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ABSTRACT

The goal of this project is to study the nature of the Higgs boson, that is, to verify whether
the Higgs boson belongs to a SU(2)L, as in the Standard Model, or whether it is a singlet under
this symmetry, as predicted by dynamical symmetry breaking models. Using the available ex-
perimental data, we analyze the Higgs couplings to gauge bosons as well as triple gauge boson
couplings in order to test the nature of the Higgs.

Keywords: Higgs boson; Large Hadron Collider; Effective Lagrangians.





RESUMO

O objetivo deste projeto é analisar a natureza do bóson de Higgs, a saber, se ele pertence
a um dubleto de SU(2)L como no modelo padrão, ou se o Higgs é um singleto desta simetria,
o que ocorre, por exemplo, em modelos de quebra dinâmica de simetria. Utilizando os dados
experimentais disponíveis, analisaremos os acoplamentos do Higgs com bósons vetoriais, bem
como os acoplamentos tríplices de gauge, para testar a natureza do bóson de Higgs.

Palavras Chave: Bóson de Higgs; Large Hadron Collider; Lagrangianas efetivas.
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INTRODUCTION

The discovery of the scalar state consistent with the Standard Model (SM) Higgs boson
by the CMS and ATLAS Collaboration [1, 2] was a milestone in particle physics. This event,
together with the preceding precision tests, has shown that the SM is the best theory to describe
the elementary particles and their electroweak and strong interactions.

Even though the SM is compatible with the observed data collected from the LHC and
LEP experiments, it is still not able to explain some open problems in physics. Such as Dark
Matter and Dark Energy [3], the strong CP problem [4], the mass generation mechanism for the
neutrinos, naturalness [5], etc. All these problems show that the the SM is not the end of the
history, and more fundamental theories are yet to be found.

Unfortunately, so far we have not seen any direct or indirect evidence pointing to new
physics at the LHC. As a result, if we assume the existence of unknown massive particles,
they can be heavy in such a way that our current experiments can not access them. Even so,
despite being off-shell, they can lead to modifications in kinematical distributions [6] and one
possible framework to encode this information is called Effective Field Theories (EFTs).

Nowadays, we have two EFTs for the electroweak and strong interactions. The first one is
called Standard Model Effective Theory (SMEFT), which considers the observed Higgs boson
embedded in a SU(2)L doublet together with the Goldsone bosons from the electroweak sym-
metry breaking process. Meanwhile, there is another one called Higgs Effective Field Theory
(HEFT). In the latter, the Higgs boson is considered to be a singlet of the SM gauge group and
it does not belong to a SU(2)L doublet. On the other side, the Goldstone bosons transform ac-
cording to a non-linear realization of the symmetry. Both of these frameworks are discussed by
[7], and phenomenological studies using the SMEFT and the HEFT can be found in [8, 9, 10,
11, 12], [13, 14, 8], respectively.
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In this work, we use the HEFT Lagrangian to analyze the available LHC Run 2 data affect-
ing the interactions among the electroweak gauge bosons as well as the Higgs interactions. In
particular, we investigate the possible (de)correlations present in these two datasets, which can
shed light on how the gauge symmetry is realized at low-energies.

This work is divided in two parts. The first introduces the ideas regarding EFTs, where
we use a simple toy model to show that a theory constructed only with the light states and
symmetries contains the low-energy information of a more complete theory. Also in the first
part, both the SMEFT and the HEFT are discussed, together with their main differences. In
the second part, using the newest data concerning triple electroweak gauge interactions and the
Higgs interactions, we put constraints on the Wilson coefficients of the HEFT Lagrangian. More
details about the content discussed in each chapter can be found in the table of contents.



Part I

Theoretical Framework





CHAPTER 1

INTRODUCTION TO EFFECTIVE FIELD
THEORIES

Effective Field Theory (EFT) is one of the most powerful tools to perform calculations on
theoretical physics. Its range of applications can go from Cosmology [15], Condensed Matter
[16] to Particle Physics [7]. It allows one to concentrate only on the relevant degrees of freedom
and symmetries for a specific energy scale while ignoring all effects that are irrelevant for
the observables in question. Furthermore, the precision of the calculations can be improved as
needed in a consistent way. All these aspects of EFTs are to be discussed in this section.

