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Abstract

In this work we explore some uses of effective field theories (EFT’s) to shed some

light on modern problems in high energy physics, such as neutrino masses, dark

matter/dark sectors and the hierarchy problem. In particular, we will analyze

the problem of the detection of cosmic background neutrinos (and how the pres-

ence of physics beyond the standard model can affect it), the renormalization

group properties of dark sectors that communicate with the standard model via

mediators that carry a flavor charge and, finally, the gravitational imprints of a

candidate to solve the hierarchy problem, the relaxion.

Keywords: Effective Field Theory, Cosmic Neutrino Background, Dark Sectors,

Hierarchy Problem, Gravitational Waves.
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Resumo

Neste trabalho exploramos alguns usos das teorias efetivas de campos (EFT’s) para dar

alguma luz sobre problemas modernos na f́ısica de altas energias, tais como as massas dos

neutrinos, a matéria escura e os setores escuros. Em particular, vamos analisar o problema

da detecção do fundo cósmico de neutrinos (e como a presença da f́ısica além do modelo

padrão pode afetá-lo), as propriedades do grupo de renormalização dos setores escuros que

se comunicam com o modelo padrão via mediadores que carregam uma carga de sabor e,

finalmente, os sinais gravitationais de um candidato a resolver o problema da hierarquia, o

relaxion.

Palavras-chaves: Teorias Efetivas de Campos, Fundo Cósmico de Neutrinos, Setores

Escuros, Problema da Hierarquia, Ondas Gravitacionais.
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Chapter 1

Introduction

Credits to Ref. [1].

So far, the best known description of the universe at the microscopic level is given by the

Standard Model of Particle Physics (abbreviated SM) which is a gauge theory based on the

gauge group SU(3)c × SU(2)L × U(1)Y . Despite the fact that it does not take into account

the gravity sector, it describes almost all the high energy physics phenomena that we know

until a few TeV.

However, there are some high energy phenomena that do not have a satisfactory expla-

nation in the framework of the SM. Additionally, there are also theoretical problems that

escapes from the scope of the explanations given by the SM. In this context, the following

quote, by Gripaios in Ref.[2], “There must be something, but we don’t know what it is! ”

seems to be very appropriate to describe the current situation of Particle physics. Between

the many interesting phenomena that are not explained by the SM, we will focus on the

following three:

1. Neutrino masses, and their properties;

2. Existence of Dark Matter/Dark Sectors;

3. the Hierarchy problem.

Models that extend the theoretical framework of the SM trying to explain phenomena as the

ones listed above are called Beyond the Standard Model theories (BSM) [2; 3; 4; 5; 6]. In

5
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order to deal, in a model independent way, with the problems mentioned above we shall use

the effective field theory approach (EFT).

In Chapter 2 we introduce the basics of the EFT approach. This framework will be

fundamental for the analysis of subsequent Chapters. We choose to present the EFTs by first

introducing the Appelquiest-Carrazone theorem and through the classical example of Fermi

theory. This theory was originally postulated by E. Fermi in 1933 [7; 8; 9] in order to give an

explanation to the beta decay process. After studying a toy model version of Fermi theory,

we extend the main ideas learned to construct a more general structure. This structure will

be identified as the EFT approach.

In Chapter 3 we consider the following question: if neutrinos have new BSM interactions,

how would this affect the relic neutrino detection? In order to answer that question, we allow

for non-standard interactions in the lagrangian at the weak scale. Such terms are described

by an EFT in which we consider dimension six-operators that are SU(2)L×U(1)Y invariant,

including also right-handed neutrinos and neutrino masses. The analysis of the detection

of the relic neutrinos is done by studying their capture on tritium in a PTOLEMY-like

detector (Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield)

[10; 11]. In the first part of the chapter we introduce some useful concepts and relations from

Cosmology and Particle physics, and also discuss the PTOLEMY experiment. In the last

part of the chapter we instead describe how the presence of new interactions may affect the

detection of the cosmic neutrino background.

Chapter 4 is devoted to the analysis of generic dark sectors, their interaction with the SM

and their running to low energies. In recent years, dark sectors have become more relevant in

high energy physics, since null results from LHC and other experiments motivate the search

for new unconventional signatures. Another reason why dark sectors have attracted much

attention is their implicit presence in dark matter (DM) models. In order to be as model

independent as possible our focus will be on a generic dark sector communicating with the

SM via an unspecified heavy and flavorful mediator, X. The effects of the renormalization

group flow on the Wilson coefficients are computed and as expected they have a non-trivial

impact in the theory. The first part of the chapter is focused on developing the formalism of
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effective field theory needed for posterior analysis and computation. We finalize the chapter

by presenting our results for the RGE’s of the operators.

Chapter 5 studies the possible gravitational wave signal associated with the condensa-

tion of a dark strong sector that generates the relaxion potential. The relaxion mechanism

is a possible solution to the hierarchy problem. In contrast to previous solutions such as

supersymmetry or extradimensions, the relaxion solves the hierarchy problem by dynamical

evolution. We also study how a second phase of rolling induced by reheating could affect the

performance of the mechanism to solve the hierarchy problem. At the end of this chapter

we analyse the GW signatures of this model. For this we consider the detectability region of

various near-future experiments.

In Chapter 6, we finally present our conclusions.



Chapter 2

Effective Field Theory

Based on ”Effective Field Theory for Turtles”

by Quantum Diaries [12].
2.1 Introduction

One of the most interesting facts about our universe is our ability to explain the phenomena

occurring in nature through the use of physical models. However, all the known physical

models have an intrinsic range of validity. Perhaps the best known example is the comparison

between quantum mechanics and general relativity. While quantum mechanics is used to

study micro-phenomena, general relativity is appropriate to study macroscopic phenomena.

Obviously, this is a very rough description, as there are many other technical differences;

nevertheless, the point is that each model is valid only for a finite energy (or scale) regime.

During the evolution of particle physics we learned that, as we go to smaller and smaller

scales, new particles usually appear at some particular energies. This means that, before

the appearance of such a new particles, we can use an effective theory that is valid up to a

cutoff scale Λc, and for energies beyond that cutoff those new particles appear. That effective

theory would be a simplified model of a more fundamental description. By depending on the

energy range that we are interested in, that fundamental theory could be either perturbative

or non-perturbative. Two examples: the electroweak theory, which is a perturbative model

and QCD that is perturbative at scales higher than ∼ 200 MeV, but non-perturbative for

8
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lower energies. Independent on the perturbative nature of the model, there is an important

theorem that tell us what is the effect of the higher degrees of freedom once we go to the

simplified effective description, this is the Appelquist-Carazzone theorem [13].

The structure of the chapter is as follows: due to its importance in Section 2.2 we first

introduce the Appelquist-Carazzone decoupling Theorem. Section 2.3 is devoted to the study

of the effective description of perturbative models. Finally, in Section 2.4 the sigma model is

introduced as an effective description of non-perturbative theories.

2.2 The Appelquist-Carazzone Decoupling Theorem

The Decoupling Theorem states that in a renormalizable quantum field theory with different

mass scales, the only role played by the heavy fields at low-momentum is to contribute to the

coupling constant and field strength renormalization [13]. In other words, at low momentum

the only relevant degrees of freedom are the light fields.

In their original paper T. Appelquist and J. Carrazzone [13] used a non-abelian gauge

theory coupled to a heavy massive fermionic field. This is done in order to prove the theorem

in a concrete case, but the validity of the theorem is general [13].

Following the same purpose, in this section we reproduce the argument given in Ref.[13].

The Lagragian choosen to work with is

L = −1

4
FαρνF

ρν
α − iΨγρD

ρΨ−mΨΨ (2.1)

where F ρν
α is the field strength tensor, ρ, ν are Lorentz indices and α is a flavor index. By

working in the Ladau gauge, the renormalization group equations of the coupling g in this

theory and for general momentum k is

gk ≡ gk

(
k2

µ2
,
m2

µ2
, gµ

)
, (2.2)

where µ is the renormalization scale, and for k = µ we have the renormalization condition
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Figure 2.1: 1PI Feynman graphs with n external legs used in the present section. (Top)
Graph containing no fermion lines. (Bottom-left) Graph containing fermion lines inside.
(Bottom-right) Graph where fermion loops were shrunk to a point, m→∞ [13].

gk(1,m2/µ2, gµ) = gµ. Eq.(2.2) satisfies

β

(
m2

k2
, gk

)
= k2

∂gk
∂k2

(2.3)

For the subsequent analysis, we consider arbitrary 1PI Feynman graph with n external legs,

see Fig.2.1. To begin with let us consider n ≥ 5. If the graph contains no divergent subgraphs,

the degree of divergence is d = 4 − n. Hence, if there are no fermion lines inside the graph

and external momenta are of order k, the amplitude of the graph is

A ∼ k4−n. (2.4)

For k ( m, we now consider the case where there are internal fermion lines inside the graph.
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Suppose that any fermion loop inside the graph can be severed by cutting F vector lines, see

Fig.2.1. We also define that f is the minimum number of severings required. The analysis is

separated in two cases: f ≥ n and f < n. In the former case, the subgraph S containing the

fermion loop behaves like m4−F as m goes to infinity. The last limit of m→∞ is equivalent

to shrinking S to a point, see Fig.2.1. In this reduced graph the degree of divergence is F −n.

Since f ≥ n, F −n is the maximum degree of divergence in the graph. Therefore, for k ( m

the behavior of the entire graph is

A ∼ m4−FmF−n = m4−n. (2.5)

This amplitude is strongly suppressed with respect to Eq.(2.4).

The second case, f < n, is similar. Here, f severings are needed to separate the fermion

loop. Therefore, the graph containing the fermion loop behaves like m4−f . However, the

graph in the limit m → ∞ behaves like kf−n. And the entire graph has the amplitude

behaving like

m4−fkf−n = k4−n
(m
k

)4−f
( k4−n, (2.6)

since f ≥ 5.

In the case of n = 2 and n = 3, the degree of divergence is reduced to zero by appealing

to the transverse structure of the propagator and the tensor structure of the three-point

vertex [13]. Together with any graph there is a set of counterterms that reduce further the

degree of divergence to −1. Since the subtractions are evaluated at a scale µ ( m, the

cut-off momentum is also small compared to m. As in Eq.(2.4), for comparison purposes, the

amplitude without internal fermions behaves like k4−n, up to logarithms as noted in Ref.[13].

The analysis of graphs with internal fermions follows the same line as before. In the regime

k ( m, if F ≤ 4 the behavior of the subgraphs containing the fermion lines together with

their counterterms is

A ∼ k4−F × O(
k

m
,
µ

m
). (2.7)

We note that the first factor has no n dependence, this follows from the use of the transversal-
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ity of he propagator and the tensor structure of the three-point function. The second factor

follows from the counterterms
[
log Λ

m + O( k
m)
]
−
[
log Λ

m + O( µ
m)
]
= O( k

m , µ
m).

Therefore, the low energy observables behave as if the heavy field are being omitted. A

consequence of the decoupling theorem is that the beta function of the theory will be reduced

to the pure Yang-Mills beta function as k ( m [13]

β

(
m2

k2
, gk

)
−−−−−−−−−→
( µ2

m2 ),(
k2

m2 )→0

βYM(gk). (2.8)

There are two other important examples of the application of these ideas: Fermi theory

and the sigma model [13]. Fermi’s phenomenological model had a great relevance in giving

support to the effective approach. We talk about this model in the following section. We

postpone the discussion of the sigma model to the subsequent section.

2.3 EFTs: Perturbative models

2.3.1 Fermi theory

E. Fermi in 1933 and 1934 [7; 8; 9] first proposed a theory to explain the beta-decay. The

beta-decay is a process in which a neutron transforms into a proton with the emission of an

electron and an antineutrino, n→ p+e−+νe. His theory posits the direct interaction between

four fermions: neutron, electron, proton and antineutrino. Therefore, for the description of

the Fermi theory as a realistic model of interacting particles, one needs to specify the type

of fermions involved in the computations.

However, we are interested only in the general idea behind Fermi theory. To this end, let

us consider the following toy-model. In the UV, we have a renormalizable theory of a fermion

(ψ) and a scalar field (φ). Such a theory has lagrangian LUV with a Yukawa term

LUV ⊃ −λφψ ψ. (2.9)

This term defines the vertex interaction between scalar and fermions. In the language of

Feynman diagrams, it defines the vertex showed in Fig. 2.2. Now, as we go to lower scales,
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ψ

ψ

φλ

Figure 2.2: Feynman diagram associated with the yukawa term defined by Eq. (2.9).

we observe that below the scale Λ ∼ mφ the scalar particle, φ, cannot appear anymore as

an external state, since there is no energy to create it on-shell. However, the scalar can still

mediate a four-fermion interaction. Hence, below the scale Λ, we have an effective model of

four-fermions interacting according to

LEFT ⊃ −G
[
ψ ψ
] [
ψ ψ
]
, (2.10)

where G is a dimensionful coupling constant that characterize the strength of the interaction.

In LFermi, such a constant is called the Fermi coupling, GF . Based on the measurement of

the muon lifetime GF is determined to have the value of 1.16× 10−5 GeV−2 [14].

In our example the complete UV physics is contained in the lagrangian LUV, and at

energies below the scale mφ ∼ Λ physics can be described by the effective field theory, LEFT.

So, do we need to know both models to give an appropriate description of the low energy

physics? Of course not: if the complete UV model is known one could in principle compute

whatever observable at the low energy scale, as long as the coupling constant can be treated

perturbatively1. However, due to the EFT computations are drastically simpler, we prefer

the effective description even if the complete theory is known.

In order to make explicit the link between LUV and LEFT, consider the tree level diagram

showed in Fig. 2.3. In the left side of the figure we observe that between the two vertices

appears the propagator of the scalar field, i
p2−m2

φ
, communicating the interaction between

fermions, thus acting like a mediator. In the right side of the figure the four fermions interact

directly between them. As we go to lower energies, we go into the region p2 ( m2
φ. In this

1Things are different for QCD or in general for strongly interacting gauge theories, which will be the
subject of study in the following section.
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mφ,φ

ψ

ψ

ψ

ψ

λ λ
λ2

m2
φ

ψ

ψ

ψ

ψ

Figure 2.3: Here we show how the four fermion interaction appears in the UV model (left
side of the figure) and in the effective theory (right side of the figure).

situation the scalar propagator becomes

i

p2 −m2
φ

→ − i

m2
φ

+ O(
p2

m2
φ

). (2.11)

Hence, at leading order the vertex becomes independent on the momentum of the scalar field.

Furthermore, it gets a value that only depends on the Yukawa coupling λ and the mass of

the scalar field mφ

G ∼ λ2

m2
φ

. (2.12)

It is important to note that as the energy of the process grows and becomes comparable to

the mass of the mediator, E + mφ ∼ Λ, the expansion showed in Eq. (2.11) breaks down.

What if instead the UV model is not known? In this case, we are still able to describe

the low energy physics up to Λ, but we must include all possible terms involving the light

degrees of freedom, which are invariant under the low energy symmetries of the EFT. These

object are called higher dimensional effective operators. The following subsection is devoted

to a discussion of their properties.

2.3.2 EFTs: Higher dimensional effective operators

Every term in the effective lagrangian has to be Lorentz invariant, respect the symmetries of

the theory, and, because the action Seff is dimensionless must have dimension four, [Leff] = 4.

This means that in the effective lagrangian the operators of dimension higher than four have

to be properly normalized to respect this condition. The only dimensionful parameter that



CHAPTER 2. EFFECTIVE FIELD THEORY 15

can appear in the higher dimensional operators is the cutoff of the theory, Λ.

In order to be clearer in our construction, let us separate the complete set of fields in the

UV in two subsets represented by ϕL and ϕH , where the labels mean light and heavy modes

(with masses above and below the scale Λ, respectively):

LUV = L(ϕL,ϕH). (2.13)

As we know from previous sections, after we cross the cutoff scale going to lower energies, the

heavy fields have to be integrated out, and then we write an EFT based on the light fields

only. Therefore, we write the effective lagrangian as

Leff(ϕL) = Ld≤4 +
∑

n>4

Cn

Λdim(On)−4
On(x), (2.14)

where the coefficients Cn are called the Wilson coefficients, On(x) are local operators of

dimension higher than four, Λ is the cutoff of the theory and finally dim(On) is the dimension

of the operator.

If the UV theory is known, we can use the path integral formalism to integrate out the

heavy fields in the following way

∫
D [ϕH ] ei

∫
L(ϕL,ϕH) = ei

∫
Leff(ϕL), (2.15)

and thus finding the effective lagrangian. It is worthwhile to stress that a crucial point in

writing the effective lagrangian is that all terms in the expansion have to be local terms in

space-time. Consequently, our framework is only applicable to process at energies lower than

the masses of the heavy fields ϕH .

If instead the UV theory is not known, then in Eq. (2.14) we write all possible local

operators which are invariant under Lorentz symmetry and any symmetry which is relevant

below the cutoff Λ.

The lagrangian Ld≤4 contains terms that are renormalizable, including the kinetic terms

of the fields ϕL and any possible interaction. The second part of Eq. (2.14) contains all
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ψ

ψ

ψ

ψ

J J

Figure 2.4: This figure schematically shows the interaction between four light fields in the
EFT. It corresponds to the non-renormalizable operator O(x) ≡ J(x) J(x).

operators that have dimension higher than four, normalized by an appropriate power of the

cutoff scale Λ. In the toy model considered in the previous section, we can write our effective

operator as

O(x) ≡ J(x) J(x), (2.16)

where J(x) =
(
ψ ψ
)
is a fermionic scalar current. For effective theories that come from

weakly interacting physics in the UV, the total dimension of the operator, dim (O), is the

algebraic sum of the dimension of the current J(x). Not all effective operators are necessarily

built as products of currents, for example the dimension five Weinberg Operator. More in

general, currents can be built up from bosonic or fermionic fields, with vector (V), axial (A),

scalar (S), pseudoscalar (P) or tensor (T) Lorentz structures. Fig. 2.4 schematically shows

the interaction between four light fields in the EFT. It corresponds to the non-renormalizable

operator O(x) ≡ J(x) J(x).

From the phenomenological side it is necessary to use only a finite set of operators On(x).

In order to see this explicitly, let us suppose that the accuracy of a given experiment is

parametrized by ε. The order of the coefficients of each interaction in the effective lagrangian

is

∼ En

Λn
, (2.17)

with E < Λ, being E the typical energy of the experiment. The contribution of a given

operator of dimension n is of order En. Hence, considering the accuracy of the experiment
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we only need to include terms up to nε

(
E

Λ

)nε

≈ ε⇒ nε ≈
log (1/ε)

log (Λ/E)
, (2.18)

which, of course, is a finite quantity.

If the building blocks of the EFT in Eq.(2.14) are only the SM particles1, the result-

ing model is called the Standard Model Effective Field Theory (SMEFT). In the following

subsection we will explore some special aspects of higher dimensional effective operators in

SMEFT. Let us introduce some definitions first: D will stand for the covariant derivative, X

for {GA,W I , B}, ψ for general fermion content, and L(R) for SU(2)L- doublets (singlets).

We defer to Appendix A.1 a discussion of the conventions used for the SM fields.

2.3.3 SMEFT Operators

In SMEFT the problem of counting the number of effective operators of a given dimension

is known to be not simple. In fact, the first counting of dimension-six operators presented

by W. Buchmüller and D. Wyler in Ref.[15] gave a total of 80 operators. Later that result

was corrected by B. Grzadkowski et al. in Ref.[16] resulting in the famous result of 59

dimension-six operators 2.

The reason behind this difficulty lies in the possibility of performing field redefinitions

(equivalently apply the equations of motion (EoMs) [16; 17]) and integration by parts (IBP)

[17]. The use of EoM and IBP allows the equivalence of different operators [16; 17]. For

example, the operator
(
l̄pγµτAlr

) (
l̄sγµτAlt

)
3 can be expressed as a linear combination of

other operators:

(
l̄pγµτ

Alr
) (

l̄sγµτ
Alt
)
= 2Qptsr

ll −Qprst
ll ,

where we used the identity τAjkτ
A
mn = 2δjnδmk − δjkδmn and the six dimensional operator Qll

is defined in Table 2.1. Considering this, in Ref.[16] was introduced the so called Warsaw

1It implies that Ld≤4 ≡ LSM .
2In both counting it was disregarded flavour structure and Hermitian conjugation.
3The SU(2)L generators are denoted with τA.
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Table 2.1: List of independent dimension six operators of Warsaw basis as introduced in
Ref.[16].

basis for dimension six operators. The complete set of independent operators that forms this

basis is given in Table 2.1.

One interesting result about higher dimensional SMEFT was derived in Ref.[18]. For a

given operator On(x), we have that

1

2
(∆B −∆L) ≡ n (mod 2) (2.19)

where n is the dimension of the operator. This implies that the dimension five Weinberg
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operator always violates lepton number by two units, for instance.

SMEFT: Operators of dimension 5

There is just one single operator of dimension five that could be formed using the standard

model particles. This operator is also known as the Weinberg Operator [19]. It can be used

to give masses to neutrinos through out the see-saw mechanism. Explicitly this operator is

written as

L5−dim = c5ij

(
Li H̃

)(
H̃ Lj

)

Λ
. (2.20)

This operator is associated to the diagram shows in Fig.2.5.

Figure 2.5: Dimension five Weinberg operator responsible for neutrino mass generation [20].

It is a good exercise try to think why there are no pure bosonic operator of dimension five.

Since the Higgs is a SU(2)L- doublet, any bosonic operator must contain an even number of

H. The same reasoning works for the covariant derivative, because of its Lorentz structure.

Hence, the smallest dimension we could form so far is four. Since X has dimension two, we

conclude that there are no pure bosonic dimension five operators.
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SMEFT: Operators of dimension 6

For one generation (Nf = 1), counting Hermitian and non-Hermitian operators just once,

and considering ∆B = ∆L = 0 there are a total of 59 independent operators [16] as shown

in Tab.2.1. Sometimes in the literature the condition on Hermitian operators is modified

to account operators under Hermitian conjugation as independent operators. In such a case

the above counting becomes 76, instead. In addition, if we allow for operators such that

∆B = ∆L = ±1, there are 8 extra operators given a total of 76 + 8 = 84. For three

generations (Nf = 3), the above results are modified to 2499 (∆B = ∆L = 0) and 546

(∆B = ∆L = ±1), respectively.

In Ref.[17] is presented the following formula for the total number of independent dimen-

sion six operators:

#Dim6 =

(
15 +

135

4
N2

f +
1

2
N3

f +
107

4
N4

f

)
+

(
2

3
N2

f +N3
f +

19

3
N4

f

)
(2.21)

where Nf is the number of generations considered. In Eq.(2.21), the total number of dimen-

sion six operators is split in parenthesis as (∆B = 0) + (∆B = 1).

SMEFT: Operators of dimension 7, 8 and higher

Operators of higher dimension than six are commonly disregarded because of their smaller

contributions to observables. However, there are some interesting comments about these

operators [17]:

1. Dimension seven operators violate either baryon or lepton number;

2. Dimension seven operators violate B − L;

3. Dimension seven operators could have zero, one or two derivatives;

4. The baryon violating dimension eight operators have∆B = 1, and all operators preserve

B − L;

5. Dimension eight operators could have zero, one, two, three or four derivatives.
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Currently there is an unsolved mismatch in the counting of dimension seven and eight oper-

ators between previous studies [21; 22] and the recent in Ref.[17]. The formulas for the total

number of independent dimension 7 and 8 operators as deduced in Ref.[17] are:

#Dim7 =

(
2Nf +

26

3
N2

f +N3
f +

31

3
N4

f

)
+
(
N3

f + 7N4
f

)
, (2.22)

#Dim8 =

(
89 +

789

2
N2

f +
823

2
N4

f

)
+

(
2

3
N2

f +N3
f +

289

3
N4

f

)
. (2.23)

Eqs.(2.22) and (2.23) are split in parenthesis as (∆B = 0) + (∆B = 1).

It is worthwhile to comment that Ref.[17], using invariant theory and Hilbert series [17;

23; 24], has presented formulas for the total number of effective operators up to dimension

15. Those formulas only depend on the number of flavors of the theory. Using those results

it is possible to generate a plot to see the growth of the number of independent operators in

the SMEFT by depending on the dimension of the operator, see Fig.2.6. It is also notable

that the exponential behavior of Fig.2.6 has been already predicted 30 years ago in Ref.[25].

2.4 EFTs: Non-Perturbative models

In the previous section we considered perturbative theories. However there are other possible

interesting scenarios that do not admit a perturbative analysis, at least in some range of

energies. The best known example of this scenario is low energy QCD. The best we can

do with such kind of theories is working using lattice theory. However, lattice is unable

to go beyond some limited range of low energies below the scale of confinement, lose the

dynamical evolution of the theory and has problems to deal with massive fermions. Therefore,

in absence of mathematical techniques to deal efficiently from first principles with the low

energy physics of strongly interacting theories, some effective models were developed. The

following subsection is devoted to a discussion of one such model, the linear Sigma model

[26].
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Figure 2.6: In this figure Ref.[17] showed the growth of the number of independent operators
in SMEFT. Blue solid line is for Nf = 1, and Orange solid line is for Nf = 3. Dashed lines
link even and odd dimension operators.

2.4.1 Low-energy description: The Linear Sigma Model

In 1960, M. Gell-Mann and M. Levy introduced this effective model in Ref.[26]. The linear

sigma model has its origin as an effective model trying to describe the pion decay. The typical

Lagrangian of the linear sigma model is written as

L =
1

2
(∂µσ)

2 +
1

2
(∂µ/π)

2 +
µ2

2

(
σ2 + /π2

)
− λ

4!

(
σ2 + /π2

)2
, (2.24)

where the pseudoscalar field /π = (π1,π2,π3) is an isotriplet of pion fields, and σ an isosinglet.

We could rewrite the above lagrangian using a multiplet of four real scalar fields Φ(x)T ≡

(/π,σ), with lagrangian

L =
1

2
∂µΦ

T ∂µΦ+
µ2

2
ΦTΦ− λ

4!

(
ΦTΦ

)2
. (2.25)
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Figure 2.7: Sigma model potential and its radial (angular) mode, σ (/π) respectively [27].

This form of the lagrangian allow to see explicitly the invariance under SO(4). For µ2 > 0,

the vacuum expectation value is v =
√
6µ2/λ > 0. This value characterizes the degenerated

ground states of the model. These states can be transformed into each other by a SO(4)

transformation. This means that there is a continuous set of degenerate minima satisfying

ΦTΦ = v2. A schematic picture of the potential and its degenerate ground states is given in

Fig.2.7. We adopt the following vev direction

〈Φ〉T = (0, 0, 0, v), (2.26)

or equivalently, 〈/π〉 = /0 and 〈σ〉 = v. Hence, our vacuum choice still respects SO(3) rotations.

We could also say that the pattern symmetry breaking is

SO(4)→ SO(3). (2.27)

Due to the Goldstone theorem we know that this pattern gives rise to 3 Nambu-Goldstone

bosons (NGB): π+, π0 and π−. More generally, by the same theorem a sigma model with

the symmetry breaking pattern SO(N)→ SO(N − 1) shall have N − 1 NGB [27].

