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Abstract

A significant upgrade is being designed for the TCABR tokamak - a machine operated at
the Institute of Physics of the University of São Paulo, Brazil. As part of this upgrade, two addi-
tional poloidal field (PF) coils will be installed, increasing its number from 14 to 16. This will
allow TCABR to create plasmas with a large variety of shapes, including wall-limited plasmas
with significant elongation, positive and negative triangularity, and squareness, as well as
diverted plasmas such as single-nulls, double-nulls and snowflakes. The creation of a plasma
with a particular shape requires the prior knowledge of the evolution of each magnetic coil
current. In this work, we present the development of a computational model that calculates
these coil current evolution’s based on a small set of input parameters that must be given
at specified values of time, such as plasma current, normalised beta, the location of the last
closed flux surface, and constraint points such as X-points. This model, therefore, allows
for the design of the plasma evolution during the entire discharge. The core of this model
consists of circuit equations that represent the electromagnetic coupling between magnetic
coils, vacuum vessel and the plasma. The inclusion of the vacuum vessel in the modeling
allows for a more realistic prediction of the toroidal electric field attenuation in the plasma
region, the self-consistent calculation of induced vessel currents and their impact on the
plasma shape, which must be somehow compensated by the PF coil current. Moreover, this
model, coupled with an MHD equilibrium code, enables the generation of synthetic MHD
equilibria for TCABR, ensuring a better estimation of the time evolution of each coil current
and voltage. These MHD equilibria also account self-consistently for the presence of the
bootstrap current. Eight plasma scenarios were designed and it was observed that to maintain
a flat top plasma current of up to Ip = 110 kA for up to 1 s, the OH and the PF coils power
supplies will have to operate in the four quadrants of a current-voltage operational space and
provide voltages and currents, respectively, up to ±2.3 kV/±24 kA, for controlling the plasma
current, and up to ±300 V/±9.0 kA, for controlling plasma position and shape.

Key words: Plasma Physics; Magnetohydrodynamics; MHD equilibrium; Tokamaks; Numerical
computation.
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Resumo

Uma modernização significativa do tokamak TCABR - uma máquina operada pelo Insti-
tuto de Física da Universidade de São Paulo, está sendo projetada. Parte dessa modernização
está na instalação de duas bobinas de campo poloidal (PF) adicionais, aumentando esse
número de 14 para 16. Isso permitirá ao TCABR criar plasmas com uma vasta variedade de
formatos, incluindo plasmas limitados pela parede bem como plasmas com desviadores com
pontos-X únicos, pontos-X duplos e desviadores snowflakes. A criação de um plasma com
um determinado formato requer o conhecimento prévio da evolução das correntes elétricas
em cada uma das bobinas magnéticas. Neste trabalho, apresentamos o desenvolvimento de
um modelo computacional que calcula a evolução dessas correntes tendo como base um
pequeno conjunto de parâmetros de entrada que devem ser fornecidos em pontos específicos
no tempo, como a corrente de plasma, o beta normalisado, a posição da última superfície
de fluxo fechada, e pontos de restrição como pontos-X. Esse modelo, portanto, nos permite
projetar a evolução do plasma durante toda a descarga. O núcleo desse modelo consiste em
equações de circuito que representam o acoplamento eletromagnético entre as bobinas mag-
néticas, a câmara de vácuo e o plasma. A inclusão da câmara de vácuo no modelo nos permite
uma previsão mais realista da atenuação do campo elétrico toroidal na região do plasma e
o cálculo auto-consistente das correntes induzidas na câmara de vácuo, cujo impacto no
formato do plasma deve ser compensado pelas bobinas PF. Ainda mais, esse modelo, acoplado
com um código de construção de equilíbrio, permite a geração de um equilíbrio MHD para o
TCABR, garantindo uma melhor estimativa da evolução temporal de cada corrente e voltagem.
Neste trabalho, a evolução temporal de oito cenários de plasma foram modelados utilizando
o código desenvolvido. Durante essa modelagem, foi observado que para manter uma cor-
rente de plasma no flat top de até Ip = 110 kA por até 1 s, as fontes de potência do sistema
ohmico e das bobinas PF terão que operar nos quatro quadrantes de um espaço operacional
tensão-corrente e fornecer, respectivamente, tensões e correntes de até ±2.3 kV/±24 kA, para
controle da corrente plasma, e ±300 V/±9 kA, para controle de posição e formato do plasma.

Palavras-chave: Física de Plasmas; Magnetohidrodinâmica; Equilíbrio MHD; Tokamak; Com-
putação numérica.
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1 Introduction

The course of humanity’s wealth and well-being over the last centuries has rapidly increased
due to the availability of new sources of energy. As a consequence of the increase of the world
average standard of living, the global population more than quadrupled over the last 100 years,
Figure 1.1, amplifying humanity’s impact on the natural environment.

Figure 1.1: World population growth from 1700-2100. Source: https://ourworldindata.org/
world-population-growth.

Presently, the energy demand is supplied by a combination of many sources, in which about
80% of the global energy consumption comes from the burning of fossil fuels (coal, oil, and
gas), Figure 1.2, and whose burn releases carbon dioxide, among other greenhouse gases,
which are the fundamental driver for the global climate change. The rapidly growing of the
energy consumption makes the challenge of transitioning the world’s energetic matrix away
from fossil fuels towards low-carbon energy sources more difficult.

1
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Figure 1.2: Global energy consumption separated by energy resource. Source: https:
//ourworldindata.org/energy-production-consumption.

Although there are few realistic scenarios, the world needs to shift away from fossil fuels to an
energy mix dominated by low-carbon sources of energy – renewable technologies and nuclear
power.

1.1 The thermonuclear fusion energy

When the BBC Future, at the launch of Cambridge University’s Big Data Institute, asked
Professor Stephen Hawking what world-changing idea he would like to see implemented
by humankind, he said, "the development of fusion power to give an unlimited supply of
clean energy" [1]. Professor Hawking was talking about the most basic energy production
mechanism in the Universe – nuclear fusion –, which is the process that powers stars whereby
two or more nuclei fuse together to form a heavier one. And the reason why he said such
a thing is because since the early 1950s, research on thermonuclear controlled fusion has
been conducted to provide a sustainable and environment friendly energy source that could
provide humanity with virtually millions of years of clean energy.

For elements with atomic number masses lower than iron as the reagents, the total final
mass is slightly lower than the total initial mass. The mass difference (¢m) appears as energy
according to Einstein’s equation, E = ¢m c2. Usually, these two light nuclei are hydrogen
isotopes and among all the possible fusion reactions, the one with the largest cross-section at
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lower temperature is the one between deuterium
°2

1D
¢

and tritium
°3

1T
¢

:

2
1D1++ 3

1T 1+ ! 4
2H 2+

e (3.5 MeV)+ 1
0n0 (14.1 MeV), (1.1)

where 4
2H 2+

e and 1
0n0 represent helium nuclei (or known as alpha particle), and neutron,

respectively. The fusion of hydrogen isotopes, such as the one shown in Equation 1.1, creates
relatively high amounts of energy - about one order of magnitude greater than nuclear fission,
and it also does not produce long-lived radioactive products [2]. One can see in Figure 1.3 the
difference between the two nuclear process that produce energy. On the left panel, there is
the controlled fission as in today’s nuclear reactors, in which a neutron collides with a larger
atom (generally uranium and plutonium) forcing it to excite and split into two smaller atoms.
It releases about a million times more energy than other carbon-based sources. On the other
hand, its radioactive byproducts must be properly and safely stored for tens of thousands
of years. On the right panel of Figure 1.3 is controlled fusion as currently being studied by
scientists. The process releases around four times more energy than fission with byproduct
Helium: an inert and non-toxic gas. Fusion fuels are widely available and nearly inexhaustible.
Deuterium can be distilled from all forms of water. Tritium, however, because of its natural
occurrence is extremely rare on Earth, will be produced inside the reactor plant as fusion-born
neutrons react with lithium located in the surrounds of the reactor. Terrestrial reserves of
lithium would permit the operation of fusion power plants for more than 1000 years, while
sea-based reserves of deuterium would fulfill needs for millions of years [3].

Figure 1.3: Difference in energy between nuclear fission and nuclear fusion. Source: by Sarah
Harman | U.S. Department of Energy.
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Reproducing the star-power source in laboratories is still a matter of intense study and research
all around the world. This is because the fusion process can only occur under specific extreme
conditions, where atoms must be subjected to immense heat and pressure to overcome
the Coulomb repulsion between the nuclei. Over the past decades, two method has shown
positive results to yield sustained fusion reactions in laboratories: the use of magnets to
confine a hot plasma, and as the use of intense lasers to target a grain-sized capsule filled with
deuterium and tritium. Among the latter, the National Ignition Facility (NIF), at the Lawrence
Livermore National Laboratory, have demonstrated net energy gain in inertial confinement
fusion, achieving a yield of more than 1.3 MJ, a 25 times increase over NIF’s record experiment
conducted in 2018 [4].

Although the major achievements in inertial confinement fusion, the leading global approach
in confining fusion fuel is the magnetic confinement fusion (MCF). Here, the fuel needs to
be sufficiently hot - hotter than the sun’s core temperature of 15 million ±C - such that matter
can exist only in the plasma state, where negatively-charged electrons are separated from the
positively-charged atomic nuclei. This makes MCF ideal for confining such a hot plasmas as
electrical charges follow the magnetic field lines due to the Lorentz force. The most effective
magnetic configuration for plasma confinement is a torus, in which the magnetic field is
curved around to form a closed loop. There are several types of toroidal confinement system,
with the most important being tokamaks and stellarators devices, Figure 1.4.

Figure 1.4: Representation of (left) a tokamak and (right) a stellarator. Source: Reproduced
from M. Wischimeir: The tokamak principle-magnetic fusion (2016).

1.2 The tokamak concept

A tokamak - a Russian acronym for torus-shaped vacuum chamber surrounded by magnetic
coils - is a toroidal magnetic confinement device in which plasmas act as the secondary of a
one-turn, short-circuited transformer and it was first conceptualized by the Soviet physicists
Igor Tamm and Andrei Sakharov in the early 1950s. A schematic diagram of the main magnetic
fields and current configuration in a tokamak is presented in Figure 1.5.
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Figure 1.5: Illustration of the tokamak concept. Source: Reproduced from M. Wischimeir: The
tokamak principle-magnetic fusion (2016).

The main magnetic field component is the one in the toroidal direction, which is generated by
the toroidal field coils, Figure 1.5. This field has a characteristic B¡/ R°1 dependence, where
R is the distance from the machine axis of symmetry. The B¡ field is not constant in space,
resulting in a gradient which give rise to a particle drift in the vertical direction, the so-called
rB drift, which is charge dependent. Due to the separation of charges, a vertical electric field
is generated and another well-known drift appears, the so-called E£B drift, causing a radially
outward displacement of the entire plasma column. Therefore, the toroidal magnetic field
alone cannot confine the plasma, leading to the need of a second, weaker, poloidal magnetic
field, Bµ, created by the plasma itself through transformer action. The combination of the
toroidal and poloidal magnetic fields results in helically twisted field lines which, in average,
cancel those vertical drifts and improves particle confinement.

Since the plasma current is crucial for plasma confinement, it must be sustained for the
duration of the experiment. The main way used in tokamaks to sustain a plasma current is
to vary the magnetic flux of the Ohmic coil (the primary transformer coil in Figure 1.5), or
Central Solenoid, which allows tokamak operation only in a pulsed mode. One main issue
with this process is that the Ohmic coil current cannot be ramped indefinitely, thus driving
the need of alternatives to drive the plasma current non-inductively. It is possible to develop
plasma scenarios that allow steady-state operation using the so-called bootstrap current, a
self-generated current that flows parallel to the field lines [6, 14], and also through auxiliary
current drive systems [5, 7].

The helically twisted magnetic field lines in tokamaks form closed magnetic flux surfaces,
within which the plasma is confined. There are two main plasma configurations responsible
for preventing the hot plasma from touching the vacuum vessel walls. The first is called limited
plasma configuration, characterised by the intersection of the last closed flux surface (LCFS)
with a solid material (left panel of Figure 1.6). The second is called diverted configuration
and is characterised by a null-point (or X-point) - a point in the poloidal plane where the
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poloidal magnetic field component vanishes. In diverted plasmas, the LCFS is determined by
the magnetic flux surface passing through the X-point and it is called separatrix.

Figure 1.6: Magnetic flux contours of (left) a limited plasma and (right) a diverted plasma
configuration. Adapted from [8]

The diverted plasmas are good for many reasons. The confined region is not in direct contact
with the wall, turning the plasma hotter and “cleaner". Also, the local low poloidal field near
the x-point creates a toroidally elongated trajectories for particles so they can cool down before
reaching the divertor.

The TCABR tokamak

The Tokamak Chauffage Alfvén Brésilien (TCABR), Figure 1.7, is a small-size tokamak operated
by the Plasma Physics Laboratory (LFP) of the Institute of Physics of the University of São Paulo
(IFUSP). It was originally designed and built in 1979 and operated until 1992 by the Centre
de Recherches en Physique des Plasmas at the Ecole Polytechnique Fédérale de Lausanne,
in Switzerland. The main objective of the TCA (the french word Brésilien was added to the
machine’s name after it was transferred to Brazil) was to investigate the possibility of plasma
heating by dissipation of Alfvén waves [15]. After being decommissioned and transferred
to IFUSP, the device was rebuilt with a new control, wave excitation, and plasma diagnostic
systems.

