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Abstract

We present a detailed characterization of the entanglement in a stimulated Four-
wave mixing process. This process is widely studied by the homodyne detection, a technique
insensitive to the details of the sideband modes of the involved beams. The emission
profile of the FWM process in atomic media shows an imbalance in the amplification of
the sidebands, which suggest an asymmetry in the entanglement of the generated states,
that can not be observed by the homodyne detection.

The stimulated FWM consists on a single frequency pump and a seed beam
interacting with the hot rubidium atoms, generating a pair of entangled states, the probe
and the conjugated. By the implementation of the resonantor detection, we revealed the
hidden entanglement structure of the generated beams.

We found that the usual characterization of the state through the homodyne
detection is incomplete. On the contrary, the reconstruction of the covariance matrix from
the resonant detection allows the full characterization of the quantum correlations and a
more complete entanglement structure between the sideband frequency modes. Therefore,
with the measurement using resonant detection over a Four-wave mixing process, we can
demonstrate the advantage of the detection to reveal entanglement that would be hidden
if the usual two-mode description is used.

Key words: Entanglement, four-wave mixing, quantum optics, squeezing, covari-
ance matrix.





Resumo

Nesse projeto apresentamos a caracterização do emaranhamento presente em um
sistema de mistura de quatro ondas estimulado (FWM). Este sistema é amplamente
estudado usando a detecção homodina, técnica insensível aos detalhes dos modos de
bandas laterais dos feixes gerados. O espectro de emissão do processo de mistura de quatro
ondas em meios atômicos, apresenta um desbalanceio no processo de amplificação das
bandas laterais, sugerindo uma assimetria no emaranhamento dos estados gerados, efeito
não mensurável na detecção homodina.

O processo de mistura de quantro ondas estimulado consiste em um bombeio de
frequência única e uma semente interagindo com átomos de rubídio quentes, gerando um
par de estado emaranhados, o prova e conjugado. Mediante a implementação da detecção
assistida por ressonadores, evidenciamos a estrutura oculta de emaranhamento dos feixes
gerados.

Encontramos que a caracterização usando detecção homodina é incompleta. Por
outro lado, a reconstrução da matriz de covariância usando ressonadores, permite a carac-
terização completa das correlações quânticas e a descrição integral do emaranhamento entre
as bandas laterais. Portanto, mediante a medida do processo de mistura de quatro ondas
implementando a detecção assistida por ressonadores, podemos demonstrar o benefício da
detecção para evidenciar uma estrutura de emaranhamento mais completa, encoberta pela
descrição de dois modos gerados.

Palavras-chave: Emaranhamento, mistura de quatro ondas, óptica quântica,
compressão de ruído, matriz de covariância.
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1

Introduction

Entanglement is a physical resource for quantum applications and fundamental
research. It is a phenomenon where a composite system can not be described by the
individual information of the constituent subsystems. Entanglement is a key property for
quantum information protocols such as quantum teleportation [1], quantum memories [2],
or quantum computing [3] for achieving the proclaimed advantage over classical protocols.
However, the applicability of the entangled states is bound to the strength and robustness
of the generated quantum correlations. Therefore, many platforms have been implemented
to pursue the best source of entangled states, for instance, optical parametric oscillators
(OPO) based on non-linear crystal [4], on chip OPO [5, 6], optical parametric amplifier
(OPA) on rubidium atoms or on chip [7, 8]. Nowadays, the efforts are focused on the
generation of multipartite quantum states which are scalable and reconfigurable [9, 10, 11].

Among these platforms, alkali atoms present some desired quantum features. Their
atomic structure is simple and the coupling between ground and excited states can be
tuned by the pump frequency, controlling the coupling between the energy levels which is
translated into the control of the spontaneous emission. Alkali atoms have proven to be
useful for the generation of quantum effects, for instance, quantum interference effects that
permit the temporal delay of a quantum state using Electromagnetic induced transparency
(EIT) [2], states with noise fluctuations below the classical limit denominated squeezed
states for single-mode or two-mode state [12], or quantum entanglement [13, 14]. A reliable
source of entangled states using alkali atoms is the Four-wave mixing process (FWM) where
a 4-level system interacts with an off-resonant pump beam, coupling the two ground states
and two virtual excited states. The FWM process generate a pair of conjugated variables
that presents noise fluctuations below the classical bound, denominated a two-mode
squeezed state.

FWM has been generated using sodium atoms (Na) where states with -0.3 dB of



squeezing were generated [15], cesium (Cs) where they generated -6 dB squeezed states
[16], and even potassium (K) generating -1.1 dB of squeezing [17]. Among those elements,
the rubidium atoms (Rb) have proven to own remarkable properties. They can be found
naturally in two stable isotopes, rubidium 85 (85Rb) and rubidium 87 (87Rb). They have
been widely studied for the generation of squeezed states and compared to K and Na, hold
the record for the maximum two-mode squeezing level attaining -9.2 dB working with 85Rb
[18]. Compared to Cs, there are more available lasers for the Rb energy transitions. The
two isotopes of rubidium are feasible for the FWM process. However, 87Rb requires more
resources, namely pump power and temperature, for the generation of squeezing levels
near the typical values reached with 85Rb. On the other hand, the internal structure of
85Rb allows the generation of FWM working with the D1 (795 nm) and the D2 (780 nm)
lines. Nevertheless, the D2 line presents a much smaller squeezing level [19]. Therefore,
during this project, we will be working with 85Rb isotope in the D1 line.

The study of the generated correlations by the FWM process, and in general
continuous variable systems, is done by the reconstruction of the covariance matrix which
contains the correlations between the fluctuations of a pair of conjugated observables,
the amplitude and phase quadratures, of each of the generated states. In the frequency
domain, the fluctuations can be decomposed into a set of relative frequencies defined as
positive/upper or negative/lower, denominated the sideband of the carrier. Hence, we
must measure the fluctuations of the quadratures to reconstruct the covariance matrix.

The most common method for achieving this goal is the homodyne detection [20].
This method uses an auxiliary beam that interferes with the state under study to amplify
its fluctuations. Further processing determines if the fluctuations are below the classical
limit or not. In this scheme, the generated beams are considered as a single-mode. The
homodyne detection has proven to be useful for the characterization of entanglement in
different systems, for instance, quantum imaging [21], multipartite states with rubidium
atoms [22, 14], or multipartite entangled states generated by an OPO based on second order
non-linear interactions [9, 10]. However, it lacks the capacity for distinguishing between
the sideband regions and may fall into a incomplete reconstruction of the covariance matrix.
This situation becomes relevant whenever the emission bandwidth of the entangled source
responds differently at different sideband regions. Therefore, it is necessary to implement
a detection scheme that is sensible to the incoming frequency. The resonator detection
solves this difficulty. In this method, a resonator induces a dephasing that is sensible to
the frequency such that there is an interference between different frequency components
that controls the sideband and their quadratures. Simultaneously, the resonator induces a
frequency-dependent attenuation, depleting the spectral mode in resonance.

The resonator detection has been implemented extensively at LMCAL (Laboratory
for Coherent Manipulation of Atoms and Light) for the characterization of entanglement.



For instance, employing solid states crystals on an OPO, former students were able to
produce multipartite states [4, 23]. A second system generates correlated states via Four-
Wave Mixing based on chip. Chips work at room temperature and can be coupled to
the current telecommunication technologies given that their spectrum is in the infrared
(1500nm), representing an advantage for its implementation [24]. Finally, we implemented
an OPO based on rubidium vapor cell and reconstruct the covariance matrix, finding that
the output modes of the system were entangled [25].

The entanglement present in the FWM process in rubidium cell has been reported
before. Previous works on FWM, characterized the quantum correlations implementing
the homodyne detection [16, 21, 14, 26, 27, 7, 12]. Nonetheless, the asymmetry in the
emission profile of the FWM process shows an imbalance in the amplification process of
the sidebands, which suggests an asymmetry in the entanglement of the generated states,
not seen by the homodyne detection. Based on the mentioned experimental results and
motivated by the current research, our project aims to measure the entanglement using
the resonator detection to determine the hidden entanglement structure of the generated
beams from the FWM process using vapor rubidium cells.

This document is divided into three main parts, the theoretical concepts, experi-
mental setup and results, and conclusions. The second chapter 2, introduces the basic
properties of Gaussian states. We start with a rapid mention of the quantization of
light, then we discuss the different Gaussian states with which we can represent the
electromagnetic field, and we introduce the single and two-modes squeezed states as a
fundamental concept for understanding quantum correlations in the continuous variable
regime. Afterward, we discuss entanglement and how it is characterized through the
covariance matrix and the photodetection scheme. At the end of the second chapter, we
study the separability criteria that determine if a state is entangled.

The third chapter (3) presents the concept of FWM and the theoretical approach
to the process. Two frameworks are presented, the first denominated phenomenological
approach, where the FWM is studied as an effective interaction between light and atoms.
Later we present the microscopic approach based on the Heisenberg-Langevin equations
which brings a complete and accurate description of the light-matter interaction. The
third chapter ends with the definition of the covariance matrix as a function of the defined
variables.

The second part of the thesis involves the experimental setup and results. In
the experimental setup (4) we present a detailed description of each part composing our
system. The description includes the saturation spectrum for explaining how to lock the
pump laser, the generation of the seed beam, and the detection scheme. We also include a
detailed description of the resonator detection when the mismatch factor is included. A
careful description of the electronic response of the system is also presented.



The fifth chapter corresponds to the results 5. We show the characterization of
the amplification process as a function of the probe detuning ∆2. Then we show the
experimental characterization of the intensity squeezing. Finally, we present the results
for the reconstruction of the covariance matrix and the entanglement characterization.

The third part of the thesis corresponds to the conclusions and the next steps.
Further characterization of the experiment is found in the Appendix.



I

THEORETICAL CONCEPTS





3

2

Gaussian states

In the continuous variable (CV) regime, enconding and processing of the quantum
information is done considering operators that belong to an infinite dimensional Hilbert
space H and its eigenstates form a basis. A subspace of CV states which play an
important role in quantum implementations are Gaussian states, for instance quantum
teleportation [1], and quantum cryptography [28]. They are versatile resources for research
in fundamental quantum correlations, and nowadays there are multiple systems capable of
generating Gaussian states [15, 23, 9, 29]. They have been studied in such a detail that
there are well established experimental methods for their characterization, namely, the
homodyne detection [20] and resonator detection [30]. Examples of Gaussian states are
thermal states, coherent states, squeezed states and the vacuum state, all of them daily
present in a quantum optics laboratory. Involving the Gaussian states, there are so called
Gaussian operations corresponding to transformations on the states that maps Gaussian
states into Gaussian states. For systems with arbitrary number of modes, the operators
that preserve gaussianity depends at most quadratically in the bosonic operators â and â†.
This set involves squeezers, beam splitters, phase shifters and their combinations.

Gaussian states and Gaussian maps are interesting since they simplify the theoretical
and the experimental description of a CV system. They are characterized by their first
and second moments. Higher than second order cumulants equal to zero I. Hence, the
equations for the higher order moments depend on the first and second moments, such
that we can fully describe the Gaussian states with them. A non-Gaussian state would
depend on higher order cumulants describing states with a more complex representation
[31, 32, 33]. Therefore, for Gaussian states the problem of working with an infinite Hilbert
space is reduced to the expectation value of a product.
I The first order cumulant is the mean. The second order cumulant is the variance. In the case

of Gaussian distributions, the first and second cumulants are equal to the central first and
second moments.
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Along this chapter we offer the basic toolkit for understanding quantum states
in the CV regime. We start by the definition of the observables we are interested in
measuring, the quadratures of the electric field and then introduce the definition and
properties of some of the most relevant Gaussian states. At the end of this chapter we
describe how the covariance matrix is sufficient for the reconstruction of the Gaussian
states and the criteria for quantum entanglement. This chapter is based on references [34]
and [3].

2.1 Field quadratures

The quantized-electromagnetic field is represented by the Hamiltonian

Ĥ =
∑
k,s

~ωks

(
â†ksâks + 1

2

)
. (2.1)

where k is the wave vector, and s refers to the polarization. The Hamiltonian corresponds
to the radiated energy of harmonic oscillators plus the vacuum energy for each mode
ks, representing the ground state of the quantized-electromagnetic field and its minimal
energy II [35].

The bosonic operators âks and â†ks satisfy:

[âks(t), âk′s′(t)] =
[
â†ks(t), â

†
k′s′(t)

]
= 0, (2.2)[

âks(t), â†k′s′(t)
]

= δk,k′δs,s′ . (2.3)

Hereafter, we will simplify the notation by considering only a single mode ks and
~ωks = 1 III. The bosonic operators â and â† can be arranged to define mode quadratures
of the field, named p̂ and q̂, as follows:

p̂ϕ =
(
â(t)e−iϕ + â†(t)eiϕ) , (2.4)

q̂ϕ = −i
(
â(t)e−iϕ − â†(t)eiϕ) . (2.5)

During this thesis we will be working with bright states represented in Figure 1. A
bright state can be represented in the phasor diagram by a mean value |α| and the phase
of the state ϕ. Hence, we define the quadrature p̂ aligned with the mean field of the state
and will be called the amplitude quadrature. On the other hand, the conjugated quadrature
II The solutions to the Maxwell equations are denominated modes.
III We chose ~ωks = 1 for convenience but we are not redefining units. In the description of the

system we will have to normalize the mathematical representation of the states and hence,
the ~ωks would be canceled.
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Figure 1. Quadratures of the modes of the electric field. A phasor diagram is used for
representing the fields. |α| corresponds to the amplitude of the electric field, ϕ is its phase.
The light green axis δp and δq, corresponds to the fluctuations of the quadratures.

q̂ will be called the phase quadrature. In the figure we represent the fluctuations of the
quadratures as δp̂ and δq̂.

2.2 Quantum states of light

Each mode of the EM field can be quantized within the framework of second
quantization. Hence, each classical mode will have an associated Hilbert Space and a
set of quantum states which in the context of this thesis corresponds to Gaussian states.
Hence, in this section we present some of the more relevant Gaussian states.

Fock states

The operator â†â defined in Equation 2.1 is the number operator (N̂) which counts
how many excitations are present in a given mode ks. Therefore, it is an eigen-state of
the Hamiltonian such that:

Ĥ |n〉 = En |n〉 (2.6)

where En = (n+ 1/2). The |n〉 states are known as Fock states. As Ĥ is hermitian, the
Fock states are a complete orthonormal base and have real eigenvalues.

The annihilator operator â acts on the Fock state lowering the number of excitations
ân |n〉 = ân−1√n |n− 1〉 → ân |n〉 =

√
n!â |1〉. After n successive applications, we reach

the vacuum state with the corresponding energy 1/2 such that:

ân |n〉 = 1
2 |0〉 . (2.7)

The Fock states are non-Gaussian states. However, they form a useful basis for the
representation of Gaussian states. The variances of the quadratures Equation 2.4 in the
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base of the Fock states is:

∆2p̂ϕ = ∆2q̂ϕ = n+ 1
2 . (2.8)

We can also associate an uncertainty relation for the generalized quadratures in
the Fock basis:

∆2p̂ϕ∆2q̂ϕ =
(
n+ 1

2

)2
. (2.9)

The uncertainty relation increases with the number of excitations. When the Fock
state is |0〉 the system is in the vacuum state, n = 0, and the uncertainty relation reaches
its minimum value corresponding to the fluctuations of the vacuum state. The vacuum
state is represented in a phasor diagram in Figure 2a by the black dashed line as a contour
line at a 2D Gaussian. As the vacuum state has amplitude equal to zero, it lies at the
origin of the space making its phase completely unknown. The fluctuations from a vacuum
state are denominated Standard quantum limit (SQL), and are used as a benchmark
for classicality or quantumness. An example of Gaussian states presenting fluctuations
above this level are thermal states (orange area in Figure 2b). On the other hand, states
presenting fluctuations below the SQL have quantum properties and are denominated
squeezed states.

(a) Vacuum state. (b) Coherent state and ther-
mal state.

Figure 2. (a) The black dashed line represents an state that satisfy the minimum of
uncertainty, the standard quantum limit. In purple there is the vacuum state with the
same amount of noise and mean field equal to zero. (b) The coherent state, represented
in blue, is a minimum uncertainty state with amplitude α and phase ϕ. The orange area
represents a state with excess of noise, a displaced squeezed thermal state. δq and δp are
the phase and amplitude quadratures correspondingly.

Coherent states

Coherent states are uncertainty limited states and have equal amount of uncertainty
in amplitude and phase (∆2p̂ = ∆2q̂ = 1/2). Figure 2b shows the representation of a
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coherent state in the phase-space. The state is represented by a region in space and a pair
of conjugated operators p̂ and q̂. The area of the colored region represents the product
of the variances, and hence the uncertainty principle. In the case of the coherent state
it is represented in blue with an amplitude α and phase ϕ. The coherent states can be
generated by applying a displacement operator on the vacuum state as follows [36]:

|α〉 = D(α) |0〉 , (2.10)

= e−|α|2/2eαâ†e−α∗â |0〉 , (2.11)

= eαâ†−α∗â |0〉 . (2.12)

Therefore, the coherent states are displaced vacuum states that preserve their noise
properties and satisfy the Heisenberg principle, ∆2p̂∆2q̂ = 1/4.

Squeezed states

The Heisenberg principle shows a relation between the variances of two conjugated
operators and restricts the product of the fluctuations of the operators to a inequality.
But it does not restrict the values of each of the variances. Therefore, it is possible to
generate states where on quadrature presents a signal below the SQL, at the expense of an
increase in the variance of the orthogonal quadrature, respecting the Heisenberg principle.
These are the squeezed states.

Since the first experimental demonstration of squeezing using sodium atoms (around
−0.3 dB) [15] many systems were explored for the generation of squeezed states Among
them, parametric down conversion (PDC) [37], optical parametric oscillators (OPO’s) [38],
and atomic systems [7]. Figure 3 shows the representation of a squeezed vacuum state
(red ellipse), which can be generated by an OPO below threshold [9], and a squeezed
coherent state (green ellipse), which can be generated by an OPO above threshold [4]. For
a historical review of the squeezed states see [39].

Single-mode squeezed state

The squeezed states can be generated (mathematically) by an unitary transfor-
mation S(ζ), the squeezing operator, on a vacuum or a coherent state. For a degenerate
process, the squeezing operator is IV:

S(ζ) = e( 1
2 ζ
∗â2− 1

2 ζâ
†2), (2.13)

IV A degenerate process generates squeezing only in a single-mode of the field. For instance a
parametric down conversion process in a medium with a second-order non-linearity χ2 where
two photons of frequency ω are generated from one with frequency 2ω.
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where ζ = reiϑ is a complex number, r is the degree of squeezing of the state and ϑ is a
real number indicating the angle respect to the X axis. The squeezed state is represented
in the phase-space as shown in Figure 3. For a initial vacuum state |0〉, the squeezing
operator will reduce the variance of one quadrature, let say ∆2p̂ at the cost of the increase
of the conjugated one ∆2q̂ such that the minimum uncertainty is respected.

Figure 3. In red we show the squeezed vacuum state |0, ζ〉. The green ellipse is a squeezed
coherent state |α, ζ〉. ϑ is an angle respect to the X axis.

In the specific case of a squeezed coherent state, it can be generated from the
vacuum state by applying the displacement operator followed by the squeezing operator V:

|α, ζ〉 = S(ζ)D(α) |0〉 . (2.14)

Calculating the variances of the generalized quadratures in the base of coherent
states:

∆2p̂ϕ = 1
2
[e2r sin2(ϕ− ϑ/2) + e−2r cos2(θ − ϑ/2)

]
. (2.15)

By varying ϑ it is possible to scan the variance of the state from the minimum
(fluctuations below the Heisenberg limit) to the maximum (excess of noise) as illustrated
in Figure 3. A similar procedure give the result for the orthogonal quadrature q̂ϕ and the
uncertainty relation becomes:

∆2p̂ϕ∆2q̂ϕ ≥
1
4
[
sin4(ϕ− ϑ/2) + cos4(ϕ− ϑ/2)

+ 2 sin2(ϕ− ϑ/2) cos2(ϕ− ϑ/2) cosh(4r)
]
. (2.16)

The equality is fulfilled in two cases. Firstly, when r = 0 indicating the state is in a
vacuum state, or secondly, when 2ϕ = ϑ+ nπ, case where the variance of one quadrature
is e2r and the other one is e−2r. When ϕ = ϑ the (p̂ and q̂ defined in Equation 2.4).
V It is possible to produce the squeezed state by applying D(α)S(ζ) |0〉 but the final state will

be different. In [40] Chapter 21 there is a great explanation about this.
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∆2p = 1
2e−2r, (2.17)

∆2q = 1
2e2r, (2.18)

such that ∆2p∆2q = 1/4. As mentioned before, r is the compression factor indicating
that the p quadrature is squeezed (below the Heisenberg limit) and the q quadrature
anti-squeezed (above Heisenberg limit).

A useful insight can be obtained when operating the squeezing operator on the
vacuum state in the Fock basis:

S(ζ) |0〉 =
√

arcCosh(r)
∞∑
n=0

√
(2n)!
n!

[
−1

2eiθ tanh(r)
]n
|2n〉 . (2.19)

Equation 2.19 indicates that the squeezed vacuum state is a superposition of even
pair of photons. Therefore the number of photons fluctuates around zero and moreover,
if the compression operator increases the mean number of photons increases as sinh2(r);
most of the excitations are generated on the first modes (|0〉 , |2〉 , |4〉 , · · · ) [41].

Two-mode squeezed state

The squeezing can also be present in a non-degenerate process. As an example,
consider the non-degenerate parametric down conversion process in a material with second
order non-linearity χ(2) , characterized by the generation of a pair of correlated states
at different frequencies ω2 and ω3, from an initial state with frequency ω1 such that the
energy is conserved ω1 = ω2 +ω3. The process prepare correlated states, similar to the ones
in the Einstein-Podolsky-Rosen paradox [42], and for this reason the two-mode squeezed
states are known as EPR-like states.

In a similar way as the single-mode, the two-mode squeezed coherent state can
be generated from the vacuum by the action of the displacement operator on each mode,
followed by the squeezing operator:

|α1, α2, ζ〉 = S12(ζ)D(α1)D(α2) |0〉

= e(ζ∗â1â2−ζâ†1â
†
2)e(α1â

†
1−α

∗
1â1)e(α2â

†
2−α

∗
2â2) |0〉 . (2.20)

On the other hand, when operated on a two mode vacuum state, the two-mode
squeezed vacuum state is:
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|ζ1,2〉 = S1,2(ζ) |01; 02〉 (2.21)

= arcCosh(r)
∞∑
n=0

[
−eiθ tanh(r)

]n
|n1;n2〉 . (2.22)

The two-mode squeezed vacuum state is a superposition of the same number of
photons on each mode. It is also an entangled state given that it can not be expressed
as the tensor product of the composite system. We will extend the discussion about
entanglement later.

An interesting fact of the two-mode squeezing states comes from the study of the
statistics of each mode. Consider the mean value of an arbitrary operator Ôi, where
i = 1, 2, in the base of the two-mode squeezed vacuum states:

〈ζ1,2| Ôi |ζ1,2〉 = arcCosh2(r)
∞∑
n=0

(
tanh2(r)

)2n
〈ni| Ôi |ni〉 , (2.23)

and compare it to the density matrix of a thermal state:

ρ =
∞∑
n=0

(
1− e−β~ω)e−βn~ω |n〉 〈n| . (2.24)

If tanh2(r) = e−β~ω and n = sinh2(r), Equation 2.23 has the form of the mean
value of a thermal state, independently of the operator Ô. Therefore, the individual modes
are in a thermal state, there is no possibility of full knowledge of the system by individual
measurements. However, we can find the quantum correlations when studying combinations
of the quadratures, saying addition or subtraction of quadratures of individual modes as
depicted in Equation 2.25:

p̂± = p̂1 ± p̂2, (2.25)

q̂± = q̂1 ± q̂2, (2.26)

where the sub-index refer to two different modes. This is shown in Figure 4 where the δp̂−
and the δq̂+ quadratures presents signals below the SQL.

The advantage of the squeezing states is the possibility of enhancing the precision
of measurements since [p±, q∓] = 0, so there is no theoretical limitation for a precise and
simultaneous measurement of both operators. The variances for the quadratures are:

∆2p∓ = 1
2e∓2r, (2.27)

∆2q± = 1
2e∓2r. (2.28)
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(a) Thermal state on
mode 1.

(b) Thermal state on mode 2.

Figure 4. In the two-mode squeezing, individual modes are in thermal states (a). When
looking at the addition and subtraction of quadratures the squeezing is present in the
orthogonal quadratures δp̂− and δq̂+.

In the case of an ideal EPR state, r →∞ and we should have infinite squeezing in
the p̂− and in the q̂+ quadratures. Furthermore, the two-mode squeeze states constitute
a pure state [36]. However, for quantum computing it is not necessary such a level of
squeezing and the real two-mode states are not pure states. Some recent works shown that
squeezing levels around 20 dB are sufficient for fault-tolerant quantum computing [43].

2.3 Covariance Matrix

Given a set of N modes, we can define a 2N vector containing every quadrature of
the modes

X̂ = (p̂1, q̂1, . . . , p̂N , q̂N)T , (2.29)

such that the commutation relation is written as

[
X̂n, X̂l

]
= iΩnl, (2.30)

where Ω is the N-mode symplectic form [29]

Ω =
N⊕
j=1

(iσy). (2.31)

The symbol ⊕ indicates the blockwise composition of matrices, N the number of
described modes, and σy the Y-Pauli matrix. For instance, for a two level system N = 2,
X̂ = (p̂1, q̂1, p̂2, q̂2) such that,
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Ω =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .

The latter relationships are not exclusive for Gaussian states but for any state in
the CV regime. For the case of the Gaussian states, their physical properties are completely
defined by the first and second moments organized in a 2N × 2N covariance matrix V
with entries given by

Vij = 1
2 〈{Xi, Xj}〉 − 〈Xi〉 〈Xj〉 ,

= 1
2 〈{δXi, δXj}〉 , (2.32)

where ij corresponds to the matrix element of the covariance matrix, and δÔ = Ô − 〈Ô〉
is the fluctuation operator. The diagonal elements of the covariance matrix V correspond
to the variances of the quadratures whereas the off-diagonal terms, to the correlations
between quadratures.

The covariance matrix V is real, symmetric, and positive semi-definite matrix and
must fulfill the relation

V + iΩ ≥ 0, (2.33)

which is a necessary and sufficient condition for having a positive semi-definite density
matrix ρ, hence, is a condition that any CV state must satisfy. The latter relation is
known as the Robertson-Schrödinger uncertainty principle [34]. It must be respected by
any covariance matrix in order to describe physical states. Hence, it is possible to establish
a criteria for the physicality of a state by considering Equation 2.33 such that [34]:

Eigs
[
−(VΩ)2

]
≥ 1, (2.34)

where Eigs stands for eigenvalues. Therefore, we now have a method for identifying the
validity of a covariance matrix, in other words, if V describes physical states. Equation 2.34
will be useful as a sanity test since each reconstructed covariance matrix must be physical,
as well as in the analysis of quantum correlations as will be discussed in later chapters.

2.4 Photodetection

Measurement of the properties of a state in the CV regime, implies the detection
of the quadratures’ statistics. As far as we are generating bright light beams, we can use



2.4 Photodetection 13

photodiodes that convert light into photocurrent. Usually, a conversion factor between
light and photocurrent, called quantum efficiency, above 80% is desired for a reasonable
reconstruction of the state. The photocurrent involves the measurement of a field composed
of a bright carrier centered at frequency ωca and a full spectrum of sidebands at ωca ± Ω.
In the time domain (Figure 5a), the photocurrent is composed by a mean value (blue
continuous line) and the fluctuations around it (purple line). In the frequency domain
(Figure 5b), the photocurrent is visualized as a central peak at ωca in which most of
the energy is stored (blue curve), and the sidebands situated at frequencies far from the
carrier (purple lines). It is in the fluctuations of the quadratures of different modes on the
sidebands that we will be looking for the quantum signatures.

(a) Electromagnetic field in the time
domain. The field can be decomposed
in a mean value 〈I〉 and fluctuations

∆I around it.

Carrier

Sideband Sideband

(b) Electromagnetic field in the
frequency domain. At the carrier
frequency ωca most of the energy is
stored. Around it are the sidebands.

Figure 5. Carrier and sideband representation.

The photocurrent of a single light beam is described by [44]:

i(t) = κÊ−(t)Ê+(t), (2.35)

where i(t) is the photocurrent, κ is a factor that includes photodiode characteristics such
as the gain and the quantum efficiency, and electronic gain, and Ê± is the quantized
electric field.

