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Resumo

A determinagdo de estruturas que podem emergir a partir das interagdes entre os constituintes de
um sistema quantico de muitos corpos é uma tarefa fundante da fisica da matéria condensada. Uma
das propostas mais avangadas nesse paradigma, historicamente motivada pelo principio hologra-
fico e pela correspondéncia AdS/CFT, é a geracdo holografica do espago-tempo em alguns sistemas
cadticos, fortemente correlacionados, com certos padroes de emaranhamento e complexidade quan-
tica. Como parte desse cendrio, esta tese é dedicada a andlise de alguns conceitos relevantes em tal
proposta, onde sdo aplicados separadamente para alguns modelos com estrutura de rede. Concre-
tamente, o assunto é dividido em trés estudos principais: primeiro, o cdlculo da complexidade de
estados em funcdo do tempo para o modelo de Ising com um campo transverso oscilante, onde esta-
belecemos a eficdcia dessa quantidade na detecgdo de transi¢des de fase quanticas de ndo-equilibrio.
Nossos resultados proporcionam pistas para entender como caracteristicas universais sdo capturadas
pela complexidade quando fora de equilibrio. Segundo, a derivagdo de uma cota superior na pro-
dugdo de entropia de emaranhamento para uma classe de circuitos quanticos unidimensionais com
dindmica periédica. Um exemplo de circuito que satura essa cota é composto de portdes-SWAP para-
lelos atuando em pares emaranhados. A partir de desigualdades obedecidas pela entropia, somadas
a consideragdes sobre emaranhamento muiltipartite, indicamos que o efeito de uma dindmica cadtica
ndo pode resultar em um aumento da taxa de produgdo de emaranhamento. Terceiro, a construcdo de
uma classe de sistemas de muitos corpos supersimétricos utilizando semigrupos simétricos inversos.
Para toy models particulares gerados com essa estrutura, estudamos algumas questdes a respeito de
fases supersimétricas, integrabilidade, desordem, propagacdo da informagdo quantica e localizagdo
de muitos corpos. Por fim, além desses trés trabalhos, incluimos um ensaio abordando o problema
de espagos holograficos emergentes a partir de teorias de campo conformes em duas dimensoes, em
que a mediacdo entre as duas partes é feita utilizando uma estrutura Riemanniana definida no espago
de Hilbert da teoria de campos.

Palavras-chave: Transi¢des de fase quanticas; Complexidade quantica; Caos quantico; Dindmica do
emaranhamento; Geometrias emergentes



Abstract

The determination of structures that can emerge out of the interactions among the constituents
of a quantum many-body system is a foundational task of condensed matter physics. One of the
most advanced proposals within this paradigm is the holographic generation of spacetime in some
strongly coupled chaotic systems with particular patterns of entanglement and quantum complexity,
which is historically motivated by the holographic principle and by the AdS/CFT correspondence.
As a part of this scenario, this thesis is dedicated to the analysis of some concepts that are relevant
to such proposal, where they are separately applied to some lattice models. Concretely, the matter
is divided into three main studies: first, the calculation of the time-dependent circuit complexity in
the Ising model with a periodically driven transverse field, where we establish the effectiveness of
this quantity for the detection of nonequilibrium quantum phase transitions. Our results provide
hints for understanding how universal features out of equilibrium are captured by the complexity
of quantum states. Second, the derivation of a bound on the maximal rate of entanglement entropy
production for a class of one-dimensional quantum circuits with periodic dynamics. An example of
a circuit that saturates the bound is composed by parallel SWAP gates acting on entangled pairs. Out
of inequalities obeyed by the entropy, in addition to considerations on multipartite entanglement, we
indicate that the effect of a chaotic dynamics cannot result in the increase on the rate of entangle-
ment production. Third, the construction of a class of supersymmetric many-body systems using
symmetric inverse semigroups. For particular toy models built out of this structure, we study some
questions regarding supersymmetric phases, integrability, disorder, spreading of quantum informa-
tion and many-body localization. Finally, besides those three works, we include an essay addressing
the problem of emergent holographic spaces out of two-dimensional conformal field theories, where
the mediation between the two parts is performed by means of a Riemannian structure defined in the
Hilbert space of the field theory.

Keywords: Quantum phase transitions; Quantum complexity; Quantum chaos; Entanglement
dynamics; Emergent geometries
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Introduction

“The ability to reduce everything to simple fundamental laws

does not imply the ability to start from those laws and reconstruct the universe.”

— More is different, P. W. Anderson

THE FIRST EXPERIMENTAL OBSERVATION of the finite relative speed of propagation due to quasipar-
ticle pairs in a quantum many-body system dates to one decade ago [1]. The inaugural experiment
realizes a quantum quench in a one-dimensional quantum gas in an optical lattice. It then studies the
subsequent spreading of correlations between entangled pairs that emerge at all sites and propagate
ballistically in opposite directions. The report on an effective “speed of light” that leads to an upper
bound on the propagation of correlations confirms the theoretical conception of an emergent light
cone for quantum dynamics, a result that was derived forty years earlier by Lieb and Robinson [2].
Experimentally, the work performed by Cheneau et al. [1] can be regarded as an unfolding of the cold
atoms experiments initiated by Greiner et al. [3]. The latter sets up a turning point on the manipula-
tion and control of atomic systems, where the practical realizations of effectively closed many-body
dynamics became feasible, resulting on the actual simulation of models that were once designed to
explain low energy physics of highly complex systems. The former represents a gathering of concepts
from condensed matter physics and quantum information under an ongoing synthesis that flows to
the development of quantum materials together with prospects towards the engineering of quantum

computers.
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The experimental determination of the Lieb-Robinson velocity is part of a wider movement. In the
field of many-body physics, the traditional understanding of phase transitions based on symmetry
breaking — at classical [4] and quantum [5] levels — was enhanced by geometrical formulations assim-
ilated from quantum information science. This has opened the door for important discoveries includ-
ing, for instance, a whole category of order in quantum phases of matter — the so-called topologically
ordered phases’. In due course, the intertwine of these ideas has also brought to existence new areas
of research, such as topological quantum computation [7], which theoretically bypass several prob-
lems of stability in the encoding and processing of quantum information. The merge of condensed
matter physics and quantum computing that started taking place within the last two decades can be
thought of as a prelude for a more general paradigm shift. In the context of high energy physics,
the analogous process was sparked by the Black Hole Information Problem [8, 9], however reaching
its maturity after the holographic principle [10, 11] and the AdS/CFT correspondence [12]. Some
initial representative facts in this direction were the connection between the entanglement entropy in
a quantum field theory and the area of minimal surfaces in gravity [13, 14], proposed by Ryu and
Takayanagi, and the essays of Van Raamsdonk [15, 16], where entanglement was identified as the
glue binding the bricks of spacetime geometry. In the past few years, such developments single out
a special quantum mechanical system — the Sachdev-Ye-Kitaev (SYK) model [17] — which is thought
to holographically describe quantum aspects of black holes. This is a solvable model, tractable even
in its strongly interacting limit, that incarnates the underlying movement we are describing through
a link between quantum chaotic many-body systems and quantum gravity.