As pointed out before, after the Higgs boson discovery by the ATLAS and the CMS Col-
laborations in 2012 [1, 2], one of the major goals of the LHC was to find new particles. Never-
theless, none has been found so far. Within the current data, no significant deviations from the
Standard Model have been observed [8, 9, 10, 11, 12] and, as a consequence, EFT techniques
are needed. If we assume the existence of new particles with masses well above the electroweak
scale, the new physics effects, despite being off-shell, can change the tail of kinematic distribu-
tions [6]. The EFT is the ideal framework to encode this information since it does not carry any
UV assumptions. Moreover, any beyond Standard Model theory can be checked by means of a
matching calculation, since one is able to translate the bounds from the EFT to the parameters
of the full theory. In this work, a model independent path is taken, which we typically call the
bottom-up approach. The main point of this section is to illustrate, with the help of a simple toy
model, why the EFT contains the low-energy behavior of a more complex and involved theory.

The content of this chapter is divided as follows: starting from Sec. 1.1 we will use a toy
model to illustrate the important features of an EFT. Once we have finished, in chapter 2 the
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Standard Model is described to fix notation and in chapters 3 and 4 the possible ways to param-
eterize deviations from the electroweak interactions, the SMEFT and the HEFT, are discussed.
But before we get into the world of EFTs, I need to say that the amount of literature on the mat-
ter is huge, along the way I will cite the ones that help me the most during this master thesis. In
any case, I apologize in advance for all the works I have not acknowledged in the text.

1.1 Tree-level matching

The whole idea behind the EFTs is to reproduce the low energy behavior of a more complete
theory with only a few ingredients: symmetries and degrees of freedom [17, 18]. To show that,
we consider a simple toy model consisting of two real scalar fields, ϕ and Φ, with masses m
and M , respectively, satisfying M ≫ m as well. Moreover, the theory has a Z2 symmetry that
acts only on the light field ϕ. The Lagrangian for the model is given by

LFULL =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 +

1

2
∂µΦ∂

µΦ− 1

2
M2Φ2 − λ

4!
ϕ4 − κ

2
ϕ2Φ− g

2
ϕ2Φ2. (1.1)

Note that the Lagrangian above is incomplete since we could have a cubic and a quartic inter-
action for Φ, but we decided to set these couplings to zero for the sake of simplicity.

Now we can compute some amplitude and take the low-energy limit since we are interested
in making predictions at low-energies. In the following, we discuss the elastic scattering ϕϕ→
ϕϕ. The diagrams for this process are shown in Figure 1.1, where we took into account only
tree-level diagrams.

The full amplitude for this process is

ıAFULL = −ıλ− ıκ2
( 1

s−M2
+

1

t−M2
+

1

u−M2

)
, (1.2)

if we assume s, t, u ∼ E2 ∼ m2, we can Taylor expand the expression

ıAFULL = −ıλ+ ı
κ2

M2

(
3 +

4m2

M2
+
s2 + t2 + u2

M4
+O

( E6

M6

))
, (1.3)

≃ −ıλ+ ı
3κ2

M2
, (1.4)

where we used s + t + u = 4m2 and we truncated the expansion at leading order. Also it is
important to remember that the parameter κ has mass dimension, i.e. [κ] = 1. Details on how to
read the Feynman rules and evaluate the amplitudes can be found in [19, 20].

Looking at equation (1.3), the ratio E2/M2 dictates the precision that we want to achieve
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Figure 1.1: Feynman diagrams for the ϕϕ→ ϕϕ scattering at tree-level.

in the computation of the amplitude. When we write down our effective Lagrangian we will
organize the operators in terms of mass dimensions. The same ratio E2/M2 is going to be the
parameter controlling the expansion of the effective interactions. In other words, if the amplitude
AFULL is computed with precision up to O(E2/M2) we need to account for effective interactions
that give contributions up to the same order. This is typically called the Power Counting. More
details about it are discussed in Chapter 4.