Given an incoming beam to the photodiode, its total Hilbert space is the tensor
product between the space of the carrier (considered a coherent state) and the space of the
sidebands, such that the incoming state is |Φ〉 = |αca〉 |ψsd〉. The electric field is written
as a combination of the carrier and the sidebands such that in the reference frame of the
photodiode at r = 0,
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Ê+(t) = Ê+
ca(t) + Ê+

sd(t) (2.36)

= αca + δâsd. (2.37)

Here, we distinguish the carrier with the subscript ca and the sidebands with the subscript
sd. Therefore, Equation 2.35 can be organized in terms of the mean field of the carrier
αca and the quadrature operator δp̂θca

defined in Equation 2.4

i(t) ≈ |αca|2 + |αca|
[
δâsd(t)e−iθca + δâ†sd(t)eiθca

]
i(t) ≈ |αca|2 + |αca|

[
δp̂θca

(t)
]
, (2.38)

where the term δâ†sdδâsd was ignored since is much smaller than |αca|. Equation 2.38
corresponds to the photocurrent measured by the photodiodes. The first part |αca|
corresponds to the carrier intensity, term that will be defined as the low frequency
component (DC component). The second term corresponds to the fluctuations of the
quadratures on the sideband modes δp̂sd that is called the high frequency component (HF
component). Notice that the mean field of the carrier |αca| amplifies the signal coming
from the fluctuations, hence, it is considered as part of the detection scheme.

A convenient transformation into the reference frame of the carrier (â(t) = âe−iωcat)
eliminates the explicit time dependence. We keep the same notation for the ladder
operators for simplicity.

So far we have been working in the time domain. Nonetheless, our characterization
is done in the frequency domain. Therefore, we must Fourier-transform the quadrature
operators p̂(t) and q̂(t). The lowering and raising operators, â and â†, transforms as:

âsd(t) =
∫ ∞
δωca

âsd(ω)e−i(ω−ωca)tdω ; â†sd(t) =
∫ ∞
δωca

â†sd(ω)e−i(ω−ωca)tdω,

where ωca corresponds to the central frequency of the carrier, and δωca to the linewidth of
the carrier beam. The integral is done over the high frequency region, thus, the sidebands
must be considered above the cutting frequency δωca.

In our photodiode this cutting frequency δωca is 600 kHz. Hence, we define two
frequency regions, the low frequency component (DC) with frequencies |ωca±Ω| < 600kHz,
and the high frequency component (HF) composed by frequencies above 600 kHz. However,
considering all the other experimental implementations, its parameters and technical
limitations, the cutting frequency increases up to units of MHz from the the carrier
linewidth δωca VI. Hence, we can approximate δωca → 0.
VI For instance, the analysis cavity has a lower frequency for measurements in the order of

units of MHz
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A suitable change of variable ω → ωca + Ω modifies the limits of the integral such
that

∫ ∞
0

âsd(ω)e−i(ω−ωca)tdω →
∫ ∞
−ωca

e−iΩtâsd(Ω + ωca)dΩ.

As long as ωca � Ω –ωca is of the order of hundreds of THz while Ω of the order of
MHz– we can approximate the lower limit of the integral ωca →∞ to obtain:

∫ ∞
−ωca

e−iΩtâsd(Ω + ωca)dΩ ≈
∫ ∞
−∞

e−iΩtâsd(Ω + ωca)dΩ.

We can simplify the notation by making ωca + Ω → Ω. Therefore, the Fourier-
transform relations now reads:

âsd(t) =
∫ ∞
−∞

e−iΩtâsd(Ω)dΩ, (2.39)

âsd(Ω) =
∫ ∞
−∞

eiΩtâsd(t)dt, (2.40)

and its adjoint operator

â†sd(t) =
∫ ∞
−∞

e−iΩtâ†sd(Ω)dΩ, (2.41)

[âsd(Ω)]† =
∫ ∞
−∞

e−iΩtâ†sd(t)dt = â†(−Ω). (2.42)

The quadratures of the electric field in the frequency domain now read:

p̂θ(Ω) = 1√
2
(
â(Ω)e−iθ + â†(Ω)eiθ) , (2.43)

q̂θ(Ω) = − i√
2
(
â(Ω)e−iθ − â†(Ω)eiθ) , (2.44)

and fulfill the commutation relation:

[
â(Ω), â†(Ω′)

]
= δ(Ω + Ω′), (2.45)

[p̂θ(Ω), q̂θ(Ω′)] = iδ(Ω + Ω′). (2.46)

However, notice that [âsd(Ω)]† 6= â†sd(Ω) since its inverse Fourier transform follows

â†(Ω) =
∫ ∞
−∞

eiΩtâ†(t)dt. (2.47)
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From the commutation relations in Equation 2.45, we observe that the quadratures
as defined so far, are composed by ladder operators of different frequency modes [45].
Hence, the quadratures in Equation 2.43 are not Hermitian operators. However, it is
possible to define quadratures for a single frequency mode, denoted by the subscript âΩ′

and â†Ω′ and relate them to the previous ladder operators as follow:

â(Ω′)→ âΩ′ ; â(−Ω′)→ â−Ω′

â†(Ω′)→ â†−Ω′ ; [â(Ω′)]† → â†Ω′

such that, the quadratures of a single frequency mode named sideband basis are:

p̂±Ω′ = â±Ω′ + â†±Ω′ , (2.48)

q̂±Ω′ = −i
(
â±Ω′ − â†±Ω′

)
, (2.49)

fulfilling the commutation relations

[p̂Ω, q̂Ω′ ] = iδ(Ω− Ω′). (2.50)

In the sideband basis, the frequency Ω′ refers to the frequency of the sideband
around the carrier. When Ω′ = +Ω we will be referring to the upper sideband mode, while
where Ω′ = −Ω we will be referring to the lower sideband. Notice that in the sideband
basis the quadratures are hermitian operators on a single mode Ω′. The definition of the
quadratures for a single sideband enable the study of quantum correlations between the
upper and the lower sideband modes separately. In the following chapters we will show
that the study of quantum correlations in the sideband basis reveals a richer structure of
the quantum correlations.

The quadratures defined in Equation 2.43 are related to the sideband basis by the
transformation

X̂Ω = 1
2


1 i 1 −i
−i 1 i 1
1 −i 1 i

i 1 −i 1

 X̂(Ω),

X̂Ω = LX̂(Ω), (2.51)

where X̂Ω =
(
p̂−Ω, q̂−Ω, p̂Ω, q̂Ω

)T
, X̂(Ω) = (p̂(−Ω), q̂(−Ω), p̂(Ω), q̂(Ω))T . This transforma-

tion is only applicable for one mode. When dealing with two modes the space must be
doubled.
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A useful set of quadratures, corresponding to the symmetric/anti-symmetric basis
(SA) must be defined. They are relevant since they appear naturally in the reconstruction
of the state. The quadratures in the (SA) are defined in terms of Equation 2.49 as

p̂s/a = p̂Ω ± p̂−Ω, (2.52)

q̂s/a = q̂Ω ± q̂−Ω. (2.53)

It is possible to check that the quadratures in the SA basis fulfill the commutation relations
Equation 2.45.

Finally, the quadratures in the sideband basis are related to the quadratures in the
SA basis through a transformation (we exemplify for the case of four modes given is the
case related to our experiment)

X̂Ω = 1√
2



1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1



X̂s/a,

X̂Ω = ΛX̂s/a, (2.54)

where the vectors on each basis are defined by

X̂Ω =
{
p

(1)
−Ω, q

(1)
−Ω, p

(2)
−Ω, q

(2)
−Ω, p

(1)
Ω , q

(1)
Ω , p

(2)
Ω , q

(2)
Ω

}T
(2.55)

X̂s/a =
{
p(1)
s , q(1)

s , p(2)
s , q(2)

s , p(1)
a , q(1)

a , p(2)
a , q(2)

a

}T
. (2.56)

In general, the vectors X̂ have size of 1×2k, where 2 corresponds to the pair of quadratures
p̂, q̂ and k to the number of modes.

During the experimental characterization, both the SA and the sideband basis will
be used for the characterization of the states.

2.4.1 Noise Spectrum

The reconstruction of the state is done through the observation of the Noise
spectrum. It corresponds to the Fourier transform of the temporal autocorrelation function
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(C(t, t′)) of a stationary process VII [40] yielding the photocurrent fluctuations in a time
interval τ ,

C(τ) = 〈δi(t) δi(t+ τ)〉 ,

S(Ω) =
∫ ∞
−∞

C(τ)eiΩτdτ. (2.57)

In terms of the photocurrent, the noise spectrum is given by

〈δi(Ω)δi(Ω′)〉 =
〈∫ ∞
−∞

δi(t)eiΩtdt
∫ ∞
−∞

δi(t′)eiΩt′dt′
〉

taking τ = t′ − t

=
〈∫ ∞
−∞

δi(t)δi(t+ τ ′)eiΩ′τdτ
∫ ∞
−∞

eit(Ω′+Ω)dt
〉

=
∫ ∞
−∞

C(τ)eiΩ′tdτ 2πδ (Ω + Ω′)

〈δi(Ω)δi(Ω′)〉 = S(Ω)δ (Ω + Ω′) , (2.58)

where S(Ω) is the strength of the fluctuations at frequency Ω. Equation 2.58 is know
as the Wiener-Khintchine theorem [40], that relates the variance of a measurement, the
photocurrent or the fluctuation of the quadratures in our case, with the noise spectral
density S of a stationery process.

From Equation 2.58 we can reconstruct the covariance matrix Equation 2.32. This
will be shown in section 4.6.

2.4.2 Shot noise

The noise spectrum by itself does not yield much information, we must have
a benchmark that provides a clear difference between the classical and the quantum
correlations. The standard quantum limit (SQL) is the concept that takes this role. It was
introduced in section 2.2 as a Heisenberg limited state that provides a limiting case for the
precision in classical measurements. Moreover, it will be used for the calibration of the
imbalance between the electronic channels and the lower bound noise level of the system.
This characterization must be done for each analysis frequency Ω given that electronic
components respond differently at different frequencies.

The photodetectors are only sensitive to intense fields, hence, we determine our
benchmark through the shot noise, employing a balanced detection scheme as shown in

VII In a stationary process, the autocorrelation function only depends on the difference τ = t−t′.
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Figure 6 [20]. Consider two input beams â0 and â1 interfering in a balanced beam splitter
(BS) generating two output fields â3 and â4 according to the relation

â3

â4

 =
|r| |t|
|t| −|r|

â1

â0

 . (2.59)

SA

/+

Figure 6. Balanced detection. Two input beams interfere on a beam splitter. The output
is measured and the photocurrents are subtracted giving the information of the shot noise.

The classical fluctuations are divided equally by the balanced beam splitter and
canceled in the subtraction of signals. However, the random quantum fluctuations remain
and are detected. The photocurrent at ports 3 and 4 are recorded and subtracted; the
photocurrent will be proportional to Î3 = κâ†3â3 and Î4 = κâ†4â4. Considering â0 a coherent
state |β〉 with amplitude β = |β|eiθ we would find

∆2I+ = κ
(
∆2n̂a1 + 〈Ia0〉

)
, (2.60)

∆2I− = κ
(
〈â†1â1〉+ |β|2∆2p̂θ

)
. (2.61)

If we consider â1 as the operator from a vacuum state, the previous relation reads

∆2I+ = κ∆2n̂a, (2.62)

∆2I− = κ|α1|2∆2X̂v. (2.63)

Equation 2.60 describes the noise from an arbitrary state entering through port â1, whereas
Equation 2.62 is the noise from the vacuum state. Equation 2.63 defines the Shot Noise
level. It corresponds to the intensity noise from a coherent state and depends on the
ampitude of the beam. The shot noise is used as the reference for measuring quantum
correlations by taking the rate ∆2I+/∆2I−. If ∆2I+/∆2I− > 1 the state has excess of noise
whereas the contrary case, ∆2I+/∆2I− < 1 indicates a squeezed state. In the proposed
case where a vacuum state enter through the port â1, ∆2I+ = ∆2I− = 1. This detection
scheme will be implemented in the section 4.5 when studying the intensity correlations.
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2.5 Separability criteria and entanglement

The concept of entanglement is essential in quantum information. It is refereed as
a phenomenon where a quantum state can not be fully described by a statistical mixture
of their subsystems, but has to be described relating every subsystem by their joint density
matrix sharing information at the quantum level. Mathematically, a quantum state that
can not be written as a convex sum of tensor products of each of the subsystems is refereed
as an entangled state, on the contrary it is a separable state.

In the formalism of the covariance matrix, a necessary and sufficient condition for
separability of states implies that a multipartite state composed by k modes is separable if
and only the following inequality holds:

V ≥ VA ⊕ VB ⊕ · · · ⊕ Vk (2.64)

where ⊕ indicates the block wise composition of the k matrices [46]. If this condition is
not satisfied, the state is entangled.

Testing the entanglement is not easy by the definition itself. Several operational
criteria based on the covariance matrix were proposed which are useful in experimental
characterizations, among them, the DGCZ criterion, henceforth refereed as the Duan
criterion, and the Positivity under partial transpose (PPT), which are explored in this
thesis. In our experiment we will be exploring the entanglement between four modes in
the SA basis or the sideband basis, two for each generated beam. Hence, we present the
separability criteria in terms of the covariance matrix on each basis.

2.5.1 Duan criterion

The Duan criterion is a inseparability criterion based on the calculation of the
variance of a Einstein-Podolsky-Rosen (EPR) type states as the ones presented in section 2.2.
In their work, Duan and colleagues found that for separable states, the variance of the
EPR-like states respect the following inequation [47]

∆2p̂− + ∆2q̂+ ≥ 1, (2.65)

where we defined the combination of quadratures in Equation 2.25. Equation 2.65 defines
a sufficient inseparability condition for Gaussian states. Nonetheless, it is not a necessary
criterion since fulfillment of the inequality does not imply separability. In Figure 7 we
exemplify an entangled state corresponding to the typical configuration of an EPR-state
where the q̂+ and the p̂− quadrature presents noise level below the SQL.

While the Duan criterion is enough for characterizing the entanglement for quantum
teleportation [1], it ignores a certain amount of correlations since it only depends on few
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(a) Noise compression in the
q̂+ quadrature.

(b) Noise compression in the
p̂− quadrature.

Figure 7. Example of an entangled state. A two-mode squeezed state presents noise signal
below the SQL either in the q̂+ quadrature and the p̂− quadrature.

elements of the covariance matrix. We discuss more about this in the appendix section A.1.

2.5.2 PPT criterion

A second approach for the study of entanglement is the Positivity under partial
transpose criterion (PPT). This name comes from its analog in discrete variables were
given a joint density matrix describing k modes, the criteria is evaluated by taking the
partial transpose over selected modes [48, 49]. In the CV regime, the partial transposition
amounts to a mirror reflection of one quadrature of a mode k, for instance, for a single
mode

X̂ = (p̂1, q̂1)T PT−−→ (p̂1,−q̂1)T . (2.66)

This operation can be expanded to bipartite states or even multipartite states.
Given a covariance matrix V of a quantum state of l + k modes, the partial transposition
of the k states is given by

VPPT = TVT, with (2.67)

T = I2l ⊕ Σk,

Σk =
k⊕
j=1

σz,

with σz is the z Pauli matrix. In this way, T flips the momentum operator sign (q̂k → −q̂k)
of the last k modes.

Under this construction, we can evaluate the separability criterion. Given a state
described by covariance matrix V, the separable state implies in a physical matrix VPPT .
If not, the state is entangled.
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The PPT criteria allows the study of entanglement between bipartitions arranged in
different sets. For instance, Figure 8 shows a set of modes described by its own covariance
matrix Vi, i = A,B,C,D · · · .The gray region represent one bipartition, whereas the light
yellow represents the second bipartition under study.

Figure 8. Bipartitions in the PPT criterion. The gray region represents one bipartition.
The light yellow represents the second bipartition.

The PPT has the advantage of being a necessary and sufficient condition of
entanglement for bipartitions of the form 1× k for Gaussian states.

� � �

This chapter was a brief introduction of Gaussian states. We presented examples
of this set of states and how to fully characterize them through the first and second
moments. I highly recommend the young researchers to take a look at [34, 29] for a
broader introduction to the Gaussian states an its applications. Afterwards, we introduced
the notion of photodetection and noise spectrum, quantum fluctuations and quadratures in
the measurement setup. We established the relation between the noise spectrum and the
covariance matrix for the reconstruction of the state and discuss the different interpretation
between the chosen basis. At the end of the chapter we described the separability criteria
that we will be using for the analysis of our experiment, namely the Duan criterion and
the PPT criterion. We presented the intuition behind their formulation, and the method
for their calculation. In the following chapter we discuss the use quadratures in the SA
basis and the sideband basis for the theoretical description of the FWM process.
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3

Generation of correlations by
light-matter interaction

In this chapter we describe the structure of the atomic system and the light-
atom interaction that generates the four-wave mixing (FWM) process. We start by the
hyperfine structure of rubidium 85. Afterwards, we study the interaction between light
and atoms by two different approaches: firstly, the phenomenological description of the
amplification process starting from a classical description of the amplification process,
and the introduction of the field operators for the study of quantum correlations. A
second description, named the microscopic approach, takes into account every light-atom
parameter such as the seed frequency, pump detuning, light power, atom density and
among others, in the description of the Four-wave mixing process. We use the microscopic
description to have a complete description of the quantum correlations produced in the
generated beams of the FWM process. A broader introduction to the FWM process can
be found in [50].

3.1 Four-Wave Mixing

The Four-wave mixing (FWM) is a parametric process in which two modes interact
with a third order non-linear medium to generate a pair of new modes. It can be generated
using different media, for instance, atoms [12], optical fibers [51], and silicon chips [5]. In
our case, we pump an ensemble of hot rubidium atoms and use a seed beam to generate
non-degenerate FWM, all in free space.

Figure 9 shows the FWM process in rubidium 85 isotope in the D1 line (Coupling
between 52S1/2 → 52P1/2 at 795 nm). The ground states |0〉 an |1〉 corresponds to the
real energy levels |52S1/2, F = 2〉 and |52S1/2, F = 3〉 respectively. The frequency splitting
between these levels is 3.035 GHz [52]. The states |2〉 and |3〉 are off-resonance levels
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Figure 9. FWM energy levels on Rubidium 85. The two black arrows represents the pump
beam. It excites the electrons from lower energy level (|0〉 and |1〉 ) to the excited virtual
levels |2〉 and |3〉. The probe (red downwards arrow) and conjugated (blue downwards)
beams are generated such that there is conservation of energy and momentum. ∆1 and ∆2
are the detuning of the pump and probe from the 52P1/2 transition.

denominated virtual states, used to explain the FWM process. The real excited states
corresponds to |52P1/2, F = 2〉 and |52P1/2, F = 3〉 with a frequency splitting of 361.58
MHz. The excited levels can be ignored as far as the pump frequency is 1 GHz above
these transitions.

The pump beam (black upward arrows) couples levels |0〉 → |2〉, and levels |1〉 → |3〉.
The input seed beam at frequency ωpr couples the levels |1〉 to |2〉; by the interaction with
the atomic cloud the seed beam is amplified and generates the probe beam (red downward
arrow) at the same frequency. Given the conservation of energy, the conjugated beam
with frequency ωcj is generated between levels |3〉 and |0〉, closing a double-Λ structure
(blue downward arrow). Under this configuration, the lower frequency generated is said
to be in the Stokes channel (ωpr), whereas the higher frequency (ωcj) is said to be in the
Anti-Stokes channel I.

Some important parameters are defined in Figure 9: ∆1 is known as the one-photon
detuning, which is the relative frequency between the pump frequency and the 52P1/2 level.
∆1 will be called pump detuning. ∆2 is the seed frequency relative to the excited state
52P1/2; through this document ∆2 is denominated probe detuning. In the literature it is
common to find the two-photon detuning δ = ∆1 −∆2 as the relevant quantity since it
indicates the distance to the resonance . However, we had direct control over ∆2 and

I The double-Λ structure could also be satisfied if the seed frequency where at the Anti-Stokes
channel. In this case the conjugated frequency would be generated in the Stokes channel and
would be coupling levels |2〉 and |1〉. The seed frequency was selected in accordance with
most of the articles cited during the chapter.
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hence we adopted this parameter. The FWM process satisfy energy conservation

2ωP − ωcj − ωpr = 0, (3.1)

where ωP is the pump frequency, ωpr the probe (or seed) frequency and ωcj the conjugated
frequency. In addition, the seed beam entering in the Stokes channel imposes a condition
for conservation of momentum. In other words, it defines the output direction of the probe
and conjugated beams. Hence, the conservation of momentum is given by

2kP − kcj − kpr = 0. (3.2)

Figure 10. Seeded FWM. An input weak beam will define the direction for the generation
of the beams. The frequencies of the generated beams conserve energy and the direction
conserve momentum.

3.2 Amplification process

In the FWM process the seed beam is amplified and, simultaneously, the conjugated
beam is generated. This process can be studied from two different approaches: firstly
a phenomenological description where the system is considered as a non-linear "black
box" that generates the amplification and the quantum correlations. In such model, the
interaction between atoms and light is treated as an effective interaction. The second
approach, the microscopic description, study the FWM considering the field-matter
interaction by the dipole moment term. The section is highly based on the work done in
[53].

3.2.1 Phenomenological description

The amplification process can be described from the Maxwell equations by consid-
ering the propagation of the beams through a "black-box" of length L with a third order
non-linear medium inside. Consider the probe and the conjugated beams as plane-waves
with linear polarization, traveling in the z direction through the material. Each field has
the form:

Ei(z, t) = Ei(z)ei(kiz−ωit) + c.c., (3.3)
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where i stands for the probe (pr), conjugated (cj) or pump (P ) beam; Ei is a complex
amplitude dependent on z and ki is the projection of the wave-vector on the z direction.

By the effect of the electromagnetic field, the material becomes polarized and could
generate new frequencies on the electromagnetic field [54]. In this case, the wave-equation
for the electric field is

∂2

∂z2E(z, t) = 1
c2
∂2

∂t2
E(z, t) + 1

εoc2
∂2

∂t2
P (z, t), (3.4)

where P is the polarization of the material due to the field. We are considering absence of
free charge and free current.

The total field inside the material is the superposition of the three of them ET (z, t) =
EP (z, t) + Epr(z, t) + Ecj(z, t). The pump beam is much stronger than the probe and
conjugated fields such that there is no depletion of its amplitude, and hence, EP (z)→ EP
II; the material presents a third order non-linearity P (z, t) given by III:

P (z, t) = χ(3)E3(z, t). (3.5)

Under the slow varying envelope approximation
(
∂2E(z)
∂z2 � k ∂E(z)

∂t
, Ej(z)→ Ej

)
IV,

and considering the phase-matching condition Equation 3.2, the expansion of the cubic
dependence of the electric field becomes

∂Epr(z)
∂z

= i
[
κprEpr(z) + ηprE∗cj(z)

]
, (3.6)

∂Ecj(z)
∂z

= i
[
κcjEcj(z) + ηcjE∗pr(z)

]
, (3.7)

where κj(z) = 3ωj

4εocχ
(3)|EP |2, ηj(z) = 3ωj

4εocχ
(3)E2

P , with j standing for probe pr or conjugated
cj refractive index. The imaginary part of κj (Im{κj}) is responsible for the absorption
of the medium. As shown in [26], when the two-photon detuning δ is zero the absorption

II The efficiency of the process depends on the geometric phase matching condition. If it is
completely satisfied, the efficiency is 1 meaning that this configuration provides the maximum
generation rate. However, a perfect geometric phase matching condition results in a gain
factor so small that the signal of the generated beams is mixed with the electronic background
noise. Hence, there must be a small angle between the pump and the seed causing the
efficiency to drop. This will cause that many photons from the pump beam would not be
affected in the FWM process. Moreover, if we consider the fact that in our experiment the
pump is 103 times stronger than the seed beam, and 102 stronger than the generated beams,
we can assume that the pump beam is not affected by the FWM process [26,55]

III χ is considered a scalar, meaning it is a nonlinear material with isotropic behavior.
IV The amplitude of the field varies too slow in a period.
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rate is maximum due to Raman absorption V. The real part Re{κj} is taken into account
as the change of the refractive index. In the same work, the authors show that only the
probe beam suffers a considerable change in its refractive index due to the pump beam,
different from the conjugated beam which remains unaltered. The parameter ηj is the
responsible for the generation of the FWM and the quantum correlations.

If we consider that the pump beam is undepleted (which is the experimental case),
κj(z)→ κj and ηj(z)→ ηj. Therefore, the effect of κj is a phase shift in the probe and
conjugated beam of the form:

Ẽj = Eje−iκjz,

and equations 3.6 and 3.7 can be written as first order coupled linear differential equations:

∂Epr(z)
∂z

= iηprE∗cj(z), (3.8)

∂Ecj(z)
∂z

= iηcjE∗pr(z). (3.9)

Equations 3.8 and 3.9 are coupled linear equations whose solution will be determined
by the boundary conditions. In the case of the probe field, Epr(z = 0) = Ein; while for the
conjugated field Ecj(z = 0) = 0. Hence, the amplitude of the fields at each point inside
the cell is:

Epr(z) = Ein cosh
(√

ηprη∗cjz
)
, (3.10)

Ecj(z) = −i

√√√√η∗cj
ηpr

Ein cosh
(√

ηprη∗cjz
)
. (3.11)

So far, we have mentioned the change in the refractive index suffered only by the
probe beam due to the action of the pump on the atomic vapour. This will modify the
phase matching condition (Equation 3.2) in such a way that:

kpr = nPkfrpr ,

2kP − kcj − kpr = 0, (3.12)

where nP =
√

1 +Re{κpr} is the refractive index for the probe beam generated by the
pump beam, and kfrpr is the wave-vector of the probe beam in free space. In Figure 11
V The Raman process is different from the FWM in the sense that in a Raman effect, a inelastic

scattering happens, exciting the atom into a virtual state and generating a frequency detuned
photon. The frequency difference between the absorbed and the emitted photon reveals
information about the vibrational modes in the system.
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we illustrate the possible cases of phase matching. When the propagation is colinear
(Figure 11a), the phase-matching is fulfilled. If we consider the change in the susceptibility,
the energy conservation preserve the phase-matching condition [26]. When the seed kfrpr
and the pump kP are not colinear, the cross-phase modulation induced by the pump will
modify the refractive index of the atoms and will affect the wave-vector of the probe such
that kpr = nPkfrpr , satisfying the phase-matching. Any deviations in the angle do not
modify equations 3.8 and 3.9, it just alters the efficiency of the process.

(a) Phase matching in
colinear propagation.

(b) Phase mis-
match.

(c) Phase matching.

Figure 11. (a) Colinear configuration: the phase matching is satisfied. (b): When the
seed enters the system with an angle θ, a ∆kz appears. However, if the pump is strong
enough it will modify the refractive index of the medium and the wave-vector of the seed is
modified (c) such that the phase-matching is fulfilled.

Gain factor phenomenological approach

In order to illustrate the physics involved in the process, we can consider a degenerate
case where ωpr ≈ ωcj → ηpr ≈ ηcj ≈ η(3), where the subscript (3) indicates the third order
non-linearity, and take the squared norm of Equation 3.10. This is justified by the fact
that the frequency difference between probe and conjugated is 6 GHz, which in terms of
wavelength corresponds to a difference ∆λ ≈ 1× 10−3nm. After taking into account the
boundary condition at z = L we will find the following relations:

|Epr(L)|2 = G |Ein|2 , (3.13)

|EC(L)|2 = (G− 1) |Ein|2 , (3.14)

where G = cosh2
(
|η(3)|L

)
. In the case that |η(3)|L� 1

|Epr(L)|2 = |EC(L)|2 ≈ |Ein|2 e|η(3)|L, (3.15)
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resulting in an amplified probe and a generated conjugated beam. Under the phenomeno-
logical approach, three factors contribute to the amplification process: the length of the
material L, the pump power |EP |2 and the non-linear coefficient χ(3). Some undesired
effects can appear in extreme cases. If the cell is too long, the absorption can be higher than
the amplification and no beams will be generated. In contrast, if the pump is too intense,
some other non-linear effects could be induced as thermal lensing or self-modulations VI

[56].

This simplified model is useful for describing the generation of the beams and the
quantum correlations. However, it does not take into account many parameters in the
interaction. A better understanding is given by the quantum treatment we we show in the
next section.

Quantum phenomenological approach

Starting from the simplified description we can go a step further to a quantized
description of the process. This model also allows the study of the correlations between
the quadratures of the generated fields.

The amplification process is described by the transformation

âout =
√
G âin +

√
G− 1 b̂†in (3.16)

b̂†out =
√
G b̂†in +

√
G− 1 âin, (3.17)

where G > 1 is the gain coefficient, âin is associated with a weak coherent state at the
input, unlike the conjugated b̂in being a vacuum state at the input. âout is the probe beam,
b̂in is the conjugated beam. Each of the operators â and b̂ can be decomposed by a mean
value and a fluctuation term as â = a + δâ and b̂ = b + δb̂, with a and b being complex
amplitude of the fields.

