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aplicações em portas lógicas holonômicas e
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“The interpretation of quantum mechanics has been dealt with by many authors, and I do not

want to discuss it here. I want to deal with more fundamental things.”

— Paul Dirac.
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Abstract

Open quantum systems play a major role in many field of physics since quantum systems are
generally very hard to screen from the environment, which makes noise and decoherence a
major setback in quantum technologies such as quantum computers.

In this dissertation we carry out a study of open quantum systems in several paradigms: in
the context of holonomic quantum computation, where it is shown that the environment can
improve the implementation of a quantum gate; in the context of transport in a Bosonic chain,
where some entropic quantities are calculated; in the context of quantum to classical transition,
where quantum darwinism is characterized in an exactly soluble model; and in the study of an
exact solution to a Fermionic model, using non-equilibrium Green’s functions.

Keywords: Open quantum systems; Holonomic gates; Quantum information; Entropy pro-
duction; Non equilibrium Green’s functions



Resumo

Os sistemas quânticos abertos tem um papel importante em muitos campos da fı́sica, uma vez
que os sistemas quânticos são geralmente muito difı́cil de isolar do ambiente, o que torna o
ruı́do e a descoerência um dos principais reveses em tecnologias quânticas, como computadores
quânticos.

Nesta dissertação, realizamos um estudo de sistemas quânticos abertos em vários paradig-
mas: no contexto da computação quântica holonômica, onde é mostrado que o ambiente pode
melhorar a implementação de uma porta lógica quântica; no contexto do transporte em uma
cadeia bosônica, onde algumas quantidades entrópicas são calculadas; no contexto de transição
quântica para clássica, onde o darwinismo quântico é caracterizado em um modelo exatamente
solúvel; e no estudo de uma solução exata para um modelo Fermionico, usando as funções de
Green de não equilı́brio.

Palavras chave: Sistemas quânticos abertos; Portas lógicas holonômicas; Informação quântica;
Produção de entropia; Funções de Green de não equilı́brio.
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Chapter 1

Introduction

Some problems that look simple can be very hard to describe. Take for example a particle in a

cup of water. An unimaginable number of water molecules collide with it and with each other

with really complicated interactions, which would be unimaginable to solve with Newton’s

laws. That said, when we look at such molecule the behaviour cannot be that complicated. It

jiggles, and if it is moved it looses speed and goes back to jiggling. With that in mind there

must be a way to describe it without having to solve a 1023 variables equation.

It turns out that there is a field in physics, called stochastic physics which deals with this type

of problem [1]. It solves this problem of having to deal with the complexity of the environment,

in the example the water, by assuming that the interactions produce a random movement.

This idea of only looking at the system and trying to describe the effects of a very com-

plicated environment in simpler terms also extends to quantum mechanics, in the field of open

quantum systems, though the approach taken is not so straightforward. A series of equations

are used to describe a system in contact with an environment, such as Lindblad equations [2, 3],

quantum Fokker-Plank equations [4] and also some stochastic methods such as quantum jumps

[5, 6, 7]. In this dissertation some of these approaches will be described, especially Lindblad

equations and quantum Fokker-Plank equations.

This dissertation will include three types of problems where open quantum systems play

major, but different, roles.

The first problem is an application of open quantum systems in quantum computation, more

specifically to a holonomic quantum gate.

Two transport problems will be studied as well. One in a Bosonic chain, where concepts of

quantum information will be discussed. Then in a Fermionic chain, where an analytic solution
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of the problem is feasible and detailed discussions on the basics of open quantum systems are

possible.

In chapter 6 the quantum to classical transition is discussed in the context of quantum Dar-

winism.
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Chapter 2

Open quantum systems

2.1 Introduction to density matrix theory

Density matrices are a powerful tool to describe loss of information to the environment. By

definition, they allow description of quantum states with a classical ignorance, by adding a

classical probability to a quantum state. They are defined as positive matrices with unit trace,

and can be written as

ρ =
∑

i

pi |ψi〉〈ψi| , (2.1)

where pi are probabilities. One can show that averages of operators can be calculated with

〈A〉 = tr
[
Aρ

]
, and that a unitary time evolution is given by ρ̇ = −i[H, ρ], known as the von-

Neumann equation.

Density matrices also appear naturally when considering subsystems. For example, take

two entangled qubits in the state |ψAB〉 = (|00〉+ |11〉)/
√

2. If only one of the qubits is measured

in any bases the two possible outcomes will have equal probabilities, meaning the state of qubit

A cannot be pure. Instead it can be described by the density matrix

ρA = I/2, (2.2)

which is bases independent, and also correctly describes the 50-50 probabilities in all bases.

Formally, the concept of measurement can be generalized with a set Mi such that
∑

i M†

i Mi =

I. The outcomes i and probabilities associated with such measurement will be given by pm =

tr
(
M†

i Miρ
)
. The equivalent of the wavefunction collapse is ρi =

MiρM†i
pi

. These measurements

naturally include projective measurements when Mi is a set of projectors composed of outer

8



products of an orthonormal bases.

One key concept in density matrix theory is the purity of a quantum state, defined as P[ρ] =

tr
[
ρ2

]
. It is 1 if the state is pure and attains its lowest value, 1/d (where d is the dimension of the

Hilbert space) if the state is maximally mixed. Incidentally this is a measure of how entangled

the subsystem is to the other part (assuming the composite state is pure) [8], as in the example

above, a maximally entangled state resulted in a maximally mixed subsystem, with purity 1/2.

This alone can be used to argue that to get a pure state to become mixed it is necessary to

entangle it to another quantum system, which shows that entanglement plays a crucial role in

open quantum systems1.

Just like a subsystem cannot necessarily be described by a pure state, when a system is open

its dynamics will not necessarily be unitary. Instead it is a general evolution that takes positive

matrices with unit trace to positive matrices with unit trace at all times, continuously, known as

Completely-Positive-Trace-Preserving(CPTP) dynamical maps [10].

A positive map is a linear map that takes positive matrices to positive matrices, but this is

not enough for a map to be physically acceptable. Complete positivity implies not only that a

map M is positive, but M ⊗ I is also positive [11], where I is the identity in any dimension. This

is necessary since the map M⊗ I is simply applying M and doing nothing in an arbitrary system,

which should still be positive.

2.1.1 Lindblad’s theorem

Since physical maps are CPTP, it would be interesting to have the most general form of dynam-

ical CPTP maps. Unfortunately, there isn’t one yet2. One very useful theorem in that regard is

Lindblad’s theorem. It concerns evolutions that have the semi-group property

exp{(t − t0)L}[ρ(t0)] = ρ(t), (2.3)

1A recent article argues that one can obtain decoherence without entanglement [9], but it assumes a classical
source of randomness, in some sense using a new ensemble. In particular, if the classical noise in said paper comes
from a quantum environment, the system entangles with it.

2There is a general form for CPTP maps, known as Kraus maps [12, 13], but this does not imply there is a
closed form for the family of CPTP maps on all times for a dynamical map. For example, a Linblad like equation
with negative coefficients can be positive, as will be seen in chapter 7.
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where L is a constant generator. The theorem states that if the generator has the form [14]

L[ρ] = −i[H, ρ] +
∑

i

γiD[ai, a
†

i , ρ] (2.4)

D[ai, a
†

i , ρ] = aiρa†i −
1
2
{a†i ai, ρ} (2.5)

where ai are arbitrary operators in the Hilbert space, H is Hermitian and γi ≥ 0 then the dynam-

ical map exp{(t − t0)L} is CPTP. This is a good starting point for Markovian maps, which are

defined as CP divisible maps with the property

Λt,t0 = Λt,t1Λt1,t0 (2.6)

for t > t1 > t0, where Λti,t j is CPTP for all ti > t j. Maps that form semigroups satisfy this

property, but there are more general maps that do not.

A generalization of Lindblad’s theorem states that maps are CP divisible if and only if they

can be cast in the form

L[ρ] = −i[H, ρ] +
∑

i

γi(t)D[ai(t), a
†

i (t), ρ] (2.7)

with γi(t) ≥ 0 for all t. Maps like this are common in microscopic derivations, though sometimes

γ is negative as will be seen in this chapter and in chapter 7.

If γ(t) is not always positive then the map is called non-Markovian. Non-Markovianity is

deeply linked with backflow of information [15] so it plays many roles in quantum information.

2.2 General method for deriving a master equation

In this section we introduce a general method for deriving master equations, based on the pro-

jection operator technique of Nakajima and Zwanzig [16, 17].

Supose a system S , with Hamiltonian HS , interacts with an environment E, with Hamilto-

nian HE, via an interaction Hamiltonian αHI , where α is just a bookkeeping parameter intro-

duced for convenience. The von Neumann equation for the evolution of the joint density matrix

of S and E, in the interaction picture, will be

∂

∂t
ρ(t) = −iα

[
HI(t), ρ(t)

]
≡ αL(t)ρ(t). (2.8)

10



As customary in the field of open quantum systems, we will assume that the environment is

large and thus only slightly perturbed by the interaction with the system. With this in mind we

define a set of projection super-operators

ρ 7→ Pρ = trB{ρ} ⊗ ρB ≡ ρS ⊗ ρB,

Qρ = ρ − Pρ. (2.9)

They are indeed projection operators since they satisfy:

P + Q = I,

P2 = P,

Q2 = Q,

PQ = QP = 0.

(2.10)

These projectors capture the idea that the bath is almost in the thermal state ρB ≈ e−βHB/ tr
{
e−βHB

}
,

so in order to derive an equation for the reduced system assuming the bath is in the thermal state

is a good starting point. Of course the full state is not really ρS ⊗ ρB, after all if that were the

case the system would not be entangled with the bath, implying it would always be pure, which

would not properly thermalize.

