Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.43.2022.tde-10102022-160421
Document
Auteur
Nom complet
Kaio Nikolas Mendes Menezes dos Santos
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2022
Directeur
Jury
Silveira, Francisco Eugenio Mendonça da (Président)
Batista, Antonio Marcos
Pereira, Vera Jatenco Silva
Titre en anglais
Korteweg-de Vries Equation and Thomas-Fermi Distribution
Mots-clés en anglais
Korteweg-de Vries
Solitons
Thomas-Fermi
Resumé en anglais
Plasma physics is generally associated with the treatment of regimes characterized by high temperature and low densities, where quantum mechanical effects do not have a significant impact. Recent studies, however, show that some systems can be studied from the perspective of dense plasmas, where the distance between the species is of the same order as the thermal de Broglie wavelength. In this way, the temperature associated with the thermal motion of the particles is lower than the Fermi temperature, i. e., the system is degenerate, and classical statistics must give way to the Pauli Exclusion principle. In this work, we construct a semiclassical fluid model from the consideration of a gas formed by degenerate electrons and singularly ionized ions, with the Thomas-Fermi distribution replacing the Maxwell-Boltzmann one in the description of the electrons. Thus, we discuss the possibility of the nonlinear oscillations evolution in the plasma to be described, through a reductive perturbation method, by the Korteweg-de Vries equation. Using the calculus of variations, it was possible to find the natural scales of the problem, as well as define the critical frame in which the nonlinear solution structures propagate. We also investigate the ion thermal effects and the consequences of applying a constant magnetic field to the system, in addition to looking at the solitonic pulses response to the introduction of these new parameters in the theory. We carefully show that the system is sensitive to normalization, allowing us to evaluate the results by introducing a control parameter. In general, we verified that it is possible to construct the KdV equation via a modified reductive perturbation method, with the inclusion of the control parameter, we characterized the subsonic reference frame (M = 1/ \sqrt 3) as the appropriate one to describe the propagation of solitons, which validates the perturbative description. We computed the effects of the temperature and magnetic field on the nonlinear and dispersive parameters, and the consequent modifications in the shape of the waves. Finally, having assumed the cold ions regime as the lower limit for all approaches carried out, we made use of the normalization control parameter (\lambda_0) to switch between expressions with different scales.
Titre en portugais
Equação de Korteweg-de Vries e Distribuição de Thomas-Fermi
Mots-clés en portugais
Korteweg-de Vries
Sólitons
Thomas-Fermi
Resumé en portugais
A física de plasma é geralmente associada ao tratamento de regimes caracterizados por alta temperatura e baixas densidades, onde efeitos da mecânica quântica não possuem impacto significativo. Recentes estudos, no entanto, mostram que alguns ambientes podem ser estudados na perspectiva de plasmas densos, onde a distância entre as espécies é da mesma ordem que o comprimento de onda térmico de de Broglie. Desse modo, a temperatura associada ao movimento térmico das partículas é menor que a temperatura de Fermi, isto é, o sistema é degenerado, e a estatística clássica deve dar lugar ao princípio de Exclusão de Pauli. Neste trabalho construímos um modelo de fluido semiclássico, a partir da consideração de um gás formado por elétrons degenerados e íons singularmente ionizados, com a distribuição de Thomas-Fermi substituindo distribuição de Maxwell-Boltzmann na descrição dos elétrons. Assim, discutimos a possibilidade de a evolução de oscilações não lineares no plasma ser descrita, através do método redutivo perturbativo, pela equação de Korteweg-de Vries. Utilizando do cálculo de variações foi possível encontrar as escalas naturais do problema, bem como definir o referencial crítico no qual as estruturas fornecidas como soluções da equação não linear se propagam. Também investigamos os efeitos térmicos dos íons e as consequências da aplicação de um campo magnético constante no sistema, além de examinar a resposta dos pulsos solitônicos à introdução desses novos parâmetros na teoria. Com cuidado, mostramos que o sistema é sensível à normalização, nos permitindo avaliar os resultados a partir da introdução de um parâmetro de controle. De modo geral, verificamos ser possível construir a equação de KdV via método redutivo perturbativo modificado, com a inclusão do parâmetro de controle, caracterizamos o referencial subsônico (M = 1/ \sqrt 3) como o adequado para descrever a propagação dos sólitons, o qual valida a descrição perturbativa. Avaliamos os efeitos da temperatura e do campo magnético nos índices não lineares e dispersivos, e as consequentes modificações na forma das ondas. Por fim, tendo assumido o regime de íons frios como limite inferior para todas as abordagens realizadas, utilizamos o parâmetro de controle (\lambda_0) da normalização para transitar entre as expressões com diferentes escalas.
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2022-10-18
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées
cliquant ici.