We could rewrite the above lagrangians in a even more convenient form. This can be
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made using 2× 2 matrices, and then defining the Σ field

Σ ≡ σ 12 + i/τ · /π, (2.28)

where /τ are the Pauli matrices. In this way, Eqs.(2.24) and (2.25) become

L =
1

4
〈∂µΣ†∂µΣ〉+ µ2

4
〈Σ†Σ〉 − λ

96
〈Σ†Σ〉2, (2.29)

where 〈. . . 〉 means trace of a matrix. The above lagrangian is explicitly invariant under

SU(2)L ⊗ SU(2)R. The pattern of symmetry breaking is now realized as

SU(2)L ⊗ SU(2)R → SU(2)L+R. (2.30)

However, in this form the linear sigma model is unable to explain light pion masses. In order

to incorporate massive pions into the model, we add the extra linear term to L

Lb = ε σ, ε( 1. (2.31)

Such a new term explicitly breaks the SU(2)L⊗SU(2)R symmetry. Hence, the pions become

Pseudo Nambu-Goldstone bosons (pNGB). Because pion masses are generated by Eq.(2.31),

they should be degenerate and smaller than the scale of chiral symmetry breaking. We also

know that as ε→ 0, pions must become massless, thus we expect that m2
π ∼ ε. To first order

in ε, a computation of pion masses give

m2
π =

ε

v
. (2.32)

All this formalism can be extended to a more general framework. We develop this in Appendix

E.1.1.

It is also possible to write a term that breaks the axial U(1)A and thus mimics instantons
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effects:

L ⊃ −µΣ

(
detΣ+ detΣ†

)
. (2.33)

Therefore, this term arises trying to imitate the effect of the complex vacuum structure of

strongly interacting gauge theories. It will be important in Chapter 5, because there Eq.(2.33)

generates the cubic term necessary for first order phase transitions1. Another important

reason is the relation between this term and the mass of the η′, because the ratio between

the η′ and the scalar mass seems to be related to the spectrum of the gravitational waves

produced via the phase transitions mentioned above [28].

In this way this Section provided the basis of EFT that will be used in the following

Chapters. In particular in the next one, we shall apply the ideas of EFT developed in Section

2.3 to the possible detection of a special type of neutrinos that are best known as relic

neutrinos.

1In our Nf = 3 case.



Chapter 3

Relic Neutrinos

Credits to Ref.[29].
3.1 Introduction

Neutrino physics deserves an important place in any attempt to describe BSM physics. As

we already mentioned in Chapter 1, the absence of neutrino masses in the standard model is

a clear signal of physics beyond the standard model.

In the present chapter we expand the study of neutrino physics with a special focus on the

so called relic neutrinos. To this end, we start by discussing the role of neutrinos in the SM.

We then move to the definition of relic neutrinos, describing their properties and experimental

setups dedicated to their detection. Finally, we parametrize the effect of possible new physics

via effective operators and study the effect of such new physics on the relic neutrino detection.

3.2 Neutrinos in the Standard Model

Neutrinos are really interesting particles, they permeate everything around us and are the

second more abundant type of particles in the universe. Approximately, a thousand neutrinos

from cosmic rays interact with Earth’s atmosphere and 1014 neutrinos coming from the Sun

pass through us each second [30]. There are other natural and artificial sources of neutrinos

26
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on Earth, for example the decay of some radioactive elements [31; 32].

For a long time neutrinos were thought as being massless particles; however, oscillation

experiments [33] showed that in fact they are massive. This also implies that neutrinos

could decay in other particles. Nevertheless, properties of neutrinos are difficult to test

experimentally because they interact very weakly with ordinary matter.

The original idea that the neutrinos were massless, mν = 0, was supported by the following

argument: In QFT a mass term for Dirac fermions needs the left and right component of the

fermion to be linked via1

mψ ψ = m
(
ψL ψR + ψR ψL

)
. (3.1)

Since, neutrinos produced in charged-current interactions are pure left-handed, thus there

is no experimental evidence for the existence of νR. Hence, following these arguments we

would have a consistent theory of neutrinos by only considering left-handed neutrinos, νL,

and thus no mass term is present in the lagrangian. The simplest explanation for this fact is

that neutrinos would have to be massless particles.

During the decade of 1960, Weinberg, Salam and Glashow proposed the current model that

describes and unifies three of the fourth fundamental forces in nature, the Standard Model.

The SM is a gauge theory based on the gauge symmetry group SU(3)C × SU(2)L × U(1)Y .

We schematically show an overview of the particle content of the SM in Fig. 3.1. Inside the

SM the correct gauge sector that describes the behavior of leptons is the electroweak gauge

group SU(2)L ×U(1)Y . Following the experimental evidence mentioned above, leptons have

to be grouped into left-handed doublets

le =



νe
e





L

, lµ =



νµ
µ





L

, lτ =



ντ
τ





L

, (3.2)

1We shall talk about Majorana fermions in the following sub-sections.
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Figure 3.1: Particle content inside the Standard Model. Leptons are represented in green
[34].

and there are no right-handed neutrinos, while charged leptons have right-handed components

eR, µR, τR (3.3)

which are singlets under SU(2)L. Some properties of leptons, like their mass and lifetime,

are given in Table 3.1. In order to properly understand the results of our research it will be

useful to recall the properties of Dirac and Majorana fermions. After that we shall analyze the

difference of considering Dirac or Majorana neutrinos by counting their degrees of freedom.

Discriminate neutrinos by their nature has a deep impact in their phenomenology. We will

return to this point later.
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Lepton Mass Lifetime

νe < 2 eV
e− 0.51 MeV > 4.6× 1026 y
νµ < 0.19 MeV
µ− 105.65 MeV 2.19× 10−6 s
ντ < 18.2 MeV
τ− 1776.90 MeV 290.6× 10−15 s

Table 3.1: Properties of leptons in the standard model, mass and lifetime [30].

3.2.1 Dirac fermions

Dirac fermions are solutions of the well known Dirac equation (iγµ∂µ −m)Ψ = 0. As usual

the γµ’s satisfy the anti-commutation relation

{γµ, γν} = 2ηµν , (3.4)

where ηµν is the Minkowski metric. In the so called Weyl basis of the γ-matrices, they are

written as

γ0 =



0 1

1 0



 , γk =



 0 σk

−σk 0



 , (3.5)

where σk are the Pauli matrices. The Weyl representation is a
(
1
2 , 0
)
⊕
(
0, 12
)
representation

of the Lorentz group. A general solution of the Dirac equation has the form

ΨD =



ΨL

ΨR



 , (3.6)

where both the LH and RH spinors ΨL and ΨR, respectively, are complex objects. Each one

of these chiral components is called a Weyl fermion. Weyl fermions are more fundamental

in a sense, they are irreducible representations of the Lorentz group. These facts will be

important when counting the degrees of freedom.

In the next sub-section we are going to use another reducible representation of the Lorentz
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group, the so called Majorana representation.

3.2.2 Majorana fermions

We start this subsection with the introduction of Majorana fermions. For a direct definition

of these fermions we can go immediately to Eq.(3.16). Instead, a constructive introduction

of these fields is as follows: As mentioned at the end of the previous sub-section, we choose

γµ’s that satisfy Eq. (3.4) and that have purely imaginary entries

γ0 =



 0 σ2

σ2 0



 , γ1 =



iσ3 0

0 iσ3



 ,

γ2 =



 0 −σ2

σ2 0



 , γ3 =



−iσ
1 0

0 −iσ1



 . (3.7)

The previous γ-matrices define the Majorana representation. Solutions to the Dirac equation

with the γµ’s as defined in Eq. (3.7) are real solutions. Hence, if Ψ is a solution in the

Majorana representation, we have

Ψ = Ψ∗. (3.8)

This solution represents a Majorana fermion. However, we have found such a solution in a

particular representation of γ-matrices. More in general, we must relate the γ-matrices in

the Majorana representation to an arbitrary representation by a similarity transformation.

Hence, given the unitary matrix U we have that

γµArb. = U γµMaj. U
† (3.9)

represents the relation between the γ-matrices in two different representations. From the

Dirac equation we can easily check that

(
iγµMaj. ∂µ −m

)
ΨMaj. = 0 ⇒

(
i γµArb. ∂µ −m

)
Ψ = 0, (3.10)
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which means that

Ψ = U ΨMaj. (3.11)

is also a solution. Eqs.(3.9) and (3.11) imply that U †Ψ = (U †Ψ)∗. From the latter relation

we have

Ψ = U UTΨ∗. (3.12)

Now, it is not difficult to check that the combination U UT satisfy
(
U UT

)† (
U UT

)
= 1, thus

it is also a unitary matrix. It is customary to use this combination of unitary matrices to

define the unitary matrix C

U UT = −i γ2C. (3.13)

Such a matrix is called the charge-conjugation matrix. From Eq.(3.12) we have Ψ∗ = U UTΨ,

which implies that Ψ∗ = −i γ2C Ψ. In this way, we define the operation of charge conjugation

C : Ψ→ −i γ2Ψ∗ (3.14)

and the charge-conjugate fermion field:

ΨC = −i γ2Ψ∗. (3.15)

From this definition and Eq.(3.12), we see that a Majorana fermion is the one which is equal

to its own charge-conjugate

ΨC = Ψ. (3.16)

This is also called “reality condition”. Physically this means that Majorana fermions are

their own antiparticle.
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3.2.3 Counting the degrees of freedom

In four dimensions, fermions have four complex degrees of freedom, which turn into 8 real

degrees of freedom. However, the Dirac equation imposes a constrain which eliminates a half

of them. Hence, for a Dirac fermion we have a total of 4 real DOF. Conversely, Majorana

fermions have an additional condition, the reality one, in such a way that the DOF are

reduced by a half again, given a total of 2 real DOF.

The generalization of this idea to D-dimensions (being D even) is straightforward. Dirac

fermions have 2D/2 DOF and Majorana ones have 2D/2−1. In any case, we conclude that

#DOF Majorana Fermions

#DOF Dirac Fermions
=

1

2
. (3.17)

This difference between these two type of fermions is going to make an important impact in

the capture rate of neutrinos on tritium, as we are going to see later in this Chapter.

3.2.4 Dirac or Majorana neutrino masses

Since the discovery of neutrino oscillation [33], we know that neutrinos are massive particles.

Therefore, we now face the problem of how to introduce mass terms in the SM lagrangian.

There are two main proposals about how to fit them. If neutrinos are Dirac fermions, we

introduce a mass term through out

L ⊃ mν ν ν = mν (νL νR + νR νL) (3.18)

where the mass mν could be generated by the Higgs VEV. Nevertheless, to have mν ∼

O(0.1eV) the Yukawa coupling must be around 10−12, so very small compared to the other

SM Yukawas. We also note that because in this scenario the right-handed neutrino is not

charged neither under the SM electroweak gauge group (no weak isospin, no hypercharge),

nor the strong interaction, it is called sterile.
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In contrast, for Majorana neutrinos because of the reality condition we have νR = νCL ,

L ⊃ mν

2

(
νL ν

C
L + νCL νL

)
=

mν

2

(
νLC νTL + νTL C νL

)
. (3.19)

Note that while Eq.(3.18) does not violate lepton number, the mass term determined by

Eq.3.19 violates lepton number by two units. We discussed about the dimension five Weinberg

operator that could generate the mass term given by Eq.(3.19) in Chapter 2.

In sub-section 3.2.3 we saw that the number of DOF is different if neutrinos are Dirac

or Majorana. The situation is more subtle in the case of non-relativistic neutrinos, because

in this case a distinction between chirality and helicity appears. Hence, following with the

chapter, in the next section we introduce relic neutrinos. We will see that the standard model

of Cosmology suggests that for them pν ( mν , thus being non-relativistic.

3.3 What are relic neutrinos?

In 1965, Dicke, Peebles, Roll and Wilkinson published a paper entitled “Cosmic Black-Body

Radiation” [35]. In that paper it was proposed a possible thermal history of the universe.

In that picture, light neutrinos (produced in the early universe) thermally decoupled from

ordinary matter around one second after the Big Bang. These are the neutrinos that we

call relic neutrinos. The standard model of Cosmology predicts that, if neutrinos are stable

particles (at least on cosmological time), their temperature today must be around ∼ 1.7×10−4

eV. A similar calculation shows that their momentum must be of the order ∼ meV, and since

neutrino masses are at most of order of some ∼ eV [33], it is straightforward to conclude that

these neutrinos are non-relativistic today.

An explicit computation of various of these quantities will be given in next section.

3.4 Thermal history of the CνB

In the early stages of the universe after the Big Bang, a hot and dense plasma made of

electrons, positrons and photons was in thermal equilibrium with neutrinos via the weak
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interaction and through the scatterings ν e←→ ν e , see Fig. 3.2, and e+ e− ←→ ν ν, see Fig.

3.3. Each one of these two scatterings can be described by the Fermi theory. This implies

ν

e

e

ν

Figure 3.2: Thermal equilibrium through ν e←→ ν e .

e−

e+

ν

ν

Figure 3.3: Thermal equilibrium through e+ e− ←→ ν ν.

that the scattering rate of the processes goes like Γ ∼ G2
F T 5. Since these scatterings are

mediated by the weak interaction, neutrinos appear in these processes as flavor eigenstates:

νe, νµ, ντ , νe, νµ, ντ . In addition, thermal neutrinos follow a Fermi-Dirac distribution

fFD(p, T ) =
1

1 + eE/T
, (3.20)

where E =
√
p2 +m2

ν and T is the temperature of the plasma. After integrating over all the

phase space, we obtain

nν(T ) =

∫
d3p

(2π)3
fFD(p, T )

=
3ζ(3)

4π2
T 3, (3.21)

which is the number density of neutrinos per degree of freedom.

As mentioned, while the universe was expanding, the thermal equilibrium of neutrinos

had been maintained through the processes showed in Figs. 3.2 and 3.3. Quantitatively this
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means that the rate of the processes Γ had to be greater than the Hubble expansion rate,

H. However, at certain temperature Tfo, Γ dropped below the Hubble expansion rate, and

neutrinos fell out of thermal equilibrium. This moment in the thermal history of the universe

is called the neutrino freeze out.

We can easily estimate the temperature of neutrino freeze out Tfo. As we said, the thermal

equilibrium was maintained until

Γ ∼ H

G2
F T 5

fo ∼
T 2
fo

MPl

⇒ Tfo ∼ MeV, (3.22)

where MPl is the Planck mass. After neutrinos fell out of thermal equilibrium, they just

started to free stream across the universe. These are the relic neutrinos.

Now, we would like to know about the present abundance of these kind of neutrinos. To

this end, we shall use the so called sudden freeze out approximation [36]. In this approxi-

mation we just redshift the quantities that define the Fermi-Dirac distribution. We will also

discard the neutrino mass contribution in the distribution function, because in addition of

being very tiny, it is also suppressed by a factor (1 + z)/(1 + zfo)( 1 (here z is an arbitrary

redshift and zfo + 6×1010 is the redshift at neutrino freeze out). Hence, the important quan-

tities are the redshifted neutrino momentum p(z) and the redshifted neutrino temperature,

which are respectively given by

p(z) =
1 + z

1 + zfo
pfo, (3.23)

Tν(z) =
1 + z

1 + zfo
Tfo. (3.24)

Henceforth, the distribution function after decoupling is given by

fFD [p(z), Tν(z)] =
1

1 + ep(z)/Tν(z)
, (3.25)

and, as usual, after integrating over all phase space, we find the redshifted number density



CHAPTER 3. RELIC NEUTRINOS 36

of neutrinos nν(z) =
∫ d3p

(2π)3 fFD [p(z), Tν(z)]. In addition, at the moment of neutrino freeze

out we have that the entropy of neutrinos is exactly the same as the entropy of photons,

i.e. sν(zfo) = sγ(zfo)1. Hence, we can write the redshifting of the photon temperature as

Tγ(z) =
(

1+z
1+zfo

)(
g∗(zfo)
g∗(z)

)1/3
Tfo, and with the help of Eq. (3.24), we obtain the following

expression that relates the present temperature of the photons (CMB) with the present

temperature of the relic neutrinos (CνB),

Tν =

(
4

11

)1/3

Tγ . (3.26)

The current CMB temperature is measured to be Tγ = 0.235 meV [37; 38], and this leads to

the indirect measurement Tν = 0.168 meV. By combining the latter result with Eq. (3.21),

the present number density of neutrinos per flavor and spin is

n0 ≈ 56 cm−3, (3.27)

in such a way that the present number density of neutrinos for the entire CνB is expected

to be 6n0 ≈ 336 cm−3. We can also explicitly compute the mean and the root mean square

momentum

〈pν(z)〉 =

∫ d3p
(2π)3 p(z) fFD [p(z), Tν(z)]

nν(z)

=
7

2

ζ(4)

ζ(3)
Tν(z), (3.28)

〈p2ν(z)〉 =

∫ d3p
(2π)3 p

2(z) fFD [p(z), Tν(z)]

nν(z)

= 15
ζ(5)

ζ(3)
T 2
ν (z). (3.29)

In this way, the present root mean square momentum of neutrinos, pν(0) =
√
〈p2ν(0)〉, is

1The entropy density s ≡ S/V for relativistic species is s = 2π2

45 g∗ s(T )T
3, where g∗ s(T ) =

∑
bos gi

(Ti
T

)3
+

7
8

∑
fer gi

(Ti
T

)3
.
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computed to be

pν(0) ≈ 0.603meV. (3.30)

From this value of the root mean square momentum, we can infer a very important result.

Because oscillation experiments showed that the neutrino masses are at most of the order of

∼ eV [33], we have that

pν(0)( mν , (3.31)

thus1:

Relic neutrinos are non-relativistic particles

We stress that we are considering as massive and degenerated at least two of the three active

neutrinos. Knowing that high energy neutrinos interact very weakly with matter, what we

should expect from the above conclusion is that relic neutrinos should be basically impossible

to detect by direct detection experiments. Nevertheless, as we shall explain in Section 3.6,

by using the tritium beta decay as a background, it shall be possible to detect signals of relic

neutrinos by capturing them on a tritium target. With this in mind, the following section

is devoted to understand how this is possible by analyzing the kinematic of the tritium beta

decay, 3H→ 3He + e− + ν, and the neutrino capture on tritium, ν + 3H→ 3He + e−.

3.5 Kinematic analysis

An important relation obtained by a simple kinematic analysis of tritium beta decay and

neutrino capture on tritium is a shift in the kinetic spectrum of the beta decay. This shift

in the spectrum depends on the neutrino mass. In the following computation we will use the

rest frame of the tritium nucleus. In the tritium beta decay, see Fig. 3.4, the electron can be

emitted within a range of momenta. For the electron to have maximum momentum, we must

1This is not necessarily true for the lightest one.
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Figure 3.4: Schematic representation of tritium beta-decay, 3H→ 3He + e− + ν [39].

have the helium-3 and the neutrino going out anti-parallel to the direction of the electron.

This situation determines the beta decay endpoint,

pend =
1

2m3H

√
m2

3H − (m3He +mν +me)2
√
m2

3H − (m3He +mν −me)2.

(3.32)

From this expression we can obtain the electron kinetic energy endpointKend =
√
p2end +m2

e−

me. By replacing Eq. (3.32) inside Kend, we get

Kend =
(m3H −me)2 − (m3He +mν)2

2m3H
. (3.33)

Now, we want to adapt the above computation to the neutrino capture on tritium which is

our case of interest,

νj +
3H→ 3He + e−, (3.34)

where j is labeling neutrino mass eigenstates. Since, as we saw, typical cosmological neutrinos

have pν(0) ≈ 6×10−4 eV, and taking mj ≈ 0.1 eV, we neglect the momentum of the incident

neutrino in the calculation of the electron kinetic energy. Following the same steps as in the
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previous computation for the electron kinetic endpoint we arrive to

KCνB,j
e =

(m3H −me +mj)2 −m2
3He

2(m3H +mj)
. (3.35)

This is the electron kinetic energy at which the signal of the relic neutrinos would appear. In

order to understand how this signal would be detected in the tritium beta decay background,

we have to consider the displacement in the energy spectrum. Hence, we have

∆K = KCνB,j
e −Kend

=

[
(m3H +m3He +mj)2 −m2

e

2m3H(m3H +mj)

]
mj . (3.36)

Considering that m3H ≈ m3He 3 me 3 mj , we arrive to the simple result

KCνB,j
e ≈ Kend + 2mj , (3.37)

which also means that ∆K ≈ 2mj . This situation is schematically represented in Fig. 3.5.

Additionally, for analysis of Fig. 3.5 it is convenient to recognize the form of the electron

kinetic energy as mj → 0,

K0
end =

(m3H −me)2 −m2
3He

2m3H
. (3.38)

This would be the endpoint if neutrinos were massless particles.

3.6 PTOLEMY experiment

In 1962 Steven Weinberg proposed a way to detect relic neutrinos by capturing them on

tritium [40], ν+ 3H→ 3He+e. The proposal was done in the context of degenerate massless

relic neutrinos. Inspired by Weinberg’s paper, Cocco, Mangano and Messina in [41] made

a very extensive and detailed study of more than two thousands beta decaying nuclei, and

found that the uncertainty on the neutrino capture by using a tritium target is constrained to

the sub-percent level. In addition, they also found that the cross section times the neutrino
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Figure 3.5: In this figure it is illustrated how the signal of the active relic neutrinos would
appear as a solid line signal displaced 2mν from the beta decay end point, we have to stress
that in this cartoon it is considered that the masses of the three neutrinos are approximately
degenerated mj = m1 ≈ m2 ≈ m3 = mν . In the limit of mν = 0 the electron kinetic
energy end point, Eq. (3.38), would appear ending in the vertical gray dashed line. It is also
schematically illustrated how the signal of a fourth sterile neutrino would appear [36].

velocity can be of the order of 10−42 cm2. This implies that the event rate could be very

large. For tritium they computed 10 events per year [41]. A more refined calculation [10]

predicted 9.51± 0.03 events per year.

In 2013 a team of physicist revived this idea with the proposal of the PTOLEMY ex-

periment [10] (Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino

Yield). The goal of direct detection of relic neutrinos is expected to be reached through a

combination of a large area surface-deposition of 3H, filter methods and cryogenic calorime-

try. Fig. 3.6 shows schematically the electron trajectory in the PTOLEMY experiment, since

electrons leave the Tritium surface-deposition until they arrive to the cryogenic calorimeter

[10]. Because the implementation of the PTOLEMY experiment is a technological challenge,

the implementation of a prototype is needed. The study of such a prototype shall allow to

reach in the near future the goal of 100 gram of tritium target.

In order to validate every aspect in the construction and realization of this future exper-

iment, the entire process has been divided in three main phases [11]:

1. Proof-of-principle demonstrator,
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Figure 3.6: Schematic representation of the electron trajectory in the PTOLEMY experiment
[10].

2. scalable prototype realization and tests,

3. full detector construction.

The first of these three steps started by moving the equipment and the PTOLEMY prototype

from Princeton to the Laboratori Nazionali del Gran Sasso (LNGS) [11]. For the remaining

steps we refer to Ref.[11] for more details. In the same reference it is possible to find a detailed

time schedule for the installation and operation of the PTOLEMY prototype. However, for

reasons beyond our knowledge that schedule (2018) is no longer valid. As the same authors

of Ref.[11] describe in the more recent Ref.[42], the PTOLEMY prototype will be built at

LNGS in this year, 2021.

From now on we will be generic about the experiment, this means that in what follows

we will focus on a generic PTOLEMY-like experiment.

In the following section we introduce the BSM effects trough out six dimensional operators.

As we shall see this affect observables such as the capture rate of the neutrino capture by

Tritium.
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Figure 3.7: Prototype of the PTOLEMY experiment at the Princeton Plasma Physics Lab-
oratory [10] (February, 2013).

Figure 3.8: Prototype of the PTOLEMY experiment at Jadwin Hall Physics Department,
Princeton University [11] (June, 2017).
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3.7 Impact of Beyond the Standard Model Physics in the

Detection of the Cosmic Neutrino Background

3.7.1 Relation between capture rates of Dirac and Majorana neutrinos in

the SM

Since we are interested in the capture of relic neutrinos on trititum, in a PTOLEMY-like

experiment, the capture rate ΓCνB plays an important role. In Ref. [36] it is calculated the

capture rate ΓCνB considering only SM interactions. Such expression is given by

ΓSM
CνB =

3∑

j=1

[
σj(+1/2) vνj nj(νhR) + σj(−1/2) vνj nj(νhL)

]
NT, (3.39)

where NT is the number of nuclei in the sample, σj and vνj are the cross section and velocity

for mass eigenstate j, respectively. The subscript hR (hL) of neutrino ν means right-helical

(left-helical).

Helicity plays an important role in the description of processes involving relic neutrinos.

Since in the present relic neutrinos are non-relativistic, chirality and helicity do not coincide.

While chirality is not conserved in this regime, helicity commutes with the free hamiltonian

and then is a conserved quantity. In contrast, during the neutrino freezeout (Tfo 3 mν),

neutrinos were ultra-relativistic and thus chirality and helicity coincide. In this scenario, for

Dirac neutrinos, we have that only LH neutrinos, or RH anti-neutrinos (the active states)

contribute to the processes showed in Figs. 3.2 and 3.3. Hence, these active states have a relic

abundance nν(z). In contrast, RH sterile neutrinos and LH sterile anti-neutrinos cannot come

into thermal equilibrium with SM, thus their relic abundances are assumed to be negligible

[36]. This situation is summarized in table 3.2.

As discussed in subsection 3.2.2, Majorana neutrinos are their own antiparticles. For that

reason, the names “neutrino” or “anti-neutrino” are avoided for their classification. Instead,

we classify them by their handness, and as active or sterile particles, see table 3.3. As in the

Dirac case, the active neutrinos νL and νR interact weakly, and thus they have also a relic

abundance nν(z). Now, in addition to νL and νR there are two sterile neutrinos, NR and NL.
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Dirac Neutrinos Abundances

ν n(ν)

νL LH active neutrino n(νL) = nν(z)
νR RH active anti-neutrino n(νR) = nν(z)
νR RH sterile neutrino n(νR) ≈ 0
νL LH sterile anti-neutrino n(νL) ≈ 0

Table 3.2: For the Dirac case only LH neutrinos, or RH anti-neutrinos (the active states)
contribute to the processes of Figs. 3.2 and 3.3. Hence, these active states have shifted
relic abundance nν(z). In a contrary manner for RH sterile neutrinos and LH sterile anti-
neutrinos, because they cannot come into thermal equilibrium with SM, their relic abundance
is assumed to be negligible [36].

Majorana Neutrino Abundances

ν n(ν)

νL LH active neutrino n(νL) = nν(z)
νR RH active neutrino n(νR) = nν(z)
NR RH sterile neutrino n(NR) = 0
NL LH sterile neutrino n(NL) = 0

Table 3.3: Left-side of the table shows the classification of Majorana neutrinos by their
handedness and if they are active or sterile. Right-side of the table shows their respective
abundances nν(z) [36].

However, NR and NL are typically heavier than the weak scale [43]. Therefore, they shall

decay in lighter particles such as leptons and Higgs bosons at the EW scale [36]. In this way,

their relic abundance is expected to be zero, see table 3.3.

As said before, relic neutrinos today are non-relativistic. The importance of helicity in

this regime was also stressed. Hence, in the non-relativistic regime neutrinos are labelled by

the following subscripts: hL and hR, which mean left-helical and right-helical, respectively.

In table 3.4, we show the respective relic abundances for the Dirac and Majorana cases. The

subscript “0” in the abundance n0 means that they are the present abundances. With the

definitions at hand, now we compute the capture rates for Dirac and Majorana relic neutrinos.
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Dirac Majorana

n(ν) n(ν)

n(νhL) = n0 n(νhL) = n0

n(νhR) = n0 n(νhR) = n0

n(νhR) ≈ 0 n(NhR) = 0
n(νhL) ≈ 0 n(NhL) = 0

Table 3.4: Here we show the notation for the present relic abundances for Dirac and Majorana
neutrinos.