We can reproduce the same low energy effects of the full theory by means of an effective
Lagrangian that only contains the light particle. Since the full theory has a Z2 symmetry acting
on the light fields, we must impose it in the EFT as well. If we are only interested in the leading
order terms, the ones in equation (1.4), the effective Lagrangian that respects the symmetries
restrictions is [21]

LEFF
0 =

1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − C0

4!
ϕ4. (1.5)

To find out how to express C0 in terms of the parameters of the full theory we need to equate
the amplitude (1.3) and the one computed with the Lagrangian above,

ıAEFF = ıAFULL, (1.6)

which gives

C0 = λ− 3κ2

M2
. (1.7)

If we want the next leading order term we need to add a few more interactions to our La-
grangian up to dimension six [21],

LEFF
1 = − 1

6!

1

M2
C1,0ϕ

6 − 1

4

1

M2
C1,1ϕ

2(∂2ϕ2). (1.8)

The C’s are called Wilson coefficients, and here we already made it dimensionless by introduc-
ing the term 1/M2. Note that at this order we could also think about the term ∂µϕ

2∂µϕ2, but this
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is related to the second one in (1.8) by integration by parts, so its contribution can be absorbed
in the coefficient C1,1.

Following the same reasoning from [17], let us check whether the terms in (1.8) can really
reproduce the expected behavior we are seeking. First, we can realize that each derivative acting
on ϕ scales within the energy regime in which the process is being probed, i.e. ∂µ ∼ E. Invoking
the uncertainty principle, we can notice that xµ ∼ 1/E and d4x ∼ 1/E4. If we are working with
a weakly coupled effective theory it is reasonable to assume the kinetic term to be the leading
term in an E/M expansion. This requirement fixes the scaling of ϕ:∫

d4x
1

2
∂µϕ∂

µϕ ∼ 1 → ϕ ∼ E. (1.9)

Armed up with these rules we can figure out how the terms in (1.8) scale. For example, the first
term in the expression scales as:∫

d4x
{
− 1

6!

1

M2
C1,0ϕ

6
}
∼
( E
M

)2
, (1.10)

which has the same order as the next-leading-order term in (1.3) we want to reproduce.
To obtain the values of the new Wilson coefficients in terms of the parameters of the full

theory we need to do the same procedure we did before, but up to the order (E/M)2 with the
Lagrangian LEFF0 + LEFF1 . Using the ϕϕ → ϕϕ scattering we can only fix the parameters C0

and C1,1:

C0 = λ− 3κ2

M2
, (1.11)

C1,1 =
1

2

κ2

M2
. (1.12)

To fix the value of the coefficient C1,0 we need to choose a different process in which the
corresponding vertex would enter at tree-level. For instance, we could choose the process
ϕϕϕ→ ϕϕϕ.

At this point we see that we can organize the effective Lagrangian in a systematic way,
sorting the operators in terms of mass dimensions:

LEFF =
∞∑
n=0

1

M2n

# ops∑
k=0

cn,kOn,k. (1.13)

The index n represents a specific dimension of the effective operators and the index k sums over
all allowed operators of that dimension. Typically when one is using the effective Lagrangian
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to compute observables the series is truncated at order that will give the precision needed.
The process of figuring out how the Wilson coefficients are expressed in terms of the pa-

rameters of the full theory by equating amplitudes the way we did is called Matching [21]. Note
that in the case we studied the parameters of the full theory and the Wilson coefficients do not
depend on any scale. This is only the case because we have used tree level diagrams. When
loop diagrams come into play we will need to be more careful on this matter. Details about this
problem are found in the next section.

When using the EFT attention must be paid to the energy scale where the computation is
being performed. Note that the former has a natural cutoff: the mass M . When the energy of the
process under study is reaching the threshold M all the terms in the expansion (1.13) become
important. Hence, we can no longer use it to make perturbative predictions. Whenever this
situation occurs it means that the EFT is not a good description anymore and we need to look
for a more complete theory.

Before we move on we should point out an alternative strategy to matching: integrating out
fields [22]. At tree-level this consists in using the equations of motion to express the heavy field
Φ in terms of the light field ϕ. Once this is done, the interactions for the field Φ are replaced by
a series of local interactions with only the light field ϕ. We will not enter in any details about
this method, but it has a really interesting interpretation in terms of path integrals that can be
found in [23].

1.2 Loop-level matching

In the last section we performed a simple matching calculation using only tree-level dia-
grams and we completely neglected the scale dependence of the couplings. In this section we
need to fill in the blanks that have not been clarified yet. For example, at which energy scale the
matching procedure should be performed and how we can use the EFT at low energies once the
matching has been done.