Up to this point we have described the amplification process. Hereafter, we will be
interested in the study of the quantum properties available in the FWM. The intensity
correlations or intensity-difference squeezing is the first quantum property we will discuss.
It refers to a two mode squeezed state where the subtraction of the photocurrent provides
a signal below the shot noise limit. It is measured by the difference between the intensities
N̂−,out = â†outâout − b̂†outb̂out such that:
VI Kerr effects is a non-optical linear effect that occur when an intense beam propagates in

a medium with third-order non linearities. It is characterized by a change in the refractive
index of the medium proportional to the intensity of light. In the self-phase modulation, the
phase from a single beam is affected by the changes in the refractive index generated by
the same beam. On the other hand, the cross-phase modulation, generates a dephasing in a
second beam due to the action of a first intense beam. Both effects can generate lensing´
effects, meaning deformations on their spatial profile due to the change in the refractive
index.
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δN−,out = G
[
a∗inδâin + ainδâ

†
in + δâ†inδâin − δb̂

†
inδb̂in

]
(3.18)

+ (G− 1)
[
δb̂inδb̂

†
in − ainδâ

†
in − a∗inδâin − δâinδâ

†
in

]
.

The noise spectrum for δN−,out can be calculated by Equation 2.58, and becomes:

S(N̂−,out) = 〈δN̂−,outδN̂−,out〉
〈N̂+,out〉

= 1
2G− 1 . (3.19)

The noise spectrum under the phenomenological description has an inverse relation
with the gain of the process, the higher the gain, the more squeezing. This description is
incomplete since experimentally there has been found an upper limit for the amplification
in which the squeezing will decrease. For instance, at higher temperature the gain factor
increases as a consequence of having a higher density of atoms. However, other undesired
non-linear effects occur, limiting the generation of correlations [7]. The simplified model
lacks of degrees of freedom that describes the experimental situation and connects the
quantum correlations with the gain factor. A more exhaustive description must be done
in order to have a better understanding of the process.

3.3 Microcopic description of the FWM

In this section we present the microscopic description of the FWM. This model
takes into account different parameters like atomic structure, atomic density, fields relative
frequencies and so on, such that we will have a better control on the simulations in order to
reproduce with higher fidelity the experimental results. We consider that the propagation
between the beams is colinear and the momentum conservation is satisfied. This section is
highly base on [53, 13].

The interactions present at the light-atom system are described by the total
Hamiltonian ĤT as follow:

ĤT (r, t) = ĤA + ĤF
pr(r, t) + ĤF

cj(r, t) + ĤI(r, t), (3.20)

ĤA(r, t) = ~
∫ L

0
[ω0σ̂00(r, t) + ω1σ̂11(r, t) + ω2σ̂22(r, t) + ω3σ̂33(r, t)] dz,

HF
j =

∑
~ωj

(
â†j âj + 1

2

)
, (3.21)

where ĤA is the free atomic Hamiltonian, ĤF
j are the free fields hamiltonian (j = pr, cj),

σij = |i〉 〈j| are the atomic operators describing the populations (i = j) or the coherence
(i 6= j), and ωi are the frequencies of the atomic levels.
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Additionally, the interaction Hamiltonian HI has the form:

ĤI = −
∑
k

d̂k · Ê(rk, t)

= ~
∫ L

0

[
ΩPeiΩP tσ̂02(z) + ΩPeiΩP tσ̂13(z) (3.22)

+g2σ̂21(z)â(z, t)eiωprt + g3σ̂30b̂(z, t)eiωcjt + h.c.
]
ρAdz.

The interaction Hamiltonian ,HI corresponds to a field-matter interaction between
the pump, probe, and conjugated beams with the atoms [57]. ΩP is the Rabi frequency
defined by the dipolar interaction (dij) between pump and atoms. ΩP is related to the
pump power through the relation ΩP = (dij/~)(

√
(2P ) / (ε0cπW 2

o )), where P is the pump
power and Wo is the pump waist. ωpr is the optical frequency of the probe field and ωcj is
the frequency of the conjugated field. g2 is the atomic coupling constant of the probe beam
with the transition |2〉 → |1〉. g3 is the atomic coupling constant of the conjugated beam
with the transition |3〉 → |0〉 VII. The spatial dependence in the atomic operators and the
integral in z, takes into account the difference in the atomic density throughout the cell.
The pump field have such a high power that it is considered as a classical field, therefore
its properties do not change during the FWM process. The probe and the conjugated
beams are considered quantum fields and have bosonic operators â and b̂ correspondingly.

In the Heisenberg picture, the evolution is governed by the Heisenberg-Langevin
equation [13]:

dσ̂ij
dt

= − i
~
[
σ̂ij, ĤT

]
+ L(σ̂ij) + F̂ij(t), (3.23)

with L = {σ̂02, σ̂12, σ̂03, σ̂13} being the Lindblad super operator that takes into account
the allowed spontaneous decay transitions, and F̂ij stochastic operators carrying the noise
entering the system and simulates the coupling with the environment. Equation 3.23 is
called the Heisenberg-Langevin equation for the atomic operators.

On the other hand, the dynamics of the optical field of the probe and conjugated
beams is defined by the following equations VIII,

∂â(z, t)
∂t

+ c
∂â(z, t)
∂z

= − i
~
[
â(z, t), ĤI(z, t)

]
(3.24)

∂b̂(z, t)
∂t

+ c
∂b̂(z, t)
∂z

= − i
~
[
b̂(z, t), ĤI(z, t)

]
, (3.25)

VII The atomic coupling constant gi = e
√

ωi
2ε0~V µi depends on the frequency between levels

and the dipole µ formed between them.
VIII In principle, the evolution of the field operators is given by the Heisenberg equation using

the total Hamiltonian ĤT . But in [58], they show how the evolution equation transforms
into Equation 3.24 where it is used the interaction Hamiltonian ĤI .
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where c is the speed of light in vacuum.

These dynamic equations allow us to simulate the amplification process, the noise
contribution and the correlations between the two generated fields.

In the case of the atomic operators in Equation 3.23, we can arrange a matrix
equation by transforming into the Liouville space such that the evolution of the atomic
states is given by:

d~σ(z, t)
dt

=M(t)~σ(z, t) + Ĝ(t)Â(z, t) + F̂(z, t), (3.26)

where ~σ = (σ00, σ01, σ02 · · ·σ33)T1×16 is a vector of the atomic population and coherence.
Â =

(
âpr(z, t), â†pr(z, t), âcj(z, t), â

†
cj(z, t)

)T
is a vector containing the field operators;

M(t) is a matrix containing the Rabi frequency ΩP , frequencies of the fields (ωpr , ωcj),
and the spontaneous emission rates. Ĝ(t) is an operator that depends on the coupling
constants between levels (gi) and the atomic operators σ̂ij, and F̂ are the fluctuation
terms. MatrixM has the form:

Mij = −iL
N

[ω0 (σi0δj0 − σ0jδi0) + ω1 (σi1δj1 − σ1jδi1)

+ω2 (σi2δj2 − σ2jδi2) + ω3 (σi3δj3 − σ3jδi3)

+Ω1eiωP t
(
σi2δj0 − σ0jδi2eiφ1

)
+ Ω1eiωP t (σi3δj1 − σ1jδi3) (3.27)

+Ω∗1e−iωP t (σi0δj2 − σ2jδi0) + Ω∗1e−iωP t (σi1δj3 − σ3jδi1) + γijσij
]
,

where γij corresponds to the spontaneous emission rate of allowed transitions.

The Ĝ operator depends on the atomic operator σ̂ij. It has the form:

Gij = −iL
N

[
g2eiωprt (σi1δj2 − σ2jδi1) + g3eiωC (σi0δj3 − σ3jδi0) + h.c.

]
. (3.28)

Applying the transformation to the rotating frame, we eliminate the explicit time
dependences on terms of the form eiωit resulting in the form

dσ̃(z, t)
dt

= M̃ σ̃(z, t) + G̃Ã(z, t) + F̃(z, t), (3.29)

where M̃ only depends on the relative frequencies between fields and atomic levels ∆i,
Rabi frequencies Ωi and decaying term. G̃ now depends on the coupling coefficients and on
atomic operators which is problematic since Equation 3.26 results in a coupled differential
equation. To overcome this problem, we adopt a perturbative approach explained in the
appendix section B.1, such that G̃ is written in terms of the mean values of the atomic
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operators 〈σ̃(z, t)〉st corresponding to the stationary state of the atoms prepared by the
pump beam. Therefore, Equation 3.29 now reads:

dσ̃(z, t)
dt

= M̃ σ̃(z, t) + G̃stÃ(z, t) + F̃(z, t). (3.30)

Equation 3.30 is a differential equation of the first order on σ̃ with an inhomogeneous
term corresponding to the field operators and the stochastic terms.

3.3.1 Gain Coefficient: microscopic description

Now that we have a simplified version of the differential equation for the atomic
states, we can study the propagation of the probe and conjugate beams through the
medium. Recalling Equation 3.24 we can re-organize them in a matrix equation:

∂Ã(z, t)
∂t

+ c
∂Ã(z, t)
∂z

= NTσ̃(z, t), (3.31)

where T has the form:

T =


0 0 0 0 · · · −ig(1,7)

2 0 0 0 · · · 0 0 0
0 0 0 0 0 · · · 0 ig

(2,10)
2 0 · · · 0 0 0

0 0 0 −ig(3,4)
3 · · · 0 0 0 0 · · · 0 0 0

0 0 0 · · · 0 0 0 · · · ig
(4,12)
3 0 0 0 0


4×16

. (3.32)

In Equation 3.32, the superscript indicates the position in the matrix. T is a 4×16;
4 coupling the four field operators and the sixteen atomic transitions.

In the presence of pump and seed beam, we can consider a sufficiently long time
for reaching a stationary state σ̃SS such that ∂Ã/∂t = 0 IX. Consequently, Equation 3.30
follows the relation σ̃SS(z) = −M̃−1G̃stÃ(z) (the fluctuation term is ignored because
latter we take the mean value). Together with Equation 3.31 , we find a relation for the
field operators as they propagate through the cell

∂Ã(z)
∂z

= R Ã(z), (3.33)

where R = −c−1NTM̃−1G̃st. The solution of the last equation is:
IX The stationary state referred in this paragraph and denoted with the superscript SS, is

different from the stationary state from the latter section st. SS refers tot he stationary state
considering the interaction between the pump, the seed, and the atoms. The st stationary
state corresponds to the preparation of the atoms after the interaction of the pump and the
atoms.
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Ã(z) = eR· zÃ(0),

= J(z)Ã(0). (3.34)

Therefore, the fields are amplified according to an exponential relation, similar to
Equation 3.15. J(z) is a 4× 4 matrix containing information of the relative frequencies of
the fields and the atomic levels, the coupling constants and the pump Rabi frequencies.
This matrix has the form

J(z) =


A(z) 0 0 B(z)

0 A∗(z) B∗(z) 0
0 C∗(z) D∗(z) 0

C(z) 0 0 D(z)

 . (3.35)

When considering the components of the fields after propagation (Ã(L)) it can be
seen that they reproduce the phenomenological approach. For instance, the annihilator
operator at the output in Equation 3.34 is given by ã(z) = A(z)ã(0) +B(z)b̃†(0), having
the same mathematical form as Equation 3.16. However, using the propagator J(z),
effects like Raman scattering are also considered X. It is also important to notice that the
amplification process is governed by R, hence it depends on the one photon detuning ∆1

and on the two photon detuning δ2.

The phase of the fields is also modified at each point during the propagation.
According to Equation 3.33, the phase acquired by the probe beam propagating through
the medium is:

eφa(z) =

(
J(z)Ã(0)

)
11√∣∣∣J(z)Ã(0)11

∣∣∣2 . (3.36)

In the case of the conjugated the relation is similar,

eφb(z) =

(
J(z)Ã(0)

)
31√∣∣∣J(z)Ã(0)31

∣∣∣2 . (3.37)

When comparing the outcome field against the input, it is possible to obtain the
amplification or gain factor for each field. In terms of our theoretical model this can be
done through the second moments of Equation 3.34:
X Raman scatteering can be understood as an incomplete FWM. The pump beam can stimulate

non-resonant transitions evolving two photons with the emission of one at the Stokes or
anti-stokes channel, but taking or giving energy from or to the vibrational modes.
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〈
Ã(z) ÃT (z)

〉
=

〈
J(z)Ã(0) ÃT (0)JT (z)

〉
(3.38)

= J(z)


〈ãpr(0) ãpr(0)〉 〈ãpr(0) ã†pr(0)〉 〈ãpr(0) ãcj(0)〉 〈ãpr(0) ã†cj(0)〉
〈ã†pr(0) ãpr(0)〉 〈ã†pr(0) ã†pr(0)〉 〈ã†pr(0) ãcj(0)〉 〈ã†pr(0) ã†cj(0)〉
〈ãcj(0) ãpr(0)〉 〈ãcj(0) ã†pr(0)〉 〈ãcj(0) ãcj(0)〉 〈ãcj(0) ã†cj(0)〉
〈ã†cj(0) ãpr(0)〉 〈ã†cj(0) ãpr(0)〉 〈ã†cj(0) ãcj(0)〉 〈ã†cj(0) ã†cj(0)〉

JT (z).

Considering the input state as a coherent state in the seed channel |α〉pr and a
vacuum state in the conjugated channel |0〉pr, the initial state of the atomic operators is:

〈
Ã(0) ÃT (0)

〉
=


α2 |α|2 + 1 0 0
|α|2 α∗2 0 0

0 0 0 1
0 0 0 0

 ≈ |α|
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 , (3.39)

where we considered that the seed beam is more stronger than the vacuum. After a
propagation through the cell by a distance L (Equation 3.38 evaluated in z = L), the
auto-correlation function for the fields is:

〈
Ã(z) ÃT (z)

〉
= |α|2


A2(L) A(L)A∗(L) A(L)C∗(L) A(L)C(L)

A∗(L)A(L) A∗2(L) A∗(L)C∗(L) A∗(L)C(L)
C∗(L)A(L) C∗(L)A∗(L) C∗2(L) C∗(L)C(L)
C(L)A(L) C(L)A∗(L) C∗(L)C(L) C2(L)

 . (3.40)

The above equation defines the effect of the medium on the incoming beams after
a propagation L. Now, one can define the amplification gain as:

Ga =

〈
Ã(L)ÃT (L)

〉
2,1〈

Ã(0) ÃT (0)
〉

0,0

= |A(L)|2 (3.41)

Gb =

〈
A(L)ÃT (L)

〉
4,3〈

Ã(0) ÃT (0)
〉

0,0

= |C(L)|2, (3.42)

where Ga stands for the gain factor of the probe beam and Gb to the gain factor of the
conjugated beam. Both terms are normalized by the initial state of the fields.
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3.3.2 Noise properties of the FWM

As discussed in section 2.4, we study the noise properties of the quadratures
in the frequency domain. In order to find the solution of the fluctuations, we adopt
the linearization of the operators such that an arbitrary operator Ô can be written as
Ô = 〈Ô〉 + δÔ. Furthermore, by applying the Fourier transform to Equation 3.30, the
dynamical equation transforms into a linear system for the atomic and light operators in
the frequency domain as:

iΩδσ̃(z,Ω) = M̃ δσ̃(z,Ω) + G̃stδÃ(z,Ω) + F̃(z,Ω), (3.43)

iΩδÃ(z,Ω) + c
∂δÃ(z,Ω)

∂z
= NTδσ̃(z,Ω). (3.44)

with δÃ(z,Ω) =
(
ãpr(Ω), ã†pr(Ω), ãcj(Ω), ã†cj(Ω)

)T
.

Solving for the atomic operators σ̃ in Equation 3.43 and replacing it on Equation 3.44
we obtain

δσ̃(z,Ω) =
(
iΩ− M̃−1

)
G̃st δÃ(z,Ω) +

(
iΩ− M̃−1

)
F̃(z,Ω)

∂ δÂ(z,Ω)
∂z

= c−1
(
−iΩ +NTB̃(Ω)G̃st

)
δÃ + c−1NTB̃(z,Ω)F̃(z,Ω)

= R(z,Ω)δÃ(z,Ω) + RF (z,Ω)F̃(z,Ω), (3.45)

where B̃(Ω) = (iΩ−M−1(Ω)), R(Ω) = c−1
(
−iΩ +NTB̃(Ω)

)
and RF (Ω) = c−1NTB̃(Ω).

Hence, we have a linear differential equation of the first order. Its solution is:

δÃ(z,Ω) = eR(Ω) zδÃ(0,Ω) +
∫ z

0
eR(ω)(z−z′)RF (Ω)F̃(z′,Ω) dz′,

= J(z,Ω)δÃ(0,Ω) + J(z,Ω)F̃in(z,Ω). (3.46)

being J(z,Ω) = eR(Ω) z the propagator of the field inside the medium defined identically
as in Equation 3.34. Besides, the R(Ω) matrix controls the noise properties of the fields
through ∆1 and δ2. The term F̃in(z,Ω) =

∫ z
0 e−R(Ω)z′RF (Ω)F̃(z′,Ω) dz′ is the input

Langevin term entering at every point "z" through the propagation of the fields on the cell.

3.3.2.1 Noise spectrum

So far, we have described the field fluctuations δÃ(z,Ω) as a function of the
parameters of the interaction (Equation 3.46). Hereafter, we use the noise spectrum for
study the fluctuations of the probe and conjugated beams which results in the description
of the quantum correlations generated in the FWM process. In this section, we describe the
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theoretical description of the noise spectrum of the system were we include the contribution
of the atomic ensemble, the stochastic terms and their influence on the generated fields.

According to Equation 2.58, the noise spectrum is calculated as:

δ(Ω + Ω′)S(Ω) = 2πc
L

〈
δÃ(z,Ω)δÃT (z,Ω′)

〉
. (3.47)

Substituting Equation 3.46 in the last equation we obtain:

δ(Ω + Ω′)S(Ω) = J(z,Ω)S(0,Ω)JT (z,Ω′) + J(z,Ω)SFin
(z,Ω)JT (z,Ω′), (3.48)

where S(0,Ω) = (2πc/L)
〈
δÃ(0,Ω) δÃT (0,Ω′)

〉
and SFin

(z,Ω) = (2πc/L)
〈
F̃in(z,Ω) F̃T

in(z,Ω′)
〉
.

Notice that J(z,Ω) carries the information of the propagation of the fields through the
vapour cell. Additionally, it contains the parameters of the system and controls the com-
pression, amplification or rotation of an input state S(0,Ω). The second term, originated
by the Langevin forces, acts as the noise source for the system.

The noise spectrum of the input state can be calculated by considering the input
vacuum state. Similarly as in Equation 3.39, the matrix corresponding to the product〈
δÃ(0,Ω) δÃT (0,Ω′)

〉
is

〈
δÃ(0,Ω) δÃT (0,Ω′)

〉
=


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 . (3.49)

The latest term we need to compute is the contribution from the Langevin forces.
This term contemplates the input random noise entering at each point z throughout the
propagation of the fields in the cell. Hence, the noise spectrum of the Langevin forces is
given by

〈F̃in(z,Ω) F̃T
in(z,Ω′)〉 =

∫ z

0
e−R(Ω)z′RF (Ω) 〈F̃(z′,Ω) F̃(z′′,Ω′)〉RT

F (Ω′)e−RT (Ω′)z′′dz′ dz′′,

(3.50)
where 〈F̃(z′,Ω) F̃(z′′,Ω′)〉 is the power spectral noise function of the stochastic terms which
can be determined by [59]:

〈F̃i(z′,Ω) F̃j(z′′,Ω′)〉 = 2πDijδ(z′ − z′′)δ(Ω + Ω′), (3.51)
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with Dij the diffusion coefficients. Here we have to call attention to the subscripts in D.
Each of them refers to an atomic state, being i the atomic state σuv. The same applies to
j → σnm

XI.

The diffusion coefficients Duv,nm can be calculated through the generalized Einstein
relation [59],

2DNuv,nm = d

dt
〈Ô†uvÔnm〉 −

〈(
d

dt
Ô†uv

)
Ônm

〉
−
〈
Ô†uv

(
d

dt
Ônm

)〉
, (3.52)

with Ô an arbitrary operator and the superscript N indicates normal ordering of the
operators. In the case of the atomic operators, the fact that they obey a closed algebra
facilitates the computation of the diffusion terms. Elements to the right of Equation 3.52
are known to as the drift coefficients. This is a result of the fluctuation-dissipation theorem
[60], which relates the fluctuations induced by the reservoir with the dissipation of the
system [36].

We can organize the diffusion coefficients into a matrix D(z,Ω,Ω′) containing the
contribution from each stochastic term denominated the diffusion matrix

D(z,Ω,Ω′) =



D00,00 D00,01 · · · · · · D00,33

D10,00 D10,01 · · · · · ·
...

... · · · . . . . . . ...
D30,00 · · · · · · · · · D33,33


16×16

. (3.53)

Therefore, the power spectral noise function of the stochastic terms is the following:

〈F̃in(z,Ω) F̃T
in(z,Ω′)〉 = 2πδ(Ω + Ω′)

∫ z

0
e−R(Ω)z′RF (Ω)D(z,Ω,Ω′)RT

F (Ω′)e−RT (Ω′)z′dz′.

In this subsection we described the theory of the light-atom interaction that depends
on different parameters of the system as the Rabi frequency, temperature (atomic density),
frequencies or coupling strength. In the following sections we will use the outcome beams
after the interaction with the atoms and check the correlations between the generated
states in different basis.

3.3.3 Quantum correlations

So far, we expressed the noise spectrum of the FWM process describing the
covariance matrix of the fields in the spectral domain. The next step is to define the
XI (u, v), (n,m) ∈ {0, 1, 2, 3} × {0, 1, 2, 3}.
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quadratures of the generated states in terms of the operator δÃ(z,Ω), and construct
the covariance matrix. The problem can be addressed using two different basis, the
symmetric/anti-symmetric (SA) basis and the sideband basis.

During this chapter we organized the field operators for the modes ãpr and ãcj in
the vector δÃ. On the other hand, we are interested in the description of the quadratures’
fluctuations. Recalling the definition of the generalized quadratures (Equation 2.4) we
can relate the field mode operators δÃ with the quadrature operator δQ̃ by a unitary
transformation U(z):

δQ̃(z,Ω) =


eiφpr e−iφpr 0 0
−ie−iφpr ieiφpr 0 0

0 0 eiφcj e−iφcj

0 0 −ie−iφcj ieiφcj

 δÃ(z,Ω)

δQ̃(z,Ω) = U(z) δÃ(z,Ω), (3.54)

where δQ̃(z,Ω) = (δp̃pr, δq̃pr, δp̃cj, δq̃cj)T is a vector containing the quadratures as defined
in Equation 2.4.

Our interest is in the construction of the covariance matrix in the sidebands basis
(section 2.4). To do so, we have to double the size of the vector space given that the
two sidebands will be treated independently. Hence, consider the definition of the atomic
operator vector δÃ and double the vector space for considering both frequency components

δÃ(z,Ω) =
{
ãpr(Ω), ã†pr(−Ω), ãcj(Ω), ã†cj(−Ω), ãpr(−Ω), ã†pr(Ω), ãcj(−Ω), ã†cj(Ω)

}
,

such that the quadratures can be organized in a vector δQ̃

δQ̃(z,Ω) =
U 0

0 U(z)

 δÃ(z,Ω),

= U(z)δÃ(z,Ω). (3.55)

The evolution of the field operators throughout the atomic medium while considering
the two frequency modes can be obtained recalling Equation 3.46:

δÃ(z,Ω) =
J(z,Ω,−Ω) 0

0 J(z,−Ω,Ω)

[δÃ(0,Ω) + δFin(z,Ω)
]
,

= J(z,Ω,−Ω)δÃ(0,Ω) + J(z,Ω,−Ω)δFin(z,Ω), (3.56)

δFin(z,Ω) =
{
F̆ a
in(z,Ω), F̆ a†

in (z,−Ω), F̆ b
in(z,Ω), F̆ b†

in (z,−Ω),

F̆ a
in(z,−Ω), F̆ a†

in (z,Ω), F̆ b
in(z,−Ω), F̆ b†

in (z,Ω)
}

(3.57)
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where δFin(z,Ω) is a vector containing the stochastic terms.

Once we have the expression for the quadratures δQ̃(Ω), we can determine the
quadratures in the sideband basis by the transformation Equation 2.51:

δX̂Ω = 1
2

 L 04×4

04×4 L

 δQ̃(Ω),

δX̂Ω = L δQ̃(Ω), (3.58)

where

δQ̃(Ω) =
{
δp̂(pr)(−Ω), δq̂(pr)(−Ω), δp̂(cj)(−Ω), δq̂(cj)(−Ω), δp̂(pr)(Ω), δq̂(pr)(Ω), δp̂(cj)(Ω), δq̂(cj)(Ω)

}T
,

is the vector of the quadratures defined in Equation 2.51, and

δX̂Ω =
{
δp̂

(pr)
−Ω , δq̂

(pr)
−Ω , δp̂

(cj)
−Ω , δq̂

(cj)
−Ω , δp̂

(pr)
Ω , δq̂

(pr)
Ω , δp̂

(cj)
Ω , δq̂

(cj)
Ω

}T
is the vector of the quadratures in the sideband basis.

After this redefinition of notation, the evolution of the quadratures in the sideband
basis can be formulated based on the Equation 3.58, Equation 3.55, and Equation 3.56:

δX̂Ω = L δQ̃(Ω),

= LU(z)δÃ(z,Ω),

= LU(z)J(z,Ω,−Ω)δÃ(0,Ω). (3.59)

Finally, the covariance matrix of in the sideband basis is defined by

VΩ =
〈{
δX̂Ω, δX̂T

Ω

}〉
, (3.60)〈

δX̂Ω, δX̂T
Ω

〉
=

〈
LU(z)J(z,Ω,−Ω)δA(0,Ω), δAT (0,Ω)JT (z,Ω,−Ω)UT (z)LT

〉
Alternatively, the resonator detection is capable to a direct measurement of the

quadratures in the symmetric/anti-symmetric basis (Equation 2.52). Therefore, given a
four mode state

X̂s/a =
{
p̂(pr)
s , q̂(pr)

s , p̂(cj)
s , q̂(cj)

s , p̂(pr)
a , q̂(pr)

a , p̂(cj)
a , q̂(cj)

a

}T
,

it is possible to determine the quadratures in the SA basis through the transformation
Equation 2.54, such that

δX̂s/a = Λ−1δX̂Ω, (3.61)



3.3 Microcopic description of the FWM 41

and the covariance matrix in the symmetric/anti-symmetric basis becomes

Vs/a =
〈{

ΛδX̂s/a, δX̂T
s/aΛT

}〉
. (3.62)

As a result, we have the representation of the covariance matrix either in the
sideband basis and the symmetric/anti-symmetric basis, and we are able to describe their
dynamics during the interaction with the third-order non-linear medium.

� � �

Through this chapter we studied the FWM process in two different approaches.
First, in the phenomenological approach, the gain factor for the probe and conjugated
beams is determined as a function of the susceptibility which carries all the information
about the non-linear process. Afterwards, we introduced the quantum aspect by the
quantization of the state operators and described quantum signatures using the noise
spectrum. Secondly, we presented the microscopic approach which brings a more complete
description of the interaction, since it considers the different parameters available in
the system like the pump and probe frequencies, beam power, size of the beams and
atomic density. We use a semi-classical description for the interaction of the pump and
the atoms, while we use a complete quantum description for the probe and conjugated
beam interacting with the atoms. The microscopical approach allowed us to determine
the quadratures as a function of the system parameters. In addition, we presented the
theoretical description of the covariance matrix as a function of the quadratures. Our
methodology enables us to calculate the FWM gain spectrum and study the quantum
correlations and its dependence with the system parameters.

Some other works try to describe the FWM process and the intensity correlations
[61]. However, their description is based on the phenomenological approach and lacks
some of the degrees of freedom that define the non-linear interaction. The presented
theory provides a reliable description of the system and allows a direct comparison with
the experiment. In the following chapters we show the experimental setup, and the
experimental and theoretical results.
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RESULTS
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4

Experimental Setup

Our experiment is designed in four main steps: source beam, seed generation,
four-wave mixing process and detection. In this chapter we describe each of the steps,
their control parameters and present the characterization of the electronic response.