Each projection will follow the equations of motion

∂

∂t
Pρ(t) = P

∂

∂t
ρ(t) = αPL(t)ρ(t) = αPL(t)Pρ(t) + αPL(t)Qρ(t),

∂

∂t
Qρ(t) = Q

∂

∂t
ρ(t) = αQL(t)ρ(t) = αQL(t)Pρ(t) + αQL(t)Qρ(t),

(2.11)

where in the last step the identity I = P + Q was inserted. Since the objective is to describe the

evolution of ρS , the projection from Q does not really need a detailed solution, instead one can

formally solve it by introducing a Green’s function

Qρ(t) = G (t, t0)Qρ (t0) + α

∫ t

t0
dsG(t, s)QL(s)Pρ(s), (2.12)

where

G(t, s) ≡ T exp
[
α

∫ t

s
ds′QL

(
s′
)]

(2.13)
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and T is a time ordering operator. The Green’s function satisfies the equation

∂

∂t
G(t, s) = αQL(t)G(t, s). (2.14)

Inserting this formal solution in the P part results in what is known as Nakajima-Zwanzing

equation.
∂

∂t
Pρ(t) =αPL(t)G (t, t0)Qρ (t0) + αPL(t)Pρ(t)

+ α2
∫ t

t0
dsPL(t)G(t, s)QL(s)Pρ(s).

(2.15)

Up to this point no approximations were made, not even assuming the initial state of the

bath is thermal. Mathematically ρB could be anything, but assuming it is the initial state of the

environment makes calculations easier (and is the natural choice).

Assuming the initial condition is factorized, meaning ρ(0) = ρS (0) ⊗ ρB(0), the first term in

eq. 2.15 is zero, because QρS (0) ⊗ ρB(0) = 0. The resulting equation is still not particularly

easy to solve, especially because it has a memory kernel K(t, s) ≡ α2PL(t)G(t, s)QL(s)P.

Under weak coupling it can be simplified by expanding the Green’s function and truncating the

expression at order α2, which can be done by substituting G(t, s) = 1 + O(α), resulting in the

equation

∂

∂t
Pρ(t) = αPL(t)Pρ(t) + α2

∫ t

t0
dsPL(t)QL(s)Pρ(s). (2.16)

This is not the only useful approximation that can be made, more cases are discussed in ref. [14].

The NZ equation has many applications to non-Markovian dynamics since it is exact and has a

clear physical interpretation. For example, one possible approximation could be assuming the

memory kernel is some tractable function. For this dissertation though, only the weak coupling

approximation will be studied.

Finally, using the explicit definition of the projection operator and assuming LPρ(t) = 0

one arrives at the equation3

∂

∂t
ρS (t) = −α2

∫ t

t0
ds trB

[
HI(t),

[
HI(s), ρS (s) ⊗ ρB

]]
. (2.17)

This equation is also not easy to solve because it is an integro-differential equation. It is possible

to show that under weak coupling approximation substituting ρS (s) → ρS (t) in the integral

3This is a common assumption which is true, for a thermal environment for example.
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generates errors of the same order in the interaction, but to do so is not trivial(see ref. [14],

time convolutionless master equation). Instead this substitution is sometimes called the Markov

approximation, even though it does not lead to a Markovian equation either, nor is it actually an

approximation. It does result in a local in time equation, which is viable to solve, known as the

Redfield equation

∂

∂t
ρS (t) = −iα trB[HI(t), ρS (t) ⊗ ρB] − α2

∫ t

t0
ds trB

[
HI(t),

[
HI(s), ρS (t) ⊗ ρB

]]
. (2.18)

These weak coupling equations have the downside that if the approximations are not true the

resulting map can be negative, meaning the resulting density matrix could have negative eigen-

values. This equation will be applied to a physical problem in the next section.

2.2.1 Physically motivated microscopic derivation

In this section we derive the master equation for an atom inside an optical cavity. Cavity en-

vironments are a way experimentalists control how the electromagnetic field behaves when

coupling to a system. In particular it has a frequency ωc and only allows dynamics with fre-

quencies near resonance, allowing the atom to be approximated to have only a few levels. The

interaction of an atom to the electromagnetic field is described by [18]

H = HA + HE − er · E (2.19)

where HA (HE) is the atom’s (field’s) Hamiltonian. The field Hamiltonian is given by a collec-

tion of harmonic oscilators

HE =
∑

k

vk

(
a†kak +

1
2

)
(2.20)

and the field interacts with the atom through its displacement operator

E =
∑

k

ε̂kEk
(
ak + a†k

)
, (2.21)

where ε̂kEk are the interaction for different polarizations. The dipole operator can be decom-

posed in the atom’s eigenbases with the identity
∑

i |i〉〈i| = I

er =
∑

i, j

e|i〉〈i|r| j〉〈 j| ≡
∑

i, j

γi jσi j (2.22)

13



where γi j = 〈i| r | j〉 and σi j = |i〉〈 j|, resulting in the Hamiltonian

H =
∑

k

vka
†

kak +
∑

i

Elσii +
∑

iJ

∑
k

gi j
kσi j

(
ak + a†k

)
(2.23)

with the coupling gi j
k = −γi jε̂kEk.

Starting with eq. 2.18, leads to

ρ̇(t) = − trE


t∫

0

dt′[HI(t), [HI(t′), ρ(t) ⊗ ρth]]

 , (2.24)

where ρth is the state of the electromagnetic field (environment), which is henceforth taken to be

a thermal state at a certain temperature T . Changing variables in eq 2.24 from t′ to t − t′ results

in

ρ̇(t) = − trE


t∫

0

dt′[HI(t), [HI(t − t′), ρ(t) ⊗ ρth]]

 (2.25)

and expanding the commutators,

ρ̇(t) = − trE


t∫

0

dt′
(
HI(t)HI(t − t′)ρ(t) ⊗ ρth − HI(t − t′)ρ(t) ⊗ ρthHI(t)

)
+ h.c.

 . (2.26)

This equation is in the interaction picture, so it is convenient to decompose the interaction in

eigenoperators defined in the Schrödinger picture by the commutation relation

[H0, S (ω)] = ωS (ω) =⇒ S I(ω, t) = exp{iωt}S (ω), (2.27)

which implies S (ω) = S (−ω)†. In particular, for the proposed physical system the interaction is

already decomposed in eigenoperators with ω = δ (−δ) being the eigenvalue for the eigenoper-

ator |e〉〈i| (|i〉〈e|).

For finite systems the eigenoperators are very easy to find. First note that the eigenoperators

and their eigenvalues will be given by
∣∣∣λi

〉〈
λ j

∣∣∣, with ωi j = λi − λk. To obtain an operator

decomposition just insert two identities as

A =
∑
i,k

|λi〉〈λi| A |λk〉〈λk| =
∑
i,k

(〈λi| A |λk〉)
∣∣∣λi

〉〈
λ j

∣∣∣ (2.28)
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though in the case proposed of an atom in a cavity the interaction is already written in eigenop-

perators.

Due to the property S (ω) = S (−ω)† and the fact that the sum runs over all values of ω the

decomposition is made such that one of the interactions is conjugate transposed and the other

is not. This has two advantages: it makes the secular approximation a lot more convenient4;

it makes obtaining a Lindblad equation easier. In particular the polarization of light will be

ignored, as the two channels (one for each polarization) simply do not couple and can be added

later. Defining E(t) =
∑

k(γ∗kak + γka
†

k) we then get

ρ̇(t) = − trE

{∑
ω,ω′

t∫
0

dt′
(
S †(ω′(t))S (ω(t − t′))ρ ⊗ E†(t)E(t − t′)ρth+

−S (ω(t − t′))ρS †(ω′(t)) ⊗ E(t − t′)ρthE†(t)
)

+ h.c.
}
, (2.29)

using the time dependence of the eigenoperators and joining the terms which belong to each

Hilbert space from the system and bath,

ρ̇(t) =
∑
ω,ω′

t∫
0

dt′ exp{i(ω′ − ω)t} exp{iω(t′)}
(
S †(ω′)ρS (ω) tr

{
E(t − t′)ρthE†(t)

}
+

−S †(ω′)S (ω)ρ tr
{
E†(t)E(t − t′)ρth

} )
+ h.c., (2.30)

results in

ρ̇(t) =
∑
ω,ω′

Γ(t) exp{i(ω′ − ω)t}
(
S (ω′)ρS †(ω) − S †(ω)S (ω′)ρ

)
+ h.c., (2.31)

where

Γ(t) =

t∫
0

dt′ exp{iωt′} tr
{
E†(t)E(t − t′)ρth

}
. (2.32)

At this point it is necessary to state what the bath looks like in order to calculate the trace in

the last expression. If the bath is at zero temperature the trace becomes

4This approximation will be discussed in more detail in the last chapter
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tr
{
E†(t)E(t − t′)ρth

}
=

∑
k,k′

exp{−iωkt} exp
{
iω′k(t − t′)

}
γkγ

∗
k′

〈
aka

†

k′

〉
=

∫ ∞

0
dνJ(ν) exp{−iνt′}.

(2.33)

To get a simpler equation one can perform the secular approximation, which assumes that cross

terms between ω’s oscillate fast and can be smoothed out, to get the equation:

ρ̇(t) =
∑
ω

Γ(t)
(
S (ω)ρS †(ω) − S †(ω)S (ω)ρ

)
+ h.c. (2.34)

One can further simplify this equation by separating Γ in real γ and imaginary λ terms, resulting

in the equation

d
dt
ρ(t) = −i

[
HLS , ρ(t)

]
+D (ρ(t), S (ω)) , (2.35)

where

HLS =
∑
ω

λ(t)S †(ω)S (ω) (2.36)

and

D(ρ, S (ω)) =
∑
ω

γ(t)
(
S (ω)ρS †(ω) −

1
2

{
S †(ω)S (ω), ρ

})
. (2.37)

An imperfect cavity can be defined by a spectral density J as a sharp Lorentzian, which

allows Γ to be evaluated analytically. It also allows one extra approximation, that only near-

resonant terms contribute to the dynamics, which leaves only two terms, one for each channel.

