the
magnetic moment of the polaron is ∼610μB below the Néel
temperature [5,6]. Because of the giant magnetic moment
of a polaron, a modest magnetic field of a few tens of
mT leads to a full alignment of polarons, which opens the
prospect of using light to magnetize EuTe. To determine
how efficiently this light magnetization mechanism can be
exploited, here we investigate photoinduced magnetic polarons

in EuTe as a function of pump intensity and temperature by
using pump-probe Faraday rotation.

The EuTe sample was grown by molecular beam epitaxy
(MBE) on a (111)-oriented BaF2 substrate [13]. The thickness
of the EuTe epitaxial layer was dSample = 1.3 μm, and the
epitaxial layer was capped with BaF2 to ensure total protection
of the EuTe surface from oxidation. The thickness of the
protective layer was 200 nm. BaF2 is completely transparent in
the wavelength range used in this paper, therefore the thickness
of the protective layer is not critical for the present study. The
photoinduced Faraday rotation (PFR) was measured by using
a two-color pump-probe technique. The pump light source was
a frequency-doubled Nd:YAG laser (2.33 eV), focused on the
sample with a Gaussian profile of 150 μm full width at half
maximum. The Faraday rotation probe was a semiconductor
laser of photon energy 1.86 eV. This photon energy is well
within the EuTe gap for any field and temperature used in
our measurements, so the probe is not absorbed. Therefore
it does not photoexcite any electron-hole pairs, and hence
it does not induce any magnetic polarons (the photoinduced
magnetic polaron excitation spectrum is given in Ref. [7]).
A magnetic field was applied normal to the surface of the
sample, which is parallel to the [111] crystalline direction.
The experiments were performed using a variable-temperature
optical cryostat containing a superconductive coil to generate a
magnetic field applied in the Faraday geometry. The pump was
modulated at 2.33 kHz using a chopper. The Faraday rotation
angle of the linearly polarized probe beam was measured by
using a polarization bridge containing a New Focus Nirvana
balanced detector coupled to a lock-in referenced to the
chopper frequency [14].

The Faraday rotation angle θF of the light that crosses
a uniformly magnetized sample of thickness dSample can be
converted into its magnetization M by using [15]

θF = V MdSample, (1)

where V is the Verdet constant. The Verdet constant at the
probe wavelength was determined from a measurement of
the Faraday rotation of the probe light, at 5 K, as a function
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FIG. 1. Faraday rotation by the bulk EuTe sample as a function
of the applied magnetic field at T = 5 K and T = 50 K. The inset
shows the ratio of the internal magnetic field to the applied magnetic
field.

of the applied magnetic field. During this measurement the
pump light was switched off. To isolate the EuTe Faraday
rotation signal, the contribution coming from the cryostat
windows was subtracted. As expected, we found that the
photoinduced Faraday rotation is independent of the intensity
of the probe because the probe used is well within the
EuTe transparency-wavelength range. As shown in Fig. 1,
the Faraday rotation depends linearly on applied field Ba

with a slope of m(T = 5 K) = 8.6 mrad/T. At T = 5 K the
magnetization is also linear in Ba , with a slope of MSAT/BSAT

[16], where MSAT = nEuμEu = 9.03×105 A/m is the saturation
magnetization, where nEu = 4/a3 is the concentration of Eu
atoms in the fcc lattice of parameter a = 6.6 Å, μEu = gμBS

is the magnetic moment of an Eu atom, g = 2 is the Eu2+
gyromagnetic factor, μB is the Bohr magneton, and BSAT =
8.3 T is the saturation field in the Faraday geometry [16].
Hence the Verdet constant, for the probe wavelength λ = 665
nm, is found to be

V = BSATm(T = 5 K)

dSampleMSAT
= 0.061 rad/A. (2)

Being determined by the electronic energy structure, the
Verdet constant will remain approximately constant as a
function of temperature and magnetic field, as long as the
electronic energy structure and the band gap are not modified.
It is well known that the EuTe band gap changes when the
lattice spins are strongly polarized, but this requires magnetic
fields above 3 T at helium temperatures (see, for instance,
Figs. 4 and 5 in Ref. [17]), and proportionally larger fields
at higher temperatures. Because the magnetic fields used here
are modest in comparison, we can safely assume, to a good
approximation, that the Verdet constant is independent of
temperature and magnetic field for all the experimental results
presented here.

In addition to converting a Faraday rotation angle to
magnetization, the Verdet constant also allows us to determine
the internal magnetic field, which is smaller than the applied
one due to the demagnetization field. In the Faraday geometry

0.2

FIG. 2. Photoinduced Faraday rotation (PFR) signal as a function
of the internal magnetic field at T = 5 K.

used, the demagnetization field within the epitaxial layer is
given by μ0M [18], hence the internal magnetic field will be
given by

Bint = Ba − μ0M. (3)

Substituting M from Eq. (1), and using θF = m(T )Ba, where
m(T ) is the slope of the Faraday rotation angle as a function
of Ba at a temperature T (see Fig. 1), then the ratio Bint/Ba

will be given by

Bint

Ba
= 1 − μ0

m(T )

dSampleV
. (4)

The ratio Bint/Ba, calculated by using Eq. (4), is plotted in the
inset of Fig. 1 as a function of temperature. The sharp downfall
of the Bint/Ba ratio in the vicinity of 10 K is because EuTe
is an antiferromagnet, therefore its temperature-dependent
magnetic susceptibility shows the characteristic cusp at the
Néel temperature (see, for instance, Ref. [19]). Therefore,
according to Eq. (3), the absolute value of the internal field
Bint is expected to show a corresponding downward cusp
at the Néel temperature, as indeed observed in the inset
of Fig. 1.

By using the results of the preceding preliminary analysis,
we can convert the measured photoinduced Faraday rotation,
as a function of applied magnetic field Ba into photoinduced
magnetization as a function of the internal magnetic field
Bint. Figure 2 shows the photoinduced Faraday rotation signal
(PFR) at 5 K as a function of the internal field for a pump
intensity of 10 mW/cm2. The photoinduced Faraday rotation
angle was converted into magnetization by using the Verdet
constant determined above and assuming that the thickness
dPol of the layer where magnetic polarons are photogenerated
is equal to the pump-light penetration depth 1/α, i.e., dPol =
1
α

, where α = 10 μm−1 is the absorption coefficient at
the pump wavelength [17]. The photoinduced magnetization
scale obtained in this way is shown on the right-hand side
of Fig. 2.

The photoinduced Faraday rotation signal shown in Fig. 2
has all the characteristics expected for an ensemble of
photoexcited polarons. First, the signal shows a resonance
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when the energy of the pump photons meets the EuTe band
gap [7]. Second, the signal is zero at B = 0, because at
B = 0 there is no preferential direction in space, therefore
photoexcited magnetic polarons will point randomly, and the
net magnetic moment of the sample will remain zero. Third,
the photoinduced signal tends to saturate rapidly when a
magnetic field is applied, exactly as expected for magnetic
polarons of a large magnetic moment—several hundreds of
Bohr magnetons.