The conceptual interplay of the areas mentioned above is no longer a tendency only and it has
already acquired life of its own. At the front line of this development, it follows the idea that space-
time can be interpreted as a qualitative new emergent phenomenon, holographically generated due
to quantitative accumulation of increasingly complex patters of entanglement in chaotic systems.
This is under scrutiny not only theoretically, but it has also initiated proposals on the experimental
counterpart [21]. The latter is the missing link that can provide a synthesis of all those theories and

establish the era of “quantum gravity in the lab”.

' We refer to [6] for a review both on the entanglement between condensed matter and quantum information theories and on

the subject of topological phase transitions.

* Some reviews on the SYK model and its relation to black holes include [18, 19, 20].
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Organization of the thesis

The thesis is divided into two main parts: a walk-through of the sketchy scenario presented above
from a theoretical perspective and a compendium of studies related to the underlying topics.

Chapter 1 is devoted to the first part. It contains the main concepts that will show up in the
subsequent chapters. In particular, it can be regarded as a lift (or dive, depending on the point
of view) from quantum many-body systems to quantum gravity — in the sense of the AdS/CFT
correspondence — crossing conformal field theories.

A word of warning regarding Chapter 1: the large amount of material involving the themes in
question reflects a particular choice to proceed in the presentation. Different levels of precision are
encountered throughout the exposition, including some disruptions whenever the necessary appara-
tus becomes more demanding. The great deal of footnootes aims to avoid lots of detours in the main
narrative.

The second part is composed by the remaining chapters:

In Chapter 2, we apply the concept of circuit complexity to analyze nonequilibrium quantum
phase transitions driven by a periodic field in the transverse field Ising model. We further identify a
universal behavior of the time-dependent complexity which is manifest at early times. The study is
supplied by some evidences regarding the use of circuit complexity to diagnose additional types of
critical behavior, in particular dynamical quantum phase transitions. This chapter is based on [22].

Chapter 3 deals with the role played by chaos in the spreading of quantum information for one-
dimensional quantum circuits with periodic dynamics. We derive a bound on the rate of entangle-
ment entropy production as a function of time for this class of models and present an example of
a system that saturates this bound: a circuit composed of parallel SWAP gates acting on entangled
pairs. This chapter is based on [23].

In Chapter 4, we construct a supersymmetric many-body chain out of an algebraic structure called
symmetric inverse semigroups. The method consists in associating a supercharge at each lattice site
mirroring the case of spin chains. We discuss how to obtain supersymmetric phases of matter for
some choices of supercharges. Furthermore, we introduce disorder in a particular toy model and
then show that it describes a many-body localized phase. Such conclusions are drawn from the
early-time behavior of an out-of-time-ordered correlation function. This chapter is based on [24].

Chapter 5 addresses the problem of emergent three-dimensional anti-de Sitter geometries out of
two-dimensional conformal field theories. By introducing a geometric structure in the Hilbert space
of the conformal field theory via the concept of Fubini-Study distance between states, we sketch how

one could obtain the metric of an asymptotically anti-de Sitter space.
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1

From many-body systems to quantum gravity

“Se o desenvolvimento ndo passa da repeticdo da mesma férmula, a ideia,

embora para si bem verdadeira, de fato fica sempre em seu comego.”

— Fenomenologia do Espirito, Hegel.

OUR ANALYSIS STARTS WITH A CLOSED QUANTUM MANY-BODY SYSTEM. The most basic structure
we will assume due to the quantum nature of the problem is a hamiltonian quantum system (4, Ho).
The Hilbert space H, is associated with a set of points or vertices A on a graph I' = (A, E) and it
admits a tensor product structure; the set of edges E C 2/ contains pairs of vertices {{x,y}|x,y €
A and x # y}. The hamiltonian Hg is built from an interaction map @ that associates a bounded

operator ®(X) € B(Hx) for every subset X C A:

Ha = Q) Mo, Ho(A) =}, &(X). (1.1)
xeA XCA

This pair is the mathematical setup for a myriad of physical systems. One common example is that

of a system of qubits, where H, = C? represents a single one.
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1.1 Locality

The word many in the title suggests that the number of local Hilbert space factors H, in (1.1) will
eventually be taken to be large, posing a mathematical question regarding the existence of the infi-
nite tensor product. In this so-called thermodynamic limit we are faced with the possibility of the
emergence of new qualitative aspects due to the accumulation of quantitative effects, a dialectical
character of condensed matter systems synthetized for instance in Anderson’s manifesto [25] — “more
is different”. The determinations of such collective phenomena presuppose our ability to distinguish

the whole from its parts. For our purpose it will suffice to proceed as follows":
1. to decompose the lattice as A = X U X and therefore to induce a splitting on Hx = Hx ® Hx;
2. to require physical observables {O} to take the above bipartite form, O = Ox ® 1;

3. the cardinality of X should be bounded by a real number, |X| < R, such that O € B(Hx): this

means Oy is a bounded operator with support Hx.

Operators that act on the Hilbert space according to the above conditions give us the notion of
a quasi-local algebra of observables, which tackle the problem of the thermodynamic limit from a
mathematical point of view. To complete our characterization, we rely on a physical fact extracted
from the role played by interactions on the stability of matter: their range cannot be arbitrarily long?>.
We will use this content in a simplified form by postulating a sharp cut-off on interactions. Explicitly,
this can be done by first introducing a graph distance3 on I, dr: take two vertices x,y € A and define
path of length / between x and y as the set of ¢ adjacent intersecting edges E; starting on the former

and ending on the latter, that is,
{Ei}'_, = pe(x,y) withx € Ey, y € E;and E;NEjyq # @. Thendr(x,y) = mein pe(x,y).

The above concepts are illustrated in Figure 1.1. Next, we require the diameter of X C A to be

' The rigorous approach to the matter was developed in the fundamental work of von Neumann [26], however we only
appropriate its lessons in a formal way, keeping in mind that the content is well established for the many-body systems under
consideration in this chapter.

*In [27], Lieb accounts for the stability of matter from first principles and introduces a rigorous version of screening in order

to guarantee the existence of the thermodynamic limit. The range of interaction is the central concept of his analysis.

? One of the motivations to define the many-body system on a graph is the possibility to carry out a general discussion
independent of dimensionality. However, the notion of distance allows one to introduce the dimension of a graph as follows:
consider a a ball of radius s — the set of all points with distance s starting from some specific point; if the number of points
within such a ball scales as sP for all graph points, we call D the graph dimension.
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bounded by a real number,

diam X = max dr(x,y) <r.
xyeX

The introduction of the two parameters, R and 7, in the original structure leads us to the concept
of an (R, r)-local quantum system*. Locality is an outcome of our analysis of the thermodynamic
limit as a necessity both for mathematical consistency and from physical observations and it already
contains, in a hidden way, multiple features of the quantum many-body system, as we will now

proceed to expose.