After summing over the mass eigenstates j = 1, 2, 3, Eq. (3.39) becomes

ΓSM
CνB = σ [n(νhR) + n(νhL)]NT (3.40)

where σ =
∑

j=1,2,3 σj(sν = ±1/2) vνj

∣∣∣
vνj&1

and has the numerical value of σ + 3.834 ×

10−45 cm2 [36]. As a result, Eq. (3.40) gives

ΓSM
CνB = n0 σNT, Dirac case (3.41)

ΓSM
CνB = 2n0 σNT, Majorana case. (3.42)

Thus, the capture rate depends on the nature of relic neutrinos. In this way, in the SM the

capture rate for Majorana relic neutrinos, ΓM
CνB, is expected to be twice the value of Dirac

relic neutrinos, ΓD
CνB, so we write

ΓM
CνB = 2ΓD

CνB. (3.43)

In the rest of the chapter we will analyze how the introduction of new physics would modify

the relation given in Eq. (3.43).

3.7.2 Effective lagrangian approach for the BSM neutrino interactions

In the SM, the weak interactions have a purely V − A Lorentz structure. Since the simple

fact that neutrinos have a non-zero mass constitutes already an evidence for BSM physics,
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Four-fermion Operators Vertex Corrections

Q(6)
νL Q(6)

νR Q(6)
Φ

Q1 = (lLeR)(dRqL) Q5 = (lLνR)ε(qLdR) Q9 = i(ΦT εDµΦ)(uRγµdR)
Q2 = (lLeR)ε(qLuR) Q6 = (νRlL)(qLuR) Q10 = i(ΦT εDµΦ)(νRγµeR)

Q3 = (lLγµτAlL)(qLγµτAqL) Q7 = (eRγµνR)(uRγµdR) Q11 = (Φ†i
←→
Da

µΦ)(qLγµτ
AqL)

Q4 = (lLσµρeR)ε(qLσµρuR) Q8 = (lLσµρνR)ε(qLσµρdR) Q12 = (Φ†i
←→
Da

µΦ)(lLγ
µτAlL)

Table 3.5: Dimension-six operators relevant for neutrino capture. Here lL, qL are the SM
lepton and quark SU(2)L doublets while uR, dR, eR, νR are the corresponding SM singlets.
The SU(2)L generators are denoted with τA while εij is the totally antisymmetric tensor
with ε12 = +1. We do not include the invariant operator (νRσµρlL)(qLσµρuR) in the list
because it does not contribute to the relic capture.

we will allow here for other possibilities. This can be done in a model independent fashion

using an effective field theory approach. We will consider dimension-six operators which are

SU(2)L×U(1)Y invariant, but which also include right-handed neutrinos [16; 44; 45]. More

precisely, we write

LBSM = L (4)
SM + Lmν +

1

Λ2

12∑

k=1

c(6)k Q(6)
k , (3.44)

where L (4)
SM is the dimension-four SM lagrangian, Lmν is the neutrino mass lagrangian, which

can either come from a dimension 4 operator involving right handed neutrinos or from the

dimension 5 Weinberg operator; Λ is the maximum energy scale at which the theory is still

valid; and the c(6)k are dimensionless coupling constants. The set of operators with left-

and right-handed neutrinos, Q(6)
k = {Q(6)

k (νL), Q
(6)
k (νR)}, is given in table 3.5. The terms

relevant for our calculation of the BSM relic neutrino capture rate on β-decaying tritium can

be obtained writing eq. (3.44) in terms of mass eigenstates

Leff = −GF√
2
Vud Uej




[ēγµ(1− γ5)νj ][ūγµ(1− γ5)d] +
∑

l,q

εlq[ēOlνj ][ūOqd]




+ h.c., (3.45)
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where a sum over the three neutrino mass eigenstates j = 1, 2, 3 is implied. The couplings

εlq, related to the dimensionless couplings c(6)k (see ref. [44]), parametrize the BSM physics

effects, with l (q) labelling the Lorentz structure of the lepton (quark) current, as given by

Ol (Oq) in table 3.6. Vud and Uej correspond to the Cabibbo-Kobayashi-Maskawa (CKM)

and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrices elements relevant to the

process, respectively.

Equation (3.45) can be used to calculate the neutrino absorption on tritium

νj +
3H→ 3He + e− ,

in the presence of BSM interactions. To this end, we need to properly define the hadronic

matrix elements involving the quark current in eq. (3.45). Following ref. [46], we have

〈p(pp)|ūγµ(1± γ5)d|n(pn)〉 = up(pp)γ
µ[gV (q

2)± gA(q
2)γ5]un(pn),

〈p(pp)|ūd|n(pn)〉 = gS(q
2)up(pp)un(pn),

〈p(pp)|ūγ5d|n(pn)〉 = gP (q
2)up(pp)γ

5un(pn),

〈p(pp)|ūσµν(1± γ5)d|n(pn)〉 = gT (q
2)up(pp)σ

µν(1± γ5)un(pn).

(3.46)

We have introduced the hadronic form factors gh(q2), with h = V,A, S, P, T corresponding to

the vector, axial, scalar, pseudoscalar and tensor Lorentz structures, respectively.1 Although

these form factors depend on the transferred momentum q2 = (pn−pp)2, for the capture rate

we are only interested in the q2 + 0 limit. In our numerical analysis we will use the values

shown in table 3.7 [47; 48; 49]. Following the calculation of ref. [36], the capture cross section

for a neutrino mass eigenstate j, with helicity hj = ±1 and velocity vj including BSM effects

is given by

σBSM
j (hj)vj =

G2
F

2π
|Vud|2 |Uej |2 FZ(Ee)

m3He

m3H
Ee pe Tj(hj , εlq), (3.47)

1Since it does not contribute to the CνB capture, we do not include the weak magnetic term

〈p(pp)|ūγµd|n(pn)〉WM = −i
gWM

2MN
up(pp)σµν(pn − pp)

νun(pn).
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εlq Ol Oq

εLL γµ(1− γ5) γµ(1− γ5)
εLR γµ(1− γ5) γµ(1 + γ5)
εRL γµ(1 + γ5) γµ(1− γ5)
εRR γµ(1 + γ5) γµ(1 + γ5)
εLS 1− γ5 1
εRS 1 + γ5 1
εLP 1− γ5 −γ5
εRP 1 + γ5 −γ5
εLT σµν(1− γ5) σµν(1− γ5)
εRT σµν(1 + γ5) σµν(1 + γ5)

Table 3.6: Parameters and their corresponding Lorentz structures for the BSM currents
considered in this work.

where m3He and m3H are the helium and tritium masses, and Ee, me, pe are the electron

energy, mass and momentum, respectively. The Tj(hj , εlq) function contains the dependence

on the neutrino helicity and on the εlq parameters,

Tj(hj , εlq) = A(hj)
[
g2V (εLL + εLR + 1)2 + 3 g2A (εLL − εLR + 1)2 + g2S ε

2
LS + 48 g2T ε

2
LT

+
2me

Ee
[gS gV εLS (εLL + εLR + 1)− 12 gA gT εLT (εLL − εLR + 1)]

]

+A(−hj)
[
g2V (εRR + εRL)

2 + 3 g2A (εRR − εRL)
2 + g2S ε

2
RS + 48 g2T ε

2
RT

+
2me

Ee
[gS gV εRS (εRR + εRL) − 12 gA gT εRT (εRR − εRL)]

]

+ 2
mj

Ej
{gS gV εRS (εLL + εLR + 1) + εLS (εRR + εRL))

−12 gA gT (εRT (εLL − εLR + 1) + εLT (εRR − εRL))}

+ 2
mjme

EjEe

{
g2V (εLL + εLR + 1)(εRR + εRL) + 3 g2A (εLL − εLR + 1)(εRR − εRL)

+g2S εRS εLS + 48 g2T εRT εLT
}
, (3.48)

with mj , Ej the mass and energy of the j-th neutrino mass eigenstate and A(hj) = 1−2hjvj .
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Form Factor Value Reference

gV (0) 1 [50; 51]
gA(0)/gV (0) 1.2646± 0.0035 [47]

gS(0) 1.02± 0.11 [48]
gP (0) 349± 9 [48]
gT (0) 1.020± 0.076 [49]

Table 3.7: Hadronic form factors considered in this work.

Let us note that A(hj) + 1 for non-relativistic neutrinos, corresponding to the case on which

we will focus in section 3.7.3. Furthermore, notice that the capture rate is independent of the

pseudoscalar couplings εlP . The Fermi function FZ(Ee), which takes cares of the enhancement

of the cross section due to the Coulomb attraction between the proton and electron, is given

by

FZ(Ee) =
2πZαEe

pe
[
1− e

−2πZαEe
pe

] . (3.49)

Summing over all the neutrino mass eigenstates, one can calculate the total 3H capture rate

ΓBSM
CνB = NT

3∑

j=1

ΓBSM
CνB (j) = NT

3∑

j=1

[
σBSM
j (+1) vj nνj+

+ σBSM
j (−1) vj nνj−

]
, (3.50)

where NT is the number of nuclei present in the sample and nνj±
the number density at the

present time of the helical state νj±.

3.7.3 Detection of the CνB by a PTOLEMY-like detector

As discussed in Section 3.6 a PTOLEMY-like experiment [10] aims to detect the CνB through

the neutrino capture by tritium, a reaction that has no energy threshold. We can safely

assume that CνB neutrinos are non-relativistic today1 as their root mean momentum is

pν(0) ≈ 0.6 meV ( mj [40]. This has two crucial consequences. First, the neutrino flavour

eigenstates have suffered decoherence into their mass eigenstates, so a detector would, in

1As we know from oscillation experiments, only one neutrino can be massless.
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fact, measure the contribution of each neutrino mass eigenstate. Second, at the time of the

creation of the CνB, i.e. when neutrinos decoupled from the primordial plasma, they were

ultrarelativistic, making chiral and helical eigenstates effectively equal. However, as neutrinos

evolved into a non-relativistic state due to the expansion of the Universe, chirality and helicity

became different. Since neutrinos were free streaming, it was helicity, not chirality, that was

conserved in the process.1 This implies that the neutrino number density is nνj+
= nνj−

=

n0 ≈ 56 cm−3 in the Majorana case, while nνj−
= n0 and nνj+

= 0 in the Dirac case. If no

BSM interactions are present, the function Tj(hj , εlq) reduces to

Tj(hj , 0) = A(hj)
[
g2V + 3 g2A

]
,

from which, using eq. (3.50), we conclude that

ΓM
CνB = 2ΓD

CνB = 85.7 [kg yr]−1 , (3.51)

where ΓM
CνB and ΓD

CνB are the Majorana and Dirac capture rates. We will consider in sec-

tion 3.7.5 the modifications to the neutrino abundance due to BSM physics.

The signature of relic neutrinos in a PTOLEMY-like detector is given by the electron

created in the capture process. Nonetheless, tritium can also undergo β-decay, giving rise to

a continuous electron spectrum. As a consequence, one needs to discriminate the electrons

produced by the CνB neutrino capture from the electrons produced by β-decays. Using

kinematics, the electrons produced by the νj relic neutrinos capture will have a definite

energy [36] (see the discussion in Section 3.5)

ECνB,j
e + me +K0

end + 2mj , (3.52)

where K0
end corresponds to the β-decay endpoint energy. This implies that relic neutrinos

could produce one or more peaks in the electron energy spectrum at energies larger than the

endpoint one. If so, CνB and β-decay events can in principle be discriminated from each

1If neutrinos underwent a clustering process, helicity would not be conserved either. We will comment
more on this possibility in section 3.7.5.
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other. It is clear that the finite energy resolution of the real detector plays an essential role in

establishing whether the two signals can be separated or not. In order to estimate the signal

in a more realistic way we will follow [36] and convolute the CνB capture rate of eq. (3.50)

and the β-decay background with a Gaussian function

dΓBSM
CνB

dEe
=

1√
2πσ2

3∑

j=1

∫ ∞

−∞
dE′

e Γ
BSM
CνB (j) exp

[
−(E′

e − Ee)2

2σ2

]
δ(E′

e − ECνB,j
e ), (3.53a)

dΓβ
dEe

=
1√
2πσ2

∫ ∞

−∞
dE′

e
dΓβ
dE′

e
exp

[
−(E′

e − Ee)2

2σ2

]
, (3.53b)

where σ is the expected experimental energy resolution. The complete expression for the

β-decay rate
dΓβ
dE′

e
is [46]

dΓβ
dE′

e
=

2G2
F |Vud|2

π3
peE

′
e

(
m3H −m3He − E′

e

)2 ×

×




∑

j

|Uej |2
√

1−
m2

j

(m3H −m3He − E′
e)

2 Θ̃j



 (3.54)

where Θ̃j ≡ Θ (Emax
e (mj)− E′

e)Θ (m3H −m3He −me −mj) and Emax
e =

m2
3H

+m2
e−(m3He+mj)

2

2m3H
.

In order to estimate the total number of events produced by the CνB and β-decay in the

region in which we expect a CνB signal, we define the full width at half maximum (FWHM)

of the Gaussian function as ∆ =
√
8 ln 2σ. With this definition, we have

NBSM
CνB (∆) =

∫ ECνB
e +∆/2

ECνB
e −∆/2

dEe
dΓBSM

CνB

dEe
, (3.55a)

Nβ(∆) =

∫ ECνB
e +∆/2

ECνB
e −∆/2

dEe
dΓβ
dEe

, (3.55b)

which can be used to define the ratio

rCνB =
NBSM

CνB (∆)√
Nβ(∆)

. (3.56)

We will consider that the signal can be discriminated from the background when rCνB ≥ 5.
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The future PTOLEMY experiment is expected to have ∆ = 0.15 eV [10] in such a way that a

single peak is expected if the sum of the neutrino masses is about 0.1 eV. For smaller masses,

a smaller value of ∆ would be needed to discriminate the signal from the background. We

study more in detail the interplay between ∆, neutrino masses and the position of the peaks

observed at PTOLEMY-like detectors in Appendix B.

3.7.4 On the contributions of BSM physics to CνB capture rate

The BSM lagrangian of eq. (3.45) generates not only new contributions to the neutrino capture

by tritium, but also modifies other low energy processes. To assess the size of the modification

to the neutrino CνB capture rate, we first need to take into account the experimental bounds

on the εlq coefficients. Limits from Cabbibo Universality [52], radiative pion decay [53] and

neutron decays [54] put bounds on the εLq left-chiral couplings; meanwhile, limits coming

from the β-decay of several nuclei have been reviewed in ref. [55]. A complete compendium

of the limits regarding low energy decays is given in refs. [44; 45]. For our purposes, we

will consider the cases considered in ref. [55], as they include couplings with right-handed

neutrinos. The constraints are given in terms of the following combinations of couplings:

CV = gV (1 + εLL + εLR + εRL + εRR), C ′
V = gV (1 + εLL + εLR − εRL − εRR),

CA = −gA(1 + εLL − εLR − εRL + εRR), C ′
A = −gA(1 + εLL − εLR + εRL − εRR),

CS = gS(εLS + εRS), C ′
S = gS(εLS − εRS),

CT = 4 gT (εLT + εRT ), C ′
T = 4 gT (εLT − εRT ).

(3.57)

Accordingly, we need to convert the bounds on the C(′)
i into bounds on εlq at 3σ C.L. To this

end, we have performed a scan over the ranges

−10−3 ≤εLL ≤ 10−3 , −10−3 ≤εLR ≤ 10−3 ,

−2.8× 10−3 ≤εLS ≤ 5× 10−3 , −2× 10−3 ≤εLT ≤ 2.1× 10−3 ,
(3.58)
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and

|εRq| ≤ 10−1, (3.59)

keeping only the points consistent with each of the allowed regions of the C(′)
h in ref. [55]. Let

us notice that, to translate the limits into contraints on the εlq parameters, we also scanned

over the gA(0)/gV (0) value given in table 3.7 since such parameter is affected by the presence

of BSM [56]. The ranges in which the scan is performed have been chosen to include the

constraints of refs. [52; 53; 54] in the left-chiral coefficients at the 3σ level. Although stronger

limits can be imposed on right-handed couplings using pion decay [57], we will not include

them as they are strongly dependent on the flavour structure of the model [44; 45]. Finally,

LHC bounds coming from pp → e + X + /ET have been studied in refs. [44; 54]. However,

the analysis is performed supposing the interactions of eq. (3.45) remain pointlike up to the

LHC energies, i.e. up to a few TeV. To allow for the possibility that BSM physics appears

just above the electroweak scale, in our analysis we will use only the bounds coming from

low energy experiments.

We found that the parameters εLL and εLR are unconstrained by the experimental data

as it has been previously noted in ref. [56]. For reference we summarize here the bounds

without the correlations — which have been included in our numerical analysis — :

1. Only left-chiral couplings allowed in the fit (εRq = 0). The scalar and tensor terms have

distinct dependence on the electron energy and mass, because of the different Lorentz

structure. Computing the total capture rate ΓBSM
CνB using the points that pass the low

energy experimental constraints, we find

0.985ΓD
CνB ! ΓBSM

CνB ! 1.02ΓD
CνB,

where ΓD
CνB is the capture rate for Dirac neutrinos with only SM interactions.

2. Only vector-axial-vector couplings allowed in the fit (εLS = εRS = εLT = εRT = 0): in

this case we get |εRL| ! 8× 10−2 and |εRR| ! 5× 10−2 at 3σ level. Let us notice that
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Figure 3.9: Ratio between the BSM capture rate for the right-chiral scalar and tensor cou-
plings scenario with respect to the SM Dirac case in the plane (εRS versus εRT ). We use a
color code to indicate the range of values of the ratio.

the term linear in the right-handed couplings in eq. (3.48) is proportional to mj/Ej ,

so it would be negligible for an ultrarelativistic neutrino. This term comes from the

interference of the SM contribution with the right-handed neutrino current. The terms

proportional to (εRR ± εRL)2 come from the square of the right-handed currents, and

are proportional to A(−hj). Using the experimentally allowed range for εRR,RL, we

find

0.89ΓD
CνB ! ΓBSM

CνB ! 1.11ΓD
CνB.

3. Only right-chiral scalar and tensor couplings allowed in the fit (εLS = εLT = εRL =

εRR = 0): in this case we get |εRS | ! 1.1 × 10−1 and |εRT | ! 8 × 10−2 at 3σ. Again

the term proportional to the neutrino mass comes from the interference between SM

and right-handed currents. Furthermore, we observe that this interference term does

not depend on the neutrino helicity. This is due to the different Lorentz structures that
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appear in the BSM lagrangian. Considering the allowed parameter space, we find

0.61ΓD
CνB ! ΓBSM

CνB ! 1.52ΓD
CνB.

Since in this case the parameter space is highly correlated due to the correlations coming

from the β-decay bounds, we show in figure 3.9 the rate between the BSM capture rate

and the SM Dirac case in the (εRS , εRT ) plane.

4. Five free couplings allowed in the fit: in this case we get |εRS | ! 10−1 and |εRT | !
8× 10−2 at 3σ. Here the interference term proportional to the neutrino mass depends

on the product between εLS,LT and εRS,RT . We show in figure 3.10 the ratio between

the BSM capture rate and the SM Dirac rate in the (εRS , εRT ) plane, in which we find

the strongest correlation between the couplings. We find that the ratio can be at the

most 2.2 times the SM one, which is interesting as in this case Dirac neutrinos with

BSM interactions can mimic Majorana neutrinos in the SM. However, there are regions

in parameter space in which the rate is considerably lower than the SM one.

Let us conclude stressing that pure Majorana neutrinos fall in the “only left-chiral couplings”

category (case 1 above), with only a small modification of order 2% allowed in the capture

rate. Dirac neutrinos have instead a much richer phenomenology, with all the above cases

possible (depending on the gauge invariant operators of table 3.5 generated in the UV theory).

On the other hand, one could also worry about possible modifications of the tritium β-decay

spectrum generated by BSM interactions, which could make the CνB detection more involved.

Nevertheless, it has been shown in ref. [46] that the endpoint of the β-decay spectrum is not

significantly modified by BSM physics; thus, in principle, relic neutrino detection would be

still possible in this case.
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Figure 3.10: Ratio between the BSM capture rate with respect to the SM Dirac case for the
five free couplings scenario in the plane (εRS versus εRT ). The maximum (minimum) value
of the ratio is 2.2 (0.3).

3.7.5 On the relic right-handed neutrino abundance

As we have seen in section 3.7.3, without BSM contributions the neutrino number density

today is expected to be

nνj−
= n0, nνj+

= n0 (Majorana),

nνj−
= n0, nνj+

= 0 (Dirac),
(3.60)

with the capture rate in both cases given in eq. (3.51). There are three ways in which this

result can be modified: (i) if neutrinos underwent a gravitational clustering process, (ii) if

BSM interactions are present, and (iii) if an initial abundance of right-handed neutrinos was

present in the early universe.

Neutrino motion in the Dark Matter gravitational potential has the effect of modifying

the direction of the neutrino momentum without affecting its spin [58]. The immediate

consequence is that neutrinos undergo a process of gravitational clustering that tends to
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equilibrate the hj = +1 and hj = −1 populations. Since for Majorana neutrinos there is

already equilibrium, eq. (3.60) is still valid. The situation is different for Dirac neutrinos, for

which we get

nνj−
= n0/2, nνj+

= n0/2 (Dirac, clustering). (3.61)

Nevertheless, eq. (3.51) is still valid since the additional right-handed neutrino population in

the Dirac case with clustering compensates for the loss in the left-handed neutrino popula-

tion. Very recently, an N-body simulation has been considered in ref. [59] to estimate the

relic neutrino density enhancement on Earth. The main result is that the clustering effect

is negligible in the minimal Normal Ordering case while, for minimal Inverted Ordering, the

capture rate can be increased up to 20% for both Dirac and Majorana neutrinos.

We now turn to the case in which BSM interactions are present. Since BSM physics modify

the electroweak rates, this could potentially affect the left-handed neutrino abundance. As

we have seen in section 3.7.4, we must have at most εlq ! 10−1 to be compatible with β-

decay and other low energy experimental bounds (with many parameters much smaller). As

such, the active neutrinos were maintained in equilibrium with the plasma mainly by SM

interactions, and we do not expect a significant change in the left-handed neutrino number

density nνj+
.

Let us finally consider the case in which an initial abundance of right-handed neutrinos

is present. Such abundance can be either thermal or non-thermal. A thermal population

can be achieved by non-standard interactions or in the presence of a tiny neutrino magnetic

moment [60; 61; 62]. Following [62], when the expansion of Universe becomes faster than the

interaction rate, the right-handed neutrinos decouple as usual. At this freeze out temperature,

TR, the number densities of left- and right-handed neutrinos must be equal

nνjR
(TR) = nνjL

(TR). (3.62)

Using entropy conservation, we can relate the right-handed neutrino abundance at late times
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with the left-handed abundance, obtaining [62]

nνjR
(Tν)

nνjR
(TR)

=
g∗S(Tν)

g∗S(TR)

(
Tν
TR

)3

, (3.63)

where g∗S(T ) is the number of relativistic degree of freedom in entropy at the temperature T .

Choosing Tν in eq. (3.63) to be the left-handed neutrino decoupling temperature, and using

the definition of the effective number of thermal neutrino species Neff , one obtains [60; 61; 62]

nνjR
(Tν) =

(
1

3
∆Neff

) 3
4

nνjL
(Tν), (3.64)

where ∆Neff = N exp
eff − 3.046 and Neff = 3.046 is the SM value with 3 left-handed neutrinos.

The experimental determination of Neff by the Planck collaboration gives [63]

N exp
eff = 3.14+0.44

−0.43 He + Planck TT + low P + BAO at 95% C.L.

Combining eq. (3.64) with the experimental result, we get that the maximum density of

right-handed neutrinos is [62]

nνj+
= n(νj−)

c = nR
0 + 16 cm−3. (3.65)

The relic population of RH neutrinos modifies eq. (3.51) even for vanishing non-standard

interactions. In the pure SM case, since the capture rate is proportional to A(hj) = 1 for

both left- and right-handed neutrinos, we can have an increase in ΓD
CνB up to 28% [62]. The

difference is even larger if BSM interactions are turned on, although it depends crucially

on the case considered. For instance, in the vector-axial-vector scenario, the capture rate is

increased by roughly 30%, while in the five parameter scenario the increase can be up to 70%.

In this case, we have that the CνB rate can be as large as 2.8ΓD
CνB, reinforcing our results

on the possibility of having Dirac neutrinos with a relic capture rate numerically similar to

the Majorana one.

The last possibility consists in having an initial non-thermal right-handed neutrino abun-
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dance. Following [64], we will suppose that right-handed Dirac neutrinos initially form a

degenerated Fermi gas, decoupled from the thermal bath. In this case, the right-handed

neutrino density is related to the photon density nγ by

nνjR
(Tγ) =

1

6ζ(3)

g∗S(Tγ)

g∗S(TR)
ϑnγ , (3.66)

where ϑ = εF /TR, εF the Fermi energy and TR the freeze out temperature of the right-handed

neutrinos. The experimental limit on ϑ obtained using Planck data is ϑ ! 3.26, from which

we get that the maximum right-handed neutrino density is [64]

nνj+
= n(νj−)

c + 36 cm−3. (3.67)

Since in this case we can have a larger right-handed neutrino population with respect to the

thermal case, we expect larger modification in the capture rate. In the vector-axial-vector

BSM case we find that the rate is increased between 40 and 90%, getting closer to the value

expected for Majorana neutrinos in the SM. For the other three scenarios we found larger

modifications. In the right-handed scalar-tensor case, the BSM capture rate has a maximum

value of about 2.5ΓD
CνB, while in the five-parameter case we obtain 3.5ΓD

CνB. We conclude

noticing that, in all the cases in which a right-handed neutrino population (either thermal or

non-thermal) is present, the increase in the number of neutrinos lead to an increase in the

capture rate.

The following Chapter is another scenario where the same ideas of the EFT for pertur-

bative models are applied. As in this Chapter, we shall be mainly interested in dimension

six operators and their effects at low energies, when the renormalization group flow is taking

into account.



Chapter 4

Dark Sectors

Credits to Ref. [65].

4.1 Dark Sectors

Over the last few years, dark sectors have started to play an increasingly important role in

Beyond the Standard Model physics. The reason is twofold: on one hand, the null results

from the LHC and other experiments are pushing ‘traditional’ BSM theories to more and

more tuned regions of their parameter space, motivating the search for new unconventional

signatures [66; 67; 68]. On the other hand, dark sectors are implicitly present in many Dark

Matter (DM) models (especially in connection with light mediators, see for instance [69]), and

are starting to appear in more recent solutions of the Hierarchy Problem like Twin Higgs [70],

Folded SUSY [71] and the relaxation of the electroweak (EW) scale [72]. In addition, many

dark sectors predict the existence of Long-Lived Particles (LLPs), for which a new extensive

experimental program is being developed (see for instance [73]).