A Lorentzian has two parameters

J(ν) =
α2

π

Γ/2
(ν − ωc)2 + (Γ/2)2 (2.38)

a resonant frequency ωc and its sharpness Γ (α is just the bath’s coupling constant). If Γ <<

ωc then the integral in eq. 2.33 can be taken from −∞ to ∞, which is unphysical because

it considers negative frequency modes, but mathematically sound since the spectral density is

small in the region where the frequency is negative. This in turn results in

Γ(t) =

t∫
0

dt′
∞∫

−∞

dνJ(ν) exp{−i(ν − ω)t′} =

t∫
0

dt′
∞∫

−∞

dν
α2

π

Γ/2
(ν − (ωc − ω))2 + (Γ/2)2 exp{−iνt′}

(2.39)
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The integral in ν is just a Fourier transform of a Lorentzian, and is given by

Fν

[
1
π

Γ/2
(ν − ω0)2 + (Γ/2)

]
(s) = exp {−2πisω0 − Γπ|s|} (2.40)

and the time integral can also be evaluated analytically. Instead of including the results a brief

description will be given. Both real and imaginary parts of Γ(t) are a combination of an oscillat-

ing sine term(with phases) with frequency ω−ωc multiplied by a decreasing exponential. They

both also have a constant term. This indicates that for long periods of time both terms become

constants, which is known as the Markovian limit. In figure 2.1 we present the typical behavior

of the functions γ(t) and λ(t).
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Figure 2.1: Real and imaginary part of Γ(t) as in eq. 2.39, with arbitrary parameters, showing
both their convergence and the negativity of the real part, which implies non-Markovianity.

λ is always positive, and there is not anything interesting in its behavior. γ is sometimes

negative. This negativity has major implications in the physics involved. It can be shown that

equations in the form of eq. 2.35 generate Markovian (divisible) maps if γ is always positive.

When it is negative the system can recover coherence lost to the bath, and the evolution is

non-Markovian.

Finally, by setting a resonant mode (with the same frequency as the channel) to a coherent
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state a laser Hamiltonian is obtained from the term that was ignored in eq. 2.24

HL = (αLS (ω) + α∗LS †(ω)) (2.41)

where the constant αL depends on the displacement of the coherent state and constants related

to the coupling to the mode.
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Chapter 3

Holonomic quantum computation

In this chapter a description of holonomies and how they apply to quantum computation will be

made without much reference to the precise mathematical definition of holonomies in differen-

tial geometry, for that see ref. [19]. Instead a heuristic explanation for why these quantum gates

are desirable will be made with time dependent perturbation theory.

Holonomic quantum gates are known to be resilient against classical errors in a set of pa-

rameters that define its dynamics, though this might not translate to errors due to a quantum

environment. For that reason it is interesting to study how these gates behave under a quantum

bath.

In particular, a recent paper [20] has shown that under a dephasing noise it is possible to

obtain assistance from the environment, meaning the presence of a quantum environment can

improve the implementation of the gate.

In this chapter a one qubit holonomic quantum gate will be studied coupled to a bosonic en-

vironment. In particular it will be shown that a damping noise can also result in an environment

assisted implementation of the gate.

3.1 Introduction

The idea of using properties of quantum mechanics to process information was proposed by

Feynman in his seminal paper [21]. About a decade later Shor’s algorithm was developed [22],

which showed quantum computers had an exponential gain for factorization, a very relevant

problem in computation with daily applications especially in cryptography. This was one of

the first indications that quantum computation could have significant applications. Quantum
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information has already produced interesting protocols such as quantum cryptography (the idea

of using quantum mechanics to distribute an encryption key safely), but still, after so many

years we have not reached quantum supremacy, when quantum computers perform calculation

which would be impossible (practically speaking) on a classical computer.

In the same spirit as classical computation a discrete, or digital, language is currently used.

The idea is to implement a set of N two level systems, and with a finite number of gates Uγi(k)

be able to arbitrarily approximate a unitary with
∥∥∥U −

∏N
k=1 Uγi(k)

∥∥∥ ≤ ε. It turns out that three

types of gates are enough to achieve this task, which is known as universality [23].

Implementing a quantum computer ended up being a very daunting task, especially due to

decoherence and noise. Studying noise is a central theme in quantum information, especially

because quantum systems are in general a lot harder to screen from the environment compared

to classical systems. For that reason a series of protocols were created to tackle this problem, in

particular error correction, which involves using more qubits than ideally needed to fix errors.

In this dissertation a type of quantum computation that has some built-in noise protection

against classical errors in a set of parameters that define its dynamics, known as holonomic

quantum computation, will be studied and described with interactions to a bosonic environment.

This is motivated by the expectation that the environment could assist in the implementation of

the gate.

3.2 Holonomic quantum gates

3.2.1 Berry’s phase and Wilczek-Zee phase

This subsection is based in parts in Sakurai’s book in ref. [24], generalized to include the

degenerate case of time dependent perturbation theory.

Suppose a system evolves with a time dependent Hamiltonian. The Schrödinger equation

for an eigenstate will be given by

H(t)|n; t〉 = En(t)|n; t〉. (3.1)

For a general state the solution can be decomposed in eigenstates

|α; t〉 =
∑

n

cn(t)eiθn(t)|n; t〉 (3.2)
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with ~ = 1 from now on and

θn(t) ≡ −
∫ t

0
En

(
t′
)

dt′, (3.3)

where the phase given by θn is called the dynamical phase, and will be useful later. Inputing

this state in Schrödinger’s equation results in

∑
n

eiθn(t) [ċn(t)|n; t〉 + cn(t)
d
dt
|n; t〉] = 0. (3.4)

Assuming that there is no degeneracy, looking at one particular amplitude in the eigenbases

gives

ċm(t) = −cm(t)〈m; t|
[

d
dt
|m; t〉

]
−

∑
n

cn(t)ei(θn−θm) 〈m; t|Ḣ|n; t〉
En − Em

. (3.5)

If the Hamiltonian evolves very slowly in time compared with the differences between energy

levels, then the second term can be neglected, which results in the solution

cn(t) = eiγn(t)cn(0),

γn(t) ≡ i
∫ t

0
〈n; t′|

[
d

dt′ |n; t′〉
]

dt′.
(3.6)

This extra phase is known as Berry’s phase [25]. This phase took many years to be considered

relevant, in particular because it was not clear if it could be measured. It was later discovered

that it plays a major role in cyclic time evolutions.

If the Hamiltonian’s time dependence can be described by a vector of parameters R(t) which

belong to a smooth manifold, then the integrand in eq. 3.5, using the chain rule, can be rewritten

as

i〈n; R|
[

d
dt
|n; R〉

]
= i〈n; R| ∇R|n; R〉 ·

dR
dt
≡ An(R) ·

dR
dt
. (3.7)

This allows the integral to be evaluated along a curve in parameter space by changing variables

in the integral in eq. 3.6:

γn(T ) = i
∫ T

0
An(R) ·

dR
dt

dt =

∫
C

An(R) · dR. (3.8)

If the time evolution is cyclic, with a period T (meaning R(0) = R(T )), then using Stokes’

theorem results in

γn(T ) =

∮
C

An(R) · dR =

∫
[∇R × An(R)] · da, (3.9)

where da is a vector of measures for each parameter.
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The fact that the phase only depends on the total flux ∇R ×An(R) indicates that this phase is

robust against random errors in R (for an illustration of this, see fig. 3.1 with an example where

the parameter manifold is a unit sphere).

Figure 3.1: Illustrative example of how random noise in the parameter space will not change
the phase significantly, since it only depends on the flux through the curve.

This vector field A is analogous to a vector potential when considering the transformation

|n; t〉 −→ eiδ(R)|n; t〉

An(R) −→ An(R) − ∇Rδ(R) (3.10)

which in turn implies the curl of A is analogous to a magnetic field.

Assuming the initial state belongs to a degenerate subspace, using the previous results one

can conclude that the system will stay in this as seen in eq. 3.6. Then the time evolution of the

coefficient will have an extra sum

ċm(t) = −
∑

n

cn(t)〈m; t|
[

d
dt
|n; t〉

]
≡ iMmn(t)cn(t). (3.11)

In the last term Einstein sum notation was used. This will be the case for the whole chapter.

The solution for the vector of coefficients cm will now be a matrix exponential

cm(t) = T exp

i

t∫
0

dtMmn(t)

cn(0). (3.12)

22



where T is the time ordering operator. It is also possible, using the chain rule again, to define a

matrix-valued vectors potential analogous to eq. 3.7

Amn(R) = 〈m; R| ∇R|n; R〉 . (3.13)

This implies that a unitary is implemented in the subspace, given by

U(T ) = P exp
{

i
∫

C
Amn(R).dR

}
, (3.14)

where P is the path ordering. This unitary is also robust to noise if the curve described by R is

closed for the same reason as in the Berry’s phase case. The ”phase” in the degenerate case is

known as Wilzcek-Zee phase [26].

In analogy to the gauge transformation in eq. 3.10, instead of a time dependent phase one

can apply a time dependent unitary to the degenerate subspace, which in turn implies the matrix

A transforms as

|n′; t〉 =Ω(t) |n; t〉

A′(t) =Ω̇Ω−1 + ΩAΩ−1 (3.15)

which is how gauge fields tranform. In particular, the holonomies are analogous to Wilson loops,

which are gauge invariant [27].

Adiabatic holonomic quantum gates

The protocol of generating a geometric phase in a cyclic evolution is known as a holonomy, in

particular in the degenerate case a non-Abelian holonomy, after all the resulting unitary matrices

might not commute. In this section a one-qubit quantum gate using only holonomies will be

described.

In order to obtain a universal quantum computer a set of two one-qubit gates and one two-

qubit gate is necessary. In this project only one-qubit gates will be described, though it is also

possible to obtain a two-qubit gate using only non-Abelian holonomies as well.

We consider a tripod system (see fig. 3.2) described by the Hamiltonian [28]

H = [|e〉 (Ω0 〈0 |+Ω1 〈1 |+Ωa〈a|) + h.c.] . (3.16)
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This Hamiltonian has a doubly degenerate dark state (meaning they do not contain the excited

state, |e〉) subspace where the non-Abelian holonomy will be implemented.

Assuming the degenerate subspace is spanned by the vectors |D1〉 and |D2〉, A as in eq. 3.13

will be given by

Ai j = 〈Di| ∇R|D j〉 (3.17)

and the resulting non-Abelian holonomy for a closed path

U(C) = P exp
{

i
∮

C
A(R) · dR

}
, (3.18)

where P is the path ordering operator.