Figure 1.1: Example of a graph where
the edges contain two points only. Two
examples of paths from x to y of length
three and four, respectively, are given
by {E], Ez, E3} and {E], Ezr, ES/, E4/ }

1.1.1 Lieb-Robinson bounds

The kinematical facts about interactions implied in this chapter are that:

1. They are hermitian;

2. They obey the action of spatial translations 1;, where a is a lattice spacing, in the expected way,
P(X+a)=1,9(X).

Let us turn to dynamical considerations derived from interactions ®(X) € B(Hx). The dynamics is

the one-parameter group of automorphisms, {7 };cR,
2(0) = O(t) = etHa(N) Qp=itHa(A) (1.2)

The main character responsible for the unfolding due to locality will be the theorem of Lieb and

Robinson [2]: for each finite range interaction ®, and for all local observables O 4 and Op, there exists

* Informally, R stands for how many bodies interact while r tells how far apart they are. For instance, the Ising model on a

N-site chain, A = {1,..., N}, with nearest neighbor interactions is described by

N
_HIsing = Z szy +h Z Zy,
d(xg)=1 x=1

where Z, is the Pauli-z matrix at site @ and & is a constant. This is an example of a (2,1)-local system.
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a finite group velocity ve and a strictly positive function y such that

lim e O|[[04(0,t), Op(x,0)]| =0, for v > vg. (1.3)

|t o0

[x|>vt
The interpretation of this result gives rise to the first emergent property following from local-
ity: it says that even in nonrelativistic systems the global effect of many particles together brings
to existence a “light-cone”, x = vgt, outside of which the norm of the commutator between local
observables decays exponentially with time, therefore bounding the propagation of correlations. At
least formally, this result can be interpreted as a fuzzy notion of causality® associated with a new
parameter depending on the interactions and on the lattice structure only, the so-called Lieb-Robinson
speed: vy = minov for which (1.3) holds. While the value of vg depends on the model through the
particularities of Hg, the existence of a light-cone does not and it holds for any local lattice model

with bounded interactions.
Let us discuss a few determinations inherited by the many-body system due to the Lieb-Robinson
bound that will play an important role in what follows®. Here A and B are chosen to be two non-

overlapping regions where O 4 and Op act. Then:

¢ Exponential clustering of correlations [29, 30]: if the ground state is unique and if there is a gap

A > 0, then the correlations decay exponentially. More precisely,

where dr(A, B) is the distance between the support of O 4 and the support of Op, and the constant

(04 O5) — (O4) (O3)] < cexp (— (1.4

c depends on ||O4]|, ||Op|| and on dr(A, B). For completeness, the gap A is a finite number that
exists in the thermodynamic limit N — co and it provides a lower bound for the energy separation

between a finite number of lowest energy states which are infinitesimally close to all other states.

Moreover, this result gives rise to the concept of a correlation length ¢ > 0, which intuitively emerges
from the time scale set by the gap A~! multiplied by Lieb-Robinson speed. The correlation length
is a function of the Lieb-Robinson speed, of the gap and of the lattice spacing a only, (ve, A, a) -
all physical quantities depending on the hamiltonian. Its particular form will not be important to
us here but rather generally ¢ is linearly proportional to vy and inversely proportional to both A

and a.

> To get the proper light-cone with v = ¢ = 1 typical of relativistic theories one would be required to take the lattice spacing

to zero, so that (1.3) should become a version of [¢(x,t),$(0,0)] = 0 for a field ¢ at spacelike distances, x > t.

% There is a number of consequences, improvements and generalizations of the Lieb-Robinson theorem that would take us too

far to expose. For reference, some of them are collected in [28].
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The next results were all derived in [31]:

* The amount of quantum information that can be sent from A to B outside the light-cone is expo-
nentially small.
¢ Define a truncated operator supported on a subset of H 4 of length ¢,

1
- dim(x)

where x = {x € A; dr(x, A) > (}. While O4(t) will develop full support on the whole Hilbert

04 (1) Try (O4(t)) ® 1y, (1.5)

space for any t > 0, the Lieb-Robinson bound implies that such an operator will affect only a
region with support ¢ = vet. Indeed, it can be shown that the error in the approximation by the

truncated operator is given by [32]

10a() ~ 0401 < “2 p(e)1]04, (16)

where f(¢) decays exponentially with £. The proof involves writing the truncated operator as an

average over the unitary operators U acting on y,
O4(t) = [ du(uoamU’, (1.7

where p is the Haar measure for U, and then applying the Lieb-Robinson bound to the commutator

[U, O 4(t)] to show that

104~ 040 < [ du)lt, Oa0)] < coxp (~g2I1), (18)

Furthermore, this result can be used to bound (O4(t)Op(t))c = (Oa(t) Op(t)) — (Oa(t)) (Op(t)),
the connected correlation function at time f, where the expectation value is taken in a state with

finite correlation length:

{OA(H)O8(D)e] < cexp (—“if"t') (19)

It is then shown that there is also a maximum speed at which correlations can be build up.

* We now consider the effect of a time-dependent hamiltonian over a finite time. Let us take B =

A\ A and a class of hamiltonians of the form
M
Ho(t) = Ha(t) + Hp(t) + Y ay (1) 0% @ OF, (1.10)
k=1

where ay, are interaction amplitudes. The discussion around (1.6) implies that the number of terms

M is proportional to the perimeter of A. The amount of entanglement that can be created per unit
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of time between regions A and B obeys the following inequality:

M
% <c ) |a(b)], (1.11)
k=1
where ¢ is a constant and S(p) = —Tr(plogp) is the von Neumann entropy of the state p7.

Here p4 = Trpp is the reduced state obtained by tracing out from the global density operator
o, the degrees of freedom that do not belong to A — the so-called partial trace —, leading to the
entanglement entropy, that is, the von Neumann entropy of the reduced state. For interactions
bounded by a constant rrll(ix lag(t)| < ¢, one can take one step further and integrate the previous

equation to obtain

t M
5 (oa() =S (pa(0) <c [ ar ( ) ak<t'>|> < cgMt, (1.12)
=1

which reveals that the entanglement growth over some finite time scales as the perimeter of A,
in opposition to what one would expect from thermodynamical considerations — an extensive

behavior, that is, a typical “volume law”.

1.1.2 Entanglement entropy and the area law

Even though the appearance of the entanglement entropy on stage may seem abrupt and without
proper presentations, its part in the storytelling will be decisive for a major plot twist. For purposes
of the narrative we choose to keep the mystery for the moment and to reveal the properties of
Sa = S(pa) as needed for the development of the following scenes.

