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ABSTRACT

MERA ACOSTA, Carlos Augusto. Spintronic transistor: discovery and charac-
terization of topological insulators [Transistor spintronico: descoberta e caracterizao
de isolantes topoldgicos| 2018. 146 f. Tese (Doutor em Ciéncias) - Instituto de Fisica,
Universidade de Sao Paulo, Sao Paulo, 2018.

The main goal of spintronics is to understand the mechanisms to efficiently control both
spin configurations and spin currents, aiming the use of the spin degree of freedom as
the basic element of digital devices, e.g., the ”spintronic transistor” in which the ON
and OFF are defined by the spin electron orientation. Many of the most promising pro-
posed mechanisms are based on spin current generation in Rashba and/or topological
semiconductors mainly mediated by the spin-orbit coupling and electric fields. However,
despite topological insulators (TIs) are predicted to feature boundary (surface/edge for
three/two dimensional systems) states protected by a given symmetry against disorder,
the proposed TI candidates are extremely sensible to fabrications processes, impurities
and temperature effects; indeed, it is difficult to observed the current known phenomena
or even to experimentally achieve the spin transport regime governed by the topologi-
cally protected boundary states. In this thesis, based on first-principle calculation, tight-
binding models and topological invariant calculations we propose possible solutions for
these problems, not only systematically predicting new topological insulator candidates
with suitable conditions to achieve the boundary states transport regime, but also sug-
gesting novel phenomena allowing for the spin current control. Specifically, we have 7)
explored the honeycomb-lattice family proposing a new kind of band inversion; i7) used
machine learning to systematically predict new two-dimensional TIs; i) proposed that
instead of focused on finding TIs exhibiting large band gaps, the bulk states can be in-
trinsically protected by the time-reversal symmetry; iv) found that an external electric
field breaking the mirror symmetry in dual topological insulators can be used to control
the spin polarization, leading to a non-dynamic spin-polarization generation and allowing
the construction of a spintronic transistor; and v) studied the influence of the bulk states
in the surface electronic transport. To address this issues we have also implemented the
topological invariants: Chern Number C,, and the Z; invariant within the SIESTA, VASP
and AIMS codes which are used to performed first-principles calculations, and we made
a model for the electronic transport considering spin-orbit coupling. We believe that our
work advances the understanding of the properties of T1s, the external field effects in these
systems, and their potential for device applications. We also believe that our proposal,
i.e., the spin-polarization controlled by the mirror symmetry breaking, could open a new
research area in TIs.

Key words: Spintronic, transistor, density functional theory, nontrivial topological

phases, electronic transport.
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RESUMO

MERA ACOSTA, Carlos. Spintronic transistor: discovery and characterization
of topological insulators [Transistor spintronico: descoberta e caracterizio de isolantes
topologicos] 2018. 146 f. Tese (Doutor em Ciéncias) - Instituto de Fisica, Universidade
de Sao Paulo, Sao Paulo, 2018.

O principal objetivo da spintronica é entender os mecanismos que permitem controlar de
forma eficiente tanto a configuracao de spin quanto as correntes de spin, orientando ao uso
do grau de liberdade do spin como o elemento bésico de dispositivos digitais. Por exemplo,
o “transistor spintronico”, no qual o "ON” e 0 ” OFF” sao definidos pela orientacao do spin.
Muitos destes mecanismos propostos estao baseados na geracao de corrente de spin em
semicondutores tipo Rashba e isolantes topoldgicos (TIs) usando a interagao spin-orbita
e campos elétricos. No entanto, embora os TIs apresentam estados de borda ou superficie
protegidos contra a desordem por uma certa simetria, os sistemas que tém sido propostos
sdo muito sensiveis aos processos de fabricagao, impurezas e efeitos de temperatura; de
fato, néo é trivial observar os fendmenos conhecidos ou inclusive obter experimentalmente
o transporte de spin dominado pelos estados topologicamente protegidos. Nesta tese, us-
ando calculos de primeiros principios, modelos ”tight-binding” e célculos de invariantes
topoldgicos, foi proposta uma possivel solucdo para estes problemas, ndo somente para
predizer novos TIs de forma sistemadtica, mas também para sugerir novos fenémenos que
permitam controlar as correntes de spin. Especificamente, i) exploramos a familia de
sistemas similares ao grafeno, propondo uma nova classe de inversao de banda; ii) usando
aprendizado de maquina prevemos de forma sisteméatica novos T1Is; iii) encontramos que
os estados de bulk poderiam também ser protegidos pela simetria de reversao temporal,
e ndo necessariamente a procura deve ser focada em encontrar matérias com gap grande;
iv) encontramos que um campo elétrico quebrando a simetria de espelho em isolantes
topoldgicos duais permite controlar a polarizacao de spin, levando a uma geracao nao
dindmica de spin o qual permitiria a constru¢ao de um transistor spintronico; e v) es-
tudamos a influencia dos estados de Bulk no transporte de estados de superficie. Neste
estudo, implementamos os invariantes topolégicos: nimero de Chern e invariante Zs nos
cédigos SIESTA, VASP e AIMS usados para cdlculos de primeiros principios. Também
implementamos um modelo para o transporte eletronico usando spin-érbita. Acreditamos
que nosso trabalho ajuda no entendimento das propriedades dos TIs, dos efeitos de cam-
pos elétricos externos e as possiveis aplicagoes para dispositivos. Também acreditamos
que nossa proposta, o controle da polarizagao de spin quebrando a simetria de espelho,

poderia abrir uma nova area de estudo em TIs.

Palavras Chave: Spintronica, transistor, teoria do funcional da densidade, fases topoldgicas

nao triviais, transporte eletronico.
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Introduction

Linking all the physical aspects of the universe into a single equation would encode
the answer to the greatest enigmas of human history in a unique theory. Although this
reductionist idea known as ”the theory of everything” has been the goal of several greatest
scientists, nowadays it is still one of the most important unsolved ”problems” in physics.
Curiously, even within the current areas in which physical problems could be divided,
an equivalent ”equation of everything” is rarely found, in some way suggesting that the
paradigm of a universal equation could be just an idealization without a strong a priori
demonstration [1]. Remarkable, in materials science, there is a general description from
which all effects, material properties, and phenomena could in principle be derived. Specif-
ically, in quantum mechanic, the different known material phases, e.g., gases (molecules)
and condensed (bulk, surfaces, and wires), can be described without any ambiguity as
a conglomerate of M atomic nucleus and N electrons interacting each other via electro-
static forces. The quantum mechanic equation covering this ”reductionist vision” of the

condensed matter is not more than the Schrodinger equation

A~

HY, (R, 7) =¢e,V,(R,T), (1.1)

where R = {R4, A = 1,2,..,M} are the nuclear coordinates, r = {r,, A =
1,2,..., N} is the set of N electronic coordinates, and ¥, (R, r) is the wave function de-
pending on nuclear and electronic coordinates. From this point of view, the Hamiltonian
H accounts for all interaction contributing to the total energy of the systems e,,. This con-
tributions are essentially defined by the follow operators: i) the nuclear kinetic energy Ty,
electronic kinetic energy Ty, electron-nucleus Coulomb interaction Vi, electron-electron
Coulomb interaction V., and nucleus-nucleus Coulomb interaction Vy. In this order, the

non-relativistic Hamiltonian describing any material can be written as

H="Tyn+T,+ Vye+ V. + Vu, (1.2)

The explicit form of these operators leads to

P2 N g 2N Z,
{ =~ vi-) —v2 - —
# EZMA 4 Lom e QZZV — Ry
9 N N 9 P P
e 1 e ZAZB
PO P » (13)
2 o Ira — 75| 2 A:lB;éA|RA — Rl
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where m and M, are the nuclear and electronic masses, respectively, and Z, is the
atomic number of the nucleus A. The term VNe accounting for the interaction of different
classes of particles does not allow to write the total wavefunction as a product between
functions describing the electronic and nuclear part. Therefore, in practice, the total
energy calculation is a problem almost impossible to solve using the quantum mechanic
techniques. Indeed, using numerical approaches this equation has been solved only for
few systems formed by a very small number of atoms. This undoubtedly reinforces the
assumptions presented by Anderson [1]: even if there is an equation of everything, it would
be impossible to solve it. Consequently, in the condensed matter physics history, many
approximations based on experimental results and theoretical approaches have been done
in order to solve the discussed many-body problem without losing information related
to the electronic structure of the systems, which is the focus of this work. For instance,
surprisingly, the molecular energy spectrum is usually separated in terms of the frequency
of the excited modes into three regions, microwaves, infrared, and ultraviolet, which are
associated with the rotational, vibrational, and electronic spectrum, respectively. This
bring a theoretical framework known as Born-Oppenheimer approximation [2]: based on
the difference between the electron and nucleus masses, Born and Oppenheimer proposed

the decoupled of the electronic and nuclear movements.
Trying to solve the ”equation of everything” in condensed matter

In a classical vision, since the electron velocity is greater than the nucleus velocity,
the nuclear dynamics can be treated as in the inertia state, i.e., the electrons are moving
respect to the static nucleus. Thus, the kinetic energy term Ty can be neglected and
hence, the interacting many-body system problem is reduced to solve the Schrodinger
equation for a set of interacting electrons in the presence of an external potential aris-
ing from the nuclear part. In the original proposal, Born and Oppenheimer introduce
the nuclear movement effect in the electronic wavefunction by considering new nuclear
variables R = Ry + w, where u stands for the displacement of the nucleus respect to
the equilibrium position Ry. In this way, the Hamiltonian is written as an expansion
in terms of k = (m./M N)%, i.e., keeping terms of the fourth order expansion onwards,
there is no mixing between stationary electronic states due to the interaction with the
cores [2]. Therefore, under appropriate conditions !, the electrons do not undergo transi-
tions between stationary states. In a schematic view, we can imagine that the electrons
instantaneously change their wavefunction following the movement and wavefunction of
the nuclei, i.e., for a particular nuclear configuration R;, the potential V. is not more

than an external electrostatic potential V... Naturally, this external potential can also

1 The nucleus movement effect can be neglected if the energy distance between electronic states musts
be greater than the energy required to obtain transitions between vibrational states.

Since metals are characterized by a zero bandgap, this approximation is not suitable to described them.
However, the electronic excitations are usually confined to a small region near the Fermi surface.
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account not only for the nucleus-nucleus Coulomb interaction, but also for any single-
particle external potential. This is equivalent to write a single Hamiltonian describing
the electronic part,

ﬁe@/)n(Ria T) = Enq/)n(Rm T)7 (14)

where 7:[5 = Te + VNe + \76 In this way, the electrons are always in the same stationary

states described by this electronic Hamiltonian.

Let’s introduce this previous discussion by writing the wavefunction of the systems

as,

Zg@m )t (R, ), (1.5)

where ,,,(R,7) is the electronic wavefunction for a given nuclear configuration, and
©m(R) describes the evolution of the nuclear subsystem. This leads to the Schrodinger

equation,

En(R> Sﬁn Rt ZZQ]W 1/ |v ‘¢m>@m(R t)

8t 2]\[

(R t)<1/)n|VA’¢m> (16)

a QZZ 2M 4

m A=1

The wavefunction can be written as decoupled stationary states,

\Ij(Rv ’I’) = (pm(Rﬁ/}m(Ra 7’)3 (17)

by disregarding the off-diagonal terms (¢,|V a|ty,) and (1,|V%4|), which introduce an
effective coupling between states associated with the electronic Hamiltonian. Formally,
this implies that the equations describing the electronic contributions and the evolution
of the nuclear subsystem can be written separately: the electronic Hamiltonian is
. N 2 o2
H, = — R - + 1.8
SRSy oy

a—l a=1p#

while the evolution of the nuclear subsystem is given by

hM <Zv )) on(R, 1), (1.9)

where

Ep, +Z Pml Vil om).- (1.10)

This suggests that the effective potential felt by the nuclei is equivalent to the electronic
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total energy. In the modern version, the Born-Oppenheimer approximation considers the
P

off-diagonal terms as zero [3], i.e., Y. (om|VZ4|om) = 0. Thus, the electronic structure is
A=1

completely decoupled from the nuclear movement and the equation describing the nuclear

temporal evolution is

hM <ZV ))@n(R,t). (1.11)

The study of the electronic properties given by the Hamiltonian 1.8 is not an easy task:
even within the Born-Oppenheimer framework, the electronic wavefunction 1, (R, r) de-
pending on the N coordinates of the interacting electrons should be calculated for each

nuclear configuration.

The biggest challenge is contained in the treatment of the electron-electron coupling,
since this term implies that the Eq. 1.4 is essentially a many-body problem. To elucidate

that, we rewrite the electronic Hamiltonian as,

2l 1
ho + 22] , (1.12)

where r,5 = |7, — 13| and
h2
he=—-—Va+V. 1.1

is the single-particle electronic Hamiltonian Here, we include the nuclear effect in an

effective potential, i.e., Vopp(r) = Z o o 7,7~ I the electron-electron interaction is
neglected, the electronic Hamiltonian is Just the sum of the single-particle contribution of
each electron. The solution of this single-particle problem is relatively trivial respect to
the initial problem considering all interaction. However, this mean field theory is enough
to capture many of the known phenomena and material properties. The solution of the
single particle Schrodinger equation h.i,(r) = E,¢,(r), is usually addressed using tight-
binding models. This concept becomes evident when the Hamiltonian is written in a
specific basis. Since all the systems studied here are periodic solids, the natural basis to

address this problem are atomic orbitals. The electronic wavefunction is then written as
(T Zcm r— (1.14)

where ¢,(r — R) are atomic orbitals centered at the atom in the position R. Thus,
the single-particle Schrodinger equation is [izeqﬁu(r —R)|Ct = E,> Cl¢,(r — R).
p p
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Figure 1.1 - Representation of the (a) s-orbitals separated by the distance R, (b) bonding and
anti-bonding energies, and (c¢) bonding and anti-bonding states.

Multiplying by the atomic orbital ¢% (r — R) and integrating in the real space, we have

> [t — EnSu]Cl =0, (1.15)

m

where the hopping and the overlap terms are given by

= [ @i e = R)or = R) = [ @i (v R) (-394 Vst oyt~

(1.16)
and
= [ &6 (0 = R)6,(r ~ R, (1.17)
respectively. The Hamiltonian matrix elements are then given by
[helij = &g 0i + 12, (1.18)

where a,, is the index of the n-th nearest neighbors, 7 and j are the indexes of the atomic

orbitals used to write the Hamiltonian, and g is the on-site energy.

The functions ¢,(r — R) are not restricted to be atomic orbital. In general, any
set of linear combination of localized functions is suitable to write the wavefunction. For
instance, orthogonal functions are usually used, since the overlap matrix become diagonal,
i.e s, = 0,, It is specially instructive to consider a simple example: The Hydrogen
molecule ion Hy, whose wavefunction is written in terms of a linear combination of s-
orbitals, i.e., |¢,) = C}|s1) + C?|sa), as represented in Fig. 1.1a. The wavefunctions and
energies are then given by the Eq. 1.15, |[¢1) = (|s1) £ [s2))/V2 and Ex = g F [tss],
respectively. Here, £y = t1; is the on-site energy and t,; = t;5 is the interaction between
s-orbitals. The |1) and |1)_) states are the bonding and anti-bonding wavefunctions (See
Fig. 1.1). In the bonding (anti-bonding) state the spherically symmetric s-orbitals have

the same (opposite) quantum phase, as represented in Fig. 1.1b. Since the hopping term
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depends on the electron-nucleus electrostatic interaction, the energies associated with
the (anti-) and bonding states varies with respect to the inter-atomic distance R. This
also suggests that the orbital interaction could effectively be represented by a repulsive
interaction for the anti-bonding states, i.e., in the specific case of s-orbitals, t55 > 0. In

the next section, this will be discussed in more details.

The Hydrogen molecule ion HJ is a very simple example to show how the Schrodinger
equation can be solve for atomic systems, however, even for this case, if the electron-
electron interaction is taken into account, the analytical solution is not trivial and hence,
computational approaches are needed. Specifically, since this interaction leads to a many-
body description, the wavefunction can not be written as a linear combination of orbitals,

but as a Slater determinant. If we use the previously described procedure, it is clear that

. N N
the term V, = % > > - is a two-body operator written as [3]

a=1pZa *°
[Ve]uu = juu + K:uu (1.19)
where )
Top = / / L )63r0)600)0,r5) - drdr (1.20)
and )
Koy = / / 1)) (7 u(rs) e, (121)

Here, the term J,, is usually called Hartree potential and it stands for the interaction
between electronic densities |} (ra )¢, (7a)| and [¢7(rs)¢u(rs)|; the term K, is known
as exchange-correlation term and has no classical analog. There are many methods and
approximations to include the exchange-correlation term in the Schrodinger equation
solution; the most remarkable approach is known as density functional theory (DFT) [4,
5, 6]. The exact solution via the numeric self-consistent convergence of the population
matrix P, =2, C5,C,,; is usually called as Hartree-Fock-Roothan method [7].

1.1.1  Density functional theory

Formally, the DFT proposes to write the energy of the N-interacting electrons as a
functional of the total electronic density. In other words, since the density is a scalar field
in the three-dimensional space, the electronic problem can be treated using only the coor-
dinates of the electronic density, instead of the 3N coordinates of the total wavefunction.
Thus, the Eq. 1.8 leads to the energy of the ground state [5],

E; [p] = Ts[p] + /dgrp(r)‘/eff<r> + VHartree(r) + ‘/eact<r>' (122)
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This energy can be minimized with the restriction N = [ d*rp(r) using the variational

55/) [E[p] —p (/ drp(r) - N)] : (1.23)

Ec[p]
op

principle,

which in turns leads to

0T,
(Sp[p] + VHartree<r> + V;ixt('r') +

—pn=0. (1.24)

Kohn and Sham proposed the mathematical foundations of the DFT, from which is es-
tablished that the electronic densities of the non- and interacting systems should be the
same. This implies that the electron-electron and electron-nucleus interactions could be

approximated by an effective potential,

0 Ee[p]
op

Vveff(r) = VHartree(r) + ‘/eact(r) + (125)

Therefore, the interacting problem is reduced to the solution of the Schrodinger equation

for N non-interacting particles in an effective potential, i.e., the Kohn-Sham equation,

5V V)| o5 (r) = U ), (1.20

where it has been used the functional form of the kinetic energy contribution of the

non-interacting systems T[p], which is written in terms of the Kohn-Sham wavefunctions

e (1),

1
T — K Sx* e v 2] KS 1.2
= S0 ) |5 v (1.27)
In this way, the electronic density is

N
p(r) = Wi ()l (r). (1.28)

a=1

KS

The electronic density and the Kohn-Sham energies €. > are obtained from the self-

a
consistent solution of the Kohn-Sham equation. Please note that these energies are just
the eigenvalues of an equation describing effective particles, which give the exact electronic
density of the ground state. Naturally, the electronic density satisfies the symmetries of
the particular studied system and hence, the Kohn-Sham equation should be solved by
imposing the symmetry of the problem, as done for tight-binding models. For instance,
crystalline solids have translational symmetry, which allow to write the wavefunction as a
linear combination of only atomic orbitals in the unit cell defining the periodicity. As we
will discuss in the next section, this has remarkable consequences in the electronic states

description.
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The band structures as a consequence of the translation symmetry breaking

The breaking symmetry principle is one of the most important theoretical frameworks
in the condensed matter physics [8]. Although other principles, theories and mathematical
elements are required to described and understand some emerging phenomena, e.g., the
integer and fractional quantum spin Hall effect, the spatial and translational symmetry
breaking is the base of the band theory, which along with group theory allows the dis-
crimination of periodic systems into metals, semiconductors, insulators, and even novel
topological phases. Since this classification is one of the focuses of this work, it is conve-
nient to discuss how it appears as a consequence of the translational symmetry and the
number of electrons in the system. Using a study case, i.e., the one-dimensional chain of
atoms with only one orbital per site, we will described how the band structure is a natural
consequence of the translation symmetry breaking. Specifically, instead of discussed the
general approximations to solve the ”equation of everything” for a general system, here
we used an inductive approach to define the required concepts for this thesis. Although
the general description can be find in the literature, here we will give a phenomenological

explanation when needed.

The effect of the periodic potentials V(r + R,,) can be introduced in the electronic

Hamiltonian by considering scattering centers separated by constant translations, i.e.,

3
Ry = lna; (1.29)

i=1
where a; are vectors defining the topology of the system, i.e., the geometry of the scat-

tering centers.

The periodic distribution of the scattering centers implies the existence of a reciprocal
space (whose origin has the crystal symmetry). This reciprocal space is also periodic and
defined by the set of vectors {G,,} satisfying G,, - R, = 27n (with n € Z) for all
translation vectors in the real space. The vectors {G,,} are essentially the translation

vectors in the reciprocal space, also defining the equivalent "reciprocal scattering centers”,

3
G = gmibi, (1.30)
i=1

where g,,; are integers and the vector b; satisfies: a; - b; = 2md;;. Two vectors in the
reciprocal space (for example k' and k) are equivalent if they are connected through a
reciprocal translational vector, i.e., k' = k 4+ G. This leads to the relation e* Fr =

ek B giGm R — cik-Ru gyogesting that the wave function in the reciprocal space

wik) = [ o), (131)
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that encodes the quantum mechanic behavior of the system, only needs to be defined for
a set of non-equivalente k-points. This set of points is in principle arbitrary, but it is
usually defined by the Wigner-seitz cell in the reciprocal space, which is determined by
the k-points satisfying

k= (k+ G (1.32)

Since this cell, the first Brillouin Zone (BZ), is centered at the origin, it contains all the
symmetry properties of the crystal. The k-vector can be interpreted as the momentum

of the electron in the periodic potential, i.e., p = hk.

The periodicity is introduced in the Hamiltonian by means of the periodic potential,

He(r) = —3-V? + V(r), where the nucleus-electron interaction could be intrinsically

- , LN
included, i.e., V(r) = V(r) — % > Eﬁ By definition this Hamiltonian is invariant
A=1a

under the translation symmetry operator 7,,,, i.e.,
ToH(r) =H(r + R,,) = H(r). (1.33)

This implies that the translation symmetry operator commutes with the Hamiltonian
[T, H(7)] and hence, both operators can be simultaneously diagonalized. In other words,

the translated wavefunction T, |1, (7)) = |, (r + R,,)) is also a Hamiltonian eigenvector,
He(r) T [¢0n(r)) = T He(r) [Yn(T))

He(r) |¢n(’r + R/m)> = En W)n("' + R/m)> (134)

There are two important consequences that emerge from this equation:

- The Hamiltonian matrix elements are the same in both the non-translated and

translated representation,
()| Tl He(r) [ (r + Rin)) = (a(r)| He(r) T, [(r + Run))

(Vn(r + Rp) | He(r) [Yn(r + Rpn)) = (U (r)| He(r) [¢n(r)) -

- Both non-translated and translated system have the same energy spectrum.

This formally shows that the spatial distribution of the electronic density should also be

periodic, i.e., (¢n(r + Ry)| Yn(r + Ry)) = (Un(1)] n(r)).

To better understand the relation between the periodic Hamiltonian and the reciprocal
space, it is convenient to analyze the eigenvalues of the translation position operator
Oy 1.6, Ty [ (7)) = o [Un(r)) = |tn(r + R,,)). Since T, is a unitary operator, the

eigenvalues should satisfy that o, = 41 and hence, a,, = ¢®". The parameter &,, can
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Figure 1.2 - (top) One-dimensional chain of s-orbitals with only one orbital per unit
cell. The hopping terms are taking as negative (See text). (b) One-dimensional chain
formed by s-orbitals with different phases. This required two orbital per unit cell, which
is represented by the dashed line.

be determined by applying to successive translations, i.e., T, |0 (7)) = auman, |Un(7)).
This means that .+, = apa,; the product of two eigenvalues of the translational
symmetry operator is equal to the combined translation, indicating that &, should be
proportional to R,,. This equivalence between these parameters is achieved through the

wave-vectors of the BZ, k. The eigenvalues is then written as
o, = ek, (1.35)
This relation leads to one of the most import results in physics, the Bloch theorem [9],

T [on(r)) = [u(r + Ry)) = €T by (r)) (1.36)

which is the main constrained imposed by the periodic potential to the Schrodinger equa-
tion. This relation implies that the Hamiltonian is block diagonal in the k-space and
hence, it can be separately diagonalized for each k-point, i.e., the wavefunction and ener-
gies are also indexed with the momentum of the electron, e.g., E,  and [¢,, x(r)). Based
on the initially derived form for the Hamiltonian matrix elements (Eq. 1.18), the periodic

boundary conditions leads to the matrix elements

[helij = e oy + Yt e Fn), (1.37)

Since the symmetry of the Hamiltonian does not abruptally change from k to k + dk
(with 0k — 0), the energies adiabatically change through the BZ, giving rise to the concept
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Figure 1.3 - (left) Bands for positive and negative hopping parameters in a one-dimensional
chain with only one orbital per unit cell. (right) The bands for a one-dimensional chain
with two orbital per unit cell is represented in black. The gaped band structure for the
SSH model is shown in green, with E, = 2§ being the bandgap.

of bands, i.e., the lines joining successive eigenvalues. To make this evident and study and
specific problem, it is convenient to rewrite the Hamiltonian in terms of a specific basis,
e.g., plane waves or atomic orbitals. Here, we are going to discuss a simple toy model
for a periodic chain of Hydrogen atoms, since it can be understood by extrapolating the

previous discussion about the molecule Hy | as schematically represented in Fig. 1.2.
Designing a one-dimensional band inverted insulator

In this work, some mathematical artifices are used to differentiate the phase of the
orbitals forming the chain; if they have the same phase we impose an attractive inter-
action by taking t,s < 0, as represented in Fig. 1.2a. Meanwhile, the chains formed by
intercalated atoms with different quantum phases are described by a repulsive effective
interaction, i.e., t;; > 0; this is essentially an anti-bonding states. In this case, the period-
icity of the chain requires an unit cell formed by two atoms, as show in Fig. 1.2b. We would
like to emphasize that the sign of the hopping term must be understood as a mathematical
artifice, since the physical interpretation is not as simple as in the case of the discussed
molecule. However, it can be verified that for a chain with only one atom per unit cell
and tgs < 0 (tss > 0), the energy dispersion described the well known nearly-free-electron
model with a non-zero periodic interaction, which seems like a s-orbital (anti-bonding)
bonding-state (See Fig. 1.3). Using the Hamiltonian matrix elements given by the tight-

binding approximation (Eq. 1.37), the energy dispersion is written as
Ef =¢F z tes ™R — o0 F (1™ 4t 07 = g F 2, coska (1.38)
v=1

for t;s < 0 and tgs > 0, corresponding to the bonding F, and anti-bonding E_ states,
respectively. On the other hand, if the unit cell is formed by two atoms, the band
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structure is exactly the same for t,, < 0 and t,; > 0, as represented in Fig. 1.3. This

is a manifestation of the folding of the band structure into the first BZ. Specifically, the

H(k)z( €0 t”e“m), (1.39)

Hamiltonian reads

t + te tha €0

which leads to the energies E¥° = ¢y F tss\/m (See Fig. 1.3). Since the bands
are totally occupied, this chain is electrically inert. The last toy model studied here is
a system in which the distance between the atoms forming the unit cell decrease. This
can be introduced by considering that inter-atomic hopping between atoms in the same
unit cell is different from the hopping term between adjacent atoms in different unit cells.
Such a effective Hamiltonian is known as Su-Schrieffer—-Heeger (SSH) Model [11].

