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Abstract

Non-equilibrium thermodynamics has become one of the main areas of modern statistical mechanics and pre-

senting several applications, such as in phase transitions, biological systems, chemical reactions, engineered

systems and others. In the context of small-sized systems (nanometric scale) stochastic thermodynamics was

developed and describes energy transformations from the framework of Markov process, hence constituting

a relevant toolbox in modern statistical physics. In all these cases, entropy production plays a central role,

discerning not only the occurrence or not of certain process but also how energy can be converted into useful

work and vice-versa. This PHD thesis is aimed at studying such ideas in the framework of stochastic thermo-

dynamics. In the first part of this thesis, we introduce a strategy for optimizing the performance of Brownian

engines, based on a collisional approach. General (and exact) expressions for thermodynamic properties and

their optimized values are obtained, irrespective of the driving forces, duration of each stage, the temperatures

of reservoirs and protocol to be maximized. Distinct routes for the engine optimization, including maximiza-

tions of output power and efficiency with respect to the asymmetry, force and both of them are investigated. The

idea of conveniently adjusting/choosing intermediate reservoirs as a strategy for optimizing the performance

of a quantum-dot machine sequentially exposed to distinct reservoirs at each stage was also studied, whose

thermodynamic quantities (including power and efficiency) can be exactly obtained, irrespective to the number

of stages and certain advantages about increasing the number of intermediate stages were discussed. Lastly, we

show that entropy production not only locates and distinguishes continuous and first-order phase transitions,

but their fluctuations are important in the vicinity of first-order phase transitions and depends on the interplay

between observation time and inter-phase tunneling times.

Keywords: Entropy production; Thermal machines; Efficiency; Phase transitions.
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Resumo

Nos últimos anos, a termodinâmica de não equilíbrio, aqui referida como termodinâmica estocástica, tornou-se

uma das principais áreas da mecânica estatística moderna e apresenta diversas aplicações, como seu estudo em

transições de fase, sistemas biológicos, reações químicas, sistemas de engenharia e outros. No contexto de

sistemas pequenos (escala nanométrica) a termodinâmica estocástica foi desenvolvida e descreve as transfor-

mações de energia por meio da abordagem dos processos markovianos. Devido sua generalidade, ela tornou-se

uma ferramenta extremamente relevante na área da física estatística moderna. Em todos os casos, a produção

de entropia é uma quantidade que desempenha um papel central, discernindo não apenas a ocorrência ou não

de determinado processo, mas também como/se a energia dispendida/gerada pode ser convertida em trabalho

útil e vice-versa. Esta tese de doutorado visa o estudo dos temas acima no âmbito da termodinâmica estocás-

tica. Na primeira parte, apresentamos uma estratégia para otimizar o desempenho de motores brownianos,

baseada em uma abordagem denominada por nós de colisional. Expressões gerais (e exatas) para propriedades

termodinâmicas e seus valores otimizados são obtidos, independentemente da força, tempo de duração entre o

sistema e o reservatório, temperaturas dos reservatórios e protocolo a ser maximizado. Diferentes rotas para a

otimização do motor, incluindo maximizações de potência de saída e eficiência com relação à assimetria, força

e ambas foram investigadas. Também estudamos a ideia de ajustar/escolher convenientemente reservatórios

intermediários como estratégia para otimizar o desempenho de uma máquina de um "sistema de dois estados"

(quantum-dot) exposto sequencialmente, cujas grandezas termodinâmicas (incluindo potência e eficiência) po-

dem ser obtidas exatamente independentemente do número de estágios, de onde as certas vantagens sobre o

aumento do número dos estágios foram discutidos. Por fim, mostramos que a produção de entropia não apenas

localiza e distingue transições de fase contínuas e de primeira ordem, mas que suas flutuações nas proximidades

de transições de fase de primeira ordem são importantes e dependem da interação entre tempo de observação e

tempos de tunelamento entre fases.

Palavras chaves: Produção de entropia; Mâquinas térmicas; Eficiência; Transições de fase;
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Chapter 1

Introduction

Thermodynamics is traditionally confined to the description of equilibrium states of macroscopic systems or

to the transition between such states. It describes how equilibrium (macroscopic) systems are affected by

macroscopic properties, such as temperature, that emerge from the behavior of microscopic constituents. The

thermodynamic characterization of equilibrium systems is commonly performed via equilibrium statistical me-

chanics which states that a system in contact with a heat bath is described by the Boltzmann-Gibbs probability

distribution. However, a large number of systems in nature are subject to processes that are far from equi-

librium, as prominent examples, we cite biological systems [1], chemical reactions [2, 3], quantum systems

[4, 5, 6] and others. Due to the lack of a unified probability distribution in such case, several approaches have

been considered. The theory of linear irreversible thermodynamics has become one of the cornerstones of

modern statistical physics due to the seminal work of primarily Onsager and Prigogine [7, 8, 9], by including

microscopic dynamical properties into the far from equilibrium irreversible realm. Close to equilibrium, one

can use this framework to determine the thermodynamic fluxes, such as heat and work, and show that they sat-

isfy general properties. As stated previously, beyond this linear response regime, for a long time, no universal

exact results were available.

The starting point of stochastic description for thermodynamics comprise entropy and production of entropy.

Usually, the macroscopic limit is characterized by a suppression of fluctuations of physical quantities, both in

and out of equilibrium. However, these fluctuations are crucial to understanding systems on smaller scales, thus

the need for a stochastic treatment. As stated previously, the second law of thermodynamics leads to a positive

increase in the entropy of the system, however, an apparent "violation" was reported in the literature starting

in the 1990s. Evans [10] discovered numerically and justified heuristically, for a thermostatted shear-driven
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CHAPTER 1. INTRODUCTION 2

fluid in contact with a heat bath, a remarkable symmetry of the probability distribution of entropy production

in the steady state. Then, Gallavotti and Cohen [11] proven the now known as the (steady-state) fluctuation

theorem (FT) for a large class of systems using concepts from chaotic dynamics, later for driven Langevin

dynamics by Kurchan [12] and for driven diffusive dynamics by Lebowitz and Spohn [13]. As a variant, a

transient fluctuation theorem valid for relaxation toward the steady state was found by Evans and Searles [14].

Jarzynski proved a remarkable relation which allows one to express the free energy difference between two

equilibrium states by a non-linear average over the work required to drive the system in a non-equilibrium

(markovian) process from one state to the other [15, 16]. By comparing probability distributions for the work

spent in the original process with the time-reversed one, Crooks found a ‘refinement’ of the Jarzynski relation

(JR), now called the Crooks fluctuation theorem [17, 18]. A close analogy to the JR, which relates different

equilibrium states, is the Hatano–Sasa relation that applies to transitions between two different non-equilibrium

steady states [19]. Therefore, negative values of entropy production on this mesoscopic level are possible, but

experimentally less probable than positive ones.

On the other hand, for driven Brownian motion, Sekimoto realized that two central concepts of classical ther-

modynamics, namely the exchanged heat and the applied work, can be meaningfully defined on the level of

individual trajectories [20, 21]. These quantities entering the first law become fluctuating ones giving birth to

what he called stochastic energetics. Also, Maes emphasized that entropy production in the medium is related

to that part of the stochastic action which determines the weight of trajectories that is odd under time reversal

[22, 23]. Finally, Seifert considered that in addition to the fluctuations of the entropy production in the heat

bath one should similarly assign a fluctuating, or ‘stochastic’, entropy to the system proper [24]. Once this is

carried out, the key quantities known from classical thermodynamics are defined along individual trajectories

where they become accessible to experimental or numerical measurements. This approach of taking both en-

ergy conservation, i.e. the first law, and entropy production seriously on this mesoscopic level has been called

stochastic thermodynamics.

Over the last few years, it has become clear that stochastic thermodynamics systematically provides a frame-

work for extending the notions of classical thermodynamics such as work, heat and entropy production to the

level of individual trajectories of well-defined non-equilibrium ensembles. On the more practical side, the new

formulation allows to address new questions, either related to non-equilibrium properties, such as efficiency,

efficiency at maximum power, information to work conversion, or relating to the thermodynamic description

of small systems. General theories have been derived for periodically driven systems in contact with a sin-

gle reservoir [25, 26, 27], multiple reservoirs[28], and for steady-state systems in contact with two reservoirs

[29, 30], leading to bounds the power and efficiency of thermodynamic engines [31, 32, 33]. Furthermore, this
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theory has lead to applications in several other branches of science, such as information theory [34], chemical

reaction networks [2], and active matter [35, 36]. A second milestone in stochastic thermodynamics is the

establishment of (original) thermodynamic uncertainty relation that was proposed for biomolecular systems

described by Markov dynamics [37]. As a final comment, we highlight the role of entropy production rate in

stochastic thermodynamics, supporting its regular presence throughout this thesis: It generalizes the second

law for non-equilibrium processes, measures irreversibility, distance to equilibrium and energy dissipation and

has particular symmetries in its probability distribution. Entropy production rate is a quantity of theoretical and

experimental interest, and it will be analyzed in distinct scenarios.

This thesis is aimed at advancing in aforementioned points, including the proposal of distinct strategies for en-

gineered setups. We proposed/considered the idea of "collisional approach" for Brownian and master equation

nanoscale setups. In chapter 2 of this thesis a brief synthesis of the most important foundations of the dynamics

stochastic theory will be displayed. First, what is a Markovian process will be discussed. Then, a continuous

phase space case will be treated, that is, based on the Langevin formulation for a Brownian particle. Next, we

will deal with the case of a discrete phase space, where the master equation is used as the basis of the theo-

retical formulation. Since the construction of efficient thermal engines operating at finite times constitutes a

fundamental and timely topic in non-equilibrium thermodynamics. In the chapter 3 , we introduce a strategy for

optimizing the performance of Brownian engines, based on a collisional approach for unequal interaction times

between the system and thermal reservoirs. General (and exact) expressions for thermodynamic properties and

their optimized values are obtained, irrespective of the driving forces, asymmetry, the temperatures of reservoirs

and protocol to be maximized. Distinct routes for the engine optimization, including maximizations of output

power and efficiency with respect to the asymmetry, force and both of them are investigated. For the isothermal

work-to-work converter and/or small difference of temperature between reservoirs, they are solely expressed

in terms of Onsager coefficients. Although the symmetric engine can operate very inefficiently depending on

the control parameters, the usage of distinct contact times between the system and each reservoir not only can

enhance the machine performance (signed by an optimal tuning ensuring the largest gain) but also enlarges

substantially the machine regime operation. The present approach can pave the way for the construction of

efficient Brownian engines operating at finite times.

Despite aforementioned sequential (or collisional) engines have been put forward as an alternative candidate

for the realisation of reliable engine setups, distinct points, such as understanding the role of the different

stages and the influence of the intermediate reservoirs is not well understood. In the chapter 4 we exploit the

idea of conveniently adjusting/choosing intermediate reservoirs at engine devices as a strategy for optimizing

its performance. This is done by considering a minimal model composed of a quantum-dot machine sequen-



CHAPTER 1. INTRODUCTION 4

tially exposed to distinct reservoirs at each stage, and for which thermodynamic quantities (including power

and efficiency) can be obtained exactly from the framework of stochastic thermodynamics, irrespective to the

number of stages. Results show that a significant gain can be obtained by increasing the number of stages and

conveniently choosing their parameters.

A stochastic treatment also extends the prosperous field of phase transitions, in particular non-equilibrium

phase transitions. Discontinuous phase transitions out of equilibrium can be characterized by the behavior of

macroscopic stochastic currents. But while much is known about the average current, the situation is much less

understood for higher statistics. In chapter 5, we study how relevant fluxes behave during continuous and first-

order phase transitions; not only their averages, but also higher-order moments. We address the consequences

of the diverging metastability lifetime – a hallmark of discontinuous transitions – in the fluctuations of arbitrary

thermodynamic currents, including the entropy production. The behavior of the entropy production rate proves

to constitute a powerful tool for localizing and characterizing phase transitions. In particular, we center our

discussion on the conditional statistics, given which phase the system is in. We highlight the interplay between

integration window and metastability lifetime, which is not manifested in the average current, but strongly in-

fluences the fluctuations. We introduce conditional currents and find, among other predictions, their connection

to average and scaled variance through a finite-time version of Large Deviation Theory and a minimal model.

Our results are then further verified in two paradigmatic models of discontinuous transitions: Schlögl’s model

of chemical reactions, and a 12-states Potts model subject to two baths at different temperatures.



Chapter 2

Theoretical foundations

2.1 Stochastic Dynamics

As described previously, sufficiently small systems, generally on the mesoscopic scale, are significantly affected

by fluctuations. In this way, we can consider the magnitudes of the system as random variables, for instance,

the velocity of a Brownian particle, the state (occupied or empty) of a quantum dot or the order parameter of

a system that presents a discontinuous phase transition within the criticality zone. The dynamics that describe

this type of processes becomes Markovian, i.e. the future state of the system depends only on the present one

with no memory of the past. If the states are made up by continuous variables (such as position or velocity),

the dynamics is commonly described by a Langevin equation for an individual system and a Fokker–Planck

equation for the whole ensemble. Sometimes it is more convenient to identify discrete states with transition

rates governing the dynamics which, on the ensemble level, leads to a master equation.

In this chapter we briefly present the main aspects of the theory. Firstly, the formulation to describe the systems

that present a continuous phase space is illustrated through a collisional model system: a colloidal particle in

sequential contact with different thermal reservoirs and subject to the action of an external time-dependent force

(or driving force). This model system, also known as Brownian particle, can arguably serve as the paradigm

for the field, since the main concepts of stochastic thermodynamics can be introduced using it. This Brownian

particle, depending of the set parameters, can be interpreted as an engine that can release work.

Next, thermodynamic relations are derived for systems that present a discrete phase state. To introduce these

ideas we use an other collisional model consisting of a quantum dot in sequential contact with different chemical

5
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reservoirs. This system is capable of transporting particles from one reservoir to another, consuming energy

supplied from an external source, working like a bomb, or, on the contrary, it can funtionate as a engene,

realising work from consuming chemical energy.

2.2 Continuous state

We begin with a brief description of the simplest case of one particle performing a random movement, which

we call Brownian motion, and subjected to two forces. One dissipative, which we assume to be proportional to

its velocity, and another of random character due to the impact of the particle with the molecules of the medium.

The time evolution of the velocity v can be determined using the Langevin equation:

dv
dt
= −γv + ζ(t). (2.1)

where γ is a viscous constant and ζ(t) is a stochastic force (interaction between particle and the reservoir), all

divided by the mass of the particle. The stochastic force satisfies the white noise properties

⟨ζ(t)⟩ = 0 and ⟨ζ(t)ζ(t′)⟩ = Γδ(t − t′) (2.2)

where Γ is a coefficient associated to the reservoir temperature. An important property of the Langevin equation

is that the net displacement is due only to the external force, since the random force does not have preferential

directions. However, higher-order moments of the position are also related to the temperature, and thus the

diffusion depends on it. In reference [38] is shown in detail how to obtain the values for the mean velocity ⟨v⟩
and and the mean square velocity ⟨v2⟩, they are

⟨v⟩ = v0e−γt and ⟨v2⟩ = Γ
2γ

(1 − e−γt) (2.3)

For large times, that is, in the stationary regime, ⟨v⟩ = 0 and the mean-square velocity becomes ⟨v2⟩ = Γ
2γ

Expanding the characteristic function of a discretized version of Eq. (2.1) [38], it is possible to derive the

evolution for the probability density, the Fokker-Planck equation

∂P
∂t
= −∂J
∂v
, (2.4)

where P is the probability density function of a particle following a Langevin equation, and J is the probability

current

J = −γvP − Γ
2
∂P
∂v
. (2.5)
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We suppose that the variable v takes values in the interval [vi, v f ]. If we integrate both sides of Eq. (2.4) in v,

we get
∂

∂t

∫ v f

vi

P(v, t)dv = J(vi, t) − J(v f , t) (2.6)

Since the probability density must be normalized at any time, that is∫ v f

vi

P(v, t)dv = 1 (2.7)

then the left-hand side of Eq. (2.6) should vanish, from which we may conclude that the boundary conditions

are such that J(vi, t) = J(v f , t). Thus, the conservation of total probability (2.7) is not only consequence of the

Fokker-Planck equation but also of the boundary conditions. We will treat in this section only the case in which

the probability current vanishes at the ends, v = vi and v = v f , at any instant t, that is, J(vi, t) = J(v f , t) = 0.

The boundary condition such that the probability current vanishes is called reflecting.

There are other boundary conditions for the Fokker-Planck equation, which we choose according to the problem

we wish to solve. The periodic boundary conditions are such that P(vi, t) = P(v f , t) and J(vi, t) = J(v f , t) so

that in this case the total probability is also conserved. However, unlike the reflecting boundary condition, the

probability current at the boundaries is, in general, nonzero. The boundary condition, called absorbing, is such

that only P vanishes at the boundary. The derivative ∂P∂v as well as the probability current are nonzero. If the

currents are distinct at the ends, the condition (12.7) is not fulfilled.

A steady state is reached when the probability distribution function is not longer time dependent, this means
∂P
∂t = 0, therefore, as we can verified in equation (2.4), this implies that the current does not depend explicitly

on the velocity. On the other hand, since P does not depend on time, we can ensure through equation (2.5) that

the current J does not depend on time either. Therefore, it must have the same value for any v. But since it

vanishes at the ends of the interval [vi, v f ], it must be zero in the whole interval, that is,

J(v) = 0. (2.8)

which is to be understood as the microscopic reversibility condition, in other words, is the detailed balance

condition for continuous state-space and the stationary distribution is known as equilibrium. Therefore, the

stationary distribution P(v) obeys the equation

−γvP − Γ
2

dP
dv
= 0 or yet

d
dv

ln P = −2γv
Γ
. (2.9)

from which we obtain the equilibrium probability distribution Peq(v):

Peq(v) = Ae−
2γv2
Γ (2.10)
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where A is a normalization constant. The present description can be extended for an arbitrary number of

particles by considering a family of Langevin equations with uncorrelated noise functions. The joint probability

density P(v1, v2, ..., t) will follow a multi-variate Fokker Planck equation that has can be written as

∂

∂t
P(v1, v2, ..., t) = −

∑
j

∂

∂v j
J j(v1, v2, ..., t), (2.11)

As we have seen so far, after a long enough time, the system will evolve towards a steady state of equilibrium,

provided the system is placed in contact with a single thermal bath and devoid of non-conservative forces

[38, 39].

Next, we discuss some fundamental concepts about the system placed in contact with distinct thermal baths

and subjected to distinct drivings each stroke. For simplicity, we shall curb ourselves on the case of a Brownian

particle with mass m sequentially and cyclically placed in contact with different thermal reservoirs, each at

a temperature Ti for a time interval τi. Here i = 1, . . . ,N label the reservoirs and also the order of contact

between the reservoirs and the particle. The fact of placing the particle sequentially in contact with two or more

reservoirs is enough to generate a stationary state out of equilibrium. The interaction time with each reservoir

can be the same (symmetric case) or we can assign a different interaction time for each reservoir (asymmetric

case), both cases present different results and will be analyzed in more detail in the next chapter. Each reservoir,

let’s say the i-th one, is associated to a medium with viscous constant γi, an external force (or driving force)

fi and stochastic forces (interaction between particle and the reservoir), all divided by the mass of the particle.

The external (driving) force is a function of time and is the second ingredient in throwing the system out of

equilibrium. There are several driving force dependencies on time , the constant, the linear and the exponential

drivings are some examples that we will to study in the next chapter. The time evolution of the velocity vi can

be determined using the Langevin equation:

dvi

dt
= −γivi + fi(t) + ζi(t). (2.12)

Where the stochastic force ζi(t) accounts for the interaction between particle and the i-th environment and

satisfies the white noise properties

⟨ζi(t)⟩ = 0 and ⟨ζi(t)ζi′(t′)⟩ = 2γiTiδii′δ(t − t′) (2.13)

On the other hand, the system evolves to a non equilibrium steady state regime (NESS) characterized by a

non-vanishing production of entropy. The probability distribution is governed by the Fokker-Planck equation:

∂Pi

∂t
= −∂Ji

∂v
− fi(t)

∂Pi

∂v
, (2.14)

where Ji is the probability current

Ji = −γivPi − γikBTi

m
∂Pi

∂v
. (2.15)
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As can be verified by direct substitution, the non-equilibrium steady state (NESS) is characterized by a Gaussian

probability distribution Pi(v, t):

Pi(v, t) =
1√

2πbi(t)
e−

(v−⟨vi⟩)2
2bi(t) , (2.16)

for which the mean ⟨vi⟩(t) and the variance bi(t) ≡ ⟨v2
i ⟩(t) − ⟨vi⟩2(t) are time-dependent and obey the following

equations of motion

d
dt
⟨vi⟩(t) = −γi⟨vi⟩(t) + fi(t), and

d
dt

bi(t) = −2γibi(t) + Γi, (2.17)

where Γi = 2γikBTi/m. Obviously, the continuity of the probability distribution must be assured whenever the

particle changes its environment, and should use it to calculate bi(t) and ⟨vi⟩(t).

2.2.1 Stochastic Thermodynamics

In order to derive explicit expressions for macroscopic quantities, we start from the definitions of the average

kinetic energy Ui = m⟨v2
i ⟩/2 and entropy S i(t) = −kB⟨ln[Pi(v, t)]⟩, respectively. In both cases, the time variation

can be straightforwardly obtained from the Fokker-Planck equation and applying vanishing boundary condi-

tions for both Pi(v, t) and Ji(v, t) in the infinity speed limit [38]. Differentiating the kinetic energy with respect

to time reads
dUi

dt
=

m
2

d
dt
⟨v2

i ⟩ =
m
2

d
dt

[bi(t) + ⟨vi⟩2(t)] =
m
2

[
d
dt

bi(t) + 2⟨vi⟩ d
dt
⟨vi⟩(t)

]
(2.18)

Using the expressions (2.17) and simplifying reads

dUi

dt
= −

[
−m⟨vi⟩(t) fi(t) + mγi

(
⟨v2

i ⟩(t) −
Γi

2γi

)]
(2.19)

The first term is related to the average power dissipated Ẇi and the second term is the heat dissipation during

the same period Q̇i through the first law of thermodynamics relation:

dUi

dt
= −[Ẇi(t) + Q̇i(t)], (2.20)

where Ẇi(t) and Q̇i(t) are given by the following expressions:

Ẇi(t) = −m⟨vi⟩(t) fi(t) and Q̇i(t) = mγi

(
⟨v2

i ⟩(t) −
Γi

2γi

)
. (2.21)

Similarly, differentiating the entropy S i(t) with respect to time, the rate of variation of the entropy can be written

as [30, 40]:
dS i

dt
= Πi(t) − Φi(t), (2.22)



CHAPTER 2. THEORETICAL FOUNDATIONS 10

whereΠi(t) andΦi(t) denote the entropy production rate and the flux of entropy, respectively, which expressions

are given by,

Πi(t) =
2kB

Γi

∫ t

τ̃i−1

J2
i

Pi
dv, (2.23)

and

Φi(t) = −2γikB

Γi

∫ t

τ̃i−1

vJidv =
2γikBQ̇i(t)

mΓi
=

Q̇i(t)
Ti
, (2.24)

respectively, where τ̃i =
∑i

j=1 τ j (with τ0 ≡ 0). Both expression are valid during the contact of the Brownian

particle with the i-th reservoir. Above relations are the starting point for obtaining averages over a complete

cycle, providing the calculation of power, efficiency and others.

