• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.43.2020.tde-06112020-185032
Document
Auteur
Nom complet
Otavio Augusto Dantas Molitor
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2020
Directeur
Jury
Landi, Gabriel Teixeira (Président)
Celeri, Lucas Chibebe
Júnior, Roberto Silva Sarthour
Titre en anglais
Finite-time quantum heat engines.
Mots-clés en anglais
Collisional models
Finite time thermodynamics
Open quantum systems
Quantum heat engines
Quantum thermodynamics
Resumé en anglais
In the last decade, the study of thermodynamic phenomena in ultra-small scales, where quantum mechanics becomes imperative, has gained a lot of attention. The possibility of controlling single quantum states in nowadays experimental setups has encouraged a more intense inquiry over the intersection between thermodynamics and quantum mechanics, which is known as quantum thermodynamics. Particularly relevant in this framework is the study of quantum heat engines, that is, quantum systems undergoing thermodynamic cycles. Thermodynamic cycles contain all the aspects of thermodynamics, thus its a good testbed for a better comprehension of the thermodynamics of quantum systems. Moreover, modelling quantum heat engines is crucial for the design of future ultra-small engines. Nonetheless, another aspect must be taken into account, finite-time operation. Its very important for the optimization of the output power of the engine. In this dissertation, we present a new model of finite-time quantum heat engines. By making use of collisional models, we construct a model in which a generic quantum chain experiences sequential pure heat and pure work strokes. Dictated by stroboscopic evolution, the engines state goes through a transient regime until the limit-cycle is reached. After the achievement of the limit-cycle, our results indicate that only the boundary sites of the quantum chain are relevant for the heat currents exchanged with the baths. By means of analytical and numerical methods, we present how the model is useful for optimizing the output power of stroke-based quantum heat engines, without decreasing their respective efficiencies. Lastly, we prove that there is a universal efficiency value, the Otto efficiency, for a whole family of models containing a specific kind of internal interactions. For completeness, other methods from the literature which deal with finite-time quantum heat engines are also presented and discussed.
Titre en portugais
Máquinas térmicas quânticas em tempo finito.
Mots-clés en portugais
Máquinas térmicas quânticas
Modelos colisionais
Sistemas quânticos abertos
Termodinâmica em tempo finito
Termodinâmica quântica
Resumé en portugais
Na última década, o estudo de fenômenos termodinâmicos em escalas ultra-pequenas, onde a mecânica quântica se faz necessária, tem recebido muita atenção. A possibilidade de controlar estados quânticos individuais em plataformas experimentais da atualidade incentivou a intensificação das pesquisas sobre a intersecção entre termodinâmica e mecânica quântica, a qual é conhecida como termodinâmica quântica. Particularmente relevante neste contexto é o estudo de máquinas térmicas quânticas, isto é, sistemas quânticos submetidos a ciclos termodinâmicos. Ciclos termodinâmicos contêm todos os aspectos da termodinâmica, sendo portanto uma boa plataforma para melhor compreensão da termodinâmica de sistemas quânticos. Além disso, a modelagem de máquinas térmicas quânticas é crucial para o projeto de futuras máquinas térmicas ultra-pequenas. Não obstante, outro aspecto deve ser levado em consideração, a operação em tempo finito. Isto é muito importante para a otimização da potência de saída de máquinas térmicas em geral. Nesta dissertação, nós apresentamos um novo modelo de máquinas térmicas quânticas em tempo finito. Por meio do uso de modelos colisionais, nós criamos um modelo no qual uma cadeia quântica genérica passa sequencialmente por processos puramente de troca de calor ou trabalho. Ditado por evolução estroboscópica, o estado da máquina passa por um regime transitório até que o ciclo limite seja alcançado. Após a entrada no ciclo limite, nossos resultados indicam que somente os sítios nas bordas da cadeia quântica são determinantes para as correntes de calor trocadas com os banhos. Lançando mão de métodos analíticos e numéricos, nós apresentamos como o modelo é útil para otimizar a potência de saída de máquinas térmicas quânticas operadas em fases, sem diminuir suas respectivas eficiências. Por fim, nós provamos que há um valor universal de eficiência, a eficiência de Otto, para toda uma família de modelos que contêm um tipo específico de interações internas. Por completeza, outros métodos da literatura que tratam de máquinas térmicas quânticas em tempo finito são apresentados e discutidos.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2020-11-11
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.