Following Figure 12 we illustrate the generalities of the system. The source beam
is a home-made Ti:sapphire laser locked at 795 nm (A.). Its frequency is controlled by
intracavity components and locked by feedback control. The Ti:sapphire output power is
split in two beams, taking most of the power for pumping the FWM process and a small
amount for generating the seed beam. The seed beam goes through an AOM that red
detunes its frequency by ∼ 3 GHz (B.). The seed and the pump beams are directed into a
rubidium 85 vapour cell (C.) such that the probe and the conjugated beams are generated.
The latter beams are guided to the resonator detection scheme (not shown here).

4.1 Ti:sapphire laser

The source laser is a home made CW Ti:sapphire laser developed in the master
thesis [62]. It is pumped by a CW Coherent Verdi G laser @532 nm and 8.36 ± 0.01
W. The Ti:sapphire crystal has a broad emission band, from 600 to 1100 nm, hence,
several intracavity components and electronic feedback control are required for delicate
frequency selection. The Lyot filter is the first and broader frequency filter. It is a
birefringent filter that selects the frequency in thousandth of nanometers by introducing
losses to the undesired frequencies. Then, there is the optical diode that guarantees a
preferential propagation direction of the beam inside the cavity and selects the resonant
polarization. It is formed by a half-wave plate and a birefringent cristal; it induce losses
in the counter-propagating modes letting the desired mode to oscillate inside the cavity.

The etalon is a Fabry-Perot cavity with a transmission dependent on the incidence
angle of the beam. Hence, it selects a single mode while the other modes suffer from losses.
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-3GHz

Conjugated
3GHzRb 85
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Figure 12. Experimental Setup. A. The light source from a Ti:sapphire laser is locked
using a saturated absorption profile of rubidium. B. A small fraction of power is taken for
the generation of the seed beam using a AOM in a double-pass configuration and an optical
isolator (beam splitter and Faraday rotator (FR)). C. The interaction of the pump and
the seed with the rubidium 85 isotopes amplifies the seed, now probe, and generates the
conjugated beam.

The etalon is actively stabilized by a dither and locking technique where a modulation at
32.6± 0.2 kHz is applied to the etalon. This modulation is detected by a photodiode and
demodulated for obtaining the error signal in a lock-in amplifier. The error signal can be
used to optimize the angle of the etalon in a feedback loop, such that a single mode is
resonant inside the cavity.

Etalon

Optical
diode

Ti:sapphire

@795nm

@532nm

Lyot
filter

P
Z
T

Figure 13. The Ti:sapphire laser is pumped by a CW laser @532 nm. Its output provides
a CW laser @795 nm. Several intracavity optical components compose the frequency
stabilization system.

The etalon controls the single cavity mode resonance but not the frequency. There-
fore, we lock the Ti:sapphire laser frequency with respect to a rubidium saturated absorption
spectrum (Figure 14). A small fraction of light passes through an AOM (Crystal technology
Inc. Model: 3200-124 ) modulated at 250 MHz. A four-pass scheme was implemented
such that the light is red detuned by 1GHz [63]. Afterwards, the detuned beam is used to
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Figure 14. Saturated absorption spectrum of the D1-line rubidium isotope. The purple
curve corresponds to the absorption spectrum of the Rubidium 85. The yellow curve is the
saturated spectrum from a reference cell containing both Rubidium isotopes, 85 and 87. In
this figure, the zero value is located at the crossover signal of rubidium 85. The vertical
black dashed line is the frequency of the pump beam. The two frequencies generated from
the FWM process, will have frequencies at 3GHz to the red (red dashed line) and to the
blue from the pump frequency.

generate the saturated absorption spectrum at the D1-line of 85Rb, that is used as the
frequency reference for locking and the error signal source (yellow curve in figure 14). The
frequency locking is completed by a feedback loop acting on the PZT of the Ti:sapphire
laser. As a result, the Ti:sapphire laser will be locked at +1GHz from the hyperfine
transition or the crossover of the 85Rb isotope which guarantee that the pump, the probe
and the conjugated frequencies are far from the absorption regions of the D1-line of 85Rb.

In the saturated absorption spectrum Figure 14, we defined two frequency regions
named F = 3 and F = 2. The first one refers to rubidium 85 transitions coupling the
ground state level 52S1/2, F = 3 to the excited states 52P1/2. The second, couples the
ground state level 52S1/2, F = 2 to the same excited states. Hence, the F = 3 frequency
region corresponds to lower energy transitions and F = 2 to higher energy transitions.
We defined the zero frequency reference at the Crossover signal from the F = 2 region
given that the pump frequency was locked at this frequency for most of the experimental
characterization.

The locking system provides a frequency stabilized laser blue detuned in 1 GHz
from the F = 2 hyperfine levels of the rubidium 85, shown by the vertical black dashed
line in Figure 14. It also limits the excess of noise of the source laser as far as the cavity
works as a filter itself, providing a coherent state above the analysis frequency of 3MHz.
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4.2 Seed generation

Once the Ti:sapphire laser is locked, it is possible to generate the seed beam.
The experimental setup is depicted in Figure 15. We utilize an AOM (Brimrose model
GPF-1500-1000-795) that detunes the light frequency in a range of 1.357± 0.001 GHz to
1.671 ± 0.001 GHz. The datasheet specifies a broader frequency range however we are
limited by our electronic voltage control and this range is sufficient for our system. The
light polarization must be horizontal and the maximum intensity is 5 W/mm2. Given
that the waist size of the incoming beam is 63.0 ± 0.4µm, we dislocate the AOM few
millimeters from the waist position and use a maximum power of 20 mW. The AOM source
is a voltage controlled oscillator (VCO Mini-circuits ZX95− 1750W+) which allows the
frequency tuning by an external voltage control.

Now we describe in detail the optical components of the seed generation according
to Figure 15. For this part, lets define the forward propagation as the direction from left
to right and the backward propagation in the other direction. Following this convention,
there is the half-wave plate that optimizes the transmitted power through the PBS. The
PBS and the Faraday rotator (FR) are rotated such that the light polarization became
horizontal. The light goes twice through the AOM, once in the forward propagation
and a second one in the backward propagation. We correct any polarization deviation
with a quarter-wave plate (λ/4). Following the backward propagation, the FR rotates
the polarization such that the PBS reflects the backward beam to one of its outputs.
One disadvantage of using the AOM is the astigmatism generated on the beam after the
detuning. Therefore, we couple the detuned beam into a monomode optical fiber in order
to correct the transverse profile, with an efficiency of 60%. At the end of the process, the
seed beam will be red detuned by 3 GHz (Figure 14 vertical dashed light red line), with a
well defined transverse mode and a tunable frequency.

FR

PBS

Seed
-1.5 GHz

Figure 15. The seed beam is generated by using an AOM in a double pass scheme that
red detunes the laser beam by -3.0 GHz.

4.3 FWM generation

The central part of the system is the rubidium vapour cell. The cell contains the
isotope of rubidium 85; its length and diameter is 2.54± 0.05 cm. We heat the rubidium
cell and control the temperature, typically above 100◦C. It has an anti-reflection coating
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at 795 nm. For heating the input and output windows of the rubidium cell, we use a
resistance and a Temperature controller Coel K49E. The controller is a relay switch circuit
driven by a a PID controller that defines the ON/OFF time of the current flux with a
precision of 0.1 ◦C (Figure 16a).

(a) AR coated cell with Rubidium 85
vapour.

Seed
Conjugated

3GHzRb 85

Pump

Probe
-3GHz

(b) FWM generation setup.

Figure 16. (a) FWM experimental setup. The rubidium cell is heated at 103.0± 0.1◦C.
It has a anti-reflecting coating (AR) that reduce the reflection coefficient at 795 nm. (b)
Coated Rubidium cell with a length of 2.54 cm.

The pump and the seed beams cross at an angle of 0.29±0.03 degrees and intersects
at the middle of the rubidium cell. At the center of the cell, the pump waist is 525.5±1.6µm
while the seed waist is 244.2± 1.9µm I. At the output of the cell there is the amplified
probe beam and the generated conjugated, both polarized orthogonally to the pump beam.
The pump power could be varied from 380 to 450 mW and the seed power from 80 to
180 µW (Figure 16b). We decided to work with rubidium 85 guided by previous works
where this system shows stronger quantum correlations than rubidium 87 for the set of
parameters in our system [19] II.

4.3.1 FWM spectrum

The typical FWM spectrum ([12]) is show in Figure 17. The vertical axes corre-
sponds to the gain factor, defined by

Gain(j) = P
(j)
out

P seed
in

, (4.1)

where j stands for probe or conjugated, Gain(j) is the gain factor, P (j)
out is the output

power, and P seed
in is the input seed power (horizontal dotted black line). The horizontal

axes corresponds to the frequency of the seed beam. For the generation of the spectrum,
we used a diode laser in a Littrow configuration as the seed beam [64] which permits a
frequency detuning at a range of 12GHz.
I These values corresponds to the final configuration.
II The energy shift generated by the strong pump beam is much bigger than any magnetic field

that could disturb the system [50].
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In yellow we plotted the saturated absorption spectrum of Rubidium 85 and 87
which defines the frequency scale in accordance with the hyperfine transition levels of
the D1 line of 85Rb (Figure 9) [65]. The vertical dashed black line corresponds to the
pump frequency (∆1 the same frequency shown in Figure 14). The horizontal axes is
the seed beam frequency. ∆2 corresponds to the seed frequency in the FWM process
as will be discussed latter. The red curve corresponds to the probe signal and the blue
curve to the conjugated signal. As the seed frequency increases, the seed will enters an
absorption region between -4 and -2.5 GHz, corresponding to the transitions between
levels 52S1/2, F = 3 → 52P1/2, F = 2 and 52S1/2, F = 3 → 52P1/2, F = 3. Thereafter, at
-2 GHz the seed frequency will close the double-lambda structure in the Stokes channel
such that the probe beam is generated at -2 GHz while the conjugated is generated at 4
GHz. Between -1 GHz and 0.5 GHz, the seed beam is in resonance with the hyperfine
transitions 52S1/2, F = 2→ 52P1/2, F = 2 and 52S1/2, F = 2→ 52P1/2, F = 3. When the
seed beam is at 4 GHz, it couples the Anti-Stokes channel and generates the probe beam
at 4 GHz and the conjugated beam at -2 GHz. It is worth noting a monotonically decrease
of the intensity level in the probe spectrum originated by the change in the Littrow laser
power as the cavity size is scanned.

Figure 17. Complete FWM spectrum. In yellow there is the saturated absorption
which is used as a ruler for the frequency, its amplitude is not important in this
figure. In red there is the probe beam and in blue the conjugated beam. The
vertical dashed black line is the frequency of the pump, locked at +1GHz from the
hyperfine transition or the crossover of Rubidium 85. We can see the amplification
process in the Stokes and in the Anti-Stokes channel.

Scanning the atoms with the diode laser is an initial step. It does not allow a
detailed spectrum given that the bandwidth of the FWM is around units of MHz. A
more suitable characterization must be done such that we could study the influence of
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each experimental parameter in the process. This specific characterization can by done by
controlling the probe detuning ∆2 with the AOM shown in Figure 15.

4.4 Photodiode characterization

The characterization of the quantum states is done by implementing a direct
measurement in which each of the generated beams goes to a photodiode First sensor
PIN PD PC10-7 TO. The quantum efficiency is 87.2 % for the probe channel and 89.3
% for the conjugated channel at 795 nm III. The photodiode transforms the incoming
light into a photocurrent i(t) = 〈i(t)〉+ δi being 〈i(t)〉 the mean value of the photocurrent,
called DC component and δi are the fluctuations called the high frequency HF component
(see section 2.4). By using a band-pass filter with a cutoff frequency at 600 kHz, it is
possible to separate between the DC component below the cutof frequency, and above it
the HF signal. The DC component goes directly to acquisition in the computer and it is
used to synchronize the tomography of the states. On the other hand, the high frequency
component HF needs a detailed treatment. Considering that the quantum properties
of the states are stored in the high frequency region, we have to demodulate the signal
before the acquisition. As shown in Figure 18, the high frequency signal from a single
photodetector is amplified, splitted in two channels by a power splitter (PS), and mixed
with two in-phase orthogonal signals Cosine in pink and Sine shown in green. Finally, we
acquire the data using National instruments BNC 2110.

Figure 18. The photodiode convert the light into photocurrent. It is splitted
equally and demodulated with two orthogonal signals. The output is acquired on
a computer.

Although the orthogonal signals Cosine and Sine differ only by a phase, they have
the same amplitude and frequency, hence, the photocurrent must be identical up to the
random electronic noise. Furthermore, if we use a shot noise limited laser (coherent state),
every demodulation channel, Cosine and Sine, must measure the same variance on the
photocurrent. Consequently, we check this behavior in our system by sending a shot noise

III The quantum efficiency can be determined by the relation i/Popt = εqeλ/hc, where i is the
generated photocurrent by the photodiode, Pout is optical power, εe is the quantum efficiency,
e is the electric charge, λ is the light wavelength, h is the Planck constant and c is the speed
of light in vacuum.
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limited beam with the same intensity to each of the photodiodes and tuning the laser
power.

The first characterization was done at an analysis frequency of 7 MHz. Figure 19
shows the variance of the high frequency signal (∆2HF ) as a function of the incoming
power on each photodetector for the probe (1.1) and the conjugated (1.2). We observe
that the ∆2HF response is linear with respect to the incoming power which is a desired
behavior for the detection. We can also check that both demodulation channels have
similar slope and y-interception with a difference less than 10%. As far as the detectors
must have the same slope and y-intercept, we numerically correct the conjugated channel
by the multiplicative factor (g1/g2)2, being g12 the slope of the probe channel and g2

2 the
slope of the conjugated channel. In this way, the incoming signal is detected, and the
conjugated channel is corrected before any data analysis. We defined 10% as the maximum
difference between the response of the detectors. This value was defined empirically after
many tests on the system.

(a) Cosine demodulation 7 MHz. (b) Sine demodulation 7 MHz.

Figure 19. HF response for an incoming coherent beam. (a) HF Cosine channel for both
detectors. (b) HF Sine channel.

At Ω =10 MHz (Figure 20) the response of the detection channels have a response
difference lower than 10%. Comparing the case of 7 MHz and 10 MHz, we can see a slope
difference of 20% which is expected given that the electronic components response depends
on the analysis frequency.

4.5 Intensity correlations

Once the beams probe and conjugated are generated, they are directed into the
detection scheme. Firstly, we confirm the existence of quantum intensity correlations. The
quantum intensity correlations are used as the benchmark for the system meaning that it
is the first signal of the generation of quantum properties. It is measured by the variance
of the difference of the high-frequency signal of the probe and conjugated beams as follow

δi−(Ω) = |αpr|δp̂pr(Ω)− |αcj|δp̂cj(Ω), (4.2)
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(a) Cosine demodulation 10 MHz. (b) Sine demodulation 10 MHz.

Figure 20. HF response for an incoming coherent beam. (a) HF Cosine channel for both
detectors. (b) HF Sine channel.

where αpr and αcj refers to the amplitude of the carrier of two different modes probe and
conjugated; δp̂ refers to the generalized quadrature of the sidebands for each mode (2.4).
According to Equation 2.58, the spectral density of the intensity-difference is:

Si−(Ω) = |αpr|2 〈δp̂pr(Ω)δp̂pr(Ω′)〉

+|αcj|2 〈δp̂cj(Ω)δp̂cj(Ω′)〉

−|αpr||αcj| 〈δp̂pr(Ω)δp̂cj(Ω′) + δp̂cj(Ω)δp̂pr(Ω′)〉 (4.3)

= |αpr|2∆2δp̂pr + |αcj|2∆2δp̂cj − 2|αpr||αcj|C(δp̂pr, δp̂cj)

Figure 21a presents the experimental setup for measuring the intensity quantum
correlations of the system. Once the probe and the conjugated beams are generated they
are directed into the photodetectors where the high-frequency signal (HF) is collected.
The HF signals are subtracted in a power splitter (PS)IV. The output is recorded using a
spectrum analyzer (SA. Keysight N9010B) working at resolution bandwidth (RBW) of 1
MHz and a video bandwidth (VBW) of 100 kHz.

Three measurements must be done for the characterization of the intensity correla-
tions ∆2I−: the electronic noise, the shot noise, and the intensity difference. The electronic
noise is the background noise from the detection apparatus. It defines the lower acceptance
noise value of the measurements, in other words, whenever the noise level of an incoming
signal is 3 dB above the electronic noise, the measured signal is reliable. The shot noise
level is the classical reference and is determined as explained in subsection 2.4.2. Any
signal below this level are related to squeezed states. Finally, the intensity difference ∆2I−

will reveal the quantum correlations of the system. In the example shown in Figure 21b,
the black dotted line represents the shot noise level and the green continuous line, the
IV It is not relevant which signal is phase shifted as far as the the observable is the variance of

the subtraction.
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(a) Quantum intensity correlations
setup.

(b) Intensity correlations measurement.

Figure 21. (a) Quantum intensity correlations setup. The probe and conjugated beams
are directly measured. Their high-frequency signal is sent into a power splitter (PS) that
dephase one signal by π such that the output is the subtraction of the signals. The signal is
recorded using a Spectrum Analyzer (SA). (b) Example of quantum intensity measurement.
In green continuous line is the intensity difference correlations ∆2I−. The dotted black
line is the shot noise level (SQL). The vertical axis is the noise power in dB units and the
horizontal is the analysis frequency. Any signal below the Shot noise level is a signature of
quantum correlations. Hence, from 1 MHz to 7 MHz the system presents quantum intensity
correlations.

intensity correlations. The electronic noise was already subtracted and the signals were
normalized by the shot noise level. For frequencies between 1 an 7 MHz, the system
presents quantum intensity correlations or squeezing. Below 1 MHz, the detection system
presents a huge excess of noise, hence, measurements below 2 MHz are not reliable.

4.6 Reconstruction of the state

The quantum properties of Gaussian states are determined by the statistics in
the sidebands and are resolved by their first and second moments. The first moment
corresponds to the mean value (DC) which is recorded separately in the detection scheme.
The second moments are obtained from the high frequency HF component. For intense
fields, the photodiodes are sufficient for detecting the HF fluctuations since they carry
their own local oscillator, the carrier ωca. However, entanglement requires the observation
of a pair of conjugated quadratures p̂ and q̂. The amplitude quadrature is directly accessed
by the direct detection. Conversely, the phase quadrature requires interferometric process
that grants access to this fluctuations.

The most common method for detection of the quadratures is the homodyne
detection [20]. This method uses a local oscillator as an auxiliary beam that would amplify
the fluctuations in the sidebands. Under this scheme, it is possible to determine the
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fluctuations of the quadratures in the symmetric/anti-symmetric basis. The homodyne
detection has proven to be a useful tool for the characterization of entanglement in
different systems, for instance quantum imaging or multipartite states with rubidium
atoms [21, 22, 14], or multipartite entangled states generated by an OPO based on second
order non-linear interactions [9, 10]. However, it is blind to the correlations between
the upper and the lower sidebands separately. Therefore, it is necessary to measure
the statistical properties of the sidebands independently such that the complete state is
reconstructed, a goal that can be achieved by using the resonator detection.

The resonator detection has been implemented widely in our group for the charac-
terization of entanglement in a variety of systems such as second order non-linear OPO
[4, 45, 66, 67], and more recently OPO based on rubidium vapour [25]. On every of
these experiments, a pair of bright beams were generated presenting entanglement. When
measured separately, each of the generated states presented an excess of noise up to 3
SQL units above the shot noise level. Moreover, the coupling between the bright beams
and the resonator is considered as perfect. In the experiment this is not the case, and
usually coupling factor above 95% are desired for performing the measurements. Despite
of this, the reconstruction of the states were effective.

However, systems presenting typical values of excess of noise above 5 SQL presented
new challenges for the reconstruction of the state. For instance, the excess of noise could
induce some undesired electronic response, any mismatch between the resonator and the
light beam would contaminate the measurements or any fluctuation in the phase from
the demodulation channels would struggle the detection as well. An example of this
can be found in the PhD thesis from Kögler24, where he studied and OPO on-chip and
implemented the resonator detection for the description of the state. During this section
we will address this issues and present the implemented solution.

4.6.1 Shot noise in the tomography

When running the experiment for the complete reconstruction of the state, that is
reconstructing the covariance matrix, the shot noise is determined differently compared to
subsection 2.4.2. The implementation of the direct measurement implies that the shot noise
calibration must be obtained separately using a coherent source of light, differently from a
balance detection scheme where the shot noise can be obtained simultaneously with the
tomography of the quantum state V. Figure 22 shows the shot noise calibration. A coherent
source of light, the Tisapphire laser, pass through a PBS dividing it into two beams with
the same intensity that goes to the photodetectors. Each photodetector generates the HF
signal which is amplified and demodulated with two orthogonal signals, Cosine and Sine.
V The balanced detection is the principal detection method in our laboratory. In it, the shot

noise can be obtained directly from the subtraction of the demodulated photocurrents Sin
and Cos.
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Finally, the HF data is acquired and a computational treatment determines the shot noise
level as a function of the incoming power for the individual channels Cosine and Sine. In
terms of the raw data, the shot noise is calculated by:

∆2ISQL = ∆2
(
HF (pr) −HF (cj)

)
, (4.4)

where ∆2ISQL is the shot noise level, and HF (pr/cj) is the probe/conjugated high frequency
(HF) signal. The shot noise is determined by calculating the variance of the subtraction of
the HF signals.

Figure 22. Scheme to measure the Shot noise. A coherent source laser is
sent to photodetector D(pr/cj). The HF(pr/cj) is demodulated with orthogonal
signals (Cos and Sine) and thereafter, the shot noise is determined by the
variance of the subtraction of the high frequency photocurrents.

Figure 23 presents the shot noise calibration at the analysis frequency Ω = 7 MHz.
The vertical axis is the Shot noise ∆2ISQL, and the horizontal axis is the total power
of the incoming beam. After the numerical correction explained in section 4.4, we can
see that both channels Cosine and Sine differ by less than 1%. The shot noise could
also be used for defining the minimum total incoming power such that the photocurrent
signal is 3 dB above the electronic noise level. This is reported in the figure as the Pmin
value which for 7 MHz corresponds to 0.49 mW. Incoming power below Pmin may have
the risk of been too close to the electronic level and diverge in the data analysis. The
same characterization was done for an analysis frequency of 10 MHz. The result is shown
in Figure 24. The divergence between slope and the y -intercept is less than 1% and
Pmin =0.56 mW. Compared to the case of 7MHz, notice that Pmin increases in 0.07 mW,
meaning that the electronic noise level is bigger at 10 MHz than at 7 MHz.

The shot noise calibration must be done for every tomography. It is useful for the
diagnosis of any electronic trouble, saturation of the high frequency or DC signal, and
in general, response of the demodulation channel. As mentioned at the beginning of this
subsection, the shot noise in the direct detection must be determined separately from the
tomography. Thereafter, we can infer the shot noise level corresponding to the generated
beams by associating their total power to the vertical axis in figures 23 and 24.
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(a) Shot noise calibration at Ω = 7MHz
cosine channel.

(b) Shot noise calibration at Ω = 7MHz
sine channel.

Figure 23. Shot noise calibration at Ω =7MHz.(a)Cosine demodulation channel. (b) Sine
demodulation channel. Pmin refers to the minimum input power such that the noise signal
is 3 dB above the electronic signal.

(a) Shot noise calibration at Ω = 10MHz
cosine channel.

(b) Shot noise calibration at Ω =
10MHz sine channel.

Figure 24. Shot noise calibration at Ω =10MHz.(a)Cosine demodulation channel. (b)
Sine demodulation channel. Pmin refers to the minimum input power such that the noise
signal is 3 dB above the electronic signal.

4.6.2 Resonator detection

A resonator or an optical cavity, consist of a set of mirrors that are aligned such
that an incoming beam oscillates inside of it and interferes with itself after a round trip.
Given the case that the length L of the cavity is an integer multiple of the incoming
wavelength VI, the field will interfere constructively and the cavity will be in resonance.
The resonant frequencies can be determined by the relation

νq = qv/L,

where q is an integer bigger than 1, v = c/n is the speed of light in the medium of refractive
index n, c is the speed of light in vacuum, and L the round-trip distance. The size of
the cavity can be scanned such that another resonance condition could be found. This

VI The length of the cavity refers to the round-trip distance.
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difference is called free spectral range (FSR) and is related to the time the light takes to
complete a round trip. The FSR is given by

FSR = v/L. (4.5)

A resonator is not only characterized by its length but also by the reflectivity of the
mirrors. In a closed resonator, the mirrors have a high reflectivity and the light oscillates
more times before being transmitted. In contrast, an open resonator has low reflective
mirrors and the light leave sooner the resonator. This property is related to the lifetime of
the light inside the resonator and is known as the resonator bandwidth (Γ) corresponding
to the half-width at half maximum. Finally, we can relate both quantities by defining
the finesse (F ) of the resonator, which describes the build-up of the light given by the
interference. The finesse is given by

F = FSR

2Γ (4.6)

= 2π
1− ρcav

where ρcav stands for the total losses after a round trip. This expression holds for the high
finesse regime, around ρcav ≤ 10%. The cavity properties are depicted in figure Figure 25.

HF

P
Z

T

FSR

Figure 25. Resonator or optical cavity. The FSR corresponds to the distance between
two consecutive resonance frequencies. The bandwidth Γ corresponds to the half-width at
half maximum.

The tomography of the state is done by implementing the resonator detection
[30]. In this method, an analysis cavity (the resonator) induce a dephase sensitive to the
frequency such that there is an interference between different frequency components that
controls the sideband and their quadratures. The local oscillator would be the carrier
centered at frequency ωca. It will amplify the signal from the sidebands at frequencies
ωca ± Ω where the quantum information can be measured. Simultaneously, the analysis
cavity induces a frequency dependent attenuation, detecting individually the sidebands
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inasmuch as the detuning of the analysis cavity selects which spectral mode is in resonance.
The detunig of the cavity ∆ is defined as:

∆± = ∆ca ±
Ω
2Γ ,

∆ca = ωca − ωcav
2Γ (4.7)

where Ω is the analysis frequency, 2Γ is the analysis cavity bandwidth, ωca is the carrier
frequency, ωcav is the analysis cavity resonance frequency, hence, ∆ca is the relative
frequency between carrier and analysis cavity frequency. The detuning of the resonator
defines the effect of the resonator on the incoming beam. In the case of the amplitude,
the reflection of the cavity presents the following dependence with ∆:

r(∆±Ω) = r

(
ωca − ωcav

2Γ ± Ω
2Γ

)
. (4.8)

A detailed explanation of the resonator detection can be done with the help of
Figure 26. To the left top, there is the DC signal from the reflection of the cavity (a). To
the right, the single mode noise spectrum (b). In the bottom left figure (c) we represented
the noise ellipse of the quadratures in the symmetric/anti-symmetric basis and the effect of
the resonator on the incoming beam. The last figure (d) corresponds to the measurement
of the quadratures in the sideband basis. Numbers 0 to 7 represents an specific region in
the tomography of the state. From 2 to 6 , the resonator detection access the information
of the quadratures in the symmetric/anti-symmetric basis. As far as in this region the
carrier – represented in light blue in figures (a) and (b)– is in resonance, its phase will be
affected by the dispersive response of the resonator. Starting at region 2 where there is
almost a complete read out of a quadrature, as the resonator detuning ∆ is scanned, the
carrier "rotates" such that at region 4 there will be complete measurement of one of the
orthogonal quadratures, at 6 the read out of the conjugated quadrature. Throughout
all the light blue region, the carrier is in resonance with the analysis cavity and after
region 6 , the process is mirrored such that once the carrier is out of resonance with the
resonator, its phase has been rotated by 2π.

Now, we should explain the remaining regions. At region 0 neither the sidebands
nor the carrier are in resonance with the analysis cavity and hence, all the light is reflected
and goes into detection. Therefore, we should be reading the total noise from the system
in the amplitude quadrature. However, at regions 1 and 7 , the lower and the upper
sidebands are measured. Recall that the sideband modes are thermal states (section 2.2).
In 1 , the lower sideband is in resonance with the analysis cavity. Consequently, we would
observe a depletion in the noise spectral density due to the attenuation of the fluctuations
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from the lower sideband. On the other hand, at region 7 is the upper sideband which is
in resonance with the analysis cavity. However, if the fluctuations are not the same, for
instance the upper sideband presents smaller fluctuation levels than the lower sideband,
the depletion is not going to be the same as region 1 and hence, there will be evident an
existent asymmetry in the noise spectral density. This asymmetry will be discussed once
we define the covariance matrix parameters.
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Figure 26. Tomography of the state using the resonator detection. (a) DC signal from
the reflection of the resonator. (b) Single mode noise spectrum. (c) Measurement of
fluctuations in the symmetric/anti-symmetric basis. (d) Measurement of the fluctuations
of the sidebands. In light blue we represented the carrier while in purple we represented the
sideband region. Numbers zero to seven represent an specific region of measurement. From
2 to 6, the fluctuations in the symmetric/anti-symmetric basis are measured. Regions 0, 1
and 7 represents the sideband regions. A detailed explanation is given in the text.