1.3.1  Su-Schrieffer—Heeger Model

The SSH model is usually written in terms of the second quantization operators c;,
and c}n. This formalism is completely equivalent to the previous discussed formalism,

which we make explicit by considering the SSH Hamiltonian in its usual form [11, ?],

N
H == (ty+0)(cly,con + h.c) + (s — 0)(cly1Ca + hoc), (1.40)

n=1

where n;,, = c;rncm is the particle number operator. To simplify the discussion we consider
two different kids of s-orbitals: s, and sp, as represented in Fig. 1.2. Thus, t,, + J is
called the long hopping parameter (atoms in the same unit cell), t;; — ¢ is the short
hopping parameter (atoms in the different unit cells), and (A, B) are the two sublattices.
By computing the Fourier transform of the annihilation operators for these sublattices,
ie.,

ay = \/1]V Zn: exp(—ikna)ca, (1.41)
and
1

VN

we obtain the Bloch Hamiltonian given by the function h(k) = d,o, + d,o,?,

b Z exp(—ikna)cgy, (1.42)

H =" olh(k)iy, (1.44)

2Here, we have used the orthogonality of exponential function

> eminathma) = Ngy,. (1.43)
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where 1/),1 = (ap by) is a spinor, o, and o, are the Pauli matrices, and
dy = (tss +9) + (tss — 0) cos k, (1.45)

and
dy = (tss — 0)sink. (1.46)

Naturally, this is essential the same Hamiltonian obtained in Eq. 1.39 with a = 1. Re-
markably, in the low-energy limit £ — 0, we have (d,, d,) = (2tss, (tss — §)k), which is the

Dirac theory in (1 + 1) dimensions.

As computed in the last section, the energies for the Bloch Hamiltonian of the SSH

model are given by

Bilk) = +,/d2 + &2 = iz\/tgs cos? (g) + 02 sin? (g) (1.47)

Therefore, at the k& = 7 point, there is a non-zero energy gap of 2§, as represented

in Fig. 1.3. Thus, the band-gap only closes if § — 0, which correspond with the case
studied in the last section. For this case, we break the adiabatic condition in the Hamil-
tonian, hence there exist a topological phase transition, i.e., the Bloch wavefunction gain
a non-zero phase when it is adiabatically deformed in a close path defined by changing
of momentum (the reciprocal space). In the next chapter we will discus this this in more
details and show how to computed this phase, known as Berry phase, for three- and two-
dimensional materials. For one-dimensional systems, the Berry phase is essentially the
winding number [12], '

VssH = —21 dk d(k)oyd(k), (1.48)

T JB.z
where d(k) = d(k)/|d(k)| with d(k) = d,(k)+id, (k). Tt is instructive to explicitly compute
this integral. After some simplifications, we have
VssH = —21 dk d(k)K(k, tes, 0), (1.49)

T JB.Z

with
(tss — 0)% + (2, — 6%) cos k

[tss + 0 4 (tss — 0) cos k]2 + (tys — 0)2sin? k'’

K=1

(1.50)

Finally, integrating over k for t,, > 0, we obtain that the winding number in the SSH

model is

1, 6 <0,
[1—sgn(d)] = . (1.51)

1
VSSH:§
0, § > 0.

This number is known as topological invariant and also gives the number of zero-enery

states for systems with open-boundary conditions. The transformation § — —¢§ changes
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the phase of the system, because the long hopping parameters become the short one.
Although a priori these phases are equivalent, the difference appears when we look at the
behavior for open boundary conditions [12]. Indeed, it is relatively easy to show this for

N =4 (where N is the number of unit cells); the Hamiltonian reads

0  —(t+d6) 0 0

goct| "t 0 —+9 0 |, (152
0  —(t+6 0  —(t+0)
0 0 —(t+48) 0

where CT = (Cim CTB,l 62,2 CjB,z) is the basis. The generalization for any N is straight-
forward. It is relatively simple to show that this solution can have a zero-energy state.
The existence of zero-energy states implies the existence of a ground state with fractional

charge [12]. Indeed, we write the decomposition of the field operator as

P(z) = Z bevp(x) + dip_p(r) + ato (@), (1.53)

where bg creates an electron with positive energy, de creates a hole with negative energy,
and a creates the zero-energy mode. These fermionic operators obey: bg, bE =1,dg, d}; =
1, and a,a’ = 1. From the particle-hole symmetry, we conclude that for each sate with
energy F, there is other state with energy —FE. Therefore, the zero-energy mode E =
0 must be double degenerate. We represent these zero-energy states by |G=), hence,

{a,a'}|G+) = |G+£). This allow us to obtain the algebra of these operators given by

alG) = |G), alG) = 0,a'1G_) = |G4),al|G2) = 0 (1.54)

Next, we define the fermion number operator (). This is given by

1
Q=3 [ Eatlv - vuh) (1.55)
We then find that,
1

Q= XE: = (bhbp — didg) + afa — 5 (1.56)

It is easy to show that

1

Q|G+) = i§|Gj:) (1.57)

This zero-energy states are usually known as topological states®, since they appear when-

3In the particular case of the SSH model, the states with fractional quantum numbers are known as
solitons.
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Figure 1.4 - One-dimensional chain formed by p,-orbitals with (top) the same phase and
(bottom) different phases. The chain formed by orbitals with different phases (a bonding-
like state) requires two orbitals per unit cell, which is represented by the dashed line.

ever the topological invariant is different from zero. Here, the symmetry imposing this
condition is the particle-hole symmetry, but in principle any symmetry (except the in-
version symmetry) can lead to a equivalent behavior. Topological transitions, i.e., the
changing in the topological invariant, are usually related to band-inversion, as we discuss

in the next section.
1.3.2 Band inversion

In a periodic chain formed by p,-orbitals with only one orbital per unit cell, two
successive orbitals intrinsically form an anti-bonding state (See Fig. 1.4). Consequently,
in this chain, the eigenvalues become E* = ¢; 4 2t,, cos ka, and the hopping term can
be considered as an effective repulsion, i.e., t,, > 0. As represented in Fig. 1.4, two
atoms per unit cell are required to obtain a bonding-like state (¢,, < 0) in a chain
form by p,-orbitals, i.e., two successive orbitals with opposite phase. The energies are
essentially the same as the obtained for s-orbitals, but usually the hopping terms are
extremely different, e.g., the s-s orbital interaction is usually stronger than the p-p orbital
interaction. Summarizing, except for the change of the interaction term sign (¢,, > 0 and
tss < 0), which in turns change the concavity of the band, the descriptions of both p,-
and s-orbitals one-dimensional chains is similar. This gives us information about the
how to model systems formed by s- and p,,-orbitals around the I' point. For instance,
in the Zinc blende structure the minimum of the conduction band is usually formed
by s-orbitals, while the maximum of the valence band by p,,-orbitals (See Fig. 1.5).
Near the I'" point the band structure can be then approximated by the simple model
similar to the Eq. 1.39. Specifically, by taking the approximation k — I', the energies
describing the electrons confined in an one-dimensional chain form by either s- or p-
orbitals are EPP = gq + 2t,, — t,p(ka)* and E* = g5 — 2t,, + t,,(ka)?, respectively.
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Figure 1.5 - Band structure for (top) CdTe and (bottom) HgTe semiconductors calculated
using (left) density functional theory [20] and (right) the tight-binding model (only for
k-points near the I' point). We first show the bands without the interaction term between
s- and p-orbitals and then showing the effect of this interaction.

Curiously, this is consistent with the expected s- and p,,-orbital energy dispersion at the
I" point for Zinc blend semiconductors, e.g., CdTe, as represented in Fig. 1.5. This does
not support the proposed criterion for the hopping term, but it demonstrates that we
can effectively describe the band structure and chemical bonds dominated by an specific
set of orbitals by modifying the hopping term. For instance, as already mentioned, the
['s band (s-character) has an effective kinetic energy proportional to k% while in the
['; and I's bands (p-character) the kinetic energy is proportional to —k? which is easily
capture by our simple model. Naturally, a symmetry analysis is required to find the
interaction term between these bands. Although in Zinc blende semiconductors the bands
whose wavefunction is dominated by s-orbitals are typically above the bands formed by p-
orbitals, the inverse order is also possible, e.g., in HgTe the relativistic correction leave the
p-orbital contribution above the states formed by s-orbitals. In semiconductors featuring
inverted bands, the quantum confinement can revel remarkable properties of the energy

spectrum, as we discuss below.

Based on the previous discussion, we construct an effective model describing a simple
one-dimensional band inverted insulator, i.e., a unit cell formed by p, and s-orbitals.
We discriminate again the hopping in terms of effective bonding and anti-bonding states
depending on the phases of the orbitals involved in the interaction, as shown in Fig. 1.6.

Using the tight-binding approximation including next nearest neighbors (Eq. 1.37), we
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Figure 1.6 - (top) One-dimensional chain formed by s- and p,-orbitals. (Bottom) Band
structure without and with the interaction term between s- and p,-orbitals, .

obtain the Hamiltonian,

cn — tsseika _ tssefika ts + ts eika
Hk)={" . O (1.58)
tsp + tope " €0 F L™ + e

By taking the approximation k& — I' and considering the on-site energy equal to zero

(€0 = 0), this Hamiltonian can be rewritten as

H(k) = —2tgs — 2tgs(ka)?  tg + Lyt (1.59)
top +tepe ™ 2t + 2, (ka)? )’ '

where a is the lattice constant. It is very instructive to note that a null hopping interaction
term tg, results in two parabolic inverted bands, as represented in Fig. 1.6. The role
of the interaction term is then opening the bandgap, leading to an insulator behavior
(depending on the position of the Fermi energy). Using the Eq. 1.48, we verify that the
winding number - the topological invariant - for the proposed system is v = 1, which
suggest that in the finite chain, topological states should exist, exactly in the same way
discussed for the SSH model. In the rest of this introduction, we will discuss how the

topological states are protected by a specific symmetry of the crystal.
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Magnetic field

Figure 1.7 - Integer quantum Hall effect and Backscattering in systems with non-trivial topo-
logical phases [20].

Band inverted insulators: Topological insulators

The surface of an ”infinite” crystal introduces evanescent states. These surface states
(edge estates for 2D systems) are connected with the Bloch states of the bulk-crystal.
From the band theory viewpoint, the insulating state is characterized by an energy band
gap, which separates electronic completely filled bands from a set of completely empty
bands. In an insulating material, the surface states are easily modified through impurities,
defects or by the reconstruction itself, such that the material remains in the insulating
state. Consequently, within either a semiclassical or any transport model, insulators do
not respond to an electric field, i.e., the insulating state is defined as electrically inert, as

previously discussed for a one-dimensional chain.

The physics of condensed matter of the twentieth century has been revolutionized
with the discovery of a new state, called Quantum Hall Effect (QHE). This state is
characterized by an insulating bulk with stable metallic edge states, which are robust to
the disorder. Thus, although the QHE presents an energy gap separating the different
conduction levels, it also has a transverse magneto-conductance (o,,). This conductance
is quantized in an extremely accurate way in terms of integers of €?/h. This conductance
is localized at the edges of the system, i.e., whereas the bulk behaves as an insulator, the

electrons describe cyclotron orbit, as shown in Fig 1.7.

The QHE seemed to violate the understanding in which a system with energy gap
have no electronic transport, and therefore, it opened a fundamental question about the
way in which an insulating state is characterized: can we classify insulators as materials
that does not respond to the action of the electric field?, or as one that has occupied
levels separated from unoccupied states by an energy gap?. This apparent paradox was

solved by Laughlin [13], who noted that the wave function plays a fundamental role in
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the electronic transport, i.e., the transport is a coherence property of the many-body
wave functions phase. Later, Thouless, Kohmoto, Nighting e Nijs (TKNN) [14] showed
explicitly the relation between this phase and the conductance o, bringing the concept

of topology for the characterization of the insulator state.

The first BZ of the QH system can be understood as a closed manifold. Similarly as
is done in mathematics, using the Gauss-Bonnet theorem for a compact two-dimensional
Riemannian manifold, QH systems could be characterized by a topological invariant.
When a quantum state varies adiabatically in a closed path in the BZ, there is a topolog-
ical invariant in terms of the Berry phase that characterizes the system, the first Chern

number,

1 2
€= o ;/BZ [V x A(K)], &k, (1.60)

where the Berry curvature By,,5(k) is defined as:

k) [tnke) (tnk| O, H(E) [tk
(Emk: - Enk‘,)2 ’

Bmaﬁ(k) = [Vi % A(k)]m - _QImZ (U] Or, H(
n#m

(1.61)

where H (k) is the Hamiltonian describing the system, |u,,x) and E,,x represents the Bloch
function and the energy for a given k point and a band index m. Remarkable, although
the Chern number is a property that involves all bulk states below the Fermi level, this
topological invariant corresponds to the number of one-dimensional edge channels. This
is typically known as bulk-edge correspondence. In the edge channels, the electrons can

not be backscattered (See Fig. 1.7), leading to a perfect quantized conductivity.

The Hall conductance is intrinsically only related to the number of edge states, which
are unidirectional due to the time-reversal symmetry breaking caused by an external
magnetic field, explicitly o,, = C,e?/h. In the case of a normal insulator (also known
as trivial insulator) C;, = 0 and o0,, = 0. Before considering an external magnetic field,
edge states are observed and therefore, C), # 0. Whereas metals have an Ohmic current
(derived from the non-equilibrium Fermi-Dirac distribution function for states near the
Fermi level), the Hall current is a topology current that involves all states below the Fermi

level.

The time reversal symmetry breaking due to an intrinsic magnetic moment, together
with Rashba spin-orbit coupling, can produce a topological current at the edges with
a particular spin direction (spin-polarized current). This effect is known as Quantum
Anomalous Hall Effect (QAHE), which is also characterized by the first Chern number.
This phenomenon has been studied experimentally in the 80s, but it was theoretically
explained only after the theoretical discovery of a new topological phase baptized as

Quantum Spin Hall Effect (QSH). This effect is essentially a two-dimensional analog of
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Figure 1.8 - (left) Quantum spin Hall effect. (right) 3D Topological insulator. [20]

the band inverted one-dimensional chain discussed in the last section.

In the QSH effect, predicted by Kane and Mele [15] in graphene?, the role of the mag-
netic field is provided by the spin-orbit coupling and therefore, the time reversal symmetry
is preserved. This unique feature results in a bulk insulator system with a pair of anti-
propagated edge states with opposite spin. These states have a linear dispersion (Dirac
cone) with helical spin texture, as show in Fig. 1.8. The edge spin currents associated with
these helical states have no dissipation, suppressing the backscattering. Naturally, this
property is ideal for spintronic devices. Consequently, the metallic edge states are robust
against disorder and the topological protection is governed by the time reversal symmetry.
The topological band dispersion has been experimentally characterized via angle-resolved
photoemission spectroscopy (ARPES) and local scanning tunneling microscopy (STM)
in 3D topological insulators, and via transport measurements in HgTe/CdTe quantum
wells [18, 19]. The 3D generalization of these systems is known as Topological Insulators
(TI) [16, 17]. The QSH is characterized by a new topological invariant known as Zs,
which is similar to the Chern number for the QAHE,

Zy = i V dk - A — d’k - B} mod(2). (1.62)
2mi | JEBz EBZ
The effective BZ (EBZ)is not more than the half of the Brillouin zone with the appropriate

boundary conditions, i.e., preserving the time-reversal symmetry.

The description of periodic systems through the Bloch theorem and the band theory
is not incorrect, nevertheless a suitable description and characterization of the insulator
state requires the introduction of concepts related to topology. In this theory, known as
topological band theory, the symmetry preserved by the crystal can provide a topological
protection. Whenever this symmetry is preserved, the metallic states inside the bulk-gap

will be protected against the backscattering. If the Hamiltonian describing an insulating

4Formally, the little intrinsic SOC of carbon atoms does not allowed the experimental observation of
this effect in graphene. However, much work has been developed in finding a way to increase the graphene

SOC.
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Figure 1.9 - Topological transition and boundary states in trivial and topological insulators.

commutes with the time reversal symmetry operator, the time reversal invariant momenta
points exhibit degenerated states. In the case of a topological insulator, if the energy gap
occurs at these points, the surface states connecting the valence band and conduction
bands form a Dirac cone, as show in the Fig. 1.9. The discovery of these systems and
their theoretical and experimental study has opened a new area of research in condensed
matter physics, which covers all insulators classified by a non-zero topological invariant:
Chern insulating, QAHIs, QSHIs, and TTs.

Topological insulators and spintronics

The spintronic is based on a simple idea: ”A future spintronics device would perform
calculations and store information using the spin-degree of freedom of electrons with a
vision to eventually replace conventional electronics” [22, 23]. The central objective of
spintronics is to understand the mechanisms by which it is possible to achieve efficient
electrical control of spin currents and spin configurations. It has been proposed several
mechanisms for the simultaneous control of both the electronic transport and the spin
currents. The phenomena of interest in spintronic could be classify according to the spin
transport control mechanisms: ) electric field (See Fig. 1.10) and i) spin-orbit coupling
(See Fig. 1.11). These phenomena are typically found in two groups of systems: 1)
conductor systems with magnetic order and i) semiconductor systems or paramagnetic
metals. In this thesis, we study both spin control mechanisms, but we always focus on

systems with strong intrinsic SOC.

» QAH systems, which are conductors with magnetic order where the SOC generates
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Figure 1.10 - The two panels in this figure schematically illustrate (left) giant magnetoresistance
in which variation in magnetization direction increases backscattermg and hence resistance and
(right) Andreev reflection of spins in non-collinear magnetic systems that leads to spin-transfer
torques and current-induced spin reversal [21].

Spin-orbit coupling

a band inversion that results in a spatial breaking of the conductivity channels with

spin polarized current, as previously mentioned.

» QSH systems, which are non-magnetic. As discussed above, in these systems, the

electronic states physics depends on the SOC.

Even though the systems exhibiting protected boundary states are not the unique class
of systems that present phenomena of interest in spintronic, these are the most developed

in terms of theoretical understanding.

We would like to highlight an effect that has been the subject of intense theoretical
and experimental research activity, since it allows the control of the magnetization of
a thin layer of material through a spin-polarized current, i.e., the spin-transfer torque.
Spintronics in semiconductors is richer scientifically than spintronics in metals because
doping, gating, and heterojunction formation can be used to engineer material properties.
In highmobility two-dimensional electron systems that have substantial Rashba spin-orbit
coupling, the spin-torque implies that spin currents always accompany charge currents,
leading to the spin Hall effect (See Fig. 1.11): the charge accumulated at the edges has
a spin orientation preference. A similar recently proposed effect known as spin-orbit
torque, which is produced by the flow of an electric current in a crystalline structure
lacking inversion symmetry, transfers orbital angular momentum from the lattice to the
spin system. Spin-orbit torques are found to be prominent in both ferromagnetic metal
and semiconducting systems, allowing for great flexibility in adjusting their orientation

and magnitude by proper material engineering. In this work, we explore spin-orbit torque-
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Figure 1.11 - The two panels in this figure schematically illustrate (left) the spin Hall effect
and spin currents in paramagnetic conductors and (right) current-induced spin polarization
in paramagnetic conductors; Spin-transport effects in paramagnetic conductors always require
spin-orbit interactions [21].
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Figure 1.12 - Elemental model of a digital spintronic transistor [22, 23].

like effects for the equilibrium carrier spin density configuration.

The current silicon-based semiconductor devices are reaching the miniaturization
limit, which is a feature associated with minimum distance traveled by electrons in a
device and hence, the performance of the same. Since in systems featuring non-zero topo-
logical invariants, the conductivity channels exhibit dissipationless spin-polarized elec-
tronic states, the spin relaxation time is usually greater than the electronic relaxation
time. We believe that it is possible to construct topological insulator based spintronic

devices with an efficiency significantly higher than the common electronic devices.

The digital transistor is a fundamental device model that uses an external electric field
as a mechanism to control the spin transport properties (See Fig 1.12). In this system,
the spin degree of freedom is used as the basic element to obtain 1 (spin 1) or 0 (spin
1), required for a digital device system. The realization of spintronic devices with these
characteristics using topological insulator materials is not trivial, because there are in-

trinsic difficulties in the electronic transport measurements, i.e., the experimental results
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characterized by ARPES techniques show that the samples present [20]: i) an intrinsic
n-type and p-type doping due to intrinsic defects or impurities; i) the presence of resid-
ual continuous bulk states (main difficulty); 4ii) the lack of a mechanism to control the
surface state without obtaining emergent phenomena originating from the bulk states; iv)
low SOC bandgaps and therefore, intrinsic difficulties in the observation of topologically
protected edge metallic states. Since the countless experimental works searching for the
electronic behavior expected by the predicted model have not been satisfactory, the elec-
tronic transportation measurements are still a challenge. This suggest that the search for
either novel topological insulators with a sizable bandgap or novel phenomena allowing

the spin-polarization control is still an open problem,
Objectives

Our research group has been studied the electronic properties of topological insulators,

showing that:

(a) 3D transition metals when adsorbed on the BiySe; and BiyTez surface provide a
mechanism to control the magnetic moment of these systems. This magnetic mo-
ment is associated predominantly with the spin configuration and the spin direction
of the adsorbed atom. The intrinsic magnetic moment breaks the time-reversal
symmetry, eliminating the spin degeneration at the high symmetry points and thus,
opening a gap at the Dirac cone. There is a dependence of this gap in relation to the
magnetic moment direction. the Dirac cone is broken when the magnetic moment
induced by the adsorbed atom is out-plane in relation to the TI surface. Whereas
if the magnetic moment is in-plane two effects appear: i) the Dirac cone moves and
ii) the break of degeneracy results in a smaller gap compared with the gap in the

out-plane magnetic moment case [24].

(b) It is possible to eliminate the contribution of the bulk states near the Dirac cone

via stacking faults in the atomic layers that form the BisSes and BiyTe; TI [25].

(¢) The topological properties can be controlled by hydrogenating and doping the QSH
systems; increasing or decreasing the contribution of the SOC and thus, allowing

experimental observations [26].

Unifying these results, which resolved separately one of the problems described above, we
have some ideas about the conditions satisfied by systems that could be suitable for the

construction of a spintronic device. The general objective of this project is:

Propose systems and phenomena with the electronic properties that enable the con-
struction of a digital transistor using the spin as a basic element for the control of transport

properties.
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In the prediction and the design of new topological materials and devices, the compu-
tational simulations have played a fundamental role. Indeed, from a theoretical point of
view, the ab — initio methods based on the density functional theory have been the most
used framework for the characterization of topological states, the prediction of novel ma-
terials and the study of the spin texture consequences in these materials. However, for the
study of the electronic transport in QSH systems is necessary a computational code that
takes into account the SOC. Within the computer codes of first principles calculations,
our group frequently use the SIESTA code, in which, in order to enrich the theoretical
treatment, we have implemented: i) the spin-orbit interaction (developed in my Masters
project), ii) the self-interaction correction (SIC) and dii) the ballistic electronic transport
via non-equilibrium Green’s functions (TRANSAMPA-code), etc. In the present work,
using the formalism of non-equilibrium Green’s functions and norm-conserving relativistic
pseudopotentials, we will implement the SOC in the TRANSAMPA code, fundamental
to understanding the electronic transport properties and the spin transport properties of

nontrivial topological states.

According to the theoretical and experimental development described above, the
present work initially aims a dense implementation work to study the transport prop-
erties of 2D and 3D pristine topological insulators. Below we list some of our specific
objectives necessary to achieve a general framework in the understanding of topologi-
cal insulators materials and the way to predict suitable systems and phenomena for the

construction of novel spintronic devices:

1. Implement the topological invariants: Chern Number C, and the Zs invariant for
the characterization of topological insulators in the STIESTA, VASP and AIMS codes

used to perform first-principles calculation.

2. Make a model for the electronic transport of these materials. Although our research
group have expertise in the treatment of transport based on the Landauer model,
our technique does not include in the Hamiltonian the spin-orbit effects fundamental
to the correct description of topological insulators. So that, our model based on the
DFT coupled to Green’s functions techniques should be modified. In the search
for 2D materials that may present a QSH behavior, initially our study is focused
on bidimensional layers of Silicon (Si), Germanium (Ge) and alloys. With the
methodology proposed for the inclusion of SOC in the ballistic transport, we have

an appropriate tool to spin current calculations in nanoribbons.

3. Using DFT simulations as a tool for prediction of systems with nontrivial topolog-
ical phases, we propose to look for new two-dimensional systems with strong SOC

by implementing machine learning algorithms. Specifically, we have computed the
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topological Z, invariant for 220 functionalized honeycomb-lattices that are isoelec-
tronic to functionalized graphene. Besides confirming the TI character of well-known
materials, e.g., functionalized stanene, our study identifies several other yet unre-
ported QSHIs. We applied a compressed-sensing approach to identify a physically
meaningful descriptor for the Z5 invariant that only depends on the properties of
the material’s constituent atoms. First, this yields fundamental insights in the
mechanisms driving topological transitions, especially in the atypical case of QSHIs
with low spin-orbit coupling. Second, this allows us to predict 74 new QSHIs that
are not part of the original set of 220 graphene-type materials used to identify the

descriptor.

. Evaluate two possible ways for the construction of a transistor based on either the

spin conservation or spin generation:

i) Protected bulk states: we proposed that the simultaneous presence of both Rashba
and band inversion can lead to a Rashba-like spin-splitting formed by two bands
with the same in-plane helical spin texture. Because of this unconventional spin
texture, the backscattering is forbidden in edge and bulk conductivity channels. We
propose a new non-centrosymmetric honeycomb-lattice quantum spin Hall (QSH)
insulator family formed by the IV, V, and VII elements with this property. The
system formed by Bi, Pb and I atoms is mechanically stable and has both a large
Rashba spin-splitting of 60 meV and a large nontrivial band gap of 0.14 V. Since
the edge and the bulk states are protected by the TR symmetry, contrary to what
happens in most doped QSH insulators, the bulk states do not contribute to the
backscattering in the electronic transport, allowing the construction of a spintronic

device with less energy loss.

ii) Spintronic transistor: we show that half-functionalized honeycomb lattice mate-
rials can exhibit a dual topological character, which required that the spin texture
of the edge states is oriented perpendicular to the mirror plane that protects them.
Remarkably, we find that an external electric field breaking the mirror symmetry
in dual topological insulator nanoribbons induces a spin-polarization parallel to the
mirror plane. Based on this, we propose a transistor model using the spin-direction
as a switch. We also find that the in-plane magnetic fields, breaking the time reversal
symmetry and preserving the mirror symmetry, lead to a displacement of the Dirac
point formed by the edge states in the reciprocal space, confirming the topological
mirror symmetry protection. The proposed transistor essentially corresponds to the

device shown in Fig.1.12.