Of course, given the plethora of possible dark sectors with different symmetries and par-

ticles, a general analysis is impossible, and some broad assumption must be made. What

we consider in this Chapter is a generic dark sector, communicating with the SM via some

unspecified mediator X whose interactions are allowed to be flavor off-diagonal. If the me-

diator is somewhat heavier than the typical energy scale of low energy experiments (say a

60
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few GeV), then the mediator can be integrated out, see Fig.4.1, generating effective contact

interactions of the type

LEFT ⊃ cJDJSM , (4.1)

where JD and JSM are currents involving, respectively, dark and SM fields only, c is an

appropriate coefficient ensuring the right dimensions, and we do not write possible Lorentz

indices. This generic framework resembles typical Hidden Valley constructions [66; 74], and

EW scale

mX ∼ Λ

SM & Dark sector

Dynamical flavorful massive mediator X

X is integrated out

LEFT ⊃ cJDJSM

UV

IR

Nuclear
scale

mZ ∼

∼ 91.187 GeV

∼ 1 GeV

Figure 4.1: Evolution of our model from the UV to IR. We can see explicitly important cut-off
scales.

can be obtained with a variety of mediators [68]. Also, the nature of the dark current depends

crucially on the details of the dark sector, as it can be composed by elementary or composite

fields. Since we will remain agnostic about the details of the dark sector, we dub the Effective

Field Theory (EFT) defined in Eq. (4.1) by ‘dark sector EFT’. Specific cases have already

been analyzed in the literature, as we are going to see.

In order to compare the Wilson coefficients in Eq. (4.1) with experimental data, care
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must be taken with the fact that renormalization group effects can (and generically will) be

important. The running and mixing of operators written in the form of Eq. (4.1) has been

studied in detail in the case in which JSM is diagonal in flavor space and JD is a Dark Matter

current [75; 76; 77; 78; 79; 80; 81; 82; 83; 84; 85], and has been applied to the case of DM

with mass in the MeV range in Ref. [86]. Some code has also been publicly released [87; 88],

computing numerically the solution to the Renormalization Group Equations (RGE’s). As

a matter of fact, as long as we do not consider dark particles in the loops, the results of

Refs. [80; 88] can be applied to any dark sector coupling to the SM via some flavor-blind

heavy mediator, and not only to the case of Dark Matter currents.

The purpose of this chapter is to extend the analysis of the running and mixing of the

dark sector EFT operators supposing the mediator to be heavy and flavorful. Such a mediator

has already been considered in the framework of flavored Dark Matter (see for instance [89;

90; 91; 92; 93; 94; 95; 96; 97; 98; 99; 100; 101; 102]), but the running of the EFT has never

been considered before. We keep our analysis as general as possible, without committing to

a specific dark sector or requiring Dark Matter to be present. We restrict our analysis to the

mixing of effective operators written as in Eq. (4.1). Of course, this is still not the complete

renormalization of the dark sector EFT. Once the dimension of the operators to be included

in the Lagrangian is fixed (i.e. the nature of the dark current is specified), we also need to

include operators constructed out of SM fields only. In addition, loops of dark particles will

contribute to the renormalization of the complete EFT, and the effect may be important.

This has been recently studied in the context of Dirac Fermion DM EFT in Ref. [103], and

in the case of flavorful mediators could, for instance, generate contributions to meson mixing

operators. The information is of course fundamental for the comparison between data and

theory but depends strongly on the nature of the particles running in the loops. As such,

we decided to focus here only on the model independent information that can be extracted

from the running and mixing of the dark sector EFT operators. We will study elsewhere the

effects of dark particles in the loops.

The chapter is organized as follows: in Section 4.2 we build the dark sector Effective Field

Theory, describing the operators considered above and below the EW scale. In Section 4.3
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qiL uiR diR liL eiR H

SU(3)c 3 3 3 1 1 1
SU(2)L 2 1 1 2 1 2
U(1)Y +1/6 +2/3 -1/3 -1/2 -1 +1/2

Table 4.1: Charges and gauge representations of the SM fields above the EW scale. The
index i is a family index.

we discuss the RGE’s and show the matching needed in evolving the Wilson coefficients from

high to low energy. Finally, Section 4.4.1 is devoted to the numerical results and to possible

phenomenological applications.

4.2 Dark Sector Effective Field Theory

We start in this Section with the definition of our framework. The effective Lagrangian

contains the SM Lagrangian, the kinetic term for the dark fields and the interactions between

the dark sector and the SM particles. As explained in the Introduction, we will work with

interactions which are products of a dark and of a SM current,

Lint ⊃
(Ca)ij
Λn

Ja
DJ

a,(ij)
SM + h.c. (4.2)

The index a runs over all possible currents, while (i, j) are SM family indices. We do not write

explicitly possible Lorentz indices. The dark currents can have a variety of forms, depending

on the nature of the dark sector. For instance, they can be constructed out of fundamental

fermions (like Jµ
D = χγµχ or JD = χχ), out of fundamental scalars (like Jµ

D = φ†
←→
∂ µφ or

JD = φ†φ), or they can be constructed out of composite objects (pions or baryons) if the

dark sector is strongly interacting at low energies [84; 104; 105]. Depending on the dimension

of the currents, the appropriate n must be chosen. Since we do not want our conclusions to

depend on the nature of the dark sector, in this work we will leave unspecified the nature of

the dark current, making only the broad assumption that it is a complete gauge singlet. Our

conventions for the SM fields are presented in Table 4.1 and in Appendix A.1.

Let us first consider the EFT above the Electroweak scale. In this case, we demand the
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dimensions currents Wilson coefficient flavor transformation

d = 2
H†H CH portal singlet
Bµν CY portal singlet
B̃µν C̃Y portal singlet

d = 5/2 6LH̃ CN portal 3 of SU(3)-L

d = 3

qLγ
µqL CqL (3,3) of SU(3)qL × SU(3)qL

uRγµuR CuR (3,3) of SU(3)uR × SU(3)uR

dRγµdR CdR (3,3) of SU(3)dR × SU(3)dR
6Lγµ6L C-L (3,3) of SU(3)-L × SU(3)-L
eRγµeR CeR (3,3) of SU(3)eR × SU(3)eR

iH†←→D µH CH singlet
∂νBνµ CB singlet

Table 4.2: List of d < 4 currents constructed out of SM fields to be used in Eq. (4.2) only
above the EW scale. We have suppressed all flavor indices. In our analysis we will focus on
the running and mixing of d = 3 currents.

SM currents Ja
SM to be complete gauge singlets under SU(3)c×SU(2)L×U(1)Y , with particle

contents and charges given in Table 4.1. The assumption can of course be relaxed, see for

instance Ref. [81]. The SM currents can be classified according to their dimensions, while the

coefficients (Ca)ij in Eq. (4.2) can be classified based on their transformation properties under

the SM flavor group SU(3)qL×SU(3)uR×SU(3)dR×SU(3)-L×SU(3)eR (explicitly broken by

the Yukawa couplings). This is shown in Table 4.2. At the level of d = 2 and d = 5/2 we have

the scalar Higgs, hypercharge and neutrino portals, which are the only currents that allow

for renormalizable portals between the SM and the dark sector. These currents have been

extensively used in the context of sub-GeV Dark Matter (see for instance [106; 107; 108]) and,

more recently, for the generation of neutrino masses [109]. From the point of view of running,

none of these currents mix with the others. As long as the nature of the dark sector is not

specified, the only relevant effects would be the thresholds corrections coming from wave

function renormalization, that can be easily computed using Appendix C.3. Since in this

research we will focus on the case of heavy mediators (i.e. on the case of non-renormalizable

interactions between the SM and the dark sector), we will not consider these currents in the

rest of the chapter. Moving on, non-trivial structures with both lepton and quark flavors

appear at the level of d = 3, and these are the currents on which we will focus from now on.
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dimensions currents Wilson coefficient flavor transformation

d = 3/2 νL Cν dark 3 of SU(3)νL

d = 2
Fµν CA portal singlet
F̃µν C̃A portal singlet

d = 3

uγµu CVu (2,2) of SU(3)u × SU(3)u
dγµd CVd (3,3) of SU(3)d × SU(3)d
eγµe CVe (3,3) of SU(3)e × SU(3)e
νLγµνL CVLν (3,3) of SU(3)νL × SU(3)νL
uγµγ5u CAu (2,2) of SU(3)u × SU(3)u
dγµγ5d CAd (3,3) of SU(3)d × SU(3)d
eγµγ5e CAe (3,3) of SU(3)e × SU(3)e
∂νF νµ Cγ singlet

Table 4.3: List of d < 4 currents constructed out of SM fields to be used in Eq. (4.2) only
below the EW scale. Fµν denotes the photon field strength, while u, d and e are Dirac
fermions. We have suppressed all flavor indices.

Of course, more currents with non-trivial flavor structure appear with d ≥ 4, but since their

effects are suppressed by higher powers of Λ, we will not consider them in the remainder of

the chapter.

It is interesting to count the number of parameters in the dark sector EFT, focusing on

the d = 3 currents. For the fermion bilinears, the Wilson coefficients shown in Table 4.2

are 3 × 3 matrices in flavor space. Moreover, it should be noted that the current ∂νBνµ is

redundant, since it can be eliminated using the Equation of Motion (EoM) of the hypercharge

field, see Eq. A.2. This leaves us with a total of 46 independent currents to be probed above

the EW scale.

Moving to the EFT below the EW scale, we use Dirac fermions to construct currents that

are gauge singlets under SU(3)c×U(1)em. The possible currents up to dimension 3 are shown

in Table 4.3. The flavor symmetry is now SU(2)u × SU(3)d × SU(3)e × SU(3)νL , explicitly

broken by fermion masses, leaving a total of 53 independent currents to be probed below the

EW scale. Notice that we do not introduce right-handed neutrinos in the low energy EFT,

and we leave unspecified the mechanism behind neutrino masses. As we did above the EW

scale, we will focus in the following on the running and mixing of the d = 3 currents, again
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Figure 4.2: Feynman diagrams contributing to the wave function renormalization of fermions
ψ and of the Higgs doublet H.

ignoring all possible renormalizable portals.

Our set up will be the following. We will assume the operators in Eq. (4.2) to be generated

at some scale Λ, to be roughly identified with the mass of some flavorful mediator. We present

in Appendix C.2 some specific examples using models present in the literature, see Eq. (C.6).

If Λ > ΛEW + mZ , we will use the d = 3 SM currents presented in Table 4.2, while if

Λ < ΛEW we will use the d = 3 currents from Table 4.3. In both cases, we will leave the

flavor structure of the Wilson coefficients (Ca)ij completely generic. In the next section we

will compute the running and mixing of such currents from the scale Λ at which the operators

are generated down to E ( ΛEW .

4.3 Renormalization group equations for the dark sector EFT

We start considering the EFT above the EW scale. To be explicit, the Lagrangian we consider

is

L =
1

Λn
JDµ

[
qLγ

µCqLqL + uRγ
µCuRuR + dRγ

µCdRdR

+ 6Lγ
µC-L6L + eRγ

µCeReR + CHiH†←→D µH

]
,

(4.3)

where all the Wilson coefficients except CH are matrices in flavor space. To be conservative,

we suppose that the same dark current is coupled to all the SM terms, but it is easy to extend

the analysis to more general cases. Notice that we do not include the current ∂νBνµ since it
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Figure 4.3: Feynman diagrams contributing to the current corrections for pure fermions ψ
and Higgs currents.
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Figure 4.4: Feynman diagrams contributing to the redundant current ∂νBνµ.

is redundant, see Eq. A.2.

Since the dark sector is a gauge singlet of the SM symmetry, only the SM fields and

interactions are involved in the computation of the RGE’s. Here we take into account the

wave function renormalization of the fermion and Higgs fields (see Fig. 4.2), as well as the

‘pure’ current corrections shown in Fig. 4.3. The top diagrams in Fig. 4.3 are corrections to the

fermion currents due to gauge and Yukawa interactions, while the bottom diagrams represent

the loop contributions to the Higgs current. Divergencies induced by gauge interactions in the

self-energy contributions and in the vertex corrections explicitly cancel one against the other

in the final result, leaving only corrections proportional to the Yukawa matrices squared.

However, additional care must be taken since, as shown in Fig 4.4, radiative corrections
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generate the redundant current ∂νBνµ. This contribution must be redefined away again using

the equation of motion after the theory has been renormalized. For each Wilson coefficient,

this produces an extra correction proportional to the hypercharge yψ. More details are

presented in Appendix C.3. The complete computation gives

(4π)2
dCqL

d logµ
=

1

2

[
CqLY

2
q + Y 2

q CqL

]
−
[
YuCuRY

†
u + YdCdRY

†
d − Y 2

q CH

]
+ yqLT1,

(4π)2
dCuR

d logµ
=

[
CuRY

†
uYu + Y †

uYuCuR

]
− 2

[
Y †
uCqLYu − Y †

uYuCH

]
+ yuRT1 ,

(4π)2
dCdR

d logµ
=

[
CdRY

†
d Yd + Y †

d YdCdR

]
− 2

[
Y †
dCqLYd − Y †

d YdCH

]
+ ydRT1 ,

(4π)2
dC-L
d logµ

=
1

2

[
C-LYeY

†
e + YeY

†
e C-L

]
−
[
YeCeRY

†
e − YeY

†
e CH

]
+ y-LT1 , (4.4)

(4π)2
dCeR

d logµ
=

[
CeRY

†
e Ye + Y †

e YeCeR

]
− 2

[
Y †
e C-LYe − Y †

e YeCH

]
+ yeRT1 ,

(4π)2
dCH

d logµ
= 2

(
3 tr

[
CqL Ŷ

2
q

]
− 3 tr[YuCuRY

†
u ] + 3 tr[YdCdRY

†
d ]

− tr[Y †
e C-LYe] + tr[YeCeRY

†
e ]

)
+ 2 tr

[
3Y 2

q + Y †
e Ye

]
CH + yHT ,

where Yψ are non-diagonal Yukawa matrices, and we have defined the useful quantities

Y 2
q ≡ YuY

†
u + YdY

†
d , Ŷ 2

q ≡ YuY
†
u − YdY

†
d , (4.5)

and

T ≡ 4

3
g′2
(
6yqLtr[CqL ] + 3yuRtr[CuR ] + 3ydRtr[CdR ]

+ 2y-Ltr[C-L ] + yeRtr[CeR ] + yHCH

)
.

(4.6)

Notice that all the equations in Eq. (4.4) contain a term proportional to T generated in the

redefinition of the redundant operator. This term is a function of all diagonal elements of the

Wilson Coefficients and implies that a coupling between the dark current and a lepton (or

quark) current is generated even if not present at the scale Λ. This fact has been used in the
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Figure 4.5: Feynman diagrams contributing to the current renormalization below the EW
scale.

last years to put bounds coming from hadron or lepton collider on leptophilic and leptophobic

Dark Matter models [78; 79; 80; 110]. We have explicitly checked that our results match with

those of Ref. [79] once we restrict to flavor diagonal currents. Let us however remark that the

contribution proportional to T is absent in flavor off-diagonal currents. In addition, we expect

the largest flavor violating effects to appear on the RGE’s involving the top-Yukawa coupling,

i.e. those of the Wilson coefficients Ci3
qL , C

3i
qL , C

i3
uR

or C3i
uR

(i = 1, 2). In the numerical solution

of the RGE’s (see Section 4.4.1) we will consider the running of both the gauge and Yukawa

couplings at 1-loop as taken from Refs. [111; 112].

Let us now turn to the RGE’s below the EW scale, which we roughly identify with the Z

boson mass. At this scale we integrate out the heavy fields W , Z, H and the top quark. The

Lagrangian we consider is

L =
1

Λn
JDµ

[
uγµCVuu+ dγµCVdd+ eγµCVee+ νLγ

µCVLννL

+ uγµγ5CAuu+ dγµγ5CAdd+ eγµγ5CAee

]
,

(4.7)

where CVu and CAu are 2× 2 matrices in the up-type quark flavor space, while all the other

matrices are 3×3 in flavor space. Notice that we are not considering the current ∂νF νµ since

it can be redefined away using the photon equations of motion. The procedure to obtain

the RGE’s is as before. The corrections due to the wave function renormalization are now

due only to strong and electromagnetic interactions, and again they cancel against the vertex

corrections in Fig. 4.5. What remains of the vertex corrections are the Fermi contributions,

with flavor diagonal and off-diagonal contributions coming from neutral and charged current
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interactions, respectively. Again, we need to take care of the redundant current ∂νF νµ which

is generated radiatively by diagrams similar to those shown in Fig. 4.4 (with a photon in the

external leg instead of a B vector), eliminating it via the EoM of the photon field. Again,

more details are shown in Appendix C.3. The RGE’s are given by

(4π)2
dCVu

d logµ
= gVuFu +GF udV

(
M2

Vd
−M2

Ad

)
V † +QuQ,

(4π)2
dCVd

d logµ
= gVdFd +GF duV

†(M2
Vu
−M2

Au

)
V +QdQ,

(4π)2
dCVe

d logµ
= gVeFe +QeQ,

(4π)2
dCVLν

d logµ
= gVνFν +GF νe

(
M2

Ve
−M2

Ae

)
, (4.8)

(4π)2
dCAu

d logµ
= gAuFu −GF udV

(
M2

Vd
−M2

Ad

)
V †,

(4π)2
dCAd

d logµ
= gAdFd −GF duV

†(M2
Vu
−M2

Au

)
V,

(4π)2
dCAe

d logµ
= gAeFe,

where V is the CKM matrix, and we have used the definitions

M2
Vi

= 2
√
2
(
CViM

2
i +M2

i CVi − 2MiCViMi
)
,

M2
Ai

= 2
√
2
(
CAiM

2
i +M2

i CAi + 2MiCAiMi
)
.

(4.9)

The matrix Mi is the diagonal mass matrix for the fermions of type i, and we have defined

Q =
8

3
e2
[
3Qutr[CVu ] + 3Qdtr[CVd ] +Qetr[CVe ]

]
1 ,

Fi = 16
√
2
[
3gAuGF iutr[M

2
uCAu ]

+ 3gAdGF idtr[M
2
dCAd ] + gAeGF ietr[M

2
eCAe ]

]
1.

(4.10)

The coefficients gVi = T 3
i − 2s2wQi and gAi = −T 3

i are the vector and axial couplings (T 3
i is

the third component of the isospin, Qi is the electric charge and sw is the sine of the weak

angle), while the Fermi couplings GF ff ′ are defined in Eqs. (C.2) and (C.3). It should be
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Figure 4.6: Matching conditions in our model at electroweak scale.

noted that, below the EW scale, not only the fermion masses run, but we need also to take

into account the running of GF ff ′ , and the running depends on the fermion type f and f ′

involved, justifying in this way the fact that we do not write a unique Fermi coupling. We

use Ref. [113] for the running of the masses, and show in Appendix C.4 more details on the

running of GF ff ′ .

Before closing this Section, let us comment on how the two theories match onto each other.

More specifically, when the scale Λ at which the dark sector EFT is generated is above the EW

scale, the operators of Eq. (4.3) run and mix according to Eq. (4.4) down to ΛEW + mZ . At

this scale, the operators must be matched onto the Lagrangian of Eq. (4.7) before continuing

with the running of Eq. (4.8) down to low energies. In Fig.4.6 we schematically show this

situation. This procedure was presented in detail in Ref. [79] for flavor diagonal Wilson

coefficients. In our case, the only new feature is that once we cross the EW threshold, all the

fermions must be rotated into the mass basis. Explicitly, we write this transformation as

fL → LffL , fR → RffR , (4.11)



CHAPTER 4. DARK SECTORS 72

where the matrices Lf and Rf diagonalize the Yukawa matrices. The matching then results

CVu(ΛEW ) =
1

2

(
L†
qCqL(ΛEW )Lq +R†

uCuR(ΛEW )Ru

)
+ gVu CH(ΛEW )1 ,

CVd(ΛEW ) =
1

2

(
L†
qCqL(ΛEW )Lq +R†

dCdR(ΛEW )Rd

)
+ gVd CH(ΛEW )1 ,

CVLν (ΛEW ) =
1

2
L†
-C-L(ΛEW )L- + gVν CH(ΛEW )1 ,

CVe(ΛEW ) =
1

2

(
L†
-C-L(ΛEW )L- +R†

eCeR(ΛEW )Re

)
+ gVe CH(ΛEW )1 ,

CAu(ΛEW ) =
1

2

(
− L†

qCqL(ΛEW )Lq +R†
uCuR(ΛEW )Ru

)
+ gAu CH(ΛEW )1 ,

CAd(ΛEW ) =
1

2

(
− L†

qCqL(ΛEW )Lq +R†
dCdR(ΛEW )Rd

)
+ gAd CH(ΛEW )1 ,

CAe(ΛEW ) =
1

2

(
− L†

-C-L(ΛEW )L- +R†
eCeR(ΛEW )Re

)
+ gAe CH(ΛEW )1 .

(4.12)

Notice in particular that the term induced by CH affects only the diagonal Wilson coefficients.

In the following Section we will solve numerically the RGE’s and show the numerical impact

of turning on off-diagonal currents at the scale Λ.
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4.4 Operators from flavored dark sectors running to low

energy

4.4.1 Numerical results and possible applications
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Figure 4.7: Running of the Wilson Coefficients above the EW scale, taking as initial condition
(Ca)ij(Λ) = 1 for all the values of a, i and j. In the bottom left panel, CdR ∼ C-L ∼ CeR
applies to all the matrix elements, with no difference for those involving the third generation.

We turn in this section to the numerical solution of the RGE’s presented in Eqs. (4.4)

and (4.8). As already mentioned, in solving Eqs. (4.4) and (4.8) we not only take into

account the EW threshold if needed, but we also consider the running of the gauge and

Yukawa couplings (for the theory above the EW scale) and the running of the Fermi coupling

and fermion masses (for the theory below the EW scale). We show in Fig. 4.7 the value of the

Wilson coefficients at the EW scale as a function of Λ, considering the “flavor-democratic”
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initial condition

(Ca)ij(Λ) = 1 , for all a, i and j . (4.13)

As expected, the effect of the running is more important for the currents constructed out of

top-quarks (with Wilson coefficients C3i
qL , C

i3
qL , C

3i
uR

and Ci3
uR

, with i = 1, 2, 3) and for CH ,

in which the top Yukawa coupling enters. The result can be easily understood inspecting

Eq. (4.4). In the limit in which only the top-Yukawa coupling is turned on, we have

dCi3
qL

d logµ
+ y2t

32π2
Ci3
qL ,

dC3i
qL

d logµ
+ y2t

32π2
C3i
qL ,

dC33
qL

d logµ
+ y2t

16π2
(
CH + C33

qL − C33
uR

)
,

dCi3
uR

d logµ
+ y2t

16π2
Ci3
uR

,
dC3i

uR

d logµ
+ y2t

16π2
C3i
uR

,
dC33

uR

d logµ
+ y2t

8π2
(
CH − C33

qL + C33
uR

)
,

(4.14)

with i = 1, 2 and all the other RGE’s vanishing. The solutions at the scale mt at which we

integrate out the top quark are easily found. For the off-diagonal Wilson coefficients they are

Ci3
qL(mt) +

(mt

Λ

)y2t /32π2

Ci3
qL(Λ) , C3i

qL(mt) +
(mt

Λ

)y2t /32π2

C3i
qL(Λ) ,

Ci3
uR

(mt) +
(mt

Λ

)y2t /16π2

Ci3
uR

(Λ) , C3i
uR

(mt) +
(mt

Λ

)y2t /16π2

C3i
uR

(Λ) ,

(4.15)

where again i = 1, 2, while for the diagonal Wilson coefficients they are

C33
qL(mt) + C33

qL(Λ) +
y2t

16π2
[
CH(Λ) + C33

qL(Λ)− C33
uR

(Λ)
]
log

mt

Λ
,

C33
uR

(mt) + C33
uR

(Λ) +
y2t
8π2

[
CH(Λ)− C33

qL(Λ) + C33
uR

(Λ)
]
log

mt

Λ
.

(4.16)

From these equations we get various important informations: (i) the off-diagonal Wilson

coefficients can have a substantial running due to yt, (ii) the renormalization of the flavor-off-

diagonal Wilson coefficients is always multiplicative, in the sense that there are no important

flavor changing generated during the running to low energy, and (iii) while the running of

the flavor-off-diagonal Wilson coefficients is irreducible, the running of the flavor-diagonal

coefficients depends strongly on the correlations between the initial conditions of different

Wilson coefficients. For instance, we see from Eq. (4.16) that had we considered “flavor-
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democratic” initial conditions without generating the Higgs current (CH(Λ) = 0), then the

diagonal Wilson coefficients would basically not run. This is not true for the off-diagonal

coefficients, that once turned on will run independently from the initial conditions of other

coefficients. We stress that the analytical expressions of Eqs. (4.15) and (4.16) reproduce

accurately the full numerical results.

Moving to the EFT below the EW scale, inspection of Eq. (4.8) shows that the RGE’s

depend on the Fermi coupling GF ff ′ and on the electric charge e2. Both contributions are

rather small, and from the practical point of view, all the Wilson coefficients remain basically

constant in this energy range. We have confirmed numerically that this is indeed the case.

We conclude then that the relevant running happens above mt, in the energy region in which

the top-quark is still a dynamical degree of freedom. For mediators with mass above the

EW scale coupling to the top quark, the effect of the running may be important and must

thus be taken into account in the comparison with experiments. On the contrary, if the

mediator is lighter than the EW scale, or if it does not interact with the top quark, the tree

level predictions are usually a good approximation for the extractions of phenomenological

bounds.

We conclude this Section with some phenomenological remark. Using Eq. (4.15) we see

that the main effect of the running will manifest at low energy in observables related to the

B mesons, i.e. involving the bγµ(γ5)d and bγµ(γ5)s currents. More precisely, the vector and

axial coefficients at a scale µ( mZ are given by

C3i
Vd
(µ) + 1

2

[(mt

Λ

)y2t /32π2

Ci3
qL(Λ) + C3i

dR(Λ)

]
,

C3i
Ad

(µ) + 1

2

[
−
(mt

Λ

)y2t /32π2

Ci3
qL(Λ) + C3i

dR(Λ)

]
,

(4.17)

the same result is also valid by changing the order 3 ↔ i, with i = 1, 2. This is important

when the dark sector is light, in such a way that the decays b → s + invisible and b →

d + invisible are kinematically allowed. These processes were studied in the context of dark

sector phenomenology in Ref. [114]. As shown in this Reference, the bounds on the Wilson

coefficients depend crucially on the nature of the dark particles appearing in the dark current.



CHAPTER 4. DARK SECTORS 76

Given this model dependence, we will not explore this matter here. In addition, we remark

that more flavor effects would be obtained once dark particles loops are considered, for

instance generating contributions to the B mesons mass mixing. As shown in Ref. [103] in

the context of flavor diagonal DM EFT, these effects can be important, but since they are

model dependent, we defer their study to a future work.

Until now we deal with EFT techniques for perturbative models as described in Section

2.3 of Chapter 2. However, in the following chapter we shall apply the ideas developed in

Section 2.4 of the same chapter, this is the framework to tackle non-perturbative models.



Chapter 5

Relaxion Physics & GW

Credits Anonymous.

5.1 Introduction

The 2010s decade has been marked by two scientific milestones: the Higgs discovery at the

Large Hadron Collider (LHC) in 2012 by the ATLAS and CMS collaborations [115; 116] and

the first direct detection of gravitational waves (GW) on Earth in 2015 by the LIGO and

VIRGO collaborations [117; 118]. While the latter has given access to previously unaccessible

phenomena, like the merging of black holes binary systems, the first discovery has exacerbated

the hierarchy problem, i.e. the question of how the electroweak (EW) scale can be so much

smaller than the Standard Model (SM) cutoff without the need for a large degree of fine

tuning. Traditional symmetry based solutions like supersymmetry and composite dynamics

are nowadays pushed in quite tuned regions of parameter space by the null LHC searches.