4.6.3 Mismatch factor f

Our system is able to generate states with a huge excess of noise, ranging from 5
SQL to 20 SQL. This seems to be the source of many problems we had to overcome. First
of all, consider the case where the light beam is not coupled perfectly into the analysis
cavity. Any mismatch between the beam and the cavity results in a fraction of light that
is reflected without dephasing, hence, there light going into the photodetector is a mixture
between a fraction of light which do not interfere and hence is an amplitude quadrature,
and the fraction of light which is affected by the resonator. Even when the mismatch
reach values as small as 5% or lower, the fact that the generated states presents a huge
excess of noise, any small mismatch would results into a huge contamination of the HF
signal that may affect the reconstruction of the state.
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Based on the work done in Appendix B of the article Assumption free measurement
of the quantum state of light: exploring the sidebands of intense fields [68], we could
describe the effect of the mismatch factor on the reconstruction of the state as described
as follows.

Consider the spatial mode of the impinging beam as two modes in the spatial basis
~Fi(r) privileged by the resonator:

Ê+(r, t) = ~F1(r)Â(t) + ~F2(r)B̂(t), (4.9)

where Â(t) is the target resonator spatial mode, and B̂ is the mismatch component. ~Fi(r)
is the spatial profile of the light beam in the Hermite-Gaussian basis. The photocurrent
for a single beam Equation 2.35 now reads

i(t) =
∫
κÊ−(r, t)Ê+(r, t)dr2,

=
∫ (∣∣∣~F1(r)

∣∣∣2 Â†(t)Â(t) +
∣∣∣~F2(r)

∣∣∣2 B̂†(t)B̂(t) (4.10)

~F ∗1 (r)~F2(r)Â†(t)B̂(t) + ~F ∗2 (r)~F1(r)B̂†(t)Â(t)
)
dr2.

where the spatial integral is done over the detector surface. The spatial functions respect
orthonormal condition

∫ ~Fi(r)~F ∗j (r)dr2 = δij. Hence

i(t) = Â†(t)Â(t) + B̂†(t)B̂(t). (4.11)

Consider the mismatch factor f such that

1− f 2 (4.12)

is the resonator coupling factor defined as the fraction of intensity of light that is not
coupled into the analysis cavity. The mismatch factor is such that if f = 0 the light beam
is perfectly coupled, whereas if f = 1 the light beam is completely reflected by the cavity.
Therefore, given a mismatch factor f 6= 0, the resonator couples the incoming carrier in
mode â, which is considered as a coherent state with amplitude αca, with the vacuum
modes ĉ populating different spatial modes. Hence, the target mode of the resonator Â and
the mismatch modes B̂ are relted to the incoming modes by a beam splitter transformation
(Figure 27):

B̂
Â

 =
 f

√
1− f 2

√
1− f 2 −f

â
ĉ

 , (4.13)

where the â corresponds to the carrier mode and ĉ are spatial modes in the vacuum state.
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Vacuum
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T

Figure 27. Mismatch between incoming beams and resonator. {â, ĉ} is the basis of the
generated beams and detection. {Â, B̂} is the privileged basis of the cavity.

Consequently, the state after the resonator can be written as the tensor product
of fraction of the carrier coupled into the target mode Â, the uncoupled fraction of the
carrier in mode B̂, and the sideband modes,

|Ψ〉 = |
√

1− f 2αca〉A ⊗ |fαca〉B ⊗⊗ |ϕ±Ω〉sd . (4.14)

Each of the modes A and B, can be decomposed into its mean value and its fluctuations
Ô = 〈Ô〉+ δÔ. Therefore, the fluctuations of the photocurrent i(t) is

δi(t) =
√

1− f 2
[
α∗δÂ(t) + αδÂ†(t)

]
+ (4.15)

f
[
α∗δB̂(t) + αδB̂†(t)

]
. (4.16)

The Â mode is coupled into the cavity, hence, its amplitude depends on the cavity
detuning ∆ through the reflection such that α→ r∗(∆)|α|. Moreover, it is modified by
the resonator coupling factor by

√
1− f 2. On the other hand, mode B̂ is reflected by

the cavity modifying its amplitude by the f factor α∗ = α→ f |α| but without frequency
dependence. Therefore, the fluctuation reads

δi(t) =
√

1− f 2|α|
[
|r∗(∆±Ω)|δÂ(t) + |r(∆±Ω)|δÂ†(t)

]
+ (4.17)

f |α|
[
δB̂(t) + δB̂†(t)

]
. (4.18)

Following the procedure presented in Equation 2.40-Equation 2.41 and the notation
in Equation 2.48, the fluctuations can be written in the frequency domain as

δX̂Ω =
√

1− f 2|α|
[
|r∗(∆±Ω)|δÂΩ + |r(∆±Ω)|δÂ†−Ω

]
+

f |α|
[
δB̂Ω + δB̂†−Ω

]
. (4.19)
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Up to this point, we must consider the effect of the analysis cavity into the sideband
modes [30]. The target mode Â is affected by the dispersive reponse of the resonator while
a vacuum component b̂ is introduced,

ÂΩ → r (∆±Ω) ÂΩ + t (∆±Ω) b̂Ω. (4.20)

The reflectivity of the cavity depends on the detuning ∆±Ω as follows:

R(∆±Ω) = r∗(∆ca)
|r(∆ca)|

r (∆±Ω)

r(∆±Ω) = −
√
d− 2i∆±Ω

1− 2i∆±Ω
,

|r(∆Ω)| = |r(∆−Ω)|,

T (∆±Ω) +R(∆±Ω) = 1

being d = |r(0)|2 the depletion of the reflected beam. The expression for r(∆±Ω) is valid
for high finesse cavities [45].

As a result, the fluctuations of the incoming modes depend on the analysis cavity
properties and its response to the incoming frequency:

δX̂Ω =
√

1− f 2|α||r(∆)|
[
R(∆Ω)δÂΩ + T (∆Ω)b̂Ω+

R∗(∆−Ω)δÂ†−Ω + T ∗(∆−Ω)b̂†−Ω

]
+

f |α|
[
δB̂Ω + δB̂†−Ω

]
. (4.21)

So far, δX̂Ω contemplates the decomposition of the impinging beams in the privi-
leged basis of the cavity. To obtain the states measured by photodetection, it is necessary
to change the modal basis {Â, B̂} to the detection basis {â, ĉ}

âΩ =
√

1− f 2ÂΩ + fB̂Ω (4.22)

ĉΩ = −fÂΩ +
√

1− f 2B̂Ω (4.23)

where â is the principal generated mode containing the carrier and the sidebands, and ĉ
are the vacuum modes that go along with the process. Under this transformation, the
fluctuations yields,

δX̂Ω =
(
1− f 2

)
|r (∆) |

[
R(∆Ω)âΩ +R∗(∆−Ω)â†−Ω

]
+ f 2

(
âΩ + â†−Ω

)
+ Ĵ ′v,

=
(
1− f 2

)
|r (∆) |

[
Îcos + iÎsin√

2

]
+ f 2

2 [p̂s + iq̂a] + Ĵ ′v (4.24)
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where Îcos and Îsin are two Hermitian operators associated to the demodulated photocurrent
and have the form:

Îcos = 1√
2

(p̂s cosϕca + q̂s sinϕca) ,

Îsin = 1√
2

(q̂a cosϕca − p̂a sinϕca) ,

with ϕca standing for the phase of the carrier, p̂s/a and q̂s/a are the symmetric/anti-
symmetric amplitude quadrature defined in Equation 2.52. Ĵ ′v is the vacuum contribution
from the process ĉ and the analysis cavity b̂ and is given by

Ĵ ′v = f
√

1− f 2
[(

1−R(∆Ω)ĉΩ + (1−R∗(∆−Ω)) ĉ†−Ω

)]
+√

1− f 2
[
T (∆Ω)b̂Ω + T ∗(∆−Ω)b̂∗−Ω

]
.

Notice that if the coupling were perfect (f = 0), the fluctuation term would corre-
spond to the addition of the two photocurrent components up to a phase (r(∆)/

√
2)(Îcos +

iÎsin), recovering the expression reported in [45]. Therefore, the mismatch adds further
terms to the photocurrent δX̂Ω, where two of them are proportional to the fraction of
light reflected by the cavity (f 2), and a vacuum term.

4.6.4 Noise spectral density and covariance matrix

For the reconstruction of the single mode correlations, we must calculate the noise
spectrum for a single mode (Equation 2.58):

Sm(Ω) =
〈
δX̂(j)

Ω δX̂(j)
−Ω

〉
, (4.25)

= αj

[
A′Cα +B′Re{g+}+ f 4

2

]
+

βj [A′Cβ] +

γj [A′Cγ +B′Re{g−}] +

δj [A′Cδ +B′Im{g−}] +

B′Im{g−}+ 〈Ĵ ′v Ĵ ′−v〉,

A′ = r2(∆)(1− f 2)2

2

B′ = 2r(∆)f 2(1− f 2)√
2

.
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Let j = pr, cj. αj , βj , γj and δj correspond to the parameters that describe the individual
states and their correlations; they are organized in the covariance matrix as shown in
Equation 4.28. Each parameter has a weight function that depends on the analysis cavity
response such that they are enhanced or diminished according to the reflectivity R and
the detuning ∆. In the case of the single mode noise spectrum,

Cα = |g+|2 ; Cβ = |g−|2

Cγ = 2Re{g∗+g−} ; Cδ = 2Im{g∗+g−}

g+ = R(∆Ω) +R∗(∆−Ω)
2 ; g− = i

(
R(∆Ω)−R∗(∆−Ω)

2

)

The vacuum contribution from modes ĉ and b̂ is

〈
Ĵ ′v Ĵ

′
−v

〉
= (1− f 2)r(∆)2

〈
Ĵv Ĵ−v

〉
+ (4.26)

f 2(1− f 2) [r(∆) (Cα + Cβ − 2Re{g+} − 2Im{g−}) + 1]〈
Ĵv Ĵ−v

〉
= 1− Cα − Cβ.

The covariance matrix is completed by computing the correlation between the
probe and conjugated beams. According to Equation 4.24 the two-mode noise spectrum
–or cross-correlation– is:

Smcr(Ω) =
〈
δX̂(pr)

Ω δX̂(cj)
−Ω

〉
(4.27)

= Re
{〈
δX̂(pr)

Ω δX̂(cj)
−Ω

〉}
+ iIm

{〈
δX̂(pr)

Ω δX̂(cj)
−Ω

〉}
Re

{〈
δX̂(pr)

Ω δX̂(cj)
−Ω

〉}
= µ

(
ACµ +BRe{g+1}+ C Re{g∗+2}+D

)
+

κ
(
ACκ − C Im{g∗−2}

)
ξ
(
ACξ + C Re{g∗−2}

)
+

η
(
ACη −B Im{g+1 − C Im{g∗+2}}

)
+

λ (ACλ −B Im{g−1}) +

νACν + τACτ +

ζ (ACζ +BRe{g−1}) ,
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Im
{〈
δX̂(pr)

Ω δX̂(cj)
−Ω

〉}
= µ

(
−ACη +B Im{g+1}+ C Im{g∗+2}

)
+

κ
(
ACξ + C Re{g∗−2}

)
+

ξ
(
−ACκ + C Im{g∗−2}+D

)
+

τACν − νACτ +

ζ (−ACλ +B Im{g−1}) +

λ (ACζ +BRe{g−1}) ,

where we defined

A = |r(∆)|pr|r(∆)|cj(1− f 2
pr)(1− f 2

cj)

B =
|r(∆)|pr(1− f 2

pr)f 2
cj√

2

C =
|r(∆)|cj(1− f 2

cj)f 2
pr√

2

D =
f 2
prf

2
cj

2 .

The subscript indicates the analysis cavity for each beam which in general are not equal.
The weight C functions for the cross-correlations are

Cµ = Re{g∗+1g+2} ; Cκ = Im{g∗+1g−2}

Cξ = Re{g∗+1g−2} ; Cη = Im{g∗+1g+2}

Cλ = Im{g∗−1g+2} ; Cν = Re{g∗−1g−2}

Cτ = Im{g∗−1g−2} ; Cζ = Re{g∗−1g+2}.

Now we have the complete toolkit that permits the reconstruction of the generated
state and its correlations, meaning the covariance matrix in the symmetric/anti-symmetric
basis SA and in the sideband basis.

In terms of the quadratures in the symmetric/anti-symmetric basis X̂s/a, the
covariance matrix is:

Vs,a =
 Vs Cs,a

Cs,a Va

 . (4.28)

The covariance matrix in the SA basis is organized in block diagonal form. The
diagonals correspond to the symmetric or anti-symmetric part Vs (Va), and the off-diagonal
terms, to the cross-correlations between the quadratures of different modes Cs,a. Each of
the diagonal terms have the explicit form:
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Vs =


∆2p̂(pr)

s

〈
p̂(pr)
s , q̂(pr)

s

〉 〈
p̂(pr)
s , p̂(cj)

s

〉 〈
p̂(pr)
s , q̂(cj)

s

〉〈
q̂(pr)
s , p̂(pr)

s

〉
∆2q̂(cj)

s

〈
q̂(pr)
s , p̂(cj)

s

〉 〈
q̂(pr)
s , q̂(cj)

s

〉〈
p̂(cj)
s , p̂(pr)

s

〉 〈
p̂(cj)
s , q̂(pr)

s

〉
∆2p̂(cj)

s

〈
p̂(cj)
s , q̂(cj)

s

〉〈
q̂(cj)
s , p̂(pr)

s

〉 〈
q̂(cj)
s , q̂(pr)

s

〉 〈
q̂(cj)
s , p̂(cj)

s

〉
∆2q̂(cj)

s

 (4.29)

=


α(pr) γ(pr) µ ξ

γ(pr) β(pr) ζ ν

µ ζ α(cj) γ(cj)

ξ ν γ(cj) β(cj)

 .

Va =


∆2p̂(pr)

a

〈
p̂(pr)
a , q̂(pr)

a

〉 〈
p̂(pr)
a , p̂(cj)

a

〉 〈
p̂(pr)
a , q̂(cj)

a

〉〈
q̂(pr)
a , p̂(pr)

a

〉
∆2q̂(pr)

a

〈
q̂(pr)
a , p̂(cj)

a

〉 〈
q̂(pr)
a , q̂(cj)

a

〉〈
p̂(cj)
a , p̂(pr)

a

〉 〈
p̂(cj)
a , q̂(pr)

a

〉
∆2p̂(cj)

a

〈
p̂(cj)
a , q̂(cj)

a

〉〈
q̂(cj)
a , p̂(pr)

a

〉 〈
q̂(cj)
a , q̂(pr)

a

〉 〈
q̂(cj)
a , p̂(cj)

a

〉
∆2q̂(cj)

a

 (4.30)

=


β(pr) −γ(pr) ν −ζ
−γ(pr) α(pr) −ξ µ

ν −ξ β(cj) −γ(cj)

−ζ µ −γ(cj) α(cj)

 .

Cs,a =



〈
p̂(pr)
s , p̂(pr)

a

〉
0

〈
p̂(pr)
s , p̂(cj)

a

〉 〈
p̂(pr)
s , q̂(cj)

a

〉
0

〈
q̂(pr)
s , q̂(pr)

a

〉 〈
q̂(pr)
s , p̂(cj)

a

〉 〈
q̂(pr)
s , q̂(cj)

a

〉〈
p̂(cj)
s , p̂(pr)

a

〉 〈
p̂(cj)
s , q̂(pr)

a

〉 〈
p̂(cj)
s , p̂(cj)

a

〉
0〈

q̂(cj)
s , p̂(pr)

a

〉 〈
q̂(cj)
s , q̂(pr)

a

〉
0

〈
q̂(pr)
s , q̂(cj)

a

〉

 (4.31)

=


δ(pr) 0 κ −η

0 δ(pr) τ −λ
−λ η δ(cj) 0
−τ κ 0 δ(cj)

 .

The covariance matrix Vs,a represents a two-mode state, for instance, a two-mode
squeezed state. The covariance matrix in the SA basis (Equation 4.28) can be transformed
into the sideband basis by the Equation 2.54 yielding:

V±Ω = ΛVs,aΛT

=
V−Ω C±Ω

C±Ω VΩ

 . (4.32)

For instance, the first diagonal block has the form:
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V−Ω =


∆2p̂

(pr)
−Ω 0

〈
p̂

(pr)
−Ω , p̂

(cj)
−Ω

〉 〈
p̂

(pr)
−Ω , q̂

(cj)
−Ω

〉
0 ∆2q̂

(pr)
−Ω

〈
q̂

(pr)
−Ω , p̂

(cj)
−Ω

〉 〈
q̂

(pr)
−Ω , q̂

(cj)
−Ω

〉〈
p̂

(cj)
−Ω , p̂

(pr)
−Ω

〉 〈
p̂

(cj)
−Ω , q̂

(pr)
−Ω

〉
∆2p̂

(cj)
−Ω 0〈

q̂
(cj)
−Ω , p̂

(pr)
−Ω

〉
0

〈
q̂

(cj)
−Ω , p̂

(cj)
−Ω

〉
∆2q̂

(cj)
−Ω

 . (4.33)

Notice that in the sideband basis, ∆2p̂
(j)
±Ω = ∆2q̂

(j)
±Ω = 0.5(α(j) + β(j) ± δ(j)), and〈

p̂
(j)
±Ω, q̂

(j)
±Ω

〉
= 0. As a consequence, in the sideband basis the generated states are coherent

thermal states as the ones presented in Figure 4a, contrary to the representation in the
SA basis.

We must highlight some parameters from the covariance matrix which have direct
interpretation. αj corresponds to the amplitude fluctuations, it can be accessed by direct
detection. βj is the phase fluctuations which are detected implementing interferometric
detection. γj is a parameter that appears when cross-phase modulation appears in the
interaction.

A final and special mention must be done on the δj parameter. Consider the energy
of a single mode in the sideband basis E±Ω = (1/2)

(
∆2p̂±Ω + ∆2q̂±Ω

)
, where the subscript

± refers to the upper (+) or lower (−) frequency mode. The difference between the upper
and lower sideband from the same spatial mode (probe or conjugated) [66]

E (j)
+Ω − E

(j)
−Ω = 2δj. (4.34)

Therefore, δj is the energy imbalance between the upper and the lower sideband.
This was represented in Figure 26 (d) as the imbalance between the fluctuations of the
lower and the upper sidebands, which was seen in the single mode noise spectrum as an
asymmetry between the lower and the upper sideband read out.

Shot Noise and normalization of the spectrum

In subsection 2.4.2 we introduced the concept of the shot noise level as normalization
factor for any measurement. It benchmarks the limit between quantum and classic
correlations. The shot noise was shown to depend on the amplitude of the local oscillator
which corresponds to the carrier in the resonator detection (Equation 2.63). Furthermore,
when considering the mismatch factor f the shot noise is modified such that it depends
explicitly on the reflectivity and the mismatch fraction. Hence, the shot noise takes the
form:

∆2Î− = |αca|2|
[
|r(∆)|2

(
1− f 2

)
+ f 2

]
∆2X̂v, (4.35)
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leading to the noise spectrum

〈
Ĵ

(j)
Ω Ĵ

(j)
−Ω

〉
=

〈
δX̂(j)

Ω δX̂(j)
−Ω

〉
∆2I

(j)
−

(4.36)

〈
Ĵ

(pr)
Ω Ĵ

(cj)
−Ω

〉
=

〈
δX̂(pr)

Ω δX̂(cj)
−Ω

〉
√

∆2I
(pr)
− ∆2I

(cj)
−

,

where

Ĵ
(j)
±Ω = δX̂(j)

±Ω√
∆2I

(j)
−

(4.37)

= Ĵ (j)
cos ± iĴ

(j)
sin, (4.38)

where the subscript cos/sin refers to the demodulation signal used to access the information
in the fluctuations, and j stands for probe or conjugated.

Experimental details of the tomography

The complete reconstruction of the covariance matrix demands three sequential
measurements of the state such that the weight functions C access the parameters as a
function of the cavity detuning ∆. The analysis frequency Ω is limited by experimental
conditions (Figure 28). On the one hand, its lower value must respect Ω > (2Γ)

√
2, where

2Γ is the bandwidth of the analysis cavity [30]. This condition must be satisfied in order
to guarantee a complete transformation between quadratures. On the other hand, the
upper value depends on the linewidth of the spectrum of the FWM process ΓFWM .

Carrier

Figure 28. Analysis frequency bounds. The lower bound is defined as a function of the
bandwidth of the analysis cavity by 2Γ

√
2. The upper bound is defined by the emission

linewidth and the phase-matching condition FWM (ΓFWM ).

The reconstruction of the covariance matrix rely on the assumption that the
generated states are stationary. The stationary conditions guarantee the covariance
matrix to be symmetric and have real eigen-values. Accordingly to Equation 2.58, if
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Ω′ = +Ω → S (Ω + Ω′) = 0. Hence, for the single mode case the generated states must
respect

∆2Ĵ (j)
cos −∆2Ĵ

(j)
sin = 0 (4.39)〈

Ĵ (j)
cos Ĵ

(j)
sin

〉
= 0 (4.40)

where j = pr, cj; on the other hand, for the two mode correlations

〈
Ĵ (pr)
cos Ĵ

(cj)
cos

〉
=
〈
Ĵ

(pr)
sin Ĵ

(cj)
sin

〉
(4.41)

〈
Ĵ

(pr)
sin Ĵ (cj)

cos

〉
= −

〈
Ĵ (pr)
cos Ĵ

(cj)
sin

〉
(4.42)

Respecting the stationary conditions is important for the validity of the construction
of the covariance matrix and moreover. They become relevant in the reconstruction of
states with huge excess of noise as will be shown in the next section.

Analysis cavity configuration

For our experiment, the analysis cavities are in a bow-tie configuration as shown in
Figure 25. Each cavity is 101.70 ± 0.05 cm length, have two plane-plane high reflectance
(HR) mirrors and two mirrors with a curvature radius of 2 m. The waist between the
plane mirrors is 378.53 ± 0.05 µm while the waist between the curve mirrors is 454.41
± 0.05 µm. For the probe cavity, the bandwidth is Γ =3.37±0.01 MHz and its finesse
87.4±0.2. In the case of the conjugated cavity, its bandwidth is Γ =3.36±0.01 MHz and
its finesse is 87.7±0.2. Hence, to guarantee a complete rotation of the noise ellipse we
should measure above an analysis frequency of 5 MHz [30]. After the analysis cavities, the
light goes to the photodiodes and follows the electronic scheme explained at the beginning
of the chapter (see Figure 18).

4.6.5 Demodulation phase

As mentioned earlier in this chapter, the photocurrent is demodulated using a pair
of orthogonal signals Cosine and Sine. Any deviation from the relative phase of π/2 will
ruin the stationary conditions. This sensitivity was not observed in other works from our
group, and can be associated to the fact that the generated states have typical values of
excess of noise above 10 SQL.

Consider a single mode and the photocurrent Ĵ (j) and the two demodulated signals
Ĵ (j)
cos and Ĵ

(j)
θ as shown in Figure 29, such that
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Ĵ (j) = Ĵ (j)
cos + iĴ

(j)
θ (4.43)

Ĵ
(j)
θ = sin (θ)Ĵ (j)

cos + cos (θ)Ĵ (j)
sin. (4.44)

Figure 29. Electronic local oscillator can access any combination Ĵθ. Nevertheless, in
quadrature observation depends on careful phase adjustment in order to avoid contamination
of cross-correlation terms.

The stationary condition for single mode (equations 4.39 and 4.40) yields:

∆2Ĵ (j)
cos −∆2Ĵ

(j)
θ = 0, (4.45)

〈
Ĵ (j)
cos Ĵ

(j)
θ

〉
= ∆2Ĵ (j)

cos, (4.46)

showing that a misalignment in the demodulation phase could contaminate the measure-
ment. A careful adjustment of the demodulation phases that compensated the inherent
electronic shifts of the circuits, could provide a fully compatible response measurements
(Figure 30). With all these corrections a good agreement of the curves to the experiment
could be obtained, that in principle would reveal a complete four mode covariance matrix.

For a given analysis frequency Ω and electronic configuration, we determined
the proper phase by running the experiment with different phases and evaluating the
condition for a stationary conditions. Figure 31 shows the characterization of the stationary
conditions for single and two-mode correlations as a function of the relative phase between
the demodulation channels measured at an analysis frequency of Ω = 10MHz. We vary the
phase from 30◦ to 150◦. Notice that the single mode conditions, namely 〈J iCosJ iSin〉 (i=pr,
cj) are the most affected by the relative phase, and as a consequence the cross-correlation
between these photocurrents 〈JprCosJ

cj
Sin〉 + 〈JprSinJ

cj
Cos〉. For every single tomography, the

covariance matrix was non-physical except for the case of a relative phase of 90◦ as
expected.



72 Chapter 4 Experimental Setup

(a) (b)

Figure 30. Cross-correlations demodulation phase correction. (a) Two-mode correlations
without phase correction. Even when to excess of noise is about 10 SQL, the stability condi-
tion was not satisfied. (b) Two mode correlations with correct adjustment of demodulator
phase.

Figure 31. Stationary conditions as a function of the demodulation phase at Ω =10 MHz.
The single mode stationary conditions are completely affected by the relative phase between
the two demodulation channels.

The stationary conditions are necessary for the adopted approach in the reconstruc-
tion of the state. For non-stationary states, the covariance matrix would have a different
configuration. However, in Figure 32 we observe the reconstruction of the covariance
matrix parameters as we tune the relative phase between demodulation signals. Notice
that the single-mode correlations, that is αpr/cj, βpr/cj, γpr/cj and δpr/cj, vary at most 10%
compared to the parameter at 90◦. Conversely, when studying the cross-mode correlations,
we find a deviation around 60% in the λ and the τ parameter, which could cause the
non-physical covariance matrices.

The calibration presented in Figure 31 is rough and a more detailed characterization
must be done around 90◦ in order to fulfill the stationary conditions. This is why in most
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(a) (b)

(c) (d)

Figure 32. Stationary conditions as a function of the demodulation phase at Ω =10MHz.

of the tomographies that will be shown latter, the relative phase would oscillates around
90 and 92◦, according to the analysis frequency Ω.

4.6.5.1 Stationary condition as a function of the analysis frequency

One interesting parameter for the characterization of the system is the analysis fre-
quency Ω. It determines the distance between the carrier and the sidebands. Furthermore,
as it will be discussed in the results, it indicates the dependence of the asymmetry of the
system with it. However, we found a dependence between the stationary conditions and
the analysis frequency Ω.

Figure 33 presents the stationary conditions as a function of the analysis frequency
Ω. We measured at Ω = 7, 10, 12, 15 MHz. As explained in the latter subsection, for each
analysis frequency we tune the demodulation phase such that we find the lowest value
for every stationary condition. Notice that there are three conditions which oscillates
around zero for every Ω. In comparison, the there are conditions that increases with
Ω. Comparing with Figure 31 we can observe that the stationary conditions presenting
the most of the problems are the same in both figures. Up to the day we finished the
measurements we were not able to find the source of the problem but its influence in the
tomography is critical since the reconstructed states were more difficult to characterize as
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Figure 33. Dependence of the stationary conditions with Ω.

the analysis frequency increases. At the analysis frequency of 15 MHz and above, there
were non-physical covariance matrices. This restricted our characterization to 7 and 10
MHz.

4.6.6 Mismatch factor f

In the resonator detection the incoming beam must be coupled into the analysis
cavity. Any mismatch turns into some fraction of light that does not experience the effect
of the phase transformation from the cavity. In other words, there will be a continuous
measuring of the amplitude quadrature of this fraction of the light. The resonator coupling
factor 1−f 2 is a measurement of the quality of the phase and spatial matching of the light
beam (probe/conjugated) and the intracavity mode (respect to the analysis cavities). In a
perfect scenario, the resonator coupling factor is one (f = 0), meaning that the incoming
beam enters completely into the cavity. The opposite case is a resonator coupling factor
equal to zero (f = 1), where the beam is reflected by input mirror of the analysis cavity.

Figure C.3.1 shows the single mode noise spectrum for the probe (in red) and the
conjugated (in blue) beams. Notice that the experimental data exhibit a central peak at
∆ = 0. If we do not consider the uncoupled light (f = 0), neither the theoretical model nor
the numerical fit describe this behavior Figure 34a. The best theoretical and numerical
description corresponds to a small peak that does not surpass the border values at ∆ = ±6.
Conversely, considering the uncoupled fraction (f 6= 0), the numerical fit describes the
central peak. The coupling factor happens to be determinant in the tomography of the
state regarding the fact that its consideration results into physical covariance matrix
whereas neglecting it leads to unphysical states. The depth of the central peak is related to
the coupling factor, the better the coupling (f → 0) the smaller the depth. In the specific
case of Figure C.3.1, 91.1±0.3% of the probe beam is coupled into the cavity whereas
96.5±0.2% of the conjugated beam is coupled.
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(a) f = 0. A small central peak ap-
pears. In this description, this effect
could not surpass the extreme values
of the figure at ∆ = ±6.