Again, we will make use of our toy model to evaluate the loop contributions for the ϕϕ→ ϕϕ

scattering, but now only turning on the following interactions:

LFULL
Int = −1

4
κϕ2Φ2 − λ

4!
ϕ4. (1.14)

The diagrams entering in this process are displayed in Figures 1.2 and 1.3.
The evaluation of loop diagrams is more difficult. One needs to regulate the integrals to

keep the divergences under control and define the renormalization procedure [24]. Here we
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ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

+ t and u channels

Figure 1.2: Feynman diagrams for the ϕϕ→ ϕϕ scattering proportional to λ and λ2.

ϕ

ϕ

ϕ

ϕ

Φ

+ t and u channels

Figure 1.3: Feynman diagrams for the ϕϕ→ ϕϕ scattering proportional to κ2.

are going to use Dimensional Regularization (DR) [25, 26, 24, 21, 20] and we will define our
counterterms in the minimum subtraction scheme (MS) [21, 20]. Although DR is very abstract
with respect to the physical interpretation in comparison to other dimensionful regularization
procedures, it does not break any symmetries in all steps of the computation [25] and it also
respects the Power Counting [7]. First, we need to evaluate the diagrams in the full theory, and
then we will move on to the EFT. Once we have reached this point, we need to be consistent:
the conventions used in one must be the same as in the other.

Starting by evaluating the s-channel proportional to the λ2 contribution, after applying the
Feynman rules [27, 19] and the Feynman trick to combine the denominators [21, 19], the am-
plitude reads

ıAFULL
s =

λ2

2

∫ 1

0

dx

∫
d4l

(2π)4
1

(l2 −∆2)2
, (1.15)

where the factor 1/2 is a symmetry factor and ∆2 = x(x − 1)p2 +m2, with p2 being the total
four momentum coming from the initial particles. In order to make the calculations easier, we
will perform the matching at the threshold limit, which means that the initial and final particles
have pµi = (m, 0⃗).

The DR idea consists in deviating the dimension of the integral by a little amount ϵ in such
a way that we can track down the divergent terms when we take the limit ϵ → 0. Changing to
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d = 4− 2ϵ dimensions, the amplitude becomes

ıAFULL
s =

λ2

2
µ2ϵ

∫ 1

0

dx

∫
ddl

(2π)d
1

(l2 −∆2)2
,

=
λ2

2

1

16π2

∫ 1

0

dx
{1
ϵ
+ log

µ̃2

m2
− log

[
4x(x− 1) + 1

]}
,

=
ıλ2

32π2

{1
ϵ
+ log

µ̃2

m2
+ 2
}
,

(1.16)

where we used the formula (3.19) from [21] and defined µ̃ = 4πe−γEµ2. Note that µ is an
nonphysical scale introduced to correct the dimensions of the integral. The calculations for the
t and u channels give similar results, aside from the exclusion of the last factor 2, since in the
threshold limit we have ∆2 = m2. The total amplitude proportional to λ2 is then

ıAλ2 =
3ıλ2

32π2

{1
ϵ
+ log

µ̃2

m2
+

2

3

}
. (1.17)

The evaluation of the diagrams proportional to κ2 are identical, we only need to exchange
m for M . For the s-channel, the ∆2 reads,

∆2 =M2
{
4x(x− 1)

m2

M2
+ 1
}
≃M2, (1.18)

so the factor 2 in the s-channel can be dropped. The total amplitude proportional to κ2 is

ıAκ2 =
3ıκ2

32π2

{1
ϵ
+ log

µ̃2

M2

}
. (1.19)

Both amplitudes (1.17) and (1.19) contain divergent terms, so we need to define our coun-
terterms in a way to eliminate them. Our bare parameter λo is related to the renormalized one
λr through the use of the counterterm Z:

λo = Zλr, (1.20)

when working with a perturbative model the counterterm takes the form [21]

Z = 1 +O(λr, κr). (1.21)

The MS scheme tantamounts to letting the counterterm absorb only the divergent piece of the
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amplitude. In our case, this implies

Z = 1 +
3λ

32π2

1

ϵ
+

3

32π2

κ2

λ

1

ϵ
. (1.22)

One important feature about the MS scheme is that the non-physical scale µ̃2 can be understood
as the renormalization scale. For a comprehensive discussion on the matter see [20]. From now
on, µ̃2 is also the renormalization scale of the theory, and the parameters λ and κ depend on it.
Also, we will assume that the parameter κ has been properly renormalized, see [21] for details
of the calculation.