2.3 Discrete state

When the system in question presents a discrete phase space we used a different formulation. In this case, the

time evolution of the probability distribution function is determined by the master equation

d
dt

Pm =
∑
m′
ωm,m′Pm′ . (2.25)

Here ωm,m′ is the probability per unit time to make a transition from state m′ to m. We use the shorthand

notation with diagonal elements defined as

ωm,m = −
∑

m,m′
ωm,m′ . Alternatively

∑
m

ωm,m′ = 0 (2.26)

a property that guarantees the conservation of normalization. The transition rates have to satisfy an additional

property. In the steady state, the system is at equilibrium with the reservoir. Statistical physics prescribes that

the steady state distribution is given by the grand canonical equilibrium distribution Peq
m

Peq
m = exp {−β(ϵm − µnm −Ωeq)} (2.27)

The (equilibrium) grand potential Ωeq follows from the normalization of Peq
m

exp {−βΩeq} =
∑

m

exp {−β(ϵm − µnm)} (2.28)

The crucial property that is required from the rates is the so-called condition of detailed balance, i.e., at equi-

librium every transition, say from m to m′, and its inverse, from m′ to m, have to be equally likely

ωm,m′P
eq
m′ = ωm′,mPeq

m . (2.29)
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Combined with the explicit expression of the equilibrium distribution, this gives:

kB ln
(
ωm′,m

ωm,m′

)
=
ϵm − ϵm′ − µ(nm − nm′)

T
=

Qm′,m

T
. (2.30)

is the “elementary” heat absorbed by the system to make the transition from m′ to m. We stress that in the

presence of driving, which is shifting the energy levels in time, this relation is supposed to hold at each moment

in time, hence the rates also become time-dependent. This condition will be crucial to obtain the correct

formulation of the second law.

In order to illustrate above ideas, we consider a collisional model consisting in a quantum dot (QD) in sequential

contact with different reservoirs. This system can be in two possible states, if an electron is absorbed while the

QD is in contact with the i-th reservoir, then it pass to be from an "empty" state with energy zero to be in an

"occupied" state with energy ϵi. We call the probability of the system to be in the occupied state as pi(t) and as

1 − pi(t) the probability to be in the empty state. The time evolution of pi(t) at the i-th stroke is determined by

the master equation

ṗi(t) =
[
1 − pi(t)

]
ω(i)

01 − pi(t)ω
(i)
10, (2.31)

where the rates ω(i)
01 and ω(i)

10 account to filling up (0 → 1) and vice versa (1 → 0) respectively. These rates

depend on ϵi and the chemical potential µi and are given by

ω(i)
01 =

Γ0

1 + eAi
and ω(i)

10 =
Γ0eAi

1 + eAi
, (2.32)

where Γ0 quantifies the coupling strength between the system and thermal bath (for simplicity taken equal in

all cases) and Ai =
1
T (ϵi − µi) for the i-th stroke. The Perron-Frobenius theorem states certain properties that

transition rates should satisfy in order to ensure system evolution to a unique steady state. An important relation

to be considered is the detailed balance condition (DBC), in our quantum dot this is

[
1 − pi(t)

]
ω(i)

01 = pi(t)ω
(i)
10, (2.33)

in others words, the probability of the system transitioning from state empty to occupied state is the same as the

reverse transition from occupied state to empty state. This condition implies a microscopic reversibility of the

system, it means that Eq (2.33) is only valid when the probability pi(t) is the equilibrium probability. Therefore,

if it is satisfied, the system converges to equilibrium steady state, it would happen if our system remained in

contact with only one reservoir, but sequential switching with other reservoirs implies a temporal dependence

on the transition rates (given by ϵi and µi) that break the detailed balance. When the detailed balance is broken

the system converges to a non equilibrium steady state (NESS).
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2.3.1 Stochastic Thermodynamics of collisonal setups

Thermodynamic relations are derived starting from the system energy given by E(t) = ϵ(t)p(t) where we

introduce ϵ(t) / p(t) as the energy level / occupation probability of the QD at time t. The time derivative of E(t)

gives two contributing terms:

Ė(t) = ϵ̇(t)p(t)︸  ︷︷  ︸ + ϵ(t) ṗ(t)︸  ︷︷  ︸ (2.34)

“direct drive" and “exchange"

the former identified as direct driving and appearing only during the external driving phases (during which

ϵ̇(t) , 0). It can also be identified as the direct work Ẇd given by

Ẇd(t) =
N∑

i=1

(ϵi+1 − ϵi) δ
(
t − iτ

N

)
pi(t), (2.35)

where periodic boundary conditions for the index i, i.e. ϵi+N = ϵi have been employed. We stress that Ẇd(t) > 0

according to whether the energy of the QD increases. By averaging it over one full period, one has that

Ẇd ≡ 1
τ

∫ τ

0
Ẇd(t)dt =

1
τ

N∑
i=1

(ϵi+1 − ϵi) pi

( iτ
N

)
. (2.36)

The second term ϵ(t) ṗ(t) appears during the exchange phases and it is different from zero provided an exchange

of particles takes place. From the integration of ṗ(t) from τi−1 = (i − 1)τ/N to τi, one can re-express it as

Ji ≡ dNi/τ as the average net number of particles exchanged during stage i per period, given by

Ji =
1
τ

[
pi

( iτ
N

)
− pi

(
(i − 1)τ

N

)]
. (2.37)

The total energy exchange dEi during the exchange phase of stage i is rewritten as

dEi ≡
∫ iτ

N

(i−1)τ
N

ϵ(t) ṗi(t)dt = ϵidNi. (2.38)

From the reservoir viewpoint, above expression can be split in two parts: dEi = (ϵi − µi) dNi+µidNi, the former

and latter terms identified as heat and chemical work respectively, counted positive when delivered to the QD,

i.e. when the energy of the QD increases. By averaging Eqs. (2.34) and (2.38) over one full period and using

Eq. (2.37), it follows that Ẇd + Q̇ + Ẇch = 0, where Q̇ and Ẇch are given by

Q̇ =
N∑

i=1

(ϵi − µi) Ji ; (2.39)

Ẇch =

N∑
i=1

µiJi ; (2.40)

Ẇd = −
N∑

i=1

ϵiJi. (2.41)
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Defining the nonequilibrium entropy for a discrete space phase by S (t) = −kB
∑

m Pm(t) ln Pm(t) we will show

that this definition is a proper choice that reduces to the standard thermodynamic entropy at equilibrium, but

with the additional advantage that it preserves – in nonequilibrium – the basic features of the second law,

namely the relation between heat and entropy exchange and the positivity of the entropy production. Explicitly,

we will arrive at the same expression (2.22) obtained for the continuous phase space, where Φ(t) = Q̇(t)
T and

Π ≥ 0. We start differentiating S respect to time

dS
dt
= −kB

∑
m

(ln Pm + 1)
dPm

dt
= −kB

∑
m,m′
ωm,m′Pm′ ln Pm (2.42)

where we used the fact that
∑

m
dPm
dt =

d
dt

∑
m Pm = 0 due to the probability conservation and then, at the second

step, we used the master equation. By making small readjustments we can transform expression 2.42 to the

form:

dS
dt

=
kB

2

∑
m,m′

(ωm,m′Pm′ − ωm′,mPm) ln
Pm′

Pm

=
kB

2

∑
m,m′

(ωm,m′Pm′ − ωm′,mPm) ln
ωm,m′Pm′

ωm′,mPm
+

kB

2

∑
m,m′

(ωm,m′Pm′ − ωm′,mPm) ln
ωm′,m

ωm,m′
(2.43)

The first term is the entropy production rateΠ, this expression is known as Schnakenberg’s formula [41]. Check

that it is always non negative because (x− y) ln(x/y) ≥ 0, vanishing when the detailed balance is fulfilled. Thus

it distinguishes equilibrium from nonequilibrium systems. On the other hand, the second term is a microscopic

relation for the flux

Φ(t) = kB

∑
m,m′
ωm,m′Pm′ ln

ωm,m′

ωm′,m
. (2.44)

Returning to our quantum dot model, once NESS has been reached, the value of the time derivative of entropy,

averaged over a period, must equal zero. That is

Ṡ = 0 which implies that Φ = Π (2.45)

then the Schnakenberg’s formula reads

Φ = Π =
kB

2τ

N∑
i=1

iτ
N∫

(i−1)τ
N

[ω(i)
01(1 − pi(t)) − ω(i)

10 pi(t)] ln
ω(i)

01(1 − pi(t))

ω(i)
10 pi(t)

dt, (2.46)

Taking into account the periodicity of pi(t) and the first law of thermodynamics, this expression can be rewritten

in the following form:

Φ = − Q̇
T
=

Ẇd + Ẇch

T
, (2.47)

consistent to the ratio between the total average heat and the system temperature, as expected. Note that Eq.

(2.44) constitutes an alternative (and advantageous) formula for evaluating the steady entropy production, since

it corresponds to an average that can be evaluated from the transition rates.
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2.4 Entropy production at phase transitions: An overview

Despite the recent advances of stochastic thermodynamics, a fundamental question is whether entropy produc-

tion can be used as a reliable tool for typifying nonequilibrium phase transitions. In this section, we present the

main aspects about the entropy behavior at phase transition regime. More details can be found in [42]. Here I

shall describe the main details.

As equilibrium phase transitions, nonequilibrium ones can be typified by the usage of an order parameter. By

focusing ourselves in the case "up-down" Z2 symmetry, but very common in statistical mechanic systems, a

continuous phase transition in such class of models is, heuristically, described by the general logistic order-

parameter equation:
d
dt

m = a(q − qc)m − bm3, (2.48)

where q denotes the control parameter and a and b are positive constants. It has two steady solutions: m(D) = 0

(disordered phase) and m(S ) = ±√
a(q − qc)/b (ordered phase), stable for low and large values of q, respectively.

The phase transition follows the mean-field exponent βm f = 1/2 and m vanishes as m ∼ ea(q−qc)t for q < qc

when m ≪ 1. In a similar fashion, discontinuous phase transitions can also be treated under a mean-field point

of view, but in such a case one requires the inclusion of an additional term +cm5 for reporting them [43]:

d
dt

m = a(qb − q)m − bm3 + cm5, (2.49)

where c > 0 . It exhibits three steady state solutions m: m(D) = 0, m(S ) and m(U). At q = q f = (b2/4ac) − qb,

m jumps from m1 ≡ m(S )(q f ) to m(D) = 0. For q > q f , m behaves as m ∼ ea(qb−q)t for m0 ≪ 1 irrespective the

initial condition m0 > 0. The frontier q = qb separates the exponential vanishing of m ∼ ea(qb−q)t (q > qb) from

the convergence to a well definite m2 ≡ m(S )(q) (q < qb) when m0 ≪ 1. For qb < q < q f (hysteretic branch), m

behaves as follows: m(t → ∞) → m(D) if m0 < m(U), m(t → ∞) → m(S ) if m0 > m(U) and only for m0 = m(U)

one has m(t → ∞)→ m(U). For this reason m(U) is an unstable solution.

Despite largely studied, above characterization of phase transitions hides the irreversible character of the dy-

namics as well as its influence on the phase transition properties. In order to describe the entropy production

behaviors in aforementioned class of systems, we consider a generic dynamics with up-down symmetry de-

scribed by a one-site dynamics. In such case, Eq. (2.25) acquires the following form:

d
dt

P(σ, t) =
N∑

i=1

{wi(σi)P(σi, t) − wi(σ)P(σ, t)}, (2.50)

where each microscopic configuration σ is set by the collection of N individuals σ ≡ (σ1, σ2, ..., σi, ..., σN),

with σi being the spin variable of site i which takes the values ±1 according to whether the spin is “up" or
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“down", and wi(σ) comprises the transition rate at which each site i changes its opinion from σi to −σi, given

by the expression w(σi) = 1
2 [1 − qσig(X)], with q denoting the control parameter and g(X) expressing the

generic dependence on a local neighborhood of k spins. Only two assumptions regarding g(X) are required.

The first is that due to the Z2 symmetry, it depends on the sign of the local spin neighborhood (odd function).

Also, taking into account that w(σi) is constrained between 0 and 1, the product |qg(X)| ≤ 1 for all values of

X. These assumptions allow us to rewrite g(X) as g(X) = |g(X)|S (X), where S (X) denotes the sign function:

sign(X) = 1(−1) and 0, according to X > 0(< 0) and X = 0, respectively, where |g(X)| gets restricted between 0

and |g(k)|.

From Eq. (2.50), one finds that the time evolution of order parameter m = ⟨σi⟩ is given by

d
dt
⟨σi⟩ = −2⟨σiw(σi)⟩. (2.51)

In the steady state m = q⟨|g(X)|S (X)⟩. For the evaluation ofΠ, one requires the calculation of wi(σ) ln[wi(σ)/wi(σ j)]

given by
1
2

[
σiS (X) − q|g(X)|S 2(X)

]
ln

1 − q|g(X)|
1 + q|g(X)| . (2.52)

The reverse transition rate wi(σ j) was obtained by performing the transformation σi → −σi resulting in

wi(σ j) = 1
2 [1 + qσig(X)]. The one-site Mean Field Theory (MFT) consists of rewriting the joint probabil-

ity P(σi, ..., σk) as a product of one-site probabilities P(σi)...P(σk), from which one derives closed relations

for the correlations from which we obtain the properties as function of the control parameters. Since the main

marks of critical and discontinuous phase transitions are not expected to depend on the particularities of g(X),

it is reasonable, within the MFT, to replace the averages in terms of an effective ḡ given by

m = q⟨|g(X)|S (X)⟩ → qḡ⟨S (X)⟩, (2.53)

1
2

〈
σiS (X) ln

1 − q|g(X)|
1 + q|g(X)|

〉
→ 1

2
ln

1 − qḡ
1 + qḡ

⟨σiS (X)⟩, (2.54)

and
1
2

〈
|g(X)|S 2(X) ln

1 − q|g(X)|
1 + q|g(X)|

〉
→ ḡ

2
ln

1 − qḡ
1 + qḡ

⟨S 2(X)⟩. (2.55)

At this level of approximation the steady entropy production then reads

Π =
1
2

ln
1 − qḡ
1 + qḡ

[
m⟨S (X)⟩ − qḡ⟨S 2(X)⟩

]
. (2.56)

Above averages are calculated by decomposing the mean sign function in two parts:

⟨S (X)⟩ = ⟨S (X+)⟩ − ⟨S (X−)⟩, and ⟨S 2(X)⟩ = ⟨S (X+)⟩ + ⟨S (X−)⟩, (2.57)

with each term being approximated by

⟨S (X±)⟩ = ±
k∑

n=⌈k/2⌉
Ck

n pn
±pk−n
∓ , (2.58)
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where ⌈...⌉ is the ceiling function and for S (X+)[S (X−)] the term Ck
n takes into account the number of possibil-

ities of a neighborhood with n spins in the +1[−1] states with associated probabilities p± = (1 ± m)/2. Eqs.

(2.57) become simpler in the regime of large connectivities. To see this, we first note that each term of the

binomial distribution approaches a Gaussian with mean kp± and variance σ2 = kp+p−, so that

k∑
n=⌈k/2⌉

Ck
n pn
±pk−n
∓ → 1

σ
√

2π

∫ k

k/2
e−

(ℓ−kp±)2

2σ2 dℓ =
1
2
√
π

{
erf

[
k(1 − p±)√

2σ

]
− erf

[
k(1/2 − p±)√

2σ

]}
, (2.59)

where erf(x) = 2
∫ x

0 e−t2dt/
√
π denotes the error function. Since for large k, erf[k(1 − p±)/

√
2σ] → 1

(⟨S 2(X)⟩ → 1), the expressions for m and Π read

m = qḡ

erf
(√k

2
m
) , and Π =

1
2

ln
1 − qḡ
1 + qḡ

[
m2

qḡ
− qḡ

]
, (2.60)

respectively. At the vicinity of the critical point m behaves as m ∼ (q−qc)1/2. So that, one reaches the following

expressions for the entropy production:

Π ∼ 1
2

ln
1 + qḡ
1 − qḡ

[
qc − q

qḡ
+ qḡ

]
, for q < qc, and Π =

qḡ
2

ln
1 + qḡ
1 − qḡ

, (2.61)

for q > qc. Hence the entropy production is continuous at the critical point qc, with Πc =
qcḡ
2 ln 1+qcḡ

1−qcḡ . However,

its first derivative is discontinuous, jumping from

Π′ =
qcḡ2

1 − q2
c ḡ2
+

1 − qcḡ2

2qcḡ
ln

1 − qcḡ
1 + qcḡ

, when q→ q−c , to Π′ =
qcḡ2

1 − q2
c ḡ2
− ḡ

2
ln

1 − qcḡ
1 + qcḡ

, (2.62)

when q → q+c , whose discontinuity of − 1
2qcḡ ln 1−qcḡ

1+qcḡ is associated with the critical exponent αm f = 0. Remark-

ably, having the classical exponents βm f and γm f (evaluated from the order-parameter variance [38]), we see

that the hyperscaling relation αm f + 2βm f + γm f = 2 is satisfied, reinforcing that the criticality is signed by the

jump in the first derivative of Π, in close similarity to the specific heat discontinuity for equilibrium systems.

Above MFT entropy production also predicts correctly the signatures at discontinuous phase transitions. Ac-

cording to Eq. (2.49), m jumps from m1 ≡ m(S )(q f ) to 0 at q = q f = (b2/4ac) − qb and thereby from Eq. (2.60)

the entropy production will jump from

1
2

q f ḡ −
m2

1

q f ḡ

 ln
[
1 + q f ḡ
1 − q f ḡ

]
, to

q f ḡ
2

ln
[
1 + q f ḡ
1 − q f ḡ

]
. (2.63)

Conversely m jumps from 0 to m2 ≡ m(S )(qb) at q = qb and hence Π will jump from

qbḡ
2

ln
[
1 + qbḡ
1 − qbḡ

]
, to

1
2

qbḡ − m2
2

qbḡ

 ln
[
1 + qbḡ
1 − qbḡ

]
. (2.64)

The bistable behavior in the entropy production not only discerns continuous and discontinuous phase transi-

tions but also it properly locates the hysteretic loop. The description beyond the mean field will be given in

chapter 5.



Chapter 3

Thermodynamics of collisional models for

Brownian particles: General properties and

efficiency

3.1 Introduction

A long-standing dilemma in Thermodynamics and related areas concerns the issue of mitigating the impact

of thermal noise/wasted heat in order to improve the machine performance. This constitutes a high relevant

problem, not only for theoretical purposes but also for the construction of experimental setups [44, 45, 46].

Giving that the machine performance is commonly dependent on particular chemical compositions and op-

eration conditions, notably for small-scale engines, the role of fluctuations being crucial for such engines,

distinct approaches have been proposed and investigated in the realm of stochastic and quantum thermodynam-

ics [47, 48]. A second fundamental point concerns that, even if all sources of dissipation could be mitigated,

the performance of any thermal machine would still be limited by Carnot efficiency, which requires the occur-

rence of infinitely slow quasi-static processes and consequently the engine operates at null power. In contrast,

realistic systems operate at finite time and power. Such conundrum (control/mitigation of dissipation and en-

gine optimization) has contributed for the discovery of several approaches based on the maximization of power

output instead of the efficiency [31, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62].

Thermal machines based on Brownian particles have been successfully studied not only for theoretical purposes

17
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[31, 49, 50, 63] but also for the building of reliable experimental setups [64, 65, 66, 67, 68, 69]. They are also

remarkable for depicting the limitations of classical thermodynamics and disclose the scales in which thermal

fluctuations become relevant. In several situations, thermal machines involve isothermal transformations [64,

65, 66]. Such class of processes are fundamental in thermodynamic since they are minimally dissipative.

However, isothermal transformations are slow, demanding sufficient large number of stages for achieving the

desired final state. For this reason, distinct protocols, such as increasing the coupling between system and the

thermal bath, have been undertaken for speeding it up and simultaneously controlling the increase of dissipation

[70, 71, 72, 73, 74].

Here we introduce a strategy for optimizing the performance of irreversible Brownian machines operating at

isothermal parts via the control of interaction time between the system and the environment. Our approach is

based on a Brownian particle sequentially placed in contact with distinct thermal baths and subject to external

forces [75] for unequal times. Such description, also referred as collisional, has been successfully employed

in different contexts, such as systems that interact only with a small fraction of the environment and those

presenting distinct drivings over each member of system [34, 76, 77, 78]. Depending on the parameters of the

model (period, driving and difference of temperatures), the symmetric version can operate very inefficiently.

Our aim is to show that the machine performance improves substantially by tuning properly the interaction time

between particle and each reservoir. Besides the increase of the power and/or efficiency, the asymmetry in the

contact time also enlarges the regime of operation of the machine substantially. Contrasting with previous works

[71, 72, 73, 74], the optimization is solely obtained via the control of interaction time and no external parameters

are considered. We derive general relations for distinct kinds of maximization, including the maximization of

the efficiency and power with respect to the force, the asymmetry and both of them. For the isothermal work-to-

work converter and/or small difference of temperature between reservoirs, they are solely expressed in terms of

Onsager coefficients. The present approach can pave the way for the construction of efficient Brownian engines

operating at finite times.

3.2 Thermodynamics of asymmetric interaction times

In this section we will return to the study of the Brownian particle model seen in section 2.2. As stated before,

the present collisional approach for Brownian machines can be considered for an arbitrary set of reservoirs and

external forces, which generic solutions ⟨vi⟩(t)’s and bi(t)’s in the nonequilibrium steady state regime are

⟨vi⟩(t) = e−γi(t−τ̃i−1)ai + e−γitFi(t), (3.1)
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and

bi(t) = Aie−2γi(t−τ̃i−1) +
Γi

2γi
, (3.2)

where ai and Ai are integration constants to be determined from the boundary conditions and Fi(t) can be

viewed as a “time integrated force”, which is related to the external forces through the expression

Fi(t) =
∫ t

τ̃i−1

eγit′ fi(t′)dt′. (3.3)

Here, the variable t is interpreted as the time modulus the period τ = τ̃N .

Since the probability distribution is continuous, the conditions ⟨vi⟩(τi) = ⟨vi+1⟩(τi) and bi(τi) = bi+1(τi) must

hold for i = 1, . . .N − 1. In addition, the steady state condition (periodicity) implies that ⟨v1⟩(0) = ⟨vN⟩(τ)
and b1(0) = bN(τ). Hence, the ai and Ai can be determined as the solution of two uncoupled linear systems

of N equations each. Here we shall focus on the case of N = 2 reservoirs – the simplest case for tackling

the efficiency of a thermal engine, in which the interaction with the first and second reservoirs occur during τ1

and τ2 = τ − τ1, respectively. For simplicity, from now on, we consider that the viscous constant are equal

γ1 = γ2 = γ. Therefore, the average velocities and their variances are

⟨v1⟩(t) = (eγτ − 1) F1(t) + F1(τ1) + F2(τ)
eγt (eγτ − 1)

, (3.4)

⟨v2⟩(t) = eγτF1(τ1) + (eγτ − 1) F2(t) + F2(τ)
eγt (eγτ − 1)

,

and

b1(t) = −
(Γ1 − Γ2)

(
1 − e−2γτ2

)
2γ

(
1 − e−2γτ) e−2γt +

Γ1

2γ
, (3.5)

b2(t) =
(Γ1 − Γ2)

(
1 − e−2γτ1

)
2γ

(
1 − e−2γτ) e−2γ(t−τ1) +

Γ2

2γ
,

respectively. The expressions for ⟨v1⟩(t) and b1(t) hold for 0 ≤ t ≤ τ1, while the expressions for ⟨v2⟩(t) and

b2(t) are valid for τ1 ≤ t ≤ τ. It is worth pointing out that the particle will be exposed to the contact with the

reservoir 1 and force f1(t) for a longer (shorter) time than with reservoir 2 and force f2(t) if τ1 ≥ τ2 (τ1 ≤ τ2).

Furthermore, while the average velocities ⟨vi⟩(t) depend on the external force (but not on the temperature of the

reservoirs), its variances bi(t) depend on the temperatures (but not on the external forces).