In its current configuration, TCABR plasmas are made of hydrogen and are wall-limited with
circular shape. Its major and minor radii are R0 = 0.62 m, and a ∑ 0.2 m, respectively. Its central
electron temperature can be as high as Te ∑ 800 keV and its mean electron density n̄e ∑ 5.0£
1019 m°3. Also, in order to create its toroidal magnetic field of B0 ∑ 1.1 T and plasma current of
Ip ∑ 120 kA, TCABR has 18 toroidal field coils, equally spaced in the toroidal direction, and
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Figure 1.7: Overview of the Plasma Physics Laboratory where TCABR is installed.

7 Ohmic magnetic field coils: the central solenoid and 6 stray-field compensation coils. To
control the position and shape of the plasma, TCABR has 14 poloidal field (PF) coils: 10 coils
located in the inner part of the tokamak and other 4 coils located in its outer part. Since TCABR
does not have an auxiliary heating system, it operates only with Ohmically heated discharges
and in the so-called low confinement mode (L-mode).

Being a machine that has been operating for over thirty years, a major revision and upgrade of
its main systems are necessary to keep TCABR contributing to international-relevant modern
plasma physics and fusion researches. Among the possible upgrades proposed for TCABR, one
has decided to increase the number of plasma shapes that TCABR can produce by increasing
the number of poloidal field coils from 14 to 16, and to make it suitable for investigating the
physics of resonant magnetic perturbations, rotation of the plasma column, and plasma edge
turbulence in different equilibrium configurations.

1.3 The need for plasma scenario control in tokamaks

Tokamaks are pulsed machines, meaning that it is necessary to vary the magnetic flux of
the central solenoid to create the plasma current. In each discharge, the plasma is initiated
through a process called breakdown, then the plasma current is ramped up to a reference
value, the so-called current flat-top, which is maintained constant for a sufficiently along time
during the discharge, and finally the current is ramped down until the plasma is terminated,
Figure 1.8.

The time evolution of the poloidal field coil currents and of some key parameters define the so-
called plasma scenario. Some of these parameters are: electron plasma density, plasma current,
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Figure 1.8: Schematic illustration of a typical tokamak experiment.

toroidal magnetic field, total plasma pressure, plasma shape and position, number of X-points
and their locations, among others. Each scenario has its distinct properties, advantages and
disadvantages. The overall objective of a plasma control system is to conduct the plasma
state towards a desired operational point and keep it there for the duration of the discharge.
Therefore, feedback control has emerged as an essential and mandatory component in the
tokamak operation. To improve plasma control, the plasma boundary must be kept as close
as possible to the nearby conducting walls to increase plasma stability. In this scenario, any
undesired plasma movement induces eddy currents in the walls that, in turn, generate a
magnetic field that opposes the original plasma movement thus ensuring passive stabilization
[9]. The main issue when modeling plasma control is how to create a physical model that
is simple enough so that the solutions can be found using approximate numerical methods
that catch the principal phenomena, but still simple enough to make it useful for de design of
plasma control systems [10].

1.4 Outline of this dissertation

In this chapter, a brief introduction to nuclear fusion and the tokamak concept is presented
along with some highlights of plasma scenarios and control.

• Chapter 2 enlightens the fundamental theoretical background needed for comprehen-
sion of this work. The plasma formation process is described in a simplified way in order
to obtain the expression for the effective connection length. An introduction of the ideal
MHD model is followed to describe the plasma equilibrium with the Grad-Shafranov
equation. Lastly, the derivation of the electromagnetic model of a tokamak is presented.

• Chapter 3 addresses the numerical methods used in this work. They are needed to invert
the elliptic operator in the Grad-Shafranov equation, to minimise a cost function of the
poloidal field coil currents, to find the minimum/maximum and saddle points of a 2D
surface, and to solve an 1D ordinary differential equation (ODE).
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• Chapter 4 presents the overview of the developed Plasma Scenario Design code. It
focuses on the classification of equilibrium followed by describing a method for solving
the non-linear Grad-Shafranov equation known as Iterative Picard method.

• Chapter 5 summarises the main results and conclusions of this work.
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2 Theoretical background

Describing the plasma state is not an easy task. Roughly speaking, plasmas are ionized gases
where charged particles - ions and electrons - are moving around in response to the long-range
Coulomb forces produced by other charged particles in the system. However, these moving
charged particles also creates electromagnetic fields that can affect their own trajectories.
The most commonly used model used to describe plasmas is the so-called ideal MHD model
which assumes that the plasma can be represented by a single fluid with infinite electrical
conductivity and zero ion gyro radius [9]. The set of MHD equations are obtained by taking
the moments of the Boltzmann equation and each of them contains a higher moment thus
forming an infinite set of fluid equations. One of the most fundamental studies in plasma
physics is the dynamics of the system. However, before rushing to solve the general time-
dependent MHD equations, one must recall that the fixed points in the phase space gives
important information about the evolution and the stability of the system [11]. Therefore, the
equilibrium configurations, i.e., the time-independent solutions of the MHD model, must be
known first. Generally, tokamak plasmas are described using the following approximations:

• The plasma is fully ionized and composed of electrons and positive ions;

• The displacement current in Ampère’s law is neglected, i.e. r£B =µ0J;

• Quasi-neutrality is assumed, i.e. the electron and ion densities are equal (ne = ni = n)
thus leading to r ·E = 0.

This set of assumptions, along with others, are required for the formulation of the ideal MHD
model. However, even though some of the assumption made in this model are never satisfied
in real tokamak experiments, it has shown to give reasonably accurate predictions of the
macroscopic behavior of tokamak plasmas.
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2.1 Plasma startup

Plasma initiation, or breakdown, is a well-established part of the tokamak operation. It starts
with a pre-charging of the central solenoid, with current in a direction according to the desired
plasma current, and the injection of a prefill hydrogen or deuterium gas into the vacuum
vessel. The central solenoid current is then ramped down to induce a toroidal electric field
that accelerates free electrons that eventually collides with the neutral gas, ionizing them. In
succession, this process produces more electrons, which are again accelerated by the toroidal
electric field inducing further ionization processes, leading to an exponential increase of the
number of electrons. The most common used model to describe this process is the so-called
Townsend avalanche [12].

The plasma start-up process can be divided into three phases [13]: (i) the breakdown or
avalanche phase, (ii) the impurity burn-through phase, and (iii) the controlled plasma current
ramp-up phase. During the avalanche phase, a significant part of the heating power is lost
through the ionization of the neutral gas and through the line-radiation from impurities that
might be present in the plasma. The power loss due to radiation has a maximum at a certain
level of ionization, called radiation barrier. In order to raise the plasma temperature via Ohmic
heating, the plasma needs to burn through this radiation barrier, allowing the plasma to reach
a complete degree of ionization. Once this stage is surpassed, the plasma current is rampep
up until the flat-top is reached.

The breakdown phase

The inductive ionization phase, also known as breakdown phase, is dominated by collisions
between free electrons and neutral particles that compose the gas. This phase can be modelled
by a Townsend-like model [12], which assumes that the ions are stationary due their higher
mass. The evolution of the electron density, ne , is determined by the difference between the
ionization frequency, ∫ion, and the electron loss rate, ∫loss,

d ne

d t
= (∫ion °∫loss) ne . (2.1)

This equation can be easily integrated and yields the electron density evolution during this
phase, which is expressed as

ne (t ) = ne0 exp[(∫ion °∫loss) t ] , (2.2)

where ne0 is the electron density at t = 0. Therefore, the ionization phase is the result of an
avalanche process, which occurs when ∫ion > ∫loss. These electrons are then accelerated in
the toroidal direction by the toroidal electric field up to a characteristic velocity parallel to
the toroidal magnetic field, ve,“ . The ionization frequency may be written as a function of the
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ionization mean free path, ∏ion,

∫ion =
ve,“

∏ion
. (2.3)

Here, ∏ion represents the distance required for electrons to travel among two successive
ionizing collisions. This quantity can be expressed in terms of the First Townsend coefficient,

ÆT = 1
∏ion

= a pn e
° b pn

E¡ . (2.4)

In this equation, a and b are constants that depend on the gas and are determined experimen-
tally, pn is the neutral gas pressure in units of Pa and E¡ is the toroidal electric field in units
of V/m. For a given value of E¡, there is an optimum value of the neutral gas pressure corre-
sponding to the maximum of the First Townsend coefficient. One obtain this by calculating:

dÆT

d pn
= 0 =) a e

° b pn
E¡

µ

1° b
E¡

pn

∂

=) pn =
E¡

b
. (2.5)

During the breakdown phase, since the magnetic configuration is characterized by open
magnetic field lines, the electrons impinge on the first wall after a certain number of toroidal
turns. The electron loss rate may thus be estimated as

∫loss =
ve,“

L“
, (2.6)

where L“ is the distance that the electron travels before reaching the wall, called connection
length. This equation shows that ∫loss decreases at regions where the connection length is
larger. And it can also be shown [13] that the effective connection length depends on the
magnetic field configuration through

Leff º
B¡

|rBµ|
. (2.7)

Therefore, controlling the PF coil currents to produce a localized null-point in the poloidal field
at a desired location within the vacuum vessel can be used to control where the breakdown
is expected to be initiated. The condition for the onset of the avalanche is achieve when the
ionization rate is at least equal to the electron loss rate, which yields

a pn e
° bpn

E¡ º |rBµ|
B¡

. (2.8)

This equation shows that the breakdown in a tokamak depends on the choice of the gas
(a, b, and pn), the toroidal electric field intensity (E¡), and depends on the poloidal field
configuration during the startup phase.
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2.2 The ideal MHD model in tokamaks

The first step to develop a model of an axisymmetric tokamak that serves as a first approx-
imation of the MHD equilibrium of a plasma is to describe the static model of the spatial
distribution of the magnetic fields and electric current densities present in the system. We
start by introducing a right-handed cylindrical coordinate system (R,¡, Z ) described by the
radial coordinate R , the vertical position Z , and the corresponding ignorable toroidal angle ¡.

Figure 2.1: Coordinate system (R,¡, Z ) and some plasma quantities.

Suppose we have a magnetic field that can be decomposed in a poloidal component, Bµ(R, Z ),
and in a toroidal component, B¡(R, Z ). We can define the poloidal magnetic flux as being

™(R, Z ) =
œ

Spol

B ·dSpol, (2.9)

where Spol is any Z = const circular surface oriented such that dSpol = R dR d¡ êZ. Then, we
calculate the poloidal flux accordingly

™(R, Z ) =
œ

Spol

B · êZ R dR d¡=
Z2º

0
d¡

ZR

0
BZ (R 0, Z )R 0 dR 0 = 2º

ZR

0
BZ R 0 dR 0. (2.10)

Differentiating with respect to the upper limit radial coordinate gives

BZ (R, Z ) = 1
2ºR

@™

@R
, (2.11)

and using the divergence-free statement of the magnetic field, r ·B = 0, leads to

BR (R, Z ) =° 1
2ºR

@™

@Z
. (2.12)

Hence, the sum of both components gives the poloidal contribution of the magnetic field,
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which can be expressed as

Bµ(R, Z ) = BRrR +BZrZ = 1
2ºR

µ

°@™
@Z

rR + @™

@R
rZ

∂

= 1
2º

r™£r¡, (2.13)

with r¡= ê¡/R and r™ pointing inward radially.