Assuming that the photoexcited polarons do not diffuse, the
saturation value of the photoinduced Faraday rotation seen in
Fig. 2, �θSAT

F = 0.12 μrad, can be converted to an average
photoinduced magnetization

〈�M〉SAT = α�θSAT
F

V
= 2.2×10−5MSAT. (5)

This value can be compared with the value expected for
photoinduced polarons

〈�M〉SAT = nPolμPol, (6)

where μPol ∼ 610μB is the magnetic moment of a polaron at
5 K [5,6], and nPol is the steady-state population of magnetic
polarons when the sample is illuminated with the pump
light. The inertial effective mass of a magnetic polaron has
been predicted to increase exponentially with the ratio of
the polaron radius and the lattice parameter, RPol/a [20].
Because in our case this ratio is quite large, RPol/a ∼ 4 [6],
we expect the photoinduced magnetic polarons to be quite
heavy and immobile, and they therefore remain in the layer
penetrated by the pump light. In this case the steady-state
polaron population will be given by nPol = Gτ0, where G is
the polaron average generation rate per unit volume within
the light penetration depth 1/α, G = χ

pα

hν
, p is the intensity

of the pump beam incident on the surface of the sample, χ

is the quantum efficiency of polaron generation, hν is the
pump photon energy, and τ0 = 15 μs is the polaron lifetime
at T = 5 K [7]. All parameters determining 〈�M〉SAT are
known, except for the quantum efficiency, so a comparison
of Eqs. (5) and (6) yields the quantum efficiency χ ≈ 0.09.
This result is very reasonable and can be taken as further
evidence that photoinduced magnetic polarons are the source
of the photoinduced Faraday rotation signal observed.

By using the deduced quantum efficiency, the steady-state
polaron population is found to be nPol = 3.6×1015 cm−3.
Therefore the average distance between polarons is estimated
to be d = 2( 3

4πnPol
)1/3 ∼ 120a, where a is the EuTe lattice

parameter. Taking into account that the radius of a polaron
is RPol ∼ 4a [6], then the distance between polarons is two
orders of magnitude greater than the polaron radius, hence it
can be assumed that polarons are noninteracting.

Having firmly established that the photoinduced Faraday
rotation signal is due to optically generated magnetic polarons,
that these polarons are very distant from one another, and
knowing that the magnetic moment of a polaron equals several
hundreds of Bohr magnetons [5,6], we can conjecture that the
magnetization of a magnetic polaron ensemble will obey a
Langevin function, which describes a paramagnetic system
in the classical limit. In this hypothesis the magnetization
associated with a photoinduced magnetic polaron ensemble

will be given by

〈�M(B,T )〉 = nPolμPolL(x), (7)

where the Langevin function is given by

L(x) = coth (x) − 1

x
, (8)

where x = μPolB

kBT
. Notice that, below the Néel temperature, the

magnetic moment of the polaron is known from photolumi-
nescence studies to be 610μB [5,6], hence in that temperature
range there are no free parameters in Eq. (7). Nevertheless,
to test the validity of our Langevin conjecture, we have fitted
the photoinduced magnetization data taken at T = 5 K with
Eq. (7), whereby the polaron magnetic moment is the sole
adjustable parameter. The fitted curve is depicted by the solid
line in Fig. 2, yielding μPol ∼ 600μB. This coincides almost
exactly with the known value, which demonstrates that the
magnetization of the photoinduced magnetic polaron ensemble
indeed follows a Langevin function.

Next we investigate the possibility of generating a higher
population of photoinduced polarons by increasing the pump
intensity. Figure 3(a) shows the dependence of the PFR as a
function of pump intensity for T = 5 K. As the pump intensity
is increased, a linear background appears, whose slope is
proportional to the pump intensity, suggesting a heating effect.
A temperature increase of the bulk by �T will cause a change
in its magnetization by

�M = ∂M

∂T
�T . (9)

Here �M represents the change in magnetization due to
sample heating within the pump-light penetration depth
dPol = 1

α
, which from Eq. (1) is given by

�M = �θF

V dPol
. (10)

Similarly, ∂M
∂T

is also related to the bulk Faraday rotation,

∂M

∂T
= 1

V dSample

∂θF

∂T
. (11)

At fields sufficiently large, when the polaron magnetization is
saturated, only a thermal effect can contribute to the slope of
�M . Therefore, substituting Eqs. (10) and (11) in Eq. (9), and
resolving for �T , we get

�T = dSample

dPol

slope of �θF at high fields

slope of ∂θF

∂T

, (12)

where the slope of ∂θF

∂T
was taken from the inset of Fig. 3(c),

and the slope of �θF was taken from the high-field limit in
Figs. 3(a) and 3(b).

The temperature increase �T calculated from Eq. (12)
is shown as a function of the pump intensity in Fig. 3(d).
Our interpretation in terms of a heating effect is confirmed
by the photoinduced Faraday rotation curves as a function
of intensity, done at a temperature of 50 K [Fig. 3(b)].
Because for EuTe the Faraday rotation dependence has the
typical behavior of an antiferromagnet, with a maximum at
the Néel temperature [see Fig. 3(c)], the slope of the thermal
background seen in the PFR signal should change from positive
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FIG. 3. (a) Photoinduced Faraday rotation at 5 K and (b) at 50 K. (c) Faraday rotation by the bulk EuTe sample as a function of temperature
for various magnetic fields. (Notice that for our sample the observed Néel temperature is slightly larger than the accepted value of 9.6 K
for EuTe, in agreement with direct measurements reported in Ref. [13]). The slope of the dependance of ∂θF /∂T on B is shown in the
inset. (d) The deduced temperature modulation of the illuminated region is shown as a function of the pump intensity for T = 5 K and
T = 50 K.

to negative when we cross the Néel temperature. This is
exactly what we observe, as can be seen from Fig. 3(a) for
T = 5 K, where the thermal background has a positive slope,
and Fig. 3(b) for T = 50 K, where the slope of the background
signal is negative. The temperature modulation at T = 50 K
was found by using Eq. (12), and it is also shown in Fig. 3(d).
At 50 K the heating effect is smaller than at 5 K due to a
larger heat capacity of the EuTe crystal [21]. Another aspect
worthy of comment is that, upon closer inspection of Fig. 3(d),
the temperature modulation �T presents a slightly sublinear
dependence on pump intensity. This can be attributed to the fact
that, for a larger excitation power, the effective volume excited
by light increases, because the threshold excitation light
penetrates deeper into the sample. In this case, the temperature
increase for doubled excitation power will obviously be less
than doubled, which explains the sublinear behavior of �T on
the excitation power.

Having subtracted the linear thermal background from the
�θF vs B curves, as deduced above, the saturation polaron
magnetization �θSAT

F for every pump intensity was extracted
and it is plotted in Fig. 4. �θSAT

F increases sublinearly with
pump intensity, indicating that polarons are less and less
efficiently generated when the pump intensity is increased.

