• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.43.2021.tde-10032021-171732
Document
Auteur
Nom complet
Gabriel Díaz Iturry
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2021
Directeur
Jury
Leonel, Edson Denis (Président)
Barreiro, Luiz Antonio
Batista, Antonio Marcos
Oliveira, Mario Jose de
Viana, Ricardo Luiz
Titre en portugais
Estudo do comportamento da entropia em bilhares
Mots-clés en portugais
Bilhares
Caos
Difus\\~ao
Resumé en portugais
Neste trabalho estudamos como usar o comportamento da entropia para medir o expoente de difus\~ao de um conjunto de condi\c c\~oes iniciais em sistemas do tipo bilhar. Os modelos considerados s\~ao o Modelo Fermi Ulam Simplificado, o Mapa Padr\~ao e o Bilhar Ov\'oide. Nos preocupamos com a difus\~ao perto da ilha principal no espa\c co de fases, onde existe o fen\^omeno de aprisionamento tempor\'ario. Calculamos o expoente de difus\~ao para diversos valores do par\^ametro de controle do Mapa Padr\~ao e o Bilhar Ov\'oide, onde para cada valor a ilha principal tinha uma forma diferente, e mostramos que as mudan\c cas de comportamento no expoente est\~ao relacionadas com mudan\c cas na \'area da ilha principal. Particularmente, mostramos que toda vez que a \'area da ilha principal se reduzia abruptamente, devido a destrui\c c\~ao de toros invariantes e a cria\c c\~ao de pontos fixos hiperb\'olicos e el\'ipticos, o expoente de difus\~ao cresce. Para investigar melhor a conex\~ao entre o expoente de difus\~ao e a cria\c c\~ao de pontos fixos hiperb\'olicos e el\'ipticos, desenvolvemos um esquema de controle apropriado no Mapa Padr\~ao, com o qual mostramos que fechando os caminhos de fuga das proximidades da ilha o expoente de difus\~ao tornou-se menor. Em seguida, relacionamos os caminhos de fuga com a variedade inst\'avel dos pontos hiperb\'olicos.
Titre en anglais
Study of entropy behaviour in billiard systems
Mots-clés en anglais
Billiards
Chaos
Diffusion
Resumé en anglais
In this work we studied how to use the behaviour of the entropy to measure the diffusion exponent of a set of initial conditions in Billiard like systems. The considered models are the Simplified Fermi Ulam Model, Standard Map and the Oval Billiard. We care about the diffusion near the main island in the phase space, where exists the stickiness phenomenon. We calculated the diffusion exponent for many values of the nonlinear parameter of the Standard Map and the Oval Billiard, where for each value the main island has a different shape, then we show that the changes of behaviour in the diffusion exponent are related to changes in the area of the main island. Particularly, we show when the main island's area is abruptly reduced, due to the destruction of invariant tori and consequently creation of hyperbolic and elliptic fixed points, the diffusion exponent grows. To further investigate the connection between the diffusion exponent and the creation of hyperbolic and elliptic fixed points, we developed an appropriate control scheme in the Standard Map, with which we showed that closing paths of escape from the island shore the diffusion exponent became smaller. Then we related the paths of escape with the unstable manifold of the hyperbolic points.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
IturryGabrielDO.pdf (4.07 Mbytes)
Date de Publication
2021-04-06
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.