Having the expressions for the mean velocities and variances, thermodynamic quantities of interest can be

directly obtained. The average work in each part of the cycle is given by

Ẇ1 =
1
τ

∫ τ1

0
⟨v1⟩(t) f1(t)dt, (3.6)

Ẇ2 =
1
τ

∫ τ

τ1

⟨v2⟩(t) f2(t)dt. (3.7)
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Using Eq. (3.4) and expressing each external force as fi(t) = Xigi(t), with Xi and gi(t) denoting force strength

and its driving, respectively, we finally arrive at the following expressions:

Ẇ1 = − m
τ (eγτ − 1)

[
X2

1

((
eγτ − 1

) ∫ τ1

0
g1(t)e−γt dt

∫ t

0
g1(t′)eγt

′
dt′ +

∫ τ1

0
g1(t)e−γt dt

∫ τ1

0
g1(t′)eγt

′
dt′

)
+ X1X2

∫ τ1

0
g1(t)e−γt dt

∫ τ

τ1

g2(t′)eγt
′
dt′

]
, (3.8)

Ẇ2 = − m
τ (eγτ − 1)

[
X2

2

(∫ τ

τ1

g2(t)e−γt dt
∫ τ

τ1

g2(t′)eγt
′
dt′ +

(
eγτ − 1

) ∫ τ

τ1

g2(t)e−γtdt
∫ t

τ1

g2(t′)eγt
′
dt′

)
+ X1X2eγτ

∫ τ

τ1

g2(t)e−γt dt
∫ τ1

0
g1(t′)eγt

′
dt′

]
. (3.9)

The expressions above, Eqs. (3.8) and (3.9), are exact and are valid for any kind of drivings g1(t) and g2(t) and

stage duration τ1 and τ2. Usually, in the linear regime, Ẇ i is written as the product of a flux Ji = LiiXi + Li jX j

by a force Xi, that is, Ẇ i = −kBTiJiXi. Since in the present case Ẇ i is always bilinear in the forces Xi, such

expression is also valid even far from the linear regime. Thus, the Onsager coefficients Li j may be written as,

L11 =
2γ

Γ1τ (eγτ − 1)

[(
eγτ − 1

) ∫ τ1

0
g1(t)e−γtdt

∫ t

0
g1(t′)eγt

′
dt′ +

∫ τ1

0
g1(t)e−γt dt

∫ τ1

0
g1(t′)eγt

′
dt′

]
,

L22 =
2γ

Γ2τ (eγτ − 1)

[∫ τ

τ1

g2(t)e−γt dt
∫ τ

τ1

g2(t′)eγt
′
dt′ +

(
eγτ − 1

) ∫ τ

τ1

g2(t)e−γtdt
∫ t

τ1

g2(t′)eγt
′
dt′

]
,

L12 =
2γ

Γ1τ (eγτ − 1)

∫ τ1

0
g1(t)e−γt dt

∫ τ

τ1

g2(t′)eγt
′
dt′,

L21 =
2γeγτ

Γ2τ (eγτ − 1)

∫ τ1

0
g1(t′)eγt

′
dt′

∫ τ

τ1

g2(t)e−γt dt.

(3.10)

Reciprocal relations are verified as follows: Since forces f1(t) and f2(t) solely act from 0 to τ1 and τ1 to

τ, respectively, both upper and lower integral limits in Eqs. (3.6) and Eq. (3.7) can be replaced for τ and 0,

respectively and hence all expressions from Eq. (3.6) to Eq. (3.10) can be evaluated over a complete cycle. By

exchanging the indexes 1↔ 2, we verify that Li j ↔ L ji.

Similarly, general expressions can be obtained for the average heat dissipation during the contact of the Brow-

nian particle with each reservoir. Since the heat is closely related to the entropy production rate [see e.g.

Eq. (2.24)], we curb our discussion to the latter quantity. The average entropy production over a complete cycle

is then given by,

Π =
1
τ

[∫ τ1

0
Φ1(t) dt +

∫ τ

τ1

Φ2(t) dt
]
. (3.11)

By inserting Eq. (2.24) into Eq. (3.11) and using the expression for Q̇i(t) given by Eq. (2.21), Π can be

decomposed in two terms: one associated with the difference of temperature of the reservoirs

ΠT =
kB

τ

[
2γ2

Γ1

∫ τ1

0
b1(t) dt +

2γ2

Γ2

∫ τ

τ1

b2(t) dt − γτ
]
, (3.12)
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and the other coming from the external forces

ΠF =
kB

τ

[
2γ2

Γ1

∫ τ1

0
⟨v1⟩2(t) dt +

2γ2

Γ2

∫ τ

τ1

⟨v2⟩2(t) dt
]
. (3.13)

Now, from Eqs. (3.5) and (3.12), one obtains the general form for ΠT :

ΠT = kB
Γ1Γ2

τ

sinh (γτ1) sinh (γτ2)
sinh (γτ)

(
1
Γ1
− 1
Γ2

)2

, (3.14)

which it is strictly positive (as expected). The component (1/Γ1−1/Γ2) can be regarded as the “thermodynamic

force” fΓ associated with the difference of temperature of the reservoirs. Particularly, in the linear regime

(Γ2 ≃ Γ1 = Γ), ΠT can be conveniently written down in terms of Onsager coefficient ΠT = LΓΓ fΓ, where LΓΓ is

given by,

LΓΓ = kB
Γ2

τ

sinh (γτ1) sinh (γτ2)
sinh (γτ)

. (3.15)

Note that LΓΓ is strictly positive and it reduces to kBΓ
2 tanh [γτ2 ]/2τ for τ1 = τ2 (symmetric case). Further, it is

straightforward to verify that the dissipation term ΠT is a monotonous decreasing function of τ and it is always

larger for the symmetric case (τ1 = τ2). Both properties of ΠT are illustrated in Fig. 3.1, where ΠT is shown

as a function of τ for various values of the asymmetry parameter κ = τ1/τ2 (notice that ΠT is invariant over

the switch of the interaction times τ1 ↔ τ2 or, equivalently κ ↔ 1/κ). There is one caveat which concerns the

validity of the results of Fig. 3.1. Collisional models usually neglects the time for changing the contact between

the system and thermal baths. However, if τ is very small, such approximation can no longer be hold. We shall

assume along this chapter that τ is large enough for the collisional approximation to be valid.

0
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20

25

0 5 10 15 20

ΠT
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Figure 3.1: Mean entropy production component ΠT as a function of the period τ for γ = 1, Γ1 = 1 and

Γ2 = 100 and distinct asymmetries. From top to bottom: κ = 1.0, 0.5, 0.3, 0.2 and 0.1.

The entropy production component coming from external forces also assumes a general (bilinear) form given
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by,

ΠF = L̃11X2
1 + (L̃12 + L̃21)X1X2 + L̃22X2

2 . (3.16)

The coefficients L̃i j’s are shown in the Appendix A, Eq. (A.2). It should be noticed that Eq. (3.16) is exact for all

force regimen (not only in the linear regime). For equal temperatures, they coincide with Onsager coefficients

[Eq. (3.10)]. A detailed analysis for distinct linear regimes (low temperature difference and/or low forces) is

undertaken in Appendix A. Furthermore, since τ2 = τ− τ1, the coefficients above fulfill the reciprocal relations

L̃11 ↔ L̃22 and L̃12 ↔ L̃21 by exchanging 1 ↔ 2 for the generic drivings gi(t)’s, the interaction times τi’s and

the temperature of the reservoirs Ti’s.

3.3 Efficiency

The optimization of engines, which converts energy (usually heat or chemical work) into mechanical work,

constitutes one of the main issues in thermodynamics, engineering, chemistry and others. Here we exploit the

role of asymmetric contact times between the Brownian particle and the thermal reservoirs as a reliable strategy

for optimizing the machine performance. More specifically, the amount of energy (heat and work) received by

the particle is partially converted into output work (or, equivalently, the output power per cycle) P = Ẇ2 ≥ 0

during the second half stage. A measure of efficiency is given by the ratio of the amount of output work to the

total energy injected

η = − P
Ẇ1 + Q̇i

, (3.17)

where Q̇i is the average heat extracted from the reservoir i (i = 1 or 2 whether the reservoir 1 or 2 delivers heat

to the Brownian particle), whereas for the other way round (both reservoirs absorbing energy from the particle),

Q̇i does not appear in Eq. (3.17), as shall be discussed in Sec. 3.3.1. It is worth mentioning that in the case of

more than 2 reservoirs, the numerator of the efficiency should be the total power extracted from the systems

(sum of all Ẇi > 0) and the denominator is the total power injected into the system (sum of all Ẇi < 0) plus the

total heat injected into the system (sum of all Q̇i < 0).

Below, we are going to investigate the machine optimization with respect to the loading force X2 and asymmetry

coefficient κ = τ1/τ2 for two distinct scenarios: equal and different temperatures.
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3.3.1 Isothermal work-to-work converter

Many processes in nature, such as biological systems, operate at homogeneous (or approximately equal) tem-

peratures, in which an amount of chemical work/energy is converted into mechanical work and vice-versa (see

e.g. [79, 80]). This highlight the importance of searching for optimized protocols operating at equal tempera-

tures. Here we exploit the present Brownian machine operating at equal temperatures, but subject to distinct

external forces. From Eqs. (2.21) and (3.5), it follows that Q̇1 ≥ 0 and Q̇2 ≥ 0 and therefore no heat is delivered

to the particle. Such engine reduces to a work-to-work converter: the particle receives input power Ẇ1 < 0

which is partially converted into output power P ≥ 0. From Eq. (3.10), the output power and efficiency can

expressed in term of the Onsager coefficients according to the following expressions:

P = Ẇ2 = −kBT
[
L22(κ)X2

2 + L21(κ)X1X2
]
. (3.18)

and

η = −L21X1X2 + L22X2
2

L11X2
1 + L12X1X2

, (3.19)

Both of them can be expressed in terms of the ratio X2/X1 between forces, the output power being a function

of such ratio multiplied by X2
1 . As mentioned previously, there are three routes to be considered with respect to

the engine optimization (holding X1 and τ fixed): the time asymmetry optimization (conveniently carried out in

terms of ratio κ = τ1/τ2), the output force X2 optimization and both optimizations together. We shall analyze

all cases in the following subsections.

1. Maximization with respect to the asymmetry

Since the Brownian particle must be in contact with the first reservoir long enough for the injected energy to be

larger than the energy dissipated by the viscous force, for any set of X1 and X2 there is a minimum value κm for

which P ≥ 0. On the other hand, depending on the kind of driving, it can extend up κ → ∞, for which L21 and

L22 vanishes [see Eq. (3.10)].

The choice of optimal asymmetries are expected to be dependent of the quantity chosen to be maximized.

Usually, there are two quantities of interest: maximum efficiency or maximum power output. Starting with the

latter case, the optimal asymmetry κMP which maximizes P is the solution of following equation

L′21(κMP)
L′22(κMP)

= −X2

X1
, (3.20)

where L′i j(κ) ≡ ∂Li j(κ)/∂κ and in this section Li j’s (together their derivatives) have been expressed in terms of

κ for specifying which quantity (P or η) has been maximized. In general, Eq. (3.20) may have more than one
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solution for each choice of the ratio X2/X1 and one should be careful to identify the global maximum. However,

in the following discussion (as in the examples presented in Section 3.3.1), we consider the cases which present

a single maximum.

Similarly, from Eq. (3.19), we obtain the value of the asymmetry that maximizes the efficiency κMη from the

transcendental equation

∆2212(κMη)X2
2 + ∆2111(κMη)X2

1

+
[
∆2211(κMη) + ∆2112(κMη)

]
X1X2 = 0,

(3.21)

where ∆i jkl(κ) = L′i j(κ)Lkl(κ) − L′kl(κ)Li j(κ). Although exact, for a given choice of the drivings gi(t) and the

strengths Xi, Eqs. (3.20) and (3.21), in general, have to be solved numerically for κMP and κMη, respectively.

After these values are obtained, we can evaluate the power PMP,κ and efficiency ηMP,κ at maximum power as

PMP,κ =
kBT L′21(κMP)

L′222(κMP)
[L21(κMP)L′22(κMP) − L22(κMP)L′21(κMP)]X2

1 , (3.22)

and

ηMP,κ =
L′21(κMP)[L′22(κMP)L21(κMP) − L22(κMP)L′21(κMP)]
L′22(κMP)[L11(κMP)L′22(κMP) − L12(κMP)L′21(κMP)]

. (3.23)

Analogously, we can write the power at maximum efficiency PMη,κ and maximum efficiency ηMη,κ as

PMη,κ = −kBT
[
L22(κMη)X2

2 + L21(κMη)X1X2
]
, (3.24)

and

ηMη,κ = −
L22(κMη)X2

2 + L21(κMη)X1X2

L11(κMη)X2
1 + L12(κMη)X1X2

, (3.25)

respectively. In Sec 3.3.1, we will exemplify our exact expressions for maximum efficiencies and powers for

two kinds of drivings.

2. Maximization with respect to the output force

For given asymmetry and drivings, the Onsager coefficients are constant. Hence, the maximization of the output

power and the efficiency turn out to be similar to the approach from Refs. [58, 75]. Below, we recast the main

results.

As previously, the engine regime (P > 0) also imposes boundaries to optimization with respect to the force

strength. Here, the output force X2 must lie in the interval Xm ≤ X2 ≤ 0, where Xm = −L21X1/L22. In general,

Xm is different from the value of the output force that minimizes the entropy production X2mS (for X1 and κ
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constants). According to Eq. (3.16), such difference is given by X2m − X2mS = (L12 − L21)X1/2L22. Note that

they coincide Xm = X2mS for symmetric Onsager coefficients L12 = L21, but they are different when L12 , L21.

Similarly to the previous subsection, the optimization can be performed to ensure maximum power PMP,X2

(with efficiency ηMP,X2) or maximum efficiency ηMη,X2 (with power PMη,X2), by adjusting the output forces to

optimal values X2MP and X2Mη, respectively. These optimal output forces can be expressed in terms of the

Onsager coefficients as

X2Mη =
L11

L12

−1 +

√
1 − L12L21

L11L22

 X1, (3.26)

and

X2MP = −1
2

L21

L22
X1, (3.27)

respectively. Hence, the maximum efficiency ηMη,X2 and the efficiency at maximum power ηMP,X2 are given by,

ηMη,X2 = −
L21

L12
+

2L11L22

L2
12

1 − √
1 − L12L21

L11L22

 , (3.28)

and

ηMP,X2 =
L2

21

4L11L22 − 2L12L21
, (3.29)

while the power at maximum efficiency PMη,X2 and the maximum power PMP,X2 can obtained by inserting X2Mη

or X2MP into the expression for P. In fact, these quantities are not independent of each other, instead they are

related as

ηMP,X2 =
PMP,X2

2PMP,X2 − PMη,X2

ηMη,X2 . (3.30)

Furthermore, for symmetric Onsager coefficients L12 = L21, there two additional simple relations given by,

ηMP,X2 =
ηMη,X2

1 + η2
Mη,X2

and
PMη,X2

PMP,X2

= 1 − η2
Mη,X2

. (3.31)

As shown in Appendix B, L12 = L21 for constant drivings for any value of κ. Conversely, they are in general

different (L12 , L21) for linear drivings (see Appendix C). For the symmetric time case (κ = 1), however, the

equality holds also for linear drivings [75].

3. Constant and linear drivings

In order to access the advantages of the asymmetry in the time spent by the Brownian particle in contact with

each reservoir, we consider two different driving models. In the first model, the drivings are constant and the

external forces can be written as

f1(t) = X1, for 0 ≤ t < τ1 (3.32)

f2(t) = X2, for τ1 ≤ t < τ. (3.33)
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Figure 3.2: Efficiency [panels (a) and (b)] and output power [panels (c) and (d)] (averaged over one period)

for the isothermal work-to-work converter with X1 = 1, τ = 1, γ = 1 and different asymmetries κ doing

κ = 1.50, 1.00 and 0.67 for the lines blue, red and green respectively. Panels (a) and (c) depict the results for

constant drivings, whereas (b) and (d) for the linear drivings one. In all panels, squares, circles and stars denote

X2mS , X2Mη and X2MP, respectively.

In Appendix B, we present explicit expressions for the average velocities ⟨vi⟩(t) and Onsager coefficients Li j

(which coincides with the coefficients L̃i j for isothermal reservoirs). The second class of Brownian engines

deals with drivings evolving linearly in time and given by the following expressions

f1(t) = X1γt, for 0 ≤ t < τ1 (3.34)

f2(t) = X2γ(t − τ1), for τ1 ≤ t < τ. (3.35)

The main expressions for such case are listed in Appendix C. Figs. 3.2 and 3.3 depict typical plots of the

efficiency and power output for both force models as a function of the output force X2 and asymmetry κ,

respectively.

As discussed above, the engine regime operates for X2m < X2 < 0. An immediate advantage of the time

asymmetry concerns the minimum output forces X2m which decreases with κ, implying that the engine regime



CHAPTER 3. BROWNIAN PARTICLES 27

interval increases with the asymmetry (see Fig. 3.2). Such trend is consistent with the absorption of energy

(average work rate Ẇ1) for longer and longer time as κ increases. Furthermore, the minimum entropy production

(represented by the squares in the figure) coincides with the minimum loading force (vanishing power output

and efficiency) for constant drivings, but not for the linear case (although, for the values of the parameters used

in Fig. 3.2, X2mS is so close to Xm that the difference is not discernible – it is of the order of 10−3).

The maximum efficiencies are almost constant for the constant force model [Fig. 3.2(a)] and slightly increase

with κ [Fig. 3.2(b)] for the linear force model. However, for small |X2|, the efficiency is larger for the smaller

values of κ. The effect of the time asymmetry for the output power is more pronounced. For both force models,

the maximum power output clearly increases with κ.

Fig. 3.4 depicts, for constant and linear drivings, a heat map for the power output and efficiency as a function of

both the asymmetry and loading forces. For aesthetic reasons, they have been expressed in terms 1/κ (instead

of κ) in the vertical axis. Noteworthy, the maximum efficiency curves, represented by the dashed (full) line for

the maximization with respect to κ (loading force), are close to each other. Consequently, the choice of the

parameter to maximize the efficiency is not important for both models presented here. Moreover, as previously

discussed, the maximum efficiency is almost constant for the constant drivings model, but increases with κ

for the linear drivings one. In contrast to the maximum efficiencies, maximum power curves (panels 3.4(a)

and 3.4(c) for constant and linear drivings, respectively) present rather different behaviors depending on the

optimization parameter. The PMP,κ curves (dashed lines) always lie below the PMP,X2 (full lines) ones and

they approach each other as κ → ∞. Finally, it is worth pointing out that while both drivings provide similar

efficiencies, the constant driving case is clearly more advantageous than the linear one in terms of the output

power.

4. Simultaneous maximization of the asymmetry and the force

One may also raise the relevant issue of maximizing the power output and efficiency with respect to the asym-

metry and output force strength simultaneously. Although this is not possible in some cases (as explained

below), we will proceed presenting the framework assuming that such maximization is possible. As before, we

shall restrict the analysis to drivings presenting a single physical solution for Eqs. (3.20) and (3.21). If this is

not the case, each maximum of these equations should be analyzed individually to assert which is the global

maximum in each case.

Under the assumption above, the maximum power output must satisfy simultaneously Eqs. (3.20) and (3.27),
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Figure 3.3: Efficiency [panels (a) and (b)] and output power [panels (c) and (d)] (averaged over one period)

for the isothermal work-to-work converter with X1 = 1, τ = 1, γ = 1 and different values of X2, doing

X2 = −0.5,−1.0 and −2.0 for the lines green, red and blue respectively. Panels (a) and (c) depict the main

results for the constant drivings model while (b) and (d) the linear drivings one. In all panels, circles and

stars denote κ2Mη and κ2MP, respectively. For such set of parameters, the associate κ2mS ’s are out of the engine

regime.

that is, we must find the optimal value of the asymmetry κ∗MP which satisfy the following condition:

L′21(κ∗MP)
L′22(κ∗MP)

=
1
2

L21(κ∗MP)
L22(κ∗MP)

. (3.36)

Once the optimal asymmetry κ∗MP is obtained, the optimal force X∗2MP is calculated from Eq. (3.27) and given

by

X∗2MP = −
1
2

L21(κ∗MP)
L22(κ∗MP)

X1. (3.37)

Graphically, the condition above is precisely the crossing point between lines for which the power (or efficiency)

is maximized with respect to X2 and κ. However, in some cases, (as illustrated by the constant and linear
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Figure 3.4: For the isothermal work-to-work converter, the output power (left panels) and efficiency (right

panels) for the constant [(a) and (b)] and linear [(c) and (d)] drivings models as a function of the inverse of the

asymmetry parameter κ and loading forces X2. Dotted lines represent constant value loci, dashed and full lines

represent maximization with respect to κ and X2, respectively. Parameters: τ = 1, γ = 1, X1 = 1.

drivings presented above) these two lines do not cross at all. The physical reason is that the power output keeps

growing as κ → ∞ (with an appropriate choice of a value of X2 for each κ). In other words, for such models, it is

advantageous to apply a very large output force (in modulus) for a short period. Conversely, if the force model

involves a rapidly decaying input driving g1(t) and growing output driving g2(t), an optimal output power may

be found. In such case, the power and efficiency at maximum power are readily evaluated as

P∗ = kBT
4

L2
21(κ∗MP)

L22(κ∗MP)
X2

1 , (3.38)

and

η∗ =
L2

21(κ∗MP)
4L11(κ∗MP)L22(κ∗MP) − 2L21(κ∗MP)L12(κ∗MP)

. (3.39)
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Figure 3.5: For the exponential driving, depiction of output power (a) and efficiency (b) versus the inverse of

the asymmetry coefficient κ and the output force X2 for τ = 1, γ = 1 and X1 = 1. Dotted lines represent

constant value loci, dashed and solid lines represent maximization with respect to κ and X2, respectively.

Thereby, the optimal output power increases quadratically with the input force while the efficiency is completely

determined by the driving force model. It is noteworthy that, despite the apparent temperature dependency of

the power output in Eq. (3.38), the temperature cancels out when we use the expressions for the Onsager

coefficients [see e.g. Eq. (3.10)]. Similar expressions can be obtained for the simultaneous maximization of

efficiency [by equaling the ratio X2/X1 from Eqs. (3.21) and (3.26)]. Since expressions are more involved, we

abstain to present them here. In order to illustrate the previous ideas, we consider an exponential driving given

by

f1(t) = X1e−9γt, for 0 ≤ t < τ1 (3.40)

f2(t) = X2eγ(t−τ1), for τ1 ≤ t < τ. (3.41)

Figs. 3.5 (a) and (b) depict, for above exponential drivings, the heat maps of the output power and efficiency as

functions of κ and X2, respectively. Contrasting to the previous models, the crossing between maximum power

lines are evident for the exponential drivings model above and thereby the global optimization is possible.

Although for the exponential model given by Eqs. (3.40) and (3.41) the crossing between maximum efficiency

curves is absent, it does appear for other exponential drivings choices (e.g. for f1(t) = X1e−7γt and f2(t) =

X2e3γ(t−τ1)) and follow theoretical prescription above.
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3.3.2 Thermal engine

In this section, we derive general findings for thermal engines in which the particle is also exposed to distinct

thermal baths in each stage. Although the power output P is the same as before (it does not depend on the

temperatures), the efficiency may change because of the appearance of heat flow. Hence, in addition to the

input energy received as work, the engine may also receive energy from the hot reservoir. Consequently, the

maximization of power output with respect to the output force X2MP or the asymmetry κMP is the same as

before, but the corresponding efficiencies may differ (if Q̇1 < 0 or Q̇2 < 0) from such case, following Eq. (3.17)

instead. Anyhow, the efficiency of the engine for reservoirs with different temperatures is always smaller or

equal than for isothermal reservoirs.