For the toroidal component of the magnetic field, we can use the definition of the poloidal
component of the electric current, where

Iµ =
œ

Spol

J ·dSpol =
1
µ0

œ

Spol

r£B ·dSpol =
1
µ0

I

°tor

B ·d`tor, where d`tor = R d¡ ê¡, (2.14)

with °tor being an intersection curve between a Z = const-plane with™= const. flux surface,
and where we have used the stationary Ampère’s law µ0J =r£B. With this, we obtain

B¡(R, Z ) = µ0Iµ
2º

r¡. (2.15)

Having the poloidal and toroidal component of the magnetic field, and defining the poloidal
current function F = R B¡, the magnetic field can be expressed as

B(R, Z ) = 1
2º

r™£r¡+F r¡. (2.16)

Regions in space of constant™ define what it is called magnetic flux surfaces, and as we can
see from Equation 2.16, the dot product of it with r™ results in B ·r™= 0, which means the
magnetic field lines always lie on a given flux surface. We are now interested in understanding
how the electrical current densities are distributed with respect to™. From Ampère’s law,

µ0J =r£B =r£
µ

1
2º

r™£r¡+F r¡
∂

. (2.17)

Using some vectorial properties, and defining the toroidal elliptic operator

¢§ := R
@

@R

µ

1
R

@

@R

∂

+ @2

@Z 2 , (2.18)

we obtain the electric current density

J = 1
µ0

rF £r¡° 1
2ºµ0

¢§™r¡. (2.19)

Taking the dot product of Equation 2.19 with the toroidal direction ê¡, we obtain the relation
between the spatial distribution of the magnetic flux and the toroidal component of the
electrical current densities,

¢§™=°2ºµ0R J¡(R, Z ). (2.20)
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Therefore, we can rewrite Equation 2.19 as

J = 1
µ0

rF £r¡+R J¡r¡. (2.21)

The Grad-Shafranov equation

A common and important application when considering the plasma as a single-fluid is the
calculation of the MHD equilibrium configuration using the momentum conservation equa-
tion [16] given by

Ωm

∑

@v
@t

+ (v ·r)v
∏

=r ·P° J£B, (2.22)

where Ωm is the plasma mass density, v is the fluid velocity, and P is the total plasma pressure
tensor. An equilibrium state is obtained by setting @t ! 0 in the equation. Assuming that
the plasma is dominated by collisions, the electron and ion distribution functions can be
considered to be nearly Maxwellian, which leads to an isotropic pressure. If plasma flow is
also neglected, the above momentum conservation equation reads

rp = J£B, (2.23)

where p is the scalar plasma (total) pressure. Taking the dot product of Equation 2.23 with the
magnetic field yields

B ·rp = B · (J£B) = 0 ) 1
2º

°

r™£r¡
¢

·rp +F r¡ ·rp
| {z }

0, once @¡p = 0

= 0. (2.24)

Using the vectorial property (A£B) ·C = (C£A) ·B, we end up with

°

rp £r™
¢

·r¡= 1
R

µ

@™

@R
@p
@Z

° @™

@Z
@p
@R

∂

= 0 ) det
∑

@(™, p)
@(R, Z )

∏

= 0, (2.25)

which means that the pressure is a flux function, i.e. p = p(™). Now, taking the dot product of
Equation 2.23 with the electric current density yields

J ·rp = J · (J£B) = 1
µ0

°

rF £r¡
¢

·rp ° 1
2ºµ0

¢§™r¡ ·rp
| {z }

0

= 0 (2.26)

Since we obtained p = p(™), then rp = d p
d™r™. Therefore,

°

rF £r¡
¢

·rp = d p
d™

(r™£rF ) ·r¡= 0 ) det
∑

@(™,F )
@(R, Z )

∏

= 0, (2.27)

and we can conclude that the poloidal current function is also a flux function, i.e. F = F (™).
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With that in hand, inserting the current density J and the magnetic field B in the force balance
equation (Equation 2.23) leads to

rp =° 1
2ºµ0

£°

rF £r¡
¢

·r™
§

r¡° F
µ0R2 rF ° 1

4º2R2µ0
¢§™r™) (2.28)

) d p
d™

r™=° 1
2ºµ0

∑µ

dF
d™

r™£r¡
∂

·r™
∏

r¡° F
µ0R2

dF
d™

r™° 1
4º2R2µ0

¢§™r™. (2.29)

Denoting ()0 ¥ d/d™, and taking the dot product of this equation with respect to r™ yields

¢§™=°4º2 °

µ0R2p 0+F F 0¢ . (2.30)

This is the well-known Grad-Shafranov equation. It is a second-order, elliptic, partial differen-
tial equation. As the source term depends on the solution™(R, Z ), the poloidal magnetic flux
™ is both an independent and dependent variable, which means it is not possible to establish
the plasma boundary before solving the equation, turning this into a free boundary problem.

The electric current density components

Equation 2.21 describes how the spatial distribution of the poloidal magnetic flux (and conse-
quently the magnetic fields) relates with the vectorial electric current density. By using the
definition of flux averages (see Appendix A), we can derive and separate how the toroidal,
poloidal and parallel (to the magnetic field) components of the electric current vary with the
kinetic functions p(™) and F (™). We start by taking the dot product of Equation 2.21 with the
magnetic field

J ·B = 1
µ0

°

rF £r¡
¢

·B+R J¡
°

r¡ ·B
¢

) (2.31)

) J ·B = 1
µ0

°

rF £r¡
¢

·Bµ
| {z }

(rF ·r™)
2ºR2

+R J¡
°

r¡ ·B¡
¢

| {z }

F
R2

. (2.32)

Given that F = F (™), its gradient can be calculated as rF = F 0r™. So

J ·B = F 0

2ºR2µ0
r™ ·r™
| {z }

(2ºRBµ)2

+
J¡F

R
) J ·B = F

√

J¡
R

+ 2ºF F 0

µ0 R2

B 2
µ

B 2
¡

!

£ R0

R0
) (2.33)

) J ·B
F /R0

=
J¡R0

R
+ 2º
µ0

R0

R2

B 2
µ

B 2
¡

F F 0. (2.34)
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Flux averaging Equation 2.34 and remembering that the flux average of any function that
depends on ™ (which is the case for F and consequently F F 0) yields the function itself, we
obtain

hJ ·Bi
F /R0

=
D J¡R0

R

E

+ 2º
µ0

DR0 B 2
µ

R2B 2
¡

E

F F 0. (2.35)

The left hand side of the above equation is defined as the averaged parallel-to-B current density,
jpar, while the first term on the right hand side is the averaged toroidal current density, jtor,
and the last term on the right hand side is the poloidal component of the current density, jpol.
Using equations 2.20 and 2.30, one can obtain how these flux surface averaged components of
the current density depend on the kinetic free functions p(™) and F (™):

jpar = 2º
µ

R0 p 0+ F F 0

µ0R0

hB 2i
(F /R0)2

∂

, (2.36)

jtor = 2º

√

R0 p 0+ F F 0

µ0R0

DR2
0

R2

E

!

, (2.37)

jpol = 2º
F F 0

µ0R0

hB 2
µ
i

(F /R0)2 . (2.38)

2.3 The TCABR electromagnetic model

The Grad-Shafranov equation described in previous sections represents a force balance equa-
tion in the perpendicular-to-B direction under the hypothesis of axisymmetry. Given a set of
external toroidal currents distribution in the poloidal plane, it finds the solution of the plasma
current distribution such that the plasma is an equilibrium state and the pressure gradient
force is balanced by the cross product between J and B. This section provides a model for the
evolution of the current in external conductors, and it is assumed that the plasma evolves
through a sequence of MHD equilibria represented by the Grad-Shafranov equation. We start
by revisiting the basics of mutual inductances between filaments. Suppose we have two loops
of wire, at rest, as shown in Figure 2.2. If we run a steady current i1 around the first loop, it
produces a magnetic field B1, and some of the field lines pass through the second loop. Let™2

be the flux of B1 through the second loop,

™2 =
œ

S2

B1 ·dS2. (2.39)
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Figure 2.2: Two-wire system.

Depending on the geometry of the filaments, calculating the produced magnetic field B1

might be a challenge, but a glance at the Biot-Savart law,

B1 =
µ0 i1

4º

I

°1

d`1 £ (r1 ° r2)
|r1 ° r2|

, (2.40)

revels a significant fact about the field: it is proportional to the electric current i1. Therefore,
so is the flux through the second loop:

™2 = M21 i1, (2.41)

where

M21 =
µ0

4º

œ

S2

∑

I

°1

d`1 £ (r1 ° r2)
|r1 ° r2|

∏

·dS2 (2.42)

is the constant of proportionality known as the mutual inductance between the two loops. The
mutual inductance can be written in a better way by using the divergence-free statement of
the magnetic field, r ·B1 = 0, and expressing the flux in terms of the magnetic vector potential,
A1, as follows

™2 =
œ

S2

(r£A1) ·dS2
Stoke’s======)

theorem
™2 =

I

@S2

A1 ·d`2. (2.43)

Since the magnetic vector potential obeys a Poisson’s equation, it can be written as

A1 =
µ0 i1

4º

I

d`1

|r1 ° r2|
. (2.44)

Therefore, the flux can be expressed as

™2 =
µ

µ0

4º

II

d`1 ·d`2

|r1 ° r2|

∂

i1 = M21 i1, (2.45)

which is known as the Neumann formula.
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For the special case of circular filaments centred around the z-axis, with radii r1, r2 and z
locations z1, z2, the mutual inductance becomes:

M21 = M12 ¥ M(r1, z1,r2, z2) =
2µ0

p
r1 r2

k

∑µ

1° k2

2

∂

K (k2)°E (k2)
∏

, (2.46)

with k2 = 4r1 r2
(r1+r2)2+(z1°z2)2 and E ( ·), K ( ·) are the complete elliptic integrals of the first and

second kind, respectively. Equation 2.46 revels that the mutual inductance is a purely geo-
metrical quantity. The magnetic field per unit of current, in the (r, z) plane, is evaluated using
Equations 2.11, 2.12, 2.45 and 2.46.

2.3.1 Modelling active coils

The coil currents in tokamaks are too large for a coil to consist of a single conducting filament.
Usually, each of them (PF and Ohmic coils) is made of Nw toroidal wires represented by
filamentary windings connected in series such that each filament carries the same electric
current Iw, Figure 2.3. The flux generated by a coil a, with Nwa windings and current Ia, at
another coil b, with Nwb windings, is given by

™=
Nwa
X

i=1

Nwb
X

j=1
M(r j , z j ,ri , zi )Iw = MabIa, (2.47)

where Mab is the mutual inductance between the two coils. For a tokamak with Nc PF coils,
the evolution of the circuit equations for all the active coils can be written as

V1 = R1 I1 +L1 İ1 +
Nc
X

i=1
M1i İi ,

...

VNc = RNc INc +LNc İNc +
Nc°1
X

i=1
MNc i İi ,

(2.48)

or in matrix form Va = RaIa +Maaİa, where Va 2RNc£1, Ia 2RNc£1 are the applied voltages and
the electric currents in each coil, respectively, and

Maa =

0

B

B

B

B

@

L1 M12 . . . M1 Nc

M21 L2 . . . M2 Nc

...
...

. . .
...

MNc 1 MNc 2 . . . LNc

1

C

C

C

C

A

and Ra =

0

B

B

B

B

@

R1 0 . . . 0
0 R2 . . . 0
...

...
. . .

...
0 0 . . . RNc

1

C

C

C

C

A

, (2.49)
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Figure 2.3: Representation of the TCABR coils: the blue filaments belong to the Ohmic coils
while the red filaments belong to the PF coils.

with Ln and Rn being the self-inductance and the electric resistance of the coil i , respectively.
Since each coil is made of Nw filaments, then we have

Ln =
Nw
X

i=1
Li +

Nw
X

i , j ,i 6= j
Mi j , Rn =

Nw
X

i=1
Ri , (2.50)

with Li and Ri being the self-inductance and the electric resistance of each filament i , respec-
tively, and Mi j the mutual inductance between two filaments of the same coil.
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Figure 2.4: Vacuum vessel filament model of TCABR. It is modelled by 160 toroidal filaments
represented by the circles. The white area represents the vacuum vessel volume delimited by
the graphite tiles walls represented by the grey area.

2.3.2 Modelling the vacuum vessel

Any tokamak experiment takes place inside a vacuum vessel - an hermetically sealed conduct-
ing container that houses the plasma and acts as a first safety containment barrier. Also, being
a passive structure, it can experience induced currents produced by any temporal changes in
magnetic flux. Moreover, it is the vacuum vessel that provides access for diagnostics, heating,
and vacuum systems, through its several openings, or ports, making it quite challenging to
model. However, if one assumes axisymmetry and ignore the ports, we can assume a contin-
uous vacuum vessel, modelled by a set of Nv individual filaments that can conduct toroidal
currents (see Figure 2.4 for the TCABR case).

The total voltage around the vacuum vessel filament is zero, meaning it is a short-circuit, but
voltages are induced by changing currents in other components, for example the active coils.
The circuit equation for this case is

0 = RvIv +Mvvİv +Mvaİa, (2.51)

where Mvv 2 RNv£Nv is the mutual inductance matrix between the various vacuum vessel
filaments, Mva 2 RNv£Nc is the mutual inductance matrix between the active coils and the
vacuum vessel filaments, Rv 2RNv£Nv in a diagonal matrix containing the electric resistance
of the vessel filaments and Iv 2RNv£1 is the vector of currents induced in the vessel filaments.

The circuit equation for the active coils (Va = RaIa +Maaİa) needs to be modified to include
the voltage induced by the changing vessel currents:

Va = RaIa +Maaİa +Mavİv. (2.52)
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Therefore, we can combine Equation 2.51 and Equation 2.52 into

√

Va

0

!

=
√

Maa Mav

Mva Mvv

!

·
√

İa

İv

!

+
√

Ra 0
0 Rv

!

·
√

Ia

Iv

!