The scaling of the entanglement entropy with the perimeter of the region where the reduced state

is defined motivates us to take a closer look at what is going on at the boundary of A,
0A={xe A|TJye A\A suchthat dr(x,y)=1}. (1.13)

The hint to explain why the boundary area shows up in (1.12) comes from the clustering of correla-
tions in gapped systems (1.4): due to exponential decay of correlation functions, one is led to suspect
that only the degrees of freedom near the boundary may entangle — those inside with the nearby out-
side ones. Indeed, we will see that this is exactly the case through an example for one-dimensional

systems®.

7 We use the words “state” and “density operator” interchangeably. Obviously one can always build a density operator

p = |¢)(y| from a given state |¢).

® There is a need for an insert to clarify the choice regarding the examples adopted in this chapter, which mostly concern
one-dimensional lattice models. First, these are the best understood cases where rigorous results exist. Second, since all the

works to be presented in Chapters 2-4 also deal with one-dimensional models, we will focus on such cases.
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For one-dimensional gapped systems with a unique ground state, finite range interactions with

support on nearest neighbors and bounded interactions, that is,

Ho= Y. ®(x—y), [®(x—y|)l <] forsome], (1.14)
X,YEA
lx—y|=1

the area law can be rigorously stated as a theorem? [43]:
S(p%) < Smax = O ([0A]). (1.15)

Here pY is the reduced ground state on the interval A. Of course the boundary of a one-dimensional
region contains two points only, and as a consequence Smax is just a constant — which can be com-
puted as a function of the Lieb-Robinson speed and correlation length. The proof of the above the-
orem strongly relies both in the Lieb-Robinson bound (and its consequences) and in the exponential

clustering of correlations, to wit, on locality and in the existence of a gap.

1.1.3 The quantum butterfly effect

As we have seen in Section 1.1.1, the commutator [O4(0, ), Op(x,0)] can have a nonzero norm for any
t > 0 and separation x, although this is a bounded quantity. Due to the Baker-Hausdorff-Campbell
formula, O4(0,t) will contain nested commutators with H of increasingly large support. Moreover,
as long as the support of the two operators are connected at t = 0 through a path in the graph I,
04(0,t) and Op(x,0) will have overlapping support for any t > 0. One can measure this growth
under Heisenberg evolution, called operator growth, by means of the radius of the operator R[O)],
defined as the minimal distance such that the support of O lies in a ball of such radius (up to an
exponential tail).

Consider the radius of this commutator R [[O4(0,t), Op(x,0)]] = Rap(x,t). This clearly depen-

dents on a velocity v = x/t, nonetheless it can still be transformed into a (velocity-dependent) rate

1
vs(0) = lim ~Rap (0, t), (1.16)

which is sometimes referred to as the scrambling velocity. We will address this terminology later™. It

? For higher dimensional versions there is no general proof, although the area law holds for systems that can be represented
by matrix product states [33, 34]. There are rigorous proofs in specific cases, for instance for some quasi-free bosonic systems

[35, 36, 371, fermionic sytems [38, 39, 40, 41] and disordered systems [42].

“Some of the concepts that will be exposed from now on are still under development and there is no general consensus on
their definitions and interpretations, meaning that no theoretical results can be derived without clear statements. The following

definitions and terminology are mainly based on [44].
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is shown in [44] that

U5 < Vg - (1.17)

While it guarantees a finite speed for the propagation of information, the Lieb-Robinson bound is
an algebraic statement about dynamics and it is independent of the state of the system. Equation (1.6)
elucidates that the growth of O 4 (t) cannot be arbitrarily fast, but it makes no reference to the rate of
spreading as a function of the state upon which the operator acts. To probe this rate of growth we thus
need an object that is more sensitive to the dynamics and that is able to capture how the universal
determinations about propagation of information manifest in a particular state of the system.

We have already analyzed the commutator [O4 (0, t), Op(x,0)] by means of its norm and its growth
under Heisenberg evolution. We now turn to yet another perspective. The following scenes will
develop under the theme of the causal influence generated by local perturbations. The main stage
will continue to be a local system. However, to address the previously mentioned occurrence, we
will relax the state independent analysis of Lieb and Robinson and specialize to the case where the
perturbation is probed within a subspace of many-body states. The next character to play a central

role will be the so-called out-of-time-ordered correlator (OTOC)™,

Clx,1) = Tr (p[04(0,1), O5(x,0)[T[O4(0, 1), 05 (x,0)]) (1.18)

defined for O 4 p in the state p.

Let us approach (1.18) from a quantitative perspective. First of all, note that this quantity is
bounded by the operator norm which is obtained by taking p ~ 1. Now, among the disguises
assumed by the OTOC, the known results for the many models where it was computed can all be

summarized in the following form [47, 48]:

(x/o5 =T _ Ao
o -

X
, - = Ug. (1.19)

C(x,t) ~exp |—co ;

We will have much to say about the two quantities that characterize the OTOC, A(v) = A(v,p) and
vg = vg(p), but for now we just highlight that they are both state-dependent. The parameter «
determines the OTOC for two categories of systems: those with many local degrees of freedom —
such as large-N systems — have # = 0 and spin lattice systems, for which in general « > 0.

The limit that gives rise to the form of (1.19) can be understood as follows: fix x = vt for some

v > vg, where C(vt,t) is small and then take v — vg ; as an effect, the correlations between A

" The words OTOC are usually reserved to the four-point function (O (t)Op(0)O4 (+)Op(0)), which is one of the terms that
appears in the expansion of C(x, t). Historically, this object was first introduced by Larkin and Ovchinnikov [45] in the context
of semiclassical chaos and later rediscovered in the study of the firewall paradox [46]. For clarity in the exposition, we will
skip the chronological route and leave this discussion for Chapter 4.
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and B will build up to point where the given shape becomes prominent. In this process, we note
the emergence of another cone x = vpt in the same spirit as the one underlying the Lieb-Robinson

bound. As a matter of fact, since the operator norm bounds C(x, t), it follows that [44]
g < Up. (1.20)

Let us take a step back and look at Eq. (1.3) closely. The function y(v) bounds the exponential
decay rate outside the light-cone. Analogously, one can mirror a similar role to be played by A(v) in
Eq. (1.19). Building on this intuition and on the work of [49, 50, 51], Khemani et al. [47] proposed
the identification of A(v) with a velocity-dependent Lyapunov exponent for generic many-body systems.
Formally, one can define

Alv) = lim 1logC(x = ot,t), (1.21)

t—oo t
which gives the rate of change of the OTOC along a ray. Equipped with this concept, the reasoning
behind the Lieb-Robinson speed allows us to further identify

vg = sup {v; A(v) > 0}. (1.22)

The subscript “B” in vp stands for “butterfly”. This is motivated by the quantum version of the
butterfly effect, whose classical version is captured by the exponential growth of the OTOC when
« = 0. The interpretation of the resulting butterfly speed as a state-dependent effective velocity and its
relation to quantum chaos was initially put forward in [52]. Alternatively, for &« > 0 the wavefront
representing the information spread will get broader as it propagates, leading to a sub-exponential
growth. The concept of a butterfly speed applies whenever there is a positive quantum Lyapunov
exponent, otherwise despite of its existence, the meaning has no resemblance with chaos, since a
negative A(v) corresponds to some exponential decay of correlations outside the butterfly cone, x =
vpt. Equation (1.22) introduces us to a third emergent speed that follows from locality only. Unlike
Ve, the state-dependence of vg allows one to probe the effects of temperature, for instance, in the
dynamics of quantum information.