Taking into account that optical absorption leads to an
exponentially decreasing pump intensity below the surface of

FIG. 4. Dots show the photoinduced Faraday rotation angle at
saturation as a function of the pump intensity. The full line shows
a fit of the dots with Eq. (14), which yields the maximum polaron
concentration to be nD = 4.5×1015 cm−3.
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the sample, then the concentration of photogenerated polarons
at a depth x below the surface will be

nPol(x) = χ
pe−αxα

hν
τ0. (13)

We shall assume, however, that the concentration of polarons
that can be generated is limited by a maximum value,
represented by nD. Then the photoinduced Faraday rotation
in the saturated fields will be given by

�θSAT
F ∼

∫ ∞

0
nPol(x)dx

= nD

α

{ p

pD
if p < pD(

1 + ln p

pD

)
if p > pD,

(14)

where pD = nDhν
χατ0

. Equation (14) gives a photoinduced Faraday
rotation angle that increases linearly with pump intensity for
p < pD and logarithmically for p > pD. Figure 4 shows that
Eq. (14) provides a very good fit of our data, whereby nD is the
single adjustable parameter, yielding nD = 4.5×1015 cm−3.
This is again far less than the concentration of polarons
that would completely fill the excited layer, ( 4

3πR3
Pol)

−1 =
1.3×1019 cm−3. We attribute the limited concentration of
polarons that can be photogenerated to their binding by
residual defects of concentration nD. At T = 5 K, these bound
polarons are long-lived—their lifetime is 15 μs [7]—and
therefore have a supremacy over magnetic polarons seen in
the photoluminescence, which have a much shorter lifetime,
of the order of a nanosecond [22]. The shorter lifetime
implies a stationary concentration of magnetic polarons that
is four orders of magnitude smaller, and effectively only
the long-lived magnetic polarons will be observed in the
photoinduced Faraday rotation. A plausible source of defects at
a low concentration of the order of 1015 cm−3 is the unbalanced
stoichiometry of the Eu and Te atomic fluxes during the MBE
growth. It should be observed that the binding of polarons to
defects provides further support for our previous assumption
that photoexcited polarons remain localized in the penetration
layer of the pump light and do not diffuse into the interior of
the EuTe crystal.

Equation (7) can be rewritten as

�θF (B,T ) = �θSAT
F (T )L

(
μPolB

kBT

)
, (15)

where �θF (B,T ) is the photoinduced Faraday rotation at a
field B and a temperature T , and �θSAT

F (T ) is the correspond-
ing saturation value, depicted in Fig. 2. The measured data
for various temperatures was fitted with Eq. (15), yielding
two parameters for each temperature: the magnetic moment of
the photoinduced magnetic polaron, μPol(T ), and the Faraday
rotation step height when B is varied, �θSAT

F (T ) (see Fig. 2).
It is worth pointing out that the polaron magnetic moment is
the only parameter defining the smoothness of the step, so
the value for μPol obtained from the fit is independent of any
other parameter entering Eq. (15), such as the polaron lifetime
and steady-state population, which depend on temperature.
Figure 5(a) shows the polaron magnetic moment as a function
of temperature so obtained. For comparison, the dashed line
in Fig. 5(a) is given by the magnetic moment associated with

FIG. 5. (a) Temperature dependence of the magnetic moment of
a polaron. (b) Temperature dependence of the photoinduced Faraday
rotation angle at saturation. Above T ∼ 50 K, �θSAT

F decreases
exponentially with a characteristic activation energy of EA = 11 meV.
The inset shows schematically the magnetic polaron energy level,
the ground state (when the photoexcited electron is absent), and the
thermally activated state, which drains the polaron population when
the temperature of the sample is increased.

the polaron sphere

μPol = 4
3πR3

Pol 〈M〉, (16)

where 〈M〉 is the average EuTe magnetization within the
magnetic polaron sphere under the action of the exchange
field of the photoexcited electron, BXf ≈ 1 T [5,6], taken in
the Curie–Weiss approximation [18]

〈M〉 = nEuμEu
gμB(S + 1)

3kB

BXf

T + TN
.

It can be seen that the Curie–Weiss law describes the data quite
well, without any adjustable parameter.

Finally, Fig. 5(b) shows a plot of the second param-
eter obtained from the fit, i.e., the photoinduced Fara-
day rotation at the saturation level, �θSAT

F (T ), as a
function of temperature. Above 100 K, the photoinduced Fara-
day rotation decreases exponentially with an activation energy
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of about 11 meV. The rapid decrease of the photoinduced
Faraday rotation signal is interpreted in terms of the thermal
activation of a fast recombination channel, which causes a
reduction of the polaron lifetime and hence of the steady-state
polaron population. The thermally activated magnetic polaron
quenching process is illustrated by the energy-level scheme
shown in the inset of Fig. 5(b).

In conclusion, we have shown that EuTe can be magnetized
by light through optical generation of magnetic polarons,
with a quantum efficiency of χ ∼ 0.09 and a maximum
concentration, which is about 4.5×1015 cm−3 in the case of
the sample studied in this work. Such a low concentration
is evidence that the magnetic polarons are bound to defects,
plausibly generated during the growth process due to a
deviation from stoichiometry. A path to clarify this point would
be to investigate samples with an intentional deviation from
stoichiometry and check if the deviation correlates with the

maximum polaron concentration. At low temperatures, the
polarons are immobile and do not diffuse out of the illuminated
volume. The polaron population can be thermally quenched,
with an activation energy of 11 meV, which could be due
to thermally activated recombination, or to polaron diffusion
out of the path of the probe beam. Thus, we demonstrated a
novel approach for the optical manipulation of magnetic states
in EuTe, which in principle should be valid for any intrinsic
magnetic semiconductor, as well as for diluted semiconductors
and for hybrid ferromagnetic-semiconductor structures.
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ABSTRACT

We present a simple semiclassical model to sustain that in europium chalcogenides (EuX), Faraday rotation (FR) in the transparency gap is
proportional to the magnetization of the sample, irrespective of the material’s magnetic phase, temperature, or applied magnetic field. The
model is validated by FR and magnetization measurements in EuSe in the temperature interval 1.7–300 K, covering all EuSe magnetic phases
(paramagnetic, antiferromagnetic type I or type II, ferrimagnetic, and ferromagnetic). Furthermore, by combining the semiclassical model with
the explicit electronic energy structure of EuX, the proportionality coefficient between magnetization and FR is shown to be dependent only on
the wavelength and the bandgap. Due to its simplicity, the model has didactic value; moreover, it provides a working tool for converting FR
into magnetization in EuX. The possible extension of the model to other intrinsic magnetic semiconductors is discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116150

I. INTRODUCTION

Faraday and Kerr rotations are powerful investigation tools of
spin phenomena, the use of which have led, for example, to the
demonstration of the spin Hall effect.1,2 Modern technology allows
the measurement of extremely small Faraday rotation (FR) angles,
in the nanoradian range,3 so much that even the contribution of a
single electron to the FR has been reported.4 Time-resolved FR
gives access to fundamental parameters of spin coherence, such as
its formation and extinction times.5–9 However, in most reports,
FR is used only as an indicative measure of spin coherence, and it
is not converted numerically into the associated magnetization.
A quantitative connection between FR and magnetization is the
subject of the present report.

In basic books on solid state physics,10 and in the literature
specialized on magneto-optics,11–13 FR per unit length of material
is often described for diamagnetic materials, where FR is propor-
tional to the magnetic field, B. In a separate class of materials, the
diluted magnetic semiconductors (DMS), FR was studied exten-
sively, and various mechanisms of FR have been identified.14

However, the topic of the present investigation are concentrated, or
intrinsic, magnetic semiconductors, whereby the magnetic atoms
give origin to the top valence band, whose presence is essential for
the FR, and, therefore, the mechanisms seen in DMS, or in diamag-
netic semiconductors, do not apply.