As an example, if we parametrize Ω0 = Ω sin θ cos φ, Ω1 = Ω sin θ sin φ and Ωa = Ω cos θ,

the degenerate subspace will be spanned by |D1〉 = cos θ (cos φ|0〉+ sin φ |1〉) − sin θ |a〉 and

|D2〉 = cos φ |1〉 − sin φ |0〉, and each component of the vector A will be given by

Aθ =

0 0

0 0

 and Aφ = σy cos θ (3.19)

resulting in the holonomy

U(C) = exp
{

iσy

∮
C

cos θdφ
}
, (3.20)

where the path ordering is no longer needed, and the integral is simply the solid angle generated

by the path of θ and φ. Suppose the solid angle is π/4, then the implemented unitary will be

U(C) = exp
{
iπσy/4

}
=

1
√

2

 1 1

−1 1

 = H.X (3.21)

where H is the Hadamard gate and X is a bit flip.

To make sure the gate is implemented in the computational bases the parameters at the

beginning of the path can be chosen in such a way that the dark states are initially |0〉 and |1〉.

One can show, with a different choice of parameters, that another gate that, joined with this one,

generate a universal one-qubit gate.

This approach can also be generalized by using a N + 2 level system, which in turn has a

N dimensional degenerate subspace where a non-Abelian holonomy can be implemented [29].

This could, for instance, be used for a two-qubit gate.
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Figure 3.2: Energy level and couplings setup required for non-adiabatic and adiabatic (respec-
tively a lambda system and a tripod system) implementations of a one-qubit holonomic quantum
gate [28].

3.2.2 Non-adiabatic holonomic quantum gates

Although holonomic quantum gates are robust against some errors, being adiabatic is a disad-

vantage if one is interested in implementing a quantum gate since adiabaticity restricts how fast

it can be implemented and also exposes the system to the environment for, in some sense, a long

time. For this reason the gate described above is not easy to implement experimentally, though

it has been done [30]. More recently a non-adiabatic version, using only three energy levels was

proposed, only requiring one dark state.

Non-adiabatic holonomies

The geometric and dynamical contribution to the dynamics can be separated by writing the time

evolution operator as

U(t) = T exp
{∫ t

0
i(A − K)dt

}
(3.22)

where the matrices A and K are given by

Aab = i 〈ψa|
d
dt
|ψb〉 and Kab = 〈ψa|H |ψb〉 , (3.23)

and |ψa(t)〉 is an orthonormal bases.
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The interpretation of A as the geometrical contribution to the time evolution comes from the

fact that it does not depend on the Hamiltonian, but only in geometrical properties of the Hilbert

space [31]. With this in mind a non-adiabatic holonomic quantum gate can be implemented by

finding a process and a Hamiltonian with Kab = 0 for all t, then, with a cyclic evolution, a

similar robustness to error as in the adiabatic case should be expected.

It is interesting to note that this matrix also has the same gauge structure as the adiabatic

case, with a unitary Ω taking one bases to the other, the geometric and dynamical contributions

transform as

A→ iΩ†Ω̂ + Ω†AΩ and K → Ω†KΩ. (3.24)

Zero detuning implementation

One possible way to implement a non-adiabatic quantum gate is to start with the Hamiltonian

[32]

H(t) = Ω(t) (ω0|e〉 〈0 |+ω1| e〉 〈1| + h.c.) (3.25)

with |ω0|
2 + |ω1|

2 = 1, which has a dark state |d〉 = −ω1|0〉 + ω0|1〉 and a bright one |b〉 =

ω∗0|0〉 + ω∗1|1〉. The Hamiltonian can then be rewritten as

H(t) = Ω(t)(|e〉〈b| + h.c.)→ Ω(t)τx (3.26)

which is simply a Rabi oscillation of a qubit spanned by {|e〉 , |b〉}, with τx being the Pauli

operator in the e-b subspace. In this bases the time evolution operator is given by

U(t) = exp

−iτx

t∫
0

dtΩ(t)

. (3.27)

By choosing
∫ t

0
dtΩ(t) = π the resulting gates simply does the operation |b〉 → − |b〉 , |e〉 →

− |e〉 and |d〉 → |d〉. In order to figure out what unitary will be implemented in the compu-

tational bases one can interpret this operation as a σz applied to the bases |d〉 and |b〉. Us-

ing the parametrization ω0 = sin(θ/2)eiφ,ω1 = − cos(θ/2), which in turn defines a unit vector

n = {sin θ sin φ, sin θ cos φ, cos θ} one can then define a change of bases matrix

exp
{
in.~σ

π

2

} |1〉|0〉
 =

|b〉|d〉
 , (3.28)
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which implies

σz → exp
{
−in.~σ

π

2

}
.σz. exp

{
in.~σ

π

2

}
= n.~σ (3.29)

in the computational bases. This can be seen as a purely geometric evolution since the dynam-

ical phase, given by 〈ψk(t) |H(t)|ψl(t)〉 = 〈k |H(t)| l〉 (because [U(t),H] = 0, for all t) is zero

throughout the evolution. The unitary holonomy in eq. 3.29 is traceless, but it is possible to

implement a general unitary by using two gates, with U(C) = U (Cm) U (Cn) = n·m−iσ·(n×m).

Single-shot realization

Performing two gates can be a problem since the system will be exposed to the environment for

twice the time. For that reason a single-shot implementation would be interesting. It turns out to

be possible to implement a geometric gate as long as one has a controllable detuning, and it has

even been experimentally implemented in Xmon qutrits [33]. The single shot implementation

is done with the Hamiltonian

H(t) = Ω(t) sinα|e〉〈e| +
1
2

Ω(t) cosα(|e〉〈b| + |b〉〈e|) (3.30)

with ∫ τ

0

Ω(t)
2

dt = π, (3.31)

which generate a time evolution operator U(τ) = |d〉〈d| + e−iπ(1+sinα)|b〉〈b
∣∣∣+e−iπ(1+sinα)|e

〉
〈e|, that

can be projected in the qubit subspace resulting on the universal single qubit gate UL(τ) =

e−iγn·σ/2, with γ = 1 + sinα.

3.3 Environment assisted implementation

One of the main problems related to the non-adiabatic holonomic quantum gate described pre-

viously is that the qubit couples to an excited state. This means that when noise or parametric

errors are added there is a chance that the non-qubit level is occupied in the end of the imple-

mentation.

Using the zero temperature environment proposed in the previous chapter, there are decays

from the exited state to the qubit subspace, which makes it seems reasonable to believe that it
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could be used to fix errors.

In this section the traceless version of the holonomic quantum gate will be implemented

using square pulses with a gaussian noise in the pulse time. This imposes a smaller than 1

fidelity even when uncoupled to the environment.

3.3.1 Initial states and pulse error

The gate fidelity will be averaged out on random initial states uniformly distributed on the Bloch

sphere. The random unit vector that describes the state can be obtained by generating three

normally distributed numbers defining a vector and then normalizing it [34]. A square pulse

will be implemented with a runtime of π plus a gaussian noise with some arbitrary variance,

which will result in a lower than 1 fidelity even when uncoupled to the environment.

3.3.2 Master equation

The X gate was arbitrarily chosen for illustration purposes. The master equation in the interac-

tion picture to implement an X gate is

ρ̇ = −i[HL, ρ] − iλ(t)[HLS , ρ] + γ(t)(D(ρ, |0〉〈e|) +D(ρ, |1〉〈e|)) (3.32)

with

HL =


0 1

√
2
− 1
√

2
1
√

2
0 0

− 1
√

2
0 0

 (3.33)

The Lamb-shift term will be ignored since it can be effectively removed in a rotating frame

and tuning the laser properly.

3.3.3 Markovian limit noise

In the markovian limit it is assumed that the system’s dynamics is so much slower than the

bath’s that the time integral in eq. 2.39 can be approximated as having a limit in infinite time.

This can be shown to generate a time evolution that forms a semi-group, which is the definition

of a Markovian evolution in quantum mechanics [14]. Markovianity plays a central role in open

quantum systems, in particular because there are theorems that guarantee CPTP in very general

and well understood situations.
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The resulting master equation will be

ρ̇ = −i[HL, ρ] + γ(∞)(D(ρ, |0〉〈e|) +D(ρ, |1〉〈e|)) (3.34)

In fig. 3.3 the average fidelity F is plotted as a function to the coupling to the environment

γ(∞) ≡ γ. In this case the environment will always harm the fidelity.
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Figure 3.3: Average fidelities for an X gate coupled to a markovian environment

3.3.4 Including a relaxation time

A possible way of using the environment to increase the fidelity is to leave the system in the

environment for it to be projected in the qubit subspace for a relaxation time (“R”) after the

implementation of the gate. In a practical implementation this would have drawbacks since

there usually are more sources of noises such as dephasing. For that reason it is interesting to

look at different finite relaxation times, such as in fig 3.4.
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Figure 3.4: Average fidelities for an X gate coupled to a Markovian environment with diferent
relaxation times R.

This result is interesting because the gate becomes more accurate with the environment than

without it, which is known as environmental assistance. There is a competition between the

environment reducing the fidelity during the implementation but also helping it by projecting

in the qubit subspace during the relaxation, which generates an optimal coupling strength. If

the interaction is very weak then the implementation is optimal, but the necessary relaxation

time to allow assistance becomes large. On the other hand if the interaction is too strong then

no relaxation time is able to provide assistance since the fidelity during the implementation

becomes too low.

3.4 Future perspectives

In this chapter, an overview on holonomic quantum computation and open quantum systems

was made. It was shown that a Markovian environment could assist in the implementation of

a non-adiabatic holonomic quantum gate by addressing a relevant cause of errors due to the

population of the exited state.

We believe that this protocol could be further improved if more properties such as non-

Markovianity (negativity of the damping coefficient) are considered (see fig. 3.5), though there

are technical problems involving non-Markovianity and weak coupling derivations, such as the

lack of strong non-Markovianity, which is the case where there is a back-flow of information

from the bath to the system.