This has motivated the scientific community to consider alternative solutions to the prob-

lem of the instability of the EW scale. A compelling possibility is the one where the Higgs

mass is driven to a value much smaller than the SM cutoff by a dynamical evolution in the

early Universe. This mechanism has been firstly proposed in [72] and goes under the name

of cosmological relaxation. The basic idea is as follows: the Higgs squared mass parameter

H†H is made dynamical by its coupling with a new scalar degrees of freedom, the relaxion

77
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φ, generally assumed to be a pseudo Nambu Goldstone boson (pNGB). The evolution of

the relaxion field during the early Universe evolution, governed by an opportune potential

V (φ), scans the Higgs mass parameter, makes it evolving from large positive values up to the

critical value in which electroweak symmetry breaking (EWSB) is triggered. Once the Higgs

develops a vacuum expectation value (VEV), a back-reaction potential turns on and stops

the relaxion evolution, dynamically selecting the measured value for the EW scale.

For the mechanism to work, two ingredients are essentials: i) a friction mechanism that

slows down the relaxion evolution and avoids the overshooting of the back-reaction barrier

and consequently of the correct EW scale, and ii) a mechanism to generate the back-reaction

itself. In much of the explicit realizations of the relaxion mechanisms, the friction is provided

by the Hubble expansion during inflation [72; 119; 120; 121; 122; 123; 124; 125; 126; 127;

128; 129; 130; 131; 132; 133; 134; 135; 136; 137] 1, so that the relaxion fields slow rolls

during the cosmological relaxation phase. Alternatives are however possible: the friction

can be generated by particle production [139; 142; 143; 144; 145], the relaxion can fast-roll

during inflation [146] or it can fragment [147; 148]. Cosmological relaxation after inflation is

also possible [149]. As for the back-reaction, we can essentially distinguish between familon

models [123] and models in which the potential barrier is generated by the confinement of

a new strongly interacting dynamics with new vector fermions, as already discussed in the

original paper [72].

In the present Chapter we focus on this second scenario. This opens up an interesting

possibility: after a relaxation phase during inflation in which the EW scale is dynamically

selected, the Universe may be reheated to temperatures above the critical temperature of

the new confining interactions. If this happens, the back-reaction barrier disappears and

the Universe undergoes a second relaxation phase. When the temperature of the Universe

drops again below the confinement scale of the new strong dynamics, the barrier is once again

generated and the relaxion stops again its evolution. Crucially, depending on the gauge group

of the new confining dynamics, the number of new fermions and their representations under

1Notice that usually the details of the inflation sector are left largely unspecified. See however [138; 139]
for attempts to take into account inflaton effects, or [140; 141] for an example of how to identify the relaxion
with the inflaton.
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Figure 5.1: Sketch of the framework we are considering. The thick black line represents an
approximate sketch of the temperature evolution. During inflation a first relaxation phase
selects the correct EW vacuum. When reheating happens at tRH, the temperature increases
and the radiation domination phase begins. For simplicity we will consider reheating to
be an instantaneous process. If the reheating temperature TRH is larger than the nucleation
temperature Tn, the back-reaction potential disappears and a second relaxation phase occurs.
After a while, the temperature falls below the nucleation temperature of the new strongly
interacting group, and a phase transition occurs which may generate a GW signal.

the gauge group, this phase transition can be of first order [150] and can thus give rise to a

stochastic GW background [151]. The signal might be then detected at present and future

interferometer experiments [152; 153; 154; 155; 156; 157; 158; 159; 160], thus connecting

in this way the two milestones discovery of the 2010s. A sketch of the situation we are

considering is shown in Fig. 5.1.

The Chapter is organized as follows: in Section 5.2 we briefly review the hierarchy prob-

lem. Later in Section 5.3 we introduce introduced the relaxion mechanism. Sections 5.4

and 5.5 are devoted to an introduction to phase transitions and gravitational waves. In Sec-

tion 5.6 we review the cosmological relaxation mechanism, where the back-reaction potential

is generated by a new strongly interacting dynamics. In Section 5.7 we analyze the relaxion

evolution after reheating. We show how the equation of motion of the relaxion during this

second relaxation phase can be analytically solved for certain range of temperatures, and
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what are the bounds on the parameter space that we obtain by requiring the additional re-

laxation phase not to spoil the dynamical selection of the EW scale achieved during the first

relaxation phase. In Section 5.8 we discuss the GW spectrum generated in the first order

phase transition associated with the generation of the back-reaction potential after reheating

and its detectability at future experiments. We also add two Appendices where we collect

more technical material. In Appendix E.1 we discuss in detail various models of strongly

interacting vector-like fermions and review how to describe their low energy dynamics and

in particular their vacuum energy, which is relevant for the relaxion mechanism. In Ap-

pendix F.1 we instead explicitly show how the constraints on the relaxion parameter space

used throughout the paper are derived.

5.2 The Hierarchy Problem

The discovery in 2012 of a new resonance, with mass around 125 GeV, has been a milestone

for Particle Physics [115; 161]. In Fig.5.2 we observe the invariant mass distribution data

together with the fit to H → ZZ∗ → 4 l (left) and to H → γγ (right). The red line represents

the fit to the data points, including the shape of the Higgs Boson and the backgrounds. These

backgrounds come from the quark-antiquark annihilation qq → ZZ∗ (left) and diphoton γγ

final states (right).

The hierarchy problem drove most of the theoretical activities over the last forty years.

It can be summarized as follows: any running scalar mass in the theory receives threshold

corrections proportional to the squared mass of any particle interacting with the scalar. In

particular, very large threshold corrections are expected to appear at least at the Planck

mass, where gravity should become important. The problem stems from the fact that small

variations in the masses appearing in the thresholds produce huge variations of the scalar

mass at low energies, and must thus be tuned to keep the variations under control. As a

consequence, the properties of any new physics model that extends the SM at high energies

must be known with a high degree of precision to reliably compute the low energy physics,

clearly undermining our concept of Effective Field Theory, see Chapter 2. This is true in
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Figure 5.2: The invariant mass distribution data together with the fit (solid red lines) to
H → ZZ∗ → 4 l (left) and to H → γγ (right). The backgrounds come from the quark-
antiquark annihilation qq → ZZ∗ (left) and diphoton γγ final states (right)[162].

particular for the Higgs Boson mass parameter mH . For instance, consider the existence of a

new particle at the scale of 1010 GeV (scale of New Physics MNP ). The contribution to the

running of the Higgs mass is given by

M
∂m2

H

∂M
=

α

16π2
M2

H , (5.1)

where MH = 1010 GeV is the mass of some new particle which interacts with the Higgs and

α is some combination of couplings. In this example, the running of the Higgs squared mass

with respect to the scale M in the SM presents a jump at 1010 GeV, see Fig.5.3. We could also

estimate the order of the tuning as (mH/MNP )2 ∼ 10−16 [163]. Considering this problematic

sensibility of the Higgs boson to NP, many interesting solutions were addressed in the last

decades, even before the Higgs were discovered: Supersymmetry [164], extra-dimensions [165],

composite Higgs [166], etc.

In general, the new degrees of freedom in BSM theories contribute to the Higgs mass

either at tree or at loop level. From the Wilsonian’s EFT point of view, if the scale at which

the new degrees of freedom appear is Λ, the quadratic Higgs term (the only term in the SM
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Figure 5.3: Running of the renormalized Higgs squared mass with respect to the scale M ,
the plot presents a jump at 1010GeV due to the insertion of a new particle of mass MH =
1010GeV . As a consequence the Higgs mass requires a tunning of the order (mH/MNP )2 ∼
10−16 [163].

with a dimensionful coefficient) would be L ⊃ −Λ2H†H.

In Ref.[72], P. Graham, D. Kaplan and S. Rajendran proposed an alternative solution

to the hierarchy problem. In contrast to the conventional models, their framework, called

Cosmological Relaxation, generates the stability of the Higgs vacuum dynamically. This

is achieved trough the interaction between the Higgs and a new scalar field, the relaxion.

The following section is devoted to introduce the Relaxion mechanism a la Graham-Kaplan-

Rajendran.

5.3 Higgs-Relaxion mechanism

In 2015, P. Graham, D. Kaplan and S. Rajendran in Ref. [72] proposed a new mechanism to

solve the hierarchy problem. The generic form of the relaxion lagrangian is given by

L ⊃ −(Λ2 − εΛφ)H†H − λ (H†H)2 − V (ε φ)− 1

32π2
φ

F
GµνG̃µν + Lfermions + Lgauge, (5.2)
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Figure 5.4: Relaxion Potential used in Ref. [72].

where H is the Higgs doublet, Gµ ν is the field strength tensor of a non-Abelian gauge theory

and G̃µν its dual, Λ is the cutoff of the theory, λ, ε and r are positive dimensionless parameters

and φ is the relaxion field. The fermion content inside Lfermions could have a QCD origin or

not, and it plays an important role for the relaxion mechanism to work. After chiral symmetry

breaking (ChSB) takes place, the topological term in Eq. (5.2) in conspiracy with the fermion

sector develops a back-reaction potential. After that the form of the Higgs-Relaxion potential

at tree-level [72] is

V (H,φ) =
(
Λ2 − εΛφ

)
H†H + λ(H†H)2 − rεΛ3φ+ VBR(H,φ) , (5.3)

where the back-reaction potential takes the form

VBR(H,φ) = Λ4
BR(〈H〉) cos

(
φ

F

)
. (5.4)

In this equation 〈H〉 = v/
√
2. It is worthwhile to stress the explicit dependence in the am-

plitude of Eq.(5.4) on the Higgs VEV. The amplitude is a (model dependent) monotonically

increasing function of the Higgs VEV and F is the scale at which the NGB φ appears.

We show in Fig.(5.4) a plot of a typical relaxion potential. The potential in Eq.(5.2) that

depends on the relaxion field, V (ε φ), has been expanded as −rεΛ3φ−rε2Λ2φ2+ . . . . Because
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at the EWSB scale the first and second contribution in the latter expansion are of the same

order, we consider just the linear term as in Eq.(5.3). We see that if ε → 0, the lagrangian

Eq.(5.3) respects a discrete shift symmetry φ→ φ+2πF . This symmetry is explicitly broken

by the spurion ε, which can thus be taken small in a technically natural way.

We assume that the cosmological relaxation mechanism takes place during inflation, with

φ evolving in a slow-roll regime. We furthermore take the initial value of the field φ to be

sufficiently small to guarantee the condition Λ2−εΛφin > 0 to be satisfied at the beginning of

the relaxation phase, thus implying an unbroken EW symmetry. As φ evolves, increasing its

value due to the −rεΛ3φ term in the potential, the Higgs squared mass parameter becomes

smaller and smaller, until it crosses zero and causes the breaking of the EW symmetry. Once

〈H〉 6= 0, the back-reaction potential VBR is switched on, this implies:

ΛBR(〈H〉) =





0 if 〈H〉 = 0,

6= 0 if 〈H〉 6= 0.
(5.5)

The amplitude of the oscillating term grows with the Higgs VEV, until it is large enough to

stop the evolution of φ, dynamically selecting the right value of 〈H〉. This is the essence of

the relaxion mechanism (see Fig 5.5).

In addition there are some conditions that are needed to guarantee the successful realiza-

tion of the relaxion mechanism, see Appendix F.1 for more details.

Validity of the EFT: We are assuming the field φ to be an angular degree of freedom,

with a decoupled radial mode. Since the mass of the radial mode is O(F ) we obtain the

condition F " Λ. We will also require F ! MPl, where MPl + 1018 GeV is the Planck

mass.

Conditions on inflation: We ask the dynamics of inflation to be decoupled from the one of

the relaxion. Otherwise, we open the possibility that the relaxion could spoil inflation.

Hence, to achieve this we require the relaxion energy density ρφ ∼ Λ4 to be smaller

than the inflaton energy density, ρinfl ∼ H2
IM

2
Pl, where HI is the Hubble scale during
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Figure 5.5: Sketch of the electroweak relaxation mechanism. At the beginning of the relaxion
evolution the Higgs squared mass parameter is positive and 〈H〉 = 0. As φ evolves it drives
〈H〉 6= 0. Once the Higgs VEV is turned on, a back-reaction is generated, stopping the
evolution. We also show the sign of the determinant of the matrix of second derivatives of
the potential, important in deriving Eq. (F.8).

inflation. This implies the lower bound

HI " Λ2

MPl
. (5.6)

Since we are assuming that the back-reaction is generated by some strong force, we

need to guarantee that the barriers can form during inflation. This requires

HI ! Λd , (5.7)

where Λd denotes the scale of confinement of the strong interactions.

We also demand the classical relaxion evolution not to be spoiled by quantum fluctu-

ations. To achieve this condition we require the classical spread of the relaxion field

in one Hubble time, ∆φcl ∼ φ̇/HI ∼ V ′/H2
I , to be larger than the quantum spread

∆φquantum ∼ HI , where V indicates the relaxion potential and the derivative is with
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respect to the field φ. This implies a second upper bound on the scale of inflation that

reads

HI ! ε1/3Λ . (5.8)

The slow-rolling of the relaxion will stop when the slope of the potential matches the

slope of the barrier [72]. From Eq.5.3, this implies

rεΛ3F ∼ Λ4
BR. (5.9)

A well motivated possibility is for the back-reaction potential to be generated by QCD

becoming strongly interacting. This possibility is however ruled out by noticing that

Eq.(5.9) defines the approximate value of φ at which the rolling stops

rεΛ3 φstop ∼ rεΛ3F ⇒ φstop ∼ O(F ) or θ =
φ

F
∼ 1. (5.10)

This result is in tension with the experimental constraint on the QCD θ-parameter,

θ ! 10−13 [167; 168].

An alternative possibility, already proposed in Ref.[72], is to introduce the so-called

L+N model, in which a new strongly interacting group is introduced. The lagrangian

is

L ⊃ mLLL
c +mNNN c + yHLN c + ỹH†LcN + Lgauge. (5.11)

In Eq.(5.11), L and N are vector-like fermions with the same EW charges as lepton

doublets and RH neutrinos, respectively. In addition, L is a heavy field, i.e. heavier

than the EW scale. In contrast, N is a light fermionic field. The amplitude of the

barrier can be estimated as (see Appendix E)

Λ4
BR + 4π f3

π′mN , (5.12)

where fπ′ is the chiral symetry breaking scale. We thus have the hierarchy mL 3 fπ′ 3
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Figure 5.6: (Left) This plot shows the excluded (colored) region at 95% C.L. using electroweak
precision measurements. (Right) In this other case, the excluded region at 95% C.L. was
obtained from BR(h → ni nj) < 20%. In both analysis the new strong group used is SU(3)
[169]. The same plane, mL Vs. y = ỹ, was used in both plots.

mN [72].

After integrating out the heavy field L, the Higgs contribution to the mass of N is

yỹ〈H〉2/mL. One-loop contributions to the mass ofN give∼
(
yỹ/16π2

)
mL log (M/mL).

In order for the Higgs contribution to be the leading one, we shall have

mL <
4π〈H〉√
logM/mL

. (5.13)

From the latter bound we can see that the model would not work if mL (or fπ′ [72])

is above a few hundreds of GeVs. Finally, Ref. [169] put bounds on the masses of

the light fermions. We show the excluded (colored) regions in Fig. 5.6 in the plane

mL Vs. y = ỹ for the choice of masses mN = 1, 10 GeV. Note that the condition

y = ỹ is imposed. On the left-side of the figure electroweak precision measurements

were used to obtain the excluded region. The excluded region on the right-side of the

figure is obtained from the branching fraction of the Higgs decaying mode h → ni nj ,

i.e. BR(h → ni nj) < 20%, where nj (j = 1, 2) are the result of the mixing of the
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neutral components of L,N,Lc and N c at low energies.

5.4 Phase Transitions and Bubble Nucleation

5.4.1 Phase Transitions

A phase transition (PT) is a change on the state of a given system. The typical example

is water. When it boils its state change from liquid to vapor, or if the temperature drops

enough, from liquid to solid.

Any state can be characterized by using thermodynamic quantities, such as tempera-

ture, pressure, etc. A change in the values of those quantities could give us information

about the existence of a PT, and provides also a way to classify PT as

• First Order (FOPT),

• Second Order (SOPT),

• Cross-Over.

In contrast to SOPT or cross-over, which are smooth processes, FOPTs are abrupt

phenomena. In QFT a PT is described as a transition between one vacuum state to

another [170]. If the evolution between vacua is continuous, we have a SOPT (or cross-

over). In contrast, a discontinuous change in the ground state reveals a FOPT. In

a FOPT there is also a discontinuity in the entropy [170]. Consequently, FOPT are

phase transitions that can release a great amount of latent heat. For this reason, in

what follows we are interested in FOPT.

5.4.2 Bubble Nucleation

At zero temperature these type of processes are modeled by the euclidean scalar action

with potential V (φ):

SE =

∫
d4 xE

[
1

2
∂µ∂

µφ+ V (φ)

]
. (5.14)
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However, zero temperature field theory is not enough to describe processes where the

temperature is comparable with the energy scale of the theory. In those cases, thermo-

dynamic effects become important. Therefore, ultimately, we are interested in processes

at finite temperature, T 6= 0. We also look for stationary topological solutions of the

equation of motions at finite T . These considerations lead to Eq.(5.14) to take the form

SE ≡ S3(T )/T , where S3(T ) is the finite temperature Euclidean three-dimensional

action [171]

S3 = 4π

∫
d r r2

[
1

2

(
dΦ

d r

)2

+ V (Φ, T )

]
, (5.15)

where V (Φ, T ) is called the thermal effective potential (the free-energy, F , in thermo-

dynamic language). One important consequence is that now the field fluctuates around

the minimum of the free-energy. From thermodynamics we have

F = E − TS, (5.16)

where E and S stand for energy, and entropy, respectively. The equation of state also

tells us that entropy can be computed by

S ≡ −
(
∂ F

∂ T

)
. (5.17)

These relations, when translated into the finite temperature field theory language, be-

come:

V (Φ, T ) = ρ(Φ, T )− T s(Φ, T ), (5.18)

In Eq. (5.18), ρ(φ, T ) is the energy density. The analogous expression of Eq.(5.17) for

the entropy density is

s(φ, T ) ≡ −
(
∂ V (φ, T )

∂ T

)
. (5.19)
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Now that we have defined these important quantities, we shall pass to talk about the

creation of bubbles, also called bubble nucleation. Let us suppose that the system de-

fined by Eq. (5.14), at zero temperature, after spontaneous symmetry breaking has two

degenerate minima, say Φ = ± v. As stated above, as the temperature becomes compa-

rable to the energy scale of the theory, thermal effects become important. Consider the

effective potential thermal V (Φ, T ). The analogous situation with two degenerate min-

ima defines the critical temperature, Tc. This means that at Tc the effective potential

gets the same value for both minima

V (0, Tc) ≡ V (〈Φ〉, Tc) (5.20)

where 〈Φ〉 6= 0, see Fig.5.7. When the temperature is higher than the temperature

associated with the symmetry breaking i.e. T 3 Tc, the minimum of the effective

potential is located at the symmetric phase, i.e. 〈Φ〉 = 0. If the symmetric phase is

realized as T increases the phenomenon is called symmetry restoration. By the inverse

reasoning, as the temperature drops and reaches the critical temperature Tc a phase

transition to the broken phase takes place. Those two local minima are sometimes

classified as true and false vacuum, Φtrue and Φfalse, respectively. In general we have

V (Φtrue, T ) < V (Φfalse, T ). (5.21)

After the temperature drops below Tc, the field still remains a time in the false vacuum

before tunneling to the true one. This happens throughout the barrier separating the

symmetric and broken phases, see Figs.5.7 and 5.8. For this reason, the false vacuum

is called metastable. When the process described above happens in a region of space,

the coexistence of two vacua produce a bubble. It is also said that a bubble has been

nucleated. This nucleated bubble separates the true and the false vacuum: while the

former remains inside the bubble, the metastable vacuum lives out of it and forms the

background where the bubble grows. The phase boundary is called the bubble wall. In

Fig.5.9 we show an example of this process.
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Figure 5.7: As the system cools down, the temperature drops and a FOPT takes place.

For the three dimensional Euclidean action the EoM is

d2Φ

dr2
+

2

r

dΦ

dr
= V ′

eff(Φ, T ). (5.22)

The bounce Φbnc(r) is a solution of the EoM given in Eq.(5.22) that smoothly connects

the true and false vacuum. Hence, the boundary conditions for this solution are [171;

172]

Φ(r) = 0, as r →∞, (5.23)

dΦ(r)

dr
= 0, as r = 0. (5.24)

Up to our present knowledge there is no general analytical solution for the bounce.

However, it is undeniable that an analytical analysis would be interesting. For this

reason, in Appendix D we discuss the thin-wall approximation, with which it is possible

to find analytical expressions for the radius of the bubble and the three-dimensional

action S3 [171]. In addition, we find an expression for the bounce.
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Figure 5.8: The tunneling between the false and true vacuum is described by the bounce.

5.5 Gravitational Waves

5.5.1 Gravitational Waves: Important parameters

Let us now discuss the parameters directly related to the phase transition under con-

sideration: the nucleation temperature Tn, the inverse time duration β/H and the

strength of the transition α. The first two parameters are defined in terms of the

nucleation rate [171; 172]

Γ(T ) = A(T ) e
−S3/T , (5.25)

where S3 is the Euclidian action computed at its bounce andA(T ) is a factor with units of

(Mass)4. The nucleation temperature is defined as the temperature at which one of the

nucleated bubbles reaches a size comparable to the Hubble radius at that time, Γ(Tn) +

H4(Tn). The latter condition guarantees that we have bubbles that do not collapse until

they reach the size to have cosmological implications. Considering the process to take
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Figure 5.9: Nucleated bubble of δ thickness and radius rwall containing the true vacuum in a
false vacuum background. This figures is used in Appendix D in the thin-wall approximation.

place in the radiation domination epoch, the above statement implies [170; 173]

S3

Tn
+ 164.56− 2 log

( g∗
100

)
− 4 log

(
Tn

1GeV

)
. (5.26)

The exact numerical value of the first term on the right-hand side depends on the precise

form of A(T ), for simplicity we assume A(T ) + T 4. The inverse time duration β/H is

instead defined as the rate of change of Γ at the nucleation time tnucl via [174]

β ≡ 1

Γ

dΓ

d t

∣∣∣∣
tn

⇒ β

H
= T

d

dT

(
S3

T

)∣∣∣∣
T=Tn

. (5.27)

The strength of the transition, α, is instead not univocally defined. In the literature

many definitions can be found [28; 175; 176; 177]. The most common are based on

the latent heat and on the trance anomaly. In the first one α is identified as the ratio

between the latent heat of the transition and the energy density of the radiation in the

plasma ρrad. In the second one it is defined through the trace of the the stress-energy

tensor and ρrad. From the practical point of view, both definitions can be summarized
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as

α =
1

ρrad

(
∆V − nT

∂∆V

∂T

)∣∣∣∣
T=Tn

, (5.28)

where ∆V = Veff(Φfalse, T ) − Veff(Φtrue, T )1 is the difference of the free energy density

between the two phases and n = 1 (1/4) when α is defined via the latent heat (trace of

the stress-energy tensor).

5.5.2 Computation of the gravitational wave spectrum

After bubble collisions part of the latent heat is transferred to the plasma and converted

into bulk flow, while the rest goes to the scalar field in the form of kinetic energy. The

ratio of the energy converted into gravitational waves in the direction k̂ into the solid

angle dΩ at frequency ω defines the spectrum [170]

ΩGW ≡ ω
dEGW

dω

1

ETot
, (5.29)

where

dEGW

dΩ dω
= 2Gω2 Λij,lm(k̂)T̃ ∗

ij(k̂,ω) T̃lm(k̂,ω). (5.30)

In this equation T̃ij(k̂,ω) is the space-space components of the Fourier transform of the

stress energy tensor

T̃ij(k̂,ω) =
1

2π

∫
dt eiωt

∫
d3xTij(x, t) e

−ik·x, (5.31)

and Λij,lm is the projection tensor for gravitational radiation [170; 178]:

Λij,lm = δilδjm − 2k̂j k̂mδij +
1

2
k̂ik̂j k̂lk̂m −

1

2
δijδlm +

1

2
δij k̂lk̂m +

1

2
δlmk̂ik̂j . (5.32)

Hence, different sources that contribute to the stress energy tensor shall affect the

gravitational wave spectrum.

1From now on we consider Φfalse = 0.
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We now quickly remind the reader how the computation of the spectrum of the stochas-

tic GW background produced in a first order phase transition proceeds. Three contri-

butions must be considered [179]: the one from true vacuum bubble collisions, Ωcol h2,

the one from the propagation of sound waves in the plasma, Ωsw h2, and the one from

magnetohydrodynamic turbulence effects, Ωturb h2:

Ωtotal h
2 + Ωcol h

2 + Ωsw h2 + Ωturb h
2 . (5.33)

A fourth contribution may be generated by quantum fluctuations [170], but since its

impact is not well understood we will not consider it in the following.

In a strongly interacting theory, after confinement takes place, the radial degree of

freedom (associated with the chiral symmetry breaking) interacts with the light particles

in the plasma. We thus expect the interactions between the scalar shell and the plasma

to be important, causing the behavior of the bubble to be a non-runaway one [152],

that is the bubble walls do not keep accelerating until the bubbles collide. Since in

this case most of the latent heat of the phase transition is transferred to the plasma in

the form of sound waves and turbulence, in the following we will focus on the Ωsw h2

and Ωturb h2 contributions only. Their expressions can be written in a compact way

as [152; 153; 176; 180; 181; 182]

Ωih
2 = ai

(
β

H

)−1 ( κi α

1 + α

)bi (100

g0

)1/3

vwall Si(f) , (5.34)

where i = sw or turb for the sound waves and turbulence contributions, respectively.

The details of the phase transition enter in the parameters α, β/H and Tn, which we

will discuss in detail below. As for the other parameters, the numerical coefficients ai

in the two cases are given by [152; 153; 176; 180]

asw = 2.65× 10−6 , aturb = 3.35× 10−4 (5.35)
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and the exponents bi are

bsw = 2 , bturb = 3/2 . (5.36)

Again, g0 denotes the number of relativistic degrees of freedom and H is the Hubble

parameter, where both quantities are computed at the nucleation temperature. The

quantity vwall is the wall velocity. It is known that scenarios with large vwall lead to

stronger GW signals [28; 152; 175; 177]. While in the non-runway behavior the bubble

walls stop their acceleration and reach a terminal velocity, this velocity might still be

relativistic. Calculating the specific value of vwall is beyond the scope of the present

thesis. We will then concentrate on the case of highly relativistic bubbles, vwall ∼ 1,

since it is the most interesting regime from an observational point of view. Decreasing

vwall down to vwall ∼ 0.75 doesn’t drastically modify the overall picture, see e.g. [177].

Finally, the coefficients κi are the efficiencies of each process. The former is the efficiency

to convert the latent heat into bulk motion, while the latter is the part that is converted

into vorticity in the plasma. Numerical fits of κsw suggests the form [152; 175]

κsw +
α

0.73 + 0.083
√
α+ α

, (5.37)

for vwall ∼ 1, where α was defined in Eq.(5.28). κturb is determined trough κturb = ε κsw.