(b) f 6= 0. Considering the cou-
pling factor describes the central
peak. The probe beam has a cou-
pling of 91.1±0.3% and the conju-
gated 96.5±0.2%.

Figure 34. The coupling factor takes into account the small fraction of light that does not
enter into the cavity. This fraction will go directly to photodetection and will add an extra
noise signal to the tomography.

The coupling factor is an important parameter for the reconstruction of the single
mode noise spectrum. Typically, in our laboratory we have been working with optical
parametric oscillators (OPO) using χ(2) that generates similar states with an excess of
noise up to 3 units of shot noise [69, 70]. More recently, we were able to construct and
characterize an OPO using rubidium cell [25], a system that generates beams with 2.5
units of excess of noise. In each of the latter systems, a small fraction of uncoupled light
would not generate a deep central peak since the excess of noise carried by the uncoupled
light is will not surpass 2 units of noise and and the central peak can not decrease below
the shot noise level. On the other hand, our system generates states approximately 10
units above the shot noise level. Therefore, any fraction of light that is not coupled into the
analysis cavity already carriers a huge amount of noise that contaminates the tomography.
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� � �

In this chapter we describe the different controlling mechanisms of the system and
the connection between the measurement and the reproduction of the state. We started
by a broader view of the setup and then went into the details. In general the system is
composed by four branches: the Ti:sapphire laser working as the pump beam and precisely
tuned into frequencies of the desired rubidium 85 hyperfine levels. The generation of the
seed beam by an AOM that permits the frequency control and the scanning of the FWM
Gain profile. The generation of the FWM by the interaction of the pump and the seed
with the hot rubidium 85 atoms, and finally, the selective detection of the sidebands of
the probe and conjugated beams by the implementation of the resonator detection scheme.
At the end of the chapter, we studied the resonance detection and the reconstruction
of the covariance matrix by the detection of in-phase photocurrents. We show how the
measured photocurrent carries the desired information and how the covariance matrix
was determined by the noise spectrum. We pointed out the importance of a detailed
calibration of the demodulation phase to compensate the phase shift from the electronics
and show how important it could be for systems presenting huge excess of noise. Finally,
we compared the reconstruction of a state when the mismatch factor is considered.
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Results and discussion

This chapter present the most important results from this thesis. We focus on
the characterization of the quantum correlations as a function of the probe detuning
∆2. We begin by the characterization of the intensity correlations as a first signal of
quantumness. In the second part, we present the characterization of entanglement. A
complete characterization is shown in the appendix of this document.

5.1 FWM profile

The FWM profile is obtained by locking the pump frequency ∆1 using the saturated
absorption spectrum as explained in section 4.1. In Figure C.2.1 we show the saturation
absorption spectrum with the pump locking frequencies. The solid vertical lines represents
the FWM process where the pump detuning is at ∆1 = Crossover + 1GHz, named Lock
I. The black vertical line corresponds to the pump frequency, the red solid vertical line
corresponds to the probe frequency and the solid blue vertical line to the conjugated
frequency. The second pump frequency is locked at ∆1 = 52S1/2, F = 2→ 52P1/2, F =
3 + 1GHz, denominated Lock II, which is represented by the vertical dashed lines.
Given that the Lock II is around 180 MHz above the Lock I frequency, the generated
beams, the probe and the conjugated, will also be shifted the same amount to higher
frequencies. During this chapter we will show the results when locking at Lock I. Further
characterizations are found in the appendix C.2.1.

The gain profile is shown in Figure 36. The experimental profile was obtained by
tuning ∆2 and calculating the gain according to Equation 4.1. The pump frequency is
locked at Lock I (Crossover + 1GHz in figure C.2.1), the cell temperature is 103±0.1◦C.
Seed waist (244.2± 1.9)µm, the pump waist (525.5± 1.6)µm, and the angle between them
is 0.30± 0.03◦C. The FWM profile presents a maximum gain factor of 22 and a linewidth
of 50 MHz (Figure 36a). The reproduction of the profile with the theoretical description
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Figure 35. Pump detuning frequency locking. The vertical solid lines corresponds
to the FWM process when locket at the Lock I frequency (Crossover + 1GHz). The
vertical dashed lines corresponds to the FWM process when the pump detuning islocked at
52S1/2, F = 2→ 52P1/2, F = 3 + 1GHz (Lock II ).

was done qualitatively, meaning the gain factor should be around 20 while the linewidth
must be the same (35 MHz), as can be observed in Figure 36b.

(a) Chosen configuration for to-
mography. (b) Theoretical model gain profile.

Figure 36. Experimental parameters: Seed waist = (244.2 ± 1.9)µm; Pump waist =
(525.5± 1.6)µm; Temp = (103.0± 0.1)◦C; Angle = (0.30± 0.03)◦C. The theoretical model
have similar gain factor and linewidth.

It is worth to emphasize that the profile is shown as a function of the probe detuning,
hence, the emission profile of the conjugated would be inverted since the conservation of
energy locks the conjugated frequency to the probe frequency. In this way, as the probe
frequency increases, the conjugated frequency must decrease and vice-versa. Consequently,
the emission profile of the conjugated should be mirrored if plotted as a function of the
conjugated frequency.
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5.2 Intensity correlations as a function of the probe detuning
∆2

In FWM using rubidium atoms, the gain factor is not the ultimate parameter
in the generation of quantum correlated states. There are many parameters that affect
the generated state. As discussed in section 4.5, the intensity correlations are the first
signal of a quantum behavior. If there is no squeezing it should not be expected any
entanglement. In this section, we show the experimental characterization of the intensity
correlations present in the FWM as a function of the probe detuning ∆2 which is controlled
by controlling the AOM that generates the seed beam, as explained in section 4.2.

The plots have the vertical axes that corresponds to the noise level in dB, and the
horizontal axis is the analysis frequency Ω. At dB = 0 we have the standard quantum
limit (SQL a state with minimum uncertainty), such that above this level the state has
excess of noise, and below it the state is squeezed, thus it presents a behavior that is not
possible with classical resources. This characterization also have the aim of reproducing
results presented in [12, 7, 71].

Figure 37 shows the characterization of the correlations as a function of ∆2. The
seed waist was (244.2± 1.9)µm, the pump waist (525.5± 1.6)µm, and the angle between
them was 0.30 ± 0.03◦C. The pump power was 420 mW, the seed power 140 µW , and
the temperature was 103◦C. Notice that when the probe detuning is at 1063 MHz,
the squeezing bandwidth reaches values around 15 MHz. As ∆2 grows, the squeezing
bandwidth is reduced to values around 8 MHz with a small decrease in the squeezing
level. In the appendix we show the behavior of the system in a different configuration
(subsection C.2.5 figure C.2.8) were the effect of ∆2 is more dramatic. Therefore, the probe
detuning allows a direct control on the squeezing level and the squeezing bandwidth.

We mentioned before that the FWM profile was reproduced and compared qual-
itatively. However, it is clear that this is not a reliable criteria for the reproduction of
the experimental system. Hence, in subsection C.2.6 you will find the calibration of the
theoretical parameters using experimental data. We checked for the reproduction of the
intensity correlations as a function of the probe detuning ∆2, and for the noise level of
the probe and the conjugated beams. With this, we guarantee a reliable set of theoretical
parameters and could continue to the study of the entanglement.

The characterization of the intensity correlations is useful for defining regions where
there is squeezing or not. We notice that at lower probe detuning ∆2 the gain factor
increases slowly compared to the behavior after the maximum of gain, where the change
is dramatic and more steep. In the case of the conjugated, the behavior is mirrored.
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(a) ∆2 = 1063.5MHz. (b) ∆2 = 1068.5MHz.

(c) ∆2 = 1072.6MHz. (d) ∆2 = 1075.4MHz.

Figure 37. Intensity correlations as a function of the probe detuning ∆2. Parameters:
pump power = 420.0± 0.3mW ; seed power = 140.1± 0.3µW ; pump waist 525.5µm; seed
waist 244.2µm; cell temperature: 103± 0.1◦C; angle = 0.3 ◦. Pump frequency locked at
Crossover + 1GHz.

5.3 Covariance matrix reconstruction

The tomography of the state is the determination of every parameter on the
covariance matrix (4.28, 4.32), in other words, the complete knowledge of the generated
state. In the current thesis we achieve this goal by the implementation of the resonator
detection (subsection 4.6.2). This section contains the characterization of the covariance
matrix as a function of the probe detuning ∆2. Since the intensity correlations are not
a sufficient condition for entanglement, we use the reconstructed state for studying the
entanglement of the system by using the entanglement witness described in section 2.5.

5.3.1 Probe detuning ∆2 at Ω = 7 MHz

The probe detuning ∆2 controls the squeezing level and the bandwidth (section 5.2)
as well as the gain factor (see Figure 36a). In this subsection, we study the covariance
matrix parameters as a function of the probe detuning ∆2. The figures presented in this
section were obtained after ten consecutive tomographies and a statistical analysis. This
had to be done given the difficulty in the reproduction of physical covariance matrices.

The probe and conjugated beams are amplified differently at a given probe detuning
∆2 which can be seen by the difference in the output power of the probe and the conjugated
Figure 38. The characterization is done in a frequency range from 1052 to 1076 MHz
which corresponds to a small frequency region in Figure 36. In principle, we could explore
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Table 1. Experimental parameters probe detuning ∆2 characterization (see Figure 36) at
Ω =7MHz.

Pump power (mW) Seed power (µW ) Temp. (◦C) Analysis freq. (MHz)
420.0 ± 0.3 140.0±0.3 103.0 ± 0.1 7.0±0.1

the states at greater frequencies ∆2. However, values above ∆2 = 1080 MHz increased the
difficulty of reproducing physical states. During the whole process, the probe power is 120
µW bigger than the conjugated power due to the incoming seed power.

Figure 38. Probe and conjugated power as a function of ∆2 at Ω =7MHz.

Figure 39 presents the experimental and the theoretical results for the tomography
as a function of ∆2 at an analysis frequency of 7 MHz. Evidently, the values achieved in
the experimental analysis are much lower than the theoretical description. Nonetheless,
the aim of the theoretical description is a comparison based on a qualitative approach.
Notice that the phase noise βpr/cj presents more excess of noise than the amplitude noise
αpr/cj. Even more, βcj is greater than βpr and increases monotonically with the probe
detuning ∆2. In the case of the amplitude noise level, we can observe a plateau after 1068
MHz whereas the theoretical description continues its smooth increment in the noise level.
This will affect the description of the entanglement as will be shown latter.

The characterization for γpr/cj and δpr/cj, is shown in Figure 40. The γpr/cj is
around zero and increases its value at higher frequencies. The experimental results shows
a flip in the sign between γpr and γcj , contrary to the theoretical results. Even so, its value
remains around zero indicating that there is no rotation of the noise ellipse. In terms of
the asymmetry between the sidebands δpr/cj , a given ∆2 defines an amplification factor for
each sideband which are close at low frequencies and more distinct at higher ∆2. Hence, it
is expected that the asymmetry increases with the probe detuning.

We also compared the cross-correlations terms. In Figure 41 we present some of
the parameters. Regarding the behavior of µ, which is related to the amplitude cross-
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(a) Single mode parameters of the co-
variance matrix.

(b) Theoretical description of the sin-
gle mode parameters of the covariance
matrix.

Figure 39. αpr/cj , βpr/cj as a function of ∆2 at Ω =7MHz.

(a) Single mode parameters of the co-
variance matrix.

(b) Theoretical single mode parameters
covariance matrix.

Figure 40. γpr/cj , δpr/cj as a function of ∆2 at Ω =7MHz.

correlations, we observe the plateau after 1068 MHz, the same appearing at the single
mode correlations αpr/cj. The theoretical description does not reproduce the flat region.
Similarly, the phase cross-correlation ν follows the behavior of βpr/cj. Finally, the second
set of cross-correlations parameters are shown in Figure 42. In general, the theoretical
model describes the behavior of the experimental results. The main differences are found in
the amplitude correlations αpr/cj and µ, and in the flipped signal of the values of ζ, ξ, and
γpr/cj . Later in this chapter we will discuss about the possible reasons for the discrepancy.
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(a) Two mode cross-correlations param-
eters covariance matrix.

(b) Two mode cross-correlations param-
eters covariance matrix.

Figure 41. µ, ν, η, κ as a function of ∆2 at Ω =7MHz.

(a) Two mode cross-correlations param-
eters covariance matrix.

(b) Two mode cross-correlations param-
eters covariance matrix.

Figure 42. ζ, ξ, τ, λ as a function of ∆2 at Ω =7MHz.

5.3.2 Probe detuning ∆2 at Ω = 10 MHz

The analysis of sidebands at higher frequencies is interesting given that the sidebands
would have a much different gain factor between them. For instance, at an analysis
frequency of Ω =10MHz, seeding at a probe detuning ∆2 =1075 MHz, the upper sideband
would be amplified by a factor of 17 units contrary to the lower sideband amplified by
a factor of 7.5 units (Figure 36). The distinct amplification for the upper and lower
sidebands would generate asymmetries between the sidebands and the entanglement.

Figure 43 compares the experimental data and the theoretical model of the system.
At regions of low gain, the generated beams present low noise level which increases as ∆2

reaches the high gain factor regions. Similarly to the case of 7MHz shown in Figure 39,
the amplitude single mode correlations exhibit a plateau.
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Table 2. Experimental parameters probe detuning ∆2 characterization (see Figure 36) at
Ω =10 MHz.

Pump power (mW) Seed power (µW ) Temp. (◦C) Analysis freq. (MHz)
420.0 ± 0.3 140.0±0.3 103.0 ± 0.1 10.0±0.1

(a) Experimental single mode parame-
ters of the covariance matrix.

(b) Theoretical single mode parameters
covariance matrix.

Figure 43. αpr/cj and βpr/cj parameters as a function of the probe detuning ∆2 at
Ω =10MHz.

The characterization of the γpr/cj and δpr/cj parameters are shown in Figure 44
where we notice that γpr/cj is close to zero at low detuning but it increases its value at
high frequencies which could be generated by the factor of 15 in the gain which could
induce more non-linear effects. We can also see that the asymmetry between the sidebands
increases with ∆2. Notice that compared to the case of 7MHz (Figure 40), the absolute
values of δpr/cj at 10MHz are greater either in the experimental and the theoretical results.
This is explained by the difference between the gain factor of the sidebands. At 10MHz,
the difference between the gain factor of the upper and the lower sideband is greater than
at 7MHz, generating the asymmetry to be magnified.

For completeness of the covariance matrix characterization, we present in figure
Figure 45 the cross-correlation terms between the two-mode state. We can see that
the amplitude cross-correlation µ have the inflection from the monotonic raise and its
discrepancy with the theoretical approach even when exploring at higher detuning ∆2. At
this analysis frequency we also find the crossing point at 1068 MHz between the parameters
ζ and ξ, which is not described by the theoretical model.



5.3 Covariance matrix reconstruction 85

(a) Experimental single mode parame-
ters of the covariance matrix.

(b) Theoretical single mode parameters
covariance matrix.

Figure 44. γpr/cj and δpr/cj parameters as a function of the probe detuning ∆2 at
Ω =10MHz.

(a) Experimental two mode cross-
correlations.

(b) Theoretical two mode cross-
correlations.

(c) Experimental two mode cross-
correlations.

(d) Theoretical two mode cross-
correlations.

Figure 45. Cross-correlations as a function of the probe detuning ∆2 at Ω =10MHz.
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5.4 Entanglement witness

In this section we present the results on entanglement. We use the Duan criterion
and the PPT criterion as the entanglement witness, evaluate the criterion at two different
analysis frequencies either in the symmetric/anti-symmetric basis and in the sideband
basis. At the end of the section we compare the Duan criterion with the PPT criterion.

5.4.1 Duan criterion in the Symmetric/anti-symmetric basis

Figures 46 and 47 shows the experimental and theoretical results of the Duan
criterion in the symmetric/anti-symmetric basis at an analysis frequency Ω = 7 and 10
MHz, as a function of the probe detuning ∆2 for the bipartition [Spr, Scj ]. The violation of
the criterion is reduced as ∆2 grows. Notice that the violation of the criterion reaches larger
probe detuning (∆2) at Ω = 7 MHz than at Ω = 10 MHz. For instance, in the theoretical
description the Duan criterion at Ω = 7 MHz is violated up to the probe detuning
∆2 = 1085 MHz (Figure 47a). Conversely, at an analysis frequency of Ω = 10 MHz, the
violation of the criterion reaches ∆2 = 1070 MHz (Figure 47b). In the experimental results
this could be observed as well, at Ω = 7 MHz the critarion is not violated for probe
detuning above ∆2 = 1073 MHz whereas at an analysis frequency of Ω = 10 MHz it is not
violated from frequencies larger than ∆2 = 1070 MHz.

(a) Experimental Duan criterion in the
symmetric/anti-symmetric basis at Ω =
7 MHz.

(b) Experimental Duan criterion in the
symmetric/anti-symmetric basis at Ω =
10 MHz.

Figure 46. Experimental description of the Duan criterion in the symmetric/anti-symmetric
basis.

A closer look to the sidebands allows to understand the described behavior. We
have seen that by increasing the value of ∆2 we attain regions were there are no quantum
correlations (see section 5.2). Consider the probe detuning ∆2 = 1075 MHz and the
sidebands around it. When the analysis frequency Ω = 7 MHz, we would be studying
sidebands around the carrier, one above ∆2 = 1075 MHz and the other below. If we
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(a) Theoretical Duan criterion in the
symmetric/anti-symmetric basis at Ω =
7 MHz.

(b) Theoretical Duan criterion in the
symmetric/anti-symmetric basis at Ω =
10 MHz.

Figure 47. Theoretical description of the Duan criterion in the symmetric/anti-symmetric
basis.

increase the analysis frequency to Ω = 10 MHz, it means that the sideband which is above
the carrier frequency would attain the regions where there are no squeezing, destroying
the quantum correlations between sidebands.

5.4.2 Duan criterion in the Sideband basis

The Duan criterion can also be studied in the sideband basis. Figure 48 represents
the pair of bipartitions studied in this section. In blue we plot the inner bipartition
[Ωpr,−Ωcj]; in green the outer bipartition [−Ωpr,Ωcj]. The other bipartitions did not
violate the criterion.

Probe Conjugated

Figure 48. Bipartitions for the Duan criterion in the sideband basis. The blue line
represent the inner bipartition [Ωpr,−Ωcj ]. The green line represents the outer bipartition
[−Ωpr,Ωcj ].

Figures 49 and 50 shows the experimental and theoretical characterization of Duan
criterion in the sideband basis. Observe that different bipartitions present different levels
of violation of the criterion. The inner bipartition in blue, violates the criterion for a lower
range of probe detuning ∆2 compared to the outer bipartition. The theoretical results
show the decrease in the violation range of ∆2 when the analysis frequency changes from



88 Chapter 5 Results and discussion

Ω = 7 MHz to Ω = 10 MHz. In the case of the experimental results, some unexpected
behavior appears above ∆2 = 1070 MHz which could be generated by the contamination
of the HF signal due to electronic down-conversion or by cross-talk between the orthogonal
signals Cosine and Sine in the demodulation (see subsection 4.6.5).

We can also observe that the bipartition [Ωpr,−Ωcj] in blue, lost the violation
of the criterion before the green bipartition [−Ωpr,Ωcj]. For the interpretation of this
behavior, consider the FWM profile shown in Figure 36. As the probe detuning grows,
the upper sideband of the probe Ωpr will attain the regions where the profile is more steep
and there is no squeezing. Simultaneously, the conjugated lower sideband will decrease
its frequency going to the region where the profile is steep. On the contrary, the green
bipartition [−Ωpr,Ωcj] preserve the entanglement given that the sidebands goes in the
direction where the FWM profile vary slowly and there is squeezing (see section 5.2).

(a) Experimental Duan criterion in the
sideband basis at Ω = 7 MHz.

(b) Experimental characterization of the
Duan criterion in the sideband basis at
Ω = 10 MHz.

Figure 49. Experimental characterization of the Duan criterion in the sideband basis.

Notice that the experimental and the theoretical curves present some important
differences. At Ω = 7 MHz, when the probe detuning is above ∆2 = 1070 MHz, there is a
recover of the violation of the criterion. At Ω = 10 MHz, the theoretical results for the
blue bipartition follows the experimental behavior with a strong decrease in the violation
of the criterion. However, it presents an offset of the overall curve. In the case of the green
bipartition, we can describe a slowly decrease of the violation and then a dramatic increase
in the criteria value. Further measurements may clarify the origin of this unexpected
response of the system.

5.4.3 PPT criterion

The PPT criterion characterization in the SA basis is shown in Figure 51. We
observe that the bipartition [Spr,Scj×Apr,Acj] is not entangled, neither for the analysis
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(a) Experimental Duan criterion in the
sideband basis at Ω = 7 MHz.

(b) Theoretical Duan criterion in the
sideband basis at Ω = 10 MHz.

Figure 50. Theoretical characterization of the Duan criterion in the sideband basis as a
function of probe detuning ∆2.

frequency of Ω = 7 MHz nor Ω = 10 MHz. Every other bipartition are entangled.
Comparing the experimental and theoretical results, we can check that the theory follows
the experiment.

(a) Experimental PPT criterion in
the symmetric/anti-symmetric basis at
Ω =7MHz.

(b) Theoretical PPT criterion in the
sideband basis at Ω =7MHz

Figure 51. Characterization of the PPT criterion n the SA basis, as a function of the
probe detuning ∆2 at Ω = 7 MHz.

The study in the sideband basis, shown in Figure 52, reveals that the bipartition
that does not violate the criterion is [Ωpr,−Ωcj × −Ωpr,Ωcj]. The sidebands that are
generated simultaneously and conserve energy and momentum are Ωpr,−Ωcj and −Ωpr,Ωcj .
Therefore, it is expected that there were no correlations between these bipartitions.
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(a) Experimental PPT criterion in the
sideband basis at Ω =7MHz.

(b) PPT criterion in the sideband basis
at Ω =7MHz.

Figure 52. Characterization of the PPT criterion in the sideband basis, as a function of
the probe detuning ∆2 at Ω = 7 MHz.

The PPT criteria allows to consider a subspace in the covariance matrix such that
we can compare directly this criterion with the Duan criterion. Figure 53 presents the
results of the characterization of the correlations between the bipartitions [Ωpr,−Ωcj]
in light blue, and [−Ωpr,Ωcj] in light green, using the PPT criterion. Comparing with
Figure 49a we notice that the PPT criterion describes a more robust violation of the
entanglement which corresponds to the fact that in the PPT criterion, more parameters of
the covariance matrix are involved. Moreover, the characterization of the entanglement
using the resonator detection reveals a richer structure of the quantum correlations available
since it is capable to evidence the asymmetry in the violation of the criterion between the
blue bipartition [Ωpr,−Ωcj] and the green bipartition [−Ωpr,Ωcj].

Figure 53. PPT criterion for the sideband subspace as a function of the probe detuning at
Ω =7MHz.
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5.5 Discussion

During this thesis we were looking for a complete characterization of the entan-
glement available in a FWM process. This was done by implementing the resonator
detection were the light is coupled into a resonator and according to a dispersive response
and a selective frequency attenuation, we had access to the individual sideband modes
of each of the generated beams. All of this experimental work was done in parallel with
a theoretical model based on the Heisenberg-Langevin equations which considers the
light-matter interaction, and the coupling of the system with the noise reservoir.

We started by the generation and characterization of the FWM spectrum. We
determined that the ideal temperature was 103 ◦C, the pump waist 525.5±1.6 µm, the seed
waist 244.2±1.9 µm, and the angle between pump and seed 0.29±0.03 ◦. This generates
a FWM spectrum with a maximum gain factor of 22 units and a linewidth of 50 MHz,
sufficient for generating intense fields with noise signals above 3 dB from the electronic
background noise (Figure 36a).

Thereafter, we study the intensity correlations, or squeezing, trying to find the
configuration with the most squeezing level and squeezing bandwidth (section 5.2). We
locked the pump frequency at the Crossover +1GHz (Lock I ), and describe the dependence
of squeezing as a function of the probe detuning ∆2. We observed that the probe detuning
allows a precise control on the squeezing properties on the generated beams. At lower
probe detuning ∆2, the squeezing bandwidth is larger but the squeezing level may decrease.
As the probe detuning increases, the squeezing level and bandwidth are reduced. At probe
detuning ∆2 around the maximum of the gain factor, the squeezing is completely lost
and further frequencies only shows excess of noise in the intensity correlations. Theis
characterization also permitted to determine the huge amount of noise on each of the
generated beams, reaching values above 10 dB above the standard quantum limit (SQL).

We identify two different regions of the FWM profile. On the one hand, the gain
profile at probe detuning below the maximum gain frequency (around ∆2 = 1088 MHz)
that presents a slow monotonical increase and generates quantum correlations. On the
other hand, at probe detuning above the maximum gain, the FWM profile is steep and
there are no quantum correlations. In terms of the sidebands we can consider that at the
region of probe detuning below the maximum gain factor, the sidebands present similar
values of amplification. Conversely, at regions of high detuning, each of the sidebands
experience a completely different amplification. This behavior is not completely understood
and we are still working on the description of it.

The intensity correlations were also useful as a calibration for the theoretical model
since we look for the set of theoretical parameters that describes the experimental results
(Appendix C.2.6). The developed theoretical approach reproduces correctly the gain
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spectrum and the intensity correlations. However, it presents some drawback, namely, it
does not take into account the atomic velocity distribution, the mismatch factor, and the
angle between seed and pump beams. To begin with, the velocity distribution generated
by the temperature of the atoms, would only affect the linewidth of the emission and
the computation power for running the model, but not the gain factor neither the noise
properties. One visible effect of the velocity distribution is the flat region shown in
Figure C.1.1a at frequencies above ∆2 =1020 MHz, compared to the oscillations appearing
in Figure C.1.1b above the same frequency. Nonetheless, our analysis is focused in
frequencies below the maximum gain factor such that this effect would not contribute
to the measured state nor the noise properties. The second drawback is the mismatch
factor. It depends on the impedance matching between the beams and the analysis cavity,
and, even when it is not 100% coupled, for every measurement it was constant around
92% for the probe and 98% for the conjugated which is a coupling factor acceptable
from our experience in the laboratory. Finally, the consideration of the seed and the
pump as colinear beams do not interfere in the theoretical description given that once the
phase-matching is satisfied, the equations have the same structure.

Afterwards, we presented the reconstruction of the covariance matrix as a function
of the probe detuning ∆2. This was done for two different analysis frequencies, Ω = 7
MHz and Ω = 10 MHz. Overall, the reconstruction of the covariance matrix shown that
as the amplitude and phase noise (αi and βi respectively) increases with the growth of
the probe detuning. The asymmetry between the energy of the sidebands δi increases and
the cross-correlation effects, described by the γi parameter, appears as the gain factor
becomes larger. The theoretical model presents some discrepancies with the experimental
results at probe detuning above ∆2 ≥ 1070 MHz which could be generated by a cross-talk
between electronic channels or by electronic down-conversion generated by the huge excess
of noise of the individual detected beams.

Thereafter, we show the Duan criterion characterization in the symmetric/anti-
symmetric basis (SA) and the sideband basis. In the SA basis the experiment and the
theory showed that the bipartition [Spr, Scj] presented entanglement (subsection 5.4.1).
When the study was made in the sideband basis, we found a richer structure of quantum
correlations where two different bipartitions, [Ωpr,−Ωcj] in blue, and [−Ωpr,Ωcj] in green,
presented entanglement (subsection 5.4.2). The behavior of the Duan criteria in the
sideband basis can be understood by looking at the conservation of energy in the FWM
process. The lower sideband of the probe beam must be generated simultaneously with the
upper sideband of the conjugated beam. Likewise the upper sideband of the probe and the
lower sideband of the conjugated. Hence, it is expected that these two bipartitions present
quantum correlations. In terms of the SA basis, each quadrature is a linear combination
of the upper and lower sidebands, and therefore, the ones generated in phase (symmetric)
must have quantum correlations.
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Even more, we found that the entanglement structure on each bipartition was
different and could present higher violation level according to the probe detuning ∆2. The
blue bipartition [Ωpr,−Ωcj] had lower violation level and the violation band was smaller
than the green bipartition [−Ωpr,Ωcj]. This could be inferred by the sideband modes in
the FWM profile. Consider a given probe detuning ∆2 and the blue bipartition [Ωpr,−Ωcj ].
The upper sideband from the probe Ωpr will be blue detuned from the carrier frequency,
that is, near from the region of no quantum correlations. Hence, if the probe detuning
is increased, the upper sideband of the probe will be nearer the region of no quantum
correlations. In the case of the lower sideband of the conjugated, as far as its spectrum is
mirrored, it will be directed into the region of no quantum correlations. In the case of
the green bipartition [−Ωpr,Ωcj], the lower sideband of the probe and the upper sideband
of the conjugated, are directed into region of squeezing which only disappear when the
amplification process is not enough for the generation of correlations. Notice that the
experimental and the theoretical curves present some important differences. At Ω = 7
MHz, when the probe detuning is above ∆2 = 1070 MHz, there is a recover of the violation
of the criterion. At Ω = 10 MHz, the theoretical results for the blue bipartition follows the
experimental behavior with a strong decrease in the violation of the criterion. However,
it presents an offset of the overall curve. In the case of the green bipartition, we can
describe a slowly decrease of the violation and then a dramatic increase in the criteria
value. Further measurements may clarify the origin of this unexpected response of the
system.