Now we can write down the full amplitude for the ϕϕ→ ϕϕ scattering at next leading order:

ıAFULL = −ıλ(µ̃) + ı
3

32π2
(λ(µ̃))2

{
log

µ̃2

m2
+

2

3

}
+ ı

3

32π2
(κ(µ̃))2 log

µ̃2

M2
. (1.23)

Note that the amplitude is free of divergent terms and all the couplings depend on the running
scale µ̃. Another important aspect to observe is the appearance of the logarithm terms. Both of
them depend on different mass scales. If we choose a renormalization scale µ̃ close to one of
the masses, m for example, the first of them is going to be under control while the other will be
a large one, since we have a hierarchy of scales, i.e. M ≫ m.

The emergence of logs is an inevitable consequence of the loop calculations. We need to be
careful with them because they can spoil perturbation theory before its time if we do not treat it
properly [20]. The procedure in which we can resum the large logs and restore the perturbation
aspect of the theory is by means of the Renormalization Group Equations (RGE) [20, 27]. As
pointed out by [21], not even the RGE will solve the problem we have encountered in (1.23),
because the differential equations for both parameters do not depend on the mass M . Hence,
they will not be able to decouple the heavy particle effect as we move to low energies. Here is
the time that the EFT approach comes in handy.

To solve the problem we need to perform the matching with an EFT that only contains the
light particle ϕ. For the case in question we only need one interaction:

LEFT
Int = −C

4!
ϕ4, (1.24)

where C is the Wilson coefficient. Since now the couplings depend on the running scale we
must be clear about the scale where the matching is being done. To this purpose, let us define it
as µ̃M .

To perform the matching at one-loop we will use an iterative approach. As a starting value
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for the Wilson coefficient, we use the leading order matching relation,

C(µ̃M) = λ(µ̃M), (1.25)

and the discrepancy among the EFT and the full-theory amplitude can be eliminated by intro-
ducing an additional tree-level diagram in the EFT equal to

•

ϕ

ϕ

ϕ

ϕ

= ıAMatch = −ıCMatch(µ̃M) = ı[AFull +AFull
c.t. ]− ı[AEFT +AEFT

c.t. ],

(1.26)

where c.t. stands for the counterterms contributions andCMatch encodes the one-loop corrections
to the Wilson coefficient. Note that the EFT amplitude is the same one as for the full theory,
except that we do not include the contributions from the diagrams in Figure (1.3). Then, if we
use the relation (1.25) in (1.26) the one-loop corrections to the Wilson coefficient come only
from the diagrams with the heavy particle in the loop [21]:

CMatch(µ̃M) = − 3

32π2
(κ(µ̃M))2 log

µ̃2
M

M2
. (1.27)

It is crucial to realize that although the loop expansion in the full theory depends on terms of
the form log µ2/m2, the matching coefficient does not. That is how the EFT matching solve the
problem we have encountered before: as long as we choose µ̃M ∼ M we do not have to worry
about large logarithms in the matching coefficients.

Now we can update our leading matching relation from (1.25) to

C(µ̃M) = λ(µ̃M)− 3

32π2
(κ(µ̃M))2 log

µ̃2
M

M2
. (1.28)

Again, it depends only on the mass M , and we do not have problems with large logarithms as
long as we take the matching scale close to the cutoff.

When we are working with EFTs our goal is to make predictions at low energies, which
means that we need to use the RGEs to run the parameter C from the matching scale µ̃M down
to a lower scale µ̃L. Since we are just giving a brief introduction to the EFT ideas we will not
enter into details on how to derive the RGEs, for that we refer the reader to [20, 27, 21]. Here
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Figure 1.4: Figure extracted from [28]. The matching procedure was done in a scale Λ, the
RGEs were used to run the Wilson coefficients down to a scale mW , where the EFT should be
use to make precision tests.

we just state the RGE for the Wilson coefficient:

dC

d log µ̃2
=

3

32π2
C2. (1.29)