For the diamagnetic case, a proportionality between FR and B
can be justified by a simple classical model.15,16 In contrast, in
intrinsic magnetic semiconductors, the assumption of a constant
FR/B ratio fails squarely, as shown in Ref. 17. In many magnetic
semiconductors, FR is proportional to the magnetization, as dem-
onstrated in Ref. 18, using Maxwell equations and the polarizability
tensor for a cubic crystal. The proportionality between FR and
magnetization has also been demonstrated for EuTe19 and other
concentrated20,21 and diluted magnetic semiconductors,22 using
quantum mechanics, but these calculations are very involved and
require a detailed knowledge of the electronic structure of the
investigated material. A simple conceptual model, based on ele-
mentary classical ideas, justifying that FR can be proportional to
the magnetization in an intrinsic magnetic semiconductor, is
lacking, and this work fills this gap.
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In this paper, we develop a simple semiclassical model, showing
that in europium chalcogenides, where the magnetic atoms are the
source of the highest energy valence band, for photon energies below
the bandgap, FR is proportional to the magnetization, independently
of the magnetic phase (paramagnetic, antiferromagnetic, ferrimag-
netic, or ferromagnetic), temperature, or magnetic field. The model
is validated by measurements of FR and magnetization in the
1.7–300 K temperature range and in 0–7 T magnetic fields. The
material chosen for the validation was the intrinsic magnetic semi-
conductor EuSe, whereby adjusting the external parameters, all pos-
sible magnetic phases were covered. Our semiclassical model has the
advantage over existing quantum-mechanical theories due to its sim-
plicity. Moreover, we show that for EuX, the proportionality constant
between FR and magnetization is dependent only on the photon
energy and the bandgap of the semiconductor.

The paper is organized as follows. In Sec. II, FR is introduced;
in Sec. III, the classical model for FR in a diamagnetic semiconduc-
tor is briefly reviewed; in Sec. IV, we introduce our semiclassical
model for FR in EuX; in Sec. V, the proportionality between FR
and magnetization for EuSe in any scenario is thoroughly demon-
strated experimentally; and in Sec. VI, the semiclassical model is
combined with the specific electronic energy structure of EuX to
obtain a working expression for the proportionality constant
between magnetization and FR.

II. FARADAY ROTATION BASICS

A linearly polarized light ray can be expressed as the superposi-
tion of two rays of equal intensity, one of which is circularly polarized
according to the right-hand rule (RCP) and the other according to the
left-hand one (LCP). The superposition on these rays on exiting the
sample gives the FR angle, per unit length, at the wavelength λ,11,15,23

θF ¼ π
n� � nþ

λ
, (1)

where n+ is the refractive index and the plus or minus sign applies
to RCP or LCP, respectively. This formula shows that circular bire-
fringence, i.e., the inequality between nþ and n�, is the source of FR.

In general, semiconductor materials will contain several
valence bands contributing to the birefringence. Photons of energy
within the bandgap of the semiconductor are closest to resonance
with the top valence band; hence, the polarization effects of lower
lying bands can be discarded in a first examination. The amplitude
of the circular polarization induced in the crystal by the rotating
electric field of the incoming light is given by24,25

P+
0 ¼ Nα+E0; (2)

where α+ is the electronic polarizability of the atoms forming the
valence band, N is the number density of atoms in the solid, and
E0 is the electric field amplitude of the RCP or LCP incident wave.
It should be emphasized that α in (2) is the polarizability of an
atom “embedded in the solid,” it is “not” the polarizability of an
isolated atom. These polarizabilities are different from one another
because the polarization of atoms, by light within the bandgap, is a

perturbation and resonance effect. The electron-photon interaction
resonance depends on the spacing between electronic energy levels,
which in the solid differ from that of the isolated atom, due to
energy band formation; hence, the polarizability of an embedded
atom differs from that of an isolated one.

On the other hand, taking the photoinduced polarization to
be the number density times the atomic polarizability, modified
due to the atoms being embedded in the solid, as by (2), is known
to provide a very good description of the linear optical properties
of nonmetallic solids [see, for instance, Ref. 26, Sec. 1.4, formula
(1.4.16)], which justifies the application of Eq. (2) to describe the
Faraday effect in semiconductors.

Using the relation connecting the refractive index to the elec-
tronic polarizability,25

n2+ ¼ 1þ N
ε0

α+, (3)

we arrive at

n� � nþ ¼ n2� � n2þ
2n0

¼ N
ε0

α� � αþ

2n0
, (4)

where n0 ¼ (nþ þ n�)=2 is the refractive index that the material
would have, if no other valence band was present except the
one under scrutiny, and ε0 ¼ 8:85� 10�12 F/m is the vacuum
permittivity.

Equation (4) shows that for FR to be present, the induced
polarization current in the valence orbitals must be different for
LCP and RCP. This is explored in the models below.

III. CLASSICAL MODEL OF FR IN A DIAMAGNETIC
SEMICONDUCTOR

To build a clear contrast between FR in a magnetic semicon-
ductor, i.e., one that contains atoms with unpaired electrons, to FR
in a diamagnetic semiconductor, whose electrons are all paired, let
us review very briefly the well-known classical model for FR in the
diamagnetic semiconductor. This simple classical model is based
on the Lorentz oscillator model of atoms, and it is described in
detail in Refs. 15 and 16.

For a nonmagnetic atom, its angular momentum (orbital and
spin) is zero; therefore, there is no spatial orientation of the atom.
Hence, by symmetry, both RCP and LCP will induce equal and
opposite polarization currents; therefore, there will be no FR.
However, if a magnetic field is applied in the direction of light
travel (i.e., in the Faraday geometry), then the Lorentz force will
have opposite effects on the LCP and RCP induced polarization
currents, which become different from one another, and FR
emerges. In the linear regime, the FR in this case is proportional to
the intensity of the applied magnetic field.

IV. A SEMICLASSICAL MODEL CONNECTING FR TO THE
MAGNETIZATION IN EUROPIUM CHALCOGENIDES

In EuX, the highest valence band states are formed by
half-filled 4f orbitals of the Eu atom,18 which are buried deep
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within the ion, beneath the filled 5p shell; hence, the characteristics
of the isolated orbital are well preserved.27 Therefore, the spin of
the Eu atom, S ¼ 7=2, is maintained in the crystal.

In the semiclassical approach, the magnetic moment, or spin,
of an atom is associated with a circulating electrical current, whose
direction and magnitude are described by a vector S. Let us inspect
the interaction of the incident linearly polarized light with an
average Eu atom in the solid, whose spin S makes an angle θ with
the direction of light propagation, as depicted in Fig. 1. We express
the incident light as a superposition of RCP and LCP, which carry
an angular momentum þ‘ and �‘, respectively, along the direction
of light travel. The angular momentum vector of the incoming
RCP or LCP light can be divided into two components, parallel
and perpendicular to the vector S, as shown in Fig. 1. By symmetry,
in a direction perpendicular to S, RCP and LCP will induce identi-
cal polarizations in magnitude, but in opposite directions, totaling
zero. Therefore, birefringence must be associated with the circular
polarization light that induces parallel to S, which is proportional
to the projection of the light angular momenta onto S. Hence,
when the angle between S and the direction of light travel is
increased from zero to θ, the induced polarization is reduced by a
factor of cos θ, i.e.,

P+
0 ¼ Nα+

k E0 cos θ, (5)

where α+
k is the circular electronic polarizability of the solid, when

its spins are fully aligned with the direction of light travel (θ ¼ 0 in
Fig. 1).