Previous studies suggest the conservative value of ε = 5× 10−2 [152; 183; 184]. As for

the spectral shapes Si(f), they read

Ssw(f) =
f3

f3
sw



 7

4 + 3 f2

f2
sw



 , Sturb(f) =
f3

f3
turb

(
1 + f

fturb

)− 11
3

1 + 8π f/h̃
. (5.38)

In the previous expression h̃ is the Hubble rate at tn redshifted to today,

h̃ = 1.65× 10−5Hz

(
Tn

100GeV

) ( g0
100

)1/6
, (5.39)
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while the peak frequencies in the two cases are given by similar expressions,

fi = f0
i

1

vwall

β

H

Tn

100GeV

( g0
100

)1/6
, (5.40)

with f0
sw = 1.9×10−5 Hz and f0

turb = 2.7×10−5 Hz. It has been suggested in [176; 184]

that when β/H 3 1, the sound wave and the turbulence contributions shown above

overestimate and underestimate the signal, respectively. Following the suggestion in

the same works, we modify Ωsw h2 and Ωturb h2 to

Ωfast
sw h2 = (τswH) Ωsw h2 , Ωfast

turb h
2 = (1− τswH) Ωturb h

2
∣∣
κturb=κsw

, (5.41)

where

τswH = (8π)1/3
vwall

Uf (β/H)

is related to the duration of sound waves and Uf is the root-mean-square four velocity

of the plasma.

Gravitational tests of electroweak relaxation

5.6 Relaxation with strongly interacting fermions

A possible origin for the back-reaction potential, already considered in the original

work [72], involves fermions charged under new strong interactions Gdark as well as under

EW interactions. Provided that the scale of inflation is smaller that the confinement

scale of Gdark, which we will denote as gρf , and that the Higgs boson interacts with the

new fermions, the back-reaction potential forms and, as described in App. E.1, ΛBR

takes the form

Λ4
BR +

∣∣∣µ2
BH

†H − Λ4
0

∣∣∣ , (5.42)

where the constants µ2
B and Λ4

0 depend on the specific model considered. The form of

Eq. (5.42) is however generic.
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In addition to the conditions for a successful relaxation given before, the present model

has some extra conditions.

Conditions on the back-reaction: The term Λ4
0 is present in the back-reaction potential

even before EWSB. To guarantee that it does not stop the relaxion evolution we require

Λ3 >
Λ4
0

rεF
. (5.43)

In addition, to ensure that after EWSB there will be a period of evolution in which the

height of the barrier grows, we need

v2EWµ2
B > Λ4

0 and Λ <
µ2
B

εF
. (5.44)

The EW scale is an output of the relaxation: An approximate expression for the EW

VEV in terms of the parameters of the model is

v2EW +
εΛ3F + Λ4

0

µ2
B − εΛF

. (5.45)

As shown in Appendix F.1, the cutoff satisfy

Λ ! 6.7× 106GeV
[ µB

10GeV

]2/3 [10−30

ε

]1/3 [
1016GeV

F

]1/3 [
1− Λ4

0

µ2
Bv

2

]1/3
, (5.46)

favoring thus very small values of ε. This result can be problematic in two aspects: i) to

completely solve the hierarchy problem an additional protection mechanism must be present

for scales between Λ and MPl, and ii) a successful relaxation requires the relaxion excursion

to be at least ∆φ ∼ Λ/ε in order for the Higgs mass parameter to change sign. Given the very

small ε needed for the mechanism to work, the resulting excursion is transplanckian. The

first issue can be solved assuming supersymmetry [185; 186; 187], a composite dynamics [188]

or a warped dimension [189] to be present above Λ. The second problem requires more model

building effort, but can be solved in the context of clockwork models [190; 191; 192; 193]. In

the following we assume that one of these mechanisms is present to stabilize the EW scale
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all the way up to the Planck scale, and focus only on the effective field theory defined by

Eq. (5.3).

5.7 Evolution after reheating

As already mentioned, we are considering a situation in which the relaxation of the EW scale

happens during inflation, i.e. the correct EW VEV is selected at the end of this phase. This

leaves open the question of what happens after reheating? One possibility is for reheating to

leave the Universe in a bath with temperature TRH ! Λd. In this case there is no further

dynamical evolution in the relaxion field direction, since φ remains stuck in its minimum. If

TRH > TEW, with TEW the scale of EW phase transition, we expect thermal corrections in

the Higgs field direction to recover the EW symmetry. As the Universe expands and cools

down, EWSB is again triggered as usual 1.

A second possibility, on which we focus in the following, is for reheating to happen at

TRH > Tn, where Tn is the nucleation temperature of the additional strong interaction Gdark.

If this is the case, after reheating the back-reaction disappears and the Universe undergoes

then a second period of relaxation. This possibility has received less attention from the

literature, see e.g. [121; 138; 194; 195]. As the Universe expands and cools down, it will again

reach a temperature T ∼ Tn at which the new strong sector again confines, thus producing

again the back-reaction barrier and ultimately stopping the relaxion evolution 2. As we are

going to see at the end of this Section, the relaxion evolution stops soon after the barrier is

again formed. If the transition producing the back-reaction barrier is strongly first order, it

will produce a GW signal that might be observable at interferometer experiments, as we will

study in Sec. 5.8. This allows to open a new window on this type of solutions of the hierarchy

problem.

Let us now discuss more in detail the relaxion evolution when TRH > Tn. We want to

understand whether this additional relaxation phase can spoil the solution of the hierarchy

1Since the portal coupling between the Higgs and the relaxion sectors is small, we do not expect significant
modifications to the EW phase transition with respect to what happens in the SM.

2Note that the oscillations of the relaxion around the minimum can make it a viable candidate for dark
matter [195].
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problem. We achieve this by imposing additional conditions on the parameters in order to

achieve the correct EW minimum today. We need to consider three situations, depending on

the relative hierarchy between TRH, Tn and TEW:

• If Tn < TRH < TEW the Universe is reheated to a phase in which the scalar potential

has already a non-trivial minimum in the Higgs direction, while there are no barriers

in the relaxion direction. Using the potential in Eq. (5.3) in the equation of motion

θ̈ + 3H(t)φ̇+ ∂V/∂φ = 0 we obtain

θ̈ +
3

2t
θ̇ =

1

F 2

(
rεFΛ3 + εFΛv2(θ)

)
, (5.47)

where

v2(θ) =
−Λ2 + εFΛ θ

2λ
(5.48)

is the Higgs VEV in the absence of the back-reaction barrier. We have used H = 1/(2t),

as appropriate for a radiation dominated Universe. The solution for temperatures

Tn < T < TRH can be written analytically in terms of modified Bessel functions In and

Kn of first and second kind, respectively 1. To write a compact expression we define a

new time variable τ = εΛt/
√
2λ, the functions

f(τ) =
I1/4(τ)

τ1/4
, g(τ) =

K1/4(τ)

τ1/4
, (5.49)

and the constant term

ξ =
(2rλ− 1)Λ2

√
2λF 2

. (5.50)

The solution can be written as

θ(τ) = −ξ + g0θ′0 − g′0(θ0 + ξ)

f ′
0g0 − f0g′0

f(τ) +
−f0θ′0 + f ′

0(θ0 + ξ)

f ′
0g0 − f0g′0

g(τ) , (5.51)

where the primes denote the derivative with respect to τ , and the subscript 0 indicates

that the quantity must be computed at the initial time, i.e. at reheating. Assuming

1In Wolfram Mathematica these functions are called BesselI and BesselK, respectively.
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reheating to be an instantaneous process, we can identify θ0 with the value of the

relaxion field at the end of the inflationary period and we can assume that the relaxion

field does not acquire a relevant dynamics during reheating, leading to θ̇0 + 0. We also

notice that for large values of τ we have the asymptotic behavior In(τ) ∼ eτ/
√
τ and

Kn(τ) ∼ e−τ/
√
τ . For large τ we thus obtain

θ(τ) + −ξ +
(τ0
τ

)3/4
cosh(τ − τ0) (θ0 + ξ) +

(τ0
τ

)3/4
sinh(τ − τ0) θ′0 . (5.52)

The dependence on hyperbolic trigonometric functions implies that the relaxion field

will evolve very quickly, if enough time is allowed to pass. We will comment later on

the dynamics taking place for T < Tn;

• If Tn < TEW < TRH there are two phases in the evolution. The first one applies for

TEW < T < TRH while the second one for Tn < T < TEW. In the first phase the

equation of motion to be solved is Eq (5.47) with v2(θ) = 0. The solution can again be

written analytically:

θ(t) = θ(TRH) +
rεΛ3

5F
(t2 − 5T 2

RH) +
4rεΛ3T 5/2

RH

5F
√
t

. (5.53)

Notice that the evolution is a power law in this regime, and the relaxion field evolves

much less than what happens when v2(θ) 6= 0. Using the relation between time and

temperature in a radiation domination Universe

H2 =
1

4 t2
=

1

3M2
Pl

π2

30
g0T

4 , (5.54)

where g0 denotes the number of relativistic degrees of freedom we can rewrite the

solution as

θ(T ) = θ(TRH) +
9

2π2g0

rεΛ3M2
PL

F

4T 5 − 5T 4TRH + T 5
RH

T 4T 5
RH

. (5.55)

Once EWSB is triggered the equation of motion to be solved is again Eq. (5.47) with
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Figure 5.10: Regions in which the relative variation of the Higgs VEV of Eq. (5.56) is larger
than unity (blue) and therefore the solution of the hierarchy problem is spoiled and in which
the nucleation or the reheating temperatures are smaller than 4 MeV (red). We suppose the
initial VEV to be vEW. All the plots show the Tn < TRH < TEW case. See the text for more
details.

v2(θ) 6= 0, whose solution is given in Eq. (5.51) with τ0 ≡ τEW ;

• The last case is the one in which TEW < Tn < TRH. For Tn < T < TRH the solution

is given by Eq. (5.53), while we will discuss in the next paragraph what happens for

T < Tn.

To compute the solution for T < Tn we need to turn on not only the Higgs VEV, for T < TEW,

but the back-reaction barrier as well. To the best of our knowledge, no analytical solution

can be found in this case. We can however qualitatively expect that, once the barriers form,
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Figure 5.11: Regions in which the relative variation of the Higgs VEV of Eq. (5.56) is larger
than unity (blue) and therefore the solution of the hierarchy problem is spoiled and in which
the nucleation or the reheating temperatures are smaller than 4 MeV (red). We suppose the
initial VEV to be vEW. All the plots show the Tn < TEW < TRH case. See the text for more
details.

the relaxion will find itself trapped in a position which is displaced from the minimum in

the relaxion direction. It will then oscillate around this minimum losing energy. It is in

this phase that it can behave like dark matter, as studied in [195]. Whether or not the

relaxion stops its evolution when encountering the first barrier will depend on the velocity

it has acquired during the second relaxation phase, and cannot be inferred analytically. As

shown at the end of App. F.1 however, the change in the Higgs VEV between two subsequent

minima is relatively small, so that it is likely that the second stopping phase will not modify

dramatically the value of the Higgs VEV at the end of the relaxion evolution. What can
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modify dramatically this value is however the relaxion evolution before the barrier is again

formed. To understand whether this is the case, we show in Fig. 5.10 and Fig. 5.11 in blue

the regions in which
δv

v
≡ v[θ(Tn)]− vEW

vEW
> 1 . (5.56)

In this regions the Higgs VEV at the end of the second relaxation phase differs by more than

a factor of 2 with respect to the observed VEV, and the solution of the hierarchy problem

is spoiled. In Fig. 5.10 we consider the case in which Tn < TRH < TEW, while in Fig. 5.11

we show the case in which Tn < TEW < TRH. We take TEW + 160 GeV. We have fixed

the parameters of the model to the same representative values chose in Eq. (5.46), with

the exceptions of ε and F , whose values are reported in the plots. For simplicity we have

taken a fixed value of g0 = 100, although by varying it the overall picture does not change.

Furthermore, we have supposed that the initial relaxion value at reheating gives vEW and

has vanishing velocity. The quantity v[θ(Tn)] is computed using Eqs. (5.51) and (5.55). We

also impose a lower bound Tn, TRH " 4 MeV, represented by the red regions, where the limit

on TRH is taken from [196] while the limit on Tn is imposed to be safely far from the Big

Bang nucleosynthesis epoch T ∼ 1 MeV. By inspecting Fig. 5.10 we see that for reheating

temperatures below the EW phase transition one, there are regions in parameter space in

which the solution of the hierarchy problem is completely spoiled, depending on the choice

of parameters. This is due to the exponential evolution of the relaxion field in this regime.

On the contrary, when Tn < TEW < TRH most of the relaxion evolution happens when

Eq. (5.55) is valid. Since the relaxion field does not evolve much in this regime, there are

large regions of parameter space in which the modifications of the VEV are small. Finally,

when TEW < Tn < TRH the evolution follows again Eq. (5.55) and is not enough to drastically

modify the value of the VEV. For this reason we do not show any plot for this case.

Let us finish this Section noticing that we can imagine a situation in which the VEV at

the end of the first relaxation phase is smaller than observed Higgs VEV. If this is the case,

the second relaxation phase could provide the additional evolution needed to be compatible

with experiments. In this paper we will focus on a situation in which the correct Higgs VEV

is selected at the end of the first relaxation phase, leaving for future work the analysis of
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what happens in the opposite situation.

5.8 Gravitational waves signal

In relaxion models with strongly interacting fermions there are two main sources of GW:

i) the confinement of Gdark if it proceeds through a first order phase transition [28; 177]

and ii) the possible penetration of the barrier by the relaxion field before stopping at the

minimum [197; 198; 199]. Since the last process is much more difficult to analyze, we will

focus here on the first signal, leaving the second one for future work. Since the confinement

dynamics of Gdark is a non-perturbative process, it is difficult to make quantitative predictions

on the GW spectra that can be produced. The phase transition ultimately depends on the

phase diagram of the theory, whose determination requires computationally expensive lattice

computations. We can however have an order of magnitude estimate of the expected signal

using effective models to parametrize the confining dynamics. As shown in [177], in QCD-like

theories different effective models give GW spectra whose peak amplitude might differ even by

two order of magnitudes between each other. Nevertheless they can give a useful indication of

what kind of theories can produce a GW spectra which is close enough to current and future

experimental sensitivities, and that thus deserve further dedicated theoretical studies to allow

for a more precise study of the phase transition and of the associated GW signals. In this

work we decide to focus on the linear sigma model description of a confining strong dynamics,

which is introduced in Chapter 2 and also is defined in Eq. (E.7) of Appendix E.1.1. We

nevertheless stress that our results should be taken as a preliminary indication for what the

real GW spectrum could be, as recently also emphasized in [28; 177].

As already mentioned in the Introduction, a well-known argument by Pisarski andWilczek [150]

implies that SU(Nd) gauge theories with Nd ≥ 3 feature a first order phase transition if

NF ≥ 3 light 1 flavors are present, see Appendix G. Motivated by this result, we study here

SU(Nd) gauge theories with NF = 3 and NF = 4 flavors, considering both the situations in

which the new confining phase transition happens at a scale below and above the EW critical

1That is with a mass smaller than the new gauge theory confinement scale.



CHAPTER 5. RELAXION PHYSICS & GW 106

temperature TEW. A general discussion of these models in the relaxion framework can be

found in App. E.1.2. We keep our discussion general, but to make it more concrete it is useful

to take as an example the variations of the L + N model shown in Fig. E.1, where L and

N are new vector-like fermions in the fundamental of SU(Nd) with the quantum number of

the SM lepton doublet and of a total singlet, respectively. We see that the physics of the

NF = 3 case is captured by the minimal L + N model with dark confinement scale above

the EW one (model A), as well as the physics of models in which we add 3 singlets to the

spectrum independently on the confinement scale (models B and D). Notice that the EW

charged fermion L cannot be too light in order to evade current experimental direct searches

bounds, and we then assume it to have a mass larger than ΛEW. The physics of the NF = 4

dark flavors, on the contrary, is captured by the minimal model with two copies of L fermions

and a decoupled singlet (model C), and of models in which L is decoupled and 4 light dark N

flavors are added to the spectrum (models B and D with nN = 4). Experimental bounds on

the minimal L+N model have been considered in [169; 200; 201] (see also Fig.5.6). Although

important, these bounds allow for rather different spectra at the level of sigma model without

spoiling the successful relaxation of the EW scale.

5.8.1 Gravitational wave spectrum: QCD-like case

We now compute the GW spectrum using the linear sigma model defined in App. E.1.1 with

the formalism of Sec. 5.5.2. We refer the reader to the Appendix for a definition of the

notation we use for the linear sigma model. We focus here on the situation in which the

masses of the σ and η′ mesons satisfy mσ,η′ " fπ, where fπ is the pion decay constant. Since

this is the well-known spectrum of QCD, we use the term “QCD-like” to refer to this case.

We will study in Sec. 5.8.2 a different physical spectrum. In our computation we consider the

chiral limit, in which the mass of the lightest fermions is much smaller than the confinement

scale Λd and we focus on the NF = 3 and NF = 4 cases. We present our results for two specific

values of Tn: one where Tn < TEW and one where Tn > TEW, thus capturing the different

possibilities discussed in Sec. 5.7. In particular we fix the values of the linear sigma model

parameters for the two cases as reported in Tab. 5.1, where we also indicate the values of
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QCD-like case NF = 3

Tn < TEW Tn > TEW

m2
Σ [GeV2] 64 64
λ 1.5 1.5
κ 4 4

µΣ [GeV] 102 104

fπ [GeV] 24.7 2.4×103
mσ [GeV] 36.9 3.4×103
mη′ [GeV] 60.9 5.9×103
mS [GeV] 60.8 5.9×103
Tn [GeV] 25.2 2.3×103

α 0.00317 0.0312
β/H 11921.4 7904.9

QCD-like case NF = 4

Tn < TEW Tn > TEW

m2
Σ [GeV2] 676 6.4× 105

λ 2 2
κ 4 3
µΣ 9 9

fπ [GeV] 30 1.1×103
mσ [GeV] 36.8 1.1×103
mη′ [GeV] 90.1 3.4×103
mS [GeV] 76.5 2.8×103
Tn [GeV] 28.6 0.9×103

α 0.00283 0.0054
β/H 66894.1 15694.5

Table 5.1: Values of the linear sigma model parameters, physical meson masses and relevant
quantities entering the GW spectrum calculation of the NF = 3 and NF = 4 for the QCD-like
cases.

the chiral symmetry breaking VEV, the relevant mesons masses, the nucleation temperature

Tn and of the main parameters entering the GW spectrum computation. In choosing these

benchmark point we have scanned the linear sigma models parameters trying to maximize

the GW spectrum for both nucleation temperatures. In the lack of analytical expressions for

α and β/H this represents a challenging numerical process. As already stressed in [177] it is

interesting to notice that large values of β/H are found. This is to be contrasted with the

naive estimate
β

H
+ 4 log

MPl

Tn
+ O(100) . (5.57)

Since for the sound waves and turbulence contribution the GW amplitude decreases linearly

with β/H, see Eq. (5.34), while the peak frequency increases linearly with it, see Eq. (5.40),

the direct computation of β/H through an explicit, although effective, model has a strong

consequence for the observability of the GW spectra. All together our results for the QCD-like

case are shown in Fig. 5.12 for the NF = 3 and NF = 4 models in the upper and lower panels

respectively. There, the left and right panels correspond to the Tn < TEW and Tn > TEW

cases. In all plots the blue line shows the spectrum computed using Eq. (5.34), while the

red line is computed using the modification presented in Eq. (5.41), which explicitly show
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the suppression factor due to the decrease of the sound wave contribution. The situation

depicted in the left panels can be realized, in the relaxation framework we are considering,

when Tn < TRH < TEW or when Tn < TEW < TRH. As shown in Sec. 5.7 in the first

case large regions of parameter space end up with large variations on vEW from the second

relaxation phase, leaving thus TEW < TRH as the preferred case 1. The situation of the

right panels refers instead to the case TEW < Tn < TRH, for which we showed that large

regions of parameter space are compatible with a small variation of the EW VEV during the

second relaxation phase. In all the figures the colored regions represent the sensitivities of

future interferometer experiments. In particular we show the projected reach from AstroD-

GW [154; 155], eLISA [154; 202], BBO [154; 156], DECIGO [154; 156], B-DECIGO [154; 156],

AION [157], MAGIS [158], ET [159] and CE [160]. As we see from Fig. 5.12, both for NF = 3

and NF = 4 cases the GW signal from the dark phase transition is a few orders of magnitude

below the region that can be probed in future experiments, in agreement with previous results

obtained in similar frameworks [28; 177]. We stress again, however, that these results must

be interpreted as an order-of-magnitude estimate since, as shown in [177], different effective

models for the strong sector confining dynamics can give results that might differ even by

two orders of magnitude for the amplitude of the signal and that might then fall on the edge

of detectability. Notice also that changing NF does not dramatically change the region in

which the signal falls, making thus difficult the identification of the underlying model in case

a signal is detected. We conclude emphasizing once more that, according to the discussion

in Appendix E.1.2, the strongly interacting models generating the back-reaction potential in

the relaxion mechanism do not suffer from very strong experimental limits. In particular, it

is not difficult to obtain in such models the spectrum used in this section.

5.8.2 Gravitational wave spectrum: non QCD-like case

We now turn to the discussion of more exotic strongly interacting models, i.e. models in

which, unlike the case of QCD, the theory spectrum features mσ ! fπ. The behavior of gauge

1We remind the reader that there are however choices of parameters for which the variation δv/v is smaller
than one even when TRH < TEW, see Fig. 5.10.
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Figure 5.12: Gravitational wave spectrum for a strongly interacting sector with a QCD-like
spectrum, see the definition in Sec. 5.8.1. The parameters of the benchmark points shown
are collected in Tab. 5.1. We show the signal computed according to Eq. (5.34) (blue line)
and to Eq. (5.41) (red line).

theories with different number of flavors has been studied on the lattice in a certain number

of situations, with the surprising result that a non-QCD behavior in which the σ meson is

lighter than expected might emerge. In particular, light composite σ scalars have been found

in an SU(3) gauge theory with 8 flavors in the fundamental [203; 204; 205; 206], with 2 flavors

in the symmetric representation [207; 208; 209] and with 4 light and 8 heavy flavors [210].

They also appear in SU(2) theories with one adjoint flavor [211]. The behavior seems to be

quite generic, and is typically associated with gauge theories near to their conformal limit.

In the case of NF = 3 and NF = 4, this is expected to happen when the number of colors is
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Non QCD-like case NF = 3

Tn < TEW Tn > TEW

m2
Σ [GeV2] 1 1
λ 0.01 0.01
κ 0.1 0.1

µΣ [GeV] 3.5 150
fπ [GeV] 54.4 2.3×103
mσ [GeV] 9.86 0.4×103
mη′ [GeV] 16.90 0.7×103
mS [GeV] 18.4 0.8×103
Tn [GeV] 19.9 0.8×103

α 0.00336 0.00348
β/H 1166.25 907.5

Non QCD-like case NF = 4

Tn < TEW Tn > TEW

m2
Σ [GeV2] 25 4.9× 105

λ 0.3 2
κ 0.4 3
µΣ 1.56 10.58

fπ [GeV] 50 2.1×103
mσ [GeV] 7 0.9×103
mη′ [GeV] 62.4 7×103
mS [GeV] 49.5 5.6×103
Tn [GeV] 9 0.9×103

α 0.09378 0.02136
β/H 1483.2 1828.3

Table 5.2: Values of the linear sigma model parameters, physical meson masses and relevant
quantities entering the GW spectrum calculation of the NF = 3 and NF = 4 for the non
QCD-like cases.

larger than 4 and the fermions transform in the antisymmetric representation [212].

In all the cases mentioned above, the σ meson is found to be roughly degenerate with the

pions, at least in the limit of large chiral symmetry breaking. Such behavior can be captured

by a sigma model, as shown in [213]. The limit of small chiral symmetry breaking is however

more difficult to describe on the lattice. In the absence of conclusive data, we will suppose that

the physics is correctly captured by a sigma model, at least in a first approximation. In [214]

such sigma model has been extend to include the effects of the η′ mass. An interesting result

emerging from the analysis is that the degeneracy between mσ and mπ can be explained

by an approximate cancellation between the VEV and mη′ . If this happens in the chiral

limit, an immediate consequence is that typically mσ ! VEV, and thus mσ ! fπ. This is

the situation studied in this section. Our results are shown in Fig. 5.13, where the color

codes are the same as in Fig. 5.12. As we see, allowing for mσ ! fπ allows to boost the

GW signal amplitude, in agreement with the results of [28], where detectable GW spectra

where found for large values of mη′/mσ. All together we find that, while in the NF = 3 case

also in case of non QCD-like theory the predicted GW signal lies well below the reach of

future experiments, in the NF = 4 case, the signal could be potentially detected both for the

Tc < TEW and Tc > TEW cases, in the frequency range 10−3 Hz− 1 Hz. Numerically, we have
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Figure 5.13: Same as in Fig. 5.12 but for the non QCD-like case defined in Sec. 5.8.2. The
parameters of the benchmarks shown are collected in Tab. 5.2.

also explicitly checked that other than a large mη′/mσ, also the condition of a small mσ/fπ

should be satisfied in order to enhance the signal towards the reach of future experiments. If

any one of these two conditions fails to be satisfied, the signal typically lies well below the

region of future detectability.



Chapter 6

Conclusions

In the present dissertation we have focused on some application of EFT’s in the search for

BSM physics. In this context, we dealt with three main subjects. First, how BSM physics can

modify the detection of relic neutrinos in a PTOLEMY-like experiment. Second, we studied

the running and mixing of operators of a dark sector EFT, under the hypothesis that the

operators are generated by a heavy flavorful mediator. Finally, the search for gravitational

imprints of a candidate to solve the hierarchy problem, the relaxion.

Because the covered topics are different, we will first give the conclusions of each topic

separately, and finalize with a global discussion.

First, the detection of the CνB would be a milestone for both particle physics and cos-

mology. Experiments using the neutrino capture by tritium are in development, so that the

detection of the CνB may become a reality in the near future. In this part of the research

we have studied how the capture rate is modified if new interactions involving neutrinos are

present. For definitiveness, we have focused on the interactions arising from generic BSM

physics, including all the dimension-six operators that can modify the process ν+n→ e+ p.

Once the experimental limits coming from low energy processes are considered, we have seen

that for Majorana neutrinos the modifications to the capture rate are modest (of O(2%)),

while for Dirac neutrinos we can have much larger modifications, which can either increase

or diminish the capture rate up to roughly a factor of two. Since in the SM case we expect

the capture rate for Majorana neutrinos to be twice the one for Dirac neutrinos, we see that
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the measurement of the capture rate at future experiments will not be conclusive about the

Majorana or Dirac nature of neutrinos.

Another situation in which the observed neutrino capture rate can be different from the

standard one is the existence of a non negligible cosmic population of right handed neutrinos.

In this case the capture rate can either be left unaltered or increase (depending on the physical

origin of the right handed population). This allows us to conclude that if a PTOLEMY-like

experiment detects a capture rate smaller than the standard capture rate for Dirac neutrinos,

it would unavoidably point to the presence of New Physics in the neutrino sector (since,

as shown in section 3.7.4, the capture rate can be decreased in this case). If instead the

measured capture rate is between the standard Dirac and Majorana case, or even above the

standard Majorana case, the situation will not be clear, since the effect can be caused by

Dirac neutrinos with either BSM interactions or an additional cosmological abundance of

right-handed neutrinos. On the other hand, we have seen how important the right-chiral

couplings are for the relic neutrino capture rate. Since the rate depends on εRq when mj/Ej

is not negligible, a possible detection of the CνB can put stronger limits on the εRq couplings

that other low energy processes can not.