Once the RGE is solved for the boundary condition (1.28) we can evolve the coupling down to
the scale µ̃L. Finally, including the one-loop contributions, our low-energy amplitude is given
by

ıAEFT = −ıC(µ̃L) + ı
3

32π2
C(µ̃L)

2
{
log

µ̃2
L

m2
+

2

3

}
. (1.30)

No logarithms depending on M appear.
Right now we have everything we need to understand the full picture. First, we need to

perform the matching at scale µ̃M close to the cutoff in such a way to avoid the large logarithms
in the matching coefficients. Once this has been done, we can use the RGEs inside the EFT to
evolve the Wilson coefficients down to an energy scale µ̃L. Finally, when we are at low energies
we can use our EFT to make precision tests. This procedure is known as Matching, Running

and Mapping [28], and it is schematically described in Figure (1.4).

1.3 The EFT concept for renormalization

In the previous sections we performed the matching procedure to obtain the values of the
Wilson coefficients in terms of the parameters of the full theory at tree-level and also at loop-
level. Once the matching is done, we can compute amplitudes at low-energies with our EFT.
Moreover, the calculation can be systematically improved by adding more interactions. In our
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toy model, it means that we need to add higher dimensional operators. But one may be con-
cerned about working with non-renormalizable theories where we have to deal with UV diver-
gences.

In the traditional sense, a theory is said to be renormalizable if at any order in perturbation
theory divergences from loop integrals can be absorbed in a finite set of parameters [24]. But
the EFT concept of renormalization is more relaxed: a theory must be renormalizable order
by order in its expansion parameters [17]. Let us try to illustrate what we mean with this last
statement.

Consider a real scalar field ϕ and the following interactions

LEFT
Int = −λϕ4 +

c

M2
ϕ6. (1.31)

Here we are considering that the Lagrangian is invariant under the transformation ϕ → −ϕ
and M is playing the role of the mass of the heavy particle we integrated out to generate the
EFT. The first divergence we could think of comes from the four point function and it can be
absorbed by the counterterm δλ of the coupling λ:

ϕ

ϕ

ϕ

ϕ

∼ λ2 Renormalized by: •

ϕ

ϕ

ϕ

ϕ

= δλϕ4.

The second comes from the six-point function, note that its amplitude is proportional to λc/M2

and it can be absorbed by the coupling c:

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

∼ λ
c

M2
Renormalized by: •ϕ ϕ

ϕ

ϕ

ϕ

ϕ

=
δc
M2

ϕ6.

The last divergent diagram comes from the eight-point function, it is proportional to c2/M4. No
parameter of the Lagrangian (1.31) can absorb this divergence. To do so, we would have to add
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a interaction proportional to ϕ8:

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

∼ λ
c2

M4
Renormalized by: •ϕ ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

∼ ϕ8.

This is the point where our Power Counting enters to save the day. Since we are ordering the
operators in terms of mass dimension and we are keeping only interactions up to 1/M2, in any
amplitude we should only add terms up to the same order, which means that terms proportional
to 1/M4 must not be included. As a consequence, this implies that we do not need to add a ϕ8

interaction, because loop divergences renormalized only by it will not be taken into account.
This is what we meant by a renormalizable theory order by order in the expansion param-

eters. Here we discovered another aspect about EFTs: they are naturally renormalizable once
we are consistent with our Power Counting. In a way this reflects the importance of the Power
Counting for an EFT, because without it we are not able to use it in a consistent way.

1.4 The bottom-up approach

On the preceding sections we discussed some important features about EFTs. First, we dis-
cuss how to perform the matching at tree-level, and then we moved to the loop-level matching.
In the latter, we saw the importance of EFT techniques to solve the problem of large logarithms
introduced through loop effects, and how the heavy particle mass decouples once the match-
ing and running of the Wilson coefficients is done. Lastly, we also saw the EFT concept for
renormalization, which pointed out that, even though we are working with non-renormalizable
interactions, we can still make predictions thanks to the Power Counting.

The path we have taken up to this section is typically called the top-down approach [18, 29].
We had a complete UV model to begin with and we worked out an EFT that could reproduce
its predictions at low-energies. In fact, the matching procedure even told us what were the
interactions among the light fields that were turned on in the EFT and how the respective Wilson
coefficients depended on the parameters of the full theory.