. We studied the influence of the bulk states in the surface electronic transport. First,

we put forward a tight-binding model for rhombohedral topological insulators mate-

rials with the space group Dj,;(R3m). The model describes the bulk band structure
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of these materials over the whole Brillouin zone. Within this framework, we also
describe the topological nature of surface states, characterized by a Dirac cone-like
dispersion and the emergence of surface projected bulk states near to the Dirac-point
in energy. We find that the breaking of the R3 symmetry as one moves away from
the I" point has an important role in the hybridization of the p,, p,, and p. atomic
orbitals. In our tight-binding model, the latter leads to a band mixing matrix ele-
ment ruled by a single parameter. We show that our model gives a good description
of the strategies/mechanisms proposed in the literature to eliminate and/or energy
shift the bulk states away from the Dirac point, such as stacking faults and the

introduction of an external applied electric field.

Computer simulations allow the study of different systems varying its parameters and
characteristics in a controlled manner. In this project, using computer simulations based
on the Density Functional Theory (DFT) and non-equilibrium Green functions within the
Ladauer formalism, we implemented of the electronic transport taking into account the
SOC. This implementation allows the study of electronic transport in nanostructures, and
therefore, it is a powerful tool for the study of spin currents and the problems associated
with the construction of digital transistors using topological-protected materials. Thus,
we studied the conditions required to eliminate the aforementioned problems and subse-
quently, proposing a system that has the electronic conditions to enable the construction

of a digital transistor in the most basic elemental model.
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2. Implementations

Geometric phase in band theory

In recent years, the band theory of solids has been augmented by new chapters to
account for geometric and topological effects that had not been considered previously|[1].
The introduction of the Berry phase [3] allowed the systematic description of many ob-
servable effects of purely geometric origin, such as the Aharonov-Bohm effect [11], and its
applications in the band-theory context have included the theory of electric polarization

[5, 6] and the anomalous Hall conductance [7, §].

The adiabatic theorem is a fundamental concept in quantum mechanics and is essential
to the understanding of quantum phase transitions. Even the geometric phase that the
wave function gains in an adiabatic process - the Berry phase - is ubiquitous in physics and
its discussion is included in most of the contemporary quantum mechanics textbooks. The
initial formulation of the adiabatic theorem reads as follows: ”A physical system remains
in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and
if there is a gap between the eigenvalue and the rest of the Hamiltonian’s spectrum.”|2].
Which means that: if we consider the hamiltonian system H(R(t)) that depends on some
external parameter R, then in a process of adiabatic evolution, a system initially in a
Hamiltonian eigenstate [1,,(0)) = |n(R(0))) will remain in this instantaneous eigenstate,
gaining a phase in this process. The parameter R = {R;(t), R2(¢), ...} may vary with the

time.

Fock presented an argument [12] that the phase of a quantum state accumulated in
the process of adiabatic evolution can always be taken to be unity. However, this result
was derived with the assumption of non-cyclic evolution. Surprisingly, a general theory of
cyclic evolution was not considered until 1984, when Berry, in his seminal paper[3], proved
that a cyclic evolution of a quantum state results in a phase factor of a purely geometric

origin and, in principle, is observable. Explicitly, the eigenvalue equation is written as:

H(R(1))In(R(1))) = E.(R(2))In(R(t))), (2.1)

and the time evolution of the system is given by the equation, ihd;|n(R(t))) = H(R(t))|n(R(t))).

The phase factor of the wave function in an adiabatic cyclic evolution, that is |¢,) =

e?|n(R(t))), can be written in terms of two contributions,

1

o= /0 At B (R()) — i, (2.2)



46

where the first term is associated with the dynamic phase and the second term is a

geometric phase known as the Berry phase,

Tn = —i/dR(t) - (n(R(1))|V rn(R(1))). (2.3)
C

The C path is the contour traversed by the adiabatic parameter R during the evolu-
tion. Interpreting the Berry phase in the configuration space of the parameter R =
{R1(t), Ra(t), ...}, analogously to the magnetic flux in the real space, we can define a
"magnetic vector potential” A, (R(t)), which is known in the literature as Berry connec-
tion,

AL (R(1)) = —i(n(R(1))|V r(R(1))). (2.4)

The Berry connection A,,(R(t)) is obviously gauge-dependent. A gauge transformation
In'(R)) = ¢|n(R)), changes it to:

A, (R(t)) = Au(R(t)) — VrO(R).

If we consider a cyclic evolution R(0) = R(ty), the wavefunction has to be singlevalued
|n’(R)) = |n(R)), therefore we have,

¢(R(0)) — o(R(ty)) = 270, (2.5)

where o € Z. Thus, the Berry phase can not be removed anymore.

Using the Stocks theorem, we can rewritten the Berry phase in terms of the Berry

field (or as it is commonly known Berry curvature) in analogy with the magnetic field,

Yo = /Sds -, (R(1)), (2.6)

where S is any surface bounded by the C path. Once the Berry connection is defined
at less than a gradient function, the Berry curvature, €, (R(t)) = Vg x A,(R(t)), is

gauge-invariant.

The components of the Berry phase can be written as,
0 (R(1)) = i({0,n(R)|0,n(R)) — (9,n(R)|0,n(R))) (2.7)

where 0, represent Jg, .
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Hall conductivity and Chern number

In band theory the Bloch states have an explicit k-dependence, which gives a natural
parameter to study Berry phase effects [4]. As commented earlier, the conductivity hall is
one of the most interesting results so far discovered in condensed matter physics, because
allows the observation of a non-zero Berry phase via the conductivity Hall measure. The
quantized behavior of this conductivity can not be understood at models that usually
describe the electron transport in metals, for instance, the Drude model. Whereas, in
the Berry formulation this behavior appears naturally, expressing the topological nature
of the insulating state. Used the Kubo formula, which is described in the context of the

linear response theory, TKNN found the explicit form of the Hall conductivity[13],

kK
ma =€ Y [ GOm0 — Omalom). 8)

'(L<Ef

Using the Eq. 8, the Hall conductivity may be rewrite in terms of the Berry curvature,

dkzky . .
OHall = fZ/BZ (27)2 fnﬂg;y' (2.9)

The relation between the Berry curvature and the Berry phase (eq. 6) allows to find the

conductivity Hall via a simple calculation,

62 2 2 2

e e e
all = nin — 5 _ 1. 2 = 70 = *Cn
Hall 2mhi Zn: Juy 27rhzZ i h o h

where the eq. (5) was used. C), is knowing as Chern number and the conductivity Hall

calculations reduces to finding this topological invariant[16],

fn 2 n
=S [ 2ran(k .

In addition to the usual band theory, the band gaps in the insulating state are topo-
logically characterized by the Chern number (C) calculation. This number is necessary to
identify the topological class induced by the SOC in magnetic systems and is related to

non-trivial Hall conductivity, as already mentioned. Using the expression,

(N |0 H(K)|ng) .

(B — Bur) (2.11)

(Oarig|nae) =

and introducing a completeness relation (3, [n')(n/[) in the eq. (8), the calculation of

the Berry phase is reduced to finding the derived of the Hamiltonian operator, eigenvalues
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and eigenvectors of all bands below the Fermi level,

(ne| Ory H(K) [y, ) (1| Ok, H(K) 1)

Pl = 2t 2 (B — B |

n’'#n

(2.12)

which is relatively easy to apply to periodic materials described by effective Hamiltonian

or even studies via DFT calculations.

In the first-principles calculations, the reciprocal space is discretized by building a
grid of k-points. In this sense, the calculation of the Chern number using the information
obtained from these calculations (Hamiltonian, charge density and wave functions) is not
trivial. The Eq. 13 needs to be rewritten to take into account ¢) the discrete space of
k-points and i) possible degeneracies in the band structure. The Berry curvature written
in Eq. 13 is called Abelian Berry curvature, which assumes that the bands are separated
between each other by an energy gap. Therefore, if the band structure have degeneracies,
the Berry curvature diverges. Such divergences are eliminated by introducing the so-called

non-Abelian Berry curvature B(k).

In two dimensional systems the Chern number can be calculated within a non-Abelian

formulation[16] by the following expression:

1
C=— [ Ti[B(k)|d. (2.13)
2m Jpz
Where the trace is a summation over the band index, and only the occupied bands are
taken into account. The integration is done over the whole Brillouin Zone (BZ), and
B(k) is a matrix representing the non-abelian momentum-space Berry curvature, whose

diagonal elements can be written as [16]:

B,(k) = lim lim

M08 50 A, b Im log[(unk |unk+Akz ) <unk+Akz ‘Unk+AkI +Aky>

(Unkot A, +Ax, [Unierag, ) (Unkoray, [Unk)] (2.14)

where Ay, (Ayg,) is the grid displacement in the k, (k,) direction of the reciprocal space,
|tnk) is the cell-periodic Bloch functions in the (k) point of the BZ, and n indicates the
band index. This expression is quite adequate to perform calculations in systems with

band crossing, and was implemented using a discrete grid in the reciprocal space.

Regarded as the first material in which it was predicted to occur the QSH, the
graphene has played an important role in the development of theories that allow the
understanding of some phenomena in materials with nontrivial topological phases. We
will use this material as an example of the results obtained from the non-abelian Berry

curvature implementation and subsequent calculation of the Chern number. In the QSH,
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Figure 2.1 - (a) Berry curvature for the pristine graphene. (b) Berry curvature for the Ru@Gr
system using a 4x4 graphene supercell. We used arbitrary units.

whereas the charge conductivity is zero, the spin conductivity is non-zero. Thus, as the
Chern number corresponds with the number of charge conductivity channels, it is ex-
pected that for the graphene, the Chem number is zero. This is verified on the Fig.2.1(a),
in which it is evident that the Berry curvature contribution at the points K and K’ to
the Chern number are cancel each other, resulting in C),, = 0. This value was obtained
using the implementation done in the SIESTA code associated with the activity 3 of this

project.

The transition metals when adsorbed in graphene may be generate a magnetic mo-
ment, breaking the time reversal symmetry. It is expected that if there is a spin-orbit
transfer via transition metals deposition, the QAH topological phase may be appear with

a non-zero Chem number.

In the test stage of the implementation performed, various metals were considered,
as an example we present the result of ruthenium atom when adsorbed on a graphene
supercell (Ru@Gr). With the implementation developed, it was verified the time rever-
sal symmetry breaking, as shown in the Berry curvature (Fig.2.1(b)). Additionally, a
C, = —2 was obtained, which characterize our Ru@QGr system as a QAH. We shown that
it is possible to change the topological phase of the graphene through the change of the
Ru atoms concentration. This finding has already been published in the Physical Rev B
[27].

Time reversal invariant and the quantum spin Hall effect

The easiest way of discovering new topological materials, is the evaluation of an invari-
ant number always associated with a particular symmetry. For systems protected by Time
Reversal (TR) symmetry, the invariant characterizing the system is called as Z5 invariant.
How discussed above, when this number is not zero, the system has TR protected metallic
edge states. Thus, the presence of an external magnetic field or of magnetic impurities
destroys the metallic edge states. In this system the charge conductivity is zero, that is,

C, = 0. However, the spin conductivity is not zero, indicating a non-zero Z; number.
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Likewise the number of Chern, the Z; invariant is a bulk property of the system.

The formulation of the Z; number follows many differents formulations, being the
most famous, via the parity eigenvalues for system with inversion symmetry [22], the
formulation via Resta polarization [21], by an integration of the Berry phase over the
effective Brillouin zone [17, 18](eq. 1.2), and by the switching of Wannier center of
Charges [24] and in another work [25]. When the materials are non-centrosymmetric, the
Ab initio calculation can give a generic gauge [24] on the states. Therefore, we chosen to
calculate Zy via the switching of Wannier Center of Charges (WCCs). In that manner,

we know that the invariant Z, can be written as:
Zy = Pe(t =T/2) — Po(t =0), (2.15)

where t represents an adiabatic time. Now we want to rewrite equation (2.15) in terms of
the WCCs. For that, we need to define Wannier functions (WF). The WFFs belonging

the the same unit cell R have the following format:

1 4 ,
[Rn) = - / e M=)y (2.16)

—T

A WCC z, is defined as the mean value of (0n|X|0n) where X is the position operator
and |On) is the state corresponding to a WF in the cell with R = 0. So we have:

7: s
Ty, = % /_7T dk(unk|8k|unk>. (217)

Assuming that we got > 75 A% with S = I, II, where sumation in o represents

_ 1
a T om SgBZ
occupied states and A the Berry connection, we finally have:

Z, =3 [mh(T/2) —(T/2)] = 3 [7h(0) - 7 (0)] (2.18)

a o
With the smooth gauge condition between ¢ € [0,7'/2] it is possible to track the evolution
of WCCs during a half cycle, which is also smooth. It is important to note that this
argumentation is only valid when some properties are valid for the construction of the
Wannier Functions as pointed by [?]. Now if we have an even or odd number of crossing
between half cycle of the WCCs, we are dealing with a trivial or a topological material,

i.e Zy equal 0 or 1.
Electronic transport in topological insulators: SOC implementation

The SOC is essential for describing systems with NTP, thus our density functional
theory and the electronic transport description must take into account this interaction.
So the formalism used in the SIESTA code and TRANSAMPA code must also change.
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The SOC in the SIESTA code: In order to investigate the NTP systems, in a previous
work, we implemented the Spin-Orbit Coupling in the SIESTA code within the on-site
approximation[14, 27]. Within this approach, the Kohn-Sham Hamiltonian H is a sum of
the kinetic energy T, the Hartree potential V¥, the exchange and correlation potential
V¢, the scalar relativistic ionic pseudopotential V'*¢, and the spin-orbit interaction V9¢.

H can be written as a 2 X 2 matrix in the spin space as:

(2.19)

HT HWY
H_T+VH+Vmc+Vsc+VSOC_[ ]
HY HW

All terms contribute to the diagonal elements, however only the V' and the V59¢

potentials have off-diagonal coupling terms due to the non-collinear spin.

From the self-consistent solution of the all-electron Dirac equation for an atom, the
procedure to generate the non-relativistic pseudopotential can be extended to take into
account the first order relativistic effects. Using projection operators in terms of angular

wave function, the relativistic pseudopotential is written as:

=) VeI, + Vio(r)L - 8] |i,m) {1, m],

Lym

where I, is the identity operator in the spin space,

Vioor) = g0 [ -l o) (220)
and
Vi) = g | i o+l ). (221

The spin-orbit matrix elements are written as:

1
V;foc = SViS (liy MG|L - S|l;, M;)6u,, (2.22)

9 lisni,m;

soCc  _

where [l;, M;) are the real spherical harmonics[15]. The radial contributions V77

<R”i7li

The angular contribution L - S, considering the spin operator in terms of the Pauli ma-

L. L.
. (2.23)
L, —L,.

VlfOC|an’”> are calculated with the solution of the Dirac equation for each atom.

trices, can be written as:
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HHH

Figure 2.2 - Scheme of the electronic transport model in a common device.

The diagonal matrix elements for the SOC term V;OC’“ (with ¢ =7 or ), are propor-
tional to (l;, M;|L.|l;, M;), which are different from zero only for M; = £M;. Thus, these
terms couple orbitals with the same spins, and same |M|. On the other hand, the off-
diagonal matrix elements Vj 0C.o=7 are proportional to (l;, M| L£|l;, M;), and thus couple
orbitals with different spins and M; = M; 1. These coupling terms could open bandgaps
or generate the inversion of states that are essential to the physics of the topological in-

sulators.
Electronic Transport

Typical devices are composed of a left and a right electrodes (L and R) interconnecting

through a scattering region, exactly as shown in Fig2.2.

In the formalism that will be presented, it is necessary that all the electrons feel
the same potential, as occurs in the KS equations. Thus, according to the diagram, the

Hamiltonian has a local form given by:

H, Hye 0
H=|Hl, Hoc Hlpl. (2.24)
0 Herp Hg

The matrices H;, and Hg are semi-infinite, and given by:

Hy Vi, 0
Vip Hip V[,
0 Vi Hpp

Y
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Hpr Vip 0
| Var Hrr Vi

0  Vrr Hgr

The equations above presuppose the use of a set of base functions located {¢,(7)}.
The modelling of the problem considers that the distance between the right and left
electrodes is higher than the cutoff of the radius, r., of these orbitals. The Hamiltonian
matrix elements Hpg and the overlap Spr that engaging the left electrode to the right
electrode are null, as shown in eq. 25. At this point it is worth noting that the system
has no translational symmetry, and thus is no longer possible to use the Bloch theorem,
reducing the infinite problem to many finite problems. To address this problem is used
the formalism of non-equilibrium Green’s functions. Thus, it is defined the Green function
G(E) through the expression [ES — H|G(E) = 1, the matrix elements depends on the
energy E. In this expression, S [ QSZ(F)QSV(F)dgr is the overlap matrix.

In this formalism, the retarded and advance Green function are calculated using the
equations

[EtS — H|G"(E) = 1;
[E-S — H|G*(E) = 1,

respectively. E¥ = E 4 i§ is a complex numbers with a infinitesimal imaginary part 6.

From the Hamiltonian we obtain the relations:

e = —9(E"Ste — Hio)Gee

ke = —9r(ETScr — Hor)Gee, (2.25)
Iir) = (E*Spry — Hrry) ™" is the surface Green function of the left electrode (right)
Hygry. Substituing the equations 10, it is obtain a expression for the central part of G",

given by:
te =1E"Scc — Hoo — X1 — Sg| ™

where X pg) are the auto-energies of the left (right) electrode, describe as:
S = —(BE'Spe — Hio)gi(E"Spe — Hre)

Sk = —(E"Scr— HLp)gw(E*Scr — Hen) (2.26)

If instead of E* we used E~, we will found the advance Green function G in a

simmilar way. Gf is a fundamental quantity in the electronic transport theory using
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the non-equilibrium Green function. The auto-energies include in the central region the
effect of the inifinite electrodes. These quantities are finite matrices, and in this manner

the problem previously formulated is computationaly addressed.

Within the Landauer-Biittiker formalism using the Wingreen and Mei formula, the

expression for the current is given by:

62 00

T(E)frp(E — pr) — fro(E — pg)ldE (2.27)

h E=—00

frp(E) is the Fermi-Dirac function, and the transmittance T'(E) is written as:
T(E) = T,[TL(E)GEc(E)Tr(E)Gec(E), (2.28)

where we use the definitions I'rp) = i(Xr) — E}(R)). In the above equations it is
assumed that the left electrode has a chemical potential y, while the right electrode has
a chemical potential pgr. In this approach, the system is composed of non-interacting
electrons. X gy are denominated coupling matrices and are a measure of the electrodes
interaction with the scattering region. The function T'(E) is defined as the transmittance.
This is interpreted as the probability of an electron that has energy E be transmitted from
the left electrode to the right electrode through the central region (Fig.2.2). The most
important energy region of T'(E) occurs when p;, < E < ug, because in this energy region
frp(E — pr) — frp(E — pgr) # 0, with contribution to the current.

Currently, this formalism has been widely used in conjunction with the DFT, generat-
ing several relevant results to the scientific community. In this way, using the Khon-Sham
Hamiltonian are calculated currents and transmittances. It is noteworthy that there is no
formal support for using the Khon-Sham Hamiltonian for this type of calculation. But
if it is done, the level of approximation is the same used in a energy bands calculation
generated from the Khon-Sham spectrum. The SOC mixture the spin components, and
therefore when considering the SOC, the Hamiltonian should be rewritten and the for-
malism is essentially analog, however, it is necessary to consider the presence of terms

that allow the spin flip and the spin direction, which is done in this work.

From this theory, we implemented the interaction in the TRANSAMPA code for the
electronic transport study. First tests were made in 3D topological insulator and in two-
dimensional systems, including pristine graphene. As it is known the intrinsic SOC of
carbon atoms is too small. However, in my master’s work I developed a tool to study the
change in the electronic properties of crystalline systems in relation to the variation of
SOC. If we increase the SOC of the intrinsic triple carbon atoms, only as a way to test
our implementation, the SOC opens a gap, though very little, sufficient to be observed in

the transmittance of the system, as shown in Fig. 2.3a.
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Figure 2.3 - (a) Transmittance of the pristine graphene with triple of the spin-orbit interaction.
(b) Conductance of the Bi2Se3 - 4QL. On the right side the results obtained using the imple-
mentation made in this work, on the left side the geometry used and the results obtained in [26].
In the conductance obtained in this reference are shown several curves corresponding with the
system qualitative behavior when the bulk is perturbed
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Figure 2.4 - Geometry of a Zig-zag nanoribbon of fluorized Germanene. The arrows indicate
the nanoribbon periodicity direction.

As a test our implementation to study the electronic transport in systems with non-
trivial topological phases, we make a qualitative comparison of the conductance curve
using Bi2Se3 TRANSAMPA with SOC and the results reported in the literature. The
conductance obtained with the TRANSAMPASOC code (right side) and the curve ob-
tained in the reference [26] (left side) are shown in Fig. 2.3b. In these simulations, we

used the same geometry illustrated in Fig. 2.3b.

Electronic transport in Germanene Nanoribbons:

Although it is an ongoing study, the most relevant preliminary results of the electronic
transport in nanoribbons systems with nontrivial topological phases will be presented. In
Fig. 2.4 it is shown the geometry of a nanoribbon germanene with fluorine. As expected,

due to topological properties of the 2D bulk of the germanene and the increment the SOC
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Figure 2.5 - Band structure of the Zig-zag nanoribbon of fluorized Germanene shown in Fig.
2.4 and the transmittance of the system. The black and red dots represent the transmittance
associated with an edge and the total transmittance, respectively.

when including fluorine, it is clear the formation of a Dirac cone in the band structure
of the system (Fig. 2.5). This Dirac cone is formed by an intersection of opposite spin
bands, so that the Dirac cone is topologically different from Dirac cone in the pristine

graphene.

We implemented a tool which allows to separate the transmittance-spatial regions
in which the wave function is fully located. Thus, the conductivity channels can be
separated (this remembering that the transmittance of the matrix only depends on trace).
Using this tool, we get the transmittance to one of the edges systems (black dots in Fig.
2.5b), showing that there is one conductivity channel whose spin is well defined. This

transmittance is half of the total transmittance (red dots in Fig. 2.5b).
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3. Completing the two-dimension honeycomb-lattice
family: new kind of s-d type band inversion based ma-
terials

Introduction

The QSH effect was first proposed in a honeycomb lattice formed by carbon atoms:
graphene [1, 2, 3, 4]. However, in graphene the band gap opened by the intrinsic spin-orbit
coupling (SOC) is very small, making experimental observations extremely difficult [5].
Until now, the search for novel QSHIs has been focused on increasing the intrinsic SOC
effects in graphene [6, 7, 8, 9] and finding alloy materials that present ions i) with high
atomic number, ) located between columns IIB to VIA of the Periodic Table, and )
arranged on a network with hexagonal symmetry [10, 11, 12, 13, 14, 15]. Considering
these three issues, those materials can be understood as systems with strong SOC effects,
formed by atoms that in the pristine 3D structure are usually Zinc blende semiconductors
described by s and p orbitals. Although these materials have been intensively studied,
the complete family of binary honeycomb compounds formed by atoms that also stabilize
the Zinc blende structure is still incomplete. In fact, this family can be extended to all
possible atomic combinations that have eight electrons in the valence shells, and not only

restricted to s-p semiconductors.

Much effort has been invested in the synthesis of graphene-type IV-materials, not only
in the techniques but also in the control of intrinsic impurities (See Fig. 3.1) [16]. We
believe that it is possible to extend the list of fabricated compounds of this material family.
For instance, following the first experimental realization of graphene, other ultrathin
materials have been studied, the most representative group is the heavy group-IV elements
Si, Ge and Sn. Two-dimensional buckled Si-based silicene has been recently realized
by molecular beam epitaxy growth [16], whereas germanene was obtained by molecular
beam epitaxy and mechanical exfoliation [17]. The free-standing fabrication process is
represented in Fig. 3.1. Recently, the fabrication of 2D stanene by molecular beam epitaxy

has also been reported [18].

Naturally, honeycomb materials are an extremely good platform for novel phenomena
and devices, not only because of the known topological properties but also because of
the recent electric resistivity measurement suggesting superconductivity in graphene [19,
20, 21]. Indeed, grephene bylayer are also predicted to be superconductor [22, 23], and
functionalized honeycomb compound can exhibit large topological band gaps [24]. As will

be presented in the next chapters, a double topological protection can lead to interesting
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Figure 3.1 - Figure from Nature Nanotechnology 10, 227 (2015): (a) Buckled honeycomb
lattice structure of silicene. (b) Silicene encapsulated delamination with native electrode
process, which includes the following key steps: epitaxial growth of silicene on crystallized
Ag(111) thin film, in situ Al203capping, encapsulated delamination transfer of silicene,
and native contact electrode formation to enable back-gated silicene transistors.

phenomena for applications in spintronics. We find that these systems can also host this
type of behavior, however, these results are not discussed in this thesis. Specifically, we
will focus initially on the prediction of honeycomb-lattice material and the study of their

electronic properties using DFT calculations and tight-binding models.

In this chapter, we extend the family of honeycomb-lattice materials: among all binary
Zinc blend semiconductor AB there is only one mechanically stable system that have not
been studied in the respective two-dimensional honeycomb-lattice. Specifically, we study
binary compounds AB formed by coinage metals and halogens, i.e., A = IB and B = VIIA
in the Periodic Table. Coinage metals are interesting due to their high reactivity at
low dimensions, widely studied for catalysis purposes. According to the d-band center
theory,[25] the reactivity trend is linked to the position of the d-band with respect to the
Fermi energy: the closer the d-band center, the more reactive the metal. For the case of
metals from the IB group, Ag is more inert than Cu and Au.[26] Based on the coinage
metal reactivity and the mechanical stability of Zinc blende IB-VIIA compounds, e.g.
Aul, the two-dimensional honeycomb lattice version of the IB-VIIA atomic combinations
could exist. To the best of our knowledge, the band inversions reported until now in
honeycomb lattice are those involving the following levels: a) s-p [27, 28, 29] b) p-p [30]
c) d-p [31] d) d-f [32, 33] e) d-d [34, 35].