(2.53)

Eigenmode decomposition

From the circuit equations for the vacuum vessel, Equation 2.51, we can rearrange it to obtain

İv =
°

°M°1
vv Rv

¢

Iv °
°

M°1
vv Mva

¢

İa =) İv =°Av Iv +bv İa, (2.54)

where Av is a square nv £nv matrix with nv linearly independent eigenvectors q j . We can
factorise this matrix as Av = Q ·§ ·Q°1, where§ is a diagonal nv £nv matrix with§ j , j =∏ j and
Q is the squared nv £nv matrix whose j -th column is the eigenvector q j . Therefore,

İv =
°

°Q ·§ ·Q°1¢ Iv °
°

M°1
vv ·Mva

¢

İa. (2.55)

Neglecting the source terms (second term on the RHS of Equation 2.55),

İv =°Q ·§ ·
°

Q°1 Iv
¢

=) Q°1İv =°
°

Q°1Q
¢

·§ ·
°

Q°1 Iv
¢

. (2.56)

Now we define Iu = Q°1Iv =) İu = Q°1İv , then we end up with İu(t ) =°§ · Iu. This equation
is a first-order ODE whose solution is

I j
u(t ) = I j

u(0)e°∏ j t =Æ j e°∏ j t for j = 1,2, . . . ,nv (2.57)

Therefore, the solution Iv(t ) is

Iv(t ) = QIu =Ve°§tÆ=
nv
X

j=1
Æ j q j

ue°∏ j t (2.58)

where q j
u is the eigenvector in the j -th column of Q. The left panel on Figure 2.5 shows

the sorted eigenvalues of the vacuum vessel while the right panel shows their respective
eigenvectors. One can notice that the first eigenmode that has the slowest decay has only a
positive contribution to the vessel currents, while the others have both positive and negative
contributions.
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Figure 2.5: Vacuum vessel (left) eigenvalues and (right) eigenvectors.

2.3.3 Modeling the plasma

The plasma is modelled as a rigid body toroidal conductor carrying a electric current Ip . This
current is distributed according to a known electric current density distribution J¡(R, Z ), i.e.,
Ip =

Œ

J¡(R, Z )dR d Z , as it can be seen in Figure 2.6.

Figure 2.6: Example of a toroidal current distribution J¡(R, Z ) for TCABR with Ip = 90 kA.

The problem we seek to solve is how to calculate the mutual inductance between the plasma
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and the current carrying elements - active coils and vacuum vessel filaments. For that, we let
J¡ be modelled with a current distribution vector Ix of currents on a (R, Z ) grid, with mutual
inductance matrix Mxx. We then approximate the mutual inductance between the plasma and
other conductors as:

Mp ck =
P

x M(rx , zx ,ck ) j¡(rx , zx )¢r ¢z
P

x j¡(rx , zx )¢r ¢z
, (2.59)

with M(rx , zx ,ck ) being the mutual inductance between the current carrying element ck and
the filament on the grid at the point (rx , zx ), and ¢r ¢z is the surface area. Also, since the
plasma is treated as a rigid toroidal conductor, it has also a self-inductance feature that can be
calculated according to

Lp =
IT

x Mxx Ix

I 2
p

. (2.60)

Since the plasma is the only conductor that can change its shape, any mutual inductance
involving the plasma and the self-inductance itself might change as well. Therefore, the circuit
equation for the plasma is then

0 = Rp Ip +Lp İp + L̇p Ip +Mpaİa +ṀpaIa +Mpvİv +ṀpvIv, (2.61)

where Rp is the plasma resistance which depends on the voltage induced by the ohmic system.

Combining the circuit equations for the active coils, vacuum vessel and the plasma, we obtain

0

B

@

Va

0
0

1

C

A

=

0

B

@

Maa Mav Map

Mva Mvv Mvp

Mpa Mpv Lp

1

C

A

·

0

B

@

İa

İv

İp

1

C

A

+

0

B

@

Ra 0 0
0 Rv 0

Ṁpa Ṁpv L̇p +Rp

1

C

A

·

0

B

@

Ia

Iv

Ip

1

C

A

. (2.62)

This electromagnetic model of a tokamak, coupled with an algorithm that solves Grad-
Shafranov equation (Equation 2.30), ensures a better estimation of the time evolution of
each coil current and voltage.

The inclusion of the vacuum vessel in the electromagnetic model allow us to predict its impact
on the attenuation at the plasma region. In the existing codes, the induced currents are
included to the problem a posteriori, while here it is include self-consistently.
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3 Numerical methods

This chapter presents the numerical techniques used in this work. We describe the method for
inverting the elliptic operator of Grad-Shafranov equation, based on [17]. A brief introduction
on the Lagrange multiplier method is provided for which we seek to find the minimum
solution for the PF coil currents. Finally, methods to find extremes on 2D surfaces and to solve
a first-order differential equation in time are presented.

3.1 Solving the Grad-Shafranov equation

In the following, a technique for discretising Grad-Shafranov equation, Equation 2.30, is
discussed to better understand how numerical elliptic equations always reduces to a discrete
matrix equation.

Let us consider a common elliptic equation in two dimension (R, Z ) for the unknown™(R, Z )
in a rectangular domain≠ of the form

R°` @

@R

µ

R` @™

@R

∂

+ @2™

@Z 2 = S(R, Z ), (3.1)

where ` is a scalar number related with the geometry of the system, S(R, Z ) is a known
source term, and we are assuming that Dirichlet boundary conditions are given. Since we are
interested in a toroidal geometry, ` takes the value of °1, which yields the toroidal elliptic
operator ¢§, defined in Equation 2.18. We seek to solve for ™(R, Z ) in the interior of the
domain≠, given the boundary values

™(Rmin, Z ),™(Rmax, Z ); Rmin ∑ R ∑ Rmax,

™(R, Zmin),™(R, Zmax); Zmin ∑ Z ∑ Zmax.
(3.2)

We divide ≠ into N intervals of length ¢R = (Rmax ° Rmin)/N in the radial direction and
¢Z = (Zmax °Zmin)/N in the vertical direction.
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Now, we adopt the following notation for the discrete positions:

Ri = Rmin + (i °1)¢R; i = 1, ..., N +1,

Z j = Zmin + ( j °1)¢Z ; j = 1, ..., N +1,

™i , j =™(Ri , Z j ); Si , j = S(Ri , Z j ).

(3.3)

The second-order finite difference equation, accurate to second order in ¢R and ¢Z , derived
by a Taylor series expansion, is given by

™i , j+1 +ai™i+1, j +bi™i°1, j ° (2+ ci )™i , j +™i , j°1 =¢Z 2Si , j , (3.4)

where we define the coefficients

ai =
µ

¢Z
¢R

∂2 µ

1° ¢R/2
Ri

∂

,

bi =
µ

¢Z
¢R

∂2 µ

1+ ¢R/2
Ri

∂

,

ci = ai +bi .

(3.5)

Equation 3.4 forms a tri-diagonal matrix, where it has only three diagonal bands of non-zero
matrices. To visualise that, for each j index, we define a vector of length N +1 that contains
the unknowns with the same j as follows:

~™ j =

2

6

6

6

6

4

™1, j

™2, j
...

™N+1, j

3

7

7

7

7

5

! ™=

2

6

6

6

6

4

™1,1 ™1,2 . . .™1,N+1

™2,1 ™2,2 . . .™2,N+1
...

. . .

™N+1,1 ™N+1,2 . . .™N+1,N+1

3

7

7

7

7

5

(3.6)

Therefore, Equation 3.4 can be written in the block form

A j ·~™ j+1 °B j ·~™ j +C j ·~™ j°1 = D j . (3.7)

Here, B j is a tri-diagonal N +1£N +1 matrix involving the coefficients ai , bi , and ci defined in
Equation 3.5, A j and C j are both modified N +1£N +1 identity matrices, and D j is a N +1£1
vector that contains both Dirichlet boundary values and the source term. The matrices in
Equation 3.7 are, therefore, of the form:

A j = C j =

2

6

4

0
[1]

0

3

7

5

, B j =

2

6

6

6

6

6

6

6

6

6

4

°1
°b2 2+ c2 °a2

°b3 2+ c3 °a3
. . .

°bN 2+ cN °aN

°1

3

7

7

7

7

7

7

7

7

7

5

, (3.8)

28



for j = 2, ..., N and [1] is a (N °1)£ (N °1) identity matrix. The boundary values, i.e. j = 1 and
for j = N , are of the form: A1 = AN+1 = C1 = CN+1 =O, and B1 = BN+1 =°1. For the D matrix,
we choose its boundary values as being the known Dirichlet boundary conditions to™, and its
interior as being the right-hand-side of Equation 3.4. To solve Equation 3.7, we look to find the
square N +1£N +1 matrices E j and the N +1£1 vectors F j such that satisfy the first-order
difference equation:

~™ j = E j ·~™ j+1 +F j , (3.9)

or, for j ! j °1,

~™ j°1 = E j°1 ·~™ j +F j°1. (3.10)

Plugging ~™ j°1 from Equation 3.10 into Equation 3.7 we get

~™ j =
≥

£

B j °C j ·E j°1
§°1 ·A j

¥

·~™ j+1 +
£

B j °C j ·E j°1
§°1 ·

°

C j ·F j°1 °D j
¢

, (3.11)

and comparing it with Equation 3.9, we find that E j and F j must obey the following recurrence
relations:

E j =
£

B j °C j ·E j°1
§°1 ·A j , (3.12)

F j =
£

B j °C j ·E j°1
§°1 ·

°

C j ·F j°1 °D j
¢

. (3.13)

Once calculated E and F, one can manipulate the above equations in order to obtain

~™N = FN +EN ·DN+1, (3.14)

and Equation 3.9 can be used to calculate the rest of the solution by backward calculations
from j = N °1 to j = 2.

3.2 The Lagrange multipliers method

The method of Lagrange multipliers - named after the Italian mathematician Joseph-Louis
Lagrange - is a technique in mathematical optimisation for finding the maxima and minima
of a function subjected to some constraints on the input values.

Let f (x) be a N f -dimensional function subjected to Nc constraints gi (x) = ci . The idea of the
method is to look for points where the contour lines of the functions f and g are tangent to
each other. Or, equivalently, to find where the gradient vectors of both functions are parallel to
each other.
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We start by defining the Lagrange function as

L (x,∏) = f (x)°
Nc
X

i=1
∏i

°

gi (x)° ci
¢

, (3.15)

where∏ is the Lagrange multipliers. In order to find the critical points of the Lagrange function,
we calculate

rL (x,∏) =
√

N f
X

i=1

@L

@xi
+

Nc
X

j=1

@L

@∏ j

!

êxi = 0. (3.16)

After obtaining the solutions of Equation 3.16, which will look something like (x0,∏0), the
one that gives the greatest/smallest value of the function f (x0) provides actually its maxi-
mum/minimum, respectively. This technique will be used to calculate the minimum PF coil
currents for a desired plasma scenario.

3.3 The Newton-Raphson method

After finding the solution of Grad-Shafranov equation for a given boundary condition, i.e. after
finding™=™(R, Z ), we need to define the normalised poloidal flux,™N , defined by

™N = ™°™axis

™LCFS °™axis
, (3.17)

where™axis and™LCFS are the values of the poloidal flux at the magnetic axis and at the last
closed flux surface, respectively. It is important to define this scalar quantity once the kinetic
profiles will be defined later as functions of ™N . The magnetic axis is obtained by finding
the critical points that has the extrema of the solution. This is done by finding the points
(Raxis, Zaxis) that satisfies

r™
Ø

Ø

Ø

(Raxis,Zaxis)
= 0

detH (™)
Ø

Ø

Ø

(Raxis,Zaxis)
> 0,

(3.18)

with H (™) being the Hessian of the solution, given by H (™) ¥ @2™
@R2

@2™
@Z 2 ° @2™

@R @Z
@2™
@Z @R .

The last closed flux surface solution has two possible meanings, as explained in the intro-
duction section. If the plasma is limited, the™LCFS is the flux on the limiter that reaches the
maximum or minimum value, depending on the direction of the plasma current. For Ip > 0,

™LCFS(Rlim, Zlim) = max
(R,Z )2@≠p

™. (3.19)

However, in a diverted plasma, the™LCFS is the flux that passes through a hyperbolic point
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(saddle point or X-point). This is done by finding the points (Rsep, Zsep) that satisfy

r™
Ø

Ø

Ø

(Rsep,Zsep)
= 0

detH (™)
Ø

Ø

Ø

(Rsep,Zsep)
< 0.

(3.20)

Therefore, we need to find the points (R, Z ) that satisfies r™= 0, i.e. one needs to find the
roots of r™. One of the several methods for finding the roots of a two-dimensional function is
the so-called Newton-Raphson’s method, and its demonstration is based on [18].

Let f(R, Z ) = fR (R, Z )êR + fZ (R, Z )êZ ¥ r™(R, Z ) be the two variables vectorial function we
seek to find its roots (x0 = R0, Z0). Applying Taylor’s expansion up to first order, we obtain

fR (R, Z ) = fR (x0)+ (R °R0)
@ fR

@R

Ø

Ø

Ø

x0
+ (Z °Z0)

@ fR

@Z

Ø

Ø

Ø

x0
,

fZ (R, Z ) = fZ (R0, Z0)+ (R °R0)
@ fZ

@R

Ø

Ø

Ø

x0
+ (Z °Z0)

@ fZ

@Z

Ø

Ø

Ø

x0
.

(3.21)

The terms on the left-hand side are zero by definition. Denoting x = (R, Z ), we obtain in matrix
form,

0 = f(x0)+F(x0) · (x°x0), (3.22)

where

F(x0) =
"

@ fR
@R

@ fR
@z

@ fZ
@R

@ fZ
@z

#

Ø

Ø

Ø

Ø

Ø

x0

is the Jacobian matrix of f at x0. If the initial guess x0 is close enough to the actual root and
det[F(x0)] 6= 0, then

x = x0 °F°1(x0) · f(x0) ¥ x1 (3.23)

x1 is an improvement on x0. Therefore, this leads to an iterative method

xn+1 = xn °F°1
n · fn (3.24)

that converges when |r™(xn+1)| is numerically zero.