From Eq. (2.21), the average heat dissipated by the Brownian particle per cycle while in contact with the

i-reservoir Q̇i can be obtained as

Q̇1 =
mγ
τ

[∫ τ1

0
⟨v1⟩2dt −C(τ1)(Γ1 − Γ2)

]
, (3.42)

Q̇2 =
mγ
τ

[∫ τ

τ1

⟨v2⟩2dt +C(τ1)(Γ1 − Γ2)
]
, (3.43)

where C(τ1) = csch(γτ) sinh(γτ1) sinh(γτ2)/2γ2 is strictly positive. Therefore, since the first term on the right-

hand side of Eqs. (3.42) and (3.43) are positive, heat always flow into the colder reservoir. As about the hot

reservoir, the heat may flow from or into the reservoir. For simplicity, we shall restrict our analysis to the case

Γ1 > Γ2, that is, the first reservoir being the hot one, but it is worth pointing out that all the discussion below

holds valid for Γ1 < Γ2 if we analyze Eq. (3.43) instead of Eq. (3.42).

For Γ1 > Γ2, Eq. (3.42) ensures that heat flows into the system if
∫ τ1

0 ⟨v1⟩2dt < C(τ1)(Γ1 − Γ2). Physically, this

condition is a balance between kinetic energy that flows into the system due to the forces and the dissipation.

If X1 is strong enough (or if the difference of temperature of the reservoirs is small enough), energy flows into

both reservoirs. Thereby, the engine effectively reduces to an isothermal work-to-work converter, so that the

efficiency is still described by Eq. (3.19) and all results and findings from Section 3.3.1 regarding the efficiency

optimization hold. Moreover, for small enough temperature differences, the engine efficiency is larger the

Carnot efficiency. This is possible because work-to-work conversion is not bounded by the thermodynamics

laws the same way heat-to-work conversion is [81]. Otherwise, the inequality above is satisfied and energy

flows from the first reservoir into the engine. For Γ1 < Γ2, the same energy balance occurs, but we need to

assert the positiveness or negativeness of Eq. (3.43).

Furthermore, although exact, the achievement of general expressions for optimized efficiencies outside the
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isothermal work-to-work regime is more cumbersome than the ones obtained for such regime, making a general

analysis unfeasible. Nevertheless, the discussion of a simple asymptotic limit is instructive. If the second term

on the right-hand side of Eq. (3.42) [or Eq. (3.43)] is the dominant one, |Γ1 − Γ2| ≫ 1 and |Q̇1| ≫ |Ẇ1| [or

|Q̇2| ≫ |Ẇ1|]. Therefore, the efficiency becomes η ≈ −P/Q̇1 [or η ≈ −P/Q̇2], which maximization, with

respect to X2, yields X2Mη ≈ X2MP and follows Eq. (3.27). Hence, the corresponding ηMη approaches to the

following expression

ηMη,X2 ≈
T2

8γ2TiC(τ1)

L2
21

L22
τX2

1 ≪ 1, (3.44)

where Ti is the temperature of the hot reservoir. When the hot bath is the first reservoir, the fact that the

efficiency is small is direct since the factor T2/T1 << 1. However, when the second reservoir is the hotter

one, the temperature ratio becomes 1 and the smallness of the efficiency comes from the Onsager coefficients:

L2
21/L22 ∝ 1/T2. It is also worth mentioning that the apparent dependence on the period cancels out because

the Onsager coefficients are proportional to 1/τ [see Eq. (3.10)]. Therefore, for high temperature differences,

the engine efficiency is very small for any value of the asymmetry.

In order to illustrate our findings for reservoirs with different temperatures, we consider the constant and linear

drivings models presented above. Fig. 3.6 exemplifies, for distinct temperature reservoirs, the efficiency for

the same values of κ used in Fig. 3.2 for constant [panels (a) and (b)] and linear drivings [panels (c) and (d)],

respectively. In panels (a) and (c) the temperature of the first reservoir is larger than that of the second reservoir,

while panels (b) and (d) depict the other way around.

In accordance with general findings from Sec. 3.3.2, for constant drivings there are two regimes (the vertical

lines in the figure denotes the value of X2 which separates them) for which the heat exchanged between the

Brownian particle and the hot reservoir changes sign. Conversely, they are not present for the linear drivings

model – panels (c) and (d) – because the heat exchange with the hot reservoir does not change sign for the pa-

rameters used in the figures. Since ⟨vi⟩2 increases with X2
2 , the term coming from the difference of temperatures

in Eq.(3.42) dominates over it when |X2| is small and hence the machine is less efficient than the isothermal

work-to-work converter. Conversely, for large |X2| the engine may become as efficient as the isothermal work-

to-work converter if the exchanged heat with the hot reservoir change sign – left of the line in panels (a) and

(b). Anyhow, by comparing the performance of isothermal with the different temperature case, we see that the

decay of efficiency for linear drivings is more pronounced than for constant drivings.

As for isothermal reservoirs, the machine performance always improves as κ increases, encompassing not only

an extension of its operation regime X2m but it also presents a more pronounced increase of efficiencies, again,

more substantial for linear drivings. Moreover, the asymmetry may be used to mitigate the drop in the efficiency
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Figure 3.6: Efficiency as a function of the force strength X2 for the constant [(a) and (b)] and linear [(c) and (d)]

drivings, respectively. Parameters: τ = 1, γ = 1 and X1 = 1 and distinct temperatures [Γ1 = 2.0 and Γ2 = 1.5

in panels (a) and (c) and Γ1 = 1.5 and Γ2 = 2.0 in panels (b) and (d)]. Circles denote maximum efficiencies

and their X2MP’s are the same as in Fig. 3.2. From left to right, κ = 1.50, 1.00 and 0.67). Dashed vertical lines

stands for the value of X2 for which Q̇i changes sign (i being the index of the hot reservoir).

produced by the different temperatures of the thermal reservoirs.

In Fig. 3.7, we show the efficiency as a function of the asymmetry for various values of X2. Similarly to the

previous figure, the vertical lines denote the values of κ for which the heat from the hot reservoir change sign

and delimits the isothermal work-to-work converter regime. The discussion whether the isothermal work-to-

work converter regime lies to the left or right of the vertical lines is not so obvious because both C(τ1) and ⟨v1⟩
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Figure 3.7: Efficiency versus the time asymmetry κ for the (a) constant and (b) and linear drivings, respectively,

for τ = 1, γ = 1 and X1 = 1 and different temperatures [Γ1 = 2.0 and Γ2 = 1.5]. Circles denote maximum

efficiencies and their X2MP’s are the same as in Fig. 3.3. From left to right, X2 = −0.5,−1.0 and −2.0. Dashed

vertical lines stands for the value of κ for which Q̇1 changes sign. For such set of parameters κ2mS are out of the

engine regime.

depend on the asymmetry. However, the work-to-work regime lies to the right of the lines, since the function

C(τ1) reaches its maximum for κ = 1(τ1 = τ/2) and the first term on the right-hand side of Eq. (3.42) is

expected to increase giving that its limit of integration increases with κ.

Fig. 3.8 presents heat maps of the efficiency for different temperature reservoirs as a function of the output force

and asymmetry. By drawing a comparison with the isothermal work-to-work converter (Fig. 3.4), it reveals that

the difference of temperature makes the choice of the optimization parameter (force strength or time asymmetry)

more relevant. While both optimized lines lie almost on top of each other for the isothermal case, Fig. 3.8

shows that they are clearly distinct, particularly for the linear drivings. Another point to be addressed concerns

that high efficiencies are restricted to larger |X2|’s for constant drivings when temperatures are different. This

contrasts to its extension to smaller values for isothermal reservoirs [the hot (red) region in Fig. 3.4(b) is more

spread than in Fig. 3.8(a)]. Conversely, for linear drivings, the decrease of the efficiency extends for all values

of κ and X2 when compared with the isothermal work-to-work converter [note that efficiency in Fig. 3.4(d) is 3
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Figure 3.8: Depiction of efficiency as a function of the inverse of the asymmetry coefficient κ and the output

force X2, for constant (a) and linear (b) drivings, respectively. Solid and dashed lines denote the maximization

with respect to X2 and κ, respectively. Parameters: Γ1 = 2.0 and Γ2 = 1.5, τ = 1, γ = 1 and X1 = 1.

times larger than Fig. 3.8(b)]. However, larger efficiencies in such case is obtained solely for larger values of

|X2| under a certain range of κ.

3.4 Symmetric case and ∆Γ ≪ 1

Finally, we will limit our study to the symmetric case κ = 1 (that is, τ1 = τ2). This particular case allows

obtaining approximate expressions when the system operates at small temperature differences (∆Γ ≪ 1) since

under these conditions we can assume the symmetry relation L12 ≈ L21. To this end, we will propose an

alternative definition for efficiency (described below) based on the ratio of entropy production flows [75]. This

definition, although it is in qualitative agreement with previous results (section 3.3.1.3) and is approximately

correct when reservoir temperatures are close (∆Γ → 0 or ∆Γ << 1), it overestimates the efficiency of the

machine as ∆Γ increases. The alternative expression is defined as

η = − J1X1

J2X2 +JT XT
= − L11X2

1 + L12X1X2

L21X2X1 + L22X2
2 + LTT X2

T

. (3.45)

where XT = fΓ and we use Eq. (3.16) to relate the flows with the Onsager coefficients.

The values of load forces X1mP, X1mE and X1mS can be obtained straightforwardly from expressions for P and

Eq. (3.45), respectively. Due to the present symmetric relation between Onsager coefficients (in both cases),
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they acquire simpler forms and read 2X1mP = −L12X2/L11,

X1mE =
1

L11L12X2

[
−L11(L22X2

2 + LTT X2
T ) + A(X2, XT )

]
, (3.46)

with A(X2, XT ) being given by

A(X2, XT ) =
√

L11(L22X2
2 + LTT X2

T )
√

[L11(L22X2
2 + LTT X2

T ) − L2
12X2

2] (3.47)

and X1mS = −L12X2/L11 = 2X1mP, respectively.

The efficiencies at minimum dissipation, maximum power and its maximum value become ηmS = 0,

ηmP =
L2

12X2
2

2(2L22L11 − L2
12)X2

2 + 4LTT L11X2
TT

, (3.48)

and

ηmE =
1

L2
12X2

2

[2L11(L22X2
2 + LTT X2

TT ) − L2
12X2

2 − 2A(X2, XT )], (3.49)

respectively, and finally their associated power outputs read PmS = 0, PmP = Γ1L2
12X2

2/4L11 and

PmE =
Γ1

L11L2
12X2

2

[
L11(L22X2

2 + LTT X2
T ) − A(X2, XT ) − L2

12X2
2

] [
L11(L22X2

2 + LTT X2
T ) − A(X2, XT )

]
, (3.50)

respectively.

We pause to make a few comments: First, above expressions extend the findings from Ref. [58] for a couple of

driving forces. Second, both efficiency and power vanish when X1 = X1mS and X1 = 0 and are strictly positive

between those limits. Hence the physical regime in which the system can operate as an engine is bounded by

the lowest entropy production ΠmS = LTT X2
T + (L22 − L2

12/L11)X2
2 and the value Π

∗
= LTT X2

T + L22X2
2 . Third,

despite the long expressions for Eqs. (3.49) and (3.50), powers PmP,PmE and efficiencies ηmP, ηmE are linked

through a couple of simple expressions (3.31) and they imply that 0 ≤ ηmP < ηmE (with 0 ≤ ηmE ≤ 1 and

0 ≤ ηmP ≤ 1/2) and 0 ≤ PmE ≤ PmP. Fourth and last, the achievement of most efficient machine ηmE = 1

implies that the system has to be operated at null power PmE = 0 and hence the projection of a machine

operating for finite PmP/PmE will imply at a loss of its efficiency. Onsager coefficients become simpler in the

limit of fast switchings, τ → 0 and L11, L22, L12 approach to (Γ1 + Γ2)/(4Γ1Γ2). Some remarkable quantities

then approach to the asymptotic values f1mS → − f2 = 2 f1mP and

ηmP →
f 2
2 (Γ1 + Γ2)

2[ f 2
2 (Γ1 + Γ2) + 2∆Γ2]

, (3.51)

respectively. For Γ1 ≈ Γ2, ηmP → 1/2, ηmE → 1 and PmP reads PmP → f 2
2 /8 and thereby the limit of an ideal

machine is achieved for low periods and equal temperatures.
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Similar features are verified for the linear driving, including increasing efficiencies as both τ and ∆Γ decreases.

However, they are marked by a reentrant behavior for τ << 1 and ∆Γ , 0 (see e.g. Fig. 3.10). It moves for

lower τ’s as ∆Γ goes down and the limit of ideal machine, ηmP → 1/2 and ηmE → 1, is also recovered when

both τ→ 0 for ∆Γ→ 0.

Other differences between protocols are appraised in Figs. 3.9 and 3.10. For finite difference of temperatures,

the constant driving is always more efficient than the linear one and their power outputs are also superior. The

maximum efficiency curves (linear drivings) are also reentrant, whose maxima values increase and deviate for

lower τ’s as ∆Γ decreases.

We close this section by remarking that although short periods indicates a general route for optimizing the

efficiency of thermal machines in contact to sequential reservoirs, the present description provides to properly

tune the period and forces in order to obtain the desirable compromise between maximum efficiency and power.

3.5 Conclusions

We introduced an alternative strategy for optimizing the performance of Brownian engines, based on the idea of

asymmetric interaction time between the system (Brownian particle) and the thermal baths. Exact expressions

for thermodynamic quantities and their maximized values were obtained, irrespective the kind of driving and

asymmetry. The time asymmetry can always be tuned to obtain a gain larger than in the symmetric case. In

addition to the improvement of the power output and efficiency, the time asymmetry also enlarges the range

of forces for which the system operates as an engine. Another advantage of asymmetric times is that they can

be conveniently chosen for compensating part of the limitations due the machine design, such as its operation

period and the driving considered. Results for constant and linear drivings confirm that the appropriate tuning of

the asymmetry produce gains for the efficiency substantially larger than those achieved for the symmetric case.

It is important to point out that the symmetric engine does not necessarily operate inefficiently, as exemplified

in Fig. 3.2. However, the tuning of the asymmetry, for given values of the other parameters (output force and

period), provides a reliable route for enhancing the engine performance.
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Figure 3.9: For Γ1 = 2, X2 = 1 and distinct ∆Γ’s, the comparison between maximum efficiency (panel (a)) and

efficiency at maximum power (panel (b)) for constant drivings. Insets: The corresponding power outputs P’s

versus τ.

Contrariwise to usual machines, for which the heat flow due to the gradient of temperature is fundamental for

the power extraction and enhancing the efficiency, in the present case the efficiency is higher for isothermal

reservoirs. The reason for such behavior concerns that the energy exchange between the Brownian particle

and the different thermal reservoirs occurs in different stages. Since the heat transfer and the output force

are uncoupled, the heat flux can not be converted into useful work. For instance, one would require drivings

dependent of the velocity in order to be able to extract work from heat in the present model. Although the ro-

bustness of our findings has been verified for a few examples of drivings, our approach can be straightforwardly

extended for other thermal machines, where in principle similar findings are expected. This is reinforced for
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Figure 3.10: For Γ1 = 2, X2 = 1 and distinct ∆Γ’s, the comparison between maximum efficiency (panel (a))

and efficiency at maximum power (panel (b)) for linear drivings. Insets: The corresponding power outputs P’s

versus τ.

recent results unveiling the importance of asymmetric times for optimizing the efficiency at maximum power

of a quantum-dot thermal machine, which gain provides efficiencies larger than Curzon-Ahlborn [82].

We finish this chapter highlighting a couple of perspectives. While in the present work we analyzed the maxi-

mization of the output power and efficiency with respect to the time asymmetry and the output force strength,

keeping the other parameters of the machine fixed, it might be worth to study the maximization under different

physical conditions, such as holding the dissipation or efficiency fixed. Finally, it might also be interesting

to extend the role of asymmetric times for other kinds of drivings (e.g. velocity dependent drivings providing
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extraction of useful work from heat) as well as for massive Brownian particles (underdamped case) in order to

compare their performances.



Chapter 4

Thermodynamics of a collisional

quantum-dot machine: The role of stages.

4.1 Introduction

Stochastic engines are devices that convert a given amount of energy, say heat, into work or vice-versa. In

contrast to macroscopic engines, they operate at the nanoscale and consequently the relevant thermodynamic

quantities are subjected to fluctuations at the microscopic level, above all in power and efficiency. Although

an ideal engine is always desired to operate at high power, high efficiency and low (power) fluctuations, these

conditions can never be satisfied simultaneously. For this reason the development of distinct approaches/trade-

offs has been strongly levered in the last years, such as by including the variation of external parameters [83],

cyclic operations under quasistatic conditions [84], interaction between particles [85, 86], dynamics based on

control via shortcuts to adiabaticy [72, 87, 88], to isothermality [89], maximization of power [31, 48, 50, 52,

53, 54, 55, 56, 57, 59, 60, 61, 62] and efficiency [58, 86] and more recently the strategies based on synchronized

operation under ordered arrangements [90] or Pareto optimal cycles for power, efficiency and fluctuations [91].

Sequential (or collisional) engines have been put forward as an alternative candidate for the realisation of

reliable thermal engines [92, 93] and novel engine setups [75, 82, 94, 95]. They consist of sequentially placing

the system/engine in contact with distinct thermal reservoirs and subjected to external driving forces during each

stage (stroke) of the cycle. Each stage is characterized by the connected thermal reservoir. The time needed

to switch between the thermal baths at the beginning/end of each stage is neglected. Despite its reliability in

41
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... ...

Figure 4.1: Sketch of a Quantum-dot setup sequentially exposed to N distinct thermal baths, each one at the

interval τi−1 ≤ t < τi = iτ/N characterized by chemical potential µi and temperature Ti = T .

distinct situations [34, 76, 77, 78], the conditions to be imposed in order to provide a better performance have

not been fully understood and for this reason distinct (and recent) approaches for enhancing its performance

have been proposed and analyzed. Among them, we cite the convenient choices of the duration of each stroke

[82, 94] and driving [86, 95].

In this contribution, we address a less explored strategy for improving the performance of collisional engines:

the number of stages and the reservoir parameters for each stage. The system we consider is a particle pump

model introduced in references [92, 93], consisting of a two-level system sequentially brought into contact

with distinct reservoirs allowing for the exchange of particles among reservoirs and the generation of a power

output. Quantum dot devices are one of the most prominent system in the realm of stochastic and quantum

thermodynamics, as in theoretical [96, 97, 98, 99] and experimental [100] studies. Due to its simplicity, it

presents several advantages such as an exact solution irrespective of the number of strokes and model param-

eters [96, 97, 98, 99]. And so it provides full access to all relevant quantities. Another advantage concerns

that they can be projected to function either as heat or pump engines rather than Brownian engines, which only

can be operated as work-to-work converters depending on the kind of external driving used as the work source

[75, 86, 94, 95]. A careful analysis over the space of parameters for distinct intermediate stages reveals that a

remarkable gain can be obtained by increasing the number of stages and a suitable choice of parameters.
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4.2 Collisional engines

In this section we will study in more detail the collisional model briefly explained in section 2.3. The model

we consider consists of a quantum dot (QD) and N thermal reservoirs. During operation, the QD is connected

sequentially to each of the reservoirs, and this for a time duration τ/N. The total time to complete one cycle

is τ. The QD has a single energy level which is either filled or empty. At stage i when the QD is connected to

reservoir i we write pi(t) for the probability for the QD to be filled. The cycle is started at time t = 0 and the QD

is connected to reservoir 1 which is characterised by the temperature T1 and chemical potential µ1. The energy

level of the QD is set to ϵ1. After a time duration τ/N, it is disconnected and reconnected to reservoir 2 with

µ2 and T2. Furthermore, the energy level is changed from ϵ1 to ϵ2. This process of connecting/deconnecting

is repeated until the N-th stage, marking a full cycle of period τ, after which the process starts all over. For

simplifying matters we set all Ti = T so that we obtain an isothermal operation. Figure 4.1 sketches the actual

setup. For each stage i, we distinguish two phases:

• an exchange phase during which the QD is connected to reservoir i (chemical potential µi). During this

phase the energy level of the QD is ϵi.

• an external driving phase during which the QD is uncoupled from any reservoir and its energy level is

changed from ϵi to ϵi+1. Since the duration of this driving phase is irrelevant for the thermodynamic

discussion we effectively set it equal to zero, so that the energy level change is instantaneous.

The time evolution of pi(t) at the i-th stroke is determined by the master equation

ṗi(t) =
[
1 − pi(t)

]
ω(i)

01 − pi(t)ω
(i)
10, (4.1)

where the rates ω(i)
01 and ω(i)

10 account to filling up (0 → 1) and vice versa (1 → 0) respectively. These rates

depend on ϵi and µi and are given by

ω(i)
01 =

Γ0

1 + eAi
and ω(i)

10 =
Γ0eAi

1 + eAi
, (4.2)

where Γ0 quantifies the coupling strength between the system and thermal bath (for simplicity taken equal in

all cases) and Ai =
1
T (ϵi − µi) for the i-th stroke.

In section 2.3.1 are introduced stochastic definitions for the heat rate (2.39), the chemical work rate (2.40),

direct work rate (2.41) and entropy production (2.47), all averaged in one period.
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Figure 4.2: In the case of three stages, the entropy production times temperature Ṡ T (blue), direct work Ẇd

(red) and chemical work Ẇch (black) vs ϵl. Parameters: T = 1, τ = 0.1, Γ0 = 1, ϵr = 1, µr = 2, ϵm = 1.7, µm = 3

and µl = 4.

4.2.1 General expressions for the probability distribution and average flux

Although the QD evolves to the equilibrium regime when it is in contact with only one thermal bath, this is no

longer true when it is periodically connected to different reservoirs. From Eq. (4.1) together with the continuity

of pi(t) at each reservoir switching and taking into account that the system returns to the initial state after a

complete period, one obtains the following (generic) expression for pi(t) for the i-th stage and N strokes [99]:

pi(t) = peq
i +

[
p
(
(i − 1)τ

N

)
− peq

i

]
e−(ω(i)

01+ω
(i)
10)(t− (i−1)τ

N ), (4.3)

where peq
i = ω

(i)
01/(ω

(i)
01 + ω

(i)
10) = (1 + e

1
T (ϵi−µi))−1 is obtained from transition rates ω(i)

01 and ω(i)
10 at the stage i for

(i − 1)τ/N ≤ t < iτ/N. By expressing p ((i − 1)τ/N) in terms of probabilities from previous strokes, we finally

arrive at the generic form for pi(t):

pi(t) = peq
i + e−(ω(i)

01+ω
(i)
10)(t− (i−1)τ

N )

 i∑
m=2

ξm,i−1∆m−1,m +
ξ1,i−1

1 − ξ1,N

∆N,1 +

N∑
n=2

ξn,N∆n−1,n


 , (4.4)

solely expressed in terms of quantities ∆i, j ≡ peq
i − peq

j and ξi, j ≡ exp{− τN
∑ j

n=i(ω
(i)
01 +ω

(i)
10)}. It is worth pointing

out that pi(t) is the exact time-periodic occupation probability of the quantum dot at the i-th stage. We stress

that since the system is ergodic and is periodically driven periodically, the relation pi(t + τ) = pi(t) holds for

any stroke i. Having pi(t), average fluxes can be obtained. From Eqs. (2.37) and (4.3) the average flux Ji during
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stage i reads

Ji =
1
τ

 ξ1,i−1

1 − ξ1,N

∆N,1 +

N∑
n=2

ξn,N∆n−1,n

 + i∑
m=2

ξm,i−1∆m−1,m

 (ξi,i − 1). (4.5)

From Eq. (4.5), the mean flux and thermodynamic quantities can be obtained for a generic N.