Here, we propose a new family of materials: coinage metal halides in single layer

honeycomb structures. We found that most of these compounds are thermodynamically
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Figure 3.2 - (left) Side and top view of the coinage metal halides atomic structure; unit
cell is marked with slash line. (right) Total energy as a function of the lattice parameter
for the AuBr compound. The HB and LB structures are represented in the respective
minimum energy.

and mechanically stable. All the systems containing Au atoms (AuF, AuCl, AuBr, and
Aul), as well as CuF, feature protected edge states. As transition metals are involved, d
orbitals play an important role: these new topological insulators present a band inversion
of an unreported type: s-d, and have sizable band gaps between 0.03 eV and 0.29 eV.
To better understand the s-d band inversion, we also develop an effective tight-binding
model describing the IB-VIIA compounds, which allows band structure calculations for

large nanoribbons.
Geometry and mechanical properties

All calculations were performed within the Density Functional Theory approach [36] as
implemented in the Vienna Ab-initio Simulation Package (VASP).[37, 38] The interaction
between valence electrons and ions was performed through the full-relativistic Projector
Augmented Wave method,[39] and for the selection of the plain waves an energy cutoff
of 450 eV was chosen to describe the atomic orbitals. For exchange and correlation, the
Generalized Gradient Approximation in the Perdew-Burke-Ernzerhof [40] implementation
was used. The sampling of the first Brillouin zone for the 2D structures was performed
using a 40x40x1 grid centered at the I' point. Phonon spectra were obtained by using
DFT perturbation theory as implemented in the Phonopy code.[41] Z2 invariant of the
materials were obtained following the methodology proposed by Vanderbilt et al.[42] as
implemented in the Z2Pack code.[43]

In total, we have studied twelve systems, combining a coinage metal ion (A=Cu,Ag,Au)
with an halogen (B=F,Cl,Br,I). They all are non-centrosymmetric, i.e., do not preserve
the inversion symmetry, and have Cj5, symmetry with two different atoms by unit cell, as

depicted in Fig. 3.2. Graphene-like materials can have two structural phases, usually clas-
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Material | a (A) Ej (eV/at) E. (eV/at) E, (eV) MS Z,

CuF 3.49 -0.763 -3.177 0.10 yes 1
Cu(Cl 3.89 -0.380 -2.890 1.09 yes 0
CuBr 4.12 -0.269 -2.652 1.01 yes 0
Cul 4.38 -0.175 -2.490 1.34 yes 0
AgF 3.94 -0.833 -2.754 1.04 yes 0
AgCl 4.37 -0.411 -2.427 1.73 yes 0
AgBr 4.56 -0.356 -2.245 1.65 yes 0
Agl 4.80 -0.292 -2.113 1.57 yes 0
AuF 3.95 -0.104 -2.273 0.29 no 1
AuCl 4.30 +0.068 -2.198 0.27 yes 1
AuBr 4.49 +0.035 -2.103 0.23 yes 1
Aul 4.71 -0.041 -2.111 0.03 yes 1

Table 3.1 - Structural and electronic properties of coinage metal halides. Values show
lattice constant a, formation energy per atom, cohesion energy per atom, energy band
gap, mechanical stability (MS) and Z2 invariant.

sified in terms of the length of the buckled format as high buckled (HB) and low buckled
(LB). [44] Whereas HB graphene-like materials are usually metallic,[44] e.g., hexagonal
tin and lead, LB compounds are generally insulator and always have a highest lattice
constant, e.g., silicene, germanene, BN, AlAs, AISb, GaP, InP, GaAs, InAs, GaSb, InSb
and blue phosphorene.[45, 46, 47] All coinage metal halides stabilize the LB structure, as
represented in Fig. 3.2 for the AuBr compound. The lattice parameters for the twelve
structures are shown in Table 3.1. On these layers, negative charge is located near atom

B, while positive densities are found around ion A.

To analyze the thermodynamic stability of the systems, the formation energy per

atom was calculated as
_ Eaip—FEx—1/2Ep,

2

where F4p is the total energy of the unit cell, F4 is the energy of a coinage metal atom

ol (3.1)

in the most stable bulk phase and Ep, is the energy of the diatomic halogen molecule
in vacuum. Of all the systems, only AuCl and AuBr resulted with positive formation
energy, which means that most of them would spontaneously form without the need of
extra energy (see Table 3.1). However, kinetics may play a significant role in the growth
process and even the materials with positive formation energy could be achieved with the

proper synthesis method.
On the other hand, the cohesion energy could be estimated as

_ Eu.p— E% - EY
N 2

E, (3.2)

where E' and EY are the energies of isolated atoms A and B, respectively. The fact that
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Figure 3.3 - Phonon spectra of coinage metal halides. The x-axis (y-axis) corresponds to
the atoms A (B). Inset: AuF is the only material which is mechanically non-stable.

negative values are obtained for all the systems means that they are thermodynamically
stable when compared to the atomized compounds. The mechanical stability can be
studied through the calculation of the phonon spectra. Negative frequencies were not
observed in most of the systems, indicating that the proposed materials are mechanically
stable after formation. The only exception is AuF. The phonon spectra are shown in Fig.
3.3.

Electronic structure and band inversion

The first indication of the QSH effect comes from the inspection of the band structure
of the bulk material (the 2D infinite sheet). We performed the corresponding calculations
with and without SOC inclusion. According to our results, it is straightforward to separate
the materials into two groups: i) large gaped semiconductors (in this group we include
CuCl, CuBr, Cul and all silver halides); after SOC inclusion there are no relevant changes
in the band structure, and i) band inverted semimetals before including SOC (here we
include CuF and all gold halides); SOC inclusion opens a band gap in I'. To go deeper in
this analysis, we have calculated the band structures projected on the atomic orbitals. In
Fig. 3.4 we show the projected band structure for AuBr as an illustrative case of the band
inversion, which takes place before including the SOC, i.e., the topological classification

does not depend on the intrinsic atomic SOC.

The band inversion is dominated by orbitals belonging to the atom A, but the inter-
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Figure 3.4 - Projected band structures without (a) and with (b) SOC for AuBr showing
the levels near the Fermi energy. The color code stands for the weight of the atomic

contribution of the p and dﬁ;xg_yQ orbitals (right), and the sA" orbitals (left) for each

k-point and band index.

action between them is mediated by the atom B, as represented in Fig. 3.5. Specifically,
the band inversion occurs between s orbitals and d,,, ,2_,2 orbitals of the atom A (see Fig.
3.4) (with small contributions of p,, levels of ion B). In the band inverted systems, the
s level of A lies lower in energy than the d,, ,2_,2 levels (See Fig. 3.5). The SOC is then
responsible for the band gap opening (see Fig. 3.4b), leading to the QSH effect. This
band gap opens at I', different from other honeycomb materials, in which it is located at
the K-point in the Brillouin zone. Regardless the high atomic SOC of the B atoms, this
interaction is not strong enough to invert the band order in large gaped semiconductors
of group 7). The in-plane spin polarization due to the rotation symmetry R3 and the
Rashba SOC splitting due to the spacial symmetry breaking is obtained in all QSHIs,
but the relatively low spin splitting avoids the unconventional spin texture protecting the
bulk states [48].

Tight-binding effective model and protected edge states

Helical metallic edge states are the most interesting feature in the QSHIs. It is in-
structive to address the study of these states by using an effective tight-binding model
that satisfies the symmetry operation of the I' point, since it allows for insights on the

s-d band inversion and the study of larger nanoribbons. According to the symmetry op-



65

—g - ;’ \

s S & 7= N

S — ‘} Xy

3 (_r' \‘ / N p
5 d s \ / >

> —_— A ’

S \ ¢ ezt

S _...‘

= ~

SR —— g ————

= J— ]

7] ,’ \.‘, xy

E , , “ p
= ST / S—
= = s / Y
e — P

H \—

I I I I I

Figure 3.5 - Schematic representation of the atomic orbitals (I) and the two-dimensional
confinement effects (1) for the atoms A (green area) and B (blue area). The interaction
between orbitals involved in the band inversion (III) is shown in the gray area for trivial
and QSH insulators before including SOC.

eration, the wavefunction at I' is given by the {|A, j.)} effective states, where J is the
total angular momentum, j, is the projection along the z axis, and A corresponds to the
A and B atomic contributions. These states preserve the total angular momentum by
construction. For instance, the [Ag/, +3/2) effective states are a linear combination of

the py = p, +ip, and p_ = p, — ip, effective orbitals.

The states involved in the band inversion at the I' point are described by the ef-
fective states {|Ay,j.)} (with J=1/2 for s-orbitals, and J=3/2 for states combining p-
and d-orbitals) and hence, we wrote the tight-binding Hamiltonian using the full SOC
basis {|A1/2,£1/2),|As/2, £3/2)}, |As/2, £1/2)}. The tight-binding Hamiltonian matrix

elements are then given by:
[H(E)]i; = 50 + Y 12 ™, (3.3)
v=1

where i = (4, J,7,), j = (A, J',j.) and £ is the on-site energy. Since the contribution of
the effective states | By, j,) is not relevant near the Fermi energy, we omit terms associated
with the nearest neighbors (atoms B). Hence, tgy = (n, Ay, j.|Hl|d,, Ay, j.) represents
the next nearest neighbor hopping terms, with 7 indicating the lattice site and @, cor-

responding to the v-th of the six next nearest neighbor vectors. These hopping terms
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Figure 3.6 - (left) Tight-binding model (red) and DFT (black) band structures of the AuBr
compound. (right) Band structure computed using the proposed tight-binding model for
an armchair nanoribbon of 273.6 A of thickness (60 unit cells). Up (down) spin projection
is represented in red (blue).

are related to each other and are uniquely determined, through the relevant symmetry
operations of the C3, point group, namely: ¢) threefold rotation symmetry R3 along the z
axis, i) reflection respect to the mirror plane M, (r — —x), and ) the TR-symmetry
T Specifically, the effective states {|A7, j.)} are transformed by the symmetry operators

as

1. Threefold rotation Rj:

Ay, £1/2) —e=7 [Ay, £1/2),
1Ay, £3/2) — — |Ay, £3/2).

2. Mirror symmetry M,:

‘Ale/Q, :l:l/2> — —1 ’AJ:1/27 :F1/2> ’
|Ayzs/e, £1/2) —i|Aj_sp, F1/2),
| Aymsja, £3/2) =i [Ays2, F3/2) .

3. Time Reversal T

Ay, £1/2) = +|As, F1/2),
|AJ=3/2, :|:3/2> — F |AJ=3/27 :F3/2> :

We simplified the matrix elements of the Hamiltonian by taking the limit k—T.

Considering expansion in k£ up to second order, the Hamiltonian H(E — I') in the full
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SOC basis {’Al/g, :tl/2>, ’Ag/g, :t3/2>}, ‘Ag/z, :l:l/2>} reads
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where ki = k, £ iky, k* = k2 + k7, 7i; = 3aR[tV], and 7;; = 3aS[tY]. Here, the band
inversion is intrinsically introduced by the signs of the on-site term e; = €& + 6R[t"]
and the quadratic term &; = 3a*R[t"]/2. Since the Rashba parameter for the effective
states {|A1/2,£1/2) and |Asz/9, £1/2)} is near zero, we select, without loss of generality,
a}{z = 0. Thus, the spin splitting due to the breaking of the inversion symmetry is
taken into account by the Rashba effect of the state |As/,, +3/2)}. These parameters are
obtained via least squares standard approach in order to match the DF'T calculation. This
simple model leads to a very well approximated description of the DFT band structure

around the I' point, as shown in Fig. 3.6.

In the known buckled honeycomb-lattice systems, such as germanene and silicene
among others, the nearest neighbor hopping terms are essential for its description [11,
49]. However, in the proposed compounds, the atom B only mediates the interaction
between the atoms A and its effect is successfully introduced within the next nearest
neighbor hopping terms. Topological transitions can also arise as a consequence of atomic
interactions [50]. Here, the atoms B modify the interatomic distance and hence, the

interaction between the atoms A.

We verified the presence of edge states when cutting a one dimensional AuBr nanorib-
bon 273.6 A width armchair terminated. Periodic boundary condition assures the infinity
of the system in the other direction. When plotting the electronic band structure in the
direction of the ribbon, gapless levels appear. The spin polarization on the metallic levels
of the ribbon shows that the conduction is spin resolved: up and down spins propagate

in opposite directions, assuring dissipationless transport.

The topological invariant Z2 was obtained through the computation of the Wilson
loop by following the evolution of the Wannier Charge Centers (WCC), as explained in
Chapter 2. The results confirm that the materials first included in group ) (CuF and all
gold halides) are topological Insulators with Z2=1. For the remaining layers Z2 is equal
to zero. The most important results for the monolayers are summarized in Table 3.1. It is
remarkable the fact that the size of some of the band gaps would allow room temperature

functionality for these materials.
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Conclusion

In conclusion, we have studied 2D coinage metals halides in a single layer honeycomb
structure. Twelve systems were considered, which could be separated into two well defined
groups: trivial insulators (CuCl, CuBr, Cul and silver halides) and five new Topological
Insulators (CuF and gold halides). We focus on the fact that three of these materials
have negative formation energies and could be synthesized without extra energy. How-
ever, many growing techniques would allow the formation of all of them, even those with
endothermic processes. Moreover, if these systems are synthesized, the phonon spectra
showed that four of them would be mechanically stable. Of particular interest is the
size of the electronic bandgaps, which allow functionality even at room temperatures, an

essential request for real electronic applications.
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4. Machine learning: understanding topological tran-
sitions in two-dimensional half-functionalized materi-
als using compressed-sensing

Introduction: Compressed-sending and materials science

The predicted honeycomb-lattice QSH insulators in the last chapter are an example
of the fundamental role of the computational simulations in the prediction of new mate-
rials and the devices design. Indeed, nowadays the computational simulations based on
DFT calculations is at the heart of the material sciences. This approximation has been
essentially used to understand physical and chemical phenomena in real materials that
can potentially be utilized for a certain function. One of the usual approaches starts with
a trial-and-error learning process to find new materials and then, employing DFT calcu-
lations, verify if the proposed materials satisfy the required property. These calculations
typically have a high computational cost, and hence, the trial-and-error learning process
is not usually feasible. For instance, nowadays the prediction of new stable TIs through
DFT calculations requires to verify the inverted band gap and to calculate the topological
invariant for each TI candidate. For its part the verification of the inverted bandgap
require the electronic structure calculation with and without SOC, and finding the topo-
logical invariants involves the wavefunction computation for all filled electronic states.
Thus, it is evident that this trial-and-error learning process have a high computational

cost.

Physical intuition and experience suggest that many important material properties
are primarily determined by just a few key variables. From my point of view, the phenom-
ena satisfying this premise can be classified into three groups in terms of how these key
variables are determined. i) Numerical correlations found when analyzing the limits of
phenomenologically established theories. An example that has taken on great relevance in
recent years is the BCS theory, from which the correlation between the superconducting
gap and the critical temperature of these systems is derived. This relation presented in
Fig. 4.1a is one of the most impressive and strong result in condensed matter physics.
Feature spaces that separate different phases of the same system, e.g., solid, liquid and gas
phases of water (See Fig. 4.1b). This example also includes systems that have different
behaviors in relation to the same property, e.g., non-superconductors and superconduc-
tors. An relevant example of that is the classification of the water phases in terms of
two features: temperature and pressure. Obviously, this is different from the numerically

correlation discussed above. dii Finally, the last class of properties considered here is the
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Figure 4.1 - (a) Experimental superconductor of the band gap as a function of the critical
temperature. The dashed line represents the predicted values from BCS theory. Some
homopolar compounds are indicated by the labels. (b) Classification of the matter stable
phases in terms of the temperature and pressure. The critical temperatures and pressures
given the phase transitions are indicated by the dashed lines. The solid lines stand for
the divided the map of phases according to experimental results. The triple point, i.e.,
the state in which the solid, liquid and vapor can simultaneously exist, is indicated by
the red dot. (c¢) Experimental ground-state structures of 68 octet binary compounds,
arranged according to the two-dimensional descriptor introduced by Phillips. C' and Ej,
are the the experimental dielectric constant and nearest-neighbor distance in the crystal,
respectively [1].

derived relations from numerical or experimental results. One of the most illustrative
examples of this class (that is no part of material science) is the Keppler’s laws, derived
from the observation of Thycho Brahe. In material science, the classification of structure
according to the most stable phase for a given combination of atoms is one of the most
representative examples of this third class. This particular problem was first addressed
by Phillips in 1970, proposing that binary systems can be classified by visual inspection
of the 2D plot into Zinc blend and Rocksalt structures. The axes of this plot are defined
by the experimental dielectric constant and nearest-neighbor distance in the crystal, as
represented in Fig. 4.1c. Clearly, these properties require the experimental measurement
and in many cases, they also require a priori knowledge of the most stable structure,

which naturally does not allow a systematic classification of the binary structures.

In the ideal scenario a systematic research of TI materials would allow to build models
involving a few atomic variables to predict new inverted bandgap systems without addi-
tional DFT calculations. However, with some exceptions, the key variables determining
the behavior of a certain property are not known. For instance, the relations between
atomic properties and a non-trivial bandgap are not known, if they exist. Although the
SOC is fundamental to obtain TI systems, the relation between the atomic SOC and the

inverted bandgap behavior is not clear.

Since the amount of calculated data to find systems with a specific property increase

exponentially with time, the “big-data of materials science” is a good strategy to over-
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come the problem of computational cost and to build predictive models. This statistical
learning focuses on finding the actuating mechanisms of a certain property or function
and describing it in terms of a set of physically meaningful parameters (henceforth termed
descriptor). Ghiringhelli et. al., put forward the requirements for a suitable descriptor

and demonstrated how a meaningful descriptor can be systematically found[1]:

a) A descriptor uniquely characterizes the material as well as property-relevant elementary
processes.

b) Materials that are very different (similar) should be characterized by very different (sim-
ilar) descriptor values.

¢) The determination of the descriptor must not involve calculations as intensive as those
needed for the evaluation of the property to be predicted.

d) The dimension of the descriptor should be as low as possible (for a certain accuracy
request).

In order to find the descriptors, d,,, ;, correlated with a certain property, P;, associated
with the j-th material within a group of N systems, we can use simple relations between
the vector of properties, P = { Py, P,, ..., Py}, and the matrix represented the values of the
descriptors, D. In this matrix, the elements of the N rows are the possible descriptors
dy, = {dp,1,dp, 2,....,dy, 0} for the property P;. Since usually the number of possible
descriptors, €, is greater than N (the number of samples of material property P), even
in the most simple relation, P = Dec, we need to solve an underdetermined linear system
of equations. Remarkably, in many situations of practical relevance, solve this problem is
still possible, in sharp contrast to conventional wisdom. Resolve this problem is the role of
a recent theory formulated for sensing and compressing signals (e.g. data) simultaneously

- the compressed sensing theory.

Compressed sensing relies on two principles|2]: sparsity and incoherence. The sparsity
means that when data have a sparse expansion, one can discard the small coefficients
without much perceptual loss. Formally, in our example, consider Ps obtained by keeping
only the terms corresponding to the S largest values of (¢;) in the expansion. A vector is
sparse in a strict sense when all but a few of its entries are zero; we will call S-sparse such
objects with at most S nonzero entries[2]. On the other hand, the coherence measures
the largest correlation between any two elements of P and d,,. If P and d,, contain
correlated elements, the coherence is large. Otherwise, it is small. As for how large and
how small, it follows from linear algebra that u(P,d,,) € [1,/n]. Compressed sensing is
mainly concerned with low coherence pairs. For example, the time-frequency pair have the
maximal incoherence[2]. Thus, the sinusoids signals and the Fourier coefficients obtained
in a magnetic resonance (MR) spectroscopy are one of the most relevant applications
of the compressed sensing theory. The returning MR spectroscopy signal is composite

of many different signals of, for example, neuronal metabolites, which is resolved into
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individual resonance frequencies and their relative amplitudes (abundance) by the Fourier
transform|[3]. In practice to recover a signal from noisy data we use /; minimization with

relaxed constraints for reconstruction|[4]:
min e, subject to ||[Dec — P, <, (4.1)

where € bounds the amount of noise in the data and the /, norm is defined as:

1/p
Al = (Z\Alp> . 42)

Problem (3) is often called the least absolute shrinkage and selection operator (LASSO)

problem and can be rewritten as[5]:
arg min ||[Dc — P||;, + Alclly, - (4.3)

The larger we choose A > 0, the smaller the /; norm of the solution of Eq. (3) and vice

versa.

Quite generally, a mathematical theorem proven by Candes et al.,[6] guarantees that
with an overwhelming probability, any sparse signal with S nonzero components can be
recovered from M ~ SInN random measurements, where N is the total number of sensing
basis functions[4]. This very powerful result is the mathematical foundation of compressed
sensing. For this reason such concept has a wide range of applications in various fields of
signal processing. Based on the compressive sensing concepts, Prof. Scheffler’s group has
developed a code to systematically find the adequate descriptor associated with a certain

material property.

The main goal of this work is finding suitable descriptors for TI based on the com-

pressed sensing concepts to construct predictive models for these systems. K. Yang, et
EZ9%a0)/a0

are the bandgap with and without SOC, respectively, and a and ag

al.[7] propose the descriptor Xr; = to systematically find TIs, where

EZO¢ and EJO¢
are the lattice constant and the equilibrium lattice constant, respectively. Calculating
the value of this descriptor for a material requires the same DFT calculations than the
evaluation of the inverted bandgap in a trial-and-error learning process. Therefore, the
descriptor X7y does not satisfy ¢), and hence, does not represent a gain. Additionally,
this descriptor does not uniquely characterizes the topological insulator phase, because

!, Thus, the problem of finding an meaningful

it ignores the among of band inversions
descriptor for TIs and the causality of the learned descriptor-inverted bandgap (i.e. SOC-

inverted band gap) relation is an unsolved problem. Using compressed sensing concepts

1An even number of band inversion can results in a trivial topological insulator.
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would be a novel approach in topological materials field.
Delimitation of the problem

The crossing of energy bands in condensed matter has been theoretically studied
since the formulation of quantum mechanics [8]. Now with the experimental realization
of graphene and topological insulators, the fundamental physics and possible applications
that are hosted in linear band crossings have been intensively studied. Already in 1985,
Volkow and Pankratov [9] showed that interfacing two semiconductors with mutually
inverted bands can lead to massless Dirac fermions, i.e., linear electronic dispersion rela-
tions that cross (inversion) and connect conduction and valence bands. If this inversion
occurs at a reciprocal space point that obeys time reversal (TR) symmetry, the respective
boundary states associated to different spins must exhibit opposite momentum, which in
turn forbids backscattering [10, 11, 12]. Quantum spin Hall insulators (QSHI) are two-
dimensional topological insulators (TIs) [13, 14] that intrinsically exhibit this property,
i.e., that feature a band inversion at TR-symmetry protected reciprocal-space points. In
graphene, for instance, this band inversion is driven by spin-orbit coupling (SOC), which
formally leads to a minute band-gap opening [15, 16]. In close analogy to charge pumping
in the integer quantum Hall effect [17], the spin-charge pumped through the edge states
is quantized in QSHIs [18]. The respective integer quantum, i.e., the topological Z5 in-
variant, is 1 in QSHIs and 0 in trivial insulators. Formally, this Z5 invariant is defined

via the half Brillouin zone integral

1

Ly = —
27 on

[ A(k)dl — /.F(k)d7'1| mod (2) (4.4)
or B

over the Berry connection A(k) and Berry curvature F (k) [19, 18]. This can be interpreted
as the effective magnetic flux of a self-induced magnetic field, the Berry curvature, through
the half BZ 7. Here, 07 is the contour of 7. Although theory predicted a wide variety
of QSHIs [11, 10], only few of them feature a large enough intrinsic bulk bandgap at
finite temperatures to allow for an experimental characterization, e.g., bilayer Bi [20, 21]
as well as HgTe/CdTe [22, 23, 24] and InAs/GaSb quantum wells [25, 26]. So far, the
computational search for new QSHIs has been a numerically costly trial-and-error process
that required to compute the Z, invariant for each individual compound, since no simple
rule of thumb exists that allows to a priori distinguish trivial from topological insulators.
Naturally, the search for new QSHIs was thus guided by experience and intuition, e.g., by
focusing on heavy elements with high SOC [27, 28, 29, 30]. For instance, 17 potential TIs
could be identified by carrying out high-throughput electronic band structure calculations
for 60,000 materials [31]. In the same spirit, high-throughput studies in this field have
been performed using semi-empirical descriptors as a guidance, e.g., the derivative of the

bandgap with no SOC with respect to the lattice constant [32].
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In this work, we first compute the Zs-invariant for a representative set of materials
from first principles, identifying 45 QSHI compounds that have not yet been reported in
literature. Using a recently compressed sensing approach [33, 34, 35] based on compressed
sensing, we then derive a “map” of these materials, in which metals, trivial insulators,
and QSHIs are separated in different spatial domains. The axes of this map are given by
a physically meaningful descriptor, i.e., a non-linear analytic function that only depends
on the properties of the material’s constituent atoms, but not on the properties of the
material itself. The identified descriptor is proportional to the "matallicity”, revealing
that orbital interaction can drive a band inversion in compounds with relatively light
elements and thus low SOC. Furthermore, we are also able to predict the topological
character of materials without performing any additional first-principles calculations, just
by evaluating their position on the “map”. By this means, we predict 74 additional novel
QSHI candidates.

First-principles Classification of Functionalized 2D Honeycomb-Lattice Mate-

rials

For each of these systems, we have first determined the equilibrium lattice constant
by relaxing both the atomic positions and the unit-cell shape until the residual forces
on the atoms were smaller than 0.01 ¢V/ A using the all electron, full potential numeric
atom centered orbitals based electronic structure code FHI-aims [55, 56, 57, 58]. For
the equilibrium configuration, the topological invariant Z, was computed from the evolu-
tion of the Wannier center of charge [59, 60, 61] that we implemented in FHI-aims using
the band structures and wavefunctions. For these latter properties, SOC was accounted
for using a second-variational, second-order perturbation approach recently implemented
in FHI-aims [62] first used in Ref.[63]. For a qualitative analysis of the band inversion
mechanism, projected band structures were computed. All calculations were performed
using the Perdew-Burke-Ernzenhof (PBE) generalized gradient approximation[64], the
Tkatchenko-Scheffler Van der Waals correction method (DFT-TS) [65], and with numer-
ical settings that guarantee a convergence of <1 meV for the eigenvalues. Specifically,
periodic boundary conditions were used: the 2D hexagonal monolayers lie in the xy-plane,
and a vacuum of 20A was used in the z-direction to avoid the undesirable interaction be-
tween the periodic images of sheets. Futhermore, “really tight” numerical settings and

basis sets as well as a 40x40x1 k point grid for the Brillouin zone were used.

In a first step, we investigate the topological character of various functionalized 2D
honeycomb-lattice materials ABX, (see Fig. 4.2) by computing their Z, invariant from
first principles. Here, we consider all possible combinations AB that are isoelectronic
with graphene (group IV-IV, III-V, and II-VI). For each compound A B, functionalization
with four different group VII elements (X either Cl, Br, F, or I) is considered, so that

220 different honeycomb-lattice systems ABX, are investigated in total. This material
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Figure 4.2 - Side and top view of the functionalized honeycomb-lattice system. Clas-
sification (trivial insulators: white; QSHIs: red; metals: cyan) of the 220 investigated
ABX, compounds. The = and y axes denote the A and B atoms. For each combi-
nation AB, the four individual squares correspond to a different functionalization with
a group VII element (see legend). Compounds for which the topological character is
independent of X are grouped by a blue line.

class was chosen since compounds that form a diamond structure in 3D can potentially
also behave like graphene in 2D. Accordingly, it has been topic of research in this field
before [36, 37, 38], so that various QSHI candidates have been found in this material class

already, e.g., functionalized stanene [39].