3.4 The Crank-Nicholson method

When we derived the electromagnetic model for TCABR (Equation 2.62), we gathered three
main systems: the plasma, the vacuum vessel and the active coils. The latter being the Ohmic
system and the PF coils. As said previously, we calculate the currents in the PF coils using the
Lagrange method, where we find the solution that minimises their currents. Here, we seek
to solve the time evolution of the Ohmic and vacuum vessel currents. For that, we deploy

31



the short-circuit equations, i.e., the plasma and vacuum vessel equations. We start by first
denoting the sub-index a representing only the active PF coils. Therefore, the circuit equation
for the plasmas becomes

0 = Rp Ip +Lp İp +Mp,OH İOH + Ṁp,OH IOH +Mp,a İa + Ṁp,a Ia +Mp,v İv + Ṁp,v Iv , (3.25)

and the circuit equation for the vessel

0 = Rv Iv +Mv,v İv +Mv,OH İOH +Mv,a İa +Mv,p İp + Ṁv,p Ip . (3.26)

In matrix form, the above equation becomes

"

Mp,OH Mp,v

Mv,OH Mv,v

#

·
"

İOH

İv

#

+
"

Ṁp,OH Ṁp,v

0 Rv

#

·
"

IOH

Iv

#

=
"

°Rp Ip °Lp İp °Mp,a İa ° Ṁp,a Ia

°Mv,a İa °Mv,p İp ° Ṁv,p Ip

#

.

(3.27)

We realize that this equation can be written in a more appropriate way such as

İ =°
°

M°1 ·R
¢

I+M°1 ·S, (3.28)

where

I =
"

IOH

Iv

#

, M =
"

Mp,OH Mp,v

Mv,OH Mv,v

#

, R =
"

Ṁp,OH Ṁp,v

0 Rv

#

, and

S =
"

°Rp Ip °Lp İp °Mp,a İa ° Ṁp,a Ia

°Mv,a İa °Mv,p İp ° Ṁv,p Ip

#

.

To solve this first-order differential equation, we can use the Crank-Nicholson method, which
is based on the Euler method (forward and backwards), and it is described as follows. Suppose
an ordinary differential equation such as

d y
d t

= F
°

y, t
¢

. (3.29)

The forward Euler method relates the solution at the n +1 time step, given the previous one

yn+1 ° yn

¢t
= F n(y, t ), (3.30)

while the backward Euler method relates the solution given the source term also at the n +1
time step,

yn+1 ° yn

¢t
= F n+1(y, t ). (3.31)
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Therefore, combining both methods, we obtain

yn+1 ° yn

¢t
= 1

2

£

F n+1(y, t )+F n(y, t )
§

. (3.32)

This is an implicit method, meaning that in order to get the next solution of y in time, one
must solve a system of algebraic equation. Let us now apply this method to Equation 3.28. We
start by denoting A ¥ M°1 ·R and B ¥ M°1 ·S. Then, our equation becomes

In+1 ° In

¢t
= 1

2

°

°An+1 In+1 +Bn+1 °An In +Bn¢

=)

µ

1+ ¢t
2

An+1
∂

In+1 =
µ

1° ¢t
2

An
∂

In + ¢t
2

°

Bn+1 +Bn¢

,

and, therefore, we obtain

In+1 =
µ

1+ ¢t
2

An+1
∂°1 µ

1° ¢t
2

An
∂

In + ¢t
2

µ

1+ ¢t
2

An+1
∂°1

°

Bn+1 +Bn¢

. (3.33)

Solving this equation will give us the evolution of the Ohmic and vacuum vessel currents.
As an example, Figure 3.1 shows the solution of Equation 3.33 for the Ohmic and first four
vacuum vessel eigenmode currents (see Figure 2.5 for details).

Figure 3.1: Time evolution of the Ohmic and vacuum vessel currents for a circular plasma
scenario.
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4 The Plasma Scenario Design code

Over the years, different types of codes have been written for solving the MHD equilibrium
problem. This chapter serves to introduce some of the possible Grad-Shafranov solvers and to
describe in detail the Plasma Scenario Design (PSD) code, an inverse Grad-Shafranov solver
fully developed in the Plasma Physics Laboratory of the Institute of Physics of the University
of São Paulo using the MATLAB software to determine the evolution of the active coil currents
and voltages for several plasma shapes.

4.1 Computational domains

For a better understanding, it is useful to specify the sub-domains of the (R, Z ) plane used in
this work, Table 4.1.

≠ (R, Z ) plane
≠c Computational domain
≠pl Plasma region
≠v Vessel region
≠a Active coils region
≠vac Vacuum region within≠c

Table 4.1

The computational domain, ≠c , is where the Grad-Shafranov equation (Equation 2.30) is
sought and it is represented with a rectangular grid enclosed by its boundary @≠c . The plasma
region,≠pl, is contained within the LCFS, already defined in the Section 1.2. The vessel and
active coils regions (≠v +≠a) are the regions that contain toroidal electric current outside
the plasma domain. Finally, the vacuum region,≠vac, is the one that do not contain toroidal
electric current. All the above domains can be seen in Figure 4.1.

As mentioned before, the Grad Shafranov equation is a second-order partial differential
equation. Therefore, to solve it, the profiles p 0(™) and F F 0(™) and the boundary conditions at
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Figure 4.1: Computational domains in the poloidal plane of TCABR: Plasma domain ≠pl

(yellowish region) delimited by the LCFS (continuous red line); The computational domain≠c

(blueish region) composed by the plasma and the vacuum vessel (dark-grey region) domains,
and delimited by its boundary (continuous blue line); Active coils region (reddish region).

the computational boundary must be specified. One can distinguish between two cases: the
so-called free-boundary case, where the LCFS location is found as part of the solution, and the
so-called fixed-boundary case, where the location of the LCFS is prescribed. In the following
section, an iterative method to solve Grad-Shafranov and the three types of problems one
might be interested is presented.

4.2 Iterative Picard method

A popular method to treat the non-linearity in the Grad-Shafranov equation is to successively
iterate between the current distribution and the poloidal flux distribution. The method starts,
let us say, at the step [n °1] with a given plasma current density J [n°1]

¡ and external active and

passive currents embedded in I [n°1]
e . The next step [n] is obtained by the following steps:

1. Compute the boundary flux™b =™b,p

≥

j [n°1]
¡

¥

+Mb,e I [n°1]
e on @≠c ;
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2. Solve the Grad-Shafranov equation (Equation 2.20) ¢§™[n] =°2ºµ0R j [n°1]
¡ in≠c using

the technique described in Section 3.1;

3. Find the plasma domain ≠pl, i.e. calculate the ™axis and ™LCFS using the techniques
described in Section 3.3;

4. Update the external currents I [n]
e and kinetic profiles p 0[n], F F 0[n].

5. Update the plasma current density j [n]
¡ = 2º

£

Rp 0 °™[n]¢+F F 0 °™[n]¢/
°

µ0R
¢§

;

6. Test the convergence criteria.

The fourth step of the Picard iteration can be adapted to fit a specific goal of the equilibrium
solver as we will see in the following.

Equilibrium reconstruction

This solver takes as input the measurements, such as flux loops, magnetic probes, poloidal
field coil currents, diamagnetic flux, among others, and provides the kinetic profiles p 0(™) and
F F 0(™), and the magnetic equilibrium™(R, Z ). Usually, this is done by solving a least-square
problem of the type

¬= min
p 0,F F 0,Ia,Iv

(

X

j

Ø

Ø

Ø

yj °hj [™(R, Z )]
Ø

Ø

Ø

2
)

,

where yj is a vector containing real measurements and hj [™(R, Z )] contains synthetic mea-
surements. In many tokamaks, equilibrium reconstruction is commonly solved during or after
discharges to reconstruct the plasma equilibrium evolution in time during an experiment [22].

Fixed boundary equilibrium solver

This solver takes as input the exact plasma boundary @≠pl and the kinetic profiles p 0(™) and
F F 0(™). Its output is the plasma equilibrium solution™(R, Z , t ). This allows for the study of
equilibrium stability, controller design, among others.

Free boundary equilibrium solver

This solver takes as input the desired plasma boundary @≠pl and provides the minimum
required PF coil currents. This approach is used during the preparation of an experiment to
determine the sequence of Ia to get the desired plasma shape at a sequence of pre-defined
times. Typically it is assumed a nearly steady-state equilibrium. During the Picard iterations,
the PF coil currents are updated by solving a least-square problem as will be explained later
in this section, and the kinetic profiles are chosen to satisfy some constraints based on some
scalar equilibrium features. Additional constraints can be added in the optimisation process
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[23]. This is the solver we are interested in this work and it will be explained in details in the
following.

4.3 The free boundary equilibrium solver

In this Section, a detailed description of each step of the free boundary equilibrium solver is
given. For convenience, it is divided into subsections. For our case, we will adapt the general
Picard algorithm as follows:

1. Prescribe boundary points along the desired LCFS;

2. Provide an initial guess for the plasma current density j [n°1]
¡ (R, Z ) and calculate the

associated poloidal flux;

3. Adjust the PF coil currents to obtain the prescribed LCFS;

4. Compute the boundary flux™b =™b,p

≥

j [n°1]
¡

¥

+Mb,e I [n°1]
e on @≠c ;

5. Solve the Grad-Shafranov equation (Equation 2.20) ¢§™[n] =°2ºµ0R j [n°1]
¡ in≠c ;

6. Find the plasma domain in order to calculate the normalised flux™N ;

7. Parameterise the kinetic profiles as functions of the normalised flux, i.e. p(™N ), and
F (™N ) to update the plasma current density.

8. Test the convergence criteria.

4.3.1 Prescribing the plasma boundary and constraint points

The boundary of the plasma can be parameterised from an analytical expression of the
LCFS [19] by prescribing the elongation, ∑, the triangularity, ±, and the squareness, ≥:

Rb(µ) = R0 +a cos(µ+±sinµ°≥sin2µ) ,

Zb(µ) = Z0 +∑a sin(µ+≥sin2µ) ,
(4.1)

where (R0, Z0), a, and µ are the location of the plasma magnetic axis, the plasma minor radius,
and a poloidal angle, respectively. Figure 4.2 shows some examples of boundary shapes
obtained from Equation 4.1.

The confinement time and global plasma performance are intrinsically connected with the
plasma shape. For instance, high values of ∑ allows higher plasma current and, consequently,
extends the ideal MHD stability limits [20]. However, elongated plasmas are vertically unstable,
requiring a robust control system to create such configurations. Besides prescribing the plasma
boundary using Equation 4.1, one can also set exact points in the (R, Z ) plane where we impose
some constraints to the magnetic field.
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(a) (b)

Figure 4.2: (a) Examples of plasma boundaries obtained from Equation 4.1: circular (red line),
elongated (blue line), with negative triangularity (green line) and with an X-point (black line).
(b) Example of a prescribed plasma boundary with an X-points imposed (red cross).

Below one can find a few examples of constraints:

• Vertical tangency (outboard or inboard midplane) at (Rr, Zr):

BR (Rr, Zr) =° 1
2ºR

@™

@Z

Ø

Ø

Ø

Ø

Ø

(Rr,Zr)

= 0;

• Horizontal tangency (plasma bottom or top) at (Rz , Zz ):

BZ (Rz, Zz) = 1
2ºR

@™

@R

Ø

Ø

Ø

Ø

Ø

(Rz,Zz)

= 0;

• First order null-point (magnetic axis or X-point) at (Rxp, Zxp):

BR (Rxp, Zxp) =° 1
2ºR

@™

@Z

Ø

Ø

Ø

Ø

Ø

(Rxp,Zxp)

= 0 and BZ (Rxp, Zxp) = 1
2ºR

@™

@R

Ø

Ø

Ø

Ø

Ø

(Rxp,Zxp)

= 0;

• Second order null-point (snowflake) at (Rsf, Zsf):

BR (Rsf, Zsf) =° 1
2ºR

@™

@Z

Ø

Ø

Ø

Ø

Ø

(Rsf,Zsf)

= 0 and BZ (Rsf, Zsf) =
1

2ºR
@™

@R

Ø

Ø

Ø

Ø

Ø

(Rsf,Zsf)

= 0;

@BR

@R

Ø

Ø

Ø

Ø

Ø

(Rsf,Zsf)

= 0 and
@BR

@Z

Ø

Ø

Ø

Ø

Ø

(Rsf,Zsf)

= 0;

To have a second order null-point one must have BR = BZ = rBR = rBZ = 0. For that, one
can use the fact that r£B = 0 and r ·B = 0 at the null-point to find out that one just have to
impose @BR /@R = @BR /@Z = 0, in addition to BR = BZ = 0, to have a second order null-point.
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4.3.2 Initial guess for the plasma current density and its poloidal magnetic flux

With the boundary points given by Equation 4.1 in hand, we can prescribe an initial guess for
the plasma current density within the desired LCFS. In our case, we set the initial guess for
the plasma current density as a flat profile across the LCFS domain, Figure 4.3a, such that its
integral over the two-dimensional grid yields the prescribed plasma current, i.e.

Ip =
œ

≠p

J 0
¡(R, Z )dR d Z .