4.2.2 Two (N=2) and three (N=3) stages collisional engine

The simplest collisional engine is constituted by N = 2 strokes, in which at the first stage (0 < t < τ∗) the

system in contact with the right reservoir (and disconnected from the left reservoir), whereas in the second stage

(τ∗ < t < τ) the system is connected to the left reservoir (and disconnected from the right reservoir). Despite

the simplicity, distinct aspects comprising the role of parameters for equal [92] and asymmetric switchings and

distinct maximization routes [95] have been considered. By curbing our analysis to the the simplest symmetric

case τ∗ = τ/2, Eq. (4.5) reduces to:

Jl =
1
2τ

[
tanh

(Ar

2

)
− tanh

(Al

2

)]
tanh

(
Γ0τ

4

)
, (4.6)

where Jr = −Jl and indexes i = r, l are associated with right or left reservoir respectively. From Eq. (2.39), the

total heat exchanged Q̇ = Q̇r + Q̇l is given by

Q̇ = (ϵr − µr − ϵl + µl)Jl, (4.7)

whereas chemical work and direct work, obtained from Eq. (2.40) and (2.41) respectively, read Ẇchem = (µl −
µr)Jr and Ẇd = (ϵr − ϵl)Jr.

Since the main goal of this chapter is to tackle the role of intermediate stages, we present a detailed analysis

about the simplest setup with an intermediate stage, namely a cycle composed out of N = 3 stages. More

System
(Pump)

−Ẇch

Ẇd -Q̇

System
(Engine)

−Ẇd

Ẇch −Q̇

1

System
(Pump)

−Ẇch

Ẇd -Q̇

System
(Engine)

−Ẇd

Ẇch −Q̇

1

Figure 4.3: Sketch of a pump (left) and engine (right) working operation.
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Figure 4.4: In the case of three stages, the entropy production times temperature Ṡ T (blue), direct work Ẇd

(red) and chemical work Ẇch (black) vs µl. Parameters: T = 1, τ = 0.1, Γ0 = 1, ϵr = 1, µr = 2, ϵm = 1.7,

µm = 3 and ϵl = 5.

concretely, the system is placed in contact with the right reservoir during the first third of time, to the middle

reservoir in the second stage, and to the left reservoir at the final stage, completing a periodic cycle after τ.

From Eq. (4.3), the probability distribution pi(t) at the i-th stage reduces to the following expression

pi(t) =
1

eAi + 1
− eΓ0( iτ

3 −t)

ϕ

1 + e
Γ0τ

3

eAi + 1
− 1

eAi+1 + 1
− e

Γ0τ
3

eAi+2 + 1

 (4.8)

respectively, where ϕ = 1 + e
Γ0τ

3 + e
2Γ0τ

3 ≥ 3. From Eq. (4.5) for N = 3, each mean flux Ji reduces to the

following expression:

Ji = Ω

[ (
1 + eAi+1

) (
eAi − eAi−1

)
e
Γ0τ

3 +
(
eAi−1 + 1

) (
eAi − eAi+1

) ]
, (4.9)

where

Ω =
e
Γ0τ

3 − 1
(eAr + 1)(eAm + 1)(eAl + 1)ϕτ

> 0. (4.10)

Quantities Ẇchem and Ẇd are straightforwardly obtained from Eqs. (2.40), (2.41) and (4.9), given by Ẇchem =

(µl − µm)Jl + (µr − µm)Jr and Ẇd = (ϵm − ϵl)Jl + (ϵm − ϵr)Jr, respectively.

A first insight into the behavior of thermodynamic quantities (TṠ , Ẇd and Ẇch) is depicted in Figs. 4.2 and 4.4

upon varying the energy ϵl and chemical potential µl respectively. In the former case, there is a closed region

delimited by approximately 1 < ϵl < 3 in which Ẇd < 0 and Ẇch > 0, consistent to an engine operation (as
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Figure 4.5: For the engine operation mode and distinct ϵm’s, the depiction of efficiency η (left) and power

Pengine (right) versus ϵl for N = 2 and N = 3 stages. Parameters: τ = 15, Γ0 = 1, ϵr = 1, µr = 2, µm = 3 and

µl = 4.

shall be explained further). Conversely, for ϵl > 3, one has that Ẇd > 0 and Ẇch < 0, consistent to a pump

regime operation. Similar findings are depicted in Fig. 4.4, but as µl is varied the pump regime is delimited by

a closed region 2.5 < µl < 6, whereas the engine mode operation extends to µl > 6.2.

4.3 Efficiency

Having introduced the main features of the model and obtained expressions for the relevant thermodynamical

quantities, we are now in position to describe the operation of our collisional system as engine or as pump,

together with the existence of distinct optimization routes. To start, a short comment about the sign of ther-

modynamic quantities in each regime is useful in order to establish a reliable definition of the efficiency. A

particle pump typically consumes direct work Ẇd in order to move a particle from a lower to a higher chemical

potential, which is consistent with Ẇch < 0 and Ẇd > 0 (see e.g. left panel of Fig. 4.3). Since there is no

particle accumulation in the QD, such delivered chemical work can only be the result of transferring particles

from reservoirs at lower to those to higher chemical potentials. A reliable definition of power is given by

Ppump = −Ẇch with associated efficiency ηpump given by

ηpump =
Ppump

Ẇd

, (4.11)

respectively. By construction, the above efficiency definition implies that 0 ≤ ηpump ≤ 1.

With an appropriate choice of parameters the system can also operate as an engine (Ẇd < 0 and Ẇch > 0),
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as sketched in right panel of Fig. 4.3. The dynamics are similar, but in this case the power output is given by

Pengine = −Ẇd ≥ 0 according to the efficiency definition:

ηengine =
Pengine

Ẇch

, (4.12)

where 0 ≤ ηengine ≤ 1. It is worth pointing out that such efficiency definitions state that ηpump = 1/ηengine. For

the two simplest N = 2 and N = 3 cases, efficiencies are given by

ηengine,N=2 = (ϵl − ϵr)/(µl − µr), (4.13)

and

ηengine,N=3 =
(ϵl − ϵm)Jl + (ϵr − ϵm)Jr

(µm − µl)Jl + (µm − µr)Jr
, (4.14)

due to the fact that Jl = −Jr, respectively. While the former solely depends on ϵl, ϵr, µl and µr, and the ideal

regime ηengine,N=2 = 1 implies that Ẇchem = −Ẇd and Ṡ = 0, the latter is more revealing and efficiencies depend

on the interplay with intermediate parameters (µm, ϵm) and the period τ.

Analogous expressions are straightforwardly obtained for N > 3. Giving that they are longer (and less instruc-

tive), they will be omitted here. Below we investigate the influence of adding stages on the performance, cf

efficiency and power. Our motivation for doing so is twofold. First, there is a fundamental difference between

the N = 2 and N > 2 setup. As follows from the previous analysis, the N = 2 setup is a so-called thermo-

dynamical strongly coupled system, cf [101]. It is well know that in the regime of linear thermodynamics, the

efficiency can be made optimal for such systems (see for example [48, 52]). Yet, beyond the linear regime

is it not at all clear whether these strongly coupled systems always do better than loosely coupled systems

(as is the case for systems with N > 2). Second, the performance of any setup is the result of an intricate play

between thermodynamics and dynamics (due to the periodic driving). Inserting additional stages makes the cor-

responding gradients (for example in chemical energy) smaller and hence might reduce the strong fluxes and

corresponding dissipation/entropy production. The downside is of course that the number of steps increases,

adding to the overall complexity. It is far from obvious how this influences the performance.

respectively. While the former solely depends on ϵl, ϵr, µl and µr, due to the fact that Jl = −Jr, the latter is more

revealing and efficiencies depend on the interplay with intermediate parameters (µm, ϵm) and the period τ.

Analogous expressions are straightforwardly obtained for N > 3. Giving that they are longer (and less instruc-

tive), they will be omitted here.
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Figure 4.6: For ϵl fixed and distinct ϵm’s, the depiction of efficiency η versus period τ for N = 2 and N = 3.

Parameters: Γ0 = 1, ϵr = 1, ϵl = 1.5, µr = 2, µm = 3 and µl = 4.
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Figure 4.7: For the engine regime operation mode, the comparison between the efficiencies η’s (top) and

power outputs P’s (bottom) for the two stages system (blue) and the three stages system (brown), four stages

(green) and five stages (red) at engine regime vs. ϵl. Symbols ∗ and • correspond the maximization of η and P,

respectively. Parameters: α = 0.68, τ = 15, Γ0 = 1, ϵr = 1, µr = 2 and µl = 4.
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4.3.1 Influence of intermediate reservoirs

As the number of stages increases, so to do the number of parameters. Below we optimise each setup by fine-

tuning a number of these parameters. This is a relevant situation in an experimental context, in which adjusting

each and every parameter continuously in order to reach a global optimisation may not always be feasible

nor realisable. For this reason, our analysis will be undertaken by means of distinct strategies, as described

throughout Secs. 4.3.1 and 4.3.2. In order to get a first insight about the influence of model parameters (N, ϵi’s,

µi’s and τ) is depicted in Figs. 4.5 and 4.6 for three different values of ϵm by varying ϵl and τ respectively, and

the parameters ϵr, µr, µm and µl held fixed (for simplicity). In the former case (fixed τ), the system efficiency

is solely improved via adjustment of ϵl (or ϵr) and hence η exhibits a linear dependence on ϵl for N = 2,

reaching the maximum (ideal) limit ηME = 1 with PME = 0, consistent with the reversible operation mode.

Conversely, distinct routes for optimization become feasible for N = 3, such as by varying ϵm and ϵl and as

a consequence, there are some regions in the set of parameters in which the inclusion of stages can confer a

larger performance. However, maximum efficiency ηME and power PMP for N = 2 is somewhat superior than

for N = 3. Likewise, Fig. 4.6 reinforces such advantages for N = 3 by illustrating that efficiencies η’s become

superior as the duration τ of cycle increases.

Fig. 4.7 extends the above analysis by tackling number of strokes for N ranging from 2 to 5 by depicting η

and P for distinct values of ϵl and ϵr, µr, µl held fixed. Due to the existence of several parameters, we adopt a

simple criterion for choosing intermediate µm’s, by changing them by a fixed amount µm = µm−1 + ∆µ, where

∆µ = (µl − µr)/(N − 1) and corresponding ϵm values as proportional to them ϵm = αµm for all (intermediate)

m. As for N = 3, the system performance can be improved by suitable choice of parameters and properly

increasing the number of stages. Also like N = 3, associate maximum power and efficiencies are somewhat

lower than for N = 2.

In Figure 4.8 we compare both power and efficiency of a N = 3 and N = 4 setup against the power and efficiency

of a N = 2 setup which has been optimised for maximum power. That is, for N = 2 and the parameters µl, ϵr

and µr held fixed, ϵl is determined by maximizing P. In the (α, µl)-space shown in Figure 4.8 the blue and red

areas are those for which respectively the power and efficiency for ther N = 3 and N = 4 setups are improved

compared to the N = 2 setup. Furthermore, in case N = 4 there is an overlap between these regions (indicated

in purple) for which both performance indicators are higher. This again supports our claim that the addition of

stages improves the performance.
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Figure 4.8: Top (bottom) panels depict, for the engine regime operation mode, the set of α values for which

P (red area) and η (blue area) are for N = 3(N = 4) greater than two stages power and efficiency at maximum

power regime versus µl. Purple area (bottom) shows the intersection between red and blue ones. Parameters:

τ = 15, Γ0 = 1, ϵr = 1, µr = 2.

4.3.2 Optimal parameter choices and maximizations for N = 3 stages

Due to the existence of more than one independent fluxes, the system optimization for N > 2 is rather different

from N = 2 and it is closely dependent on the number of stages (mainly the efficiency). In this section, we

exploit some optimization routes for N = 3, in which ϵm and µm are treated independently from each other. Our

analysis will be carried out for N = 3 for the following choice of parameters: (ϵr, µr) always held fixed and by

varying (ϵl, ϵm) [for (µl, µm) fixed] and the other way around. Despite the exactness of all results, expressions

for maximized quantities are quite cumbersome and have to be found numerically by solving transcendental

equations. In particular, maximal powersPMP’s yield at ϵ∗m (fixed ϵl) and ϵ∗l (for fixed ϵm) and obey the following

expressions:

Jr(ϵ∗m) + Jl(ϵ∗m) = (ϵl − ϵ∗m)J
′
l(ϵ
∗
m) + (ϵr − ϵ∗m)J

′
r(ϵ
∗
m), (4.15)

in the former case (ϵl fixed), with maximum power

PMP = (ϵl − ϵ∗m)Jl(ϵ∗m) + (ϵr − ϵm)Jr(ϵ∗m) (4.16)

and

Jl(ϵ∗l ) =
1
ϵm

[ϵ∗l J
′
l(ϵ
∗
l ) + (ϵr − ϵm)J

′
r(ϵ
∗
l )], (4.17)

in the latter case (for fixed ϵm) with maximum power PMP = (ϵ∗l − ϵm)Jl(ϵ∗l ) + (ϵr − ϵm)Jr(ϵ∗l ). Here J
′
X(ϵ∗Y ) ≡

∂JX/∂ϵX evaluated at ϵ∗Y and the notation JY (ϵX) has been adopted here in order to state which energy was

taken into account in the calculation of the derivative. Remarkably, the locus of maximum ϵ∗m (fixed ϵl) and ϵ∗l
(fixed ϵm) intersect at a single point (ϵ̄m, ϵ̄l), marking the existence of a global maximization of power, given by
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Figure 4.9: For the engine operation mode and N = 3, the power and efficiency heat maps for several values of

ϵl and ϵm. White zones correspond to the dud regime. Parameters: τ = 1, Γ0 = 1, T = 1, ϵr = 1, µr = 2, µm = 3

and µl = 4.

P∗MP = (ϵ̄l−ϵ̄m)Jl(ϵ̄l)+(ϵ̄r−ϵ̄m)Jr(ϵ̄l). Analogous expressions are obtained for the pump regime operation just by

replacing ϵX → µX . It is worth mentioning that results are different for N = 2. While ηME = 1, maximization of

power at ϵ∗l (ϵr fixed) fulfills the relation PMP = (ϵr − ϵ∗l )2 J̄′l (ϵ
∗
l ), which is different from expressions for N = 3.

Figs. 4.9 and 4.10 summarize our main findings for engine and pump regimes, respectively. Firstly, both P and

η can be optimized under suitable choice of intermediate parameters ϵ∗m and µ∗m (dashed lines fulfill Eq. (4.15)).

The former also being simultaneously maximized with respect to ϵl (or µl), characterized by a central region

and given by the intersection between above lines. Efficiency heat maps are similar to power-output ones, but

regions of larger efficiencies are shifted to larger values of ϵl/µl. Unlike P, maximum efficiency lines do not

intersect but they merge at the ideal limit operation η→ 1, consistent with zero dissipation Ṡ = 0. Once again,

it is instructive to compare N = 2 and N = 3 efficiencies for the same sets of parameters (ϵl, ϵr, µl, µr). While

optimal ϵ∗m’s (ϵl held fixed) provide larger efficiencies (dotted lines) than for N = 2 when ϵl is small, values of

ηMP approach each other as ϵl’s increases. Similar findings have been verified for the pump regime in Fig. 4.10

when µl is small and large. We close this section by drawing a comparison between heat maps from Fig. 4.9

for the opposite case, µr = 4 > µl = 2 (not shown). Although heat maps are akin, optimal power and efficiency

regions move for lower sets of (ϵl, ϵm), including negative values. The ideal operation regime yields at ϵl = −1

and ϵm ≈ 0. Conversely, the global maximum power P∗MP in such case is approximately half from that in Fig.

4.9.
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Figure 4.10: For the pump operation mode and N = 3, the power and efficiency heat maps for several values

of µl and µm. White zones correspond to the dud regime. Parameters: τ = 1, Γ0 = 1, T = 1, ϵr = 1, µr = 2,

ϵm = 3 and ϵl = 5.

4.4 Conclusions

We addressed an alternative route for optimizing the performance of a collisional nonequilibrium setup com-

posed of a quantum-dot, exposed sequentially to distinct reservoirs. Quantum-dot engines have been broadly

investigated in the realm of nonequilibrium and quantum thermodynamics and the present system yields an

exact solution, irrespective of its projection (energy, chemical potential, period and number of strokes). Despite

this, its behavior is rich enough and allows for distinct operations, such as a work-to-work transducer, engine,

heat engine and pump. As we demonstrate, the number of stages is a highly relevant parameter which has a

significant impact on the performance. Adjusting the number of stages therefor is a highly relevant strategy that

allows to enhance the performance. The main point concerning our findings is that a suitable choice of number

of stages can provide a better system performance than fewer strokes, above all when the period τ is longer (see

e.g. Fig. 4.5). Thereby, a better performance of QD setups for large N and τ might be not only more feasible

but also more advantageous from the experimental point of view. It is instructive to compare with collisional

Brownian engines [75, 94], which operate less efficiently for large τ. As potential perspectives, we highlight to

extend the idea of splitting the dynamics into distinct strokes for other engine setups, such as those presenting

collective effects [85, 90, 102].



Chapter 5

Current fluctuations in nonequilibrium

discontinuous phase transitions

5.1 Introduction

In microscopic systems, currents of heat, work and entropy production must be treated as random variables,

which fluctuate over different runs of an experiment [47, 103]. This represents a paradigm shift in thermody-

namics, and has already led to fundamental advancements in the field, such as fluctuation theorems [104, 15, 10,

11, 105, 106] and, more recently, the discovery of thermodynamic uncertainty relations [37, 107, 108, 109, 110].

It also entails practical consequences, e.g. in the design of Brownian engines [27, 65, 66, 67], molecular mo-

tors [79, 111, 112, 113], information-driven devices [114, 115], and bacterial baths [68]. In these systems,

both the output power [116, 117] and the efficiency [49, 118, 119, 120] may fluctuate significantly, leading to

possible violations of macroscopic predictions, such as the Carnot limit. [65].

A scenario of particular interest is that of non-equilibrium steady-states (NESSs), which occur when a system

is placed in contact with multiple reservoirs at different temperatures Ti and/or chemical potentials µi. NESSs

are characterized by finite currents of energy and matter, and thus also a finite entropy production rate σt

[30, 40, 47, 121, 122]. At the stochastic level, these become fluctuating quantities, associated to a probability

distribution. Understanding the behavior of said distributions constitutes a major area of research, as they form

the basis for extending the laws of the thermodynamics towards the microscale, providing insights in non-

trivial properties of non-equilibrium physics. Of particular interest is their behavior across non-equilibrium

54
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phase transitions [123]. Most of our understanding, however, is centered on the average current. For instance,

the average entropy production rate has been found to be always finite around the transition point, with the first

derivative either diverging, in continuous transitions [29, 42, 124, 125, 126, 127, 128], or presenting a jump in

discontinuous ones [42, 129, 128]. These clear signatures suggest, in fact, that the average entropy production

could even be used to classify the type of transition. Conversely, the behavior of higher order statistics, such as

the variance, is much less understood.

Cumulants of thermodynamic currents are usually assessed via numerical approaches, such as Monte Carlo

simulations [42], or large deviation theory (LDT) [104, 130, 131, 132, 133, 134]. In both cases, cumulants are

computed from long-time sample averages, integrated over a time window τ. Ultimately, one is interested in

taking τ → ∞, at least in principle. But in systems presenting discontinuous transitions this can become an

issue, since the phase coexistence is characterized by states with very long metastability lifetimes τm. In fact,

τm increases exponentially with the system volume V , which is a consequence of the discontinuous nature of

the transition (for continuous transitions these divergences are algebraic). As a consequence, the order of the

limits τ→ ∞ and V → ∞ becomes non-trivial [135].

In this chapter we approach this issue by introducing the idea of conditional currents, given which phase the

system is in. We focus, in particular, on the diffusion coefficient (scaled variance). We formulate a finite-

time large deviation theory, which neatly highlights the non-trivial interplay between τ and τm. This is then

specialized to a minimal 2-state model, that is able to capture the key features of the problem and also provides

useful predictions. These are then tested on two paradigmatic examples of discontinuous transitions: Schlögl’s

model of chemical kinetics, and a 12-states Potts model subject to two baths at different temperatures. In this

thesis we only shown results associated to Potts model, in order to know the results associated to Schlögl’s

model see Ref. [136].

5.2 Discontinuous phase transitions

For describing the entropy production behavior beyond the mean-field case, we also resort to the ideas from

Refs. [42, 43, 137], they have attested that discontinuous phase transitions yield stark differences in regular and

complex networks.
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5.2.1 Beyond the mean-field: Regular lattices

As described previously, such behavior stems from sudden changes of |m|, its variance χ = N[⟨m2⟩ − |m|2]

and other quantities whose scaling behavior goes with the system volume N. Both of them, together previous

expressions in Sec. 2.4 can be described from the generic assumption in which at the vicinity of an arbitrary

discontinuous phase transition point q0, in which the correlation length is finite, the probability distribution

can be approximately written down as a sum of two independent Gaussians, from which one extracts a scaling

behavior with the system volume. Here I obtain them in more details. More specifically, the probability

distribution is given by PN(m) = P(o)
N (m) + P(d)

N (m), where P(α)
N (m) is associated to the phase α (with order-

parameter mα):

P(α)
N (m) =

√
N√
2π

exp[N{∆qm − (m − mα)2/(2χα)}]
[F′o(∆q; N) + F′d(∆q; N)]

. (5.1)

Parameters χα and ∆q ≡ qN−q0 correspond to the distribution width and the “distance” to the coexistence point

q0, respectively. Although in principle the assumption of two independent Gaussians can not describe properly

a “weak” discontinuous phase transition, in which an overlap between P(o)
N (m) and P(d)

N (m) is expected, its

reliability has been verified in several examples of nonequilibrium phase transitions with distinct properties,

even in some cases in which the overlap is observed.

Despite the steady entropy production displaying a non-trivial dependence on the system features and on generic

correlations of type ⟨σi⟩, ⟨σiσi+1⟩, ⟨σiσi+1σi+2⟩ and so on, Eq. (2.44) depicts it as the ensemble average of

a fluctuating quantity, enabling resorting to the central limit theorem ideas. The generality of order-parameter

distribution for tackling the phase coexistence and Eq. (2.44) setting up Φ as an ensemble average suggests

the extension of a similar relationship for the steady entropy production. More concretely, we assume that

PN(ϕ) = P(o)
N (ϕ) + P(d)

N (ϕ), where P(α)
N (ϕ) is given by

P(α)
N (ϕ) =

√
N√
2π

exp[N{∆qϕ − (ϕ − µα)2/(2χ̄α)}]
[Fo(∆q; N) + Fd(∆q; N)]

,

where each Gaussian is centered at µα with χ̄α being the width of the α−th peak. Given that PN(ϕ) is normalized,

each term Fo(d) then reads Fo(d)(∆q; N) =
√
χ̄o(d) exp

{
N∆q

[
µo(d) + χ̄o(d)∆q/2

]}
. The steady entropy production

Π = Φ is straightforwardly calculated from PN(ϕ), Φ =
∫ ∞
−∞ ϕPN(ϕ)dϕ, reading

Π =
∑
σ=o,d

(µσ + χ̄σ∆q) Fσ(∆q; N)
Fo(∆q; N) + Fd(∆q; N)

. (5.2)

According to the finite-size scaling (FSS) theory, at the vicinity of the critical point qc, a given quantity X

[X ∈ (|m|, χ andΠ′ ≡ dΠ/dq)] will behave as X = Nyx/ν fx(N1/ν|ϵ|), where qx is a scaling function, ϵ = (q−qc)/qc

is the distance to the criticality and yx is the critical exponent obtained from (yx = −β, γ and α)[138]. The last

exponent is similar to the relationship between the thermal derivative of the entropy, S , and specific heat,
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C, in equilibrium phase transitions (recalling that C = Nα/ν fc(N1/ν|ϵ|) [138], illustrating that the connection

between entropy production and exchanged heat presented here introduces a physical argument for such scaling

behavior. For discontinuous transitions, let us consider a generic ensemble average X, the starting point consists

of assuming a bimodal Gaussian distribution, centered at µo and µd (with associated variances χo and χd). In

the case of the steady entropy production at the vicinity of ϵ = q− qc, a bimodal entropy production probability

distribution centered at µo and µd (with associate variances χd and χo) leads to the approximate expression for

Π:

Π ≈ µo + αµde−N[(µo−µd)ϵ]

1 + αe−N[(µo−µd)ϵ] , (5.3)

where α =
√
χd/χo. We note that the ordered and disordered phases are favored as ϵ < 0 and ϵ > 0 (assuming

that µo < µd), respectively, and Π∗ = (µo + αµd)/(1 + α) at ϵ = 0, indicating that all entropy production curves,

simulated for distinct N’s, will cross at the transition point qc. The crossing point clearly discerns continuous

and discontinuous phase transitions and can be used as an indicator of the phase coexistence. Having Π, its

derivative in respect to f behaves at the vicinity of qc as:

Π′ ≈ N(µo − µd)2eN(µo−µd)ϵ

α
(
1 + αeN(µo−µd)ϵ)2 , (5.4)

showing that Π′ scales with N at the coexistence ϵ = 0, in agreement with the above finite size expression for

the quantity X.