The resulting first-principles classification of these 220 compounds in metals (zero
bandgap), trivial insulators (non-zero bandgap and Zs = 0), and QSHIs (non-zero bandgap
and Zs = 1) is shown in Fig. 4.2. 103 compounds are identified to be QSHIs in our calcula-
tions: In most cases (66%), the T1 character is independent of the actual functionalization,
as highlighted in blue in Fig. 4.2. These 68 functionalization-independent (FI) QSHIs con-

sist of relatively heavy elements, feature topological bandgaps between 5 meV and 2 eV,
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and include 15 new QSHIs and 53 QSHIs reported in literature before, e.g., functionalized
stanene, germanene, Biy, GaBi, InBi, TIBi [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. Addi-
tionally, we also identify 35 QSHIs (34% of all QSHIs), for which the TI character depends
on the actual functionalization (mostly iodides). These functionalization-dependent (FD)
QSHIs with topological bandgaps between 5 meV and 1 eV include 30 compounds that
have not yet been reported in literature, e.g., AINBry, and GaAsl,. Quite surprisingly,
these TTs consist of relatively light elements and thus defy the widespread reasoning that

a strong SOC and thus heavy elements are required to induce a topological transition.
Descriptor Identification via Compressed Sensing

To learn a descriptor for the Zs-invariant material property, we employed the compressed-
sensing approach recently developed by Ouyang et al.[35], which mainly consists of two
steps: 4) construction of feature space (potential descriptors) by building analytical func-
tions of the input parameters (atomic properties with SOC, in the case studied here),
by iteratively applying a set of chosen algebraic operators, up to a certain complexity
cutoff (number of applied operators). The used input atomic parameters are the eigenval-
ues of the highest occupied and lowest unoccupied Kohn-Sham states € €, the atomic
number Z, the electron affinity EA, the ionization potential IP, and the size of the s, p,
and d orbitals (rs, 7, and ry), i.e., the radii where the radial probability density of the
valence s, p, and d orbitals are maximal, for A, B and X. Consequently, the feature space
is formed by N vectors X,, = (X1, Xn2, -, Xnr), where X, ,, is the n'™ combination
of atomic features, e.g., ("¢ + €% + €%), evaluated on the constituent atoms of the
m ABX, compound. For more details about the feature space construction please re-
fer to Ref. [34, 35]; ii) descriptor identification by a scheme combining sure independence
screening and sparsifying operator, SISSO. SIS selects features X,, highly correlated with
the Zs topological invariant property, which is formally written as a vector of the training
values of Zs-invariant. Starting from the features selected by SIS, the SO looks for the
()-tuples of features that minimizes the overlap (or maximize the separation) [49], among
convex hulls enveloping subsets of data. The dimensionality ) of the representation is set
as the minimal that yields perfect classification of all data in the “training” set. In this
work € = 2 was found sufficient. This procedure is performed for a “training” set (176
compounds randomly chosen from the total set of 220); the remaining 20% are used as a

“test” set to validate the found model.

To identify descriptors that can a priori classify functionalized 2D honeycomb-
lattice materials in metals, trivial insulators, and QSHI, we employed the SISSO (sure
independence screening and sparsifying operator) approach recently developed by Ouyang
et al.[35]. First, a pool of almost 107 different potential descriptors X, is constructed
by analytically combining the properties of the free atoms A, B and X computed with

SOC (namely, the eigenvalues of the highest occupied and lowest unoccupied Kohn-Sham
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ho v the atomic number Z, the electron affinity EA, the ionization potential

states ¢
IP, and the size ry, 7,, and rq of the s, p, and d orbitals, i.e., the radii where the ra-
dial probability density of the valence s, p, and d orbitals are maximal). Second, this
compressed-sensing based technique identifies which low-dimensional combination of these
descriptors represents the classification best, i.e., minimizes the overlap (or maximizes the
separation) [49] among the convex hulls that envelope the individual classes (metals, triv-
ial insulators, QSHIs). This procedure, which is performed for a “training” set (176
compounds randomly chosen from the total set of 220), reveals that the best descriptor

for the classification of the investigated compounds is two-dimensional and features the

components
X = (Za+ Zp) (4.5)
1 = A B EAg .
X2 = EAX IPX (7‘5,A+7‘p73) . (4.6)

For the remaining 20% of compounds, i.e., the so called “test” set used to validate the
model, we find that all materials with a very well defined structural and topological
character are correctly classified. Only ZnOCI, and AINBr,, which are both FD-QSHIs
at the verge of a topological transition to a trivial insulator or metal (see Suppl. Mat.), are
not correctly classified. This shows that the found descriptor, which exhibits a predictive
power greater than 95%, is robust and transferable, i.e., not limited to the original training
set used to identify X; and X,

As shown in Fig. 4.3, we predict two trivial/QSHI transitions, which are defined
by the boundary lines «; and . All compounds with X; > «; are FI-QSHIs (blue).
For X; < «q, the descriptor X, matters as well: Trivial insulators (white) occur for
values of Xy Z 3, while for X, $ / we find metals (cyan) in the region X; < as and
FD-QSHIs (red) for as < X; < ay. Note that X; and X, do not only clearly discriminate
between metals, insulators, and TIs, but also separate functionalization-independent and

-dependent QSHIs (FI- and FD-QSHIs).
Qualitative Interpretation

The descriptors X; and X5 do not only numerically and graphically sort the func-
tionalized graphene-like materials, but also capture the fundamental parameters involved
in the mechanism determining the topological phase transition. To understand this, it is
necessary to clarify the character of the electronic states involved in the band inversion,
schematically sketched in Fig. 4.4a: These are a o,,, state (blue), to which the highest
occupied p,,-orbitals from atoms B contribute, and a o7, state (red), to which the s
states from atoms A and the p, states from atoms X contribute.As detailed below, the

descriptors X; and X5 actually describe the relative energetic positions of these states,
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Figure 4.3 - Representation of DFT result for the training (filled) and test (unfilled sym-
bols) set in the domain defined by the two-dimensional descriptors. A logarithmic scale
is used for X;. Compounds functionalized with F, Cl, Br, I are represented by dia-
monds, squares, circles and triangles, respectively. The symbols’ color is used to dis-
tinguish between metalls (cyan), FD-QSHIs (red), FI-QSHIs (blue), and trivial insula-
tors (white/grey). The same color-code is used to highlight the different regions identified
by the SISSO descriptors. The boundaries of the map of materials are defined by o = 379,
s & 122.1, and 8 ~ 70. The gap in the data points observed for 865 < X; < 2300 is
caused by the “jump” in Z4 and Zp when switching from the 5™ to the 6" row of the

periodic system.
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Figure 4.4 - (a) Representation of the band structure with and without SOC for trivial
insulators and band-inverted materials. Semimetals become insulators after including the
SOC, leading to the QSHI phase. States formed by p,,- (blue lines) and sp,-orbitals
(red lines) are inverted in the QSHIs; the energy distance between them (A;,) is related
to the robustness of the topological states. Yellow dots represent the electrons. (b)
Schematic representation of the evolution of atomic orbitals into bands for a homopolar
band inverted system and polar trivial insulator: (I) s and p orbital, (IT) sp® hybridization,
(III) bonding-antibonding splitting, and (IV) conduction and valence bands. The yellow
color stand for the occupied bands. (c¢) Evolution of the atomic orbitals (dark blue region)
into band as a function of the metallicity. The energy distance between this states is given
by Ay, and the bandgap represented by E,. Blue (white) region represent the metallic
(insulator) behavior. The insulator/metal transition takes place at a,, = 1 (See text).
(d) Asp as a function of the logarithm of Xj.

Ay = By, — E,, before applying SOC. In trivial insulators (Ayp > 0), the o}, state
lies higher in energy than the o,,, state, which is thus fully occupied. For A,, < 0, the

oy, state lies lower in energy, so that the o,,, state is only half-occupied: Before SOC,

we thus observe an insulator/semi-metal transition at X; = oy (See Fig. 4.4a), which
indicates that the boundary at X; = ay band inversion is essentially driven by atomic

interactions and not by the strength of the SOC. The SOC itself is thus solely responsible
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for the band-gap opening in the semi-metals with A, < 0, which leads to the QSHI state.

To qualitatively understand how the descriptor X is able to describe the insulator/semi-
metal transition at X; = «y, we employ the simplified tight-binding model proposed by
Harrision [50], which is conceptually related to the metalization model proposed by Mooser

“metal-

and Pearson [51]. In this model, an insulator/semi-metal transition occurs at a
licity” «,, = 1. This metallicity is defined via «,, = 4V;/ m, where Vj is the
metallic energy, V' is the bonding-antibonding splitting and Vap :e‘; 3 — ef;? 3 is the en-
ergy distance between the sp hybrid orbitals of atoms A and B (See Fig. 4.4b). As it
is the case for tetrahedral seminconductors, the influence of V; is negligible, since Vj is
essentially constant for our compounds (/~ 1.940.2¢V’). For homonuclear compounds, for
which V45 vasnishes, the hence dominant bonding-antibonding splitting V' is quite well
described by the approximation V « d %, i.e., (V ~ 18.6d,5eV/ A72) and, through that,
by the atomic numbers [50], since the bonding length d% o< Z4 + Zp is proportional to
the average atomic number, i.e, Z4 + Zp =~ 7.OA_2df43 —57.1 for X = F, a very accurate
linear relation is obtained by including the change of dsp due to the effect of the ionicity
(polar compounds) and the functionalization. As sketched in Fig. 4.4c, compounds with
heavy atoms feature large values of dsp and thus a metallic electronic structure before
including SOC (a,, > 1). Conversely, light atoms feature low equilibrium distances dap

and thus a finite gap before SOC.

For polar, heteronuclear compounds, the trend of V in the polar compounds is driven
by the ability of the more electronegative atom B to attract electrons, i.e., its electrons
affinity (JEAg|). Accordingly, V decreases for same-column-atoms B as the row num-
ber in the periodic table increases, while it increases for same-row Bs from the left to
the right, ie., Vaege < VaaAs < VznSe. For large [EAg| (lower values of o), the
atom B (anion) tends to take electrons from atom A (cation), thus leading to a com-
pletely occupation of the o, state, and hence to a trivial insulator state, as represented
in Fig. 4.4b for a polar trivial insulator. Concretely, we consider the approximation
(Za+ Zp)/|EAp| ~ 10.1d45A %eV~". Summarizing, the SISSO captures the property

"encoded” in the topological phase transitions oy, the metallicity,

6}}30 (ZA + ZB)

4.

Q= X1/ =
with «,, = 1 at the critical value X; = «;. Naturally, «,, increases as the lattice con-
stant increases due to the functionalization. Thus, all of FI-QSHIs have a large enough
atomic number (lattice constant always greater than 4.5 A) to guaranteed «,, > 1, mak-
ing the topological phase independent of the actual functionalization. Here, €% is a
correction, like Vj, because it is almost the same in all compounds formed by atoms

of the third, four and five row of the periodic table. Since bonding-antibonding split-
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ting could be write as a logarithmic function either of the lattice constant or of the
metallicity, a thorough demonstration of the equivalence between «,,, and X; is that in
materials with Xs 2 3, the logarithm of X; does thus effectively linearly correlate with
Ay (Agp = (—1.306 £0.048) In (X7) + (8.015 £ 0.289)), as show in Fig. 4.4d.

The descriptor X, at first appears to only group the compounds by functionalization,
since it depends on the electron affinity and ionization potential of atom X and also on
(rs,a + rpp). This holds true for the region with X; < ay, but not for X; > o4, as
apparent from Fig. 4.3. The lattice constant changes according to the functionalization,
which is captured by the descriptor Xs: dap increases as Xy decreases, i.e., for a given
AB compound functionalized with I (F) we obtain the larger (lower) lattice constant.

Specifically, we observe a general reduction of A, for heavier functionalization.

Graphene-like materials have two structural phases, usually classified in terms of the
length of the buckled format as high bluckled (HB) and low buckled (LB) [52]. The
functionalization stabilizes the LB phase in a large enough set of compounds, which are
insulators (the 209 insulator discussed so far: Trivial insulators, FD-QSHIs, and FI-
QSHIs) and always have a highest lattice constant (ayp < arp). On the other hand, HB
graphene-like materials are always metallic, even after including SOC [52], e.g., hexagonal
tin and lead. This behavior is still the same in HB functionalized compounds, which are
typically functionalized with I and Br (CX, BNX, (X=Cl, Br,I), CSily, BPI,, AINI,
GaNI, and ZnOly). The interaction between X and atoms A and B is meanly mediated by
the Van der Waals interaction for smaller values of EA xIPx. In that case, the hexagonal
AB compound is an insulator with metallic states formed by orbitals of the atom X inside
the bandgap. Therefore, since the hexagonal AB compound in the HB structure remains
in a trivial topological phase, the insulator/metal transition 5 with X1 < «y is essentially
a LB-HB structural phase transition and it is physically different from the topological
transition «a; (see Fig. 4.3). The transition FD-QSHI/metal at X; ~ s is dominated by
the change of the bond length (also change of Z4 + Zp), since HB compounds are formed
by light atoms.

To showcase that the gained insights and identified descriptors are transferable, we
have computed X; and X, for 140 less common honeycomb ABX,; compounds (AB
from groups V-V and IV-VI functionalized with a group VI element for X). For these
compounds, the identified descriptor predicts 20 FI-QSHIs, 54 FD-QSHIs, 42 trivial in-
sulators and 24 metals, as shown in Fig. 4.5. Since EA,IPx for X= VI is lower, we
get that the functionalization stabilizes the HB phase for non-QSHI materials. We have
verified the prediction for selected compounds (AsX, SbX, SnSeX,, PSbX,, BiX and
PO with X:0,S,Se,Te). The VI-functionalized compounds are most feasible to realize
the QSHI effect, since oxidation may be a spontaneous process. It has been shown that

oxide blue-phosphorene is a trivial insulator, which can become a QSHI by applying ten-
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Figure 4.5 - Representation of proposed V-V-VI and IV-VI-VI compounds in the domain
defined by the two-dimensional descriptor components.

sile strain [53]. Recently, only one compound has been reported as an intrinsic QSHI,
AsO [54]. Different from the trial-and-error theoretical proposed systems, based on our
SISSO we propose a complete family of 74 new QSHI candidates, opening a window for

the potential observation of the theoretical expected protected edge states.
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5. Time reversal protected bulk states

Introduction

The main objective of spintronics is to understand the mechanisms by which it is
possible to achieve efficient control of both spin configurations and spin currents[1]. In
the last decade, the way to achieve this objective has experienced a breakthrough due to )
the discovery and understanding of mechanisms to generate spin currents in conductors
with magnetic order and in paramagnetic conductors/semiconductors[2, 3, 4], i) the
experimental observation of theoretically proposed spin injector systems[5, 6, 7], and i)
the synthesis of 2D materials with long spin relaxation time[l, 8]. The generation of spin
currents, spin injections and spin conservation are mediated by the spin-orbit coupling
(SOC) mainly via Rashba effect and/or nontrivial topological phases[9, 10, 11, 12], such
as the quantum spin Hall (QSH) effect[13]. Therefore, the search for systems experiencing

these properties is a primary concern for the development of spintronics.

QSH insulators support helical metallic edge states, forming topological Dirac fermions
protected by the time-reversal (TR) symmetry on an insulating bulk[5, 6]. The topolog-
ical transition from trivial insulating to topological insulators is evidenced as a band
inversion at the TR invariant k-point mediated by the SOC. The topological band disper-
sion has been experimentally characterized via angle-resolved photoemission spectroscopy
(ARPES) and local scanning tunneling microscopy (STM) in 3D topological insulators[5],
and via transport measurements in HgTe/CdTe quantum wells[14, 15]. On the other
hand, the Rashba effect, arising from the lack of inversion symmetry, leads to paral-
lel spin-polarized band dispersion curves with opposite in-plane chiral spin texture[16],
allowing the control of the spin direction through an electric field[9, 11, 12]. These dis-
persion curves and Fermi contours have been characterized by spectroscopic measure-
ments for many surfaces and interfaces[17, 18, 19, 20]. Large Rashba spin-splitting are
found in materials formed by heavy elements with strong intrinsic SOC such as Bi,
Pb, W, among others[21, 22, 20, 23, 24]. In this work, we look at the consequences
of the simultaneous presence of a Rashba spin-splitting and a inverted bandgap. Such
properties appear simultaneously in thin films and heterostructures of 3D topological
insulators[25, 26, 27, 28, 29, 30].

Here, we show that bulk states can be protected against backscattering in nanoribbons
of QSH insulators with bulk inversion asymmetry. This behavior is a consequence of the
simultaneous presence of both Rashba and band inversion in a QSH insulator. In our

model, both the conduction and the valence bands are formed by two bands with the
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Figure 5.1 - (a) Top and side view of the PbBil atomic structure. In the lowest energy
configuration the buckled, d, has 1.3 A in length and, the Bi-Pb and Pb-I (h) bounds
have 3.04 A and 1.35 A in length, respectively. (b) Band structure without SOC (left)
and with SOC (right). The color scales represent the weight of the orbital projection in
the wavefunction v, (k). The projections in the p,(p, and py) Bi orbitals are indicated
by red(blue). The Rashba spin-splitting and the band inversion are characterized by Er

and Eyr, respectively.
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same in-plane helical spin texture and opposite (S,) spin component. We propose a stable
non-centrosymmetric honeycomb-lattice QSH insulator that presents this unconventional
bulk spin texture. This system is formed by the Bi, Pb, and I elements and, has a large
nontrivial band gap of 0.14 eV and a huge Rashba spin-splitting of 60 meV. To construct

the Hamiltonian exhibiting the proposed spin texture we will use the PbBil system.
Geometry and electronic band structure

Figure 5.1 summarizes the crystalline structure and the results we obtain from ab ini-
tio calculations, which are performed within the density functional theory (DFT) frame-
work as implemented in the SIESTA code[31] and in the Vienna Ab Initio Simulation
Package[32]. We consider the on-site approximation for the SOCI[33, 34] in the SIESTA
code. The Local Density Approximation[35] and the Perdew-Burke-Ernzenhof generalized
gradient approximation[36] are used for the exchange-correlation functional. Interpreting
the hexagonal lattice as two triangular sub-lattices A and B, the system has a V atom
type on the sub-lattice A, and a IV-VII dimer in the sub-lattice B (Fig 5.1a). These non-

centrosymmetry systems have a buckled format and fulfill the symmetry operations of the



91

(3, symmetry: i) three-fold rotation symmetry Rz along the z axis, ii) mirror symmetry
M, (x — —z) in the yz plane, and i) TR symmetry 7. We predict that the PbBil system
is mechanically stable, imaginary frequencies does not exist in the ab initio phonon spec-
trum (see Supplemental Material) and the formation energy (Er = Epppii — ftpb — iBi — 1)
is about —0.77 eV.

At the I' point, the top of the valence band is dominated by the p,, Bi orbitals
and the bottom of the conduction band mainly consists of the p, Bi orbitals, as shown
in Fig 5.1b. When the SOC is taken into account, the p orbitals are mixed to form
effective orbitals preserving the total angular momentum and a band inversion occurs
when Agoc = 0.65, where Agoc = 0(1) means the absence (full presence) of SOC. We
implemented the evolution of Wannier center of charges as an alternative method to the
Z, invariant calculation using ab-inito simulations [37, 38, 39]. We find that there is no a
horizontal reference line that crosses the evolution of the WCCs at least an odd number
of times, as shown in Fig. 5.2. This suggests that Z, = 1[37, 39], confirming that the
PbBil system is a QSH insulator.

T

I M

Figure 5.2 - The evolution of Wannier Center of Charges. If we draw a horizontal line
of reference that crosses the picture, we would have at least an odd number of crossing,
showing that the PbBil system is a topological insulator.

According to the symmetry operation, the wavefunction at the I' point is given by the
{|AJ,j.)} effective states, where .J is the total angular momentum, j, is the projection
along the z axes, and A corresponds to the Bi and Pb-I contributions. To preserve the
total angular momentum, the |A;/,, £3/2) effective states should be a linear combination
of the p, = p, +ip, and p_ = p, — ip, effective orbitals and, the |[A;, £1/2) effective

states should be a linear combination of the p orbitals, mainly p, orbitals. In this inverted
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band gap the conduction band mainly consists of p,, Bi orbitals and the valence band
is formed by the p orbitals, mainly dominated by p, Bi orbitals, as shown in Fig 5.1b.
Therefore, at the I" point, the valence (conduction) band is described by the effective states
{|Biy, j.)} with J = 3/2 (J = 1/2) and hence, we write the Hamiltonian using the full
SOC basis {|Bii/2,1/2),|Biij2, —1/2), |Bigje, 1/2),|Bisje, —1/2)}. This basis {|Biy, jz)} is

transformed by the Cs, symmetries operations as,

(1) Threefold rotation R3: |Bij=1/2,+1/2) = % [Bijo1ja, £1/2);  [Bij=sja, £1/2) = =5 [Bij_ss, £1/2);
|Bis_s/2, £3/2) — — |Bij_g/2, £3/2).

(2) Twofold rotation My: |Bis_y/a,£1/2) = —i|Biji/2, £1/2);  |Bisoaja, £1/2) — —i|Bij_s/s, £1/2);
|Bis—s/2, £3/2) — —i |Bij=s/2, £3/2) .

(3) Time reversal T:  |Bijoija,£1/2) — £ (Bijijo, £1/2];  [Bijgye, £1/2) — =+ (Bij—gs, +1/2;
|Bis=s/2, £3/2) — F (Bij=3/2, £3/2|.

This relations are extremely important to define the relation between the hopping

terms in tight-binding model describing the proposed systems.

Band gap control
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Figure 5.3 - (a) Energy in function of the lattice constant depending on the exchange-
correlation functional used, i.e Local Density Approximation (LDA) or Generalized Gra-
dient Approximation (GGA). (b) Band gap in function of the lattice constant, where £,
and Fyr are the band gap of the system and the band gap at the I' point, respectively.
Below the dashed line at 0.0, the Eyr is inverted. (c) Rashba spin splitting in function of
the lattice constant. The arrows represent the equilibrium lattice constant for the GGA
calculation.

Using GGA functional, we find that the lattice constant is 4.77 A, whereas for LDA
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is 4.53 A, as shown in Fig 5.3a. We find that the substitution of Pb atoms by Sn atoms
(or changing the lattice constant) allows the control of both the band gap direction (see
Fig 5.3b) and the IRashba spin-splitting in the valence band (see Fig 5.3¢). The decrease
(increase) of the lattice constant can be understood as a compressive (tensile) strain. We
find three different behaviors depending on the intensity of the strain applied: semi-metal,
indirect band gap semiconductor and direct band gap semiconductor, as represented in
Fig 5.3b by the regions I, IT and III, respectively. The equilibrium position is represented

by arrows, shown as in the Fig 5.3.

As mentioned above, in the region II, in which the system is in the equilibrium lattice
parameter, Egr is negative indicating a band inversion at the I' point. The gap E,r is
different from the indirect band gap E,, which is also considered negative for compari-
son purposes. In the region I, when we apply compressive strain, the minimum of the
conduction band, in M — K direction, begins to descend and cross the Fermi energy for
a = 4.3 A, forming a semi-metal. To represent this behavior, we change the sign of the
band gap £,. In the region III, we consider a tensile strain, I/, and E,r are equals and
the system behaves as a semiconductor with a direct band gap at the I' point. For any
value of strain, the states near to the Fermi energy in the I' point remain inverted, so if
this band inversion is associated with a topological state, this state will be robust against

strain, even for a tension of 20%(5.6 A ), as shown in Fig 5.3.
5.2.1 Phonon spectrum

Imaginary frequencies does not exist in the ab initio phonon spectrum of the PbBil
system, as shown in Fig 5.4, and the formation energy (Er = Epppi — fpp — MBi — 1)
is about —0.77 eV. Here, Epppir is the energy of the system and ppy iy is the chemical
potential from the more stable phase. These properties are necessary and sufficient to
conclude that the PbBil honeycomb lattice system is mechanically stable. Since the rest
of compound in the proposed family are not QSH insulators, we do not show the phonon

spectrum here. However, all of them are mechanically stables.
Effective tight-binding model

The tight-binding Hamiltonian matrix elements are given by:

6
[H(E)]” = Eij(sij + Z tg/eikﬁ", (51)
v=1

where i = (Bi, J,j.), j = (Bi,J,j.) and ¢ is the on-site energy. Since the |(Pb-I),, j.)
effective states contribution is not relevant near the Fermi energy, we omit the terms asso-
ciated with the nearest neighbors (Pb-I dimer) and hence, tf{u = (11, Biy, j.|H|d,, Biy, j.)

represents the next nearest neighbor hopping terms, with 7 indicating the lattice site and
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Figure 5.4 - Ab-initio phonons calculation for the PbBil system. We use a 7x7 supercell.

a, corresponding to the v-th of the six next nearest neighbor vectors. Different form
buckled honeycomb lattice systems, such as Germanene, Silicene among others, in which
the nearest neighbor hopping terms are essential to its description, in the PbBil the Pb-I
dimer only mediates the interaction between Bi atoms and its effect is effectively intro-
duced within the next nearest neighbor hopping terms. Therefore, the PbBil Hamiltonian
is striking different from the Kane-Mele model[13]. Using the relevant symmetry opera-
tions of the Cjs, point group, these hopping terms can be related to each other and are
uniquely determined (See tables 1-4), which leads to an approximate description of the
DFT band structure (see Fig 5.5a).

Table 5.1 - Symmetry operation for ¢, = (0,1/2,1/2|H|a;,1/2,1/2)

tar tas tas th th, t,
T £22¢ 224 224 £22¢ £22¢ 22+
T T o T LY
Vel o | oem | om | om | ow | o
| Relations oy =t =7 =t
The Hamiltonian describing the PbBil system is written as
Hjo(k) Hin(k
H=e+ 1/2() (k) ) (5.2)
Hine (k) Hspa(k)

where H]_/Q(E) and Hg/z(lZ) describe the |Biy/,4+1/2) and |Bizse, £3/2) states, respec-
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Table 5.2 - Symmetry operation for ¢} = (0,1/2,1/2|H]a;, 1/2, —1/2)

12 12 2 12 12 12
tal tag tag t—a1 t—G«Q t—as
12 12 12 12 12 12
T _t—al _t—ag _t—ag _tal _tGQ _taS
Rs 6—i2w/3t}1§ —i27r/3t‘11? —iQw/?,tg e_i%/?’tl}as —iZw/3t£2a1 e—iQﬂ/3t£2a2
M 2 2 12+ 12+ 2% 2
@ te: to to 2 = >
‘ Relations ‘ = t1% t};; = —e!2m/6¢12, t(ﬁ = —e7i2n/6412
Table 5.3 - Symmetry operation for ;3 = (0,1/2,1/2|H|a;,3/2,1/2)
13 13 13 13 13 13
tal tag ta:s t—m t—(lz t—a‘s
T e e e e | oen | e
R 13 13 13 13 13 13
3 [ [ Cas [ [ o,
M, 24 24 24 24 24 24
r - t—al _t—ag _t—ag _tm _tas _ta2
Relations | 1B =2 = 2 =
Table 5.4 - Symmetry operation for ¢}* = (0,1/2,1/2|H|a;,3/2,—1/2)
4 11 4 ! 11 4
tal tag tag t—a1 t—GQ t—GS
23 23 23 23 23 23
T e 2 2 2 R
Rs e—izw/gt}lz; e—i27r/3t‘11411 e—i27r/3t[11421 €—i2ﬂ/3t£4a3 6—12w/3t£4a1 e—i2n/3t£4a2
M 14x 4% 4x 4% 4% 4%
* t—al tl—ag t1—a2 tél t(11«3 t(112
4 _ p—2n/3p14. 14 _ —idn/3;04, 414 _
Relations L i3, - o3
t:; t1_4a2 _ 671,471'/31/.2; — 67127r/3t(>;

tively. The Hy(k) term is the interaction between these states. Using the relations
showed in tables 1-4, we found the matrix elements:

6
11 Z 11 ika
HJ:1/2: ta]€ 1T =1
j=1
6
22 22 ik-a;
HiZi)2 = E tye™
j=1
6
11 33 ik-a;
Hj—s3/2 = E to e
=

6 .
H32g)0 = Zti?eik'% =% Z(COS kj +isink;) +t* Z(cos k; —isink;) = 2R[t**] Z
Jj=1

I«

<.