In contrast, when one wishes to be as model independent as possible, the EFT can be built
in another way. Knowing the light particles and the symmetries restrictions, we can construct an
EFT by establishing interactions among the light fields that preserve the symmetries. To make
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sense of the construction, the Power Counting for the operators must be clear. In the example we
have studied, the operators were organized in terms of mass dimension, but there may be other
possibilities, e.g. a derivative expansion for chiral theories. This strategy is called the bottom-

up approach [29]. In this case, there is no matching procedure, which tells us that the Wilson
coefficients are free parameters and their values are only obtained when contrasting the theory
with data.

The bottom-up approach is the path we will take in this work. All the discussion we made
in this section was to motivate that with only a few ingredients, symmetries and degrees of
freedom, we can build an EFT. Any UV model that contains those light particles and respects
the same set of symmetries at low energies can be matched to the former. In a way, we can
see the bottom-up approach as the inverse path of that we have taken: we first write down an
EFT, then we constrain the Wilson coefficients with the largest dataset possible, and, if it is of
one’s desire, the constraints obtained can be translated to any UV model through a matching
calculation.

1.5 Digression about symmetries

Before we move on we would like to make some comments on how symmetries can be
realized at low-energies. This discussion is going to be important for the next sections. Unfor-
tunately, to make this comment we need to change our toy model. Let us consider a complex
scalar field ϕ that respects a global U(1) symmetry.

The full Lagrangian for the model takes the form

L = ∂µϕ
∗∂µϕ− λ

4

(
ϕ∗ϕ− v2

)2
. (1.32)

Note that the model presents a Spontaneous Symmetry Breaking (SSB) pattern [30], since the
field configuration that minimizes the classical energy is not zero, i.e. ⟨ϕ∗ϕ⟩ = v2. In order to
make perturbative predictions we need to expand the Lagrangian around the true vacuum of the
theory. Rewriting the field as ϕ = v + ϕ̃, we end up with

L = ∂µϕ̃
∗∂µϕ̃− λ

4

(
v(ϕ̃+ ϕ̃∗) + ϕ̃∗ϕ̃

)2
. (1.33)

To make the particle content more clear it is useful to write the field in terms of its real and
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imaginary parts, ϕ̃ =
1√
2
(ϕ̃R + ıϕ̃L). The leading terms of the Lagrangian get

L =
1

2
∂µϕ̃R∂

µϕ̃R +
1

2
∂µϕ̃L∂

µϕ̃L − λv2

2
ϕ̃2
R + .... (1.34)

From (1.34) we see that we have a massive particle ϕ̃R with mass m2
R = λv2 and massless one

ϕ̃L.
Since we have a hierarchy of masses we can ask ourselves what would be the low-energy

EFT for only the light field ϕ̃L. The first question we must address is how the symmetry acts at
low-energies on the light degree of freedom. Since U(1) ≃ SO(2), we can arrange the real and
imaginary fields in a doublet, and the phase transformation ϕ→ eıθϕ can be written as(

ϕR

ϕL

)
→

(
cos θ − sin θ

sin θ cos θ

)(
ϕR

ϕL

)
. (1.35)

This means that the two fields mix with each other and our EFT will break the doublet structure.
More important, after the SSB the U(1) symmetry is not a manifest symmetry in the Lagrangian
anymore. Even though it seems we can not learn anything from the symmetries of the full theory,
they can still help us in the EFT construction.

The trick to recognize how the symmetry acts on the light state is by doing a field redef-
inition. Instead of decomposing the field into its real and imaginary parts, we can rewrite it
as

ϕ =
(
v +

χ√
2

)
e

ıξ√
2v . (1.36)

In this parametrization it is clear that the field χ is a singlet of the symmetry while ξ under
ϕ→ eıθϕ transformation goes to

ξ → ξ +
√
2vθ. (1.37)

In particular, this transformation already tells us that ξ is going to be the light state since a mass
term for it would break the symmetry. Indeed, when we use (1.36), the Lagrangian in (1.32)
takes the form

L =
1

2
∂µχ∂

µχ+
1

2
∂µξ∂

µξ − 1

2
λv2χ2 + ..., (1.38)

where only χ acquires a mass.
Actually, the Lagrangian above clarifies that ξ is the Nambu-Goldstone boson of the SSB