5.2.2 Beyond the mean-field: Complex networks

Distinct works have stated that in contrast to regular structures, the phase coexistence in complex networks is

akin to the MFT, whose behavior is generically characterized by the existence of a hysteretic loop and bistability.

The order parameter will present a spinodal line in which along the hysteretic loop the system will converge to

one of the possible steady states depending on the initial configuration. For locating the “forward transition”

point q f , the system is initially placed in an ordered configuration and the tuning parameter q is increased by an

amount δ, whose final state at q is used as the initial condition at q + δ until the order-parameter discontinuity

is viewed. Conversely, the “backward transition” point qb is pinpointed by starting from the disordered phase

and decreasing q (also by the increment δ) until the order-parameter jump takes place. Entropy production also

captures these features, which can be viewed through a general argument for order-disorder phase transitions.

The order-parameter behaves as ⟨σi⟩ ∼ N−1/2 in the disordered phase and then a n−th correlation will behave as

⟨σiσi+1...σi+n⟩ ≈ ⟨σi⟩⟨σi+1⟩...⟨σi+n⟩ = N−n/2. Hence in the thermodynamic limit, all correlations will vanish in

the disordered phase and Π will depend solely on control parameters. Contrariwise, ⟨σiσi+1...σi+n⟩ presents a

well defined (nonzero) value in the ordered phase and Π depends not only on the control parameters but also on
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correlations. So that, the jumps at q f (from m1 ≡ m(q f ) , 0 to 0) and qb (from 0 to m2 ≡ m(qb) , 0), commonly

viewed in terms of order-parameter, will also be present in the entropy production. The presence of bistability

implies that Φ(t) will converge to one of the two well defined values, since along the hysteretic branch the

system behaves just like the disordered or the ordered phase, depending on the initial condition. Although the

above argument is valid for a generic order-disorder phase transition, it is expected to describe phase transitions

different from the order-disorder ones, provided the order-parameter and correlations also present a hysteretic

behavior. Thereby, both cases reveal that the entropy production behavior also embraces phase coexistence

traits commonly treated in terms of the order-parameter.

5.3 Model and assumptions.

We consider a stochastic system X(t) undergoing Markovian evolution. For simplicity, we assume continuous-

time and a discrete (possibly infinite) set of states X(t) ∈ S. The system probability px(t) is assumed to evolve

according to the master equation [139]

ṗx(t) =
∑

y

{
Wxy py −Wyx px

}
:=

∑
y

Wxy py, (5.5)

where Wxy ≡ Wy→x denotes the transition rates from y to x and Wxx ≡ −∑
y,x Wyx. The dynamics is taken to

be ergodic, and such that Wxy > 0 whenever Wyx > 0, ensuring the system will relax to a unique steady state

p∗x. In general, p∗x will be a non-equilibrium steady-state (NESS).

This NESS is also assumed to undergo a discontinuous transition by changing a certain control parameter λ to

a threshold value λc. This means that in the vicinity of λc, there will exist a bistable region characterized by

configurations with very long lifetimes. The two phases are labeled as 0 (for λ < λc) and 1 (for λ > λc). We

monitor the phases by defining an indicator random variable It = 0, 1 (henceforth called the phase indicator),

which specifies in which phase the system is at time t. This can always be done by partitioning the set of

states S into two subsets, S0 and S1, representing each phase. The criteria for doing so is model dependent,

and will be discussed further below. The probability of finding the system in phase 1, in the NESS, is then

q ≡ E(It) = Pr(It = 1). We will also use the notation q1 = q and q0 = 1 − q, when convenient.

The crucial aspect of discontinuous transitions is that, when the volume V is large, transitions between coex-

isting phases become extremely rare. The system will thus be governed by two very distinct timescales, one

describing fast relaxation within each phase and another describing seldom transitions between the phases. The

latter will be referred to as the metastability lifetime τm, and usually grows exponentially with V [140].
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We consider the consequences of this type of scaling to the behavior of a generic integrated thermodynamic

current. Given a certain time integration window τ, such a current may be defined as [108]

Jτ =
τ∫

0

dt
∑
y,z

dyzδX(t−),yδX(t+),z, (5.6)

where δi j is the Kronecker delta, X(t±) is the state of the system immediately before and after a transition and

dyz is a function satisfying dyz = −dzy, which defines the current in question. In the limit τ→ ∞, such a current

will behave according to a large deviation principle [133]. But due to the sensitive interplay between τ and

τm, we will not assume τ → ∞, as is customary. Instead, we will analyze the behavior of Jτ as a function of

τ. More specifically, our interest is in the regime where τ is large compared to the “within-phase” timescales,

but not necessarily larger than the metastability lifetime τm. We will also focus on both the average Jτ, and

diffusion coefficient (scaled variance) Dτ, defined as

Jτ = E(Jτ)/τ, Dτ =
(
E(J2

τ ) − E(Jτ)2
)
/(2τ). (5.7)

It turns out that Jτ ≡ J is independent of τ, irrespective of whether τ is large or not [133]. Conversely, for Dτ,

this will be the case iff τ ≫ τm.

The main feature we introduce in this chapter is the notion of conditional currents, given which phase i = 0, 1

the system is in. Inserting the identity 1 = (1 − It) + It inside the integral (5.6) allows us to define the current

when the system is in phase 1 as

Jτ|1 =
τ∫

0

dt It+
∑
y,z

dyzδX(t−),yδX(t+),z. (5.8)

The currentJτ|0 is defined similarly, but with 1− It instead. There is an ambiguity here as to whether we use It−

or It+ . But this only affects those jumps in which It− = 0(1) and It+ = 1(0), which are extremely rare compared

to all others. It is important to clarify, at this point, that while the current (5.8) is conditioned on which phase the

system is in, the dynamics itself is unconditional; that is, the system is still allowed to transition freely between

phases. One could also analyze the currents for a conditional dynamics, where a reflecting barrier is placed

between the phases, trapping the system in one phase or another. The relation between these two scenarios is

discussed in Sec. 5.4.3.

From Eq. (5.8), the total current (5.6) is then recovered as

Jτ = Jτ|0 +Jτ|1, (5.9)

an identity which holds at the stochastic level. The conditional first moments are defined as

µi =
E(Jτ|i)
τqi

, (5.10)
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where the factor of qi in the denominator is placed to compensate for the varying times the system spends in

each phase. The average current is thus decomposed as

J = (1 − q)µ0 + qµ1. (5.11)

As with J, the conditional averages µi will be shown below to also be independent of τ. Similarly, we define

conditional diffusion coefficients

Dτ|i =
E(J2

τ|i) − E(Jτ|i)2

2τqi
, (5.12)

which represent the fluctuations of the system within each phase. From Eq. (5.9), we therefore see that the

diffusion coefficient Dτ in Eq. (5.7) is split in three terms

Dτ = (1 − q)Dτ|0 + qDτ|1 +Cτ, Cτ :=
1
τ

cov
(Jτ|0,Jτ|1), (5.13)

where cov(A, B) = E(AB) − E(A)E(B) is the covariance between conditional currents A and B, and is expected

to be significant only in the vicinity of the transition point.

5.4 Large Deviation Theory (LDT)

To shed light on the behaviour of conditional currents, we consider here a finite-time version of large deviation

theory [133, 13, 141, 142]. We being with the unconditional quantities, and then adapt our results to the condi-

tional case. Let Gτ(η) = E(eηJτ) denote the moment generating function (MGF) associated to the current (5.6).

Decomposing it as Gτ(η) =
∑

x E(eηJτ |Xτ = x)px(τ) =
∑

x Gx(η), we find that the entries Gx(η) will evolve

according to equation
dGx(η)

dτ
=

∑
y

Lxy(η)Gy(η), (5.14)

where the tilted operator L(η) depends on both the transition matrixW in Eq. (5.5), and the type of current in

question, according to

L(η)xy = eηdxyWxy, (5.15)

where, recall, dxx = 0. To evaluate J and Dτ, we only require the series expansion of L(η), which we write as

L(η) =W + ηL1 + η
2L2, for matrices L1(2) given by

(L1)xy = Wxydxy, (L2)xy = Wxyd2
xy/2. (5.16)
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5.4.1 Unconditional cumulants

We denote by |p⟩ the column vector whose entries are the steady-state distribution p∗x, and ⟨1| the row vector

with all entries equal 1. Then, as discussed further in Appendix D, the first moment can be written, for arbitrary

τ, as

Jτ ≡ J = ⟨1|L1|p⟩, (5.17)

which is independent of τ, as expected. Conversely, the diffusion coefficient is written as

Dτ = ⟨1|L2|p⟩ + 1
τ

τ∫
0

dτ′
τ′∫

0

dτ′′⟨1|L1eW(τ′−τ′′)L1|p⟩ − J2τ

2
. (5.18)

We can also obtain a more explicit expression if we assume that W is diagonalizable, with eigenvalues λi,

right eigenvectors W|xi⟩ = λi|xi⟩ and left eigenvectors ⟨yi|W = ⟨yi|λi. Since the steady-state is unique, one

eigenvalue must be zero, say λ0 = 0. The corresponding eigenvectors are then |x0⟩ = |p⟩ and ⟨y0| = ⟨1|.
Carrying out the integrals one then finds that

Dτ = ⟨1|L2|p⟩ +
∑
i,0

⟨1|L1|xi⟩⟨yi|L1|p⟩
eλiτ − 1 − λiτ

λ2
i τ

 , (5.19)

where we used the orthogonality relation ⟨1|xi⟩ = 0, for i , 0. This expression makes it clear that Dτ will

depend sensibly on the interplay between τ and all eigenvalues λi ofW. If τ ≫ 1/|λi|, for all eigenvalues λi , 0,

then the term eλiτ − 1 may be neglected, leading to the widely used expression from large deviation

Dτ = ⟨1|L2|p⟩ − ⟨1|L1W
+L1|p⟩, (5.20)

where W+ =
∑

i,0 λ
−1
i |xi⟩⟨yi| is the Moore-Penrose pseudoinverse of W (see Appendix D for more details).

Close to the transition point, there will appear a clear separation of time scales in the eigenvalues λi. At least

one eigenvalue will be very small, of the order λi ∼ −1/τm, while all others will be much larger (describing

the within-phase dynamics). If τ is large compared to these time scales, but not with respect to τm, then the

approximation taking Eq. (5.19) to (5.20) will not hold true. And since τm scales exponentially with the volume,

as we approach the thermodynamic limit, larger and larger values of τ have to be considered. This is a direct

illustration of the non-commutativity of the limits τ→ ∞ and V → ∞.

5.4.2 Conditional cumulants

Eqs. (5.17) and (5.18) also apply to the conditional currents (5.8). One simply has to modify accordingly the

tilted operator L(η) or, what is equivalent, the matrices L1 and L2 in Eq. (5.16). For each conditional current
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Jτ|i, we define a projection operator Πi such that Π1
xy = δx,y

∑
z∈S i δy,z; i.e., which projects onto the states Si

associated to phase i = 0, 1. The corresponding tilted operator will then be defined similarly, but with a current

of the form di
xy = dxyΠ

i
yy, which means one should use instead matrices L1Π

i and L2Π
i.

Eq. (5.17) then yields, taking also into account the factor qi in the denominator,

µi =
1
qi
⟨1|L1Π

i|p⟩. (5.21)

Proceeding similarly with Eq. (5.18), we find

Dτ|i =
⟨1|L2Π

i|p⟩
qi

+
1
τqi

τ∫
0

dτ′
τ′∫

0

dτ′′⟨1|L1Π
ieW(τ′−τ′′)L1Π

i|p⟩ − µ
2
i qiτ

2
. (5.22)

And to obtain the covariance in Eq. (5.13), we simply subtract the combination (1 − q)Dτ|0 + qDτ|1 from Dτ in

Eq. (5.18). Recalling that Π0 + Π1 = 1, this then yields

Cτ =
1
τ

τ∫
0

dτ′
τ′∫

0

dτ′′⟨1|L1Π
0eW(τ′−τ′′)L1Π

1|p⟩ + 1
τ

τ∫
0

dτ′
τ′∫

0

dτ′′⟨1|L1Π
1eW(τ′−τ′′)L1Π

0|p⟩ − q(1 − q)µ0µ1τ.

Concerning the timescales of the discontinuous transition, we notice that all diffusion coefficients, Dτ, Dτ|i and

Cτ, are subject to a similar dependence, which is ultimately associated with the matrix eW(τ−τ′). Thus, one

expects that all quantities should scale similarly with τ.

5.4.3 Conditioning on the dynamics

There is a subtle, but crucial difference between conditioning the currents and conditioning the dynamics.

Eq. (5.8) is an instance of the former: the current is conditioned on which phase the system is in, but X(t) is

still free to jump from one phase to the other. Alternatively, one could define a conditional dynamics, where the

system is forced to remain only within a certain phase. This could be accomplished, for instance, by splitting

the transition matrixW in Eq. (5.5) in blocks of the form

W =


W00 W01

W10 W11

 , (5.23)

referring to the two subsets S0 and S1 of each phase. A conditional dynamics, given phase i, is one that is

governed by the restricted matrixWii (with appropriate adjustments at the boundaries to ensure that it remains

a proper transition matrix).

One can similarly adapt Eqs. (5.17) and (5.18) to this case. Let |pi⟩ denote the steady-state of Wii. For large

volumes, since the two phases will be well separated, this will be quite similar to 1
qi
Πi|p⟩. Applying Eq. (5.17)
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will then yields exactly the same first moment µi in Eq. (5.21). Hence, as far as the first moments are concerned,

the distinction between conditional currents and conditional dynamics is thus irrelevant.

However, for the diffusion coefficients this is absolutely crucial. The reason is associated with the matrix expo-

nential eW(τ′−τ′′) in Eq. (5.18). Conditioning on the dynamics would lead instead to a matrix eWii(τ′−τ′′). Since

Wii is essentially ΠiWΠi (except for small modifications at the boundaries), we therefore see that the problem

amounts to the difference between ΠieW(τ′−τ′′)Πi (conditioning on the currents) and eΠ
iWΠi(τ′−τ′′) (conditioning

on the dynamics). The two objects are drastically different. The diffusion coefficients obtained by conditioning

the dynamics, which we shall henceforth refer to as γτ|i, will thus fundamentally different from the diffusion

coefficients Dτ|i in Eq. (5.12).

An intuitive argument as to why this is the case goes as follows. The currents (5.8) are integrated over a certain

time interval τ. Hence, its diffusion coefficient will depend on correlations between different instants of time,

and these are dramatically affected by the long timescale τm introduced by the discontinuous transition. In fact,

let us define Zt =
∑

y,z dyzδX(t−),yδX(t+),z, so that Eq. (5.8) can be written as

Jτ|1 =
τ∫

0

dt ItZt. (5.24)

The corresponding second moment will thus be

E(J2
τ|1) =

τ∫
0

dt

τ∫
0

dt′ E(ItIt′ZtZt′). (5.25)

It hence depends, among other things, on the correlations between It and It′ , which decays very slowly around

the transition point. For instance, in the simplest case where one can assume a Markovian 2-state evolution for

It (as will in fact be considered further in Sec. 5.5), one has

C(t − t′) = cov(It, It′) = q(1 − q)e−(t−t′)/τm , (5.26)

which will thus decay very slowly in time. This means that Dτ|i in Eq. (5.12) will depend very sensibly on the

interplay between τ and τm. Conversely, the diffusion coefficients γi, for the conditional dynamics, will not.

And hence, even for moderately large τ, one expects it to be τ-independent.

5.5 Minimal Model

Many discontinuous non-equilibrium transitions can be approximated, for large volumes V , by a 2-state model [140].

That is, one reduces the dynamics essentially to the monitoring of the phase indicator It. In general, the dynam-
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Figure 5.1: Predictions of the minimal model of discontinuous transitions. (a) The probability q = (1+e−cV∆λ)−1

of finding the system in phase 1, for increasing volumes (depicted by the arrow). (b) q(1 − q), which is non-

negligible only in the vicinity of the transition point. (c) The quantity (e−τ/τm − 1 + τ/τm)/(τ/τm) appearing

in Eq. (5.32). It tends to unity when τ ≫ τm. (d) Prototypical behavior of the diffusion coefficient (5.32) as a

function of volume, for a fixed τ. When V is such that τ ≫ τm, the diffusion coefficient grows exponentially

with V . But for a fixed τ, as V is increased, one must eventually cross the point τ ∼ τm, after which the scaling

becomes at most polynomial (due to the possible dependences of µi,Di on V). Parameters: c0 = ca = cb = λc =

1, µ0 = V/2, µ1 = 2V , γ0 = γ1 = V .
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ics of It will be non-Markovian, as this would represent a hidden Markov chain. Instead, a minimal model is

one where the dynamics of It can be assumed to be Markovian, which is justified when V is sufficiently large.

In this case, instead of the full master equation (5.5), we may restrict the dynamics to

d
dt

qi =
∑
j=0,1

Wi jq j, W =


−a b

a −b

 . (5.27)

Here a and b represent the rates for the system to jump from phase 0 → 1 and 1 → 0. The steady-state yields

q ≡ q1 = E(It) = a/(a + b). Moreover, the metastability lifetime in this case reads τm = 1/(a + b). Finally,

from (5.27) one can compute the two-time correlation function, which is given in Eq. (5.26). And since It can

take on only two values, once C(t − t′) is known we can reconstruct the full joint distribution Pr(It = i, It′ = i′),

for arbitrary times t, t′:

Pr(It = i, It′ = i′) =



q2 +C(t − t′) i = i′ = 1,

(1 − q)2 +C(t − t′) i = i′ = 0,

q(1 − q) −C(t − t′) i , i′.

(5.28)

The key feature of discontinuous transitions is the fact that transitions between phases are seldom when V is

large. Close to λc, the transition rates a and b will usually behave, up to polynomial corrections, as

a ∼ e−V(c0−ca∆λ), b ∼ e−V(c0+cb∆λ), (5.29)

where c0, ca, cb > 0 are constants and ∆λ = λ − λc. Note how the rates are exponentially decreasing with V .

Transitions hence become rare when V is large. From (5.29) we also get τm ∼ ec0V , which is the aforementioned

exponential dependence. Finally, q = (1 + e−cV∆λ)−1, where c = ca + cb > 0; hence q changes abruptly from 0

to 1 as λ crosses λc, as illustrated in Fig. 5.1(a). Since the conditional averages are weakly dependent on ∆λ,

from Eq. (5.11) we therefore see that J should also change abruptly around λc, interpolating from µ0 to µ1.

5.5.1 Unconditional diffusion coefficient

As shown in [143], in this two-level model the tilted operator can be written, up to order λ2, as

L(λ) =


−a + λµ0 + λ

2γ0 b

a −b + λµ1 + λ
2γ1

 (5.30)

:=W + λL1 + λ
2L2. (5.31)

where γi are the diffusion coefficients conditioned on the dynamics, not the currents (as introduced in Sec. 5.4.3).
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For the matrixW defined in Eq. (5.27) we have λ1 = −1/τm, |p⟩ = (1−q, q), |x1⟩ = (−1, 1) and |y1⟩ = (−q, 1−q).

Hence, using the explicit forms of L1 and L2 in Eq. (5.31), we get

Dτ = γ + q(1 − q)(µ1 − µ0)2 τm f (τ/τm), (5.32)

where γ = (1 − q)γ0 + qγ1 is independent of τ and

f (t) = (e−t − 1 + t)/t. (5.33)

The interesting part is the last term in Eq. (5.32). First, it depends on q(1 − q), which is non-negligible only in

the vicinity of the transition point (Fig. 5.1(b)). Second, it depends on the interplay between τ and τm through

the function f , which is shown in Fig. 5.1(c).

When τ ≪ τm we get f (τ/τm) ≃ τ/2τm, so that Eq. (5.32) can be approximated to

Dτ ≃ γ + q(1 − q)(µ1 − µ0)2τ/2, τ ≪ τm, (5.34)

which is thus linear in τ. Conversely, when τ ≫ τm, we get

Dτ ≃ γ + q(1 − q)(µ1 − µ0)2 τm, τ ≫ τm, (5.35)

which is independent of τ, but linear in τm. Hence, when V is large, this will become exponentially dominant.

As a consequence, the large volume diffusion coefficient will actually become independent of the γi, and will

instead be governed essentially by the mismatch in conditional averages (µ1−µ0)2, in agreement with previous

studies on Schlögl’s model [130].

This offers another explicit illustration of the order of limits issue, which we depict graphically in Fig. 5.1(d):

For a given τ, as we increase V the diffusion coefficient will at first increase exponentially according to

Eq. (5.35). But if τ is fixed, then a point will always be reached around which τ ∼ τm. And beyond this

point, the scaling will be given by Eq. (5.34), which is at most polynomial in V (due to a potential polynomial

volume dependence of µi, γi).

Even though these results were developed for a 2-level model, they are still expected to hold for a broad class

of discontinuous transitions. The reason is that, as discussed in Ref. [144], the eigenvalues and eigenvectors

of the two-level transition matrix (5.27) are connected to some of the eigenvalues and eigenvectors of the full

matrix W in Eq. (5.5). But, in addition, the full W will also have several other eigenvalues associated to the

within-phase dynamics. Thus, the step from Eq. (5.19) to (5.32) only assumes that τ is much larger than all

other λi, so that within-phase terms can be neglected.
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5.5.2 Conditional diffusion coefficient

We can also use this minimal model to relate the diffusion coefficients Dτ|i in Eq. (5.12) with the parameters

µi, γi. To do so, we use Eq. (5.22) withW now replaced by the two-state matrixW in Eq. (5.27). As a result,

we find

Dτ|1 = γ1 + µ
2
1(1 − q)τm f (τ/τm), (5.36)

Dτ|0 = γ0 + µ
2
0qτm f (τ/τm), (5.37)

Cτ = −2q(1 − q)µ0µ1τm f (τ/τm), (5.38)

which can be combined together in the form (5.13), to yield Eq. (5.32). All conditional quantities are thus found

to scale similarly with τ, according to the function f in Eq. (5.33). This allows us to conclude that even the

conditional diffusion coefficients will be dominated by jumps between phases, and will be negligibly affected

by the internal fluctuations within each phase. We find this result both relevant and non-trivial.

It is also interesting to notice how the sign of the covariance (5.38) depends only on the signs of µ0 and µ1.

A positively correlated covariance means that fluctuations above (below) average in one phase tend to lead to

fluctuations above (below) the average in the other; and vice-versa for C < 0. We see in Eq. (5.38) that the

covariance will be negative whenever µ0, µ1 have the same sign.