(coskj +isink;) 4+t

3
=% Z(cos E; +isink;) +t%
=1

3
j=

1

3

=" (cosk; +isink;) +t'" Y (cosk; —isink;) =

j=1

3

j=1

3

i=1

Z(cos kj —isink;) =

3

=1

6
HpZ, 0= Z t}lfeik'af = —2it"?[sink; + e~ 2™/3 sin ky 4 €2™/% sin k3],
j=1

6
Hils)n = Zt
Jj=1

34 ik-a;
aje 7

= —2it*[sink; + e

i27/3

sinkz + e

sin k],

3 3
(cosk; —isink;) = 2R[t""] Ecos kj — 29[t Zsin kj,
j=1 j=1

(5.3)

3 3
2R[t] Z cos k; 4+ 23" Z sin k;,
j=1 j=1

(5.4)

3 3
2R[t*] Z cos kj — 23[t*] Z sin k;,
j=1 j=1

(5.5)

3
cos k; 4 23[t**) Z sin k;,

=1

(5.6)
(5.7)

(5.8)
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6 3 3
Hiy = tore™ % = 2iS[t"°] Y " cosk; + 2iR[t"°] Y _sink;, (5.9)
j=1 j=1 j=1
6 3 3
H?, = Z t};j‘e’k'aj = —2iQ[t"? Z cos kj + 2iR[t"?) Z sink;, (5.10)
j=1 j=1 j=1

6
H}Z = Z t}lj e % = aR (1] (cos ki+e ™3 cos ko+e ™/ cos ka)+2S[t" ] (sin k14623 sin ko+e 7P sin k3),
i=1
(5.11)
6
HE, = Z tllzjeik'”j = —2R[t"](cos k1 + e2™/3 cosky + €43 cos k) — 23t (sin k1 + 2™ sinky + 4™/ sin ks),
=1

B (5.12)
€ = t(z)](;ij. (513)

The tight-binding effective Hamiltonian described above gives a very approximate
description of the electronic structure, as shown in Fig ??(left). The hopping terms are
obtained via a least squares standard approach in order to match the DFT calculation. We
can simplify these expressions while maintaining accuracy in the description by taking the

limit & — I Thus, the reduced form for the tight-binding Hamiltonian matrix elements,

Hy(k) = (—1)¥ ey + (=1 hyo(k) + hygy (k) + hyg, () (5.14)

where h (k) = k2, hi, (k) = oy, [(k4 )P4+ (k=)%o., hf, (k) = af, (0xk)-2 and Hin = k.
Here, Hy/2(k) and Hgjo(k) are the effective terms that described the |Bij/, +1/2) and
|Big e, £3/2) states, respectively and H;ne(K) is the interaction between these states. The
parameters are related to the hopping terms and are obtained via a least squares standard

approach in order to match the DFT calculation.

It is convenient to rewrite the Hamiltonian #(k — T') as a matrix fulfilling the

symmetry operations of the Cs, point group,

—ep+ bk gk 0 vk
’H(E) _ —ia}{fkur —e1/2 + &1 0k? vk _ 3?2 , (5.15)
0 vk_ €32 — E3pok®  dag ko
ke 0 —iaj ke ey — Eapok?

where k+ = k, & ik, and k* = k2 + k.

For simplicity in Eq. 5.16 we only consider terms up to second order in k. In this
model the parameters are related to the hopping terms: the on-site energy €; = ti'+6R[t"],
free electron approximation term £; = 2’}; . = %aQ%[tii], the first order Rashba parameter
agr, = t'?3a and the interaction a;, = 3S3[t'] is the interaction parameter. We found

that t3* ~ 6 x 1073, then we can make the approximation H}ig/Q = iaz/lzk_ = ag, =
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Figure 5.5 - (a) Band structure calculated with DFT, complete tight-binding model and
simplified model. (b) Fermi contour at the energy plane F; obtained from the simplified
model. The backscattering processes and the spin textures are represented by green and
black arrows, respectively.

it'?3ak_ ~ 0 and the Hamiltonian is expressed as

—e1ps+ Eujak? m}%/f k. 0 vk_
i) —iaf’ky  —eijp + Epok? vk 0 . (5.16)
0 vk_ €3/2 — 53/2k'2 0
v+ 0 0 ea/2 = &3/2k”

Such toy model provides an approximate description of the DFT band structure, as shown
in Fig 5.5. However, since the three order Rashba term is not considered (hg, (k) =
g, (k2 —3kyk?), with ap, = S(t7]5a®), there are not any warping effect. Thus, the Fermi

contour consists of two concentric circles, as represented in Fig 5.5 for the energy FE;.

For illustrative proposal and without loss of generality considering £/2 ~ £3/2 = ¢,

we then rewrite the Hamiltonian as

—e+&k*  dagk_ 0 vk_
—4 — 2
HE) = tap ky —e+&k vk 0 . (5.17)
0 vk_ e —E&k? 0
vk, 0 0 e—¢Ek?

We plot the Fermi contours obtained from this Hamiltonian and represent the backscat-
tering processes in Fig 5.5b. In the valence band, an energy plane below(above) the band

crossing consists of two concentric circles with the same(opposite) in-plane helical spin
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1/2 3/2
€1/2 €3/2 S §3/2 R, R,

0.1685 eV 0.1575 eV 10 eV/A%2 7.4 eV/A%2 -3. 0803 eV/A 3.0919 eV/A 0.1 eV/A

Table 5.5 - Parameters of the effective tigh binding model.

texture. Likewise, in the conduction band, an energy plane consists of two concentric
circles with the same in-plane helical spin texture. Because of this bulk spin texture, the
elastic and inelastic backscattering processes represented by Ss and Ss, respectively, are

forbidden.
Phenomenological considerations

Through a phenomenological analysis of the electronic structure, we describe the ef-
fects required to reproduce the results obtained via DFT calculations. Although the
Rashba effect and the surface states in 3D topological insulators arise as a result of differ-
ent physical properties, the effective Hamiltonian that captures the Rashba M-shape in
2D semiconductors systems is also used to describe the surface states in a 3D topological
insulator: H(k) = ho(k) + hg, (k). The first term ho(k) = €k is the quasi-free electron
approximation and the second term hg, (k) = ag, (& x k) - 2 represents the interaction
between the spin Pauli matrices vector & and the momentum k. Here a R, is the Rashba
coefficient, and z the unit vector perpendicular to the plane in which lies the semicon-

ductor. When the term &, which depends on the effective mass m* and the electron
h2
2m*me

dispersion and helical spin texture appears, describing the surface states in a 3D TI. Oth-

mass m, (§ = ), is sufficiently small relative to parameter ag, states with linear
erwise, the Rashba effect band dispersion appears. According to this reasoning, both the
11/2,41/2) and the |3/2, +1/2) effective states have the hy(k) term, which introduces the
band parabolic effect. The hexagonal warping in the conduction and valence bands is in-
troduced considering the three order Rashba term hp, (k) = ag, (ks + ik, )+ (ke —ik, )?|o-
in both the |1/2,+1/2) and the |3/2, £1/2) effective states. Joining these terms, the ef-

fective Hamiltonian can be written as:
E) Hin(k
H — H%[/Q(ﬁ) H t(ﬂ) 7 (518)

where Hy2(k) = hy/* (k) +hyg (k) +hig’ (k) and Hao (k) = —hy > (F)+ R (k) + ki) () are
the effective Hamiltonian that described the |1/2,+1/2) and |3/2,+1/2) effective states,
respectively. The phenomenological analysis of the band structure behavior does not

provide information about the interaction Hamiltonian between these states, ’Hmt(lg)
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Scattering rate

In order to quantify the probability of backscattering, we calculate the scattering rate
due to a single coulomb impurity considering the bare coulomb potential[40], S

2 qée1 _ - T~
h AA2R252 (1 Cosek/,k)Ik

electron charge, x is the static dielectric constant and g = \E - ¥ | and Iy, 7, =

’n’,En =
' imO(En — Ey). Here, A is the unit area, g. is the single-

|<z/JEnl(/Z’)|1,bEn2(lg))\2 is the overlap integral, which is calculated using the normalized

wavefunction,
1
P s N
- v " Yag, k2 e—&k2—E,
T/JEnA (k) - N . B (E_ng)Q_EVZLA_‘—'Yék"Q 5 (519)
E (57€k2*EnA)2
—vk+
(5_€k2_En>\)
here N = -8 =Bn [ We verify that I - = =1 - - =0 and therefor
where N' = gr—gop ptam - Weverify that I w0 =1 ¢, ,, =0 and therefore

and S

cesses are unlikely. On the other hand, in an ordinary out-plane spin polarized Rashba

the scattering rates S_p, are null, proving that backscattering pro-

n1,k,n2 —knx.kny

material, such as the thin films of the BiTel 3D topological insulator[27], in an energy
plane below(above) the band crossing the bands have opposite(same) in-plane chiral spin
texture (Fig 5.6a) and therefore, the elastic backscattering Ss is forbidden. Different from
PbBil, in a Rashba semiconductor, below the band crossing the inelastic backscattering

Sy is allowed and I_g, ~ 1[16, 42|, as represented by the green arrows in Fig 5.6a.

;n1,k,ng

Using the found wavefunction we analytically show that the bulk bands scattering
from k to —k is forbidden for an arbitrary k-point. To address this issue, we calculate the
overlap integral I = =34, ¢4 o(=k)caa (k)| (with [1h,(k) = Yo caa(k)|Biy,, j.)),
which is proportional to the scattering rate. In the bare Coulomb potential approximation
the scattering rate due to a single Coulomb impurity is written as

T q

S tnfin = 3y gz L hmfin® (Bn = Ew), (5.20)

where A is the unit area, ¢, is the single-electron charge,  is the static dielectric constant

and 8 = |k — K.

In order to find an analytic expression for Sz, , -, Wwe solved the eigensystem Hwn(l;) =

Enwn(lg) Only to solve an illustrative example we consider the simplification €/o = €32

e and &2 = {32 = £. Thus, for a arbitrary energy £,
det(H(k)) = [(e — €k*)? — B2 + *k*? — a3 k(e — €k — E,)? =0 (5.21)

(8 - 5k,2)2 - ETQL)\ + '72]{:2 _ (_1))\
ap k(e — k2 — E,)) '

(5.22)
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Therefore, the energies for the valence and conduction bands are

)\OZRI]C

Evyﬂx = (_1) 9

— AR — 4[(~1Van k(e — 68) — (¢ — &) —7K}2 (5.23)
and

Bepy = (-17 955 D g, k)2 — (1) e, ble — 687) — (e — 682" — vk}

(5.24)
respectively. These functions qualitatively reproduce the DFT band structure, as shown in
Fig 77, Since just €1/, and €3/, define the energy gap, we do not consider the simplification
€1/2 = €3/2 = € to plot the energies E.,, and E,,, .

Using this expression for the wavefunction ¢, (k) and its time reversal TYg,, (k) =

-,

Uk, (—k) we find that

(€ — k* — B, )? [_j@—gﬁf—Eg+a%%2

Vo e ) = s =g B ) || T e - e - B

’72<<E - £k2)2 - E721)\ + a2k2)2 . ,kaQ (5 25)
o, (e —Ek2 — By )t (e —&k? — E,,)? ’
Substituting Eq. 5.22 into Eq. 5.25, we obtain
T I (5 - 51{‘2 - b, )2
= (—k k)) = .
<77Z)Enk( )W)En)( )> 2((5—§/€2 _EnA)2_|_,Yk,2)
2.2 2.2
vk vk ]
1-1+ — =0, (5.26)
(5 - §k2 - EHA)Q (E - £k2 - EHA)Q

which evidences that for any energy level and any E—point the elastic backscattering pro-
cesses are forbidden in valence and conduction bands of the bulk band structure. There-

fore, the scattering rates S_j and §_j, r for the PbBIil system in the presence

,"277;7n2
of Coulomb scattering center are zero.

To calculate the scattering rate for inelastic backscattering process S g 7. .
consider —k' = —k/A. There is always a value of A(E;) = A; for which E, ,,, (—k/A) =

—

Ey ., (k). Thus, we obtain

we

" > - (¢! — k% — En,)(e — €k? — En,)
W)Enl (_k/A)W’Enz (k) = 2[(e’ — £k2 — En1)2 +’Y/k2]i/2[(5 — k2 — Eiz)Q + 7k2]1/2

[(¢/ — €622 — B2, + o2 W2[(e — 6K%)? — B2, + a2, k7]

int

1 —
Ol @ty K2(e — €k% — By ) (e — €K% — Bny)

YA = €K%)= B2, +a”k?)((e — €k°)° — B2 +02k?) 7k
Oy Ry (& — K2 — By )2 (2 — €2 — Bny)? (' — €K% — Bn, (e — EK2 — Eny)

. (5.27)
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Figure 5.6 - Band structure and spin texture of (a) an out-plane spin polarized Rashba
material and (b) the PbBil system. The dotted lines in the band structure represent
the energy planes (el-e3 and el’-e2’) in which we show the in-plane spin texture, whose
magnitudes are represented by the size of the arrows. In this arrows and in the band struc-
ture, the color code stands for the normalized (S.) spin polarization. The backscattering
processes Sy and S3 are represented by green arrows.

Using Eq. 5.22 we have that:

(e" = 6k* — B, )(c — €K* — Bny)

W, K/, ) = s g ot g oy e !

— O‘ént"'/k;2 + O‘;nt’yk2 =0 (5 28)
(¢! —€k2 — Epy)(e —€k2 — Epn,) (¢! —€k2 — Ep,)(e —€k2 — Epny)| ‘

where 7/ = ay, o, = aag, and & = a’*¢. Now, it is evident that the inelastic scattering

process Sy is forbidden. In contrast with an ordinary Rashba semiconductor in which

Fim, & L in the PbBil system we obtain I 3 imy = 0 Therefore, the inelastic

backscattering process S g, is very unlikely.

’nl’E,'ﬂ2
Far from the I" point, the R3 symmetry breaking generates nonlinear terms in the SOC

such as the three order Rashba term hg,(k), which induces (S.) spin polarization and

hexagonal warping effect in the bulk states[43, 44], as represented in Fig 5.6b. Although
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S, spin-polarized increases, the expected value of S, is still near zero. Because the (S,)

and (S,) spin flips are required so that the inelastic scattering process S_g, occurs

,ni,k,ng

(see Fig 5.6b), the overlap integral I is still small compared to the value found

n1,En
in an ordinary Rashba semiconductors anld tfle probability that the scattering process So
occurs remains low. Analogous to the surface states of BioTe3[44], near the I" point, the
(S.) spin-polarization and the warping hexagonal tend to zero and the only contribution
coming from the lack of inversion symmetry is the first order Rashba term, hg, (/2) Thus,
to obtain the unconventional spin texture near the I' point is only enough to consider
both Rashba effect and band inversion, as it was done in eq. 5.16. According to our
DFT results, the Rashba spin-splitting is about 60 meV, which are huge compared with
the values found in semiconductors and surprisingly is among the highest found in 3D
systems[21, 22, 20, 23, 24, 27]. This value can be increased up to Er ~ 90 meV applying

large compressive strain (see Supplemental Material).

On the other hand, since the out-plane spin polarization oscillates according to the
(3, symmetry, as occurs in thin films of BiyTez[44], at the I' — M symmetry path, the S,
spin component is zero (see Fig 5.6) and therefore, inelastic backscattering processes are
completely suppressed. The armchair nanoribbon BZ is parallel to the I' — M symmetry
path at the k, axis of the hexagonal BZ. Thus, scattering processes are dominated by
the S, spin component and hence, the elastic and inelastic backscattering is forbidden for
bulk and edge states, as shown in Fig 5.7. Similarly, the zigzag nanoribbon BZ is parallel
to the k, axis and therefore, (S,) = 0. Because of the non-zero (S.) spin components,
there is a low probability of inelastic backscattering in accordance with the bulk behavior
discussed above (see Supplemental Material). Because of the strong SOC, the spin and
momentum are constrained to be perpendicular. This spin-momentum locking implies
that Dirac cones of different edges are required to have the same S, spin texture and

different S, spin texture of spin in the armchair nanoribbon, as represented in Fig 5.7c.

The protected bulk states near the I' point only appear in the energy region in which
the Rashba effect and the band inversion point take place. This energy region overlaps
with the bottom of the conduction band, which is at I' — M symmetry path, as shown
inf Fig 5.7b. The bottom of the conduction band and hence, the energy range in which
the unusual spin texture is present can be modified by applying tensile strain (see Sup-
plemental Material). Indeed, the inverted bandgap at I' can be equal to the bandgap E,

when strain is applied.

It is well established that the Bi-Pb alloy can be realized experimentally maintaining
the R3m space group [45, 46]. The Pb-Bi rhombohedral alloy along the [111] direction can
be considered as a stack of PbBi honeycomb lattices that are weakly bonded (mainly ruled
by Van der Waals type interaction) to each other, similarly to the bismuth bilayers[47].
The dangling bonds that appear at the Pb-rich PbBi surface can be eliminated by bonding
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Figure 5.7 - (a) Tight-binding and (b) DFT spin-texture band structure of an armchair
nanoribbon with 98.7 A wide. The color code stands for the spin polarization. (c) Pictorial
representation of edge states with (S,) (left) and (S,) (right) spin polarization.

to iodine atoms and hence, the proposed spin texture could be observed in the PbBil

system via STM experiments analogously to the observation of Bi-bilayers’ edge states[47].

The (s, symmetry in the PbBil system leads to a interaction term different from the
BHZ model used to describe the QHS phase in HgTe/CdTe quantum wells[48]. Although
the BHZ model considering the Rashba effect has been used to describe asymmetric
InAs/GaSh/AISb quantum wells[49], the consequences of a huge Rashba spin-splitting
and the three order Rashba term in a bulk inverted band gap, such as the unconventional

spin texture reported here, have been ignored.

In summarizing, the simultaneous presence of a huge Rashba effect and a inverted
bandgap in systems with C5, symmetry leads to conduction and valence bands with
a Rashba-like spin-splitting with the same helical in-plane spin texture and with null
S, spin-polarization at the I' — M symmetry paths. Thus, the spin texture in the
nanoribbons depends on its orientation. We find that bulk states are protected by the TR
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symmetry and contrary to what happens in most doped QSH systems, the bulk states do
not contribute to the backscattering, opening the way for realizing novel applications of
topological edge states. Additionally, we proposed a new honeycomb-lattice QSH insulator
mechanically stable - the PbBil system, which has a large Rashba splitting of 60 meV, a
large nontrivial gap of 0.14 eV and hence, it presents the predicted unconventional spin
texture. As far as we know, the PbBil system is the first system that has such spin texture

properties in its bulk band structure.
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6. A transistor model: Spin-filtering breaking the mir-
ror symmetry in two-dimensional dual topological in-
sulator

Introduction

The quantum geometrical description of the insulator state gave rise to a breakthrough
in the understanding of the topological phases in solids [1, 2, 3, 4]. Topological invari-
ants, e.g., the Zs-invariant and the Chern number C,, classify insulators according to the
preserved symmetries and the ”symmetry-charge” pumped to the boundary [5]. Systems
featuring non-zero topological invariant, i.e., topological insulators (TIs), support dissipa-
tionless metallic boundary (edge/surface) states protected by a specific crystal symmetry
on a bulk insulator [6]. For instance, quantum spin Hall insulators (QSHIs) and topo-
logical crystalline insulators (TCIs) are two-dimensional materials (2D) characterized by
Zy = 17,8, 9] and a non-zero mirror Chern number [10, 11, 12], Cy, respectively. In
QSHIs, the edge states are protected by the time-reversal (TR) symmetry, while in TCIs,
by either point or mirror symmetries. Topological transitions are typically related to
band inversions [13]: the transition from normal insulators to either QSHIs or TCIs with
Cy = %1 requires odd number of band inversions, while TCIs with Cp; = 42 exhibit even
band inversions. Naturally, Cp; # 0 or £1 intrinsically avoid the QSH state (Zs = 1).

In materials with a dual topological character (DTC), i.e., systems that are simulta-
neously QSHIs (TIs in three-dimensions) and TCIs [14], external electric and magnetic
fields perpendicular to the mirror plane allow the topological states control. Naturally,
this intrinsic property arises form the effect of external fields in QSHIs [15, 16, 17] and
TCIs [18, 19, 20], e.g., the spin-polarization control and ban-gap size engineering. For
instance, although the magnetic field breaks the TR-symmetry, the edge states could still
be protected by the mirror symmetry. In the opposite way, an external electric field can
break the mirror symmetry but preserves the TR-symmetry. The DTC requires both
Zy = 1 and Cy; = =£1, which imposes a condition: it must occurred only odd number
of band inversion at k-points preserving both the mirror and the TR-symmetry. Since
the TR invariant momentum (TRIM) points always come in pairs, this condition is only
satisfied by the I" point.

Since 2D-TCIs are typically systems with Cpy = %2, e.g., SnTe multilayers [11, 21],
monolayers of SnSe, PbTe, PbSe [22, 23, 24|, T1Se [25], and SnTe/NaCl quantum wells [26],
DTC in 2D compounds have been predicted only for NagBi layers [27] and graphene [18, 7].
Three dimensional materials exhibiting DTC not only have been predicted in BiyTes [14],
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Figure 6.1 - (left) Side and top view of the HF honeycomb lattice compounds. Unit cell
is represented by the dashed lines. Atoms of the IV, V, and VII group of the periodic
table are presented in gray, purple, and blue, respectively. (right) The respective Brillouin
Zone is represented in gray. There are three equivalent reflection planes containing the
line connecting two TR equivalent M-points. For illustrative proposal, we only show the
plane giving the reflection x — —z (blue plane).

BiySes [28], and Bij_, Sb, [29], but also experimentally observed in the stoichiometric
superlattice [Bi2];[Bi2Te3], [30]. A natural way to search for novel 2D materials featuring
DTC is to look for TCIs among the already predicted QSHIs in which band inversion
takes place at the I' point. In half functionalized (HF) group-IV hexagonal materials, an
intrinsic magnetic moment spoils the QSHI state, giving rise to the quantum anomalous
Hall effect [31]. However, HF IV-V hexagonal-lattices materials feature the QSH and
giant Rashba effects [32]. Since, the this effect allows the spin-polarization control, search
for non-centrosymmetric systems featuring DTC and their potential for device application

is desired for the development of spintronics.

In this letter, we show that HF honeycomb lattice materials can exhibit DTC (See
Fig. 6.1), allowing the spin-polarization control through an external electric field breaking
the mirror symmetry, i.e., the field induces a spin-polarization parallel to the mirror plane.
Based on this effect, we propose a transistor model using the spin-direction as a switch.
We confirm that Cy; = 1, using the tight-binding effective model we proposed in Ref. [32]
to described the QSHIs in HF-hexagonal materials. We also find that a in-plane magnetic
field B = B,z, breaking the TR-symmetry and preserving the mirror symmetry M,, leads
to a displacement of the Dirac point formed by the edge states in the reciprocal space,
confirming the topological mirror symmetry protection. Additionally, a band-gap size
engineering can be performed by breaking both TR and mirror symmetries applying an

external magnetic field parallel to the mirror plane.
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Bulk mirror protection

The HF-honeycomb lattice is formed by two triangular sub-lattices, one consisting of
a AX-dimer and the other of atoms B (See Fig 6.1), thus this lattice satisfies the sym-
metry operations: ¢) three-fold rotation symmetry R along the z axis, 7) TR symmetry
T, and 4v) mirror symmetry M, (x — —z) in the yz plane, which is schematically rep-
resented in Fig 6.1. The TCI phase is protected by the reflection symmetry respect to
the three planes that are perpendicular to the lattice and contain the lines connecting the
nearest neighbors in the honeycomb lattice. If the lattice lies in the xy-plane, this mirror

symmetry corresponds to the plane M, in the reciprocal space, as represented in Fig. 6.1.

The HF-honeycomb lattice materials can display an inverted band character, as con-
firmed by our ab initio calculations (See Fig. 6.2). In the inverted order, the valence band
maximum has a p-orbital character, mainly dominated by p.-orbitals of the Bi atoms,
whereas the conduction band mainly consists of p,, Bi orbitals, as shown in Fig 6.2. At
the I point, the valence (conduction) band is described by the effective states {|Biy, j.)}
with the total angular momentum J = 3/2 (J = 1/2). Hence, the Hamiltonian in the full
SOC basis {|Biy/o, +1/2), |Bige, +1/2)} reads [32]

—e+&k? iak_ 0 vk_
. —iak, —e+ &K Ak 0
HE Ty = | TR TeREE ok , (6.1)
0 vk_ E—¢&k 0
vk, 0 0  &—¢&k?

where ki = k, £k, and ky = k2 + k’z Here, ag is the Rhasba parameter, and v is the
interaction term between the J = 1/2 and J = 3/2 states. The on-site energy (mass
term) and kinetic term for states with J = 1/2 (J = 3/2) are represented by ¢ and £ (£
and §~), respectively. The band inversion is then introduced only by considering different
signs in these terms, i.e., the inverted band-gap at the I' point is defined by the difference

between the mass terms, i.e., Eg(E —I)=¢é+e.