Other possible approaches could involve simpler interactions to the environment, such as a
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|e〉〈b| coupling with the intent to obtain exact solutions, or more abstract models for the bath,

such as collisional models.
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Figure 3.5: Illustration of the protocol, where the X gate in implemented when the evolution is
non-Markovian and then left to decay into the qubit subspace in the Markovian regime.
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Chapter 4

Thermodynamics of Bosonic Gaussian

states

4.1 Wigner representation and quantum Gaussian states

This section is based in part on [35].

We consider here a Bosonic system with L modes, characterized by creation and annihilation

operators a†i and ai. To any density matrix of the system, one can associate the corresponding

Wigner function as

W(ξ) =
1
π2L

∫
dλe−

∑2L
i=1(λiα

∗
i −λ

∗
i αi) tr

{
ρe

∑2L
i=1

(
λia
†

i −λiai
)}
, (4.1)

where ξT =
(
α1, α

∗
1, . . . , αL, α

∗
L

)
and where the integration measure is dλ =

L∏
i=1

dRe(λi)dIm(λi);

i.e., over the entire complex plane of each variable λi. The Wigner function contains the same

amount of information as the density matrix, but represents it in quantum phase space, a L-

dimensional complex space, where L is the number of modes.

There is a particularly useful set of states, called Gaussian states, which are defined as states

with a Gaussian Wigner function. They are particularly relevant in quantum optical systems

and include coherent states. They are also appealing to quantum information due to the fact that

they can be described and simulated more easily than otherwise, while still having interesting

quantum properties such as entanglement.
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The Wigner function for Gaussian states is given by

W(ξ) =
1

πL
√
|Θ|

exp
{
−

1
2

(ξ − µ)†Θ−1(ξ − µ)
}
, (4.2)

where

Θi j ≡
1
2

〈(
(ai − 〈ai〉)(a

†

j −
〈
a†j

〉
) + i↔ j

)〉
(4.3)

is the Covariance Matrix (CM) and µ = (µ1, µ
∗
1, µ2, µ

∗
2, . . . ), with µi = 〈ai〉.

It is particularly interesting that a Lindblad equation of the form

ρ̇ = −i[
∑

i j

(
ωi ja

†

i a j

)
, ρ] +

∑
i j

γ−i jD[ai, a
†

j , ρ] +
∑

i j

γ+
i jD[a†i , a j, ρ], (4.4)

which has a quadratic Hamiltonian and a linear jump operator (with respect to the creation and

annihilation operators, where D was defined in eq. 2.5), preserves Gaussianity, in the sense that

if the state is initially Gaussian, it will remain so for all future times.1. Since Gaussian states are

completely characterized by the first and second moments, this means that the evolution under

Eq. (4.3) can be solely cast in terms of µ and Θ. The first moments evolve according to

dµ
dt

= −Wµ (4.5)

whereas the covariance matrix evolves according to the Lyapunov equation:

Θ̇ = −(WΘ + ΘW†) +D, (4.6)

where the form of the matrices W andD will be discussed in more detail in the next chapters.

A very useful property of Gaussian states is the easeness with which one can take partial

traces. Since the marginal of a Gaussian state is still Gaussian [35], to obtain the partial trace

one simple removes the entries of the CM related to the variables one wishes to trace out. For

1This is not the most general quadratic Lindblad equation. It does not include squeezing for example, but it is
enough for this dissertation.
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instance, if we consider a bipartite system with a state ρAB characterized by a CM

ΘAB =

 ΘA ΘAB

Θ
†

AB ΘB

 (4.7)

then the CM of the reduced density matrix ρA will simply be ΘA.

4.2 Wigner entropy

Although it is possible to calculate the von-Neumann entropy for Gaussian states, a much sim-

pler, alternative, definition is to consider

S (W) = −

∫
dξW(ξ) ln W(ξ), (4.8)

which, as we now discuss, has many advantages. We call this the Wigner entropy. It was first

introduced in [36] and also further explored in [37]. In ref. [36] it was shown that for Gaussian

states this entropy satisfies the strong subadditivity inequality

S (AB) + S (BC) ≥ S (ABC) − S (B), (4.9)

which, in general, is a property that holds only for the von Neumann entropy. This alone is a

strong case for the Wigner entropy. In addition, one can also show that for Gaussian states this

coincides with the Rényi-2 entropy [36], defined as

S 2(ρ) = − ln tr
(
ρ2

)
. (4.10)

The relation between them is established as follows. The purity of a Gaussian state are given by

tr
(
ρ2

)
=

1
2L
√
|Θ|
, (4.11)

which implies

S 2(Θ) =
1
2

ln |Θ| + L ln 2. (4.12)
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Similarly, plugging Eq. (4.2) into Eq. (4.6) and carrying out the Gaussian integrals, one finds

that

S =
1
2

ln |Θ| + 1 + ln π. (4.13)

This formula is extremely convenient, as it offers a straightforward route to compute the

entropy of Gaussian states. For example, the mutual information

IAB = S A + S B − S AB =
1
2

ln
{
|ΘA| |ΘB|

|ΘAB|

}
, (4.14)

and the rate of change of the entropy as

dS
dt

=
1
2

tr
{

Θ−1 dΘ

dt

}
, (4.15)

where the property log |Θ| = tr
{
log Θ

}
, which can be proven by diagonalizing the matrix and

using properties of log, was used.

4.3 Quantum Fokker-Plank equation

As we have seen, any quantum state can also be represented by a Wigner function. Equivalently

the time evolution of the quantum state, given by a Lindblad equation, can be represented by a

differential equation known as a quantum Fokker-Plank equation [4].

To illustrate the idea, we consider here the simplified case of a single Bosonic mode coupled

to a thermal Lindblad equation. In this case the master equation is given by

dρ
dt

= −i[ωa†a, ρ] + γ(n̄ + 1)D[a, a†, ρ] + γn̄D[a†, a, ρ]. (4.16)

The Fokker-Planck equation can be calculated in this case using standard correspondence tables

[38]:

aρ↔
(
α + 1

2
∂
∂α∗

)
W (α, α∗)

a†ρ↔
(
α∗ − 1

2
∂
∂α

)
W (α, α∗)

ρa↔
(
α − 1

2
∂
∂α∗

)
W (α, α∗)

ρa† ↔
(
α∗ + 1

2
∂
∂α

)
W (α, α∗)

(4.17)
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By collecting all terms in a generic Lindblad equation we get

dW
dt

= −iω
[
∂

∂α∗
(α∗W) −

∂

∂α
(αW)

]
+ D̃(W), (4.18)

where the first terms represent the unitary contribution from the Hamiltonian, and the last term

is a dissipative part from the Lindblad terms

D̃(W) =∂J(W) + ∂∗J∗(W), (4.19)

J(W) =
γ

2
(αW + (n + 1/2) ∂∗W) . (4.20)

Similar results can be obtained with multiple modes, and this will be relevant to define the

Wigner entropy production, as we shall do next.

4.4 Entropy production

During a thermodynamic process, not all entropy change in the system can be associated with

a flow of entropy from the environment. Instead, some entropy may also be irreversibly pro-

duced during the process. This entropy production therefore serves to characterize the degree

of irreversibility of a given process. It is expected to have the important property that it must be

non-negative, and only zero in thermal equilibrium.

In symbols, we can write the variation of the entropy as a function of time as

dS
dt

= Π − Φ, (4.21)

where Φ is the entropy flux rate from the system to the environment and Π is the entropy

production rate, which is always non-negative. In the steady-state dS/dt = 0 but this does not

mean that the system is in equilibrium. Instead, it only implies that Π = Φ. The case Π , 0 and

dS/dt = 0 characterizes a non-equilibrium steady-state (NESS), where all the entropy that is

constantly being produced is flowing to the environment. Only in the particular case of thermal

equilibrium should one get Π = Φ = 0. The standard formulation of the entropy production in

open quantum dynamics, as described by a master equation, uses the von Neumann entropy as

the basic underlying quantity. In this case, it can be shown [39, 40] that the associated entropy
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production rate is given by

ΠvN = −∂t tr
{
ρ ln ρ − ρ ln ρeq

}
(4.22)

where ρth = e−βH/Z is the thermal fixed point of the Linbdlad equation. This results in a flux

rate

ΦvN(t) = −
1
T

tr[HD(ρ)], (4.23)

whereD is a dissipatior in a Lindblad equation.

4.5 Wigner entropy production

Eqs. 4.22 and 4.23 diverge in the limit T → 0. The divergence in the latter is trivial, whereas

that in the former is related to the fact that as T → 0 the reference state ρth tends to a pure state

(the relative entropy can diverge when the support of ρ is not contained in that of ρth). This

divergence, which is sometimes referred to as the “zero temperature catastrophe” and is a pecu-

liar feature of quantum systems. It is not directly related to the third law of thermodynamics, as

there are several systems (e.g. in quantum optics and atomic physics) which are well described

by zero temperature baths. Notice also that dS/dt is always finite, so that the divergences of Π

and Φ should cancel out in eq. 4.21.

In order to shed light on this question, in ref. [37] a definition for Wigner entropy production

was proposed that satisfies the proprieties described above. The definition is analogous to the

von Neumann case, but instead of considering the Lindblad equation, one considers the Fokker-

Plank equations, obtaining

Π = −

∫
d2αD(W) ln

(
W/Weq

)
, (4.24)

Φ =

∫
d2αD(W) ln Weq. (4.25)

In particular the entropy flux for a single harmonic oscillator can be written as

Φ =
γ

n + 1/2

(〈
a†a

〉
− n

)
, (4.26)
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This quantity is now always finite, even at T = 0 (n̄ = 0). Moreover, when T is large we can

approximate ω(n̄ + 1/2) ' T , in which case we recover the von Neumann result in eq. 4.22.

This in turn can be generalized in the case of multiple modes coupled to k reservoirs

Φ =
∑

k

γk

nk + 1/2

(〈
a†kak

〉
− nk

)
, (4.27)

where ak only counts the modes that couple to reservoirs.