5.6 Applications

Next we shall exemplify our main findings in one representative system displaying discontinuous phase transi-

tions: The 12-state Potts models connected to two baths at different temperatures. The Potts model is defined

in a regular lattice and exhibits a nonequilibrium phase transition under a different mechanism. Despite the ab-

sence of an exact solution, all main features about the phase transition and statistics about entropy production

fluctuations are present.

5.6.1 Q = 12-states Potts model

As a second application, we study a Q = 12 states Potts model coupled to two thermal baths at different

temperatures. The model is defined in a regular 2D lattice with V sites, where each site i assumes one of Q = 12
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Figure 5.2: Characterization of the Q = 12 Potts model in contact with two thermal baths of temperatures T1

and T1 + ∆T (with fixed ∆T = 0.9). (a) Order parameter ϕ vs. T1 for different volumes V . Inset: metastability

lifetime τm vs. V . (b) Finite-size analysis of the transition point T1V vs. V−1, yielding the asymptotic value

T01 = 0.0651(1). Inset: distribution of ϕ at T1V , for different volumes. (c) Phase probability q vs. T1, again for

different volumes. The continuous lines are fits of q = [1 + Qe−Vc(T1−T10)]−1. (d) Average entropy production

rate current J [Eq. (5.7)], which follows closely the behavior of q.

values si = 1, . . . ,Q and interacts with its z = 4 nearest neighbors, with energy H(s) = −∑V
i=1

∑z
δ=1 δsi,si+δ ,

where s = (s1, . . . , sV ). The equilibrium properties of this model have been studied extensively in [145, 146,

147, 148, 149]. Here, we consider a non-equilibrium version where the even and odd sites of the lattice are

coupled to thermal baths at temperatures T1 and T1 + ∆T respectively, forming a checkerboard pattern. For

concreteness, we fix ∆T = 0.9. This temperature gradient ensures a steady heat flux from one bath to the other,

and hence a non-vanishing production of entropy [29, 150].

The model is simulated using standard Monte Carlo methods. The dynamics is assumed to be governed by

Markovian single-site transitions si → s′i , occurring with rate ωsi,s′i = min{1, exp[−∆Ei/Ti]}, where ∆Ei =

H(s′) − H(s) and Ti is the temperature of site i. For the current (5.6), we once again focus on the net entropy

production rate to the environment which is characterized by increments ∆Ei/Ti [128, 150].
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Figure 5.3: Unconditional and conditional diffusion coefficients for the Q = 12 Potts model. (a) Dτ vs. V for

different values of τ. (b) Dτ|i and Cτ vs. V with τ = 5× 106. (c) Dτ vs.τ for different V . (d) Dτ|i and Cτ vs. τ for

V = 1600. Continuous lines in (c) and (d) are the theoretical predictions from Eq. (5.32). (e) The ratio (5.39)

between Dτ and the predictions of the minimal model, Eq. (5.32), which tends to unity for large volumes.

Curves are for different values of τ. (f) Same, but for r|0 (main plot) and r|1 (inset). In all curves, for each V ,

we fix T1 as the value T1V for which q = 1/2. Other details are as in Fig. 5.2.

As in the equilibrium version, the phase transition is expected to be discontinuous for Q > 4. Moreover, for

Q = 12, the discontinuity is expected to become very sharp for sufficient large V , since it involves Q distinct

ordered phases coexisting with a single disordered one. The nonequilibrium phase transition can be quantified

by the order-parameter ϕ = Q[(Nmax/V)− 1]/(Q− 1), whereNmax = max{N1, ...,NQ} is the maximum number

of spins among all Q configurations [148, 151]. Fig. 5.2(a) shows results for ϕ as a function of T1, for different

lattice sizes V . The emergence of a discontinuous transition as V increases is clearly visible. The inset in

Fig. 5.2(a) shows the metastability lifetime, which is again found to grow exponentially with V .

The sharp features of discontinuous phase transitions become rounded at the vicinity of the coexistence point,

due to finite size effects. To locate the transition point, we resort to the finite size scaling theory [152], estab-

lishing that the ”pseudo-transition" point T1V , in which both phases have the same weight (equal-area order-

parameter probability) reaches its asymptotic value T10 according to the relation T1V − T10 ∼ V−1. This is
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shown in Fig. 5.2(b), from which we find T10 = 0.0651(1).

A histogram of the order parameter ϕ is shown in the inset of Fig. 5.2(b). It shows that there is a clear separation

between the two phases, allowing us to define a separator ϕ∗ = 1/2, such that the phase-indicator It assumes

the value It = 1 when ϕ(t) > ϕ∗. The resulting phase probability q is presented in Fig. 5.2(c). As in the

other models, it presents a sharp transition at T10 = 0.0651(1), and is well described by the expression q =

[1 + Qe−Vc(T1−T10)]−1. Contrarily to Schlögl’s model, however, the curves for different volumes do not cross

at q = 1/2, but instead at q ≃ 1/13. The unconditional current J [Eq. (5.7)] is presented in Fig. 5.2(d). As

predicted by Eq. (5.7), it follows very closely the behavior of q [Fig. 5.2(c)], smoothly interpolating between

µ0 and µ1.

We now turn to an analysis of the unconditional and conditional diffusion coefficients. The results are summa-

rized in Fig. 5.3. To reduce the number of free parameters, we proceed similarly to Schlögl’s model, and set,

for each volume V , the temperature to T1V (i.e., so that q = 1/2). In Fig. 5.4 we repeat the same analysis, but

fixing instead the temperature at T10 (the thermodynamic limit transition point) for all V . Similar findings are

observed.

The unconditional diffusion coefficient Dτ [Eq. (5.7)] is shown in Fig. 5.3(a) for different values of τ. In

agreement with the predictions of Eq. (5.32), for each τ the diffusion coefficient initially grows exponentially

with V . But for a sufficiently large V , τm becomes comparable to τ and Dτ bends downwards. This is exactly the

behavior predicted by the minimal model [Fig. 5.1(d)]. The corresponding conditional diffusion coefficients are

shown in Fig. 5.3(b). They follow a similar dependence on V as Dτ, which is in agreement with the expectations

of Eqs. (5.36)-(5.38).

The dependence of Dτ, Dτ|i and Cτ as a function of τ, for different V , are shown in Figs. 5.3(c),(d). In all cases,

when τ is small the diffusion coefficients tend to be linear in τ, in agreement with Eq. (5.34). If V is not too

large, then when τ becomes large one recovers instead a τ-independent behavior, as predicted by Eq. (5.35).

For large V something similar is expected to occur, although it may require unrealistically large values of τ.

For large volumes, these are also well described by the third term in Eq. (5.32) (or (5.36)-(5.37)). We confirm

this by plotting in Fig. 5.3(e) the ratio

r =
Dτ

q(1 − q)(µ1 − µ0)2τm f (τ/τm)
, (5.39)

where all quantities in the right-hand side are computed independently from the simulations. One can also

consider similar definitions for r0(1). The results for conditional quantities are shown in Fig. 5.3(f). In all cases,

the plots clearly show that the ratio seems to tend to unity for sufficiently large V . Since the γi are at most
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FIG. 4. Unconditional and conditional diffusion coefficients for
the Q = 12 Potts model. (a) Dτ vs V for different values of τ . (b) Dτ |i
and Cτ vs V with τ = 5 × 106. (c) Dτ vs τ for different V . (d) Dτ |i
and Cτ vs τ for V = 1600. Continuous lines in (c) and (d) are the
theoretical predictions from Eq. (29). (e) The ratio (42) between Dτ

and the predictions of the minimal model, Eq. (29), which tends
to unity for large volumes. Curves are for different values of τ . (f)
Same, but for r|0 (main plot) and r|1 (inset). In all curves, for each
V , we fix T1 as the value T1V for which q = 1/2. Other details are as
in Fig. 3.

when φ(t ) > φ∗. The resulting phase probability q is pre-
sented in Fig. 3(c). As in the other models, it presents a sharp
transition at T10 = 0.0651(1), and is well described by the
expression q = [1 + Qe−V c(T1−T10 )]−1. Contrarily to Schlögl’s
model, however, the curves for different volumes do not cross
at q = 1/2, but instead at q � 1/13. The unconditional current
J [Eq. (3)] is presented in Fig. 3(d). As predicted by Eq. (3),
it follows very closely the behavior of q [Fig. 3(c)], smoothly
interpolating between μ0 and μ1.

We now turn to an analysis of the unconditional and con-
ditional diffusion coefficients. The results are summarized in
Fig. 4. To reduce the number of free parameters, we proceed
similarly to Schlögl’s model, and set, for each volume V , the
temperature to T1V (i.e., so that q = 1/2). In Fig. 5 we repeat
the same analysis, but fixing instead the temperature at T10

(the thermodynamic limit transition point) for all V . Similar
findings are observed.

The unconditional diffusion coefficient Dτ [Eq. (3)] is
shown in Fig. 4(a) for different values of τ . In agreement
with the predictions of Eq. (29), for each τ the diffusion
coefficient initially grows exponentially with V . But for a
sufficiently large V , τm becomes comparable to τ and Dτ

bends downwards. This is exactly the behavior predicted by
the minimal model [Fig. 1(d)]. The corresponding conditional
diffusion coefficients are shown in Fig. 4(b). They follow a
similar dependence on V as Dτ , which is in agreement with
the expectations of Eqs. (33)–(35).

The dependence of Dτ , Dτ |i, and Cτ as a function of τ , for
different V , are shown in Figs. 4(c) and 4(d). In all cases, when
τ is small the diffusion coefficients tend to be linear in τ , in
agreement with Eq. (31). If V is not too large, then when τ

becomes large one recovers instead a τ -independent behavior,
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FIG. 5. Same as Fig. 4, but fix T1 fixed at the thermodynamic
limit value T10 = 0.0651(1).

as predicted by Eq. (32). For large V something similar is
expected to occur, although it may require unrealistically large
values of τ .

Finally, we study the ratio (42), between the actual dif-
fusion coefficients and the predictions of the minimal model
[Eq. (29)]. The results, for both unconditional and conditional
quantities, are shown in Figs. 4(e) and 4(f). In all cases, the
plots clearly show that the ratio seems to tend to unity for suf-
ficiently large V . This strongly indicates that the Potts model
will also behave as an effective two-state minimal model in
the thermodynamic limit.

VI. CONCLUSIONS

The statistics of thermodynamic currents is a fundamental
issue in nonequilibrium thermodynamics, which has recently
received significant interest. In this paper, we presented a
simple and general description of the statistics of thermody-
namic currents for systems displaying discontinuous phase
transitions. We introduced the idea of conditional statistics,
accounting for the currents in each of the coexisting phases.
From large deviation theory, general relations for the un-
conditional and conditional cumulants of a generic current
were presented. We also proposed a minimal model, which
captures all essential features of the problem. Our ideas were
illustrated in two representative systems: the exactly solvable
Schlögl’s model of chemical reactions, and a Q-state Potts
model subject to two baths at different temperatures. In both
cases, the results were found to follow very well the theoreti-
cal predictions of the minimal model, illustrating not only its
reliability but also the intricate role of distinct scaling times
and the volume.

As a final remark, we address some potential extensions
of our work. It would be interesting to extend such approach
to study the statistics of thermodynamic quantities, such as
work. This can be accomplished by extending LDT to time-
dependent rates [66,67] describing the action of an external
agent. Similarly, it would also be interesting to tackle the
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Figure 5.4: Same as Fig. 5.3, but fix T1 fixed at the thermodynamic limit value T10 = 0.0651(1).

polynomial in V , if this ratio tends to r → 1 when V is large, it serves as a confirmation that, for large V , the

model effectively behaves as the 2-state minimal model of Sec. 5.5. This strongly indicates that the Potts model

will also behave as an effective 2-state minimal model in the thermodynamic limit.

5.7 Conclusions

The statistics of thermodynamic currents is a fundamental issue in nonequilibrium thermodynamics, which

has recently received significant interest. In this chapter, we presented a simple and general description of the

statistics of thermodynamic currents for systems displaying discontinuous phase transitions. We introduced the

idea of conditional statistics, accounting for the currents in each of the coexisting phases. From large deviation

theory, general relations for the unconditional and conditional cumulants of a generic current were presented.

We also proposed a minimal model, which captures all essential features of the problem. Our ideas were

illustrated in one representative system: the Q-states Potts model subject to two baths at different temperatures.
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In both cases, the results were found to follow very well the theoretical predictions of the minimal model,

illustrating not only its reliability but also the intricate role of distinct scaling times and the volume.

As a final remark, we address some potential extensions of our work. It would be interesting to extend such

approach to study the statistics of thermodynamic quantities, such as work. This can be accomplished by

extending LDT to time-dependent rates [98, 153] describing the action of an external agent. Similarly, it would

also be interesting to tackle the statistics of the efficiency of a thermal engine operating at phase coexistence

[154].



Chapter 6

General conclusions

We present a study on the performance of different thermal machines in the context of non-equilibrium thermo-

dynamics. We introduce the idea of collisional approach to Brownian engine, in which the Brownian particle is

sequentially placed in contact with different thermal reservoirs and exposed to different external forces (sources

of work). We discussed different strategies on how to optimize their performances, among them via the control-

ling the interaction between the system and the reservoir and the driving force used. We also obtained general

expressions for the thermodynamic quantities in these cases, for any driving force. It should be noted that the

sequential/collisional approach plays an important role in quantum mechanics and was generalized in this thesis

to Brownian particles. With regard to systems described by master equations, the collisional approach was also

used in this thesis, extending the work of [93], considering the role of the stage as a strategy to improve the

performance of such systems.

In the last part we carried out a study on the statistics mean and variance of entropy production in discontinuous

phase transitions. Such a study is important, as it takes into account the role of two times: the integration time

and the tunneling time between phases, in which the system needs to cross from one phase to another. We

show that the interplay between both times is fundamental. All these features were described considering

the coexistence of phases as a two-state model and its generality was verified in different models presenting

discontinuous phase transitions. As a perspective for future works, the extension of the collisional approach

to different models, especially systems more complex than the one composed of a quantum-dot or even the

study of some strategy for converting heat into work in the Brownian particles case. In our case, the inclusion

of different temperatures did not improve the performance of the system, because in these systems only work

was converted into other work at each stage. An initial study considering a coupling between driving and
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velocities was introduced in [155] and possible extensions would be interesting. Another perspective for future

works would be the extension of power and efficiency statistics to phase transitions, in order to describe their

behavior.



Appendix A

Onsager coefficients and linear regimes

In this appendix, we address the relation between coefficients L̃i j and Onsager coefficients Li j. Our starting

point is the steady state entropy production averaged over one period which is given by,

Π =
2γkB

m

 Q̇1

Γ1
+

Q̇2

Γ2

 = ΠF + ΠT . (A.1)

The coefficients L̃i j are straightforwardly obtained from ΠF performing the integration in Eq. (3.13), which

⟨vi⟩(t)’s are given by Eq. (3.4), as:

L̃11 =
γ

τ


(
e2γ(τ−τ1) − 1

)
Ĝ1(τ1)2

Γ2 (eγτ − 1)2 +
γ

Γ1

∫ τ1

0

2e−2γt
[
(eγτ − 1) Ĝ1(t) + Ĝ1(τ1)

]2

(eγτ − 1)2 dt


L̃22 =

γ

τ


(
1 − e−2γτ1

)
Ĝ2(τ)2

Γ1 (eγτ − 1)2 +
γ

Γ2

∫ τ

τ1

2e−2γt
[
(eγτ − 1) Ĝ2(t) + Ĝ2(τ)

]2

(eγτ − 1)2 dt

 ,
L̃12 + L̃21 =

2γe−γτ1Ĝ1(τ1)Ĝ2(τ)
τ (eγτ − 1)2

[
sinh(γτ1)
Γ1

+
sinh(γ(τ − τ1))

Γ2

]
+

2γ2

Γ1Γ2τ (eγτ − 1)

[
Γ2Ĝ2(τ)

∫ τ1

0
Ĝ1(t)e−2γt dt + Γ1Ĝ1(τ1)

∫ τ

τ1

Ĝ2(t)eγ(τ−2t) dt
]
,

(A.2)

where Ĝi(t) =
∫ t
τi−1

gi(t′)dt′. For equal temperatures Γ1 = Γ2 = Γ, Π reduces to the following expression:

Π = ΠF = −2γkB

mΓ

(
Ẇ1 + Ẇ2

)
= L11X2

1 + (L12 + L21) X1X2 + L22X2
2 .

(A.3)

Hence, for isothermal reservoirs the entropy production can be written in terms of the Onsager coefficients even

in the non-linear (force) regime and thereby L̃i j = Li j. Conversely, for the thermal linear regime, it is convenient

to express Γ1 and Γ2 in terms of the difference of temperatures Γ1 = Γ − ∆Γ and Γ2 = Γ + ∆Γ. In such case, Eq.
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(A.1) becomes

Π ≈ 2γkB

mΓ

[
−

(
Ẇ1 + Ẇ2

)
+

(
Q̇1 − Q̇2

)
∆Γ

Γ

]
. (A.4)

Let us assume that L̃i j can be expanded in power series of the temperature difference, L̃i j = L(0)
i j +L(c)

i j ∆Γ, where

L(0)
i j is the coefficient for Γ1 = Γ2 = Γ and L(c)

i j is the first order correction. In terms of such coefficients, the

average entropy production Π is given by

Π = ΠF + ΠT

=
[
L(0)

11 X2
1 +

(
L(0)

12 + L(0)
21

)
X1X2 + L(0)

22 X2
2

]
+

+
[
L(c)

11 X2
1 +

(
L(c)

12 + L(c)
21

)
X1X2 + L(c)

22 X2
2

]
∆Γ

+
4LΓΓ
Γ2 (∆Γ)2 .

(A.5)

By comparing Eqs. (A.4) and (A.5), it follows that

L(0)
11 X2

1 +
(
L(0)

12 + L(0)
21

)
X1X2 + L(0)

22 X2
2 = −

2γkB

mΓ

(
Ẇ1 + Ẇ2

)
, (A.6)

and hence Onsager coefficients Li j’s correspond to 0-th order coefficients L(0)
i j ’s evaluated fromΠF . Once again,

they do not depend on ∆Γ, since Ẇ i does not depend on the temperature at all.

In the true linear regime (both temperature gradient and force strength are small), the correction of ΠF is of

third order (XiX j∆Γ), thus it can be neglected. Hence, the entropy production components ΠF and ΠT are

approximately

ΠF ≈ −2γkB

mΓ

(
Ẇ1 + Ẇ2

)
, (A.7)

and

ΠT ≈ 4LΓΓ
Γ2 (∆Γ)2 , (A.8)

respectively. In addition, the coefficients L̃i j and Li j are approximately equal L̃i j ≈ Li j.



Appendix B

Constant drivings

For the machine operating at constant drivings, defined by the forces from Eqs. (3.32) and (3.33), the velocities

⟨vi⟩(t)’s are given by

⟨v1⟩(t) = X1

γ
+

e−γ(t−τ1) − e−γ(t−τ))
eγτ − 1

X1 − X2

γ
, (B.1)

⟨v2⟩(t) = X2

γ
+

e−γ(t−τ−τ1) − e−γ(t−τ)

eγτ − 1
X1 − X2

γ
, (B.2)

for i = 1 and 2, respectively. The associated Onsager coefficients are straightforwardly obtained from Eq. (3.10)

and are given by

L11 =
2τ1
Γ1τ
− L12,

L22 =
2τ2
Γ2τ
− L21,

L12 =
4 csch

(
γτ
2

)
sinh

(
γτ1
2

)
sinh

(
1
2γτ2

)
γΓ1τ

, (B.3)

L21 =
4 csch

(
γτ
2

)
sinh

(
γτ1
2

)
sinh

(
1
2γτ2

)
γΓ2τ

.

Furthermore, for isothermal reservoirs, L12 and L21 are equal for any value of asymmetry parameter κ = τ1/τ2.

77



Appendix C

Linear drivings

Similarly to the constant drivings model, the average velocities for the linear driving model [defined by Eqs. (3.34)

and (3.35)] is obtained from Eq. (3.4) and are given by

⟨v1⟩(t) = 1
γ

{
X1(γt − 1) +

e−γt

eγτ − 1

{
X1

[
eγτ + e

γκτ
1+κ

(
γκτ

1 + κ
− 1

)]
− X2[e

γκτ
1+κ + eγτ

(
γτ

1 + κ
− 1

)
]
}}
, (C.1)

and

⟨v2⟩(t) = 1
γ

{
X2[1 − γ

(
t − κτ

1 + κ

)
] +

e−γ(t−
κτ

1+κ )

eγτ − 1

{
X1[e

γτ
1+κ + eγτ

(
γκτ

1 + κ
− 1

)
] − X2[e

γτ
1+κ

(
γτ

1 + κ
− 1

)
+ eγτ]

}}
.

(C.2)

Likewise, Onsager coefficients Li j’s are also straightforwardly calculated from Eq. (3.10) and read

L11 =
2γ3τ31 +

[
6 − 3γ2τ21

]
coth

(
γτ
2

)
+ 6 csch

(
γτ
2

) [
γτ1 sinh

(
γ(τ1−τ2)

2

)
− cosh

(
γ(τ1−τ2)

2

)]
3γΓτ

.

L22 =
2γ3τ32 +

[
6 − 3γ2τ22 − 6 cosh(γτ1)

]
coth

(
γτ
2

)
+ 6γτ2 csch

(
γτ
2

)
sinh

(
γ(τ2−τ1)

2

)
+ 6 sinh(γτ1)

3γΓτ
,

L12 =
2

γτΓ1(1 − eγτ)
[
1 + γτ1 − eγτ1

] [
1 − eγτ2 (1 − γτ2)

]
,

L21 =
2

γτΓ2(1 − eγτ)
[
1 + γτ2 − eγτ2

] [
1 − eγτ1 (1 − γτ1)

]
.

(C.3)

Notably, contrasting to the constant drivings case, coefficients L12 and L21 are different from each other when

Γ1 = Γ2. Only for symmetric switching times (τ1 = τ2), it turns out that L12 = L21.
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Appendix D

Large deviation theory results at arbitrary

times

In this appendix, we derive the expressions for the first and second current moments from the large deviation

theory. Unlike standard treatments, the main difference here is that we focus on finite integration times τ. The

starting point is Eq. (5.14), describing the evolution of the entries Gx(η) of the moment generating function

(MGF). Treating it as a vector |G(η)⟩ and from its series expansion in powers of η, we have that

|G(η)⟩ = |p⟩ + η|g1⟩ + η2|g2⟩ + . . . , (D.1)

where |p⟩ is the steady-state of W. Combining this with the series expansion of the tilted operator, L(η) =

W + ηL1 + η
2L2, and collecting terms of the same order in η, we have the following system of equations

d
dτ
|p⟩ =W|p⟩, (D.2)

d
dτ
|g1⟩ = L1|p⟩ +W|g1⟩, (D.3)

d
dτ
|g2⟩ = L2|p⟩ + L1|g1⟩ +W|g2⟩. (D.4)

From these, the first and second moments are promptly obtained as

E(Jτ) = ⟨1|g1⟩, E(J2
τ ) = 2⟨1|g2⟩, (D.5)

which follow from the definition of the MGF. Eq. (D.2) is automatically satisfied in the steady-state. The

solution of Eq. (D.3), with |g1(τ = 0)⟩ = 0, is given by

|g1(τ)⟩ =
τ∫

0

dτ′eW(τ−τ′)L1|p⟩. (D.6)
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For concreteness, we assumeW is diagonalizable as discussed above Eq. (5.19). We can then write

eWτ = |p⟩⟨1| +
∑
i,0

eλiτ|xi⟩⟨yi|. (D.7)

The eigenvectors satisfy ⟨1|p⟩ = ⟨yi|xi⟩ = 1 and ⟨1|xi⟩ = ⟨yi|p⟩ = 0. Thus, plugging (D.7) in (D.6), we find

|g1(τ)⟩ = |p⟩⟨1|L1|p⟩ τ +
∑
i,0

eλiτ − 1
λi
|xi⟩⟨yi|L1|p⟩. (D.8)

To obtain the first moment we take the inner product ⟨1|g1⟩; the second term vanishes and we are left with

E(Jτ) = ⟨1|L1|p⟩ τ, (D.9)

which yields Eq. (5.17).