To complement the characterization of the quantum butterfly effect, consider a localized amount of
quantum information created by the action of a local operator. As the operator grows, this informa-
tion may become more and more delocalized among the many-body states depending whether the
system is chaotic or not. Eventually, the quantitative accumulation of this effect can therefore render
a qualitative transition, when the initial information can no longer be probed by local measurements.
This process connecting local and non-local is denominated scrambling and the time that it takes to

happen is the scrambling time. We will come back to this topic on Chapter 4.
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1.2 Quantum phase transitions and universality

The interplay between local and global that appeared in the beginning of our analysis returns once
again, albeit in a different level. It is now mediated by the concept of correlation length, as we explain
next. Besides the short-range correlations coming from the exponential decay on (1.4), there is the
possibility that an infinite correlation length comes into play. This happens when the gap closes, such
that the correlations do not decay exponentially, giving rise to the so-called long-range order. Note
that taking ¢ to infinity means the withdrawal of the emergent length scale. Of course another way
to remove the length scale is to set it to zero, meaning a divergent energy gap. The two cases, ¢ = 0
or § = oo, describe fixed points of the renormalization group flow and they unveil a central property in
the system — the scale invariance that exists at such special points due to the absence of a physical
scale. One the one hand, a vanishing correlation length leads to an infinite energy gap and therefore
it expresses a stable phase of a many-body system. On the other hand, a diverging correlation length,
and therefore a vanishing gap, categorizes the system at criticality. The latter case will be our focus

in what follows.

1.2.1 Scaling behavior of the correlation length

We have introduced several ideas without the proper analysis in the previous paragraph, so let us
proceed by illustrating some of the notions in a concrete example. Consider a system close to a critical
fixed point where the distance from it is parametrized by a coupling constant A. This means that the
hamiltonian can be split as

He = Hy + AP, (1.23)

where P can be thought of as a local operator coupled with strength A to a fixed point hamiltonian Hg,
— one that is invariant under scale transformations. Our reasoning is valid as long as the hamiltonian
and its perturbation are time-independent. From dimensional analysis, one expects that { = arn(A),
where 4 is the lattice spacing and 77(A) is a dimensionless function, yet to be determined. At the fixed
point, ¢ is no longer part of the problem and, as a consequence, it should remain invariant under the
rescaling of a — which intuitively means that we are looking either closer or farther away from the

fixed point. This condition can be rephrased as

a& oy oA
dloga _aﬂ()\)+aﬁaloga' (1.24)
The differential equation for 17(A),
o 0A
TN BN =0, p) =0 (1.29
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is a flow equation known as a renormalization group equation'?.

The B-function, B(A), characterizes a fixed point A, by B(As) = 0. It follows immediately by
integration of (1.25) and from linearly approximating the B-function close to the fixed point, S(A) ~
B (M) (A — Ay), that

A2 _ 1/ (A+)
§(M) =&(A2) exp < " 5(:(1;\\)) ~ (A7) (H) . (1.26)

When B/(As) > 0, the perturbation P is called a relevant operator and the system will be driven
away from the fixed point to a phase’> — understood here as a sort of equivalence class of systems
parametrized by A that can be continuously deformed into each other — with finite correlation length.
We can thus set the dilation from A, up to a point where the correlation length is given by the lattice

spacing, ¢(A2) =~ a, in order to write the previous equation as

v

Ay — A,

G(A) ~a A A

(1.27)

The gist is clear: as the fixed point is approached, the correlation length must diverge, lim,_,,, ¢(A)
co, with a power-law controlled by v = 1/p/(A.). This quantity v does not depend on the lattice-
spacing a or even on the hamiltonian — and therefore on the microscopic details of the model. Thereby
we have discovered a universal critical exponent of the correlation length, which can be thought as an
example of how universality emerges from the renormalization group.

Let us now expand on the concept of a quantum phase. The inverse of the energy gap defines a time
scale which can then be used to introduce a notion of slow deformations, in the sense of the motion
taking place in the space of couplings. Although in this example we have only one coupling, A, later
on we will generalize the analysis. The equivalence class we mentioned in the previous paragraph
is thus constituted by all states that can be adiabatically connected starting from any representative.
More precisely, the error introduced by the deformation of a state can be made arbitrarily small by
doing so slowly enough. With such premise, two states cannot be adiabatically connected when the

gap closes, therefore they do not belong to the same phase'.

' The concept of renormalization group and differential equations of this type, also called Callan-Symanzik equations — who
presented a practical formulation in the context of particle physics [53, 54] — are certainly more general than we are sketching
here. A polished understanding of the subject in the scope of condensed matter physics came from Kadanoff in terms of the

so-called block-spin transformations [55] and later with major contributions from Wilson [56, 57, 58, 59].

B 1In classical statistical mechanics, the theorem determining a phase can be state as: ‘if the free energy density exists, then it is
an analytic function of its parameters except (possibly) for a domain of codimension-1". The classical definition of a phase as
a domain of analyticity of the free energy does not carry over to the quantum world. The main point is that classically all the
expectation values of the observables can be written as some derivative of the free energy, while in quantum mechanics the

expectation values are taken in some state.
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The correlation length is purely derived from locality and its emergent determinations, however
it captures the collective behavior that yield to one notion of order in a quantum many-body system
and further categorize a quantum phase transition — when the metamorphosis from one phase into
another is driven by quantum fluctuations alternatively to thermal ones. This situation, together
with the symmetry (breaking) analysis of the hamiltonian has been the paradigm for describing
the emergence of order in quantum many-body systems until two decades ago. The failure of two
states belonging to the same phase, described in the previous paragraph, can be given a geometric
interpretation in terms of a non-analytic curvature obtained after the introduction of a metric in the
Hilbert space. We will develop this approach in what follows leading to a different point of view on

the phenomena under consideration here.

1.2.2 Geometry of quantum phase transitions

We now turn to the rephrasing of the quantum phase transitions determinations by means of geo-
metrical concepts in the Hilbert space.