Though it is possible to generalize the concept of entropy production for multiple environ-

ments a shortcut can be taken in the case of the NESS. By realizing that dS
dt = 0 this can be used

to evaluate the entropy production.
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Chapter 5

Thermodynamics and information in a

bosonic chain

In this section the theory of Wigner entropy described in the previous chapter will be applied to

a concrete transport problem: a Bosonic chain where the first and last modes are coupled to an

environment with the Lindblad equation

dρ
dt

= Lρ = −i[H, ρ] +L1ρ +LNρ (5.1)

where

Liρ ≡ γi(n̄i + 1)D[ai, a
†

i , ρ] + γi(n̄i)D[ai, a
†

i , ρ]. (5.2)

and

H =

N∑
j=1

ωa†ja j + V
N−1∑
j=1

a†ja j+1 + a†j+1a j. (5.3)

5.1 A note on global vs. local master equations

The Lindblad term in the equation above is not what would be obtained with the general mas-

ter equation derivations described in chapter 2. In that case, when decomposing the system-

environment interaction in eigenoperators a combination of all modes from the system would

be obtained, regardless of the fact that the environment is only coupled to the first and last

modes, which would result in what is known as a global master equation. The approach taken
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in this section is what is known as phenomenological (or local) approach, where the dissipator

originated from a microscopic derivation ignoring the system-system interactions (or alterna-

tively considering only one mode). It might seem intuitive (or even obvious) that the global

approach is better, but that is still a current topic of discussion in the open quantum system

community, with both approaches having problems [41]. In particular, the global approach

does not conserve heat currents inside the chain, which makes it the less favorable one when

studying transport.

5.2 NESS

In ref. [42] the NESS of a Bosonic chain with the Lindblad equation as in eq. 5.1 was com-

pletely characterized in what will be refered as the reduced covariace matrix [C]i, j ≡
〈
a†i a j

〉
+ 1

2δi j

resulting in

C =

(
n +

1
2

)
1 + ∆nD. (5.4)

n =
n1 + nN

2
∆n =

n1 − nN

2

where

D =



e1 x

x∗ em x
. . .

. . .
. . .

x∗ em x

x∗ eN


e1 =

γ2

4V2 + γ2 = −eN em = 0 x = −i
2Vγ

4V2 + γ2 .

This was studied in the context of heat current and transport, which is a sensitive topic in the

discussion of local vs. global equation. In particular this model exhibits ballistic heat transport,

which can be noted from the fact that the effective temperature of all modes (except the first and

the last) is the same.
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5.3 Notes on the reduced covariance matrix

At the time we were studying this problem, all the theory of Wigner entropy was built for the

covariance matrix Θ defined previously, but, in some situations, the only correlations that matter

are those of the form
〈
a†i a j

〉1, as is the case for this Bosonic chain.

Because of this, it is necessary to understand the relation between Θ and C, that is given by

equations 5.5, 5.6 and 5.7.

Θ = C ⊗

0 0

0 1

 + C> ⊗

1 0

0 0

 , (5.5)

Θ−1 = C−1 ⊗

0 0

0 1

 + (C>)−1 ⊗

1 0

0 0

 , (5.6)

|Θ| = |C|2 . (5.7)

With these relations it is possible to calculate the total entropy production and flux using the

reduced covariance matrix. For example

dS
dt

= tr
{

C−1 dC
dt

}
. (5.8)

The Wigner functions in terms of Θ is given by

W =
1

πN |Θ|
1
2

exp
{
−

1
2
ξ†Θ−1ξ

}
(5.9)

where ξT = (α1, α
∗
1, α2, α

∗
2 . . .). In order to write Θ in terms of C we first define a vector aT =

(α1, α2 . . .) and note the following properties

ξ = a ⊗

10
 + a∗ ⊗

01
 . (5.10)

Rewriting the Wigner function we get

W =
1

πN |C|
exp

{
−a†C−1a

}
. (5.11)

1when there is no squeezing for example
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The mutual information for the reduced covariace matrix is given by

IAB =
1
2

ln
|ΘA||ΘB|

|Θ|AB
= ln

|CA||CB|

|C|AB
. (5.12)

5.4 Tridiagonal Toeplitz matrix and Chebishev Polynomials

The Rényi-2 entropy depends on the determinant of the covariance matrix, which is almost

a tridiagonal Toeplitz matrix. For that reason it is useful to calculate the determinant of such

matrices in order to generalize the result for the covariance matrix of the NESS. The determinant

of a tridiagonal Toeplitz matrix of the form

T =



a
y i

−i a
y i
. . .

. . .
. . .

−i a
y i

−i a
y


can be obtained by the recursion relation that defines determinants, given by

fn =
a
y

fn−1 + fn−2 (5.13)

f1 =
a
y

(5.14)

f0 = 1 (5.15)

The Chebishev polynomials Cn(x), where x = a
2y satisfy (or are defined by) this relation as

well. It would be interesting to study a chain in the thermodynamic limit, which implies n >> 1.

There is an useful and exact representation of these polynomials given by

Cn(cosh θ) =
sinh (n + 1)θ

sinh θ
(5.16)

θ = arccosh
a
2y

(5.17)
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In this form it is straightforward to calculate the determinant assuming n >> 1.

Cn>>1(cosh θ) ≈
exp{nθ}

2 sinh θ +
exp{nθ}

2 cosh θ
sinh θ

(5.18)

θ = arccosh
a
2y

(5.19)

5.5 Covariance like, toeplitz like matrix determinant

In order to calculate minors or the determinant of the covariance matrix it is necessary to calcu-

late the determinant of the following matrix

TC = y ×



a1
y i

−i a
y i
. . .

. . .
. . .

−i a
y i

−i an
y


which can be done by the recursive definition of the determinant and the property for n × n

matrices M that |kM| = kn|M|. For a n × n matrix we have

|TCn×n| = yn fn−4 − yn−1(a1 + an) fn−3 + a1anyn−2 fn−2. (5.20)

5.6 Mutual information and entropy production

The previous formula can be used to calculate the determinant and minors of the reduced co-

variance matrix, and then entropy production and mutual information.

The mutual information can be calculated using equations 5.12 and 5.20 and is given by

IAB = ln

1
2

+
a
2

1√
a2 − 4y2

 (5.21)

Note that, in the thermodynamic limit it does not matter which parts of the chain you are

comparing to get the mutual information, as long as both sections are also in the thermodynamic

limit.
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The entropy production can also be evaluted to be

Π =
4V2γ∆n
4V2 + γ2

(
1

nN + 1/2
−

1
n1 + 1/2

)
. (5.22)

It is interesting to note that in the case ∆n = 0, which would be the case where the system

thermalizes, the entropy production is zero, which is expected from the definition. Symmilar

results have been obtained in ref. [43].
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Chapter 6

Quantum Darwinism

The quantum to classical transition is a major problem in physics. Though this is not a solved

problem, quantum Darwinism is a theory that explains the emergence of a particular classical

phenomena: objective realism [44]. In an objective reality it is expected that different observers

agree on what they are observing, which is true for classical mechanics (after-all measurement

is not even a part of the postulates).

Quantum Darwinism proposes that objective reality is an emergent propriety of a quantum

system if when measuring different fractions of the bath the same information about the system

can be obtained. In references [45, 46] it was shown that if the time evolution of all small

partition of the bath is described by a specific type of map, known as ”Measure-and-Prepare

(MP) map”, then objective reality will be a propriety of the environment.

In this section evidences will be shown that a particular map is MP for a microscopic en-

vironment. This is a very different view on open quantum systems from the previous chapters,

since the environment itself will be studied instead of the system.

6.1 Model and time evolution

The system that will be studied consists of an harmonic oscillators, which represents the system,

coupled to N other harmonic oscillator through a Hamiltonian of the form

H = ωa†a +
∑

k

Ωkb
†

kbk +
∑

k

γk(a†bk + b†ka). (6.1)
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Figure 6.1: visual representation of the model and of a fraction of the bath

Instead of looking at the map on a general state we can apply it to a coherent state. Once that is

understood we can apply the map to the decomposition of a generic state in terms of coherent

states. Take an initial coherent state of the form:

|ψ〉 = |α〉
∏

k

|βk〉 (6.2)

Since the Hamiltonian is quadratic in the creation and annihilation it preserves Gaussianity,

but since it does not have squeezing terms it will take coherent states to coherent states as well.

With that in mind the state in time t will be of the form

|ψ(t)〉 = |g(t)〉
∏

k

| fk(t)〉 (6.3)

|g(t)〉 = e−|g|
2/2ega† |0〉 (6.4)

We can now look at Schrödinger’s equation for the state, but to do so first we apply the

Hamiltonian:

H |ψ(t)〉 =

ωa†a +
∑

k

Ωkb
†

kbk +
∑

k

γk(a†bk + b†ka)

 |ψ(t)〉 (6.5)

But since the states are always coherent states, applying the annihilation operators gives

ωa†a +
∑

k

Ωkb
†

kbk +
∑

k

γk(a†bk + b†ka)

 |ψ(t)〉 =

=

ωga† +
∑

k

Ωk fkb
†

k +
∑

k

γk( fka† + gb†k)

 |ψ(t)〉 (6.6)
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Now looking at the time derivative of |ψ(t)〉, in reference to equation 6.4

d |g(t)〉
dt

= −
1
2

d|g|2

dt
|g〉 + ġa† |g〉 (6.7)

Applying the derivative to all terms gives

d |ψ(t)〉
dt

= −
1
2

d|g|2

dt
|ψ〉 + ġa† |ψ〉 +

∑
k

(
−

1
2

d| fk|
2

dt
|ψ〉 + ḟkb

†

k |ψ〉

)
(6.8)

This results in the following set of equations

d
dt

|g|2 +
∑

k

| fk|
2

 = 0, (6.9)

iġ = ωg +
∑

k

γk fk, (6.10)

i ḟk = Ωk + γkg, (6.11)

g(0) = α, (6.12)

fk(0) = βk. (6.13)

We can rewrite equations 6.13 conveniently in matrix form

M =



ω γ1 γ2 . . .

γ1 Ω1 0 . . .

γ2 0 Ω2 . . .
...

...
...

. . .


(6.14)

x(t) = eiMtx(0) := U(t)x(0) (6.15)

where x = (g, f1, f2, . . . , fN).