We also use the PPT criteria as an entanglement witness of the system (subsec-
tion 5.4.3). The characterization was done in the SA basis and the sideband basis. In the
SA basis this bipartition was [Spr,Scj×Apr,Acj]. Looking at the Duan characterization,
we can find an explanation. Given that the the entangled bipartitions was [Spr, Scj] (it
can also be shown that a similar behavior is expected for [Apr, Acj] up to a π/2 phase),
the bipartition [Spr,Scj×Apr,Acj] could not be entangled. Similarly, when looking at the
PPT criteria in the sideband basis, Ωpr and −Ωcj are generated simultaneously, and in
the same way −Ωpr and Ωcj. Therefore, there could not be quantum correlations between
the bipartition [Ωpr,−Ωcj × Ωcj,−Ωpr].

By the study of the PPT criteria in the subspace of the bipartitions [Ωpr,−Ωcj]
and [−Ωpr,Ωcj ], we could find a more robust violation rate of the criteria compared to the
Duan criterion. At an analysis frequency of Ω = 7MHz, the criteria was violated for any
probe detuning ∆2 whereas at Ω = 10MHz, only at ∆2 >1072 MHz the criteria was not
violated. Using the PPT criteria in this subspace takes into account more terms from the
covariance matrix, therefore, we are considering more correlations between the states.

This is the first measurement of the asymmetry in the quantum correlations between
four-modes of sideband, in a FWM process. The measurement using resonator detection
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over a Four-wave mixing process, reveals a richer structure of entanglement by considering
the details of the four modes involved. This work will continue with the generation and
characterization of 1D cluster states using rubidium atoms.



III

NEXT STEPS AND CONCLUSION
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Conclusion

During this thesis we studied and characterized the quantum correlations of the
FWM process between four frequency modes, measuring the asymmetry between biparti-
tions in the sideband basis, a property not shown before.

Our approach aimed to describe both theoretically and experimentally, such that
we would have a broad picture of the system. The theoretical description embraces the
fluctuations in the dynamical equations by using the Heisenberg-Langevin equations, where
the pump beam was considered as a classical state, whereas the seed as a quantum state.
We described their interaction with the rubidium atoms and included the coupling with
vacuum modes and stochastic terms. This approach is an improvement over the naïve
description by parametric amplification since most of the experimental parameters are
considered and it permits a description of their affection on the system. Every theoretical
curve we reproduced was previously calibrated with a set of experimental data. The main
result of the theoretical model is that it predicted the spectral profile of the quantum
correlation of the bipartite and quadripartite system of independent sidebands.

Simultaneously, we worked in the experimental setup. The current setup is the
first implementation of this atomic system in our laboratory, we started from scratch
and configured every part of the experiment. The experiment was planned in three main
branches. The source laser, the FWM process and the resonator detection. The source
laser provided a high power CW beam with a stabilized frequency. It was used as the pump
laser and the seed beam. The second stage of the system was the FWM process, where
pump and seed interacted with the hot rubidium atoms, and generated the probe and
conjugated beams. Finally, the resonator detection allowed an isolated characterization of
the upper and the lower sidebands of the individual beams. The beam fluctuation was
measured in photodiodes, demodulated in a given analysis frequency, and recorded.

Many different geometrical configurations of the FWM were tested, we reported a
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few of them. Most of the problems were related to the colimation of the beams, electronic
limitations, excessive noise of light, among others. The final configuration was chosen
such that most of the problems were solved. Despite of this, we were able to measure the
intensity squeezing, implement the resonator detection, describe the mismatch effect within
the analysis cavities, characterize the electronic response of the system, and reconstruct
the complete covariance matrix. We found that states presenting excess of noise above 5
SQL require the a delicate adjustment of the experimental parameters. Firstly, we must
consider the small fraction of light that is not coupled into the analysis cavity, otherwise
the resultant estimated covariance matrix could not describe a physical state or could
not even be reconstructed. Secondly, a careful adjustment of the demodulation phase is
mandatory for obtaining a good agreement of the experimental curves. This is different
from the systems that we usually work with in our laboratory that present noise of the
order of 2 SQL.

Once the geometrical configuration was settled, we measured the gain profile
and determined the gain factor at distinct probe detuning ∆2. We found a profile
with a maximum gain factor of 22 and a linewidth of 35 MHz. At the same time, we
theoretically reproduce the profile such that the linewidth and the maximum gain matched
the experiment. Afterwards, we explored the first signature of quantum behavior, the
intensity squeezing. We realize that at high temperatures, above 110◦C, the squeezing was
degradated due to the huge excess of noise of the individual states. The characterization
with the power and the frequencies demonstrated the crucial role that the probe has
in the control of the squeezing level and the squeezing bandwidth. The experimental
characterization ended with the reconstruction of the full covariance matrix for a set of
different experimental parameters.

Having both theoretical description and experimental measurements is a great
advantage due to the direct comparison between them. We calibrated the parameters
in the theoretical description with the FWM gain profile and the intensity squeezing.
Afterwards, we reconstructed the full covariance matrix and studied the Duan and the
PPT criterion for entanglement witness in the symmetric/anti-symmetric basis (SA) and
the sideband basis. The reconstruction of the full covariance matrix from the experimental
data allows the full characterization of the quantum correlations and the entanglement of
the system in the sideband basis. Therefore, with the first measurement using resonator
detection over a Four-wave mixing process, we can demonstrate the advantage of the
detection to reveal entanglement that would be hidden if the usual two-mode description
is used. Moreover, the result points to a richer structure of entanglement if we consider
the details for the four modes involved.

This thesis will continue with the generation and characterization of 1D cluster
states using rubidium atoms. This is the Phd proposal of my colleague Théo Louzada



99

Meirelles. The network of entangled states will be generated by using a dual frequency
pump that will induce a cascaded process between multiple frequency modes. We are
already working in the generation of the dual frequency pump. The results presented
during this thesis reveals a non-trivial entanglement structure and will be convenient for
understanding the entanglement structure of the cluster state, structures that will allow
us to generate and test architectures of entanglement in the spectral domain.
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A

Separatility criteria

A.1 Duan criterion

While the Duan criterion is enough for characterizing the entanglement for quantum
teleportation [1], it ignores a certain amount of correlations since it only depends on few
elements of the covariance matrix. Consider the pair of quadratures defining a state
in the symmetric/anti-symmetric basis (SA) as Sj = {p̂(j)

s , q̂(j)
s } (Aj = {p̂(j)

a , q̂(j)
a }). The

bipartitions can be organized in different sets as shown in Figure A.1.1.

Figure A.1.1. Bipartitions Duan criterion in the symmetric/anti-symmetric basis. Duan
(i): [Spr × Scj ]. Duan (ii): [Apr ×Acj ]. Duan (iii): [Spr ×Acj ]. Duan (iv): [Apr × Scj ] .

Therefore, we can calculate the Duan criterion in terms of the covariance matrix
Vs,a, yielding I,

Duan SA (i) : [Spr × Scj] (A.1)

∆2p̂(pr)
s + ∆2p̂(cj)

s − 2C(p̂(pr)
s , p̂(cj)

s ) + ∆2q̂(pr)
s + ∆2q̂(cj)

s + 2C(q̂(pr)
s , q̂(cj)

s ) ≥ 4

αpr + αcj − 2µ+ βpr + βcj + 2ν ≥ 4

I There is a factor of 4 in the Duan criterion which comes from the definition of quadratures.
Nevertheless, is a normalization factor that does not change the interpretation of the results.
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Duan SA (ii) : [Apr × Acj] (A.2)

∆2p̂(pr)
a + ∆2p̂(cj)

a − 2C(p̂(pr)
a , p̂(cj)

a ) + ∆2q̂(pr)
a + ∆2q̂(cj)

a + 2C(q̂(pr)
a , q̂(cj)

a ) ≥ 4

βpr + βcj − 2ν + αpr + αcj + 2µ ≥ 4

Duan SA (iii) : [Spr × Acj] (A.3)

∆2p̂(pr)
s + ∆2p̂(cj)

a − 2C(p̂(pr)
s , p̂(cj)

a ) + ∆2q̂(pr)
s + ∆2q̂(cj)

a + 2C(q̂(pr)
s , q̂(cj)

a ) ≥ 4

αpr + βcj − 2κ+ βpr + αcj − 2λ ≥ 4

Duan SA (iv) : [Apr × Scj] (A.4)

∆2p̂(pr)
a + ∆2p̂(cj)

s − 2C(p̂(pr)
a , p̂(cj)

s ) + ∆2q̂(pr)
a + ∆2q̂(cj)

s + 2C(q̂(pr)
a , q̂(cj)

s ) ≥ 4

βpr + αcj + 2λ+ αpr + βcj + 2κ ≥ 4

Even when distinct bipartitions could be considered, this corresponds to the ones
that are typically presented in the literature [27]. In contrast, in the sideband basis the
pair of quadratures describing the states are Ωj = {p̂(j)

Ω , q̂
(j)
Ω }, and −Ωj = {p̂(j)

−Ω, q̂
(j)
−Ω}. The

Duan criterion for the chosen bipartitions shown in Figure A.1.2, can be written in terms
V±Ω matrix and is given by:

Figure A.1.2. Bipartitions Duan criterion in the sideband basis. Duan (i): [Ωpr × Ωcj ].
Duan (ii): [−Ωpr ×−Ωcj ]. Duan (iii): [Ωpr ×−Ωcj ] . Duan
(iv): [−Ωpr × Ωcj ] .

Duan sideband (i) : [Ωpr × Ωcj] (A.5)

∆2p̂
(pr)
Ω + ∆2p̂

(cj)
Ω − 2C(p̂(pr)

Ω , p̂
(cj)
Ω ) + ∆2q̂

(pr)
Ω + ∆2q̂

(cj)
Ω + 2C(q̂(pr)

Ω , q̂
(cj)
Ω ) ≥ 4

αpr + βpr + 2δpr + αcj + βcj + 2δcj ≥ 4.
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Duan sideband (ii) : [−Ωpr ×−Ωcj] (A.6)

∆2p̂
(pr)
−Ω + ∆2p̂

(cj)
−Ω − 2C(p̂(pr)

−Ω , p̂
(cj)
−Ω ) + ∆2q̂

(pr)
−Ω + ∆2q̂

(cj)
−Ω + 2C(q̂(pr)

−Ω , q̂
(cj)
−Ω ) ≥ 4

αpr + βpr − 2δpr + αcj + βcj − 2δcj ≥ 4.

Duan sideband (iii) : [Ωpr ×−Ωcj] (A.7)

∆2p̂
(pr)
Ω + ∆2p̂

(cj)
−Ω − 2C(p̂(pr)

Ω , p̂
(cj)
−Ω ) + ∆2q̂

(pr)
Ω + ∆2q̂

(cj)
−Ω + 2C(q̂(pr)

Ω , q̂
(cj)
−Ω ) ≥ 4

αpr + βpr + 2δpr + αcj + βcj − 2δcj + 2(−µ+ κ+ λ+ ν) ≥ 4

Duan sideband (iv) : [−Ωpr × Ωcj] (A.8)

∆2p̂
(pr)
−Ω + ∆2p̂

(cj)
Ω − 2C(p̂(pr)

−Ω , p̂
(cj)
Ω ) + ∆2q̂

(pr)
−Ω + ∆2q̂

(cj)
Ω + 2C(q̂(pr)

−Ω , q̂
(cj)
Ω ) ≥ 4

αpr + βpr − 2δpr + αcj + βcj + 2δcj + 2(−µ− κ− λ+ ν) ≥ 4
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B

Microscopic description of the FWM
- Complement

B.1 Perturbative approach

During the microscopical description in section 3.3, we write a dynamical equation
for the atomic operator σ̃ of the form

dσ̃(z, t)
dt

= M̃ σ̃(z, t) + G̃Ã(z, t) + F̃(z, t), (B.1)

where M̃ only depends on the relative frequencies between fields and atomic levels ∆i,
Rabi frequencies Ωi and decaying term. However, G̃ seems problematic since it depends
on the coupling coefficients and on atomic operators σij resulting in a coupling differential
equation.

To simplify the pointed problem, we can adopt a perturbative approach in which
the pump beam, being much more intense than the seed, prepares the atoms in a stationary
state. Consider the states |0〉 and |1〉 equally populated, 50% each and ignore the seed
beam (which implies the coupling matrix G̃ = 0). Therefore, after taking the mean value,
equation Equation 3.29 becomes:

d 〈σ̃(z, t)〉
dt

= M̃Pump 〈σ̃(z, t)〉 (B.2)

where M̃Pump refers to the system where only the pump beam is considered and 〈F̃(z, t)〉 =
0. In a stationary condition d〈σ̃(z,t)〉

dt
= 0. Hence, we have a homogeneous linear equation

for the mean value for the atomic states. The latter equation can be solved by calculating
the eigenvalues and finding the eigenstates that satisfy the equality. A second option
includes the conservation of populations ∑ii σii = 1. We decided to solve the equation by
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a less formal way that includes physical effects and decrease the required computational
power.

In our procedure, the atoms that interact with the pump for a sufficient period
of time will reach a stationary state where most of its populations are in the |1〉 state
[53] I. The prepared atoms could leave the region of interaction and collide against
other atoms or the cell walls. Later, they can re enter into the interaction region with a
complete different phase. This will ruin the coherence of the process. Hence, we include in
Equation B.2 the decoherence rate −Γde (〈σ̃(z, t)〉 − σ̃0), where σ̃0 corresponds to the state
of thermal atoms; Γde is much smaller than the decaying rates between allowed transitions
γij , and also Γde � M̃ guaranteeing the reproduction of the results obtained by either the
diagonalization or the normalization procedure. Notice that the decoherence term is such
that if there were no pump beam, M̃ = 0 and the initial thermal state of the atoms is
retrieved σ̃(z, t) = σ̃0.

Taking in account the decoherence Γde, Equation B.2 is:

d 〈σ̃(z, t)〉
dt

= M̃Pump 〈σ̃(z, t)〉 − Γde (〈σ̃(z, t)〉 − σ̃0) . (B.3)

Considering the stationary state, the time derivative cancels and the solution is
given by

〈σ̃(z, t)〉st = −
(
M̃Pump − Γde

)−1
Γde σ̃0. (B.4)

As a consequence, G̃ can be written in terms 〈σ̃(z, t)〉st corresponding to the
stationary state of the atoms prepared by the pump beam. Therefore, Equation B.1 now
reads:

dσ̃(z, t)
dt

= M̃ σ̃(z, t) + G̃stÃ(z, t) + F̃(z, t). (B.5)

Equation B.5 is a differential equation of the first order on σ̃ with an inhomogeneous
term corresponding to the field operators and the stochastic terms.

I The pump waist and the speed of the atoms passing a cross-section of the beam define a
lower bound for the interaction time between light and atoms. The interaction time must be
equal to or greater than the time taken for the atoms to reach the stationary state.
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C

Complementary Results

C.1 Gain characterization

As discussed in section 3.3, the gain of the FWM process depends strongly on the
experimental parameters (see Equation 3.41 and Equation 3.42). For instance, temperature
controls the gain factor and the absorption linewidth. The ratio between the seed waist
and the pump waist would also modify the spectrum. Whenever the ratio is too small,
it means that the seed waist is much smaller than the pump waist and the interaction
region between atoms would be small. This could generate some undesired effects as
self-action effects [54, 72]. During this section we report some of these behaviors and
characterize the gain profile of the FWM process. We start by a theoretical reproduction of
the experimental gain profile. Afterwards, we characterize experimentally, the dependence
of the gain profile with the geometry of the beams and the temperature.

Figure C.1.1 shows the experimental and theoretical gain factor (Equation 4.1) as
a function of the probe detuning ∆2. On the caption of the figure we find the experimental
parameters. The theoretical gain profile is obtained by qualitative comparison between the
theoretical spectrum linewidth and the maximum gain factor, against the experimental
data. For this, we have control over the theoretical parameters like beam waist, atomic
density, cell length, Rabi frequency, coupling factor among others. Therefore, some
differences between the gain spectrum can be observed. Firstly, the pump power can
induce a AC Stark effect that shifts the energy levels. Hence, in the theoretical description
we have to tune the pump frequency ∆1 in order to match the experiment. For instance,
in the case we are discussing, the experimental ∆1 is 1 GHz whereas the theoretical is
980 MHz. As will be shown later in subsection C.2.1, such a small change in the pump
frequency is not relevant for the quantum correlations. The second difference is the gain
profile at high frequencies. The experimental result shows a flat region with a small
increase in the gain factor for the probe beam. Conversely, in the theoretical description
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we see that at 1040 MHz the gain factor increases. This difference is explained by the
Doppler effect as explained in [26]. Inside the vapor cell, the high temperature broaden
the FWM spectrum due to the velocity distribution resulting in a flat region at high
frequencies ∆2. Contrary to that, the theoretical description does not consider the velocity
distribution, we only consider the temperature as a factor that controls the atomic density
(N in Equation 3.28). Anyway, this frequency region is not interesting for us given that,
as will be discussed in section 5.2 and subsection C.2.5, there are no quantum correlations
for these values of ∆2.

(a) Experimental characterization of
the gain profile.

(b) Theoretical description of the gain
profile.

Figure C.1.1. Reproduction of the gain profile. Experimental parameters: Seed power
=60.3±0.5 µW ; Seed waist =224.0±3.3µm; Pump power =420.0±0.3 W;Pump waist
=523.6±0.6 µm;Temperature =120±1◦C; Angle =0.31±0.03◦. Theoretical parameters:
Atomic density (N)= 0.88×109m−3; Cell length = 2.5 cm; Coupling factor g = 0.28

As part of the characterization of the system, we modify the geometrical parameters
of the beams and the temperature looking for the best set of parameters that produce
the more quantum correlated states. Table 3 shows a set of experimental parameters
used for studying different gain profile and Figure C.1.2 shows the gain characterization
of the FWM spectrum. Figure C.1.2a and Figure C.1.2b corresponds to the geometric
configuration, where the seed waist is (123.1± 3.3)µm, the pump waist (528.0± 0.6)µm,
the angle between seed and pump beams is (0.31± 0.03)◦. Notice that the amplification of
the FWM increases from a maximum of 3 units at 112◦C, to a maximum of 25 at 121◦C.
In terms of the spectrum bandwidth, at 112◦C the width at half maximum is 30 MHz
whereas at 121◦C it raises to 50 MHz. For the second geometrical configuration (rows c.
and d. in Table 3), the seed waist is (244.2± 1.9)µm, the pump waist is (525.5± 1.6)µm
and the angle is (0.29 ± 0.03)◦. The effect of increasing the temperature is similar as
before, raising from 22 units at 103◦C, to 40 at 107 ◦C. In this case the broadening effect
is not substantial.

Each characterization was made using different seed power. We observed that the
seed power increases the total amount of power after the FWM process but does not affect
neither the amplification nor the quantum correlations as far as it is much smaller than the
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Fig. Pump power (mW) Seed power (µW) Seed waist (µm) Pump waist (µm) Temp (◦C) Angle (◦)

a. 415.0±0.3 80.2±0.5 123.1±3.3 528.0±0.6 112 ±1 0.31 ±0.03
b. 415.0±0.3 80.1±0.5 123.1±3.3 528.0±0.6 121 ±1 0.31 ±0.03
c. 420.0±0.3 130.0±0.5 244.2±1.9 525.5±1.6 103.0±0.1 0.30 ±0.03
d. 420.0±0.3 130.0±0.5 244.2±1.9 525.5±1.6 107.0±0.1 0.29 ±0.03

Table 3. Experimental parameters gain characterization.

(a) Seed waist = (123.1 ± 3.3)µm;
Temp=112◦C.

(b) Seed waist = (123.1 ± 3.3)µm;
Temp=121◦C.

(c) Seed waist = (244.2 ± 1.9)µm;
Temp=103◦C.

(d) Seed waist = (244.2 ± 1.9)µm;
Temp=107◦C.

Figure C.1.2. Gain profile against the probe detuning. Two main configurations are shown:
(a.) and (b.) having a seed waist of (123.1± 3.3)µm, and a pump waist (528.0± 0.6)µm.
(c.) and (d.) with a seed waist of (244.2± 1.9)µm, and the pump waist (525.5± 1.6)µm.
Observe that the increase in the temperature modifies the FWM spectrum, increasing the
amplification rate and broadening the spectrum.

pump power. This will be discussed latter. The main difference between the geometrical
configurations is the ratio between the waist of the pump and the seed. In the case of
Figure C.1.2a and Figure C.1.2b, the rate between the seed and the pump waist is 0.23
and therefore, the interaction region between seed and pump is too small which could lead
to two different scenario. At a temperature of 112◦C, the amplification is weak, up to 3
units, such that the measured signal started to mix with the electronic background noise
level. When increasing the temperature to 121◦C, the amplification increases to 25 units.
In the second case, corresponding to Figure C.1.2c and Figure C.1.2d, we increase the
seed waist obtaining a ratio of 0.46 between the seed and the pump waist’s. Thus, the
interaction region between the light and the atoms becomes bigger, such that the intensity
decreases making more difficult to induce undesired Kerr effects. In this configuration we
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could achieve 22 units of gain at 103◦C and 43 at 107◦C.

In Figure C.1.2 we presented the gain characterization implemented in two different
geometric configurations. We show that the relative size between the seed and the pump
waist is a key factor in the amplification process. The first configuration ((a), (b)) needed
higher temperatures for reaching the same gain regions as the second one ((c), (d)). This
increases the probability of generation of thermal lensing even when the size of the beams
is smaller [72]. Nonetheless, this configuration had two drawbacks. At lower temperature
the gain was not enough to overcome the safety lower limit (electronic level figures 23, 24)
and at high temperature the quantum correlations were weak. The second configuration
presented a ratio of 0.46 between the seed and the pump waist, increasing the light atom
interaction. We could achieve amplification levels above 20 units at 103◦C and twice
the amplification with a temperature of 107◦C. This configuration will be the chosen for
quantum measurements.

C.1.1 Gain Spectrum frequency shift by Rabi frequency

The FWM profile in Figure C.1.2 is modified by the pump Rabi frequency ΩR

(proportional to the pump power section 3.3). As it increases, the gain profile suffers from
power broadening, that is, broadening of the emission profile while the gain is reduced.
Another effect is the frequency shift of the spectrum profile [53].

In Figure C.1.3 we show the frequency shift of the spectrum as a function of the
Rabi frequency ΩR. The vertical axes corresponds to the output power of the probe or
the conjugated beams. The lower x−axes corresponds to the variation of the pump power,
and the upper x−axes corresponds to the frequency ∆2 where the maximum gain is found.
The pump laser was locked at 52S1/2, F = 2 → 52P1/2, F = 3 + 1GHz; the seed power
was (70.4±0.3)µW , its temperature was (110±1) ◦C; the pump waist was Wo = 523.6µm
and the seed waist was Ws = 133.3µm; ∆2 = 996.9MHz. The measurement was done
by increasing the pump power and looking for the frequency ∆2 that corresponds to the
highest amplification. Every other experimental parameter was unmodified.

From Figure C.1.3 we can observe that increasing in the pump power the spectrum
is detuned in frequency. Notice that the frequency at maximum gain ranges from 955
MHz at the minimum pump power to 985 MHz at a pump power of 450 mW. Increasing
the pump power shift the FWM spectrum to the blue. Notice that the dependence of the
output intensity of the FWM as a function of the pump power should follow an exponential
relation as shown in Equation 3.13. However, the characterization shows a threshold of the
amplification process at 100 mW. This was non expected since the amplification process
have been broadly studied [73].
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(a) Black circle: Probe beam power
as a function of pump power. Red
squares: Frequency shift at the gain
peak from the probe beam.
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(b) Blue circle: Conjug. beam power
as a function of pump power. Yellow
squares: Frequency shift at the gain
peak from the conjug. beam.

Figure C.1.3. The pump power shifts the position of the maximum of the FWM peak.
Parameters: ∆1 = 52S1/2, F = 2 → 52P1/2, F = 3 + 1GHz; Temp= 110◦C; Seed
power= 70.4µW .

C.2 Intensity Correlations - Complement

C.2.1 Intensity correlations as a function of the pump detuning ∆1

The pump detuning (∆1 in Figure 9) defines the frequency of the pump laser.
It is relevant since it defines the frequencies at which the probe and conjugated beams
are generated, that is, near or far from the absorption regions of the rubidium atoms
[Figure 14].

Here we characterize the squeezing as a function of ∆1. As explained in section 4.1,
the Ti:sapphire laser is locked using the saturated absorption which allow us to lock the laser
at six different frequencies, three for the F = 2 transitions and other three for the F = 3
transitions of rubidium 85. In Figure C.2.1 we show the saturation absorption spectrum
with the pump locking frequencies. The solid vertical lines represents the FWM process
where the pump detuning is at Crossover +1GHz (Lock I ), corresponding to the solid black
vertical line at the frequency of 1GHz. The red solid vertical line corresponds to the probe
frequency and the solid vertical blue line to the conjugated frequency when the pump is at
Lock I. The second pump frequency is locked at 52S1/2, F = 2→ 52P1/2, F = 3 + 1GHz,
denominated Lock II, which is represented by the vertical dashed lines. Given that the
Lock II is around 180 MHz above the Lock I frequency, the generated beams, the probe
and the conjugated, will also be shifted the same amount to higher frequencies.

We show in Figure C.2.2 the intensity correlations at the two pump detuning, Lock
I (Figure C.2.2a) and Lock II (Figure C.2.2b). The geometric configuration corresponds to
the first row in Table 3 (a.). The probe detuning is ∆2 = 1073.1±0.3 MHz (Figure C.1.2a).
The two pump detunig presented similar behavior. Their squeezing bandwidth reaches
12 MHz and at an analysis frequency of 2.5 MHz, the squeezing level is slightly better in
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Figure C.2.1. Pump detuning frequency locking. The vertical solid lines corresponds
to the FWM process when locket at the Lock I frequency (Crossover + 1GHz). The
vertical dashed lines corresponds to the FWM process when the pump detuning islocked at
52S1/2, F = 2→ 52P1/2, F = 3 + 1GHz (Lock II ).

figure C.2.2a.

In figure Figure C.2.3 we show the measurement done at a higher probe detuning
∆2 = 1088.1± 0.3 MHz. As seen in Figure C.1.2a, the amplification factor increases in
0.4. When the pump frequency is at Lock I, and the squeezing bandwidth surpass 5 MHz.
Conversely, when the pump detuning is at Lock II the squeezing bandwidth barely reaches
5 MHz.

(a) ∆1 = Crossover +1GHz (Lock
I).

(b) ∆1 = 52S1/2, F = 2 →
52P1/2, F = 3 + 1GHz (Lock II).

Figure C.2.2. Pump detuning ∆1 characterization . Parameters: pump power = 450.2±
0.3mW ; seed power = 80.3 ± 0.5µW ; pump waist 528.0 ± 0.6µm; seed waist Ws =
123.1± 3.3µm; cell temperature: 112± 1◦C; angle = 0.31 ◦.∆2 = 1073.1± 0.3 MHz.

A further characterization on the pump detuning can be done by locking the pump
frequency at -2GHz, in Figure C.2.1. This is shown in Figure C.2.4. Notice that there
is no signal below the shot noise level, a complete absence of quantum correlations is
observed which could be caused by the frequencies where the probe and conjugated beams
are generated. The probe beam is generated at -5 GHz (Figure 14) far from an absorption
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(a) ∆1 = Crossover + 1GHz. (b) ∆1 = 52S1/2, F = 2 →
52P1/2, F = 3 + 1GHz.