On the other hand, the magnetization projection in the direc-
tion of light propagation, M, is given by

M ¼ Nμ* cos θ; (6)

hence, a comparison between Eqs. (5) and (6) leads to

P+
0 ¼ M

μ*
α+
k E0: (7)

Equating (7) and (2) gives

α+ ¼ M
MSAT

α+
k , (8)

where MSAT ¼ Nμ* is the saturation magnetization.
Substituting (8) in (4), and using (1), we get

θmag
F ¼ π

λ

N
ε0

M
MSAT

α�
k � αþ

k
2n0

: (9)

Equation (9) shows that the contribution from Eu atoms to
the FR is proportional to their magnetization, the proportionality
coefficient being determined by the polarizability. Because the
polarizability is determined by the electronic energy structure, the
ratio θF=M will remain unchanged as long as the relative position
of the electronic energy levels, as well as their occupation, is invari-
ant. In a semiconductor, the essential parameter is the energy gap,
EG, between the valence and the conduction bands. If kBT � EG,
the occupation of the electronic energy levels will be unchanged,
which gives a measure of the range of temperatures in which θF=M
is expected to be constant in EuX, except for deviations due to
bandgap variations. Thus, θF=M behaves in the same fashion as the
refractive index of dielectrics, which is also tied to variations of the
bandgap.28,29 As long as the photon energy is within the bandgap,
which is the situation considered in this work, contributions from
other valence bands will generally be much smaller, due to their
excitations being off-resonance with the incident photons, and the
central result given by Eq. (9) will remain valid.

The significance of the semiclassical model, with which the pro-
portionality between FR and magnetization was demonstrated as
expressed by Eq. (9), based on a simple argument of forced oscilla-
tions and symmetry, can be well appreciated if we compare our
model to the full quantum mechanical calculation, described in detail
in Ref. 19, which requires the use of perturbation theory, Wigner
rotations of spins, and statistical averaging. The end result is the
same, but the semiclassical model is much simpler and transparent.

V. TEST OF THE SEMICLASSICAL MODEL IN THE
MAGNETIC SEMICONDUCTOR EuSe

In Sec. IV, it was argued that in EuX, FR is proportional to the
magnetization. In this section, this hypothesis is thoroughly tested
using the magnetic semiconductor EuSe. This material was chosen
for the test because of its very rich magnetic phase diagram; there-
fore, by applying a magnetic field and adjusting the temperature,
the proportionality between FR and magnetization can be tested in
all possible magnetic scenarios.

The EuSe crystalline samples were grown by molecular beam
epitaxy (MBE) onto the (111) BaF2 substrate. Because of the almost
perfect lattice constant matching (a ¼ 6:191A

�
and a ¼ 6:196A

�

FIG. 1. The electric field E of the linearly polarized light is equivalent to the
superposition of RCP (top) and LCP light of equal amplitude (bottom), carrying
an angular momentum of þ‘ and �‘, respectively.
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for EuSe and BaF2, respectively), the EuSe layer with μm thickness
was bulklike and nearly unstrained.33 The data presented here were
obtained on sample no. 1529, whose EuSe epilayer thickness is
2.5 μm. The magnetization was measured using a SQUID magne-
tometer, which had a magnetic moment resolution better than
10�11 Am2. The FR was measured using a linearly polarized beam
from a semiconductor laser as the monochromatic light source and
a polarization bridge containing balanced photodetectors. The con-
tribution coming from the substrate to the FR was measured sepa-
rately, using a substrate piece without the epilayer, and subtracted
from the FR produced by the EuSe epilayer.

In fields up to 0.2 T at all temperatures, both the magnetiza-
tion and the FR angle displayed a linear dependence on B: typical
results are shown in Fig. 2(a). It can be seen that the slopes of θF
and M vary several orders of magnitude with temperature;
however, the ratio θF=M, obtained from the slopes for B , 0:2 T,

θF
M

¼ dθF=dB
dM=dB

, (10)

and shown in Fig. 2(b) for the 4.8–300 K interval, remains cons-
tant. The vertical bars represent the estimated experimental error,
which increases toward room temperature, when the response from
the substrate becomes comparable to that of the epilayer, both in
θF and in M measurements.

For the photon energy of 1.865 eV, which is in near resonance
with the bandgap, θF=M increases slightly when the sample is
cooled below 20 K. This is explained by the concomitant narrowing
of the gap (depicted by the empty circles), which makes the light
even closer to resonance with the bandgap, which enhances the FR
angle, as explained at the end of this section.

In the temperature interval 4.8–300 K examined so far, EuSe is
in the paramagnetic phase, because its Néel temperature is
TN ¼ 4:75 K;9 the magnetic phase diagram of our sample was mea-
sured, and it is shown in Fig. 3(a). To investigate θF=M in the
phases other than the paramagnetic one, the magnetization and
FR, at various photon energies, were measured at T ¼ 1:7 K as a
function of field. At this temperature, the magnetic field drives the
EuSe sample through an antiferromagnetic, a ferrimagnetic, and a
ferromagnetic phase, as Fig. 3(a) shows (see also Ref. 34). A com-
parison of the magnetization and FR curves can be seen in Fig. 3(b),
both exhibit an almost identical dependence on B; minor
differences in the B-dependencies are within the range of the exper-
imental uncertainties. The dependence of θF=M on B is shown in
Fig. 4(a), for various photon energies. At low fields, θF=M remains
at the same value measured in the paramagnetic phase up to 300 K.

Increasing the field, θF=M increases and tends to a saturation.
This process can be understood within the frame of the semiclassi-
cal model of Secs. II and IV. When B is increased at T ¼ 5K, the
EuSe bandgap narrows, as shown in Fig. 4(b), because the applied
field imposes ferromagnetic order over a paramagnetic lattice,
which lowers the energy of the conduction electrons due to the
band-lattice exchange interaction. The dichroic spectrum showing
the LCP/RCP splitting was investigated in Ref. 35. A similarly large
bandgap redshift of about 100 meV by applying a magnetic field
is also observed in YIG,36 and it is also associated with the

conduction band-lattice exchange interaction. As Fig. 4 shows, the
bandgap redshift saturates around 2.5 T.37 The increase of the FR
angle with increasing applied magnetic field is because the photon
energy of the incident light becomes closer to resonance with the
bandgap, which implies that the electronic polarizability increases,
as the classical Lorentz model of forced atomic oscillators predicts.

VI. PROPORTIONALITY CONSTANT BETWEEN
MAGNETIZATION AND FR IN EUROPIUM
CHALCOGENIDES

In Sec. IV, we showed that in EuX, FR is proportional to the
magnetization. Here, we go a step forward and determine the

FIG. 2. (a) Lines depict FR, for photons of energy 1.865 eV, while dots repre-
sent magnetization, as a function of applied magnetic field, for T ¼ 5, 20, and
60 K. The magnetic field was applied perpendicular to the EuSe epitaxial layer.
(b) Ratio θF=M as a function of temperature for photons with energy 1.865 eV
(full circles) and 1.699 eV (triangles). The error bars were estimated at 15% at
low temperatures but increase toward room temperature, when the contribution
to the epilayer becomes comparable to that of the substrate. Below T ¼ 20 K,
θF=M increases slightly for 1.865 eV, which is explained by the concomitant
narrowing of the bandgap, shown by the empty circles, taken from Ref. 30.
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proportionality coefficient in EuX, using their well-known specific
electronic energy structure, sketched in Fig. 5.18 First, we shall esti-
mate the weight of the various valence bands to the FR. Using
quantum-mechanical time dependent perturbation theory26

applied to EuTe, it can be shown that38

α+ ¼ 1
2

X

n

μ+gn

���
���
2

Eng � �hω
, (11)

where gj i represents the ground state of energy Eg , described by an
electron in the valence band, nj i represents the excited states of
energy En, corresponding to an electron in the conduction band,
Eng ¼ En � Eg , and μ+gn is the electric dipole matrix element,

μ+gn ¼ �e nh jx+ iy gj i: (12)

Equation (11) shows that the coupling through light between
the ground and excited electronic states determines the induced
polarization current.