Consider a family of hamiltonians {H(A)}, where the parameters are points in some smooth
manifold, A € M. One important example is the manifold of coupling constants generated by
introducing additional perturbations in (1.23). The distance between two nearby states induces a

metric on the parameter space [61],
lp(A+dA) = p(A) [ = @aplopp) dA"dA” = (7 +i0gp)dA"dA” = 7 dA®dA’,  (1.28)

where we have decomposed the Hermitian product into its real symmetric part, 7y, and an imaginary
antisymmetric piece, 0. As a matter of fact, y is not an actual metric on M, despite of being symmetric
and transforming correctly under diffeomorphisms of the type A — A’(A). The reason is that v is not
“gauge invariant”. Specifically, by considering any representative on the ray of |¢(1)) one expects to

get the same distance. Nevertheless, the choice of [’ (1)) = ¢*(M)]y(A)), leads to
Vab = Vab — Aadptt — Apdan + dpadpa, (1.29)

where

Ap(A) = 1 (A) |99 (1)) (1.30)

is called the Berry connection. The connection transforms itself as

Ay =y [opy’) = Ap — opar. (1.31)

™ This heuristic explanation can be put in more rigorous terms by means of the Adiabatic theorem and its geometrical
consequences. We refer the reader to Sections 2.1.2 and 2.1.3 of [60] for the details.
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With this observation, it is possible to define a gauge invariant metric as

8ab = Yab — AuAb- (1'32)

This metric measures distances between rays, not states. One can also write ¢ and ¢ in terms of the

so-called Fubini-Study metric,

Qub = (9atp|0pp) — (9a[1p) (p[0n¢), (1.33)

such that
8ab = Re Qqp, Tap = Im Qgp. (1.34)
In other words, Q is a Kdhler metric on the projective Hilbert space, which is equipped with a

Riemannian structure provided by ¢ and a symplectic structure provided by ¢. The curvature of M

is usually called the Berry curvature and it is given by
Fap = 9}, Ay = —20,p, (1.35)
which allows us to write

i
Qub = &ab — EFub' (1-36)

Consider the Fubini-Study distance, Dgs(41, 2), between two arbitrary pure states. One can re-
cover its differential form by taking 1 = ¢(A) and ¢ = (A + dA), such that dsZg = Q,dA®dAY. A
related quantity that will gain an important role in Chapters 2 and 5 is the so-called quantum fidelity,

F(41, y»), which can be defined as

Drs(1,¥2) = /2 = 2F (1, ¢2) - (1.37)

For pure states, the quantum fidelity is just the absolute value of the overlap between them, F(i1,12) =
[{(1]2)|. By choosing two infinitesimally close states, one can perform the same reasoning we have

developed for Drg to show that

(67)°

F(p(A) $(A+0A)) =1 = =5=xr + O(0A%), (138)
where the so-called fidelity susceptibility reads
_ OAg 0Ny
XF = %gah()\) oA oA (1.39)

Given the Riemannian structure on the manifold of quantum states, there is just one missing

step in order to clarify the description of quantum phase transitions within this language. Let us
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focus on ground states, |p(A)) of a gapped system. Its infinitesimal displacement is triggered by a
perturbation 0H = d,H dA®. Thinking of g,;, as a matrix, one can then use second order perturbation

theory to get a bound on its elements [62],

1
gl < 55 (WoloH?[9o) — (yoloH[yo)?) , (1.40)

that is, g, is upper-bounded by the fluctuations of H.

Since the hamiltonian is a sum of local operators, one can also expand its perturbation as 6H =
Y. 6Py. Thus, it is possible to write the fluctuations as a sum over the connected correlation functions,
Coy = (6Dy 5<I>y>c. If one further assumes rotational invariance, then Cy, becomes a function of the
distance only, C(|x — y|). Finally, in the presence of a gap and a unique ground state, the clustering

theorem (1.4) comes into play to guarantee that the sum over correlations will always converge,

1 N¢
8abl < 22 L C(lx—y) < =5 (1.41)
XYy

for some constant cg. Thus, the metric density g,;,/N does not diverge in the thermodynamic limit
when there is a gap, which confirms our assertion in the previous section that a quantum phase
transition cannot occur unless there is a dramatic change of the state. In the absence of a gap,
the divergence of the metric density or, equivalently, of the fidelity susceptibility, is a practical tool
when searching for the presence of phase transitions, although a robust statement should rely on
geometrical invariants. Indeed, the corresponding critical behavior of g,; can usually be phrased in
a coordinate-free manner - for instance, the divergence of the metric components can reflect on a
discontinuity in its Ricci scalar — as reviewed in [63].

In Chapter 2, we will elevate the geometrical analysis of the Hilbert space to the space of unitary
operators acting on its states. Endowed with the concept of circuit complexity, we will propose another
form of understanding quantum phase transitions. Although we do not have yet an organized theory
for this description in general systems, we will provide evidence through some examples that such
extension covers a larger class of models, where one can even relax the previous hypothesis of time-
independent hamiltonians. The complexity-based characterization of critical behavior will then allow
us to dive into nonequilibrium phenomena and dynamical phase transitions, and to get a glimpse for

a unified description of them.

1.2.3 Renormalization group and universality

We should pause for a moment and reflect about the meaning of universality from the perspective of
the narrative under conduction. The insensitivity of (1.27) to the microscopic attributes of the system

leads us to the conclusion that the fixed point seems to be reverting the logic of “more is different”
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— taken on here since the beginning of the analysis — to its negation “more is the same”. A careful
look, however, reveals that the objects to which “more” refer to are, as a matter of fact, different. The
apparent puzzle of such inversion can be readily solved by recognizing that the arising of a symmetry
(the scale invariance), not present from the starting point, manifests itself on the pass into oblivion of
the different interactions binding the local degrees of freedom, therefore leading to the same critical
behavior. Thus, perhaps the correct assertive to explain the issue should be “different is the same”.

The above consideration is just a moment of the exposition indicating that some determinations
of the system have become more prominent. To wit, the abstraction of the physical consequences
from locality — incorporated here by the correlation length — enables us to replace the system at the
fixed point by an effective description overdetermined by scale invariance. This portrait captures
the critical behavior of many different hamiltonians, with distinct interactions, forming the so-called
universality class — a classification of the models according to their dimensionality, overall symmetries
and the range of the interactions. In the regime where ¢ > g, the lattice structure can be replaced
by a continuum, and the family of theories belonging to such a universality class admits a universal
formulation according to a so-called conformal field theory (CFT).

Let us indicate a more general description of the renormalization group (RG) analysis beyond the
example of the scaling behavior for the correlation length that was given previously. A system in the

vicinity of a fixed point can be expressed as

Ho(ha) = Hp+ 3 AP (1.42)
a=1
The reason why we made explicit mention to the lattice spacing will become clear in the following.
Once again, H}, is a scale-invariant hamiltonian, P, are perturbations and the set A = {A,} defines a
manifold of coupling constants M, as in the previous section. We will assume A to be dimensionless,
which can always be chosen by rescaling dimensionful couplings by an appropriate power of the
lattice spacing.