Figure C.2.3. Pump detuning characterization at ∆1. Parameters: pump power =
450.2 ± 0.3mW ; seed power = 80.8 ± 0.5µW ; pump waist 528.0 ± 0.6µm; seed waist
123.1± 3.3µm; cell temperature: 112± 1◦C; angle = 0.31 ◦. ∆2 = 1088.2± 0.3 MHz.

region, wheres the conjugated beam is generated at +1 GHz near the absorption region
F = 2.

(a) ∆1 = 52S1/2, F = 3 →
52P1/2, F = 2 + 1GHz. ∆2 =
943.4± 0.3MHz.

(b) ∆1 = 52S1/2, F = 3 →
52P1/2, F = 3 + 1GHz. ∆2 =
883.5± 0.3MHz.

Figure C.2.4. One photon detuning characterization as a function of ∆1. Parameters:
pump power = 450.2± 0.3mW ; seed power = 80.8± 0.5µW ; pump waist 528.0± 0.6µm;
seed waist 123.1± 3.3µm; cell temperature: 117± 1◦C; angle = 0.31 ◦.

The pump frequency ∆1 is not the essential parameter in the generation of quantum
correlations if we were to lock the pump frequency in the frequency region named F = 2.
We decided to lock the pump frequency at Crossover + 1GHz given that the squeezing
level and bandwidth is slightly better.

C.2.2 Intensity correlations as a function of Pump Power

The pump power (Rabi frequency) can increase the gain factor and the bandwidth
by enhancing the coupling between atoms and light. It can also generate undesired
Kerr effects like self-phase modulation or cross-phase modulation, that can destroy the
correlations [56]. Therefore, we study the behavior of the correlations as a function of the
pump power.
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(a) Pump power = 360.7±0.3mW (b) Pump power = 380.8±0.3mW

(c) Pump power = 400.2±0.3mW (d) Pump power = 450.1±0.3mW

Figure C.2.5. Intensity correlations as a function of pump power. Parameters: Pump
frequency+Crossover + 1GHz; ∆2 = 990.6 ± 0.3MHz; Seed power= 80.0 ± 0.3µW ;
Temp.= 110± 0.1◦C; Angle between seed and pump= 0.3◦. Pump waist 525.5± 1.6µm;
Seed waist 244.2± 1.9µm. Table 4 c. and d. ∆2 = 1054.8± 0.3.

In this characterization, we used the geometrical configuration reported in Table 4 c.
and d., with a seed power of 110.2±0.3µW , ∆2 = 1054.8± 0.3MHz, and a temperature of
110◦C. The green curve corresponds to the intensity correlations ∆2I−. The black dotted
line at 0 dB represents the shot noise level. At a pump power of 360 mW (Figure C.2.5a)
the system presents -4 dB of squeezing at an analysis frequency of 2.0 MHz and a squeezing
bandwidth of 6 MHz. While the pump power increases, the squeezing level grows and the
bandwidth becomes broader reaching -5.2 dB of squeezing at 2.0 MHz and a bandwidth of
6.3 MHz. The dependence of the noise compression with the pump power is not strong
within this short range. Nevertheless, it can be seen that the best squeezing level and
bandwidth is achieved at the higher pump power. In subsection C.2.4 we extend this
discussion by taking a different geometric configuration and covering a broader power
range.

The effect of the pump power on the squeezing level and bandwidth involves
many other parameters of the system. As shown in subsection C.1.1, the pump power
also shifts the FWM spectrum. As it was mentioned, in this characterization ∆2 is
fixed while the pump power increases. The FWM spectrum is being shifted to the blue
while the amplification factor decreases, hence we are modifying simultaneously the gain
factor, the probe detuning ∆2 and the pump power. In the following section we show the
characterization as a function of the pump frequency and the two photon detuning.
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C.2.3 Intensity correlations as a function of the seed power

The seed power is another experimental parameter that can be controlled indi-
vidually allowing a characterization of the squeezing as a function of this parameter.
Figure C.2.6 presents this characterization for 80 and 120 µW . The noise spectrum shows
that there is no difference between the generated states, both have a bandwidth of 6.3
MHz and a squeezing level of -4.7 dB at an analysis frequency of 2.0 MHz. There are
few differences between them that could be generated by statistical fluctuations in the
detection or the stabilization of the frequencies. For a seed power below 80 µW , the
detected photocurrent reaches the background electronic noise level which prevents the
correct data analysis. Seed power above 120 µW was not possible given that we could
surpass the damage threshold of the AOM used for the generation of the seed beam
(section 4.2).

(a) Seed power = 80.0 ±0.5 µW . (b) Seed power = 120.0 ±0.5 µW .

Figure C.2.6. Intensity correlations as a function of seed power. The seed power is not a
relevant parameter for the squeezing generation.

C.2.4 Intensity correlations as a function of Pump Power - Comple-
ment

In this appendix we present the squeezing as a function of the pump power for
the geometric configuration a. and b. in Table 4 with a seed power of 80.2 ± 0.3µW
and ∆2 = 1073.7± 0.3MHz. The red/blue curve corresponds to the probe/conjugated
fluctuations ∆2Ipr/cj, and the green curve to the intensity correlations ∆2I−. The black
dotted line at 0 dB represents the shot noise level. At a pump power of 260 mW
(Figure C.2.7a) the system presents -2 dB of squeezing at an analysis frequency of 2.0 MHz
and a squeezing bandwidth of 2.5 MHz. While the pump power increases, the squeezing
level grows and become broader reaching -5.0 dB of squeezing at 2.0 MHz and a bandwidth
of 9 MHz. Compared to the results in C.2.2, in this characterization it is clear that the
more the pump power, the best the squeezing. However, the system could saturates and
even more, increasing the pump power could stimulate other Kerr effects that would
destroy the squeezing.
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(a) Pump power = 260.7± 0.3mW (b) Pump power = 380.8± 0.3mW

(c) Pump power = 400.2± 0.3mW (d) Pump power = 450.1± 0.3mW

Figure C.2.7. Intensity correlations as a function of pump power. Parameters: Pump
frequency+Crossover + 1GHz; ∆2 = 990.6 ± 0.3MHz; Seed power= 80.0 ± 0.3µW ;
Temp.= 110± 0.1◦C; Angle between seed and pump= 0.3◦. Pump waist 525.5± 1.6µm;
Seed waist 244.2± 1.9µm. Table 4 c. and d. ∆2 = 1054.8± 0.3.

The effect of the pump power on the squeezing level and bandwidth involves many
other parameters of the system. As shown in subsection C.1.1, the pump power also
shifts the FWM spectrum. As it was mentioned, in this characterization ∆2 is fixed while
the pump power increases. The FWM spectrum is being shifted to the blue while the
amplification factor decreases, hence, we are modifying simultaneously the gain factor,
the probe detuning ∆2 and the pump power. In the following section we show the
characterization as a function of the pump frequency and the two photon detuning.

C.2.5 Intensity correlations as a function of the probe detuning ∆2 -
Complement

The theoretical model allow us to study in detail the behavior of the system as we
change its parameters. In this appendix we show the characterization of the gain spectrum,
the correlations in intensity and in quadratures as we change the Rabi frequency and the
probe detuning.

C.2.6 Adjustment of the theoretical model

The theoretical model must be tested to check for its validity, moreover when the
FWM profile was obtained by a qualitative comparison. For that reason, we calibrate
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(a) ∆2 = 1038.2MHz. (b) ∆2 = 1053.1MHz.

(c) ∆2 = 1065.4MHz. (d) ∆2 = 1071.0MHz.

(e) ∆2 = 1082.8MHz. (f) ∆2 = 1098.1MHz.

Figure C.2.8. Intensity correlations as a function of the probe detuning ∆2. Parameters:
pump power = 453.0 ± 0.3mW ; seed power = 80.1 ± 0.3µW ; pump waist 528µm; seed
waist 123µm; cell temperature: 121 ± 1◦C; angle = 0.3 ◦. Pump frequency locked at
Crossover + 1GHz.

the theoretical parameters such that the squeezing and the noise from the probe and
conjugated beams are described as a function of ∆2. This guarantee a reliable theoretical
reproduction of the experiment.

In Figure C.2.9 we report the intensity noise spectrum for the experiment and
the theoretical description. The superscript Exp indicates the experimental data; the
superscript Th stands for the theoretical model. Both the experimental and the theoretical
description show the intensity correlations ∆2I−, the excess of noise ∆2I+, and the
individual noise level ∆2Ipr/cj. As far as the characterization was done for different probe
detuning ∆2, we found the same behavior reported in the latter section. Even more,
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our theoretical model is capable of describing the change in the profile of the squeezing
bandwidth. At ∆2 = 984 MHz the gain factor is around 5 units and the squeezing level
and bandwidth are degraded. As we decrease ∆2, the gain factor also decreases and the
squeezing level and bandwidth are enhanced achieving -5 dB of squeezing and 22 MHz of
bandwidth. The deviation of the experiment to the theory is more dramatic at ∆2 = 984
MHz where the squeezing level at 2.5 MHz is -2 dB in the experimental data (∆2IExp− ) and
-3.8 dB in the theory (∆2ITh− ). In the case of the squeezing bandwidth, the experimental
data shows 5 MHz of bandwidth whereas the theory shows 8 MHz. The discrepancy is
reduced as the ∆2 decreases.

In terms of the individual noise level ∆2Ipr and ∆2Icj, at higher probe detuning
∆2 the noise from the probe and conjugated beams are balanced, which agree with the
fact that the gain factor is very similar for both of the beams. In this case the experiment
and the theoretical approach reproduce this behavior correctly. In the case of a probe
detuning equal to ∆2 = 964 MHz, the gain factor for the probe beam is 3.5 while for the
conjugated is 3 units. Hence, it is expected that the probe beam has more noise than the
conjugated, as it is shown in the experimental plot. Nevertheless, the experimental data is
well described by the model. We observe the change in the squeezing level and bandwidth,
and even with different noise values, the theoretical description follows the experimental
behavior across the analysis frequency range and the probe detuning.

So far we have been exploring different geometric configurations in order to find the
one that provides the best squeezing. We check that the probe detuning ∆2 is one of the
main factors for the control of the squeezing level and the squeezing bandwidth. The best
case in the configuration (a.) and (b.) (Table 3) is presented in subsection C.2.4 where
we could find a squeezing level of -5 dB and a squeezing bandwidth of 9 MHz at a cell
temperature of 121± 1◦C. Even when the squeezing level and bandwidth would be enough
for the development of the project, the temperature could be problematic as far as such a
high value could deteriorate the anti-reflection coating of the rubidium cell. Besides, it is
well above the reported temperatures (around 100 ◦C e.g. [26, 14, 27]). On the other hand,
working with configuration (c.) and (d.) we were able to find similar squeezing level and
by adjusting the probe detuning, increase the squeezing bandwidth. At a temperature
of 107 ◦C, the gain factor is as big as 40 units and the generated beams were far from
the electronic noise level. However, the fluctuations of the generated beams were huge,
above 10 dB of excess of noise, which could stimulate some non-linear response in the
electronic setup. Therefore, we decided to continue the experimental characterization with
the configuration (c.) (Figure C.1.2c) with a temperature of 103 ◦C.

We also tested our model and found that, even with some small differences between
the experiment and the theoretical results, we can rely on its outcome. The divergences
could be caused by the disregard of the angle between seed and pump. This calibration
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(a) ∆2 = 984MHz. (b) ∆2 = 974MHz.

(c) ∆2 = 964MHz. (d) ∆2 = 944MHz.

Figure C.2.9. Experimental and theoretical description of the intensity correlations.
Starting from a detuning ∆2 near the maximum, we scan over 30MHz and measure the
noise spectrum of the system. The superscript identifies the experimental (Exp) and the
theoretical (Th) plots. A subscript identifies the signal: pr for probe; c conjugated; I−
intensity-difference; I+ intensity addition; SQL standard quantum limit. The theoretical
description already takes into account the quantum efficiency of detection η = 85 %.

is necessary in order to guarantee a reliable theoretical characterization of the quantum
entanglement.

C.2.7 Testing squeezing

There is an important test to do to be sure that we are actually measuring squeezing.
In Figure C.2.10 we show in the vertical axes the squeezing level, and in the horizontal
the total power in the detectors (probe plus conjugated). The way to corroborate the
squeezing is to introduce losses on the generated beams and measure the squeezing level
as we increase the losses. This is done using an neutral attenuator that affect equally
probe and conjugated beams. When the beams are completely attenuated, we should
recover the shot noise level. The squeezing have to decrease linearly with the attenuation.
If we think the losses as a beam splitter operator where one input is one beam and the
other is vacuum, as we increase the reflection (losses of our beam), the contribution of the
vacuum increases by a factor of R whereas the contribution of the beam decreases as T .
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There is only linear relations in this process so a linear behavior is expected, if not, some
problem in the detection scheme such as saturation of the detectors must be the cause of
this misbehavior.
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Figure C.2.10. Squeezing level as a function of the total power of the generated beams.
The generated beams are attenuated and the squeezing level recorded. When the beams
are completely attenuated we should reach the shot noise level. Parameters: Pump power
= 414mW ; probe power = 86µW ; Temperature = 120◦C; ∆2 = 996MHz; Pump frequency
=52S1/2, F = 2→ 52P1/2, F = 3 + 1GHz. Analysis frequency = 3MHz.R2 = 98.1%.

C.3 Covariance matrix reconstruction and entanglement - Com-
plement

C.3.1 Matching the detection system

As discussed in subsection 4.6.3, the mismatch factor f plays an important role in
the tomography of the state. Hence, we decided to characterize its effect by misaligning the
beam with respect to their analysis cavities. Table 4 shows the experimental parameters
for this characterization.

Table 4. Experimental parameters for the coupling factor characterization.

Pump power (mW) Seed power (µW ) Temp (◦C) Analysis freq. (MHz) ∆2 (MHz)
420.0 ± 0.3 140.1 ± 0.3 103.0±0.1 7.0±0.1 1074.6 ±0.3

In Figure C.3.1 we present two conditions for the matching of the beams with
the analysis cavities. In figs. C.3.1a and C.3.1c corresponds to the transmission from the
analysis cavities; it can be used for determining the resonator coupling factor 1− f 2 of
the beam into the resonator. In figs. C.3.1b and C.3.1d there are the single mode noise
spectrum for the probe and conjugated. In the best coupling configuration, the probe is
coupled at 96 % and the conjugated at 98%. Far from resonance, the amplitude noise
reaches 12 units above the shot noise level. When scanning around the resonance (∆ = 0)
the noise spectrum reaches its maximum 13 units of excess of noise, corresponding to the
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(a) 96.6 ± 0.2% of the probe is
coupled into its cavity. 98.1±0.3%
of the conjugated.

(b) Single mode noise spectrum.
This is the best coupling case.

(c) 87.5±0.3% of the probe is cou-
pled into its cavity. 91.7± 2.0% of
the conjugated.

(d) We could decrease the coupling
factor up to 87% before obtaining
non-physical states.

Figure C.3.1. The coupling factor takes into account the small fraction of light that does
not enter into the cavity. This fraction will go directly to photodetection and will add an
extra noise signal to the tomography.

phase noise, and due to the mismatch, the amplitude noise at exact resonance is reduced in
2 SQL units compared to the noise far from resonance. The worst configuration presented
a probe coupled at 75% and a conjugated at 78 %. Under this configuration, we find that
out of resonance the noise level remains at 12 units which is consistent given that most
of the incoming beam is being reflected. When the beam enters into resonance the noise
spectrum is greatly distorted. The phase noise measured at ∆ = ±0.5 decrease from 13 to
12 units, and the central depth diminish from 10 to 7 units.

The resonator coupling factor describes the effect of the extra signal going into the
detection without rotating its quadratures (subsection 4.6.3). A more exhaustive study at
different resonator coupling factors is shown in Figure C.3.2, where we plotted the fitted
values of the covariance matrix parameters as a function of the probe resonator coupling
factor (Equation 4.12). When the beam is out of resonance, the system is detecting
the amplitude correlations. At this point, most of the beam is being reflected by the
analysis cavity, and hence, the covariance matrix parameters µ, αpr, αcj are expected to
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have few variation. In that sense, we can observe that α (Figure C.3.2a) and µ = 〈p̂prS , p
cj
S 〉

(Figure C.3.2c) change less than 4% from the worst coupling to the best. When the carrier
is near the resonance (|∆| < 1) the phase quadratures are accessed. We observe that for
the case of the individual modes (βpr and βcj in Figure C.3.2a) the variation is below 7%.
However, ν = 〈q̂prS , q̂

cj
S 〉 in figure C.3.2d doubles its magnitude as the coupling goes to one.

It is worth noticing that the asymmetry δpr in the probe beam differs up to 5%. In the
case of δcj the total variation is 45%.

(a) Single mode parameters of the co-
variance matrix.

(b) Single mode parameters covariance
matrix.

(c) Cross-mode correlations covariance
matrix.

(d) Cross-mode correlations covariance
matrix.

Figure C.3.2. The coupling factor takes into account the small fraction of light that does
not enter into the cavity. This fraction will go directly to photodetection and will add an
extra noise signal to the tomography.

Resonator coupling factors above the reported ones are difficult to achieve due to
the lack of spatial mode selection in our system, differently from the OPO system where
a cavity selects the resonant spatial mode [25]. As an empirical rule we established 95%
as a recommendable coupling percentage for the tomography. However, we are able to
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perform a feasible reconstruction of the state at resonator coupling factors as low as 90%.
Below 87 %, we were not able to reconstruct a physical covariance matrix.

Once the covariance matrix is reconstructed, we can study the quantum entan-
glement available in the system. We use the Duan (subsection 2.5.1) and the PPT
(subsection 2.5.2) criterion for the different bipartitions. The Duan criterion in the
symmetric/anti-symmetric basis (SA) is shown in Figure C.3.3a. We show the bipartition
[Spr,Scj]. Notice that at low resonator coupling factor, the measured state is far from
violating the Duan criterion. Low resonator coupling factor means that a bigger fraction
of light is unaffected by the analysis cavity, hence, there is no rotation of the amplitude
quadrature. Given the huge excess of noise in the amplitude quadrature, its measurement
screens the information from the resonating fraction of light. When the resonator coupling
factor reaches its maximum at 97% we retrieve the information of the state equating the
Duan criteria in the SA basis.

The Duan criterion could also be considered in the sideband basis. This is shown
in Figure C.3.3b. Among the set of bipartitions, we are showing [Ωpr,−Ωcj and −Ωpr,Ωcj ].
The two bipartitions behave differently. On the one hand, [Ωpr,−Ωcj] decreases monoton-
ically, and barely violates the criteria. The witness of entanglement for the bipartition
[−Ωpr,Ωcj] is steady around 2, and reaches values near the violation at the maximum
coupling rate.

(a) Duan criterion in the
symmetric/anti-symmetric basis.

(b) Duan criterion in the sideband basis.

Figure C.3.3. Duan criterion as a function of the coupling factor. The dashed line indicates
the condition of entanglement.

As explained in section 2.5, the PPT criteria is also an entanglement witness with
the advantage of being a necessary and sufficient condition for bipartitions 1 × N for
Gaussian states. The Figure C.3.4 shows the minimum of the symplectic values calculated
for different bipartitions. In the symmetric/anti-symmetric basis (Figure C.3.4a) the
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[Spr,Scj×Apr,Acj] is the only bipartition which does not violate the PPT criteria. The
bipartitions [Spr×Scj,Apr,Acj ] and [Spr,Scj,Apr× Acj ] are superimposed and show entangle-
ment at coupling factor above 95%. The other bipartitions retrieve the entanglement as
the coupling of the light into the cavities is improved, achieving a violation of 0.65 SQL.
Considering the sideband basis, the [Ωpr,−Ωcj × Ωcj,−Ωpr] bipartition does not violate
the entanglement witness. The other considered bipartitions sustain the entanglement
even at a coupling of 87%.

(a) PPT criterion in the symmetric/anti-
symmetric basis.

(b) PPT criterion in the sideband basis.

Figure C.3.4. PPT criterion as a function of the coupling factor. The horizontal dashed
line is the benchmark of the entanglement.

The characterization of the states considering the mismatch factor shows that it
is an important parameter for obtaining a physical covariance matrix. Nonetheless, it is
not sufficient for retrieve the information lost in the tomography process. Therefore, the
resonator coupling factor has to be maximized (f ∼ 0) for any reconstruction of a state,
as well as the mismatch factor must be taken into account for correcting the physicality.

C.3.2 Seed power

The seed power was shown to be a minor parameter when studying the squeezing
(see subsection C.2.3). However, we will show that depending on the chosen basis, the
entangled bipartitions have different response as a function of the seed power.

Table 5. Experimental parameters for the seed power characterization.

Pump power (mW) Temp. (◦C) Analysis freq. (MHz) ∆2 (MHz)
420.0 ± 0.3 103.0 ± 0.1 10.0±0.1 1071.8 ±0.3
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The individual noise of the probe and conjugated beams increases as a function of the
seed power (Figure C.3.5a). Nonetheless, the asymmetry δj and the two-mode correlations
remain almost constant. This behavior coincide with the results in subsection C.2.3.

(a) Single mode parameters of the co-
variance matrix.

(b) Single mode parameters covariance
matrix.

Figure C.3.5. Covariance matrix single-mode correlations as a function of the seed power.

(a) Cross-mode correlations covariance
matrix.

(b) Cross-mode correlations covariance
matrix.

Figure C.3.6. Covariance matrix cross-correlations as a function of the seed power.

As for the entanglement, the Duan criterion in the SA basis presents a dependence
with the seed power. In Figure C.3.7a we observe violation of the Duan criteria for
power below 120µW . This dependence was not seen before when studying the intensity
correlations (subsection C.2.3). On the sideband basis, we extract extra information
about the entanglement. Figure C.3.7b shows that the [Ωpr,−Ωcj ] bipartition is entangled
whereas the bipartion [−Ωpr,Ωcj ] does not violate the criteria. In the PPT criteria (figure
C.3.8) we observe that the [Spr,Scj×Apr,Acj] and [Ωpr,−Ωcj × Ωcj,−Ωpr] does not violate
the criteria.
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(a) Duan criterion in the
symmetric/anti-symmetric basis.
The straight line is guide to the eye.

(b) Duan criterion in the sideband basis.

Figure C.3.7. Duan criterion as a function of the seed power.

(a) PPT criterion in the symmetric/anti-
symmetric basis.

(b) PPT criterion in the sideband basis.

Figure C.3.8. PPT criterion as a function of the seed power.

The seed power is not a decisive parameter for the generation or the control of the
entanglement. However, the study of the Duan criteria showed interesting results. Under
the SA basis, at low seed power the criteria was violated, behavior that disappears as
the seed power increases. On the contrary, the sideband basis reveals that one bipartition
is always entangled whereas the other one does not reveal entanglement. Furthermore,
the PPT criteria is unaffected by the change of basis preserving the information of the
correlations.
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C.3.3 Temperature

The cell temperature have a strong impact on the FWM spectrum. Higher temper-
atures increases the gain and broadens the spectrum (see section C.1). Temperature will
also alter the covariance matrix terms. The following study will be performed with the
experimental conditions described in Table 6.

Table 6. Experimental parameters temperature characterization.

Pump power (mW) Seed power (µW ) Analysis freq. (MHz) ∆2 (MHz)
420.0 ± 0.3 110.0 ± 0.3 10.0±0.1 1071.8 ±0.3

As discussed in section C.1, the temperature is an important factor in the amplifi-
cation of the seed and the generation of the conjugated. This can be seen in Figure C.3.9a
where the generated power of the beams raises with the temperature. Below 97◦C, the
probe and conjugated power are inferior to 0.49 mW, the lower limit established in sub-
section 2.4.2 for a reliable measurement. In Figure C.3.9b we observe that the coupling
factor varies with temperature which is probably associated to Kerr effects as self-phase
modulation leading to a lensing effect.

(a) Probe and conjugated power as a
function of temperature.

(b) Coupling factor as a function of tem-
perature.

Figure C.3.9. The power of the generated beams increases with temperature. The
Gaussian profile of the beams is modified by the temperature.

The generated states increase their noise as we raise the temperature starting from
values of αpr,cj and βpr,cj around 5 SQL up to 17 SQL. The asymmetry is also enhanced
reaching values of |δpr,cj| = 6 (Figure C.3.10a,Figure C.3.10b). Notice that in general, the
absolute value of the two-mode parameters raise their value with temperature denoting a
more noisy state. For instance, µ = 〈p̂prs , p̂cjs 〉 starts at 5 and reach 16 SQL, ν = 〈q̂prs , q̂cjs 〉
starts at -5 and reach -15 SQL. As long as these parameters define the Duan inequality in
the symmetric/anti-symmetric basis (figure C.3.11a), we can observe that at 97◦C and 101
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◦C the criteria is violated. However, at 105 ◦C the noise of the quadratures of individual
beams increase much more than the correlations and the entanglement is destroyed. In
the sideband basis, the asymmetry δpr,cj affects the criteria (equations A.8 and A.9). Even
when δpr,cj increases with the temperature, the entanglement is lost at 105 ◦C (figure
C.3.11b).

(a) Single mode parameters of the co-
variance matrix.

(b) Single mode parameters covariance
matrix.

(c) Cross-mode correlations covariance
matrix.

(d) Cross-mode correlations covariance
matrix.

Figure C.3.10. Covariance matrix parameters as a function of the temperature. The
generated states increase the noise level when the temperature raises. The asymmetry also
increases.

The study of the entanglement using the PPT criterion in the SA basis shown in
Figure C.3.12a, shows that there is entanglement at 97◦C and above. On the contrary, at
higher temperatures the bipartition [Spr,Scj×Apr,Acj ] does not violated the critarion. In the
sidebands basis the bipartition [Ωpr,−Ωcj × Ωcj,−Ωpr] does not violate the entanglement
witness. Notice that the bipartitions [Ωpr,−Ωcj,−Ωpr ×−Ωcj] and [Ωpr × Ωcj,−Ωcj,Ωpr]
have the same violation rate at any temperature. A similar behavior is presented between
bipartitions [Ωpr,Ωcj ×−Ωpr,−Ωcj] and [Ωpr,−Ωpr × Ωcj,−Ωcj].
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(a) Duan criterion in the
symmetric/anti-symmetric basis.

(b) Duan criterion in the sideband basis.

Figure C.3.11. Duan criterion as a function of the temperature.

(a) PPT criterion in the symmetric/anti-
symmetric basis.

(b) PPT criterion in the sideband basis.

Figure C.3.12. PPT criterion as a function of the temperature.

Increasing the range of temperatures for the tomography was a difficult task. On
one side, lower temperatures were not enough to amplify the seed beam such that the
detected noise is greater than the background electronic noise . Above 105◦C the generated
beams had a huge excess of noise with values of αpr,cj around 30 SQL units. In this regime,
unexpected electronic limitations are affecting the measurements of the FWM signal
making every reconstructed state non-physical.
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C.3.4 Duan criterion as a function of the analysis frequency: theoreti-
cal model

The electronic configuration presented some problems at analysis frequencies above
Ω =10 MHz. Specifically, the stationary conditions were not satisfied such that the
tomographies were not reliable most likely due to a nonlinear response of the electronics
at a higher amplitude in the input. However, we could explore the response of the system
considering the exposed theoretical model. Figure C.3.13 shows the results for the Duan
criterion in the SA basis as a function of the analysis frequency Ω. We study the system
response at two different probe detuning ∆2. In figure Figure C.3.13a we show the results
at ∆2 = 1010 MHz corresponding to a region of low gain. Notice that at this detuning, the
violation of the criterion reaches values of 0.5 SQL at and a bandwidth of 25 MHz. The
study at ∆2 = 1055 MHz reveals an increase in the violation criterion at low frequencies
but a decrease in the violation bandwidth reaching values of 10MHz. This behavior recalls
the characterization done for the intensity correlations (section 5.2).

(a) Duan criterion SA basis at ∆2 =1010
MHz.

(b) Duan criterion SA basis at ∆2 =1055
MHz.

Figure C.3.13. Duan criterion SA basis as a function of the analysis frequency Ω.

Figure C.3.14 presents the theoretical model in the sideband basis. When the
probe detuning is 1010 MHz, we observe the asymmetrical response of the two bipartitions.
The bipartition [Ωpr,−Ωcj] has a bandiwdth of 23 MHz, differently from the bipartition
[−Ωpr,Ωcj ] that violates the Duan criterion at frequencies above Ω =30MHz. The maximum
violation rate is the same for both bipartitions, and morover, is the same as the obtained
in Figure C.3.13a. When the system is studied at ∆2 = 1055 MHz, the violation rate
increases whereas the bandwidth is diminished reaching only values of 8 MHz for the
bipartition [Ωpr,−Ωcj], and 16 MHz for [−Ωpr,Ωcj].
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(a) Duan criterion sideband basis at
∆2 =1010 MHz.

(b) Duan criterion sideband basis at
∆2 =1055 MHz.

Figure C.3.14. Duan criterion sideband basis as a function of the analysis frequency Ω.
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