We also briefly discuss in appendix A the problem of distinguishing the electron peaks

generated by neutrino capture and β-decay. With an expected resolution of ∆ = 0.15 eV,

the PTOLEMY experiment will be able to detect only a single peak, corresponding to the

capture of the three neutrino mass eigenstates. Assuming however two possible resolutions,

∆ = 0.01 eV (very aggressive) and ∆ = 0.001 eV (ultimate), we established a novel criteria

to distinguish the electron peaks as a function of the separation between the experimental

Gaussian distributions. The main result is that, given the range of neutrino parameters

allowed by current oscillation experiments, the ability to distinguishing the peaks depends

crucially on the neutrino mass ordering, and even for the ultimate value ∆ = 0.001 eV the

three peaks could be only disentangled for normal ordering. This result agrees with previous

studies in the literature [36; 215; 216].

In the second part of the thesis we considered a generic dark sector EFT, we also computed

the running above and below the EW scale and the matching due to the heavy SM particles.
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Our main results are shown in Fig. 4.7 and in the approximate analytic solutions of Eqs. (4.15)

and (4.16). The most important effects in the running are generated by the top Yukawa

coupling, and as such are present only above the top quark threshold. Once turned on at

the scale Λ, the contribution of the running on the flavor-off-diagonal Wilson coefficients is

irreducible, in the sense that, unlike what happens for flavor-diagonal coefficients, it does

not depend on possible correlations between the Wilson coefficients at the scale Λ. From a

phenomenological perspective, our results imply that the most important effect of the running

and mixing is found at low energy in the currents constructed out of the left-handed down-type

quarks bLγµdL and bLγµsL. If the dark sector is heavier than the B mesons mass scale, then

the main effects will be due to loops of dark particles. If instead the dark sector is sufficiently

light, the decays b → s + invisible and b → d + invisible may be kinematically allowed and

can be used to put bounds on the Wilson coefficients. Since all these processes depend on the

specific nature of the dark sector particles, we defer their study to a forthcoming research.

In the third part of this thesis we have considered the framework in which the EW scale

is stabilized through the relaxation mechanism. We have assumed that this happens during

inflation and that the back-reaction potential needed to stop the relaxion evolution is gen-

erated by new vector-like fermions charged under a new strongly interacting SU(Nd) gauge

group. We have focused on a configuration where the reheating temperature is above the

confinement scale of the new strong dynamics. This causes the restoration of a deconfined

phase after inflation, the disappearance of the back-reaction potential and the presence of a

second relaxation phase during the early Universe thermal evolution. This second relaxation

phase can in principle completely spoil the solution of the hierarchy problem. Once the tem-

perature of the plasma drops again below the confinement scale of the new strong dynamics,

the barrier again forms and the relaxation finally stops its evolution. Crucially, the phase

transition between the confined and unconfined dynamics might be strongly first order and

can then produce a stochastic GW background, that can be detected at present and future

interferometer experiments.

We have studied the relaxation evolution during the second relaxation phase, finding an-

alytical solutions for its equation of motions for various ranges of temperatures. In particular
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we have shown that, depending on the model parameters and on the hierarchy between the

nucleation, reheating and EW phase transition temperatures, there are ample regions in pa-

rameter space where the second relaxation phase does not spoil the solution to the hierarchy

problem. Such regions are large when Tn < TEW < TRH and TEW < Tn < TRH, but are

typically small or inexistent when Tn < TRH < TEW.

We have then studied the GW signal that can be generated during the confining phase

transition that ends the second relaxation stage, considering SU(Nd) gauge theories with 3

and 4 light flavors present in the spectrum. To quantitatively describe the strong dynamics

we have employed a linear sigma model, considering both QCD-like spectra, in which the

σ meson is heavier than the symmetry breaking scale, and non QCD-like spectra, in which

the σ meson can ben lighter than it. The latter behavior may emerge in theories close to

their conformal window, although additional lattice studies are needed to establish whether

this is the case or not. While in the first case we find that the predicted signals lie below

the present and future experimental sensitivities, in the case of non-QCD like spectra signals

close and within the experimental reach can be obtained for the NF = 4 case. We however

observe that, even if a GW signal will be detected in the future, the reconstruction of the

underlying model will in general be challenging. On the one hand, as we have shown, there is

little difference in the signal shapes expected for NF = 3 and NF = 4 cases we have analyzed.

On the other hand, many different models of strongly interacting vector-like fermions can

give rise to the same relaxion back-reaction potential and can be described through the same

linear sigma model studied here. We finally stress that all results obtained in this work

by describing the dynamics of a strongly interacting theory through effective models suffer

by large uncertainties, that can affect the peaks positions and heights of the predicted GW

spectra [177]. Nevertheless we believe that is of paramount interest that BSM physics that

can offer a solution to the hierarchy problem through the relaxion mechanism might generate

a GW signal in the range of detectability of future experiments, and this makes even more

important a thorough study of such theories through first principle calculations.

To conclude, the results obtained in this thesis show some of the possible applications of

EFT techniques in the quest of BSM physics. Those techniques were implemented in various
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different context, and to calculate a variety of quantities such as: the capture rate, the

RG evolution of the Wilson’s coefficients and the GW spectrum. Furthermore, the different

models we faced were different not only on their symmetries, but also on their particle content

and even in the type of experiments associated to their detection. This proves how such

techniques are “universal”, in the sense that they provide a unique framework able to tackle

with vastly different problems that could be tested in near future experiments.



Appendix A

A.1 Standard Model: conventions

We show in this Appendix a few more details on the SM Lagrangian, as well as some useful

definitions used throughout the thesis. According to the conventions shown in Table 4.1, the

SM Lagrangian in the unbroken phase is given by

L =− 1

4
(Gµν)

2 − 1

4
(W a

µν)
2 − 1

4
(Bµν)

2

+ iψ /Dψ + |DµH|2 − V (H)

+ qLYdHdR + qLYuH̃uR + 6LYeHeR + h.c. ,

(A.1)

where as usual H̃ = iσ2H∗. We stress that we do not commit to a fermion basis in which

some of the Yukawa matrices Yu, Yd and Ye are diagonal. The equation of motion of the

hypercharge vector field is particularly important, since it allows to define away a redundant

current. It reads

∂νBµν = g′JY
µ =g′

(
yqLqLγµqL + yuRuRγµuR + dRγµdR + y-L6Lγµ6L

yeReRγµeR + yHiH†←→D µH
)
.

(A.2)

Once the EW symmetry is broken by the Higgs vacuum expectation value (vev)

〈H〉T = (0, v) v + 174 GeV , (A.3)

and all the states get non-vanishing masses.
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B.1 Brief comment on the neutrino mass ordering

As we have already stressed, each neutrino mass eigenstate will produce an electron of energy

given by eq. (3.52) in a PTOLEMY-like experiment. A natural question is then whether each

neutrino peak can be distinguished from the β-decay background and, if so, when each peak

in the distribution can be distinguished from the peaks generated by the capture of the other

neutrinos [215; 216]. The answer depends crucially not only on the experimental resolution

∆, but also on the absolute value of the neutrino masses as well. In order to answer the

above questions, we slightly modify eq. (3.55) to consider the number of events due to the νj

capture as

Nj
CνB(∆) =

∫ ECνB,j
e +∆/2

ECνB,j
e −∆/2

dEe
dΓBSM

CνB (j)

dEe
,

with ECνB,j
e given in eq. (3.52). The criteria we use to distinguish the peaks from the

background and between each other are the following:

1. we say that an electron peak due to neutrino capture can be distinguished from the

β-decay background if

rjCνB ≡
Nj

CνB(∆)√
Nβ(∆)

≥ 5; (B.1)

2. we count the number of distinguishable peaks according to the number of different

118



APPENDIX B. 119

values taken by the function

Ξj
CνB =

3∑

i=1

{
1−Θ

(
DB

(
dΓi

CνB

dEe
,
dΓj

CνB

dEe

)
− 4.5

)}
Γi
CνB, (B.2)

where DB(p, q) is the Bhattacharya distance [217], defined for two Gaussians distribu-

tions, p and q, as

DB(p, q) =
1

4
ln

{
1

4

(
σ2p
σ2q

+
σ2q
σ2p

+ 2

)}
+

1

4

(µp − µq)2

σ2p + σ2q
. (B.3)

The value 4.5, which measures the separation between the peaks in the Θ function of

eq. (B.2), has been chosen because it corresponds to a distance of 6σ between the mean

values of two Gaussians with σp = σq.

The function Ξj
CνB of eq. (B.2) has been constructed as follows: when the mass eigenstates

are degenerate, the Bhattacharya distance vanishes and Ξj
CνB gives the total neutrino capture

rate. Since Ξj
CνB takes a unique value for the three neutrino states, we have that only one

peak will be seen experimentally. Meanwhile, if any eigenstate is separated enough to give a

distance equal or larger than 6σ, the Ξj
CνB will correspond to the value of the capture rate

for such mass eigenstate. Whether a PTOLEMY-like experiment will be able to distinguish

between two or more neutrino capture peaks depends instead on the mass ordering and on

the experimental resolution ∆. With the expected PTOLEMY resolution of ∆ = 0.15 eV, the

Gaussian peaks for each electron will be too large to allow a distinction between the different

contribution, so that a unique peak is expected. Nevertheless, we will try to understand how

the electron peaks would look like for better experimental resolutions, which we take to be

∆ = 0.01 eV and ∆ = 0.001 eV.

We show in figure B.1 how the Ξj
CνB function depend on the lightest neutrino mass m0,

for the mass eigenstates ν1 (green), ν2 (red) and ν3 (blue). We consider both types of mass

orderings and the two resolution already mentioned, ∆ = 0.01 eV and ∆ = 0.001 eV. We also

scan over all the neutrino parameters at 3σ [218]. The gray points are those that can not

be distinguished from the β-decay background. The upper left panel (∆ = 0.01 eV, normal
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ordering) should be interpreted as follows: for m0 " 3 × 10−2 eV, the Ξj
CνB function takes

only one value, so that only one peak would be measured, which corresponds to the capture

of the three neutrinos. Since the peak is not gray, it can be distinguished from the β-decay

background. For 8× 10−3 eV ! m0 ! 3× 10−2 eV, two peaks could be measured, one due to

the ν3 capture (blue) and the other due to ν1 and ν2 (red/green). Finally, for m0 ! 8× 10−3

eV, only the ν3 peak can be resolved, while the ν1 + ν2 peak cannot be discriminated from

the β-decay background. The other panels can be interpreted along the same reasoning. It is

interesting to notice that there is only one situation in which the three peaks can be resolved,

corresponding to the normal ordering for the extreme case ∆ = 0.001 eV. With the same

resolution but inverted ordering, at most two peaks can be discriminated, since ν1 and ν2

tend to become degenerate as m3 → 0.

To better illustrate the interplay between the experimental resolution ∆ and the im-

portance of the neutrino mass ordering, we show in figure B.2 the expected spectra in

a PTOLEMY-like experiment. In each plot we show normal (continuous line) and in-

verted (dashed line) ordering, for the two experimental resolutions we are discussing (a very

agreessive ∆ = 0.01 eV, upper panels, and an ultimate ∆ = 0.001 eV, lower panels) and for

some choices for the lightest neutrino mass. The gray line represents the β-decay background.

This shows another potential problem in the peak detection; since

Γj
CνB ∝ |Uej |2 ,

and

|Uej |2 + {0.68, 0.3, 0.02} ,

the peak due to ν3, although in principle distinguishable from the other peak(s), is much

smaller, and will most probably be unresolved or unobservable in a real experiment.
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Figure B.1: Dependence of the Ξj
CνB function of eq. (B.2) on the value of the lightest

neutrino mass m0. The experimental resolution is chosen to be ∆ = 0.01 eV (upper panels)
and ∆ = 0.001 eV (lower panels), and we show both normal ordering (left panels) and
inverted ordering (right panels). The three neutrino mass eigenstate contributions are shown
in green (ν1), red (ν2) and blue (ν3). The gray points correspond to the regions that cannot
be distinguished from the β-decay background. The shaded region is excluded by the Planck
limit on the sum of neutrino masses [63].
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Figure B.2: Simulated spectra of the electrons created by the relic neutrino capture for
∆ = 0.01 eV (upper panels) and ∆ = 0.001 eV (lower panels) for each mass eigenstate
contribution: ν1 (green), ν2 (red), ν3 (blue). A few values of the lowest neutrino mass m0

are considered to illustrate the behavior for the normal ordering (NO) and inverted ordering
(IO). The gray line corresponds to the endpoint of the β-decay background.
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C.1 The SM lagrangian below the EW scale

After we integrate out the heavy fields in the SM Lagrangian, Eq. (A.1), results

L = −1

4
(Gµν)

2 − 1

4
(Fµν)

2 + ψ( /D −mψ)ψ + LFermi , (C.1)

where Fµν is the photon field strength, while ψ represents any of the light Dirac fermions

still present in the theory. We do not assume the existence of right handed neutrinos in the

low energy spectrum, and we leave unspecified the mechanism behind their mass generation.

Once the Z andW bosons are integrated out, we obtain two contributions for the four-fermion

Fermi Lagrangian. The neutral current one reads

LF ⊃ −
GF ff ′√

2
gΓfgΓ′f ′(fΓ

µf)(f ′Γ′
µf

′) , (C.2)

where Γ = γµ or γµγ5 as defined below Eq. (4.10). Although the notation GF ff ′ seems redun-

dant, we keep explicit track of the ‘fermion indices’ because, as we will show in Appendix C.4,

different f and f ′ correspond to different running for the coupling.

Turning to the charged current, the relevant contributions read

LF ⊃ −
GF ud

4
√
2

∑

i,j,k,l

V ijV †klūi (γµ − γµγ5)uld̄k (γµ − γµγ5) dj , (C.3)

where V denotes the CKM matrix.
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The EoM of the photon field, used to eliminate the redundant operator ∂µF νµ is

∂µF
νµ = eJνem , (C.4)

with Jem the usual electromagnetic current.

C.2 EFT generated in specific models

Let us now show how some of the flavor models involving dark sectors present in the literature

can be mapped to our formalism. We start with the situation considered in References [100;

219; 220], which can be summarized via the interactions

LA
int = λijd

i
Rχ

j
Lφ , LB

int = λiju
i
Rχ

j
Lφ , LC

int = λijq
i
Lχ

j
Rφ . (C.5)

The triplet of dark fermions χi is chosen to be a gauge singlet, while the scalar mediator φ

transforms under the SM gauge group as the quark to which it couples to. The same kind

of interactions have been considered in Ref. [68] in the context of collider searches of Hidden

Valley models. Taking the mediator to be heavy, we obtain at low energy

LA
EFT =

λijλ∗km
2m2

φ

(
χk
Lγ

µχj
L

)(
d
i
Rγµd

m
R

)
,

LB
EFT =

λijλ∗km
2m2

φ

(
χk
Lγ

µχj
L

)(
uiRγµu

m
R

)
,

LC
EFT =

λijλ∗km
2m2

φ

(
χk
Rγ

µχj
R

)(
qiLγµq

m
L

)
.

(C.6)

This shows that the combination of operators studied in this part of the research can be

easily obtained in specific models.

C.3 Computation of the Renormalization Group Equation

In this appendix we will present more details on the computation of the RGE’s for the Wilson

coefficients of the d = 3 currents appearing in Tables 4.2 and 4.3. The final results have been



APPENDIX C. 125

shown in Sec. 4.3, with numerical solutions given in Sec. 4.4.1. We will always use dimensional

regularization in d = 4− 2ε dimensions, and use the MS scheme.

Let us start by considering loop corrections above the EW scale. The counterterm La-

grangian Lc.t. generated by the wave function renormalization (see Fig. 4.2) is given by

Lc.t. =

[
g2 C(2) + g′2 y2H

8π2ε
−

3 tr(Y 2
q ) + tr(Y †

e Ye)

16π2ε

]
∂µH

†∂µH

− qL

[
g2s C(3) + g2 C(2) + g′2 y2qL

16π2ε
1 +

Y 2
q

32π2ε

]
i/∂qL

− uR

[
g2s C(3) + g′2 y2uR

16π2ε
1 +

Y †
uYu

16π2ε

]
i/∂uR − dR

[
g2s C(3) + g′2 y2dR

16π2ε
1 +

Y †
d Yd

16π2ε

]
i/∂dR

− 6L

[
g2 C(2) + g′2 y2-L

16π2ε
1 +

YeY
†
e

32π2ε

]
i/∂6L − eR

[
g′2 y2eR
16π2ε

1 +
Y †
e Ye

16π2ε

]
i/∂eR ,

(C.7)

where C(2) and C(3) are, respectively, the SU(2)L and SU(3)c Casimirs for the fundamental

representations, yi denotes the field hypercharge and we have used Eq. (4.5) for the definition

of Y 2
q . The connection between renormalized and bare fields is now straightforwardly found:

H +
[
1− 1

2

(
g2 C(2) + g′2 y2H

8π2ε
−

3 tr(Y 2
q ) + tr(Y †

e Ye)

16π2ε

)]
Hbare ,

qL +
[
1 +

1

2

(
g2s C(3) + g2 C(2) + g′2 y2qL

16π2ε
1 +

Y 2
q

32π2ε

)]
qL,bare ,

uR +
[
1 +

1

2

(
g2s C(3) + g′2 y2uR

16π2ε
1 +

Y †
uYu

16π2ε

)]
uR,bare ,

dR +
[
1 +

1

2

(
g2s C(3) + g′2 y2dR

16π2ε
1 +

Y †
d Yd

16π2ε

)]
dR,bare ,

6L +
[
1 +

1

2

(
g2 C(2) + g′2 y2-L

16π2ε
1 +

YeY
†
e

32π2ε

)]
6L,bare ,

eR +
[
1 +

1

2

(
g′2 y2eR
16π2ε

1 +
Y †
e Ye

16π2ε

)]
eR,bare .

(C.8)

Our results confirm the computation of Ref. [79]. Let us now turn to the computation of the
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counterterms due to currents corrections (see Fig. 4.3). For each Wilson coefficient Ca, direct

computation gives the counterterms

δCqL =−
g2s C(3) + g2 C(3) + g′2 y2qL

16π2ε
CqL −

YuCuRY
†
u + YdCdRY

†
d

32π2ε
+

Y 2
q

32π2ε
CH ,

δCuR =−
g2s C(3) + g′2 y2uR

16π2ε
CuR −

Y †
uCqLYu
16π2ε

+
Y †
uYu

16π2ε
CH ,

δCdR =−
g2s C(3) + g′2 y2dR

16π2ε
CdR −

Y †
dCqLYd
16π2ε

+
Y †
d Yd

16π2ε
CH ,

δC-L =−
g2 C(2) + g′2 y2-L

16π2ε
C-L −

Y †
e CeRYe
32π2ε

+
Y †
e Ye

32π2ε
CH ,

δCeR =−
g′2 y2eR
16π2ε

CeR −
Y †
e C-LYe
16π2ε

+
Y †
e Ye

16π2ε
CH ,

δCH =+
g2 C(2) + g′2 y2H

8π2ε
+

3tr(CqL Ŷ
2
q )

16π2ε

−
3
(
tr(YuCuRY

†
u )− tr(YdCdRY

†
d )
)

16π2ε
− tr(Y †

e C-LYe)− tr(YeCeRY
†
e )

16π2ε
.

(C.9)

Notice that, in addition to the counterterms of Eq. (C.9), also the redundant operator ∂νBνµ

is generated via the loops of Fig. 4.4, and a further counterterm δCB is needed. We get

δCB = −2

3

g′

16π2ε
T , (C.10)

with T defined in Eq. (4.6). Once δCB is added to the Lagrangian, we apply Eq. (A.2) to

define away the ∂νBνµ current, obtaining that each of the counterterms in Eq. (C.9) gets a

correction

δCa → δCa − ya
2

3

g′2

16π2ε
T . (C.11)

We are now in the position of finally compute the RGE’s of the Wilson coefficients Cϕ. Let

us sketch the procedure. Writing ϕ + (1 +Wϕ)ϕbare for each field (with explicit expressions

given in Eq. (C.8)), the bare Wilson coefficient is given in terms of the renormalized one by

Cbare
ϕ = µαε(1 +Wϕ)(Cϕ + δCϕ)(1 +Wϕ) + µαε

(
Cϕ + δCϕ +

CϕWϕ +WϕCϕ
2

)
. (C.12)
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The factor µαε is inserted to ensure that all the renormalized Wilson coefficients Cϕ are

dimensionless in d = 4 − 2ε dimensions. The coefficient α depends on the field content of

the dark current JD, but we will not need to specify it as long as all the SM currents couple

either to the same dark current, or to many dark currents of the same dimensions. Imposing

dCbare
ϕ /d logµ = 0 and using that, to leading order in the couplings, the RGE’s have the form

dCϕ
d logµ

= −α εCϕ + . . . , (C.13)

we obtain the RGE’s of Eq. (4.4). For the running of the Yukawa and gauge couplings we

use the results in References [111; 112].

Let us now move to the EFT below the EW scale. The only contributions to the wave

function renormalization of fermions come from QED and QCD. The counterterms are

Lc.t. = −
1

16π2ε

∑

f

(
Cf (3)g

2
s +Q2

fe
2
)
fi/∂f , (C.14)

where Cf (3) is the SU(3)c quadratic Casimir, if the fermion has color, and Qf is the fermion

electric charge. Notice that there is no flavor off-diagonal contribution. Turning to vertex

corrections, we now have contribution from gauge bosons and from four fermion interactions
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(see Fig. 4.5). The vertex counterterms are

δCVu =
1

16π2ε

[(
C2(3)g

2
s +Q2

ue
2
)
CVu −

gVuFu

2
− GF ud

2
V
(
M2

Vd
−M2

Ad

)
V †
]
,

δCVd =
1

16π2ε

[(
C2(3)g

2
s +Q2

de
2
)
CVd −

gVdFd

2
− GF du

2
V † (M2

Vu
−M2

Au

)
V

]
,

δCVν =
1

16π2ε

[
−gVνFν

2
− GF νe

2
(M2

Ve
−M2

Ae
)

]
,

δCVe =
1

16π2ε

[
Q2

ee
2CVe −

gVeFe

2

]
,

δCAu =
1

16π2ε

[(
C2(3)g

2
s +Q2

ue
2
)
CAu −

gAuFu

2
+

GF ud

2
V
(
M2

Vd
−M2

Ad

)
V †
]
,

δCAd =
1

16π2ε

[(
C2(3)g

2
s +Q2

de
2
)
CAd −

gAdFd

2
+

GF du

2
V † (M2

Vu
−M2

Au

)
V

]
,

δCAν =
1

16π2ε

[
−gAνFν

2
+

GF νe

2
(M2

Ve
−M2

Ae
)

]
,

δCAe =
1

16π2ε

[
Q2

ee
2CAe −

gAeFe

2

]
,

(C.15)

where we have used the definition of Eq. (4.10). As before, the redundant current ∂νF νµ is

radiatively generated, and the corresponding counterterm results

δCγ =
e

12π2ε

(
3Qutr[CVu ] + 3Qdtr[CVd ] +Qetr[CVe ]

)
. (C.16)

This effect can be incorporated in the other Wilson coefficients via the shift

CVa → CVa +QaQ . (C.17)

Repeating now the procedure sketched in Eqs. (C.12) and (C.13) we obtain the RGE’s pre-

sented in Eq. (4.8).

C.4 Running of GF due to QCD and QED

Let us now discuss the running of the Fermi coupling below the EW scale. In addition to

the wave function renormalization, we need to consider the diagrams shown in Fig. C.1. The
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Figure C.1: Feynman diagrams contributing to the running of the Fermi coupling below the
EW scale.

results are independent on the flavor of the external fermions. Some of the vertex corrections

will cancel against the wave function contributions (more specifically, those vertex corrections

in which the gluon or photon connect particles in the same fermion line). The gluon ‘crossed’

contributions 1 generate the operators

qΓµT aqq′Γ′
µT

aq′ (C.18)

with a double insertion of Gell Mann matrices. These operators do not enter in the running

of our currents, and we will therefore not consider them in the following. Notice however that

their effect is important when the nature of the dark current is specified and dark fermions

loops can be considered, as in Refs. [82; 103]. We are thus left with the photon ‘crossed’

loops, which are the only radiative effects that we need to take into account. Their effect is

to produce the RGE

dGF ff ′

d logµ
= −2GF ff ′

QfQf ′α

π
, (C.19)

which has been used in the numerical computations of Sec. 4.4.1. Notice that the resulting

RGE is independent on Γµ and Γ′µ. Quantitatively, the relative variation in the value of

GF ff ′ is of order of a few percent.

1With ‘crossed’ contributions we mean those loops in which the photon or gluon connect particles in two
different fermion lines.
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D.1 Bubble Nucleation: The Thin-Wall approximation

This approximation was first proposed by S. Coleman in Ref.[172] and then extended to finite

temperature field theory by Linde in Ref.[171]. It is valid when the barrier height present in

the FOPT, see Fig.5.8, is higher than ∆V . In order to gain a physical idea of the situation

let us explore the implications. During the formation of bubbles the energy deposited in the

volume ∼ (∆V )r3 becomes larger than the one deposited in the surface ∼ r2 [171]. This

implies that (∆V )r 3 1, and because ∆V is small, the bubble radius must be large. It also

means that the bubble radius is larger than the wall thickness1. Therefore, in this limit the

EoM Eq.(5.22) is simplified to

d2Φ

dr2
= V ′

eff(Φ, T ) =⇒ dΦ

dr
=
√

2Veff(Φ, T ). (D.1)

Now, the action defined in Eq.(5.15) can be separated in the following manner

S3 = 4π

∫ rwall−δ/2

0
dr r2

{
1

2

(
dΦ

dr

)2

+ V (Φ, T )

}
+ 4π

∫ rwall+δ/2

rwall−δ/2
dr r2

{
1

2

(
dΦ

dr

)2

+ V (Φ, T )

}
.

where we already neglected the term 4π
∫∞
rwall+δ

dr r2
{

1
2

(
dΦ
dr

)2
+ V (Φ, T )

}
= 0, and δ is the

bubble thickness, see Fig.5.9.

After integrating by parts and considering that the bubble thickness is small (δ ≈ 0), we

1The wall thickness is the region where dΦ/dr is large.

130



APPENDIX D. 131

get

S3 = −
4

3
πr3wall∆V + 4πr2wallS1, (D.2)

where S1 =
∫∞
0 dr

{
1
2

(
dΦ
dr

)2
+ V (Φ, T )

}
is identified as the one dimensional Euclidean action.

S3 is now a function of rwall which can determined from

dS3

d rwall
= 0 =⇒ rwall =

2S1

∆V
. (D.3)

Replacing Eq.(D.3) into Eq.(D.2), the three dimensional Euclidean action becomes

S3 =
16π S3

1

3∆V
. (D.4)

As commented above S1 is the one dimensional Euclidean action, and under the condition

given in Eq.(D.1), S1 is now given by

S1 =

∫ Φtrue

0
dΦ
√
2V (Φ, T ). (D.5)

Eqs.(D.3), (D.4) and (D.5) are the main results of this section. Nevertheless, the thin-wall

approximation says nothing about an explicit form of the bounce, at most it gives Eq.(D.1).