In such terms, the generalization of the RG flow that we had for the correlation length in Section
1.2.1 takes the form of a dynamical system (M, R), where the evolution rule RT : M — M is a
continuous one-parameter family of flows (labelled by 7). That said, the fixed point clearly obeys
R*As = A4 Under scale transformations, a point x is mapped into bx, where b is the rescaling
parameter. Alternatively, sometimes it will be convenient to parametrize it in terms of the RG di-
mensionless “time” via T = logb, which implies x — e"x. The theory described by H(RTA,e%a) is
equivalent to 7 (A, a) in the sense that they both belong the same renormalization group trajectory

generated by the action of R on a point A, where all points on the orbit represent the same physical
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content yet at different levels of magnification’>. To sum up, R implements a recursive magnifying
of the neighborhood of a point by performing a rescaling in the manifold of couplings and restricting
the initial model to the magnified regions.

One can expand the analysis and classify the fixed points according to their stability in the sense
of dynamical systems: attractive, repulsive or even mixed. As usual in this field, the exact nature
of A, can be determined by understanding the dynamics applied to its infinitesimal neighborhood,

Ay + 0A, whose deformation is described by the Jacobian matrix,

_ 0R«(A)
TJup = W (1.43)

According to the magnitude of the eigenvalues of 7, whether they are larger/smaller than, or equal
to one, nearby RG trajectories will approach/separate exponentially (with respect to the RG time)
along (un)stable directions, or keep their distance less than exponential at marginal directions. At
fixed points, J7(A,) = e™A(A), The so-called stability matrix A governs the dynamics in the tangent
bundle 7M > (A, JA) obtained by assembling a tangent space 7y M to every A € M and it describes
the rate of deformation of the linearized neighborhood of the fixed point. In equations, this reads

ar
dr

B(A) and %:A(m, where A:%. (1.44)

We meet the B-function once again, the difference being on the parametrization of the flow, which
is now in terms of the RG time. The above formulation converging to a differential equation for the
RG flow presupposes arbitrarily small rescalings, b = 1+ J7, such that 7°7 ~ 1 + A47. For future
reference, it is also usual to write the eigenvalues of the Jacobian either as e”‘*ie, where the phase
6 = wt defines an angular velocity w or, alternatively, to parameterize its real part by the scaling
factor, e™ = bH.

More precisely, the stability classification is given in terms of the eigenvalues of A evaluated at A.

We will assume the eigenvalues to be non-degenerate. Thus:

o If ygj) < 0 Vi, then the fixed point is stable. For w) =0, A, itis approached in node; for w() #£0,

it is approached in spiral.

o If pu(ki) > 0 Vi, then the fixed point is unstable. For w) =0, A, it is exited out node; for w(?) #0, it

is exited out spiral.

“In order to exemplify the above situation, we refer back to the behavior of the correlation length. It can be proved that under

the action of the renormalization group at the fixed point,
RA=A = &) =b71¢(N),

showing that, indeed, { = 0 (a trivial fixed point) or { = oo (a critical point).
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o If ;49) < 0and ygj ) > 0 for some i # j, then the fixed point is hyperbolic.

(i)

o If y*i = 0, then the fixed point is marginal.

Recall the reasoning that led to (1.26). There we considered an unstable fixed point and then we
found out that p/(A,) determines the critical exponent of the correlation length after linearization
around A.. Here we carried over a parallel discussion in terms of the stability matrix and (1.44)
puts us in position to close the argument. The connection between the two quantities is the already
delineated one: the eigenvalues of the stability matrix are nothing but the derivatives of B-function at
fixed points. Additionally, the deformations P, corresponding to the classification of the fixed points

are designated: irrelevant if A, is stable, relevant if A, is unstable, and marginal if A, is marginal.

1.2.4 Critical behavior of entanglement

We end this section with the accompanying discussion of the critical determinations of the many-
body quantum system from the entanglement perspective. For definiteness, we will keep the line of
reasoning in Section 1.1.2 and apprehend the content of universality for the one-dimensional case in
light of a gapless condition.

For the sake of the exposition, consider a chain at the critical point and an interval A of length
|A| = L. The results obtained for the ground state entanglement entropy in the context of many

different models can be brought to the form™ [64] :

c+¢ L
Sa= g logE—FO(l). (1.45)

We will have a lot of important facts to say about this formula. First, note that the appearance of the
lattice spacing a avoids a divergence for small L. Also, the dependence on the ratio L/a is consistent
with the scale invariance proper of the fixed point. The constants ¢ and ¢ will gain a distinguished
role in the next section. Their values depend on the number of local degrees of freedom as well as
on the quantum statistics obeyed by them. Apart from the actual meaning of ¢ and ¢, for now it is
evident that the entanglement entropy provides an alternative measure for them.

Notice, in addition, the parallel with the previous discussion about the critical exponents: in
the lifting from the particularities of a local hamiltonian to its belonging to a universality class, all
information about the individual degrees of freedom that are entangled gets lost in the process, and

it manifests into a unique attribute of the whole'”.

®We have cited [64] for a review. Nevertheless, the critical behavior of entanglement close to a quantum phase transition from

the perspective of lattice models was first presented in [65, 66].

"7 The referred constants are the central charges of a conformal field theory describing the fixed point and they give a universal

characterization of the degrees of freedom of the theory. Additionally, the entanglement entropy in a (1 + 1)-dimensional
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Finally, if one starts to move away from the fixed point keeping the correlation length very large
compared to the lattice spacing, but finite, both tendencies present in Equations (1.15) and (1.45)

merge together into a single expression [68],

c+¢ ¢
6 log E/ (146)

Sa ~ [04]

with the correlation length taking place of L.

1.3 Conformal field theories

A scaling transformation of the lengths corresponds to a change of the coupling constants that leaves
the physical content of a theory unchanged. These transformations are a subgroup of the more gen-
eral global conformal transformations. For systems that are additionally homogeneous and isotropic,
scale invariance is almost always enhanced to full conformal invariance'®, which in addition to rota-
tion and translation symmetries include the so-called special conformal transformations.

Let {¢} be a set of operators that provide a description of a d-dimensional scale invariant theory
in the continuum limit, § > a. We will further consider the case where such operators transform irre-
ducibly under scale transformations: x — bx leads to ¢, (bx) = b~%*¢,(x), and then {¢,} are called
primary operators. The quantity A, is the scaling dimension of the operator ¢,. By taking derivatives of
a primary operator ¢,;, one gets its descendant operators with scaling dimensions equal to A, plus the
number of derivatives. The coupling constants change as b#?A,. In order to keep the theory invariant
one finds' a relation between the eigenvalues of the stability matrix and the scaling dimensions,
o =d — Ay

Global conformal invariance constrains the form of the two-and three-point correlators. Let ¢,(x),
¢p(y), and ¢.(z) be three operators with scaling dimensions A,, A, and A, respectively. It can then

be shown [70] that, at the fixed point, they assume the following form:

)
(a0} = 200 (1.47)
and
Cape
(9a(2)90 () (2)) (1.48)

T Jx — y[Bely — z[Be|z — x[Ba’

conformal field theory is known to give Equation (1.45) since the gos [67]. This point of view is complementary to the one in

the previous footnote and it will be further explored as we advance.
®A good review about the matter is [69].