With this initial guess, we can calculate the associated poloidal flux using the Green’s functions

™p (R, Z ) =
Z

M(R, Z ;R 0, Z 0) J 0
¡(R 0, Z 0)dR 0 d Z 0 (4.2)

where M(R, Z ;R 0, Z 0) is given by Equation 2.46. Figure 4.3b shows an example of the associated
poloidal flux due to the current density shown in Figure 4.3a.

(a) (b)

Figure 4.3: (a) Example of an initial guess of plasma current density. (b) Poloidal flux distribu-
tion produced by the plasma current density shown in (a) and the prescribed boundary points
(blue dots) and X-point (red cross).

Note that the calculated ™p (R, Z ) shown in Figure 4.3b is not an iso-flux at the prescribed
boundary points. Therefore, additional poloidal fluxes are required to adjust that and also to
have Bpol = 0 at the X-point. This is obtained by turning on and adjusting the PF coil currents.
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4.3.3 The optimisation method for obtaining the PF coil currents

The 16 independently powered PF coils that will operate in the TCABR will provide a great
plasma shaping flexibility. These coils are also known as “shaping coils” as they are responsible
to deform the flux surfaces in order to obtain a particular plasma shape. One might end
up finding an infinite set of possible solutions for the PF coil currents that gives the desired
plasma shape. However, we are interested in the solution that provides the minimum set of PF
coil current amplitudes. For that, it is necessary to derive an optimisation process to minimise
a cost function made of the following terms:

• Power dissipation in the PF coils: it minimises the currents in each coil:

PR =
X

a
Ra I 2

a , (4.3)

• Dipoles at the PF coils: it minimises the difference in current amplitude between neigh-
bour PF coils:

D =
X

a,a0
Ia Daa0 Ia0 , (4.4)

• Flux error on approximate boundary points (Rk , Zk ):

≤™ =
X

k

£°

Mk,a · Ia +™kp +Mk,oh · Ioh +Mk,v · Iv
¢

°™b
§2 , (4.5)

The final cost function, with pre-selected weights, is given by

¬2 =WR
X

a
Ra I 2

a +WD
X

a,a0
Ia Daa0 Ia0 +W™

X

k
(™k °™b)2 (4.6)

with™k = Mk,a · Ia +™kp +Mk,oh · Ioh +Mk,v · Iv . One can notice that it is possible to write the
above equation in a matrix form such as

¬2 = xt ·P ·x+ (A ·x+b)t ·W · (A ·x+b) . (4.7)

where x = [Ia ™b]t is a vector containing the PF coil currents and the value of the poloidal
flux at the plasma boundary, P is a matrix that gathers Equations 4.3 and 4.4 and has the last
column equals to zero. The matrix A relates the first and last terms of Equation 4.5 while the
vector b relates the other terms. Until this point, we have not imposed any of the constraints
mentioned in the previous section. We can cast these constraints as follows:

C ·x = d, (4.8)

where C are the Green’s functions of the PF coils at the prescribed constraint points and d is
the vector containing the values of the calculated poloidal flux of the plasma, Ohmic system
and vacuum vessel, all at the prescribed constraint points.
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We now define the Lagrange function

L (x,∏) = xt ·P ·x+ (A ·x+b)t ·W · (A ·x+b)° (C ·x°d)t ∏, (4.9)

where ∏ are the Lagrange multipliers, as explained in Section 3.2. The solution of the minimi-
sation is obtained by finding the values of x and ∏ that satisfies

@L

@x
= 0,

@L

@∏
= 0. (4.10)

The first equation yields

°

P+At ·W ·A
¢

x° Ct

2
∏=°At ·W ·b, (4.11)

while the second one yields the constraint equation (Equation 4.8). Then, Equation 4.10 can
be written in matrix form as

"

P+At ·W ·A °Ct /2
C 0

#

·
"

x
∏

#

=
"

°At ·W ·b
d

#

. (4.12)

Therefore, the solution for the PF coil currents, contained in the x vector, is obtained by

"

x
∏

#

=
"

P+At ·W ·A °Ct /2
C 0

#°1

·
"

°At ·W ·b
d

#

. (4.13)

Figure 4.4 shows the third step of the Picard algorithm after the calculation of the poloidal
magnetic flux due to the initial current guess shown in Figure 4.3.

The imposed constraint here is to have a null-point at the red cross shown. The first panel
of Figure 4.4 shows the boundary points and the constraint for the poloidal magnetic field.
The second and third panels shows the currents in each PF coils and the produced poloidal
magnetic flux, respectively. Finally, the last panel shows the total poloidal magnetic flux.

4.3.4 Parameterisation of the kinetic profiles

Until now, we have not considered the effect of the Picard iterations on the kinetic profiles
that are used to construct the p 0 term in the Grad-Shafranov equation. This is done in the 7th

step of the Picard algorithm described in Section 4.3, where we need to update the plasma
current density given by

J¡(R, Z ) = 2º
µ

R p 0+ F F 0

µ0 R

∂

. (4.14)

In the following, a description on how parameterise each of the kinetic profiles is given.
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Figure 4.4: Poloidal fluxes: (left) due to the plasma, (centre) due to the PF coil currents and
(right) total. Electric current estimated in each coil to have the shape as in the right-top panel

Total plasma pressure

Tokamaks can be operated in basically two types of confinement mode: the low confinement
mode (L-mode), which is characterised by relatively high levels of turbulence, and the high
confinement mode (H-mode), which is characterised by relatively low levels of the turbulence
that, in turn, causes an increase in energy confinement time typically by a factor of 2 [21].
The main feature of H-mode plasmas is the presence of a pedestal in the electron tempera-
ture, density and, consequently, pressure profiles at the plasma edge. These profiles can be
modelled as [21]:

f (™N ) = fsep+a0

n

tanh
∑

2(1°™mid)
¢

∏

°tanh
∑

2(™N °™mid)
¢

∏

o

+a1

∑

1°
µ

™N

™ped

∂Æ1
∏Æ2

. (4.15)

Here, f represents either density or temperature as a function of normalised flux™N , fsep is
the value of f at the LCFS, ¢ is the pedestal width, ™mid is the location of the centre of the
pedestal, and™ped is the location of the pedestal top.

The second term on the RHS controls the pedestal region while the last term controls the
profile shape in the core region. The pressure profile for each species can be calculate via:

pÆ = 16.02nÆ,20 TÆ,keV (kPa), (4.16)

where pÆ is given in kPa if TÆ,keV is given in keV and nÆ,20 given in units of 1020 m°3.
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Therefore, the total pressure is the sum of the pressures of all species. For the TCABR:

ptot = pe +pi +pC +pFe, (4.17)

where pe is the electron pressure, pi is the ion pressure, pC is the carbon impurity pressure,
and pFe is the iron impurity pressure. Depending on the choices of the free parameters a0, a1,
Æ1, and Æ2 in Equation 4.15, we can model profiles that represents plasma in the low or in
the high confinement mode. Figure 4.5 shows the pressure, temperature, and density profiles
as function of normalised poloidal flux. One can notice the increase of the quantities at the
plasma core and the presence of the pedestal structure in all the H-mode profiles.

Figure 4.5: Examples of L-mode (first row) and H-mode (second row) pressure, temperature
and density radial profiles, for different species, obtained from Equations 4.15, 4.16 and 4.17.

Poloidal current function

The internal profile related with the poloidal current, F F 0, is supposed to be a linear combina-
tion of a set of basis functions of the normalised poloidal flux

F F 0(™N ) =
Np°1
X

k=0
Æk gk (™N ), (4.18)
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where Æk are free parameters obtained by the Np imposed physical constraints. Let us manip-
ulate Equation 4.18 in order to obtain the poloidal current function F :

F F 0(™N ) = F
dF
d™

(™N ) = 1
2

dF 2

d™
, (4.19)

but, from the definition of normalised poloidal flux, given by Equation 3.17, we have that

d
d™

= d™N

d™
d

d™N
= 1
¢™

d
d™N

,

where ¢™=™LCFS °™axis. Therefore,

F F 0(™N ) = 1
2¢™

dF 2

d™N
=) dF 2

d™N
= 2¢™

Np°1
X

k=0
Æk gk (™N ). (4.20)

Integrating the above equation from™0
N = 1 to™0

N =™N

Z™N

1

dF 2

d™0
N

d™0
N = 2¢™

Np°1
X

k=0
Æk

Z™N

1
gk (™N )d™0

N =)

=) F (™N ) =

v

u

u

tF 2
1 +2¢™

Np°1
X

k=0
Æk

Z™N

1
gk (™N )d™0

N , (4.21)

where F1 = R0 B0, with R0 being the major radius of the tokamak and B0 the amplitude of the
vacuum toroidal field at R0. Per definition, the poloidal current function F = R B¡ depends
on the toroidal magnetic field. Therefore, if there is no plasma, the toroidal magnetic field is
the one produced by the toroidal field coils (B¡ = R0 B0/R) and, therefore, F will be constant
inside the vacuum vessel, as

F = R B¡(R) = R
R0B0

R
= R0 B0.

Note that the poloidal current function determines if the plasma will have a diamagnetic or a
paramagnetic behaviour.
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5 Simulations of plasma scenarios in
TCABR

In this chapter, we show the results for the design of some of the plasma scenarios envisaged
for TCABR, Figure 5.1. The parameters that define the equilibrium are also presented here.

5.1 Magnetic configuration for plasma breakdown

The poloidal magnetic field configuration plays an important role during the plasma start-up
phase. In regions with smaller poloidal magnetic field, the connection length is longer and, as
shown in Equation 2.7, breakdown occurs more easily in these regions. The flexibility provided
by the 16 independent powered PF coils of TCABR allows for the creation of a poloidal field
null-point with different properties at various locations within the vacuum vessel. Since
plasma elongation, triangularity and squareness is usually negligible during the early ramp-up
phase, we start with a small circular plasma (a º 5 cm) centred at (Rbr, Zbr). The technique
used to impose the magnetic configuration during the breakdown phase is the one described
in Section 4.3.3, with the slight change that we need to set A = 0 and b = 0 since at this time
there is no plasma yet. For the breakdown configuration then, Equation 4.13 becomes

"

x
∏

#

=
"

P °Ct /2
C 0

#°1

·
"

0
d

#

, (5.1)

where x is a vector containing the PF coil currents, P is a diagonal matrix containing the
electric resistances of each PF coil, C contains the imposed constraints on the magnetic field
and d is a vector containing the values of the calculated poloidal flux due to the Ohmic current
at the prescribed constraint point. The breakdown magnetic configuration is obtained by
imposing a second order null-point at (Rbr, Zbr), i.e. by imposing the following constraints for
the poloidal magnetic field

µ

BR = BZ = @BR

@R
= @BR

@Z

∂

Ø

Ø

Ø

Ø

Ø

(Rbr,Zbr)

= 0. (5.2)
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Figure 5.1: Plasma shapes envisaged for TCABR. Limited configurations: (a) circular, (b) elon-
gated, (c) with squareness, (d) positive triangularity and (e) negative triangularity. Diverted
configurations: (f) lower single-null, (g) upper single-null, (h) double-null, and (i) snowflake.

48



The results for the breakdown, which can be seen in Figure 5.2, will be used in the beginning
of all plasma scenarios, since all of them start as a small limited circular plasma.

Figure 5.2: Magnetic configuration used for inducing breakdown at (Rbr, Zbr) = (0.51 , 0) m and
IOH = 24 kA with a second order null-point at that location.

5.2 The kinetic profiles

This section describes how the kinetic profiles described in Section 4.3.4 are calculated based
on three imposed constraints: one for the plasma pressure and two for the poloidal current
function.

5.2.1 Total plasma pressure

An important macroscopic plasma quantity used as a figure of merit for a tokamak plasma
performance is the normalised plasma pressure,

Ø= hpi
hB 2i/2µ0

, (5.3)
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where hpi = 1
V

R

V p dV is the volume averaged plasma pressure and hB 2i = hB 2
µ
i+B 2

0 . The
parameter Ø measures the ratio between the kinetic and magnetic energy. Another normali-
sation of the plasma pressure used to express the proximity to a plasma stability limit is [9]

ØN = Ø[%] a[m]B0[T]
Ip [MA]

, (5.4)

By prescribing ØN , we can re-scale the pressure profile, given by Equation 4.16 and shown in
the first panel of Figure 4.5. Denoting this given pressure profile as p̃, the scaled one becomes
p = fp p̃, and we calculate fp by using Equations 5.3 and 5.4.

hpi
hB 2i/2µ0

=
Ip [MA]ØN

a[m]B0[T]
=) hpi= h fp p̃i=

Ip [MA]ØN hB 2i/2µ0

a[m]B0[T]
=)

=) fp =
Ip [MA]hB 2iØN

2µ0 a[m]B0[T]hp̃i . (5.5)

Therefore, since the kinetic profiles are prescribed in the second iteration of Picard algorithm,
the averaged values in the RHS of Equation 5.5 can be calculated from the previous step, while
the other terms are initially prescribed.

5.2.2 Poloidal current function

We defined the internal kinetic profile, F F 0, as a linear combination of a set of basis functions
of the normalised poloidal flux. For this present work, we impose two physical constraints: one
on the plasma current Ip and the other on the averaged toroidal plasma current, given by Equa-
tion 2.37. Here, we assume that F F 0 is a linear function of™N and, therefore, Equation 4.18 is
truncated at Np = 2,

F F 0(™N ) =Æ0 +Æ1™N . (5.6)

The goal now is to obtain both coefficients, Æ0 and Æ1, using the imposed constraints.