The Hamiltonian describing QSHIs with inversion symmetry breaking (Eq. 6.1) leads
to parabolic bands with the same helical in-plane spin texture, forbidding the backscat-
tering in the bulk states (See Fig 6.2) [32]. This spin texture was also observed in the
metallic alloy Bi/Cu(111) [37]. We find that the scattering processes are not only limited
by the spin texture. Specifically, for k, = 0 the wave-function \¢;(E)> (with s =1, ]) can
also be indexed with the eigenvalues of the mirror operator M, m . This is a conse-
quence of commutation relation [H(k, = 0), M,], which can be easily verified using the
matrix representation M, = —iT, ® 0,., i.e., the mirror operator transforms the orbitals
as My|Biyjo, £1/2) = —i|Biy e, F1/2) and M, |Bigs, +1/2) = i|Big/s, 71/2). Using this
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Figure 6.2 - (left) DFT calculation of the band structure with and without SOC for the
compound PbBil. The SOC inverts the states with the total angular momentum J = 1/2
and J = 3/2, to which the p, (cian) and p,, (purple) orbitals from Bi meanly contribute,
respectively. The band gap is represented by gray areas. (right) Band structure calculated
from Eq. 6.1 for k-points in the mirror plane M, (blue plane). Then bands are disciminated
by the mirror symmetry operator eigenvalues M; and M_;, which are represented in green
and purple, respectively. The arrows at the energy cuts in the valence and conduction
bands represent the in-plane spin texture.

representation, we find the eigenvalues m,/, = 4i and mg/, = &4, and eigenvectors

1
i F1 i 0
s = and ¢, = E (6.2)
+1
The Hamiltonian can be rewritten in the basis of these eigenvectors f;’;}, by considering

the unitary transformation H(k) = U H(k)U, where

U:1<wy+1 0 ) 63)

0 o,+1

This leads to a block diagonal matrix,

H(F)

e 1®ho+ 7. (h—hg), (6.4)



113

Table 6.1 - Winding number for the one-dimensional Hamiltonians hA.;. Without loss of
generality, we impose that £ > 0 and « > 0.

Opr Ot s Cas

i>c/E T T 0
0<e/é<4 F F +1
/€ <0 + F 0

where h = o,vk and hg = (1 + 0,)ak/2, and

ho(k) = ( _53& 5_ng2 ) , (6.5)

The blocks of the Hamiltonian related to the eigenvalues of the mirror symmetry operator
+i are written as hy; = ho = (h — hg), respectively. The Hamiltonian hy; leads to the
band structure discriminating mirror eigenvalues, as represented in Fig. 6.2. Naturally,
the matrix U1 M,U is diagonal.

The Zeeman term associated to magnetic fields perpendicular to the mirror plane,
Hp, = 7, ® 0,B,, commutes with the mirror operator M, (See Fig. 6.1). By taking the
unitary transformation U'Hp U = —7, ® 1B,, we verify that only diagonal terms are
introduced in the Hamiltonian H(k). Specifically, band with different mirror eigenvalues
are shifted due to the Zeeman term Hp,, i.e., he; — hy; F 1B, (See Fig. 6.3), leading to a
Dirac semi-metal for B, > 2.85-107?up eV [?]. The external magnetic field breaks the TR
symmetry, splitting the up and down spin states at the TR invariant-momentum points.
The QSH effect is then spoiled, i.e. Zy = 0, but the band structure is still protected
by the mirror symmetry M,. On the other hand, an external magnetic field parallel
to the mirror plane Hp, =1 ® (0yBy + 0.B.) gives rise to a coupling term between h;
and h_;, breaking both TR and mirror symmetries. The magnetic field also induces a
spin-polarization in the direction in which is applied. For instance, the spin has non-
zero components in the y-axis when the magnetic field UHp, U~ is considered, while the

out-plane spin component is still zero, as apparent from Fig. 6.3.
Mirror Chern number

In 2D-TCIs protected by a mirror plane parallel to the structure, the mirror Chern
number and Hall conductivity are calculated through the Berry phase Q:F(k,, k,)[10, 25].
Here, since the mirror plane is perpendicular to the plane containing the 2D structure, the
mirror Chern number C), is calculated via the winding numbers C.;, which are essentially
the Zak phase for the one-dimensional effective Hamiltonian h.; [38, 39, 40]. To better
understand the mirror symmetry protection, we explicitly calculate this winding numbers

by considering the lattice model given by the substitutions ka — sinka and (ka)? —
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Figure 6.3 - (top) Expected values of the S, spin operators for the bulk band structure in
a magnetic field of 0.065, 0.136, and 0.200 10~2up eV in the z. The band-gap closes for
B, >2.85-10"%up eV. (Bottom) Spin texture for the bulk band structure in a magnetic
field of 0.065-10"2up eV in the y direction. The color code stands for the spin orientation.

2(1 — coska), i.e.,
hyi =0.(£a)+ (0,7 — 1a), (6.6)

where € = —& + 2£(1 — cosak)/a?, 7 = vsin(ak)/a, and @ = asin(ak)/2a. The winding
number is then directly related to band indexes 6 = sgn(z & @) sgn(47) of the states
involved in the band inversion at the symmetry points £ = I', M in the mirror plane, as

calculated for one-dimensional topological insulators [41],
Locsi i
Cai = =5 (idr + 0iln) (6.7)

The conditions leading to a non-zero winding number are summarized in Table 6.1. For
0 < ¢/¢€ < 4 the mirror Chern number is Cy; = %(Cz — C_;)=1, indicating that HF-
honeycomb materials are DTIs protected by both the TR-symmetry and the mirror sym-

metry operator M,. This can also be verified from [38, 7],

1 [  h,0,h, —h,0.h
Ci=— dk—2+2 Y= 2 6.8
27r/0 h? + h2 (68)
where we consider the unitary transformation xh;(k)x™* = hol + h,o, + hyo,, with

X = ioy/ V2. Naturally, external magnetic and electric fields can be used to remove this

topological protection, which would allow to control the nano-ribbon electronic struc-
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ture, e.g., the band-gap and spin texture, as we show below.
Transistor model: transverse external electric field

Metallic edge states, the most interesting feature in both TCIs and QSHIs, are com-
puted by considering open boundary conditions in the tight-binding model of Ref. [32].
First, we confirm the presence of edge states preserving the TR symmetry, i.e., anti-
propagating spin current in each edge. The spin is forced to be oriented in the z-axis to
preserved the mirror symmetry in armchair nano-ribbons, as shown in Fig. 6.4a. There-
fore, different from the out-plane spin polarized edge states in the known QSHIs, the
states spatially localized in different edge and with the same momentum also have the
same spin direction (See Fig. 6.4c). The spin-flip is then required for scattering processes
involving state spatially localized in different edges. This spin texture has been also ob-
served in curve QSHIs [42]. In zigzag nanoribbons, the mirror symmetry is intrinsically

broken and hence, the spin is not only oriented in the z-axis [32].

An external electric field breaking the mirror symmetry M, can be introduced by
modifying the on-site term, i.c., &,(k) = e(veck) + naeEy/N, where n is the index of the
Bi atoms in a nanoribbon whose unit cell is formed by N cells along the z-axis, a is the
lattice constant, and e is the electron charge. We find that this field induces a non-zero
out-plane spin-polarization, as represented in Fig. 6.4. The electric field effect can be
understood using the phenomenological model describing the Rashba effect in inversion
symmetry braking systems: the electric field E induces an momentum-dependent Zeeman
energy o = —pupBess - o with Buyp = E X Tk /mec® [43, 44]. In our particular case, the
momentum carried by the electrons at the edge is oriented along the y-axis and the electric
field is transverse to the nanoribbon E = Eoz, resulting in a effective field along the z-
axis Boyr = (jup/mec®)Eokys. This odd-in-k effective field, i.e., Bosp(k) = —Besr(—k),
only appears when the mirror symmetry is broken, exactly in the same way that the
Rashba effect depends on the inversion symmetry breaking [44, 45]. The odd dependence
on k imposes that the total spin-polarization component vanishes, preserving the TR-
symmetry, which is consistent with the spin-polarization observed in Fig. 6.4b. Although
Rashba-split surface states coexists with surface states in the 3D TIs due to the band
bending and structural inversion asymmetry [46, 47, 48], the consequences of the Rashba
effect and transverse electric fields in the edge states have not been widely explored [49].
However, the control of the spin-polarization in non-topological ferromagnetic graphene
nanoribbons has been recently proposed [50]. The proposed spin-polarization control
is different form the dynamic spin-orbit torque in anti- and ferromagnetic 2D and 3D
TIs [51, 52, 53, 54, 55], since the effective field geff appears for the equilibrium carrier

spin density configuration and does not required magnetic order.

The change of spin orientation suggests that a simple transistor model can be con-
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Figure 6.4 - Expected values of the spin operator for the band structure of a nanorib-
bon 33.6 nm width armchair terminated for (top) Ey = 0eV/A and (bottom) E, =
2.1072eV/A. Here, Ey is an external electric field breaking the mirror symmetry M,
(blue plane). The color code stands for the spin orientation. The spin texture is also
schematically represented in a transistor model: a nanoribbon connected to two ferro-
magnetic contacts (FM). This structure is deposited in a substrate (gray area). States
with eigenvalue symmetry operator +4, which are only defined for Fy = 0, are represented
by purple and green, respectively.
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Figure 6.5 - Expected values of the .S, and S, spin operators for the band structure of a
nanoribbon 33.6 nm width armchair terminated for magnetic field of 0.035 in the (top)
and (bottom) y direction. The color code stands for the spin orientation.

structed. Specifically, if the armchair nano-ribbon is connected to ferromagnetic elec-
trodes, the electrons in the edge states are not detected by a drain whose magnetic
moment is oriented along either z- or y-axis, as schematicaly represented in Fig. 6.4. This
corresponds to the Off of the transistor. If an electric field perpendicular to the mirror
plane is turned on, the electrons in the edge states have a non-zero probability of being
detected by the electrode (See Fig. 6.4). Different from the transistors based on TClIs, in
the proposed DTC insulators, the switch is not defined by the band-gap opening, but the

spin direction.

Finally, we verify the mirror symmetry protection in the bulk states by looking at
the spin texture of the nanoribbon band structure for different direction of a applied
magnetic field. For magnetic fields perpendicular to the mirror plane, edge states are
still gapless, but the Dirac point is shifted from the I' to k-points preserving the mirror
symmetry. Naturally, band-gap size engineering can also be achieved by applying an
external magnetic field that breaks both TR and mirror symmetries, as represented in
Fig. 6.5. For instance, a magnetic field applied in the y-direction opening the band-gap

in the edge states, leads to a normal insulating behavior.
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Conclusion

Summarizing, we proposed a transistor model using the spin-direction as a switch,
based on the fact an external electric field breaking the mirror symmetry induces a spin-
polarization parallel to the mirror plane in HF honeycomb lattice materials. Using DFT
calculation, tight-binding model, and topological invariant calculation, we found that
these systems can exhibit DTC leading to edge states protected by the TR and mirror
symmetry. An in-plane magnetic fields B = B,Z, breaking the TR-symmetry and pre-
serving the mirror symmetry M,, leads to a displacement of the Dirac point formed by the
edge states in the reciprocal space, also confirming the topological mirror symmetry pro-
tection. Additionally, an band-gap sizes engineering can be performed by breaking both
TR and mirror symmetries applying and external magnetic field parallel to the mirror

plane.
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7. Microscopic origin of bulk-states near the Dirac-
point in rhombohedrical topological insulators

Topological insulator (TI) materials have attracted a lot of attention over the re-
cent years [1, 2, 3]. Their unusual metallic surface electronic structure on an inverted
bulk band gap and the time reversal (TR) topological protection of these states, which
forbids the backscattering, make TIs very fascinating materials [4, 5, 6]. Due to the ad-
vances in synthesis techniques|[7] and their simple mathematical [8] and computational
modeling[9], BiySes-like materials have been referred as the “hydrogen atom” of the
3DTI[10]. These systems have been proposed as platforms for spintronic devices based on
the control of induced magnetic moment direction [11], surface barriers[12], and single-

atom magnetoresistance[13].

In addition to the metallic surface topological protected states in a insulating bulk, ex-
periments find that BisSes-like materials exhibit electronic scattering channels, attributed
to the presence of bulk states near in energy to the Dirac point[1, 5, 14]. These ubiquitous
bulk states are believed to prevent the observation of the expected unusual electronic and

transport properties governed by surface states in 3DTIs[14, 15, 16].

First principles GIW calculations for surface states [17, 18, 19] show that bulk states
of BisSes thin films are shifted below the Dirac point, while this is not the case for BiyTes.
In contrast, other bulk band structure calculations show that there is barely any energy
separation between the Dirac point and the bulk valence band maximum [19, 20, 21]. This
is at odds with recent experimental results [16] that, by investigating Shubnikov-de Haas
oscillations in this material, showed the coexistence of surface states and bulk channels
with high mobility.

In order to obtain insight on this problem and understand the experimentally observed
magnetotransport properties of thin films of rhombohedral TI materials, one needs an
effective model capable of describing both the topological surface states as well as the
bulk ones over the whole Brillouin zone. In addition, the effective Hamiltonian has to
account for the presence of external magnetic fields and be amenable to model disorder
effects, which is beyond the scope of first principle methods. The main purpose of this
paper is to put forward a tight-binding model that fulfills these characteristics.

Based on symmetry properties and k - p perturbation theory, Zhang and collabora-
tors [8] derived a Dirac-like Hamiltonian model describing the low energy band structure
around the I'-point of BisSes-like 3DTIs. Subsequently[22], a tight-binding effective model
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Figure 7.1 - (a) Bulk band structure of BiySes. The color code stands for the projections
of the p, Bi orbitals (red), p,p, Se orbitals (blue), and p, Se orbitals (green) in the wave
function. The maximum and local maxima of the valence band are denoted by VBM and
VBM’, respectively. Panels (b) and (c) give the p, and p,p, contributions of the J =1/2
and J = 3/2 bands, respectively.

has been proposed to describe the Brillouin of these systems, realizing both strong and
weak TIs. However, the basis set used in such works fails to account for bulk states in

the energy vicinity of the Dirac point and, hence, their effect on the electronic properties.

Here, we propose an effective tight-binding model that provides insight on the above
mentioned bulk states close to the Fermi energy that potentially spoil the bulk-boundary
duality. In the presence of disorder these states can mix with the surface ones, quenching
the topological properties of the material. We also use our model to discuss some known
mechanisms to cause an energy shift of the bulk states, such as, stacking faults [23] and

applying an external electric field [24].
7.1 Tight-binding effective model

We begin this section by reviewing the key symmetry arguments that allow one to
obtain a simple effective tight-binding model for BisSes-like 3DTTs. Next, we present the
ab initio electronic structure calculations on which our effective tight-binding model is
based.

The crystalline structure of BisSes-like 3DTIs is formed by Quintuple-Layers (QL)
characterized by D3,(R3m) point group symmetries [5]. The BizSe; QL unit cell is com-
posed by two bismuth and three selenium atoms [5]. The QL-QL interaction is weak,
mainly ruled by the Van der Waals-like interaction [5, 8, 23]. This allows one to model
each QL unit cell by a triangular lattice site. Following the approach presented in Ref. [§],
the BiySe; hexagonal unit cell is conveniently described by three triangular lattice layers
stacked in the z direction, instead of considering three QL unit cells. This simple model

preserves the symmetries of the D3,(R3m) point group, namely: i) threefold rotation
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symmetry Rj along the z axis, i) twofold rotation symmetry Ry along the x axis, i)

inversion symmetry P, and iv) time-reversal symmetry 7.

It is well established [8, 5] that the bulk wave function at the I" point can be accurately
described by a set of few effective states {|A7, j.)}. Here, 7 is the state parity, J is the total
angular momentum with projection j, on the z axes, and A labels the Bi and Se orbital
contributions. We use these states to obtain an effective Hamiltonian that reproduces the

bulk states of rhombohedral TIs calculated using ab initio methods.

The first-principle calculations are performed within the Density Functional Theory
(DFT) framework[25], as implemented in the SIESTA code[26], considering the on-site

approximation for the spin-orbit coupling[27, 28]. The Local Density Approximation

(LDA)[29] is used for the exchange-correlation functional.

Figure 7.1 summarizes our ab initio results for BisSes. The color code represents the
contribution of the Bi and Se p, orbitals and the Se p,p, atomic orbitals to the electronic
structure. The main orbital contributions are associated with p orbitals corresponding
to J = 3/2,1/2 and j, = £3/2,£1/2 states (Fig. 7.1a). To conserve the total angular
momentum the |A3i/2, +3/2) effective states must be a linear combination of p, and p,
orbitals, whereas the |[AF, +:1/2) states correspond to a linear combination of all p orbitals
(Fig. 7.1b and Fig. 7.1c). The symmetry properties of the |A7, j.) states are discussed

below.

The bulk Valence Band Maximum (VBM) is located along the Z — F symmetry
path, as shown in Fig. 7.1a. In addition, one finds two local maxima, denoted by VBM’,
along the FF — I" and ' — L lines, both close to the I'-point. In line with previous
results[22], we observe that both VBM and VBM’ have a strong p, Se orbital character.
However, we find that the so far neglected p,p, orbitals play a key role for an accurate

description of the orbital composition of the valence band maxima, as we discuss below.

Along the I' — Z symmetry line, the R3 symmetry is preserved. Thus, the [A; /9, £1/2)
and |Az/e, £3/2) effective states do not mix. In contrast, in the I' — L and I' — F' paths
the R3 symmetry is broken. This allows for the hybridization of p, atomic orbitals with
p, and p, ones. We find that this hybridization can be rather large, as clearly shown
by Figs. 7.1b and 7.1c, where we present the Se orbital composition of the J = 1/2 and
J = 3/2 bands along the Brillouin zone.

Since the valence band maxima do not belong to the I' — Z symmetry line, their
orbital composition is a superposition of all p Se-atomic orbitals. As a consequence, a
minimal Hamiltonian aiming to effectively describe VBM and VBM’ needs to take into
account the states associated with the p, and p, orbitals, instead of including just the

states with p, character [8, 22].
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To calculate the surface electronic structure in the presence of surface projected bulk
states, we consider a tight-binding model with eight states, namely, the ]Sefﬂ, +1/2) and
]BiT/Q, +1/2) states responsible for the band inversion, and [Se; ,, £3/2) and ]Seg'/Q, +3/2)
that dominate the most energetic J = 3/2 band. Using this basis, we write the 8x8

k) Ho(R)
Hik) = ( Hio(k) Hapolk) ) (1)

where H,/5(k) is the standard 4x4 Hamiltonian discussed in the literature [8, 22|, that
considers only [Bi},, +1/2) and [Se; ,, £1/2) states ! Our model introduces Hs/»(k), a
4x4 Hamiltonian associated with the |Sey,, £3/2) and |Se§/2, +3/2) states, and Hin (k)

the corresponding coupling term.

Hamiltonian:

For a given total angular momentum J the matrix elements in H (k) read
[H(K)]sir = € (k)i + Z (tZ;eik:au + téi’:eik:bu) 7 (7.2)
v

where the states are labeled by i = (A, J,7,J.), €i(k) are on-site energy terms, and
t7 = (n,A%,j.|Hn + ¢,A/,j.) are the corresponding nearest neighbor QL hopping
terms, with n, and 7 indicating lattice site and orbital parity, respectively. Here ¢ = a,,
or b,, where +a, stands for the 6 intra-layer nearest neighbor vectors of each trian-
gular lattice, namely, a; = (a,0,0),ay = (—a/2,v/3a/2,0),as = (—a/2, —v/3a/2,0),
while +b, denotes the 6 inter-layer nearest neighbors vectors, by = (0,v/3a/3,¢/3), by =
(—a/2,—\/3a/6,¢/3), by = (a/2,—\/3a/6,c/3) with a = 4.14 A and ¢ = 28.70 A [5].

Exploring the system symmetries, we find constraints relating the nearest neighbors
QL hopping terms t¥, thereby reducing the total number of possible hopping terms from
432 to 30 independent ones. The corresponding 30 tight-binding parameters are deter-
mined by fitting the tight-binding model bulk band structure to the one calculated with
DFT, shown in Fig 7.2. We present the complete Hamiltonian and provide more details

on the fitting procedure in the next section.

The proposed Hamiltonian captures the low-energy ab initio band dispersion, even
for k-points far from I', overcoming an intrinsic limitation of the k - p models proposed
in the literature to describe the band inversion at the I' point. We show in the next
section how to reduce our model to a k - p Hamiltonian by taking the approximation
k — T and relating, for instance, the hopping terms tZ; and tff: to the perturbation
theory parameters of Ref. [8]. The inclusion of additional bands does not affect the band

inversion, for instance, the J = 3/2 bands have much lower energies than the J = 1/2

1'We note that Ref. [8] presents an 8 x 8 Hamiltonian, which is slightly different from ours, but does
not explore its consequences of the additional bands. The focus of this seminal paper is the study of

Hy (k).
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Figure 7.2 - Comparison between the DFT (gray solid lines) and the tight-binding model
(red dotted lines) bulk band structure of BiySes.

bands.
7.2 Full effective Hamiltonian and model parameters
The form of proposed effective Hamiltonian is obtained by considering symmetry ar-
guments only, which allows one to address the complete family of rhombohedral materials.
In turn, the model parameters are determined by fitting the electronic properties obtained

from a given first principle calculation.
In this section we discuss in detail the reasoning behind the construction of the model

and present explicit expressions for the matrix elements of the resulting effective Hamil-

tonian. We also present the model parameters for both Bi;Se; and BisTez compounds.

Let us begin recalling that the effective Hamiltonian H(k), Eq. (7.1) reads

 Hapl) Ho(B)
Hlk) = ( Wi (k) Hayalk) ) (73)

The states with effective angular moment J = 3/2 are combination of two representa-
tions of the double group Dj,;(R3m). Therefore, we consider the states with defined
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representation:
1
A5 = (1A2,3/2) + 1375, -3/2)) . (7.4)
and
[4.05) = = (1A5,,3/2) — 1A%, -3/2)) (75)
’ \@ / /

The states {|A7,j.)} are transformed by the symmetries operator as

1. Threefold rotation Rs:

|Ai7]-—‘4,5> i |Ai7 F4,5> )
|A%,£1/2) =5 |A%,£1/2).

2. Twofold rotation Rs:

|A*,Ty) = £ |AFTy),

|A*,T5) = Fi|A%,T5),
|AT, £1/2) —i|AT, F1/2),
|A7, £1/2) = — i |[A, F1/2).

3. Inversion P:

|A*,Tys) = & |AF,Tys5),
AT, a) = £ A% a) with o=+1/2.

4. Time reversal T

|Ai, F4,5> and |Ai7r5,4> )
|A, +£1/2) — 4+ |A,F1/2).

These symmetry transformations relate the hopping terms to each other, as shown
for t, = (0,Bi],, 1/2|Hle,, Bij)y, +1/2) in Table 7.1.

These relations allow us to write the matrix elements in a simplified way. For instance,
the matrix element [H(k)]11, Eq. (7.2), is written as

[H(k)]u = Eu(k?) + a11(k), (76)
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Table 7.1 - Symmetry operations on the hopping matrix element t};i =
<O,Bif/2,—|—1/2|H\c,,,Bif/2,—|—1/2), where ¢, = a, or b,, and v = 1,2 or 3. (For com-
pleteness, we recall that ¢72 = (0, Bi] ,, —1/2|H|c,, Bij 5, —1/2).)

11 11 11 11 11 11
tahbl ta2’62 ta3>b3 t_dl,—bl t—a2,—b2 —ag,—bs
7' 22% t22* t22* 22% 22% t22*
a1,b1 1a27b2 11a3,b3 —(ﬁ,—bl —111%7—52 —tﬁ:—bs
P _Clli —bl _lll?_bz —(1l:1;A—b3 al,bl 1tla2 b2 1tla3Ab3
o tgg s tgé b t%'bQ 2_2a3’_b3 5 b t2_2a2'_b2
Ry t(ll by ta3 b3 ta? by t—al,—fn t—(ls —b3 t—az —by
with
6
_ 11 _ik-a 11 ik-b
ag (k) = g (toh e 4 gyleto)
v=1
3
_ 11 ik-a, 11 —ik-a,
= E (taye +i,.€
v=1
11 Jik-b 11 —ik-b
et gl emb) (7.7)

Using Table 7.1, a1 (k) can be rewritten as

3
an :Z [ttlzl,, (eikuy + efiku,,) + tllzi (eikb,, + efik-bl,)]

v=1

=6 (t3' cosk - a, +t, cosk - b). (7.8)

Time-reversal symmetry 7 and the two-fold rotation R, impose the relation 3} = t22* =
t22 which in turn requires ¢3! be real. A symmetry analysis, expanding Table 7.1 to other
ij values, shows that tiJ =t and t; =t

In the same way, we use the symmetry operations to calculate all terms for the Hamil-
tonian matrix elements describing rhombohedral TIs, which also imposes the sign and

imaginary phases of the hopping terms, as presented below.

The 4x4 Hamiltonian #,/5(k), associated with the [Se; ,, +1/2) and \Bif/z, +1/2)

states, reads

€1+ a1 0 i()élg i()z14
My oK) = ertan  —iagy iags (7.9)
/ H.c. €3+ Q33 0 ’

€3+ asz
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where the diagonal a;; matrix elements are given by

3 3
i =260 cos(k - a,) + 27 Y cos(k - by) (7.10)

v=1 v=1

while the off-diagonal ones read

a3 = —22t1528m (k-a;)+2t SZsm (k-b;) (7.11)
J=1
oy = 2t sin(k - a1) + e sin(k - a,) (7.12)

4 /3 sin(k - a3)] + 2t11)4[e*i7r/2 sin(k - by)
+ &5 /S sin(k - by) + ¢ /O sin(k - by)].

The 4x4 Hamiltonian, Hj/»(k), associated with the |Sey,, £3/2) and |B13/2,:|:3/2>
states is written as
€5 + Bss 0 1357 358
es+ B —if: B
Hya(k) = S A (7.13)
H.c. g7 + /7’77 0
er + Prr
where
3 3
Bii = 2t¥ Z cos(k - a;) + 2t} Z cos(k - b) (7.14)
j=1 J=1
3
Bsr =267y sin(k - b;) (7.15)
3
Bss =257 "sin(k - a;). (7.16)
j=1

The diagonal on-site energies ¢; of the matrices Hy/o(k) and Hsj (k) are given in
Table 7.2.

Finally, the interaction matrix Hiy (k) is parametrized in block form as

Hins (k) = ( Y5 M7 ) 7 (7.17)
Y35 V37
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where the «’s are 2x 2 matrices given by

Y Bl Ns =
s+ s i+

S (el Bl B el
Ve A+ A+

Vs + s Ve —
Ve + s Ve + e
Vo + V-
Y37 =t a b ax bx
Va7 — V37 Y7 + V37

Let us define
(—1) le DB gin(k - ¢,)

S
S\
Sy
~—
Il
N
ngR

and

where ¢ = a or b, to write

Table 7.2 - On-site energies ¢; (in eV).

&1 £3 €5 g7
BisSes 1.602 -1.374 -1.050 -2.100
BiyTes 0.805 -0.572 -0.9304 -1.900

131

(7.18)

(7.19)

(7.20)

(7.21)

Symmetry considerations allow us to reduce the number of the model parameters to

30 independent ones. The latter are determined by a least-square fitting the bulk band
structure obtained from the DFT calculation described in Sec. 7.1 for BisSes and BiyTes

rhombohedral materials. The obtained on-site matrix elements are given in Table 7.2,

while the hopping matrix elements are shown in Table 7.3.