FIG. 3. (a) Magnetic phase diagram of the studied EuSe layer. The full and
open dots represent data obtained from M vs B (T ¼ const) and M vs T
(B ¼ const) traces, respectively. The magnetic field was applied parallel to the
surface of the epitaxial sample. The solid lines are guides to the eye. The
dotted line shows that at T ¼ 1:7 K, a magnetic field drives EuSe through an
antiferromagnetic (AFMII), a ferrimagnetic (FiM), and a ferromagnetic (FM)
phase. (b) Magnetization (solid line) and FR at �hω ¼ 1:55 eV (dots), as a func-
tion of magnetic field, at T ¼ 1:7 K. The magnetic field was applied perpendicu-
lar to the surface of the epitaxial sample. When B is applied perpendicular to
the layer, the AFMII-FiM and FiM-FM phase boundaries are shifted to
B ¼ 0:17 T and B ¼ 1:04 T, respectively, due to the demagnetization effect.31

Vertical lines show the boundaries between the magnetic phases indicated.

FIG. 4. (a) Ratio of the FR, at the indicated photon energies, to the magnetiza-
tion, as a function of magnetic field, for T ¼ 1:7 K. At low fields, the ratio
increases beyond the estimated uncertainty of 15%; (b) EuSe bandgap as a
function of B, obtained from optical absorption measurements as shown in the
inset. The absorption experiments are detailed in Ref. 32.
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In EuTe, when the spins are aligned with the direction of light
by the application of a large magnetic field, the band-edge optical
absorption becomes strongly dichroic32,35,39,40 and shows two
narrow peaks, one for LCP and another for RCP, split by �19λf ,

35

where λf is the spin-orbit coupling constant for the Eu3þ atom, as
sketched on the left of Fig. 5. The circular dichroism is associated
with optical transitions between the valence level, 8S7=2, formed by
the magnetic Eu atoms, into the 5d(t2g) conduction band. The

equal height of the two lines implies that μþgn
���

���
2
� μ�gn

���
���
2
� μ2df .

Taking the approximated absorption spectrum into account, (11)
leads to

α�
k � 1

2

μ2df
EG � �hω

, αþ
k � 1

2

μ2df
EG þ 19λf � �hω

: (13)

Substituting (13) in (9), and using (3), we get

θmag
F � π

λ

M
MSAT

n20 � 1
2n0

19λf
EG � �hω

: (14)

In obtaining (14), the condition 19λf � EG � �hω was
assumed, which requires the incoming photons to be sufficiently
away from resonance with the bandgap.

It must be emphasized, however, that to arrive at (14), we
“did not” make any approximation concerning the EuX band-edge
electronic energy structure, and we “did not” substitute the
energy bands of EuTe by zero width atomic energy levels. We
worked within the frame of the full [8S7=2—valence band and

5d(t2g)—conduction band] model, which is specific for EuX and
which has successfully described such effects as the continuous
evolution of a 500 meV broad featureless absorption band at zero
field to a doublet of sharp dichroic lines in high fields,32,35,39,40 as
well as second harmonic generation,41,42 linear dichroism,43 and
Faraday rotation19,44 in EuTe and EuSe. We simply exploited the
well-known experimental fact that at high fields, when all Eu spins
align ferromagnetically, two birefringent narrow lines emerge in
the optical absorption threshold of EuX, their width being much
less than the bandgap,35,39,40 which has nothing to do with a substi-
tution of bands by energy levels.

Now, we shall inspect the contribution to the FR coming from
valence bands generated by completely filled atomic states, whose
magnetic moment is zero. In EuTe, just below the 8S7=2 valence
state, there is a valence band built from 5p6 shells of the Te
atoms,18 which can be polarized by the incoming light through
the dipole-allowed admixture of empty 6s states, as indicated on
the right-hand side in Fig. 5. In the absence of a magnetic field, the
5p-band will give no birefringence, because optical absorption asso-
ciated with 5p ! 6s transitions will be identical in position and
strength for RCP and LCP. However, when a magnetic field is
applied, the RCP and LCP absorption bands are split by the
Zeeman energy, gμBB. Then, proceeding exactly in the same way as
when obtaining (14), the diamagnetic contribution to the FR is
found to be

θdiamag
F � � π

λ

n21 � 1
4n1

gμBB
EG � �hω

, (15)

where n1 is the refractive index associated with the diamagnetic
valence band. Equation (15) shows that the diamagnetic FR is pro-
portional to the magnetic field, in stark contrast to the contribution
from the magnetic valence band, given by Eq. (14), which is pro-
portional to the magnetization.

Dividing (14) by (15), the relative weight of the diamagnetic
FR is found to be

θdiamag
F

θmag
F

�����

����� �
MSAT

M
gμBB
19λf

, (16)

where n0 � n1 was used. Given that gμB ¼ 0:116 meV/T and that
19λf ¼ 180 meV,35 then the diamagnetic FR will generally be much
smaller than the magnetic one.

We shall take a step further to investigate in more detail the
proportionality coefficient between magnetization and FR. We
rewrite Eq. (14) as

θF
M

EG � �hω
�hω

¼ const, (17)

where the constant is determined by the materials refractive
index, spin-orbit coupling constant, and saturation magnetization.
Equation (17) was tested by plotting θF=M as a function of
photon energy, using data taken in a wide temperature and

FIG. 5. Electronic levels in EuTe. (a) Under a strong magnetic field, the Eu
spins are aligned ferromagnetically, and the absorption spectrum shows a
strong magnetic circular dichroism, whereby the RCP and LCP absorption
peaks, corresponding to transitions from the Eu atoms in the S7=2 state to the
5d(t2g) conduction band, are split by �19λf , where λf is the spin-orbit coupling
constant for the Eu3þ ion.35 (b) RCP and LCP optical transitions between the
valence band formed by 5p orbitals of the Te atoms and a conduction band
formed by 6s Eu states.18,30
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magnetic field range, covering all EuSe magnetic phases, and
Fig. 6 shows the result. It can be seen that the data points deviate
from the average of 0.03 rad/A by at most 15%, which is the esti-
mated error bar in our experiment, also shown in Fig. 6. The devi-
ation at lower energies is larger, because the FR angle is smaller;
hence, the experimental error is larger. This is quite remarkable,
because the data shown in Fig. 6 cover a 300 K temperature and a
0–7 magnetic field interval, respectively, where all possible mag-
netic phases occur, where the ratio θF=M changes by an order of
magnitude, and where M and θF vary several orders of magni-
tude; nevertheless, (17) remains constant within experimental
error. This not only validates our semiclassical model, but it also
makes Equation (17) a practical formula to describe θF=M in all
circumstances, substituting a full complex quantum-mechanical
calculation in EuX.