In order to obtain a concrete and useful result for a straightforward application, we study

the following arbitrary potential that has the important terms for a FOPT:

V (Φ, T ) =
1

2
M2(T )Φ2 − 1

3
ξ(T )Φ3 +

1

4
λΦ4 (D.6)

It is worthwhile to mention that the quadratic and quartic terms are present in the effective

potential of the models we consider in Section 5.6. The cubic term is different: while it is

already present at tree-level for Nf = 3, it is generated by the thermal corrections of the

effective potential for Nf = 4. Therefore, the generic potential given in Eq.(D.6) has all the

terms important for us.

Because within this approximation ∆V ≈ 0, we conclude that V (0, T ) ≈ V (Φtrue, T ).
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From the minimization condition dV/dΦ|Φtrue
= 0 we have an extra constraint on Φtrue.

Combining these two results we obtain

Φtrue =
2

3

ξ

λ
, (D.7)

2 ξ2 = 9M2 λ, (D.8)

where Eq.(D.8) is obtained after evaluating Φtrue in any of the two previous constraints on

V (Φ, T ). By combining Eqs.(D.7) and (D.8), with Eq.(D.6) the potential can be rewritten as

V (Φ, T ) =
1

4
λΦ2 (Φtrue − Φ)2. (D.9)

Now we are able to compute explicitly Eq.(D.5)

S1 =

√
λ

2

∫ Φtrue

0
dΦΦ (Φtrue − Φ) , (D.10)

obtaining a closed expression for S1:

S1 =

√
λ

2

Φ3
true

6

=
4 ξ3

34
√
2λ5/2

. (D.11)

Applying this result to Eqs.(D.3) and (D.4), S3/T and rwall are easily computed:

S3

T
=

217/2 π ξ9

313 λ15/2 (∆V )T
(D.12)

rwall =
25/2 ξ3

34 λ5/2 (∆V )
. (D.13)

Finally, we explicitly compute an analytical form for the bounce. This is done by solving
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Eq.(D.1)

∫ R

r
d r =

√
λ

2

∫ Φ(R)

Φ(r)

dΦ

Φ (Φtrue − Φ)

=⇒

(
Φtrue−Φ(R)

Φ(R)

)

(
Φtrue−Φ(r)

Φ(r)

) =
exp

(
−R

√
λΦtrue√

2

)

exp
(
−r

√
λΦtrue√

2

) .

The latter expression implies that Φtrue−Φ(r)
Φ(r) = c0 exp

(
−r

√
λΦtrue√

2

)
, where c0 is a constant.

Hence, we get for Φ(r)

Φ(r) =
Φtrue

1 + c0 exp
(
−r

√
λΦtrue√

2

) . (D.14)

Finally, the unknown constant c0 is determined by the condition that a typical bounce profile

changes its concavity at rwall. This means

d2Φ(r)

d r2

∣∣∣∣
rwall

= 0. (D.15)

The latter condition fixes c0 = exp
(
rwall

√
λΦtrue√

2

)
. In this way, we have been able to determine

an analytical form for the bounce, which is

Φbounce(r) =
Φtrue

1 + exp
(
(rwall − r)

√
λΦtrue√

2

)

=
Φtrue

1 + exp
(
(rwall − r)

√
2 ξ

3
√
λ

) (D.16)

In summary, given an effective potential of the form of Eq.( D.6), analytical expressions for

S3/T , rwall and Φbounce are determined in the thin-wall approximation. These expressions

are Eqs.(D.12), (D.13) and (D.16), respectively.



Appendix E

E.1 Strongly interacting models for the relaxation of the EW

scale

We collect in this Appendix some useful formulas regarding strongly interacting vector-

fermion models and their vacuum energy. We start with some general results, and then

specialize them to the models used in the relaxion framework.

E.1.1 General setup

Consider NF vector-like fermions Ψ charged under a new confining group, which for simplicity

we take to be SU(Nd). We will assume a situation similar to what happens in QCD, namely

that there is a small explicit breaking of the chiral symmetry SU(NF )L × SU(NF )R due to

non vanishing fermion masses. Moreover, we take the axial part of the global flavor group to

be anomalous. The Lagrangian we consider is

L = iΨ̄/∂Ψ−ΨLMΨR +
θ0

32π2
DµνD̃

µν + h.c. , (E.1)

where M is the n×n mass matrix of the vector-like fermions Ψ and Dµν is the field strength

tensor of the SU(Nd) gauge group, with D̃µν its dual. Using a SU(NF )L × SU(NF )R trans-
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formation 1 the mass matrix can always be put in the form

M→ eiϕM/NF diag(M1, . . . ,MNF ) ≡ eiϕM/NFMD , (E.2)

where ϕM = arg detM and Mi ≥ 0. We use this basis in the following. We can write

the low energy theory by using the following transformations and spurions under an axial

transformation

ΨL,R → e∓iαΨL,R , M → e−2iαM , θ0 → θ0 − 2NF α . (E.3)

We collect the low energy degrees of freedom in a matrix

Σ = “ΨLΨ
′′
R =

(
v + σ√
2NF

+ SaT a

)
U , (E.4)

where σ is the radial degree of freedom, T a are the SU(N) generator, Sa are CP-even scalars

and U is the matrix of the NBGs, including the dark η′. Notice that we denote the VEV with

v, as opposed to the EW VEV, which has been called vEW. We write U explicitly as

U = exp

[
i

(
η′

v
+

πaT a

v/
√
2NF

)]
. (E.5)

Following [214] we define the pion decay constant in a theory with NF flavors as

fπ =

√
2

NF
v . (E.6)

The most general potential invariant under SU(NF )L × SU(NF )R ×U(1)V ×U(1)A is given

by

V = −m2
Σ〈Σ†Σ〉+ λ

2
〈Σ†Σ〉2 + κ

2
〈(Σ†Σ)2〉 −B 〈MΣ〉+ µΣ e−iθ detΣ+ h.c. (E.7)

1Note that the phases can be factorized using a transformation generated by the diagonal elements of the
two groups.
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where 〈·〉 denotes the trace and we have used an axial transformation to put the phase

dependence in the anomaly term, θ = θ0 + ϕM .

Let us start with the computation of the vacuum energy, since it is essential to write the

relaxion potential in Eq. (5.3). In doing this we ignore the heavy degrees of freedom σ and

Sa in Eq. (E.7). Using the results of [221], working in the basis in which the fermion mass

matrix is diagonal forces the Σ matrix in the vacuum to be diagonal. We write it as

Σ0 ≡ 〈Σ〉 =
v√
2NF

diag(eiθ1 , . . . , eiθNF ) , (E.8)

which gives a vacuum energy

E(θ) = −B̃
NF∑

i=1

Mi cos θi + µ̃Σ cos

(
NF∑

k=1

θk − θ
)

. (E.9)

In the previous equation we have used B̃ = Bv
√
2/NF and µ̃Σ = 2µΣ(v/

√
2NF )NF . The

Dashen equations give the minimum conditions

B̃ Mi sin θi = −µ̃Σ sin

(
∑

k

θk − θ
)

, i = 1, . . . , NF . (E.10)

We can find approximate solutions to the Dashen equations when the anomaly term dominates

over the mass term, which is equivalent to assume that the mass of the η′ is larger than the

masses of the mesons. In this limit we have

sin

(
∑

k

θk − θ
)
+ 0 , ⇒ θ +

∑

k

θk . (E.11)

The remaining Dashen equations can now be written as

Mi sin θi = Mk sin θk , i 6= k . (E.12)

In the case in which all the fermion masses are approximately of the same order the

previous equation is solved by θi + θk + θ/NF . This means that in the limit considered,
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i.e. dominance of the anomaly term over the mass term and approximate degeneracy of the

fermion masses, the vacuum matrix is given by

Σ0 +
v eiθ/NF

√
2NF

1 . (E.13)

If instead a hierarchy is present among the fermion masses the situation drastically changes.

For definitiveness, let us consider the hierarchy M1 ( Mi, i = 2, . . . , NF when the anomaly

term dominates. Eq. (E.12) is now approximately solved by θ1 + θ and θi + 0 for i =

2, . . . , NF . The conclusion is that, when a clear hierarchy is present among the fermion

masses, only the lightest fermions contribute significantly to the vacuum energy. As last

step, we remind that the inclusion of the relaxion field can be achieved simply promoting θ

to a dynamical parameter,

θ → φ(x)/F . (E.14)

We now move on with the discussion of the potential of the σ particle, since it drives the

phase transition discussed in Sec. 5.8. Having discussed the effect of the VEV of the light

modes in the computation of the vacuum energy, see Eq. (E.9), we now simply focus on the

potential driven by σ. To write the full potential we implement thermal effects using the

Truncated Full Dressing (TFD) procedure [222]

Veff(σ, T ) = V (σ) +
∑

i

T 4

2π2
ni JB

(
M2

i (σ, T )

T 2

)
. (E.15)

The first term, V (σ), is the tree level potential as a function of the homogenous background

field σ, and can be obtained from Eq. (E.7). Following refs. [28; 223] we consider the Coleman-

Weinberg contribution already included in the tree level term, since its inclusion just renor-

malizes the tree-level couplings. Each thermal contribution depends on the multiplicity ni,

on the bosonic thermal integral

JB(x) =

∫ ∞

0
dy y2 log

(
1− e−

√
x+y2

)
, (E.16)
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and on the thermal masses Mi(σ, T ). In a sigma model with NF flavors they read

M2
σ(σ, T ) = −m2

Σ +
3

2

(
λ+

κ

NF

)
σ2 − µΣ(NF − 1)

(
σ√
2NF

)NF−2

+Π(NF )

M2
η′(σ, T ) = −m2

Σ +
1

2

(
λ+

κ

NF

)
σ2 + µΣ(NF − 1)

(
σ√
2NF

)NF−2

+Π(NF )

M2
Sa(σ, T ) = −m2

Σ +
1

2

(
λ+

3κ

NF

)
σ2 + µΣ

(
σ√
2NF

)NF−2

+Π(NF )

M2
πa(σ, T ) = −m2

Σ +
1

2

(
λ+

κ

NF

)
σ2 − µΣ

(
σ√
2NF

)NF−2

+Π(NF ) ,

(E.17)

The terms proportional to µΣ are present only for NF ≥ 3. We have already included the

“Debye” masses Π(NF ) computed at one loop, the so called “hard thermal loop” [222]. In a

theory with NF flavor we obtain

Π(NF ) =
T 2

12

(
(N2

F + 1)λ+ 2NF κ

)
. (E.18)

E.1.2 Explicit models

In the original paper [72] the back-reaction barrier is generated by the so-called L + N

model. This is a theory in which vector-like fermions charged under a new confining group

are introduced. These fermions have EW quantum numbers to allow for Yukawa interactions

with the Higgs boson. More specifically, the model consists in a vector-like pair L, Lc (where

L has the same quantum numbers as the SM lepton doublet and Lc has conjugated charges)

and by a second vector-like pair N , N c of SM singlets. This is only one of the possibilities

since, as we are now going to show, all models that allow for a Yukawa interaction with

the Higgs doublet and in which there is a clear mass hierarchy can generate the required

back-reaction. Before starting, let us remind the reader that in light of the Pisarski-Wilczek

argument [150] already mentioned in Sec. 5.8, we require the presence of at least 3 light

flavors below the confinement scale to produce a strong first order phase transition.

The most general Lagrangian we consider is

L = −ψcMψψ − χcMχχ−HψcYNχc −H†χcY′ψ + h.c. (E.19)
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where the quantum numbers of the vector-like fermions are such that it is possible to write the

Yukawa interactions. Moreover, ML, MN , Y and Y′ are matrices whose dimensions depend

on the number of fermions. Suppose now there is a hierarchy Mχ (Mψ. Integrating out the

heavy fermions we obtain the effective Lagrangian

Leff = χc

(
Mχ − Y′ 1

Mψ
YH†H

)
χ+ h.c. (E.20)

As explained in Sec. E.1.1, the computation of the vacuum energy can be done analytically

when all the fermions are approximately degenerate or when there is a clear mass hierarchy,

in which case only the lightest fermions contribute. This allows us to conclude that the heavy

ψ states do not substantially contribute to the vacuum energy even if their masses happen

to be below the confinement scale. The problem thus is to compute the eigenvalues of the

χ mass matrix. To write approximate analytical formulas we take all mass matrices to be

proportional to the identity, Mχ = mχ1 and Mψ = mψ1 and all Yukawa matrices to be real

with equal entries, Y(′)
ij = y(′). In this limit the vacuum energy is equal to

E(φ) + −B̃
∣∣∣∣mχ −

nψnχyy′

mψ
H†H

∣∣∣∣ cos
(
φ

F

)
, (E.21)

where nχ and nψ are the number of χ and ψ fermions. This equation justifies the form of

the back-reaction used in Eq. (5.42). Experimental limits on the L + N model have been

studied in [169] for the situation in which only the N flavor confines, and in [200; 201] for

the situation in which both L and N confine. Although relevant, none of these bounds put

significant restrictions on the parameters of the linear sigma model used in the computation

of the GW spectra.

Let us comment on two further points before concluding this section. There is a caveat

to the above argument: when the fermions that form bound states carry EW quantum

numbers, loop contributions to the effective Lagrangians can be important, see e.g. [200].

We have assumed so far that such loops are negligible, but this is not necessarily the case.

When loops are important the argument leading to Eq. (E.8) fails, and the computation

of the vacuum energy can in general be done only numerically. Finally, let us give some
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ΛEW

Λd

L,N
Λd

L

≥ 3N
Λd

≥ 2L

N

L

Λd

≥ 3N

A B C D

Figure E.1: Summary of the models that can generate the back-reaction for the relaxion
mechanism to work and, at the same time, satisfy the Pisarski-Wilczek condition. We show
only variations of the L+N model defined in Sec. E.1.2, although more general possibilities
are possible.

concrete example of models that can lead to strong first order phase transition. Focussing

for simplicity only on variations of the original L+N model used in Ref. [72], we summarize

the different possibilities in Fig. 5.1.



Appendix F

F.1 Successful relaxation of the EW scale with strongly inter-

acting fermions

We now describe in more detail how the conditions listed in Sec. 5.6 are obtained. To keep

the discussion generic, we will use the form of the back-reaction potential shown in Eq. (5.42).

Minimizing the potential in Eq. (5.3) we obtain

∂V

∂H
= 0⇒ v2(θ) = −Λ2 − εΛF θ − Sµ2

B cos θ

2λ
, (F.1)

∂V

∂φ
= 0⇒ rεΛ3F =

(
Sµ2

B sin θ − εΛF
)
v2(θ)− SΛ4

0 sin θ (F.2)

where we have defined the dimensionless field θ = φ/F , v2(θ) is the θ-dependent Higgs

minimum, and S = sign[µ2
Bv

2(θ) − Λ4
0]. As usual, the first equation applies when v2(θ) is a

positive quantity, otherwise the Higgs VEV vanishes. From the minimum equations we see

that for small θ we have v2(θ) = 0, and S = −1. From the equations of motion it follows that

∂V/∂φ = 0 corresponds to the stopping of the relaxion evolution. To avoid this, we need

to make sure that the minimum equation has no solution while v2(θ) = 0. This amounts to

require

rεΛ3F > Λ4
0 , (F.3)

which corresponds to Eq. (5.43). As time passes and θ increases, the system reaches a critical

value for the relaxion field in which εΛFθc − µ2
B cos θc = 2λΛ2 and EWSB is triggered.
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From Eq. (F.1) we see that v2(θ) starts growing essentially linearly with θ. Looking at

Eq. (F.2), and keeping into account Eq. (F.3), we conclude that the right hand side must

grow to guarantee the existence of a solution after EWSB. This can happen only if the factor

multiplying v2(θ) is positive. This requirement amounts to S = +1 (at least around the EW

scale), i.e. µ2
Bv

2
EW > Λ4

0, and to µ2
B > εΛF , which are Eq. (5.44).

We now discuss the computation of the EW scale in terms of the parameters of the model.

Once the EW minimum is reached for a value θ0 of the relaxion field we must have

2λv2EW = −Λ2 + εΛF θ0 + µ2
B cos θ0 ,

rεΛ3F =
(
µ2
B sin θ0 − εΛF

)
v2EW − Λ4

0 sin θ0 .
(F.4)

Solving these equations for sin θ0 and cos θ0, and using sin2 θ0 + cos θ20 = 1 we can determine

the value of θ0. The two solutions are

θ0 =
Λ2 + 2λv2EW

εFΛ
± µ2

B

εFΛ(µ2
Bv

2
EW − Λ4

0)

√
(
µ2
Bv

2
EW − Λ4

0

)2 − (εFΛ3)2
(
1 +

v2EW

Λ2

)
.

(F.5)

The positive sign gives cos θ0 < 0, while the negative sign gives cos θ0 > 0. We now analyze

the minimum conditions. Requiring detV ′′ > 0, where V ′′ is the matrix of second derivative

of the potential, see the sketch in Fig. 5.5, we obtain

cos θ0 >
ε2Λ6F 2

(
µ2
B +

Λ4
0

Λ2

)2

2λH
(
µ2
Bv

2 − Λ4
0

)3 . (F.6)

Since the right hand side is a positive quantity, we immediately conclude that the solution

with cos θ0 < 0 corresponds to a saddle point, while the solution with cos θ0 > may be a

local minimum in some region of parameter space. To determine this region we first translate

Eq. (F.6) in a maximum equation for sin θ0. We then combine this maximum equation with
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Eq. (F.9), obtaining

εFΛ3 <
[
µ2
Bv

2
EW − Λ4

0

]
[(

1 +
v2EW

Λ2

)2

+
µ2
B + Λ4

0/Λ
2

2λH(µ2
Bv

2
EW − Λ4

0)

]−1/2

. (F.7)

Noticing that the term inside the square brackets is very close to one we end up with εFΛ3 !
µ2
Bv

2
EW − Λ4

0 as condition to guarantee the existence of a minimum. As for the saddle point

solution, we notice that it corresponds to a minimum in the Higgs direction and to a local

maximum in the relaxion direction, see Fig. 5.5. By focussing in the φ direction, the difference

between the potential in the maximum and in the minimum reads

Vmax − Vmin =
2(rµ2

BΛ
2 + Λ4

0)

µ2
Bv

2
EW − Λ4

0

√
(
µ2
Bv

2
EW − Λ4

0

)2 − ε2F 2Λ6

(
r +

v2EW

Λ2

)2

. (F.8)

Let us now go back to Eq. (F.4). The second equation can be used to compute

sin θ0 =

(
r +

v2EW

Λ2

)
εFΛ3

µ2
Bv

2
EW − Λ4

0

. (F.9)

Requiring | sin θ0| ≤ 1 we obtain

Λ3

(
r +

v2EW

Λ2

)
≤ µ2

Bv
2
EW − Λ4

0

εF
, (F.10)

which is the inequality of Eq. (5.46). In order to maximize the allowed value of Λ we must be

close to θ0 = π/2 + 2πκ, with κ an integer. This agrees with the results of Ref. [224]. Using

this in Eq. (F.1) allows us to compute how much the Higgs VEV changes as a function of κ.

We obtain

v2(κ′)− v2(κ) =
πεFΛ(κ′ − κ)

λ
. (F.11)

In the case κ′ − κ = 1, i.e. for two subsequent minima, we obtain

∆v2 ! π

λ

µ2
Bv

2
EW − Λ4

0

Λ2
, (F.12)

where we have used the condition on the parameter space required by the existence of a
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minimum. We then see that the change of the Higgs VEV between subsequent minima is

very small.



Appendix G

G.1 Pisarski-Wilczek-Wirstam condition

We start by giving a chronological evolution of the ideas that lead to the Pisarski-Wilczek-

Wirstam condition [150; 225].

E. Brézin, Le Guillou and Zinn-Justin in 1973 [226] using Wilson’s ε-expansion method,

see Refs. [227; 228; 229; 230], studying systems described by n-component order parameter.

They conclude in their work that there is only one stable fixed point under O(n)-symmetric

interactions, as n < 4.

Later in 1975, P. Bak, S. Krinsky and Mukamel [231], besides the three Landau symmetry

conditions [231] they propose a fourth one:

“If there is no stable fixed point within the

ε-expansion then the transition is first-order.”

In the same work, the authors by using the results of Ref.[226] showed that thermodynamic

processes that produce no change in the unit cell are well described by O(n)-symmetric

interactions as n ≤ 3. In contrast, processes that affect the form of the unit cell are described

by order parameters of n ≥ 4 components, see Fig. G.1.

P. Bak et al. in Ref.[231] also noted that the result of E. Brézin et al. in Ref.[226] can be

summarized as:

The isotropic fixed points is always stable in

O(n)-symmetric interactions, as n ≤ 3.
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(a)

(b)

Figure G.1: (a) Thermodynamic processes that produce no change in the unit cell are well
described by O(n)-symmetric interactions as n ≤ 3. (b) Processes that affect the form of the
unit cell are described by order parameters of n ≥ 4 components.

This implies that the unstable fixed points could appear in O(n)-symmetric interactions,

as n ≥ 4. They did not prove their conjecture; however, they gave five different Hamiltonians

with n ≥ 4 components as examples. The running coupling constants associated with those

Hamiltonians posses no stable fixed points [231] and have FOPT. In Table G.1, we show

those five types of physical systems.

The connection between RG fixed points and FOPT may be is not evident. We can under-
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Anti-ferromagnetic Number of components Systems know
order of order parameter to be first-order

Type I (/m⊥/k) n = 6 UO2

Type II (/m⊥/k) n = 8 MnO

Type III

(/m || [100],/k = [12 0 1]) n = 12

Sinusoidal

(/m⊥/k = [k 0 0]) n = 12 Cr

Screw spiral

(/m⊥/k = [k 0 0]) n = 12 Eu

Table G.1: Physical systems corresponding to Hamiltonians with no stable fixed points[231]

stand that relation in the following way. Let us consider the system defined by the action

S = S0 + g

∫
dDxO[φ(x)] (G.1)

where S0 is the action of a theory defined by fixed points. Because S0 cannot depend on

microscopic details, it is a scale invariant theory.

Under the change of scale x→ λx, as λ > 0

S′ = S0 + λy g

∫
dDxO[φ̂(x)]. (G.2)

For y > 0, the IR RG flow for one relevant operator is schematically showed in Fig.G.2.

Fig.G.2 shows an unstable fixed point with its RG flow. This defines a phase transition

between two phases, one to the left and the other to the right [232].

In 1980, H. H. Iacobson and D. J. Amit in Ref.[233] generalize the previous work of E.

Brézin et al. [226], they focused in the study of n-component order parameter theories with

couplings of the type gijkl φi φj φk φl. They show that if the interaction has more than one
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Figure G.2: IR RG flow for one relevant operator. This is an unstable fixed point.

invariant there are systems with stable fixed points; however, the allowed domain of the

renormalized couplings includes regions where the running of couplings are not attracted to

the stable fixed points.

In their work H. Iacobson and J. Amit [233] focused on lagragians of the type

L =
1

2
∂µφi ∂

µφi − r2

2
φiφi − gijkφiφjφkφl, (G.3)

with two invariants: the O(n) one and the cubic anisotropy
∑

i φ
4
i . Hence, the trace condition

[226] is imposed

gijkk = g δij . (G.4)

The domain of variation of the scale µ is 0 < µ < ∞. While the IR region is getting by

taking the limit µ→ 0, the UV behavior is obtained as µ→∞ [233]. The trajectory of g(µ)

is defined inside that domain, and flowing from the UV to IR. The equation that governs its

trajectory if the beta function of g

βijkl(g) = µ
∂ gijkl
∂ µ

(G.5)

where at one-loop [226; 233]

µ
∂ gijkl
∂ µ

= −ε gijkl +
1

2
(gijpq gpqkl + i↔ k + i↔ l) . (G.6)
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The stability of the vacuum is studied by characterizing the domain of boundedness from

below of the effective potential, Veff(φ).

Ref.[226] shows that the boundedness form below of the effective potential is equivalent

to the positivity of the bare quartic form g0ijkl φiφjφkφl. This condition defines the domain

P+, where the bare quartic form is positive. The equivalent statement for the renormal-

ized coupling constants, gijkl, has to consider that the renormalized interaction defines an

asymptotically free model. This means two things

1. limµ→∞ g(µ) = 0,

2. β(g) < 0,

where g(φ, µ) = gijkl(µ)φiφjφkφl. The first condition together with the condition on the bare

coupling implies that a system is stable if and only if g(φ, µ) is positive for all µ > µ̃, for

large enough µ̃. Second condition and Eq.G.6 allows to find the inequality

g(φ, µ) <
2

3
ε. (G.7)

H. Iacobson et al. [233] showed that may exist trajectories that start within P+ and that

eventually run away of the domain P+ as µ → 0. In Fig.G.3 we show an allowed and a

forbidden trajectory as examples.

P
+ Running of g(x, �)

x, �

g(x, �)

(a)

P
+ Running of g(x, �)

x, �

g(x, �)

(b)

Figure G.3: (a) Allowed trajectory. (b) Forbidden trajectory.
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G
S

I

C

Region II

Region III

Region I

g1

g2

Figure G.4: Flow diagram for the particular case of cubic anisotropy [233].

A particular case of Eq.(G.3) (and the important for us) is the case of cubic anisotropy

L =
1

2
(∂ φ)2 − r2

2
φ2 − 1

4
g01(φ

2)2 − 1

4
g02

n∑

i=1

φ4i . (G.8)

From Eq.(G.6) the renormalized coupling constant equations are

µ
∂ g1
dµ

= −ε g1 +
n+ 8

6
g21 + g1 g2, (G.9)

µ
∂ g1
dµ

= −ε g2 +
3

2
g22 + 2 g1 g2, (G.10)

Ref.[233] stress that there are four fixed points in this case, they are

(a) gaussian (g1, g2) = (0, 0),

(b) symmetric (g1, g2) = (6 ε/(n+ 8), 0),

(c) Ising like (g1, g2) = (0, 23 ε),

(d) cubic (g1, g2) = (2 ε/n, 2(n− 4) ε/3n).
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The domain P+ is defined by the lines L1 and L2 [226], which are respectively:

g1 + g2 = 0, (G.11)

g1 + g2/n = 0. (G.12)

The flow diagram is shown in Fig.G.4.As mentioned before, there are trajectories that, al-

though start inside P+, they run away of that domain as µ → 0. From Fig.G.4 we see that

such trajectories are the ones very close to the boundaries L1, L2.

Using this results H. Iacobson et al. [233] computed the Veff for the cubic anisotropy, and

impose the condition g1 + g2 = B ε2, as B > 0. In other words, they focused on trajectories

near the boundary. They showed that Veff can satisfy the equations

∂ Veff

∂ φ

∣∣∣∣
φ=φ1

= 0, (G.13)

Veff(φ1) = Veff(0), (G.14)

thus defining a FOPT.

After this Pisarski et al. [150] used that resu;ts to analyse the low energy effective field

theory of a strongly interacting theory with Nf flavors and Nc colors, the linear sigma model:

L =
1

2
〈∂ Φ†∂ Φ〉 − m2

Φ

2
〈Φ†Φ〉 − π2

3
g1
(
〈Φ†Φ〉

)2
− π2

3
g2〈
(
Φ†Φ

)2
〉 (G.15)

where we use the notation of Ref.[150]. Beta functions given by Eqs.(G.9) and (G.10) are

slightly modified to

β1 = −ε g1 +
N2

f + 4

3
g21 +

4Nf

3
g1 g2 + g22, (G.16)

β2 = −ε g2 +
2Nf

3
g22 + 2 g1 g2. (G.17)

By analysing when the stability matrix ωij = ∂βi/∂gj has no real and positive eigenvalues,

which implies that there is no IR stable fixed points, they found that the PT remains first

order if Nf ≥ 3 [150].
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