This results in a Schrödinger’s equation for a N + 1 level system, which is reasonable since

coherent states are much less complex than the whole Hilbert space. This also means the sys-

tem’s complexity does not scale exponentially as it usually does with many-body systems. But

of course we are not only interested in coherent states, so we look at a coherent state decompo-

sition of our initial state, which would give the following density matrix in time
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ρS B =

∫
d2αd2β PS (α)PB(β) |gt(α,β)〉 〈gt(α,β)|

∏
k

| fkt(α,β)〉 〈 fkt(α,β)| (6.16)

where |gt(α,β)〉 is now defined as the solution of equations 6.13 in time t with initial conditions

α,β. Note that the system and bath are assumed to be initially non-correlated(the P functions

are factored). A generic initial state can always be decomposed in coherent states using the P

representation [38]. As an example, the thermal state’s P function is given by

PB(β) =
∏

k

e−|βk |
2/n̄k

πn̄k
. (6.17)

The reason why the P representation was used is that it allows partial traces to be taken conve-

niently. For instance, tracing over the system S , as well as a part b of the entire environment B,

we get,

ρb = trs,B/bρS B(t) =

∫
d2αd2β PS (α)PB(β)

∏
k∈b

| fkt(α,β)〉 〈 fkt(α,β)| , (6.18)

which is useful since we are interested in partitions of the bath.

6.2 Measure-and-prepare maps

Measure-and-prepare maps are formally defined as

Eb(ρS ) =
∑

k

tr {MkρS }σkb, (6.19)

or in the continuous case

Eb(ρS ) =

∫
d2α tr {MαρS }σαb, (6.20)

where Mk is a POVM as stated in chapter 2. The name MP comes from the fact that the output

Eb(ρS ) is prepared by combining σkb weighted by the results of the measurement tr {MkρS } on

ρS .
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The idea now is to fix the bath’s initial state as a thermal state to then interpret 6.18 as a map

Λb : LS → Lb, (6.21)

Λb(ρS ) =

∫
d2αd2β PS (α)PB(β)

∏
k∈b

| fk(α,β)〉 〈 fk(α,β)| . (6.22)

At this stage it is not clear at all that this is a measure-and-prepare map.

In order to simplify the results it is possible to integrate the P function of the environment if

it is assumed to be a known state, such as a thermal state. By first expanding the coherent states

in displacement operators to separate the operator part from the β dependent part and also with

the time evolution of f

|α〉 〈α| =

∫
d2λe−|λ|

2/2eλα
∗−α∗λD†(λ), (6.23)

fk(α, β) = Uk0α +
∑

q

Ukqβq (6.24)

it is possible to write the map as

Λb(ρS ) =

∫
d2αd2

bνPS (α)

∏
k∈b

D†k(νk)

 exp


−ν†Cν +

∑
k∈b

U∗k0α
∗νk − Uk0αν

∗
k


, (6.25)

where d2
bν =

∏
k∈b d2νk and

Ckl =

N∑
q=1

n̄qUkqU∗lq +
δkl

2
. (6.26)

In order to get closer to obtaining a POVM it is reasonable use the Q representation, which

is defined as

Qρ(α) = 〈α| ρ |α〉 = tr {Mαρ} (6.27)

where Mα = |α〉〈α| is a POVM due to the completeness-like relation of coherent states. Using

P(α) =

∫
d2λd2γ

π
e|λ|

2
e(α−γ)λ∗−(α−γ∗)λQ(γ), (6.28)
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results in

Λb(ρs) =

∫
d2γQ(γ)σγb, (6.29)

σγb =

∫
d2

bν

∏
k∈b

D†k(νk)

 χγ(ν), (6.30)

χα(ν) = exp

−∑
kl∈b

C̃klν
∗
kνl +

∑
k∈b

(
U∗k0α

∗νk − Uk0ανk
) , (6.31)

C̃kl = Ckl − Uk0U∗l0. (6.32)

This map is almost a measure-and-prepare except that it is not obvious that σ are states.

Note that if C̃ is a covariance matrix then σ are Gaussian states. In fact they are state iff C̃ is a

valid covariance matrix. A covariance matrix is valid if satisfies the bona-fide relation

C̃ −
I
2
≥ 0. (6.33)

6.3 Numerical analysis of the problem

This section is dedicated to a numerical study of the proposed map for an ohmic spectral density.

In this case, there is evidence that the previously proposed map is always a measure-and-prepare

map for any partition size and any temperature greater than zero, given a large enough bath.

6.4 Bath modeling

Since the bath is expected to be large, even for long times we expect it to be approximately

thermal, meaning, if the system is traced out the state that will be obtained will be a thermal

state plus some small contribution. If that is true then the map from system to environment (or

for a fraction of the environment) is close to a measure-and-prepare map in a trivial sense, where

the σ matrices in eq. 6.19 would just be thermal states. This will be a key point in the argument

that the following map will always be a measure-and-prepare map for large finite baths.
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Figure 6.2: bona-fide test for partitions sizes 1(black) and 3(blue) for N=50(line),100(dashed)
and 200(dotted)

By choosing

Ωk = 1 − ∆ω +
2∆ω(k − 1)

N − 1
(6.34)

γk =
γ
√

N
(6.35)

with γ � ∆ω this reproduces an Ohmic spectral density when N → ∞. This is a general method

of obtaining a spectral density: uniform frequency distribution plus the desired spectral density

discretized in the interactions.

The numerical values used were ω = 1, ∆ω = 0.5 and γ = 0.1. This was verified to

approximate the ohmic spectral density well enough for the purposes of this dissertation.

6.5 Bona-fide tests

Using the finite bath from the previous session we can construct a matrix as in equation 6.33.

To verify if that is positive we look at the smallest eigenvalue. If that is positive, then C̃ is a

valid covariance matrix and the map is measure-and-prepare.

Figure 2 shows the smallest eigenvalue of C̃ − I/2 as a function of time for two different

partition sizes and for varying bath size. The behavior seems to be monotonically decreasing

with time, and monotonically increasing with bath size. If this map does converge to a thermal
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Figure 6.3: visual representation that the system has a predictable minimum eigenvalue which
is positive for large N, being a strong indication that the map is measure-and-prepare for finite
baths

state then this is a strong evidence that for a large N this map is always measure-and-prepare,

because being monotonically decreasing would guarantee that min[eig(C̃)] ≥ min[eig(ρth)] ≥ 0.

In this case we could predict what would be the smallest eigenvalue after the system converges

for large baths, which would be given by

min[eig(ρth)] = n̄(ω + ∆ω)βB (6.36)

for any partition size.

This can be checked by looking only at points after the system thermalizes. In figure 3 the

predicted eigenvalue is the grid-line, and for 3 different partition sizes the result seems to match

well, being only strictly bigger than 6.36.

6.6 Conclusions and perspectives

Studying explicit maps such as the one presented may give insights in how classicality emerges.

A possible continuation of these results would be to prove mathematically that there is an N < ∞

where this map is always measure-and-prepare. Another option would be to study how non-

markovianity affects this approach, since some results indicate that non-markovianity hinders

quantum Darwinism[47]. It is also important to point out that a similar map (without the pre-
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trace RWA) was shown analytically to be MP[48].
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Chapter 7

Non-equilibrium Green’s functions

Green’s function are a powerful tool to study both dynamics and steady states of many-body

systems [49]. It is widely used in solid state physics. In this chapter a study on Green’s function

from a quantum information perspective is made. A similar approach was taken in ref. [50].

7.1 Model

The Hamiltonian will be given by

H =
∑

i j

hi jc
†

i c j +
∑

i

∫
dω

(
gi(ω)c†i ηi(ω) + h.c.

)
+

∑
i

∫
dω

(
ωη†i (ω)ηi(ω)

)
, (7.1)

where c (η) is the Fermionic annihilation operator for the system (environment) and h is a matrix

that defines the network structure of the Fermionic system, a Hamiltonian of sorts. In the case

of a chain it is a tridiagonal Toeplitz matrix.

The equations of motion in the Heisenberg picture for a time independent1 operator is given

by

˙A(t) = i [H, A(t)] (7.2)

1in the Schrödinger picture
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which results in

ċi(t) = −i
∑

j

hi jc j(t) − i
∫

dωgi(ω)ηi(ω; t), (7.3)

η̇i(ω; t) = −iωηi(ω; t) − ig∗i (ω)ci(t). (7.4)

Equation 7.4 can be formally integrated to obtain

ηi(ω; t) = e−iω(t−t0)ηi(ω; t0) − ig∗i (ω)

t∫
t0

dse−iω(t−s)ci(s). (7.5)

This in turn can be inserted in eq. 7.3 to obtain the Langevin equation

ċi(t) = −i
∑

j

hi jc j(t) + ξi(t) −

t∫
t0

dsχi(t − s)ci(s), (7.6)

where ξ is known as the noise operator

ξi(t) = −i
∫

dωgi(ω)e−iω(t−t0)ηi(ω; t0) (7.7)

since it only depends on the bath operators in time zero, and not at all in the system’s Hamilto-

nian, and χ the memory kernel

χi(t − s) =

∫
dωg∗i (ω)gi(ω)e−iω(t−s). (7.8)

since it makes ci(s) explicitly depend on its history.

It is particularly useful to define the spectral density as

Ji(ω) = 2π |gi(ω)|2 , (7.9)

which implies the memory kernel is the Fourier transform of the spectral density.

In particular, the noise operator has the interesting propriety that

{
ξi(t), ξ

†

j (s)
}

= −

∫
dωdνδi jgi(ω)g∗j(ν)e

−iω(t−t0)eiν(s−t0)
{
η(ω; t0), η†(ν; t0)

}
= (7.10)

= − δi j

∫
dω
Ji(ω)

2π
e−iω(t−s). (7.11)

55



When the spectral density is constant this simply becomes proportional to a delta in different

t’s, in a way that the anti-commuting propriety of the Fermions in frequency or space manifests

itself in time for the noise operator2.