Equation (17) should remain valid for other intrinsic mag-
netic semiconductors, in which a valence level is formed by
strongly localized atomic orbitals with nonzero magnetic
moment. For the case of magnetic semiconductors where the top
valence band is diamagnetic, FR will be a superposition of one
component proportional to the magnetization and another pro-
portional to B. As an example, GdN has a top valence band built
from nitrogen 2p states,45 situated above the localized 8S7=2
valence state of the Gd rare earth atoms (i.e., the position of the p
valence band and of the localized 8S7=2 valence level, shown in
Fig. 5 for EuTe and EuSe, is inverted in order). The magnetic cir-
cular dichroism observed in GdN46 is an indication that FR will
also be connected to the magnetization in this system. However,
because in GdN the p valence band forms the bandgap, for
below-the-gap FR the diamagnetic contribution may be of the
same magnitude as the ferromagnetic one, making a more com-
plicated scenario. An analysis of the relationship between FR and
magnetization in GdN and its dependence on the photon energy
will require a separate investigation.

VII. CONCLUSION

We developed a semiclassical model to show that in europium
chalcogenides, the FR is proportional to the magnetization. The
model is based on classical physics concepts only. Our model for
FR in the magnetic semiconductors EuX adds to the well-known
classical model of FR in a diamagnetic semiconductor, forming a
didactic picture of the diversity of the FR in different solids. The
model is validated by data taken on EuSe in a large temperature
and magnetic field range, covering all possible magnetic phases.
Moreover, we provided a formula connecting the Faraday rotation
angle, the magnetization, the photon energy, and the semiconduc-
tor bandgap, which is a valuable practical solution for the conver-
sion of FR into magnetization, at any temperature and magnetic
phase in any member of the EuX family.
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ABSTRACT
In an ensemble of quantum dots, the total mag-

netization is zero because spins in different dots
are originally incoherent. However, using ultra-
short pulses of light it is possible magnetize the
QD ensemble. During the magnetization pro-
cess, the light creates an intermediate excited state
called trion, which has an mean lifetime τ . The
goal of this work is based on establishing if the use
of the time-resolved Faraday rotation technique is
a practical method to yield a reliable measure of
τ , which usually involve complications during the
measurement using traditional methods, related to
the contribution of other simultaneously excited
states, technical complications separating exciting
and emitted light in the resonant case or limita-
tions of using low QD density (∼ 108cm−2).

EXPERIMENTAL RESULTS 1
From the photoluminescence spectrum shown

in figure 2, it was selected a near resonant wave-
length of λ = 880 nm.

Figure 2. PL spectrum for the (In,Ga)As/GaAs quantum dot
ensemble.

With this wavelength, measurements of TRFR
were done for different magnetic fields as is shown
in figure 3. Using these data, both the phase
and amplitude of the photo-induced magnetiza-
tion precession as a function of the applied mag-
netic field was fitted with the theoretical expres-
sions found in [1].

Figure 3. TRFR measurements fitted using theory shown in [1].

Remarkably, the lifetime of the photo-induced
trion τ is the one and only adjustable parameter
in the fitting of both dependencies. The results
present good agreement with theory as is shown
in figures 4 and 5, and gives a trion lifetime of
τ = 0.15 ± 0.05 ns .
We compare this result with the estimate of the re-
combination time obtained using resonant TRDT
in the same magnetic field range used in TRFR
measurements.

THEORY
The process of light-induced magnetization

was recently re-examined in a new quantum me-
chanical model [1], which describes both the phase
and amplitude of the photo-induced magnetiza-
tion precession as a function of the applied mag-
netic field. According to this model:

M = A exp (
−t
T ∗

2

) cos(Ωt+ φ) (1)

where the amplitude and phase are:

A =
A0Ωτ√

1 + (Ωτ)2
and φ =

π

2
− arctan(Ωτ) (2)

with Ω = geeB
2me

T ∗
2 = ~

µB∆gB A0 is a constant.

EXPERIMENTAL METHODS
We use a (In,Ga)As/GaAs sample containing

singly negatively charged dots with QD density
(∼ 1010cm−2) and fundamental gap of 1, 36 eV. The
techniques used were: photoluminescence (PL),
time resolved Faraday rotation (TRFR) and time
resolved differential transmission (TRDT) for mag-
netic fields in the range between 0 to 2T at T=5K.

Figure 1. Pump probe Faraday rotation principle.

EXPERIMENTAL RESULTS 3
Fitting these data it is obtained an almost con-

stant short living recombination time value of 0.33
±0.01 ns in the range [0T- 1.2T], which is almost
twice the trion lifetime found by TRDR. The long
living states with lifetime of 1.2 ns appearing for
magnetic fields higher than 1.2T is probably asso-
ciated with dark excitons that result enhanced at
high magnetic fields.

Figure 7. Magnetic field dependence of the short and long
living component of the recombination time.

Due to the unavoidable concentration of non-
doped and multiple doped QDs in the sample, par-
ticles as excitons, and bi-excitons can optically be
excited by. The estimative of the trion lifetime by
TRDT in this case results inaccessible due to the su-
perposition of the recombination time of the trion
and the other species, specially because in general,
the trion an exciton have a comparable lifetime.

CONCLUSIONS
The use of the TRFR technique offers a new

method to measure the trion lifetime, free of com-
plications related to separating incident and emit-
ted lights in the resonant case or pollution signals
related to other excited states, it also offers an ex-
clusive technique to estimate the trion lifetime in
QDs samples with high dot density.
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EXPERIMENTAL RESULTS 2

Figure 4. Fitted data of the amplitude of the photo-induced
magnetization.

Figure 5. Fitted data of the phase of the photo-induced
magnetization.

The TRDT curves present a bi-exponential dy-
namics which are shown in figure 6 in logarithm
scale. From this curve, it is separated the short and
long living components of the recombination time
as is shown in figure 7.

Figure 6. TRDT signals for magnetic fields between 0 T to 2 T
in logarithm scale.



INTRODUCTION

Abstract n°11153 Contacting Author: Alexander Naupa, Email: xander@if.usp.br 

In magnetic materials, the induced
formation of a region with net magnetic
moment called magnetic polaron, was
theoretically predicted by de Gennes in his
famous paper in 1960 [1], when he
anticipated the reorientation of the
magnetic moments of the atoms, which
create, a non zero magnetization spin ball
around one inserted bound electron. The
additional electron is introduced by
replacing one La+3 atom by a Ca+2 atom in
the antiferromagnetic lanthanum
manganite (LaMnO3). The detection of
magnetic polarons in intrinsic magnetic
semiconductors used to require challenging
work in the laboratory, as described by Von
Molnar in 2009 [2] when he worked with
the formation of a magnetic polaron bound
to irradiated muons in a EuS sample,
observing magnetic polarons composed by
four aligned Europium spins with total
magnetic moment of around 60 μB.

More recently, a proved way to create spin polarons in intrinsic magnetic materials is by the use of photons with energy in
resonance with the bandgap as is sketched in figure 1. Photoinduced giant (600 μB) and super giant (6000 μB) polarons
were observed in EuTe and EuSe, respectively. EuTe polarons were detected by using photoluminescence (PL) at T=5 K [3]
and by pump-probe Faraday rotation (FR) at higher temperatures (T≈ 140 K) where the PL signals is absent [4].