The first constraint comes from the definition of the plasma current density, Equation 4.14. If
we integrate this equation in the poloidal plane, we obtain

œ

F F 0

R
dR d Z =µ0

µ

Ip

2º
°

œ

R p 0 dR d Z
∂

=)

=) Æ0

œ

1
R

dR d Z +Æ1

œ

™N

R
dR d Z =µ0

µ

Ip

2º
°

œ

R p 0 dR d Z
∂

. (5.7)
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The second one comes from imposing Jtor(™N = 1) = 0,

0 = R0 p 0
Ø

Ø

Ø

Ø

Ø

™N=1

+ F F 0

µ0R0

*

R2
0

R2

+

Ø

Ø

Ø

Ø

Ø

™N=1

=) F F 0
Ø

Ø

Ø

Ø

™N=1
=°

µ0R2
0 p 0

≠

R2
0/R2

Æ

Ø

Ø

Ø

Ø

Ø

™N=1

,

which means that the plasma current is restricted inside of the last close flux surface. Therefore,
we obtain the second equation for the coefficients

Æ0 +Æ1 =° µ0

¢™

µ

1
hR°2i

d p
d™N

∂

Ø

Ø

Ø

Ø

Ø

™N=1

. (5.8)

Solving these linear system of equations yields the coefficients of Equation 5.6, and we can
easily integrate it to obtain

F (™N ) =
r

F 2
1 +2¢™ (™N °1)

h

Æ0 +
Æ1

2
(™N +1)

i

(5.9)

5.2.3 Effect of the kinetic profiles on the PF coil currents and diamagnetism

By simulating five different single-null diverted plasma with Ip = 105 kA, ØN [%] = 0.35 and
with five different pressure profiles (shown in panel (a) of Figures 5.3, 5.4, 5.5, 5.6 and 5.7),
two important results are obtained regarding the impact of the kinetic profiles on the PF coil
currents and on the magnetic response of the plasma to the externally applied toroidal field.

The first result shows that changes in the pressure profile, while keeping ØN constant, does
not cause significant changes in the PF coil currents, pictured on panel (b) of the figures
below. For the L-mode profiles, the maximum difference are of the order of just ¢Ia º 80 A.
However, for the H-mode profile, the maximum difference can be as high as ¢Ia º 2.0 kA
compared with those in the the L-mode profiles. The second result comes from the monotonic
poloidal current function profiles, panels (d) on the figures below. We notice that F (0) < F (1),
which is expected because with our prescribed ØN and toroidal magnetic field, it yields a
Øpol = 2µ0hpi/hB 2

µ
i smaller than unit, i.e. the gyro-orbits of the charged particles being such

as to reduce the toroidal magnetic field inside the plasma. Panel (e) on Figures 5.3, 5.4, 5.5, 5.6,
and 5.7 show this diamagnetic effect. For the cases of Øpol > 1, the plasma would react such
that to increase the toroidal magnetic field inside it, and therefore, it would be paramagnetic.
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Figure 5.3: Static simulation for a prescribed pressure profile given by p(™N ) = p0
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1+™N

° ™N
2

¥

.

Figure 5.4: Static simulation for a prescribed pressure profile given by p(™N ) = p0

≥

1
1+™2

N
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N
2

¥
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Figure 5.5: Static simulation for a prescribed pressure profile given by p(™N ) = p0

≥

1
1+™3

N
° ™3

N
2

¥

.
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Figure 5.6: Static simulation for a characteristic L-mode pressure profile.

Figure 5.7: Static simulation for a characteristic H-mode pressure profile.

5.3 Time evolution of plasma scenarios

In this Section, the simulation of nine TCABR plasma scenarios is presented. In these scenarios,
the plasma current is ramped-up to achieve its prescribed flat-top value and then ramped-
down until the plasma is terminated. The entire discharge is expected to last around 1200 ms:
100 ms of current ramp-up, 1000 ms of current flat-top phase and 100 ms of current ramp-
down. These three phases can be seen in Figure 5.8. Each point in the operational space of the
simulated experiment is assumed to be in an MHD equilibrium, i.e. the plasma shape and
currents in the system evolves from one Grad-Shafranov solution to another. Therefore, the
three phases just mentioned will be divided into 10 equilibria each, totalling 30 points for the
entire discharge simulation., but these are arbitrary numbers, one can change the number of
points in the operational space.
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Figure 5.8: Schematic of a typical tokamak discharge. The magnetic configuration of break-
down is expected to occur at t0 = 0 s where the Ohmic coil is charged with a current IOH(t0) 6= 0.

To have induced vacuum vessel currents included self-consistently in the calculations, we
linearise all the electrical parameters in Equation 3.27 that are related to the plasma, such as
plasma resistance, self-inductance and mutual inductances of the plasma with any other part
of the system. For example, let f (t ) be any of these electrical parameters, then

f (n)(t ) = f (n°1) + d f (n)

d t

≥

t (n) ° t (n)
eq +¢t (n)

¥

, (5.10)

where t (n)
eq is the time of the n-th equilibrium, t (n) 2

h

t (n)
eq °¢t (n), ¢t (n)

i

is the linearisation

time, ¢t (n) = t (n)
eq ° t (n°1)

eq is the time step, and d f (n)

d t = ( f (n)° f (n°1))
d t (n) . The parameter ØN , Equa-

tion 5.4, is set toØN [%] = 0.35, a factor of around 10 smaller than the Troyon limit [9]. Therefore,
the scaling factor fp will change for each MHD equilibrium during the discharge as Ip , a and
hB 2i changes from equilibrium to equilibrium. The plasma current at the flat-top is chosen to
be Ip ∑ 120 kA to avoid qedge ∑ 2 kink instabilities.

5.3.1 Limited plasmas

Here, the simulation of five wall-limited plasma scenarios is presented. The simulation include
the time evolution of each coil current and voltage needed to create the desired plasma shape
evolution. Limited plasmas are characterised by having having the LCFS defined by the
intersection of the plasma with a physical material wall. In these simulations, the plasma
starts at the breakdown position with a current of Ip = 10 kA and with the Ohmic coil charged
with IOH = 24 kA.
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Circular plasma

The circular plasma is modeled to achieve a plasma current at the flat-top with Ip = 90 kA and
with maximum minor radius of a = 15 cm. The plasma current is ramped-up until it reaches
the flat-top value along with its final circular shape. The simulation of this limited plasma is
shown in Figures 5.9. The first row of this figure shows the prescribed plasma current, followed
by the calculated evolution of the Ohmic current pictured on the second row and the evolution
of the plasma shape on the last row. We notice that to induce the prescribed plasma current,
the Ohmic system will have to operate with currents of IOH =±24 kAcc and voltages varying
from VOH º 0.8 kV to VOH º°1.2 kV, as shown in Figure 5.10. To obtain the evolution of the
circular shape, the PF coil power supplies will have to provide currents and voltages of up to
|Ia | = 2.0 kAcc, and |Va | = 200 V, respectively. These results are presented in Figure 5.11.

Figure 5.9: Time evolution of a circular plasma at three points in time.
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Figure 5.10: Time evolution of the voltage, current, and power on the Ohmic and vacuum
vessel (induced) for a circular plasma.

Figure 5.11: Time evolution of the voltage, current, and power on each PF coil for a circular
plasma.
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Elongated plasma

The elongated plasma is modeled to achieve a plasma current at the flat-top with Ip = 100 kA
and with maximum elongation of ∑ = 1.5. The current is ramped-up until it reaches this
flat-top value along with its final elongated shape. The simulation of this limited plasma
is shown in Figure 5.12. The first row of this figure shows the prescribed plasma current,
followed by the calculated evolution of the Ohmic current pictured on the second row and
the evolution of the plasma shape on the last row. We notice that, to induce the prescribed
plasma current, the Ohmic system have to operate with currents of IOH =±24 kA and voltages
varying from VOH º 0.5 kV to VOH º°1.2 kV, as shown in Figure 5.13. To obtain the evolution
of the elongated shape, the PF coil currents will have to provide currents and voltages up to
|Ia | = 4.0 kA, and |Va | = 200 kV, respectively. These results are presented in Figure 5.14.

Figure 5.12: Time evolution of an elongated plasma at three points in time.
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Figure 5.13: Time evolution of the voltage, current, and power on the Ohmic and vacuum
vessel (induced) for an elongated plasma.

Figure 5.14: Time evolution of the voltage, current, and power on each PF coil for an elongated
plasma.
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Positive triangularity plasma

The plasma with positive triangularity is modeled to achieve a plasma current at the flat-top
with Ip = 100 kA and with elongation of ∑= 1.4 and with triangularity of ±= 1.5. The current
is ramped-up until it reaches this flat-top value along with its final triangular shape. The
simulation of this limited plasma is shown in Figure 5.15. The first row of this figure shows the
prescribed plasma current, followed by the calculated evolution of the Ohmic current pictured
on the second row and the evolution of the plasma shape on the last row. We notice that, to
induce the prescribed plasma current, the Ohmic system have to operate with currents of
IOH =±24 kA and voltages varying from VOH º 0.3 kV to VOH º°2.3 kV, as shown in Figure 5.16.
To obtain the evolution of the shape, the PF coil currents will have to provide currents and
voltages up to |Ia | = 7.0 kA, and |Va | = 300 V, respectively. These results are presented in
Figure 5.17.

Figure 5.15: Time evolution of a limited plasma with positive triangularity at three points in
time.
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Figure 5.16: Time evolution of the voltage, current, and power on the Ohmic and vacuum
vessel (induced) for a plasma with positive triangularity.

Figure 5.17: Time evolution of the voltage, current, and power on each PF coil for a plasma
with positive triangularity.
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Negative triangularity plasma

The plasma with negative triangularity is modeled to achieve a plasma current at the flat-top
with Ip = 80 kA and with elongation of ∑= 1.1 and with triangularity of ±=°1.2. The current
is ramped-up until it reaches this flat-top value along with its final triangular shape. The
simulation of this limited plasma is shown in Figure 5.18. The first row of this figure shows the
prescribed plasma current, followed by the calculated evolution of the Ohmic current pictured
on the second row and the evolution of the plasma shape on the last row. We notice that, to
induce the prescribed plasma current, the Ohmic system have to operate with currents of
IOH =±24 kA and voltages varying from VOH º 0.1 kV to VOH º°1.2 kV, as shown in Figure 5.19.
To obtain the evolution of the shape, the PF coil currents will have to provide currents and
voltages up to |Ia | = 7.5 kA, and |Va | = 150 V, respectively. These results are presented in
Figure 5.20.

Figure 5.18: Time evolution of a limited plasma with negative triangularity at three points in
time.
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Figure 5.19: Time evolution of the voltage, current, and power on the Ohmic and vacuum
vessel (induced) for a plasma with negative triangularity.

Figure 5.20: Time evolution of the voltage, current, and power on each PF coil for a plasma
with negative triangularity.
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Squared plasma

The squared plasma is modeled to achieve a plasma current at the flat-top with Ip = 100 kA
and with squareness of ≥= 1.0. The plasma current is ramped-up until it reaches the flat-top
value along with its final squared shape. The simulation of this limited plasma is shown in
Figures 5.21. The first row of this figure shows the prescribed plasma current, followed by the
calculated evolution of the Ohmic current pictured on the second row and the evolution of
the plasma shape on the last row. We notice that to induce the prescribed plasma current,
the Ohmic system will have to operate with currents of IOH = ±24 kA and voltages varying
from VOH º 0.3 kV to VOH º°2.2 kV, as shown in Figure 5.22. To obtain the evolution of the
circular shape, the PF coil power supplies will have to provide currents and voltages of up to
|Ia | = 7.5 kA, and |Va | = 250 V, respectively. These results are presented in Figure 5.23.

Figure 5.21: Time evolution of a squared plasma at three points in time.
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Figure 5.22: Time evolution of the voltage, current, and power on the Ohmic and vacuum
vessel (induced) for a squared plasma.

Figure 5.23: Time evolution of the voltage, current, and power on each PF coil for a squared
plasma.
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5.3.2 Diverted plasmas

In this section, the design of three diverted scenarios is presented with the time evolution
of each coil current and voltage needed to prescribe the desired LCFS. Diverted plasmas are
characterized by the LCFS being the one that passes through an X-point. The plasma is started
at the breakdown position with a current Ip = 10 kA and Ohmic current IOH = 24 kA.

Lower single-null plasma

The single-null plasma with a negative Z position is modeled to achieve a plasma current
at the flat-top Ip = 105 kA, with elongation ∑ = 1.35, lower triangularity ±` = 1.0 and upper
triangularity ±u = 0.1. The plasma current is ramped-up until it reaches the flat-top value along
with its final circular shape. The simulation of this limited plasma is shown in Figures 5.24.
The first row of this figure shows the prescribed plasma current, followed by the calculated
evolution of the Ohmic current pictured on the second row and the evolution of the plasma
shape on the last row. We notice that to induce the prescribed plasma current, the Ohmic
system will have to operate with currents IOH =±24 kA and voltages varying from VOH º 0.75 kV
to VOH º°1.5 kV, Figure 5.25. To obtain the evolution of the diverted shape, the PF coil power
supplies will have to provide currents and voltages of up to |Ia | = 6.0 kA, and |Va | = 250 V,
respectively. These results are presented in Figure 5.26.