Defining Ji(ω) = γi, which implies χi(t − s) = γiδ(t − s) the Langevin equation becomes

ċi(t) = −i
∑

j

hi jc j(t) + ξi(t) − γi
ci(t)

2
(7.12)

where the 1/2 factor in the last term comes from the fact that the integral in time in the memory

kernel only includes “half” the delta function. Rewriting eq. 7.12 in vector notation

ċ(t) = −Wc(t) + ξ(t), (7.13)

where W = ih + Γ and Γ is a diagonal matrix with the vector γ as an entry. This equation is now

time local, which makes it a lot more tractable.

Eq. 7.13 can in turn be formally integrated with

c(t) = G(t − t0)c(t0) +

t∫
t0

dsG(t − s)ξ(s) (7.14)

where G(t) = Θ(t)e−Wt, which can be verified by noting that Ġ(t) = δ(t)e−Wt −WG(t).

7.2 Correlations

There are two types of relevant correlations to calculate:
〈
ξ†i (t)ξ j(s)

〉
and

〈
ξ†i (t)c j(s)

〉
.

〈
ξ†i (t)ξ j(s)

〉
=

∫
dωdνg∗i (ω)g j(ν)eiω(t−t0)e−iν(s−t0)

〈
η†i (ω; t0)η j(ν; t0)

〉
. (7.15)

The appearance of the term
〈
η†i (ω; t0)η j(ν; t0)

〉
requires the initial state of the environment

to be stated. For a thermal bath
〈
η†i (ω; t0)η j(ν; t0)

〉
= f (ω)δi jδ(ω − ν), resulting in

〈
ξ†i (t)ξ j(s)

〉
= δi j

∫
dω
J(ω)

2π
eiω(t−s) fi(ω), (7.16)

which in the case of a constant spectral density is the Fourier transform of the Fermi-Dirac

2For example, the same relation (but with commutator) appears for bosons.
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distribution.

Using eq. 7.14 and the assumption that the environment is initially uncorrelated with the

system

〈
ξ†i (t)c j(s)

〉
=

s∫
t0

dτG ji(s − τ)
∫

dω
Ji(ω)

2π
eiω(t−τ) fi(ω) (7.17)

In the case Ji(ω) = γi

〈
ξ†i (t)ξ j(s)

〉
= δi jFi(s − t) (7.18)〈

ξ†i (t)c j(s)
〉

=

∫ s

t0
dτG ji(s − τ)Fi (τ − t) (7.19)

where

Fi (t − s) =
γi

2
δ(t) +

iγiTi

2
e−iµit csch (πTit) (7.20)

which sets a characteristic time τc ∝
1
πT , after which the correlations between the environment

and the system becomes constant. In the next section it will be shown that this implies that the

dissipative part depends only on these correlations.

7.3 Lyapunov equation

The results obtained in the previous sections allows one to formally calculate the covariance

matrix with

C (t) =G (t − t0) C0G† (t − t0) + Z(t) (7.21)

Z(t) ≡
∫ t

t0
dτ

∫ t

t0
dτ′G(t − τ)F

(
τ − τ′

)
G†

(
t − τ′

)
(7.22)

which in turn can be used to derive the Lyapunov equation for the system

Ċ(t) = −W
(
G(t)C0G†(t)

)
−

(
G(t)C0G†(t)

)
W† + Ż(t) (7.23)
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using G(t)C0G†(t) = C(t) − Z(t),

Ċ = −
(
WC + CW†

)
+

[
Ż + WZ + ZW†

]
(7.24)

Ż can be evaluate using Leibniz’s rule to obtain

[
Ż + WZ + ZW†

]
≡ D(t) =

∫ t

0
dτ

{
G(τ)F†(τ) + F(τ)G†(τ)

}
. (7.25)

It is interesting to note that the matrix elements of the dissipator in the Lyapunov equation

depends only on the correlation between the noise operator and the modes in the systems

Di j(t) =
〈
ξ†j (t)ci(t)

〉
+

〈
c†j(t)ξi(t)

〉
(7.26)

7.3.1 Lindblad equation

Since most tools to study open quantum system proprieties are readily available for Lindblad-

like (by Lindblad-like I mean in Lindblad form but allowing negative Lindblad coefficients) it

is useful to understand what dissipator is obtained from D. Since the evolution is Gaussian

preserving, the jump operators must be linear in c’s, which makes a fairly specific guess on how

the equation must look like

dρ
dt

= −i
∑

i j

[
hi jc

†

i c j, ρ
]

+
∑

i, j

γ−ji(t)
[
ciρc†j −

1
2

{
c†jci, ρ

}]
+

∑
i j

γ+
i j(t)

[
c†i ρc j −

1
2

{
c jc
†

i , ρ
}]
.

(7.27)

Using the following relations

[AB,C] = A{B,C} − {A,C}B = A[B,C] + [A,C]B (7.28)

which can be used to derive

[c†i c j, c
(†)
k ] = −δi jc j(δ jkc

†

i ) (7.29)

[c†i c j, c†gck] = δ jgc†i ck − δikc†gc j (7.30)
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it is possible to obtain the Lyapunov equation

dC
dt

= W̃(t)C+CW̃†(t) + D̃(t) (7.31)

W̃(t) =
Γ̃

2
+ ih̃, Γ̃(t) = γ+(t) + γ−(t) (7.32)

D̃(t) =γ+(t) (7.33)

which allows one to infer that

γ+(t) = D(t) (7.34)

γ−(t) = Γ − D(t) (7.35)

7.4 Bath acting on a single site

If there is only one environment coupled to, say, the first mode in the system D will have the

form

D =



D11 D12 D13 . . .

D∗12 0 0 . . .

D∗13 0 0 . . .
...

...
...

. . .


(7.36)

which always has only two non-zero eigenvalues,

λ± =
1
2

D11 ±

√
D2

11 + 4
∑
i>1

|D1i|
2

 (7.37)

one positive and one negative. This implies that the system will always be non-Markovian for

all times due to eq. 7.34 (except in some limits like infinite temperature, where white noise is

obtained). A suitable measure of non-Markovianity in cases like this is the absolute value of the

most negative eigenvalue [51]. Though there are Lindblad coefficients that are always negative,

this map is guaranteed to be CPTP because it is an exact derivation.
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Figure 7.1: Noise-system correlations along the chain, with exponential decay.

7.4.1 Finite temperature and characteristic distances

By looking at the dissipator in infinite time some physical characteristics become apparent. In

fig. 7.1 it is possible to observe that the system-noise correlation decay exponentially along the

chain in finite temperature, which sets a characteristic distance.

This characteristic distance can be evaluated by calculating the inverse of the slope of the

logarithmic plot, and can be plotted as a function of temperature as in fig. 7.2. This suggests the

characteristic distance is proportional to T−1. Note that in the case where the chain has 200 sites

(see fig for description) the characteristic distance does not fit perfectly for low temperatures.

We believe that is because in such cases the size of the chain is of the order of the characteristic

distance in a way that the reflections from the end of the chain become relevant. For that reason

a 500 site chain was also considered, where for these temperatures the points fit.

7.4.2 Time evolution of noise-system correlations

The dissipator always starts with only the first mode correlated with the environment. Then the

correlation starts to propagate along the chain as in fig. 7.3.

By looking at the steady state it is possible to infer that this propagation of correlation

has constant speed. As seen previously, the temperature sets a characteristic time. It also

sets a characteristic distance as can be seen in fig. 7.1. This, and fig. 7.3 are evidences that

the propagation has a constant characteristic velocity. It would be interesting to compare this

velocity to speed limits of correlation propagations like Lieb-Robinson bounds [52].
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Figure 7.2: Inverse of the characteristic distances for different temperatures and two chain sizes.
In blue a 200 site chain and in yellow a 500 site chain.
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Figure 7.3: Time evolution of system-noise correlation. Note that in the last pane the reflexion
due to the fact that the chain is finite can be observed.
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Figure 7.4: System-noise correlations for a fixed temperature T = 0.1 and varying chemical
potentials.

7.4.3 Infinite time correlations

It is interesting to note that the characteristic time that the dissipator converges is not particularly

relevant to the time it takes for the covariance matrix to converge. If the coupling is weak the

covariance matrix converges arbitrarily slower than the dissipator (assuming non-zero tempera-

ture, so that the characteristic time does not diverge). In this case, a reasonable approximation

for the dynamics would be to considerD(t) ≈ D(∞).

It is also interesting to note that in the case γ � 1 the system becomes thermal. In this case

D(∞) can be calculated by solving the Lyapunov equation with

D(∞) = WCth + CthW† (7.38)

7.4.4 Chemical potential

The behaviour with chemical potential is also interesting to consider. For example, in the limit

of infinite chemical potential the dissipator becomes markovian, and instead of white noise

with D11 = 0.5 we get D11 = 1, which populates the chain completely in the steady state. The

chemical potential also chances the characteristic distances, see fig. 7.4 for example, where the

temperature is fixed and the chemical potential varies.
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7.4.5 Additivity

One property that would be interesting to consider is if the environments are additive in the sense

that adding a new environment simply ads a new single site dissipator as the one considered in

this chapter. If that was true it would be trivial to derive the Lyapunov equation, for example

assuming that the system thermalizes, so understanding when dissipators are additive can be a

powerful tool for microscopic derivations.
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Chapter 8

Conclusion

In the context of Holonomic quantum computation it was shown that a zero temperature en-

vironment can improve the implementation of a gate assuming a classical error in the im-

plementation time. Some possible optimization were proposed using properties such as non-

Markovianity.

In the context of transport in a Bosonic chain, two entropic quantities, mutual information

and entropy production, were calculated, demonstrating the usefulness of Wigner entropy for

Gaussian states.

A soluble model was used to study quantum to classical transition using quantum Darwin-

ism, and evidences were shown that said model exhibits objective realism.

Then an exactly soluble Fermionic model was studied, where it was shown that noise-system

correlations are linked to dissipation. It would be interesting to study how the characteristic

distance behaves with chemical potential, which was done, but no conclusive result was reached

like in the case when only temperature is considered. Understanding additivity could also be a

powerful tool for a new approach to microscopic derivations, by using the Lyapunov equation

to obtain the dissipator.
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