Bulk Faraday rotation θF and
photoinduced Faraday rotation ΔθF

are associated with the bulk
magnetization M and the
photonduced magnetization ΔM,
respectively, by mean of the Verdet
constant V, which is temperature
independent with value 0.061
[A/m] for EuTe as detailed in [4,5].

θF= V M dsample (1)

ΔθF = V ΔM δp (2)

dsample: sample width

δp = pump penetration depth

Fig 1. Generation of a 
spin polaron by a photon 
in resonance with the 
bandgap.

Fig 2. Pump-Probe technique in
Faraday geometry to detect
photoinduced Faraday rotation, ΔθF,
or bulk Faraday rotation, θF, in the
absence of the pump photon.

Photon

Photoinduced Faraday rotation by spin polarons

For low concentrations, the polarons are non interacting and
form a paramagetic ensemble. Due to the giant magnetic
moment of a polaron, the photoinduced magnetization, ∆M,
will be described by a Langevin function L(x) = coth(x) - 1

𝐱

with x =
µ𝑝𝑜𝑙 𝐁𝐢𝐧𝐭

𝑘𝑇
. By using equation 2 we obtain:

∆θF(B,T)=∆θFMAXL(x), (3)

where ΔθFMAX = V ΔMMAX δp and ΔMMAX is the máximum
photoinduced magnetization. Thus, μpol can be determined
by fitting (3) to the experimental data. However, our
measurements are made as a function of the applied field,
whereas the magnetic field entering in (3) is the internal
field, which acts on the polarons. We therefore need a
procedure to determine the internal field.

Determination of the internal field using
bulk Faraday rotation

Due to the demagnetization effect, the internal field, Bint, is
smaller than the applied one, Ba. From ref. [6] for a thin
slab and Ba perpendicular to the slab we can write:

Bint = Ba –µ0M, (4)

From (1), we have:

M =
θF

V dsample
, (5)

Substituing (5) in (4), we obtain:

Bint = Ba –
µ0θF
𝑉 𝑑

𝑠𝑎𝑚𝑝𝑙𝑒

, (6)

At low enough fields, the bulk Faraday rotation θF is linear
on Ba:

θF= Ba m(T),                                 (7)

where the slope m(T), is a constant, which we measured
at each temperature. (See Fig. 3).

Thus, substituing (7) in (6), we obtain the ratio
Bint

Ba

Bint
Ba

= 1 –
µ
0
𝑚(𝑇)

𝑑
𝑠𝑎𝑚𝑝𝑙𝑒

𝑉
, (8)

which is a good approximation for Ba < 1 T, as can be
seen from figure 3.

Fig  3. Bulk Faraday rotation curve for T = 5 K (in blue) 
and T = 40 K (in red).

Having established the internal field acting on the
polaron, we can proceed to fit the experimental
data using (3) with μpol, as the single adjustable
parameter.

Fig 4. Photoinduced Faraday rotation at T = 5 K ( in
red) and T=20 K (in blue). The solid line is the fit with
equation 3.

As an example, the fitting is shown in Fig 4. for T =
5 K, which yields μpol = 610 μB. Similarly, for T= 20K
we obtain yields μpol = 180 μB.
These values are going to be compared with the
polaron magnetic moment we get by using the
internal field obtained employing a SQUID system,
as is explained in the next slide.

Determination of the internal field
using SQUID measurements

We measured the magnetic momento of the sample, mꞱ

(m‖) for B applied perpendicular (parallel) to the surface of

the epitaxial layer. By definition we have :

mꞱ= ΩM= Ωχ
Bint
μ0

(9)

m‖= ΩM =Ωχ
Ba
μ0

(10)

where Ω and χ are the volume and the EuTe magnetic
susceptibility, respectively. The internal field equals to the
applied one in the later case because of the absents of the
demagnetization field as is sketched in figure 5.

We also define the measured magnetic moment as a
function of a susceptibility perpendicular (parallel)to the
surface of the sample χꞱ (χ‖) when we apply a magnetic

field Ba:

mꞱ= ΩMꞱ= ΩχꞱ
Ba
μ0

(11)

m‖= ΩM‖ = Ω χ‖
Ba
μ0

(12)

Therefore, from 11 and 9

χꞱ=
mꞱμ0

ΩBa
=
Ωχμ0Bint
Ωμ0Ba

(13)

Similarly, from 12 and 10

χ‖=
m‖μ0

ΩBa
=
Ωχμ0Ba
Ωμ0Ba

(14)

Fig  5. Applied magnetic field parallel (a) and perpendicular 
(b) to the epitaxial layer of the sample.

Equation 15 is valid for each temperature when any
kind of anisotropy is not considered.
Then, measuring χꞱ and χ‖ in the SQUID as a function of
the temperature, we obtain the internal field at each
temperature as is shown in figure 6. The internal field
obtained by Faraday rotation (optical method) is shown
as well in the same picture.

Below the Néel temperature, TN = 9,6 K, equation 15

fails, because
𝐵𝑖𝑛𝑡

𝐵𝑎
cannot be larger than unity. This

failure is attribuited to the anisotropy field, which
reduce χ‖, and which was not included in the deduction

of 15. Above the Néel temperature,
χꞱ
χ‖

agrees with

𝐵𝑖𝑛𝑡

𝐵𝑎
qualitatively, the difference of about ten percent is

attribuited to the uncertainty in the experimente. If we
fit the PFR data with the internal field obtained by
SQUID method for T= 20K the polaron magnetic
moment is reduced to 160 μB

Dividing 13 by 14 we get:

χꞱ
χ‖

=
𝐵𝑖𝑛𝑡

𝐵𝑎
(15)

Fig 6. Internal magnetic field as a function of
temperature obtained by SQUID measurements (blue).
The values obtained by the optical method are plotted
in red for comparison.
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Simple method for the determination of the fast axis of a quarter wave plate
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Waveplates, also known as retarders, are optical devices that transmit light modifying the polarization state
without attenuating the light. They do this by retarding one polarization component (parallel to the so-named
slow axis of the waveplate) with respect to the other (parallel to the so-named fast axis of the waveplate),
producing a modified polarized state of the exiting light beam.
A simple home-made circular polarizer consists of the sequence of a linear polarizer followed by a quarter wave
plate, in which one of the axes of the wave plate is positioned at +45◦ to the transmitting axes of the linear
polarizers. The state of the circular polarization - left or right - depends on which of the axes of wave plate is at
+45◦ to the linear polarizer. In spectroscopic studies, optical selection rules are different for opposite circular
polarizations, and it is, therefore, crucial to identify the fast axis of the wave plate in assembling the circular
polarizer.
The identification of the fast axis of a quarter-wave plate can be done by using another quarter wave plate
with a known fast axis. Here, we present an alternative simple method to identify the fast axis in a wave
plate, without the need of a reference wave plate. We exploit the phase shift property of a metallic surface on
reflecting light. Using Fresnel equations, we obtain an exact expression for the phase shift between the senkrecht
and parallel rays of the reflected light, as a function of the incidence angle. We use this effect to determine
experimentally the fast axis of a quarter-wave plate. Besides being an economic and time-saving solution, our
simple experimental setup is an interesting candidate for a didactic laboratory.
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