The important parameters for the TI nature of the material are contained in the H;;

Hamiltonian. The role of the mass term (on-site term) in the band inversion is very well

established in the literature, as well as all remaining matrix elements in H,/, [22, §].

The novelty here are the additional states that correctly account for surface projected
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Table 7.3 - Non-zero hopping matrix elements t¥ with ¢ = a,b in eV. The superscripts
ij listed by the first column correspond to all (symmetry) independent non vanishing
hopping terms.

BiySes Bi, Tes

ij t (eV) t(eV) t (eV) t (eV)
11 —-0.067 —0.240 —0.027 —0.130
33 0.040 0.211 0.015 0.120
95 0.0066 0.095 0.007 0.095
77 —0.0097 0.181 —0.012 0.171
13 0.045 0.210 —0.025 0.210
14 10.190 —0.170 10.210 —0.270
15 0.008 0.100 0.012 0.171
17 —0.008 —0.120 +-¢0.006  —0.012 —0.140 4 40.008
35 —0.082 0.152 —0.093 0.092
37 —=0.090 0.210 —0.110 0.190
57 <1073 0.005 <1073 0.009
o8 0.008 <1073 0.012 <1073

bulk states, in which we have focused our discussion and are represented by Hsz/. As
discussed in Fig. 7.1b and Fig. 7.1c, we do not use an energy criterion, but rather the
total angular momentum and atomic orbitals projection to select the suitable basis to
describe the band interaction giving the shift in the bulk states. For instance, in Ref. [§]
the basis is {[Se; 5, £1/2), [Bi},, £1/2), [Sey),, £3/2), and [Sej 5, £1/2)}. In our work
we use {[Se,, £1/2) ,|Bif/2,:|:1/2>, [Seg 5, £3/2), and |Se;r/2,:|:3/2>}‘ It is possible to
compare the Hamiltonian matrix elements in Ref. [8] with the ones obtained in this work

only for the common elements, as shown in Table 7.4.

Table 7.4 - Relation between the k - p perturbation theory parameters reported in Ref. [8]
with the hopping matrix elements.

k - p parameters

tight-binding parameters

Figij) —(a®/ 2)(?;@ +t)
Ki i —3cty
Q(lj) 6Ctg3b
Py a(3ty* — iv/3t3")
P=Q a3ty +1v/3t,°)
Ps = Q, a(3tl7 +iv/3t)7)
Uss (a2/4)(%t§5 +13°)
Vas (iv/3act}?)
Usz —(a®/2)(3t57 + 857
V37 —302tg’7

7.3 Thin films

In this section we calculate the
films. We take the QLs parallel to

electronic band structure of rhombohedral TI thin

the zy-plane and define the z-axis as the stacking



7.3. THIN FILMS 133

) =

Energy (eV)
o

1 QL 3QLs| | 90QLs

=020 020 020 020 02
k(AT)

Figure 7.3 - Band structure along the I' — M symmetry line, without considering J = 3/2-
states, for different film thicknesses of BisSes.

direction. The thickness of the films is given in terms of Ngqr,, the number of stacked QLs.
The surface corresponds to the outermost QLs. The surface states correspond to the ones

spatially localized in these QLs.

We modify the bulk tight-binding Hamiltonian defined in Eq. (7.1) to account for a

finite number of layers. The slab Hamiltonian consists of intra- and inter-layer terms,

namely [30
[ ] NQL NQL—I
Hatat, = Z chHoe, + Z (chH.c,py +He.). (7.28)
n=1 n=1

The basis is given by |n, k;, ky, A7, j.) with corresponding creation (annihilation) operators

given in compact notation by ¢/, (c,). The intra-layer matrix elements read
6
[Ho(k)]iwr = (k)0 + Z i’ ethar, (7.29)
v=1

The latter are similar to those of Eq. (7.2), but restricted to two-dimensions, namely,

k = (kg ky). In turn, the inter-layer term,
[Heliw =t (7.30)

provides the coupling between nearest neighbor QLs planes.
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Figure 7.4 - Band structure of a BiySes thin film for different thickness values, Ngi, =
1,2,3,6,9, and 32, using our 8x8 tight-binding effective model.

It is well established that a bulk band inversion occurs between states dominated by
p- Se and Bi atomic orbitals with different parities [5]. The four states |Se; 5, £1/2) and
]Bijﬂ, +1/2) form a good basis to describe the surface states at the k-points near the T’
point [8, 22]. However, similarly to bulk systems, this reduced basis also fails to correctly

describe the bulk states close in energy to the Dirac point in thin BisSesz films.

To better understand the importance of the J = 3/2 states, let us first consider a thin
film described by the Hamiltonian H;/,(k) projected out from Hg.p,. Figure 7.3 shows
the finite size effects and how the band structure is modified by increasing Ngq,[30]. For
Naqr, > 3 one clearly observes the appearance of surface states and the formation of a
Dirac cone. For Nqr, > 1 the bulk band gap is recovered. We stress that without the
J = 3/2 states, the model does not show VBM bulk states close to the Fermi level, as
expected from the analysis of bulk band structure (see, for instance, Fig. 7.1). Moreover,
within this simple model the band structure close to the Dirac point along the I' — K

and I' — M paths are identical, which is a rather unrealistic symmetry feature.

The J = 3/2 states modify significantly the electronic band structure. Figure 7.4

summarizes the results we obtain for the 8x8 total effective Hamiltonian, Eq. (7.1).
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Even for a few QLs, the shape of the surface band structure reproduces the qualitative
behavior observed in the bulk LDA-DFT calculations. Figure 7.4 shows that as Ngy, is
increased, the Dirac cone is formed and bulk states appear in the vicinity of the Fermi

level turning the system into a metal.

7.4 Application: Bulk states engineering

S
n

(=]

Energy (eV)

— =)
wh th

Energy (eV)

=
n

K "MK T M

Figure 7.5 - Surface band structure for Nqp, = 20 calculated using the eight bands effective
model with hopping term (repulsion parameter) (a) t;/ = 1.2 eV, (b) t;/ = 1.5 eV, (c)
ty =18 eV, and (d) t;/ = 2.1 eV, where i = (Se,,, £1/2), and j = (Se;f/Q, +3/2). The
color code stands for the magnitude of the projection of the orbitals at the outermost
(surface) QLs. Pure surface states are indicated by blue, whereas bulk states are depicted
in red.

Several strategies have been proposed and used to suppress the scattering channels
associated with the continuous bulk states, like for instance, alloy stoichiometry [31, 32,
33, 34], application of an external electric field[24], stacking faults[23], and strain[35, 36].

Let us now use the effective model put forward in the previous section to discuss some
of these known strategies to shift the bulk band states away from the Dirac point energy,
defined as € = 0.

Our analysis is based on the observation that the energy of the bulk states along
the I' - M symmetry path depends very strongly on the in-plane interaction between
Se; /5, £1/2) and ]Se;ﬂ, +3/2) states. We find that by increasing the matrix elements
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associated with the mixture of the above states the bulk states are shifted up in energy,

as shown by Fig. 7.5.

Hence, as previously proposed [34], one way to engineer the VBM and VBM' states is
by substituting the Se atoms by chemical elements that do not spoil the topological prop-
erties of the material and reduce the interaction between [Se ,, £1/2) and ]Se;/z, +3/2)
states. This effect can be described by a simple model in terms of the direct modification
of the matrix element ¢}/ that mixes the Se, /5, £1/2) and |Se§/2, +3/2) states. In fact, the
band structures obtained for several values of t;’ shown in Fig. 7.5 qualitatively describe

the first-principles calculations for Bis(Se;—.S;)s alloys [34].

Alternatively, the double degenerate surface-state bands due to the presence of two
[111] cleavage surfaces in a slab geometry can be removed by applying a perpendicular
electric field EyZ [24]. The Dirac cone associated with the surface at the highest potential
energy can be shifted above the VBM, leading to a suppression of the scattering chan-
nels between the topologically protected metallic surface states and the bulk states. We
describe this effect using our tight-binding effective model by modifying the on-site term
£(k)0;; in the inter-layer matrix elements associated with each QL. As a result, Eq. (7.29)

becomes

[Ho(ka, ky)lnij = En(R)0i; + >t e, (7.31)

where &, (k) = (k) +nceEy/Ngr, n is the layer index, and e is the electron charge. This
simple approach captures the shift of the Dirac cone located at the surfaces corresponding
to the QL with n = Ngr and n = 0. Figure 7.6a show the effect of an electric field of
E=5x10"3V/A on a thin film of Ng, = 9.

Another band engineering strategy has been suggested by ab-initio atomistic inves-
tigations on the role played by extended defects, like stacking faults, on the structural
and electronic properties of 3D topological insulators [23]. In R3m structures the typi-
cal stacking is a ABCABC configuration, that is, each QL is rotated with respect to its
adjacent QL by 120°. When a QL is “removed” leading to a ACABCA, ABABCA, or
ABCBCA stacking configuration, the defects is called an intrinsic stacking fault. The
inter-QLs distance decreases as a consequence of these stacking faults, making the Van
der Waals inter-QLs interaction weaker and changing the on-site potential of the QLs
in which the structural defect is located [23]. Thus, it is relatively easy to account for
this effect within our model, namely, we rewrite the on-site energy and the inter band

interaction as ¢, (k) — deo and tijV — dt.

Stacking faults nearby the surface layers of BisSes give rise to a positive energy shift of
the bulk states with respect to their energy in a pristine system[23]. This shift is typically
about 75 meV. Thus, we obtain a qualitative description of the stacking faults effect by
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Figure 7.6 - Electric field (left) and stacking faults (right) effect of the band structure of a
BisSes thin film of 9QLs. The splitting between the Dirac cones associated with different
surfaces is represented by the arrow. The color code quantifies the surface/bulk character
of the electronic states, see caption of Fig. 7.5.

fitting deg and dt to the DFT results only for the QLs with this structural defect, see
Fig. 7.6. Our simplified model and description allows for the study of thin films with a
large number of QLs.

7.5 Scattering Rates

Rhombohedral topological insulators such as BisSes have demonstrated surface state
mobilities about of 10 cm?V s~ When the thickness of a 3D TI thin film is reduced to
several quintuple layers (QLs), the high mobility is suppressed to 10> — 10° cm?V~'s~1.
The suppression of the mobility in the low temperature transport measurements has been
attributed to the strong scattering from the p-type dopants that are required to move the
Fermi level close to the Dirac point and charged surface adsorbates. Theoretical studies
focused on scattering between topological states in opposite surfaces show that the Inter-
surface coupling in thin-film topological insulators can reduce the surface state mobility
by an order of magnitude in low-temperature transport measurements. The reduction is
caused by a reduction in the group velocity and an increased S, component of the surface-
state spin which weakens the selection rule against large-angle scattering. the effect of

inhomogeneities on the transport of T1I surface states on a single surface.

The surface states of 3D TI thin films couple and hybridize the opposite spins of the
top and the bottom surface states. As a consequence of this, the original momentum-
spin (k-s) relation that prohibits back-scattering of surface states is broken. However, this

effect does not explain fully the reduction in the carrier mobility in TT thin films compared
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Figure 7.7 - Band structure for 4QLs (left) and 20QLs (right). E, represented the energy
label in which the scattering rate is calculated.

to the expected value of bulk surface states. According to experimental results, bulks
states near the Fermi energy can be detrimental to topological conductivity conductivity.
In plain words, continuous bulk states can be coupled to the topological surface states. the
majority of 3D topological insulators materials despite of support helical metallic surface
states on an insulating bulk, forming topological Dirac fermions protected by the time-
reversal symmetry, exhibit electronic scattering channels due to the presence of residual
continuous bulk states near the Dirac-point[1, 5]. GoW, and GW calculations show that
in the particular case of BisSes, the bulk states are near the Dirac cone instead of being

in the same energy level of this, as other rhombohedral TI systems[20, 21].

When the thickness of a 3D TT thin film is reduced to several quintuple layers (QLs),
the scattering processes caused by coulomb impurities allow electronic transitions between
the continuous bulk states and the surfaces states, and the order of magnitude of these
transitions are of the order of those found when the opposite spins of the top and the
bottom surface states are hybridize. We calculated the scattering rate for electronic
transitions from the surface states to residual bulk states for several values of QLs. We
also find that for high temperatures, the conductivity has the same behavior of native

bulk conductivity.

To consider the effect of bulk states, we use the previously proposed Hamiltonian
model, in which are included the effective states with total angular moment J = 3/2.
Far from the I' point, such states and the J = 1/2 effective states, which are involves
in the band inversion, are mixed. This interaction leads to a band repulsion depending
on the number of QLs forming the TI thin film. In Fig 7.7a we shown the surface band
structure for 20 QLs calculated with the tight-binding model and energy plane, F,,, that
cuts the surface states and the continuous bulk states. The k,k, band profile showing

the surface states around the I' point and the bulk states in the I' — M symmetry
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Figure 7.8 - Normalized scattering rate for 5QLs (left) and 20QLs (right) for -30meV and
the coulonm impurity in the surface top. The black line represent the scattering rate for
the Dirac cone in the surface top, whereas the red line represent the scattering rate for
the Dirac cone in the surface bottom.

path are represented in the 7.7b. An electron in the surface states (SS), [{rgqn), can be
scattered in a elastic processes to the bulks states (BS), [¢k,4.n), where kss and kgg are
the momentum of the surface and bulk states, respectively. These k-points form a 6 angle

at a constant energy plane, E,, = E,/, where n is the band index.

To quantitatively determine the mobility in TT thin films, a four-band semi-classical
calculation is carried out. For a screened Coulomb scattering center at layer j, the Hamil-

tonian matrix element between states ¢, x, ) and Wk;,k;,,n’>> is written as,

D et @y (B 7.32

k’n’kn AZZ % /q +B2 ( )
where A is the unit area, ¢. is the single-electron charge, x = 100¢, is the static
diclectric constant, 3 = |k — K|, and z = |i — j|A is the vertical distance between
site ¢ and the layer of the Coulomb scattering center j. The discretization length A =

0.3nm. Equation 7.32 results from the 2D Fourier transform of the screened Coulomb

2mqZ dp
Kk dep

q et , where p is the

potential T—-. The inverse screening length ¢o is given by go =

2—d1men81onal (2D) charge density and €p is the Fermi energy.

Using the bare Coulomb potential, the scattering rate due to each impurity on layer
J is,

4 g (1 — cos(0))5(E — E), (7.33)

OFE = T, 1 R

where

N
e =D R (k)P (7.34)

i a=1
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Figure 7.9 - Normalized scattering rate for 20QLs varying the energy label (using the same
normalization parameter). The Coulumb impurity is in the surface bottom. According to
Fig. 7.8. the surface contribution (lower right side) decrease with increasing the energy
label.

First we study the behavior of dimensionless overlap integral, Iy, ¢, for different con-
stant energy planes and before we consider different thickness of a 3D TT thin film in

terms of a number of QLs.

For few QLs, the Coulomb scattering impurity couples the bulk states and the surface
states. Thus, the scattering rate for transitions from [ qn) t0 [Ykyen) for topological
surface states coming from the top surface has the same order of magnitude that the
scattering rate involving states located on the bottom surface. That is, since for few QLs
the surface are coupled, the scattering processes involves the bulk states affects similarly
both bottom and top surface states. Therefore, scattering processes |[kogn) = |Vkssn)
are as important as the scattering |[Yresn) — |[Ukpsn), and hence, for few QLs these

scattering processes can be detrimental to the electronic transport.

In systems formed by a large number of QLs, only when the layer of the Coulomb
scattering center, 7, is near the top (bottom) surfaces, the electrons can be scattered from
surface states to the bulk states and hence, the scattering processes [Vkoon) = |[Ukpgn)
are relevant. In plain words, the elastic scattering processes in electronic transitions from
spatially distant surfaces states of Coulomb impurity to the bulk states are negligible,
whereas for surface states near the Coulomb impurity the scattering rate have the same
order of magnitude of the surface-surface scattering processes for systems with few QLs,

as shown in Fig 7.8.

At a energy plane very near the Fermi energy, the scattering rate is negligible for any
thickness, any values of lgss and EBS, and any position of the Coulomb scattering center.
For energy planes above energy Fermi the scattering rate is very small, which is expected
because in this energies the surface states do not have any mixing with the bulk states. In
contrast, when the energy plane is below the Fermi energy, the scattering rate increases
as the position of the energy plane relative to the Fermi energy decreases. For instance,
when the energy plane is in the F,, = —30 meV, the order of magnitude of the scattering

rate increases by four times, as shown in Fig 7.9. This suggest that the temperature
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Figure 7.10 - The conductivity (red line) and resistivity (black line) as function of the
temperature.

can induce elastic scattering processes associated with electronic transitions from surface
states to continuous bulk states. To study the effective current associated with electronic
transitions |Vrggn) = |Vkyem), We consider a semiclassical model,

o df (E,T)
Olpggm— g sn) () = /_ Spr(E) = (7.35)

where f(E,T) is the Fermi-Dirac distribution. The resistivity Rss—ps = 1/0)p, . )—fn ) (1)
increase as the temperature increase. Since, this resistivity is associated with electronic
transition between bulk and surface states, it represents the detriment of the topological
current caused by such scattering processes. Thus, at low temperatures the electronic
transport is dominated by the topological current. However, when the temperature in-
crease the surface-bulk transitions increase by one order of magnitude. At room temper-
ature, the resistivity reaches a constant value, and hence, it is expected that the conduc-
tivity decrease by one order of magnitude. this suggest that the surface-bulk transition

can be explain the experimental reduction of the topological current (See Fig. 7.10).
7.6 Conclusion

We have revisited the band structure calculations of rhombohedral topological insula-
tors, both bulk and thin films, and investigated the occurrence of bulk states at the Fermi
level. Based on ab initio calculations, we construct a simplified tight-binding model con-

sidering the states with angular momentum J = 1/2 and J = 3/2 and therefore, taking
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explicitly into account the p,p, Se orbitals contributions.

Our model shows that the energy of bulk states near the Dirac-point is associated with
a band mixing, which is mainly ruled by the hopping term between p. and p,p, states.
The valence band maximum appears in the symmetry path in which the R3 symmetry is

broken. In this situation, the J = 3/2 states can mix with the J = 1/2 ones.

We illustrate the versatility of our tight-binding model by studying some strategies
to eliminate and/or shift the bulk states away from the Fermi surface. We show that
the band structures obtained using our simple model reproduce qualitatively very well

computationally costly ab initio calculations found in the literature.

In summary, we show that our simple effective model captures the main surface band
structure features, allowing to explore strategies to perform a continuous bulk states engi-
neering and opening the possibility to model disorder, which is ubiquitous in rhombohedral

TTs and beyond the scope of ab initio calculations.

We also investigated the relevance of electronic transitions between surface and bulk
states in electronic transport in a thin film of rhombohedral T1. Through a effective Hamil-
tonian considering the bulk states near the Fermi energy, we calculated the amplitude of
elastic scattering processes for several temperatures, thickness of the slab and angles be-
tween the initial and final momentum. In a semiclassica model for the current associated
with this processes, we find that the resistivity for low temperature is near zero and for
high values of temperature increase by one order of magnitude, which can be explain the
reduction in the topological current. We find that the limit temperature to obtain a clean
topological current is about 10K. This results allow understand experimental results and
contribute to the understanding of the fundamental physics of the topological insulator

materials.

Bibliography

[1] M. Z. Hasan and J. E. Moore, Annu. Rev. Condens. Matter Phys. 2, 55 (2011).
[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

[3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

[4] J. Maciejko, X.-L. Qi, H. D. Drew, and S.-C. Zhang, Phys. Rev. Lett. 105, 166803
(2010).

[5] H.Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438
(2009).

[6] C. Mera Acosta, O. Babilonia, L. Abdalla, and A. Fazzio, Phys. Rev. B 94, 041302
(2016).



BIBLIOGRAPHY 143

[7] S. V. Eremeev, G. Landolt, T. V. Menshchikova, B. Slomski, Y. M. Koroteev, Z. S.
Aliev, M. B. Babanly, J. Henk, A. Ernst, L. Patthey, A. Eich, A. A. Khajetoorians,
J. Hagemeister, O. Pietzsch, J. Wiebe, R. Wiesendanger, P. M. Echenique, S. S.
Tsirkin, I. R. Amiraslanov, J. H. Dil, and E. V. Chulkov, Nat. Commun. 3, 635
(2012).

[8] C.X. Liu, X. L. Qi, H. J. Zhang, X. Dai, Z. Fang, and S. C. Zhang, Phys. Rev. B
82, 045122 (2010).

9] K. Yang, W. Setyawan, S. Wang, M. Buongiorno Nardelli, and S. Curtarolo, Nat.
Mater. 11, 614 (2012).

[10] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor,
R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).

[11] J. Henk, M. Flieger, I. V. Maznichenko, I. Mertig, A. Ernst, S. V. Eremeev, and
E. V. Chulkov, Phys. Rev. Lett. 109, 076801 (2012).

[12] A. Narayan, I. Rungger, A. Droghetti, and S. Sanvito, Phys. Rev. B 90, 205431
(2014).

[13] A. Narayan, I. Rungger, and S. Sanvito, New J. Phys. 17, 033021 (2015).

[14] S. Kim, M. Ye, K. Kuroda, Y. Yamada, E. E. Krasovskii, E. V. Chulkov,
K. Miyamoto, M. Nakatake, T. Okuda, Y. Ueda, K. Shimada, H. Namatame,
M. Taniguchi, and A. Kimura, Phys. Rev. Lett. 107, 056803 (2011).

[15] M. Brahlek, N. Koirala, N. Bansal, and S. Oh, Solid State Commun. 215-A1216,
54 (2015).

[16] E. K. de Vries, S. Pezzini, M. J. Meijer, N. Koirala, M. Salehi, J. Moon, S. Oh,
S. Wiedmann, and T. Banerjee, Phys. Rev. B 96, 045433 (2017).

[17] O. V. Yazyev, E. Kioupakis, J. E. Moore, and S. G. Louie, Phys. Rev. B 85, 161101
(2012).

[18] T. Forster, P. Kriiger, and M. Rohlfing, Phys. Rev. B 92, 201404 (2015).
[19] T. Forster, P. Kriiger, and M. Rohlfing, Phys. Rev. B 93, 205442 (2016).

[20] I. A. Nechaev, R. C. Hatch, M. Bianchi, D. Guan, C. Friedrich, I. Aguilera, J. L. Mi,
B. B. Iversen, S. Bliigel, P. Hofmann, and E. V. Chulkov, Phys. Rev. B 87, 121111
(2013).

[21] I. Aguilera, C. Friedrich, G. Bihlmayer, and S. Bliigel, Phys. Rev. B 88, 045206
(2013).



144
[22]

[23]

[24]
[25]

[26]

[27]

BIBLIOGRAPHY

S. Mao, A. Yamakage, and Y. Kuramoto, Phys. Rev. B 84, 115413 (2011).

L. Seixas, L. B. Abdalla, T. M. Schmidt, A. Fazzio, and R. H. Miwa, J. Appl. Phys.
113, 023705 (2013).

O. V. Yazyev, J. E. Moore, and S. G. Louie, Phys. Rev. Lett. 105, 266806 (2010).
K. Capelle, Braz. J. Phys. 36, 1318 (2006).

J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordején, and
D. Sénchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

L. Ferndndez-Seivane, M. A. Oliveira, S. Sanvito, and J. Ferrer, J. Phys.: Condens.
Matter 18, 7999 (2006).

C. M. Acosta, M. P. Lima, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, Phys. Rev.
B 89, 155438 (2014).

J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
K. Ebihara, K. Yada, A. Yamakage, and Y. Tanaka, Physica E 44, 885 (2012).

J. Zhang, C. Z. Chang, Z. Zhang, J. Wen, X. Feng, K. Li, M. Liu, K. He, L. Wang,
X. Chen, Q. K. Xue, X. Ma, and Y. Wang, Nat. Commun. 2, 574 (2011).

T. Arakane, T. Sato, S. Souma, K. Kosaka, K. Nakayama, M. Komatsu, T. Takahashi,
Z. Ren, K. Segawa, and Y. Ando, Nature Communications 3, 636 (2012).

Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B 84, 165311
(2011).

L. B. Abdalla, E. Padilha José, T. M. Schmidt, R. H. Miwa, and A. Fazzio, J. Phys.:
Condens. Matter 27, 255501 (2015).

Y. Liu, Y. Y. Li, S. Rajput, D. Gilks, L. Lari, P. L. Galindo, M. Weinert, V. K.
Lazarov, and L. Li, Nat. Phys. 10, 294 (2014).

S. H. Park, J. Chae, K. S. Jeong, T. H. Kim, H. Choi, M. H. Cho, I. Hwang, M. H.
Bae, and C. Kang, Nano Lett. 15, 3820 (2015).



145

8. Conclusions

Throughout this work we use different strategies for the study of systems with topolog-
ical boundary states protected by the time-reversal symmetry. Specifically, we integrate
the use of DFT calculations and tight-binding approximations to obtain models describing
these systems. These models are indispensable for the study of electronic transport and
the effect of external potentials, e.g., electric and magnetic fields. We believe that the
systematic use of this methodology and the new models found in this work are a great
contribution not only in the understanding of topologically protected systems, but also

in the methodologies used for the study of these systems.

We believe that there are new ways to use the spin-texture of topologically protected
boundary states: instead of looking for new materials with a large enough gap size, we
propose the use of bulk states, which in principle would exhibit a much more robust
spin-texture. Thus, we find that it is possible to obtain bulk states with a spin texture
that prohibits backscattering. We believe that this could generate a future research area.
However, from our point of view, the most important result of this work is the proposal
of a mew transistor model in dual topological insulators. This model is based on the
mirror symmetry breaking and the resulting Rashba effect. The break of this symmetry
is achieved through an external electric field applied perpendicular to the mirror plane,
generating a new spin-polarization orientation. The proposed spin-polarization control is
similar to spin-orbit torque, but here the induction of spin charge is not dynamic. The
possible implication of a dual topological protection has been scarcely explored, for this
reason we believe that our work could open a new possibility for future research in this
area. In fact, we are studying not only the effect of the breaking of this symmetry for
planes oriented in other directions, but also the effect of the rotational symmetry breaking

in systems not only protected by the time-reversal symmetry.

Despite this main proposal, we also invest time in finding a systematic way to predict
new topological insulators. Specifically, we find that there is a simple way to find the topo-
logical invariant, i.e., using the metalicty as a property defining the band inversion before
including the spin-orbit. This never-before-reported relationship allows the topological
classification of crystalline systems using only atomic properties of the elements forming
the system. Undoubtedly, this bring a new understanding of topological properties as an

emergent phenomena.

Since we also study the interaction between bulk states and topologically protected

states, we believe that we have provided a broad vision of how to approach problems in
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theoretical observation and even in the use of systems with non-zero topological invariants.
Our constant focus throughout this work was to find new phenomena or systems that allow
the use of spin as a basic element in a transistor. Thus, the next step is to study in depth
the properties of electronic transport. In principle, the proposed models would help in this
type of studies. Additionally, we are also using the proposed methodology for machine
learning to understand and study other physical properties, such as the thermal stability

of two-dimensional systems.



