• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.43.2011.tde-11052012-184108
Document
Author
Full name
Júlio César David da Fonseca
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2011
Supervisor
Committee
Caldas, Ibere Luiz (President)
Carvalho, Ricardo Egydio de
Viana, Ricardo Luiz
Title in Portuguese
Barreiras de transporte em plasmas e mapas simpléticos não-twist
Keywords in Portuguese
Caos
Fenômeno de transporte
Física de plasmas
Turbulência eletrostática
Abstract in Portuguese
Consideramos um modelo hamiltoniano do movimento eletrostático de deriva para investigar o trasnporte caótico de partículas na borda de plasmas confinados em Tokamaks. Este modelo leva em conta a turbulência eletrostática de deriva, responsável pelo transporte anômalo. O modelo Hamiltoniano provê as equações de movimento, que são dependentes de uma função para o potencial elétrico. Esta função é caracterizada por um potencial de equilíbrio mais um termo correspondente às ondas de deriva. Assumimos três diferentes perfis radiais para o campo elétrico radial de equilíbrio: um linear e outros dois não-monotônicos com extremos suaves. Para estes perfis, mostramos que o modelo pode ser reduzido a três mapas simpléticos bidimensionais e não integráveis: o mapa padrão, o mapa padrão não twist e um mapa modelo não twist introduzido neste trabalho. O mapa padrão não twist e o mapa modelo violam a condição twist, fundamental para os teoremas KAM e de Birkhoff. Para estes mapas não twist, estudaremos numericamente barreiras de transporte criadas próximas às curvas shearless. Mostramos que, para o mapa modelo, a barreira de transporte é robusta, isto é, persiste em um amplo intervalo de variação de um de seus parâmetros. Dentro da região da barreira, descrevemos o nascimento de cadeias de ilhas com períodos par e ímpar devido à variação do parâmetro de controle. Analisamos estes dois cenários calculando os números de rotação dentro da barreira e identificando as bifurcações que criam as ilhas. Finalmente, conjecturamos que todas as ilhas dentro da região da barreira são criadas por estes dois cenários. Além disso, se o número de rotação da curva shearless atinge um número racional, as cadeias de ilhas são criadas de acordo com os cenários descritos.
Title in English
Transport barrier in plasmas and non-twist symplectic maps
Keywords in English
Chaos
Eletrostatic turbulence
Plasma physics
Transport phenomena
Abstract in English
We consider a hamiltonian model of the electrostatic drift motion to investigate chaotic particle transport in the Tokamak plasma edge. This model takes into account the electrostatic drift turbulence, which is responsible for the anomalous transport. The Hamiltonian model provides the basic equations of motion, which are dependent on the form of an electric potential function. This function is characterized by the equilibrium potential and the term corresponding to the drift waves. We assume three diferent radial profiles for the equilibrium radial electric field: one linear and the other two non-monotonic with a smooth extremum. For these profiles, we show that the model can be reduced to three symplectic maps: the standard map, the nontwist standard map, and a nontwist model map introduced in this work. The nontwist standard map and the model map violate the twist condition, a property of fundamental importance for the applicability of the KAM and Birkhoff theorems. For these nontwist maps, we study numerically the transport barriers created around their shearless curves. We show for the model map that the transport barrier is robust,i.e., remains for a wide range of one of its parameters. Inside the barrier region, we describe the birth of island chains with even or odd periods due to the control parameter variation. We analyse these two scenarios by calculating the winding numbers inside the barrier region and identifying the bifurcations that create the islands. Finally, we conjecture that all the island chains inside the barrier are created by these two scenarios. Moreover, if the winding number of the shearless curve reachs a rational number, the island chains are created according to the described scenarios.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2012-05-21
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.