" This result follows from dimensional analysis of the action, which is the more convenient quantity to represent the theory in

the continuum limit rather than the hamiltonian description we are adopting so far.
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where we have defined

Aab = Aﬂ + Ab - AC 7
Ape = Dp+Ac—Ag,
Acg - AC ‘|— Ag - Ab 7 (1.49)

and the universal amplitudes {C, } are coefficients also denominated as the structure constants of the
operator product expansion (OPE). The reason for this name follows from the possibility of replacing
the product of two operators, whenever they are taken inside an expectation value, by the following

series:

Cabc x+y
lim p(0)g(y) = lim Y - — e AC@( 4. (1.50)

While this formula approximately holds in general quantum field theories for operators at very close

distances, it is exact in conformal ones even at large distances, as long as there is no other operator
insertion in between them. It is usual to summarize this expression by introducing an operation x to

represent the fusion between the two operators,

$axPp =Y Cape Pe- (1.51)

Higher-order correlation functions are not completely fixed by symmetry arguments. They have non-
trivial conformal invariants built up from ratios of distances between the fields which obstruct their
determination. Nevertheless, at least in principle, OPEs can be used to compute any other correlation

function.

1.3.1 Conformal data and critical exponents

The knowledge about the conformal field theory that takes place in the description of the many-body
quantum system in a fixed point of the RG flow is concluded once the scaling dimensions of the
primary operators, {A;}, and the structure constants {C,. } are determined — the so-called conformal
data.

Using the properties listed in the previous section, it is possible to develop a perturbative analysis
of the RG around a fixed point. The reasoning was started by Zamolodchikov in [71] for specific two-
dimensional CFTs and nowadays it usually goes under the name of conformal perturbation theory.

With this approach one can perform a one-loop computation of the S-function, which is given by [72]

Ba = (d— Aa)Aa — Y CaperpAc + O(A3). (1.52)
b,c

This expression shows that the spectrum of scaling dimensions, besides its dimensionality, determines
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the linear behavior of the B-function, while the so-called one-loop correction amounts to quadratic
terms in the coupling constants determined by the structure constants of the OPE. Alternatively, if the
B-function is known, one could in principle extract the conformal data directly from the above equa-
tion. Lastly, as we have seen in Section 1.2.3, B} (A+) is responsible for the universal critical behavior.
Hence, Equation (1.52) shows that there are also quantum corrections to the scaling dimensions due
to non-vanishing OPE coefficients. These corrections are important features of the CFT and they are
captured by quantities named anomalous dimensions, however we will not get into the details of how
to calculate them.

The brief considerations of this section conclude the first half of the main plot. Starting from a
general quantum many-body system, we exposed several of its determinations by understanding the
relation between local and global. Our analysis was guided towards the unveiling of the universal
behavior that emerges from the abstraction of the particularities of distinct systems. Before moving
on to the final part, we will tie up some loose ends in the context of 2d CFTs following the examples

elaborated within this chapter.

1.3.2 The central charge

We will address the announced interpretation of the constant ¢ (and consequently ¢) appearing on
(1.45), the so-called central charge*®. First, consider a reshaping — not necessarily conformal — that
distorts the lattice, x — x + e(x). If one imagines an RG transformation that maps a fixed point

hamiltonian to the distorted one, the additional deformation is given by
SHo & [ dxTy(x) et (x), (1.53)

where T, is the stress tensor. This is a symmetric object, traceless, T?, = 0, and a conserved current,
0Ty, = 0.

Let us specialize to the two-dimensional case once again. Consider the CFT with coordinates
defined on the complex plane. By mapping — using a conformal transformation — the theory to a
cylinder R x S! of circumference L, one can show that the change in the vacuum energy per unit

length is dictated by

c
(T)rxst 12’ (1.54)

where T is the holomorphic component of T,,.

** The results of this section are textbook material that we include mostly for completeness. We refer the reader to e.g. [70] for
details.
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The central charge also appears in the two-dimensional trace anomaly: define the theory on a
curved (ambient) manifold with metric ¢ - meaning that there is no dynamics associated to g — and

Ricci scalar R. Then,

(T%(x))g xcR. (1.55)

This also called conformal anomaly indicates a “soft” breaking of conformal symmetry due to the
introduction of an intrinsic length scale.

Next, consider the vacuum state of the theory on C, and a single interval A of length L taken at
some instant of time. The entanglement entropy can be evalutated using the replica trick technique

and it takes the same form of (1.45) [67],

C L
S = ¢ —g ¢ log <e) +0(1), (1.56)

as anticipated on Footnote 17. Here € is an ultra-violet (UV) cutoff, which could be the lattice spacing
a (although not necessarily), required to regulate the divergences due to short-range correlations
present in any state of a local quantum field theory. The rescaling of the cutoff amounts to shifting
the O(1) constant term, which is non-universal. The existence of ¢ comes from the fact that in d = 2
the (local) conformal transformations act independently as (anti-)holomorphic maps, resulting in a
factorization of the full Hilbert space into sectors that carry possibly different central charges. We
will address this point with more details on Chapter 5.

Finally, we briefly mention that ¢ = 1 for bosons, ¢ = 1/2 for fermions and, more generally, c = N
for a system with N different types of noninteracting bosons. Such results suggest that the central
charge and, as consequence, the entanglement entropy can provide a sort of measure of the number
of degrees of freedom. This assertion happens to hold in two-dimensions®'. For higher dimensions

its extension does not always make sense and thus it requires extra care.

1.4 The AdS/CFT correspondence

We start the remaining part of this chapter with a note of warning. Our journey has brought us to
an awkward point. Up to now, we were presenting a story where, at least in spirit, all the main
determinations emerge from the basic structure that is required to apprehend a physical system with
a well-behaved thermodynamic limit and screened interactions. We have neither the tools nor the

space required to develop the full formalism of the so-called AdS/CFT correspondence from the

* The connection between the central charge and the degrees of freedom in this case is established by the c-theorem [71],
which presents a function defined on the manifold of coupling constants that monotonically decreases along RG flows. At the
fixed points, this function coincides with the central charge of the CFT. The intuition is that information about the degrees of
freedom is lost as the flow proceeds from a CFT in the UV to another one in the IR.
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current premises. The follow-up approach will thus proceed in a less paved way then the previous
sections, not only due to the alluded problem, but also because the complete understanding of the

topic under the emergence paradigm we have being adopting is a subject of current research.

1.4.1 Renormalization group and the Anti-de Sitter spacetime

The CFTs equipped with RG can be faced under a radically distinct perspective: the scaling trans-
formations allow one to picture a continuous family of effective QFTs at different length (therefore
energy>?) scales, each providing a different canvas of the theory according to the degree of magnifica-
tion. One can therefore merge those screens to