Figure 5.24: Time evolution of a diverted plasma at three points in time.

65



Figure 5.25: Time evolution of the voltage, current, and power on the Ohmic and vacuum
vessel (induced) for a diverted plasma.

Figure 5.26: Time evolution of the voltage, current, and power on each PF coil for a diverted
plasma.
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Upper single-null plasma

The diverted plasma with a single-null with a positive Z position is modeled to achieve a
plasma current at the flat-top with Ip = 105 kA with elongation of ∑ = 1.35, lower triangularity
of ±` = 0.1 and upper triangularity of ±u = 1.0. The plasma current is ramped-up until it reaches
the flat-top value along with its final circular shape. The simulation of this limited plasma
is shown in Figures 5.27. The first row of this figure shows the prescribed plasma current,
followed by the calculated evolution of the Ohmic current pictured on the second row and the
evolution of the plasma shape on the last row. We notice that to induce the prescribed plasma
current, the Ohmic system will have to operate with currents of IOH = ±24 kA and voltages
varying from VOH º 0.75 kV to VOH º°1.5 kV, as shown in Figure 5.28. To obtain the evolution
of the diverted shape, the PF coil power supplies will have to provide currents and voltages of
up to |Ia | = 6.0 kA, and |Va | = 250 V, respectively. These results are presented in Figure 5.29.

Figure 5.27: Time evolution of a diverted plasma at three points in time.
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Figure 5.28: Time evolution of the voltage, current, and power on the Ohmic and vacuum
vessel (induced) for a diverted plasma.

Figure 5.29: Time evolution of the voltage, current, and power on each PF coil for a diverted
plasma.
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Double-null plasma

The diverted plasma with a double-null is modeled to achieve a plasma current at the flat-top
with Ip = 110 kA with elongation of ∑ = 1.4, lower and upper triangularities of ± = 0.8. The
plasma current is ramped-up until it reaches the flat-top value along with its final circular
shape. The simulation of this limited plasma is shown in Figures 5.30. The first row of this
figure shows the prescribed plasma current, followed by the calculated evolution of the Ohmic
current pictured on the second row and the evolution of the plasma shape on the last row. We
notice that to induce the prescribed plasma current, the Ohmic system will have to operate
with currents of IOH = ±24 kA and voltages varying from VOH º 1.0 kV to VOH º °1.5 kV, as
shown in Figure 5.31. To obtain the evolution of the diverted shape, the PF coil power supplies
will have to provide currents and voltages of up to |Ia | = 9.0 kA, and |Va | = 250 V, respectively.
These results are presented in Figure 5.32.

Figure 5.30: Time evolution of a diverted plasma at three points in time.
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Figure 5.31: Time evolution of the voltage, current, and power on the Ohmic and vacuum
vessel (induced) for a diverted plasma.

Figure 5.32: Time evolution of the voltage, current, and power on each PF coil for a diverted
plasma.
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Snowflake plasma

The snowflake plasma with a second order null-point is modeled to achieve a plasma current
at the flat-top with Ip = 80 kA with elongation of ∑ = 1.35, lower triangularity of ±` = 1.0 and
upper triangularity of ±` = 0.5. The plasma current is ramped-up until it reaches the flat-top
value along with its final circular shape. The simulation of this limited plasma is shown in
Figures 5.33. The first row of this figure shows the prescribed plasma current, followed by the
calculated evolution of the Ohmic current pictured on the second row and the evolution of
the plasma shape on the last row. We notice that to induce the prescribed plasma current,
the Ohmic system will have to operate with currents of IOH = ±24 kA and voltages varying
from VOH º 4.0 kV to VOH º°4.0 kV, as shown in Figure 5.34. To obtain the evolution of the
diverted shape, the PF coil power supplies will have to provide currents and voltages of up to
|Ia | = 25.0 kA, and |Va | = 300 V, respectively. These results are presented in Figure 5.35.

Figure 5.33: Time evolution of a snowflake plasma at three points in time.

71



Figure 5.34: Time evolution of the voltage, current, and power on the Ohmic and vacuum
vessel (induced) for a snowflake plasma.

Figure 5.35: Time evolution of the voltage, current, and power on each PF coil for a snowflake
plasma.
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5.3.3 The impact of the vacuum vessel on the PFC currents

At each step of the Picard iteration, the induced currents in the vacuum vessel was calculated
by linearising the electrical parameters related to the plasma and active coils, as described in
Section 5.3. The inclusion of the vacuum vessel in a self-consistent way, allowed the prediction
of its impact on the plasma shape, which was compensated by the PF coil currents, since, as
observed on the second row of Figures 5.10, 5.13, 5.16, 5.19, 5.22, 5.25, 5.28, 5.31, and 5.34, the
induced vacuum vessel currents are of the order of 10 kA during the flat-top phase.

In the following, we present the difference in the PF coil currents for the circular scenario
when the vacuum vessel is included and when it is neglected, although the results are also
valid for the eight developed scenarios. We observe from the results presented in Figures 5.36
and 5.37 a maximum difference of the order of 0.2 kA on the time evolution of the PF coil
currents when the vacuum vessel is include self-consistently. This corresponds to an error of
around 10% in the PF coils when the induced vessel currents are not take into account.

Figure 5.36: PF coil currents with and without the inclusion of the vacuum vessel for the
circular plasma
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Figure 5.37: Difference on the PF coil currents when the vacuum vessel is included. Here
¢= Iwith VV ° Ino VV.

5.3.4 Summary and discussion

The results regarding the voltages and currents in the active coils for different plasma scenarios
were presented. One main observation that is present on all Ohmic and PF coil voltages, and
also on the PF coil currents is a rapid change on the amplitudes when the plasma changes
from the ramp-up to the flat-top phase (at t = 100 ms) and from the flat-top to the ramp-down
phase (at t = 1110 ms). This is a numerical phenomena related to the derivative of the plasma
current at that point. It changes relatively fast and therefore it induces a large voltage in the
Ohmic system and imposes also a peaked voltage in the PF coils. This phenomena is also
present in the diverted plasmas and it appears to be stronger because the X-point (and even
stronger for the snowflake configuration) is created at these transitions, i.e., the currents in
the PF coils must suddenly yield a magnetic field that helps creating a null in the total poloidal
magnetic field at that point (and a second order null-point for the SF). One way to surpass
this rapid change would be simulate a smoother transition from ramp-up to flat-top phase,
and also from flat-top to ramp-down phase, and imposes a smoothly decrease on the poloidal
magnetic field component during the ramp-up phase til it reaches zero at flat-top.

Another interesting result that can be seen during the flat-top phase of all plasma scenarios is
that the currents in the PF coils change in time even though the plasma shape is kept fixed.
This is because in order to keep the plasma current constant, it is necessary to vary the current
in the ohmic system during the entire flat-top phase. This will affect the impact of the poloidal
flux produced by the ohmic system on the plasma, and consequently, would change its shape.
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6 Conclusions and outlook

In this work, a computational tool for designing the evolution of plasma scenarios in TCABR
was developed. The main goal was to estimate the time evolution of each coil current and
voltage for some of the main plasma scenarios envisaged for TCABR. The simulations show
that the power supplies acting on the Ohmic and PF coils systems will have to operate in the
four quadrants of a current-voltage operational space and provide voltages and currents of up
to VOH =±2.3 kV/IOH =±24 kA, and Va =±300 V/Ia =±9.0 kA. The maximum positive values
of voltage for the Ohmic system and PF coils would have been obtained if we had simulated
plasmas with negative currents. These results are valid for all the developed plasma scenarios
apart from the snowflake configuration, which required relatively high voltages and currents
on the PF coils. Therefore, its feasibility still requires some further development.

Regarding the simulations at a specific point in the operational space, one interesting result
that one observed, just by imposing a few physical constraints, was the diamagnetic property
of the plasma. In order to fully explain this phenomena, it would require a detailed study of
the transport equations. However, it is important to mention that the choice of the kinetic
profiles have a direct impact on the equilibrium and, consequently, on the calculation of the
currents and voltages on the PF coils. Depending on the choice of the pressure profile, the
plasma could behave as paramagnetic, i.e. it would increase the toroidal magnetic field within
its domain.

It is important to note that, although we demonstrated that the kinetic profiles are not so
important for the calculation of the PF coil currents, provided that they obey the imposed con-
straints, prescribing a realistic (or as closed as possible) pressure and poloidal current function
profiles are necessary for characterizing the stability of an envisaged TCABR plasma scenario.
Additionally, the inclusion of the vacuum vessel in a self-consistent way was demonstrated to
have a small impact on the PF coil currents but its account turn the problem more realistic.

Finally, this work serves as a guideline study for prospect students who want to work with
plasma scenarios and equilibrium simulations, since it presents the basic aspects of the Plasma
Scenario Development (PSD) code.
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A Magnetic flux coordinates in a torus

As seen throughout this work, we have deployed a axissymetric orthonormal cylindrical
coordinate system (R,¡, Z ) to describe our magnetic equilibrium configuration and kinetic
profiles, once™=™(R, Z ). But there is also another convenient way to define our space which
is to use coordinates defined by the magnetic field itself. In addition to simplifying of the
magnetic field, this approach can also provide a general theory for all the toroidal devices.

We start by introducing the general coordinates (√(r),µ(r),≥(r)), as shown in Fig. (A.1).

Figure A.1: General toroidal coordinates

Here, surfaces of constant √ consist of nested tori where its axis is represented by the contour
with √axis = max{√}. The µ and ≥ are the general poloidal and toroidal angles, respectively.

Defined the coordinate system with non-coplanar gradients, the Jacobian is given by

J
°1 =

°

r√£rµ
¢

·r≥. (A.1)

In order these to be a magnetic flux coordinate system that represents a tokamak, we choose

77



√ and ≥ to be such that

B ·r√= 0, and
@

@≥
= 0. (A.2)

A.1 Metric element

We have introduced the coordinate functions √=√(R, Z ) and µ = µ(R, Z ) and now we have
the inverse relation R = R(√,µ) and Z = Z (√,µ). Therefore,

rR = @R
@√

r√+ @R
@µ

rµ, (A.3)

rZ = @Z
@√

r√+ @Z
@µ

rµ. (A.4)

Inverting the above relations we end up with

r√= R
J

µ

°@Z
@µ

rR + @R
@µ

rZ
∂

, (A.5)

rµ = R
J

µ

@Z
@√

rR ° @R
@√

rZ
∂

. (A.6)

One important relation that can be derived from the above equations is the arc length along a
constant √ contour, d`, defined as

d`
dµ

=

s

µ

@R
@µ

∂2

+
µ

@Z
@µ

∂2

. (A.7)

Using the Eq. (A.5), we can rewrite d` in a more convenient way

d`=
|r√|J

R
dµ, (A.8)

that will be used in the following.

A.2 Flux averages

In order to derive some important quantities of tokamak physics, such as safety factor and
surface averages, our magnetic flux coordinate system needs to represent a tokamak, i.e., it
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must satisfy Eq. (A.2). We start by introducing the volume within a flux surface defined as

V (√) =
Z

dø=
Z2º

0
d≥

| {z }

can be calculated

Z√

√0

d√0
Z2º

0
dµJ ,)

)V (√) = 2º
Z√

√0

d√0
Z2º

0
dµJ . (A.9)

Differentiating with respect to the upper √ limit gives the differential volume

V 0(√) ¥ dV
d√

= 2º
Z2º

0
dµJ , (A.10)

and using Eq.(A.8) we get

V 0(√) = 2º
I

R
|r√|d`. (A.11)

Given any scalar quantity Q =Q(√,µ), we can define a flux average, or surface average, of Q
over a constant √ contour as

hQi= 2º
V 0

Z2º

0
dµJ Q = 2º

V 0

I

R
|r√|Q d`. (A.12)

If our magnetic flux coordinate √ is the poloidal magnetic flux, i.e. √=™, we have that

Bµ =
1

2ºR
r√£ ê¡ ) |Bµ| =

1
2ºR

|r√| ) R
|r√| =

1
2º

1
|Bµ|

(A.13)

and therefore, we can rewrite the surface average now in terms of the poloidal component of
the magnetic field as

hQi=
H Q

|Bµ |d`
H d`

|Bµ |
. (A.14)

A.3 Safety factor

The safety factor is define as the number of toroidal turns a magnetic field line needs to
go around the torus in order to close up on itself. Mathematically, can be described as the
derivative of the toroidal magnetic flux,©, with respect to the poloidal magnetic flux √=™,
i.e.

q =°d©
d√

. (A.15)
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The toroidal magnetic flux is defined as

©=
œ

Stor

B ·dS, with dS = dR d Z ê¡.

Manipulating the above equation
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By using Eq. (A.12) we obtain

©(√) = 1
2º

Z√

√0

d√0 F (√0)
dV
d√0

D 1
R2

E

. (A.16)

Finally, differentiating the above equation with respect to the upper limit √, we get the safety
factor

q(√) =° 1
2º

F (√)
dV
d√

D 1
R2

E

. (A.17)
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