Turning now to the second moment, the solution of Eq. (D.4) reads

|g2(τ)⟩ =
τ∫

0

dτ′eW(τ−τ′)(L2|p⟩ + L1|g1(τ′)⟩). (D.10)

We are only interested in ⟨1|g2⟩. Using Eq. (D.7), together with the fact that ⟨1|xi⟩ = 0, we are then left only

with

⟨1|g2(τ)⟩ =
τ∫

0

dτ′
{
⟨1|L2|p⟩ + ⟨1|L1|g1(τ′)⟩

}
. (D.11)

The first term is time-independent and hence will simply give a factor of τ. In the second term we use Eq. (D.8),

leading to

⟨1|g2(τ)⟩ = ⟨1|L2|p⟩ τ +
τ∫

0

dτ′
τ′∫

0

dτ′′⟨1|L1eW(τ′−τ′′)L1|p⟩. (D.12)

This, combined with the first moment squared, yields Eq. (5.18).

To obtain the more explicit formula (5.19), we carry out the remaining integral, leading to

⟨1|g2(τ)⟩ = ⟨1|L2|p⟩ τ + ⟨1|L1|p⟩2 τ
2

2
(D.13)

+
∑
i,0

⟨1|L1|xi⟩⟨yi|L1|p⟩
eλiτ − 1 − λiτ

λ2
i

 .
The second term is identified as the first moment squared. Hence,

E(J2
τ ) − E(Jτ)2 = 2⟨1|L2|p⟩ τ (D.14)

+2
∑
i,0

⟨1|L1|xi⟩⟨yi|L1|p⟩
eλiτ − 1 − λiτ

λ2
i

 .
Dividing by 2τ finally yields Eq. (5.19).
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As a final comment, concerning now the computation of Eq. (5.20), which is valid when τ ≫ λi, it is convenient

to express the solution in a way which is independent of the full eigendecomposition of W (and hence more

convenient for numerical computations). Let |Q1⟩ denote the solution of the linear equation

W|Q1⟩ =
(
1 − |p⟩⟨1|

)
L1|p⟩. (D.15)

This equation actually has an infinite number of solutions, which are of the form

|Q1⟩ =W+L1|p⟩ + |p⟩⟨1|w⟩, (D.16)

for any vector |w⟩. Here, recall,W+ is the Moore-Penrose pseudo-inverse ofW. Projecting out the contributions

from the subspace |p⟩⟨1|, we see that

(
1 − |p⟩⟨1|

)
|Q1⟩ =W+L1|p⟩. (D.17)

Hence, Eq. (5.20) can be rewritten as

Dτ = ⟨1|L2|p⟩ − ⟨1|L1|Q1⟩ − ⟨1|L1|p⟩⟨1|Q1⟩. (D.18)

This form of the diffusion coefficient is more familiar in the LDT literature, as compared with Eq. (5.20). It has

the advantage that it requires solving a single linear equation (D.15), which is computationally much cheaper

than fully diagonalizingW.



Appendix E

Published articles

In this appendix we show the first pages of all the published articles in which I participated during the course

of my PhD. The articles [75, 94, 95] about the energetic performance of Brownian Particles Machines, part

of this results are presented in the chapter 3. As well as the first page of the published article [136] about

current fluctuations in nonequilibrium discontinuous phase transitions, associated with the results shown in

the chapter 5. Lastly, the first page of the article [156] associated with the results discussed in chapter 4 is

shown. This article last one is available in the arXiv platform (https://doi.org/10.48550/arXiv.2305.03813) and

is currently in the process of being published.
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Thermodynamics of collisional models for Brownian particles: General properties and efficiency
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We introduce the idea of collisional models for Brownian particles, in which a particle is sequentially placed in
contact with distinct thermal environments and external forces. Thermodynamic properties are exactly obtained,
irrespective of the number of reservoirs involved. In the presence of external forces, the entropy production
presents a bilinear form in which Onsager coefficients are exactly calculated. Analysis of Brownian engines
based on sequential thermal switchings is proposed and considerations about their efficiencies are investigated,
taking into account distinct external forces protocols. Our results shed light to an alternative route for obtaining
efficient thermal engines based on finite times Brownian machines.

DOI: 10.1103/PhysRevResearch.2.043016

I. INTRODUCTION

Stochastic thermodynamics has proposed a general and
unified scheme for addressing central issues in thermodynam-
ics [1–5]. It includes not only an extension of concepts from
equilibrium to nonequilibrium systems but also it deals with
the existence of new definitions and bounds [6–9], general
considerations about the efficiency of engines at finite time
operations [1–3], and others aspects. In all cases, the concept
of entropy production [1,4,10] plays a central role, being
a quantity continuously produced in nonequilibrium steady
states (NESS), whose main properties and features have been
extensively studied in the last years, including its usage for
typifying phase transitions [11–14].

Basically, a NESS can be generated under two funda-
mental ways: From fixed thermodynamic forces [15,16] or
from time-periodic variation of external parameters [17–20].
In this contribution, we address a different kind of periodic
driving, suitable for the description of engineered reservoirs,
at which a system interacts sequentially and repeatedly with
distinct environments [21–23]. Commonly referred as colli-
sional models, they have been inspired by the assumption that
in many cases (e.g., the original Brownian motion) a particle
collides only with few molecules of the environment and then
the subsequent collision will occur with another fraction of
uncorrelated molecules. Collisional models have been viewed
as more realistic frameworks in certain cases, encompassing
not only particles interacting with a small fraction of the envi-
ronment but also those presenting distinct drivings over each
member of system [24–27] or even species yielding a weak
coupling with the reservoir. More recently, they have been
(broadly) extended for quantum systems for mimicking the
environment, represented by a weak interaction between the

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

system and a sequential collection of uncorrelated particles
[28–30].

With the above in mind, we introduce the concept of re-
peated interactions for Brownian particles. More specifically,
a particle under the influence of a given external force is
placed in contact with a reservoir during the time interval
and afterwards it is replaced by an entirely different (and
independent) set of interactions. Exact expressions for ther-
modynamic properties are derived and the entropy production
presents a bilinear form, in which Onsager coefficients are
obtained as function of period. Considerations about the ef-
ficiency are undertaken and a suited regime for the system
operating as an efficient thermal machine is investigated.

The present study sheds light for fresh perspectives in
nonequilibrium thermodynamics, including the possibility of
experimental buildings of heat engines based on Brownian
dynamics [31–36] with sequential reservoirs. Also, they pro-
vide us the extension and validation of recent bounds between
currents and entropy production, the so called thermodynamic
uncertainty relations (TURs) [8,9,37–41], which has aroused
a recent and great interest.

This paper is organized as follows: Secs. II and III present
the model description and its exact thermodynamic properties.
In Sec. IV we extend analysis for external forces and consider-
ations about efficiency are performed in Sec. V. Conclusions
and perspectives are drawn in Sec. VI.

II. MODEL AND FOKKER-PLANCK EQUATION

We are dealing with a Brownian particle with mass m
sequentially placed in contact with N different thermal reser-
voirs. Each contact has a duration of τ/N and occurs during
the intervals τi−1 � t < τi, where τi = iτ/N for i = 1, .., N ,
in which the particle evolves in time according to the follow-
ing Langevin equation:

m
dvi

dt
= −αivi + Fi(t ) + Bi(t ), (1)

where quantities vi, αi, and Fi(t ) denote the particle velocity,
the viscous constant and external force, respectively. From

2643-1564/2020/2(4)/043016(9) 043016-1 Published by the American Physical Society



PHYSICAL REVIEW RESEARCH 3, 043152 (2021)

Efficient asymmetric collisional Brownian particle engines

C. E. Fernández Noa ,1 Angel L. L. Stable ,1 William G. C. Oropesa ,1 Alexandre Rosas,2 and C. E. Fiore 1

1Instituto de Física da Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
2Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58059-900 João Pessoa, Brazil

(Received 2 August 2021; accepted 15 November 2021; published 2 December 2021)

The construction of efficient thermal engines operating at finite times constitutes a fundamental and timely
topic in nonequilibrium thermodynamics. We introduce a strategy for optimizing the performance of Brownian
engines, based on a collisional approach for unequal interaction times between the system and thermal reser-
voirs. General (and exact) expressions for thermodynamic properties and their optimized values are obtained,
irrespective of the driving forces, asymmetry, temperatures of reservoirs, and protocol to be maximized. Distinct
routes for the engine optimization, including maximizations of output power and efficiency with respect to the
asymmetry, the force, and both of these, are investigated. For the isothermal work-to-work converter and/or a
small difference in temperature between reservoirs, they are solely expressed in terms of Onsager coefficients.
Although the symmetric engine can operate very inefficiently depending on the control parameters, the usage of
distinct contact times between the system and each reservoir not only can enhance the machine performance
(signed by an optimal tuning ensuring the largest gain) but also enlarges substantially the machine regime
operation. The present approach can pave the way for the construction of efficient Brownian engines operating
at finite times.

DOI: 10.1103/PhysRevResearch.3.043152

I. INTRODUCTION

A long-standing dilemma in thermodynamics and related
areas concerns the issue of mitigating the impact of thermal
noise or wasted heat in order to improve the machine perfor-
mance. This constitutes a highly relevant problem, not only
for theoretical purposes but also for the construction of exper-
imental setups [1–3]. Giving that the machine performance
is commonly dependent on particular chemical compositions
and operation conditions, notably for small-scale engines, the
role of fluctuations being crucial for such engines, distinct
approaches have been proposed and investigated in the realm
of stochastic and quantum thermodynamics [4,5]. A second
fundamental point concerns the fact that, even if all sources
of dissipation could be mitigated, the performance of any
thermal machine would still be limited by Carnot efficiency,
which requires the occurrence of infinitely slow quasistatic
processes, and consequently the engine operates at null power.
In contrast, realistic systems operate at finite time and power.
Such a conundrum (control or mitigation of dissipation and
engine optimization) has contributed to the discovery of sev-
eral approaches based on the maximization of power output
instead of the efficiency [4–20].

Thermal machines based on Brownian particles have
been successfully studied not only for theoretical purposes

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

[6,7,15,21] but also for the building of reliable experimen-
tal setups [22–27]. They are also remarkable for depicting
the limitations of classical thermodynamics and disclose
the scales at which thermal fluctuations become relevant.
In several situations, thermal machines involve isothermal
transformations [22,23,25]. Such a class of processes are
fundamental in thermodynamics since they are minimally
dissipative. However, isothermal transformations are slow, de-
manding a sufficiently large number of stages for achieving
the desired final state. For this reason, distinct protocols, such
as increasing the coupling between the system and the thermal
bath, have been undertaken for speeding it up and simultane-
ously controlling the increase in dissipation [28–32].

Here, we introduce a strategy for optimizing the per-
formance of irreversible Brownian machines operating in
isothermal parts via control of the interaction time between
the system and the environment. Our approach is based on a
Brownian particle sequentially placed in contact with distinct
thermal baths and subject to external forces [33] for unequal
times. Such a description, also referred to as collisional, has
been successfully employed in different contexts, such as
systems that interact only with a small fraction of the environ-
ment and those presenting distinct drivings over each member
of the system [34–37]. Depending on the parameters of the
model (period, driving, and difference of temperatures), the
symmetric version can operate very inefficiently. Our aim is
to show that the machine performance improves substantially
by tuning properly the interaction time between the particle
and each reservoir. Besides the increase in the power and/or
efficiency, the asymmetry in the contact time also enlarges the
regime of operation of the machine substantially. Contrast-
ing with previous works [29–32], the optimization is solely

2643-1564/2021/3(4)/043152(13) 043152-1 Published by the American Physical Society
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Brownian particles placed sequentially in contact with distinct thermal reservoirs and subjected to external
driving forces are promising candidates for the construction of reliable engine setups. In this contribution, we
address the role of driving forces for enhancing the collisional machine performance. Analytical expressions
for thermodynamic quantities such as power output and efficiency are obtained for general driving schemes. A
proper choice of these driving schemes substantially increases both power output and efficiency and extends
the working regime. Maximizations of power and efficiency, whether with respect to the strength of the force,
driving scheme, or both have been considered and exemplified for two kind of drivings: generic power-law and
harmonic (sinusoidal) drivings.
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I. INTRODUCTION

The construction of nanoscale engines has received a great
deal of attention and recent technological breakthroughs have
made feasible not only the realization of distinct setups com-
posed of quantum dots [1], colloidal particles [2–5], single
and coupled systems [6–8] but also coarse-grained approaches
for systems presenting different degrees of freedom [9,10]. In
contrast with their macroscopic counterparts, their main fea-
tures are strongly influenced by fluctuations when operating
at the nanoscale, having several features described within the
framework of stochastic thermodynamics [11–16].

Recently a novel approach, coined collisional, has been put
forward as a candidate for the realization of reliable thermal
engines [17,18] and novel engine setups [19–21]. They consist
of sequentially placing the system (a Brownian particle) in
contact with distinct thermal reservoirs and subjected to exter-
nal driving forces during each stage (stroke) of the cycle. Each
stage is characterized by the temperature of the connected
thermal reservoir and the external driving force. The time
needed to switch between the thermal baths at the end of each
stage is neglected. Despite its reliability in distinct situations,
such as systems interacting only with a small fraction of the
environment and those presenting distinct drivings over each
member of the system [22–25], the engine can operate rather
inefficiently depending on the way it is projected (tempera-
tures, kind of driving, and duration of each stroke). Hence the
importance for strategies to enhance its performance [20,21].
Among the distinct approaches, we cite those based on the
maximization of power [1,6,14,26–33], efficiency [20,34,35],
low or finite dissipation [36,37] and even the assumption of
maximization via the largest dissipation [38].

This paper deals with the above points but it focuses on
a different direction, namely, the optimization of the engine
performance by fine-tuning the driving at each stroke. Such
an idea is illustrated in a collisional Brownian machine, which
has been considered as a working substance in several works,

both from the theoretical [7,39–43] and experimental points
of view [3,35,44–46]. The collisional description allows us
to derive general (and exact) expressions for thermodynamic
quantities, such as output power and efficiency, irrespective
of the kind of driving [20]. To exploit the consequences of a
distinct driving each stroke and possible optimizations, two
representative examples will be considered: generic harmonic
and power-law drivings. The former consists of a simpler and
feasible way to drive Brownian particles out of equilibrium
[35,45,47–49] and providing simultaneous maximizations of
the engine [7]. Since the engine performance is substantially
reduced for linear drivings when compared with constant ones
[19,20], generic power-law drivings have been considered not
only for generalizing the machine performance beyond con-
stant and linear drivings but also to exploit the possibility of
obtaining a gain by changing its form at each stroke.

This paper is organized as follows: Section II presents
the model and the main expressions for the thermodynamic
quantities. Efficiency and optimization is discussed in detail
for both classes of drivings in Sec. III. Conclusions and per-
spectives are addressed in Sec. IV.

II. THERMODYNAMICS AND MAIN EXPRESSIONS

We focus on the simplest projection of an engine composed
of only two strokes and returning to the initial step after one
cycle. The time it takes to complete one cycle is set to τ , with
each stroke ∈{1, 2} lasting a time τ/2. During stroke i the
Brownian particle of mass m is in contact with a thermal bath
at temperature Ti and described by the Langevin equation.1

dvi(t )

dt
= −γivi(t ) + f̃i(t ) + ζi(t ), (1)

1Eq. (1) is formally identical to description of the overdamped
harmonic oscillator subject to the harmonic force f̄h = −k̄x just by
replacing x → v, k̄/α → γi, 1/α → γi/m.
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Discontinuous phase transitions out of equilibrium can be characterized by the behavior of macroscopic
stochastic currents. But while much is known about the average current, the situation is much less understood for
higher statistics. In this paper, we address the consequences of the diverging metastability lifetime—a hallmark
of discontinuous transitions—in the fluctuations of arbitrary thermodynamic currents, including the entropy
production. In particular, we center our discussion on the conditional statistics, given which phase the system is
in. We highlight the interplay between integration window and metastability lifetime, which is not manifested in
the average current, but strongly influences the fluctuations. We introduce conditional currents and find, among
other predictions, their connection to average and scaled variance through a finite-time version of large deviation
theory and a minimal model. Our results are then further verified in two paradigmatic models of discontinuous
transitions: Schlögl’s model of chemical reactions, and a 12-state Potts model subject to two baths at different
temperatures.
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I. INTRODUCTION

In microscopic systems, currents of heat, work, and en-
tropy production must be treated as random variables, which
fluctuate over different runs of an experiment [1,2]. This rep-
resents a paradigm shift in thermodynamics, and has already
led to fundamental advancements in the field, such as fluc-
tuation theorems [3–8] and, more recently, the discovery of
thermodynamic uncertainty relations [9–13]. It also entails
practical consequences, e.g., in the design of Brownian en-
gines [14–17], molecular motors [18–21], information-driven
devices [22,23], and bacterial baths [24]. In these systems,
both the output power [13,25] and the efficiency [26–29]
may fluctuate significantly, leading to possible violations of
macroscopic predictions, such as the Carnot limit [14].

A scenario of particular interest is that of nonequilibrium
steady states (NESSs), which occur when a system is placed
in contact with multiple reservoirs at different temperatures
Ti and/or chemical potentials μi. NESSs are characterized
by finite currents of energy and matter, and thus also a fi-
nite entropy production rate σt [1,30–33]. At the stochastic
level, these become fluctuating quantities, associated to a
probability distribution. Understanding the behavior of said
distributions constitutes a major area of research, as they
form the basis for extending the laws of the thermodynam-
ics towards the microscale, providing insights in nontrivial
properties of nonequilibrium physics. Of particular inter-
est is their behavior across nonequilibrium phase transitions
[34]. Most of our understanding, however, is centered on the

*fiorecarlos.cf@gmail.com
†pedroharunari@gmail.com
‡gtlandi@gmail.com

average current. For instance, the average entropy production
rate has been found to be always finite around the transition
point, with the first derivative either diverging, in continuous
transitions [35–41], or presenting a jump in discontinuous
ones [38,39,42]. These clear signatures suggest, in fact, that
the average entropy production could even be used to classify
the type of transition. Conversely, the behavior of higher order
statistics, such as the variance, is much less understood.

Cumulants of thermodynamic currents are usually assessed
via numerical approaches, such as Monte Carlo simulations
[39], or large deviation theory (LDT) [7,43–47]. In both cases,
cumulants are computed from long-time sample averages, in-
tegrated over a time window τ . Ultimately, one is interested in
taking τ → ∞, at least in principle. But in systems presenting
discontinuous transitions this can become an issue, since the
phase coexistence is characterized by states with very long
metastability lifetimes τm. In fact, τm increases exponentially
with the system volume V , which is a consequence of the dis-
continuous nature of the transition (for continuous transitions
these divergences are algebraic). As a consequence, the order
of the limits τ → ∞ and V → ∞ becomes nontrivial [48].

In this paper we approach this issue by introducing the idea
of conditional currents, given which phase the system is in.
We focus, in particular, on the diffusion coefficient (scaled
variance). We formulate a finite-time large deviation theory,
which neatly highlights the nontrivial interplay between τ and
τm. This is then specialized to a minimal two-state model,
that is able to capture the key features of the problem and
also provides useful predictions. These are then tested on two
paradigmatic examples of discontinuous transitions: Schlögl’s
model of chemical kinetics, and a 12-state Potts model subject
to two baths at different temperatures.

This paper is organized as follows: Section II presents the
main concepts and assumptions considered. The conditional

2470-0045/2021/104(6)/064123(10) 064123-1 ©2021 American Physical Society
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Sequential (or collisional) engines have been put forward as an alternative candidate for the realisation of reli-
able engine setups. Despite this, the role of the different stages and the influence of the intermediate reservoirs is
not well understood. We introduce the idea of conveniently adjusting/choosing intermediate reservoirs at engine
devices as a strategy for optimizing its performance. This is done by considering a minimal model composed of
a quantum-dot machine sequentially exposed to distinct reservoirs at each stage, and for which thermodynamic
quantities (including power and efficiency) can be obtained exactly from the framework of stochastic thermody-
namics, irrespective to the number of stages. Results show that a significant gain can be obtained by increasing
the number of stages and conveniently choosing their parameters.

I. INTRODUCTION

Stochastic engines are devices that convert a given amount
of energy, say heat, into work or vice-versa. In contrast to
macroscopic engines, they operate at the nanoscale and con-
sequently the relevant thermodynamic quantities are subjected
to fluctuations at the microscopic level, above all in power and
efficiency. Although an ideal engine is always desired to op-
erate at high power, high efficiency and low (power) fluctua-
tions, these conditions can never be satisfied simultaneously.
For this reason the development of distinct approaches/trade-
offs has been strongly levered in the last years, such as by
including the variation of external parameters [1], cyclic op-
erations under quasistatic conditions [2], interaction between
particles [3, 4], dynamics based on control via shortcuts to
adiabaticy [5–7], to isothermality [8], maximization of power
[9–21] and efficiency [4, 22] and more recently the strategies
based on synchronized operation under ordered arrangements
[23] or Pareto optimal cycles for power, efficiency and fluctu-
ations [24].

Sequential (or collisional) engines have been put forward as
an alternative candidate for the realisation of reliable thermal
engines [25, 26] and novel engine setups [27–30]. They con-
sist of sequentially placing the system/engine in contact with
distinct thermal reservoirs and subjected to external driving
forces during each stage (stroke) of the cycle. Each stage is
characterized by the connected thermal reservoir. The time
needed to switch between the thermal baths at the begin-
ning/end of each stage is neglected. Despite its reliability in
distinct situations [31–34], the conditions to be imposed in or-
der to provide a better performance have not been fully under-
stood and for this reason distinct (and recent) approaches for
enhancing its performance have been proposed and analyzed.
Among them, we cite the convenient choices of the duration
of each stroke [28, 30] and driving [29, 35].

In this contribution, we address a less explored strategy for
improving the performance of collisional engines: the num-
ber of stages and the reservoir parameters for each stage. The
system we consider is a particle pump model introduced in
references [25, 26], consisting of a two-level system sequen-

... ...

FIG. 1. Sketch of a Quantum-dot setup sequentially exposed to N
distinct thermal baths, each one at the interval τi−1 ≤ t < τi = iτ/N
characterized by chemical potential µi and temperature Ti = T .

tially brought into contact with distinct reservoirs allowing for
the exchange of particles among reservoirs and the generation
of a power output. Quantum dot devices are one of the most
prominent system in the realm of stochastic and quantum ther-
modynamics, as in theoretical [36–39] and experimental [40]
studies. Due to its simplicity, it presents several advantages
such as an exact solution irrespective of the number of strokes
and model parameters [36–39]. And so it provides full ac-
cess to all relevant quantities. Another advantage concerns
that they can be projected to function either as heat or pump
engines rather than Brownian engines, which only can be op-
erated as work-to-work converters depending on the kind of
external driving used as the work source [4, 27–29]. A careful
analysis over the space of parameters for distinct intermedi-
ate stages reveals that a remarkable gain can be obtained by
increasing the number of stages and a suitable choice of pa-
rameters.

This paper is structured as follows: In Sec. II, the thermo-
dynamic considerations are derived irrespective of the number
of strokes and exemplified for distinct stages. The engine per-
formance when the stages are varied is investigated in Sec. III
and conclusions are drawn in Sec. IV.
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