[31]. The transformation (1.37) is said to be a non-linear realization of the symmetry, because
when one is dealing with non-abelian gauge symmetries the transformation of the Nambu-
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Goldstone bosons is highly non-linear [23].
Now we know how the symmetry acts on the light state and in principle we could build

our EFT, but since the ξ’s transformation is a non homogeneous shift the construction is not
straight forward. As we will see with more detail later on, to write down an EFT for the Nambu-
Goldstone boson one can build functions of it that transform linearly under the symmetry. In
our case, this is accomplished by defining U = eıξ/v, which transforms as U → eı

√
2θU . Our

leading order EFT Lagrangian written in terms of U is

LEFT =
v2

2
∂µU

†∂µU =
1

2
∂µξ∂

µξ + ..., (1.39)

where in the second equality we just kept the kinetic term.
In the following sections, one of the possible EFTs to describe the electroweak interactions

is also a non-linear realization of the SM symmetry group. When we get there, we will need to
generalize this construction to non-abelian gauge theories.
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CHAPTER 2

THE STANDARD MODEL

The Standard Model (SM) is a theory describing the electroweak and strong interactions
among all the elementary particles we know so far [32, 33, 34]. It was created with a mass
generation mechanism based on the idea of SSB of a gauge theory, i.e. the Higgs Mechanism
[35, 36]. So far, the theory has been found to be compatible with data. This was first shown
by the precision measurements made by LEP [37, 38]. Later on, in 2012, the ATLAS and the
CMS Collaborations observed a scalar state consistent with the Higgs boson [1, 2]. Since then,
the LHC Collaborations have not seen any significant deviation from the SM predictions. This
section is devoted to introduce the SM in a concise way, with emphasis on the Higgs and on the
triple electroweak gauge bosons interactions.

2.1 The SM Lagrangian

The SM is a chiral theory based on the symmetry breaking pattern SU(2)L × U(1)Y ×
SU(3)C → U(1)EM × SU(3)C , where U(1)EM stands for the electromagnetism gauge group.
The L is there as reminder that the SU(2)L symmetry only acts on the left-handed fermions
and on the Higgs doublet. The Y is called hypercharge and its value for each particle is fixed
in a way to give the correct electric charge. Lastly, the C stands for color and the SU(3)C
describes the strong interactions amid the quarks. To build up the Lagrangian we are going to
use the bottom-up approach, that is, once we describe the particle content we will write down
all possible interactions allowed by the symmetries. In the SM Lagrangian we only need the
operators with mass dimension less or equal than four.
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Starting with the leptons, the left-handed particles (eL, µL, τL, νeL, νµL, ντL) are arranged in
a doublet to transform under SU(2)L in the fundamental representation, while the right-handed
ones (eR, µR, τR) are singlets. Here, we will not take into account the right-handed neutrinos.
There are three generations of lepton doublets, ordered by the mass of its second component:

Li =

(
νeL

eL

)
,

(
νµL

µL

)
,

(
ντL

τL

)
. (2.1)

The right-handed leptons are also ordered by their mass:

eiR = {eR, µR, τR}. (2.2)

Following the same notation as [7], the covariant derivative acting on the lepton doublets is
given by

DµL
i =

(
∂µ + ıgW a

µ

σa

2
+ ıg′BµYL

)
Li, (2.3)

whereW a
µ ’s andBµ are the SU(2)L and U(1) gauge bosons with g and g′ being their gauge cou-

plings, respectively. The σa’s denote the Pauli matrices and the Y represents the hypercharge,
which is the same for all the generations. In Table 2.1 we displayed the hypercharge values and
the representations under the gauge symmetry of the leptons, quarks, and the Higgs doublet.

Field SU(3)C SU(2)L U(1)Y
Li 1 2 -1/2
Qi 3 2 1/6
eiR 1 1 -1
uiR 3 1 2/3
diR 3 1 -1/3
H 1 2 1/2

Table 2.1: Hypercharge values and representations under the SM gauge symmetry for the lep-
tons, quarks, and the Higgs doublet.

The covariant derivatives for the right-handed leptons are similar, but they do not transform
under SU(2)L:

Dµe
i
R =

(
∂µ + ıg′BµYR

)
eiR, (2.4)

where YR represents the hypercharge, which is the same over all generations.
In the SM, the Higgs boson together with Goldstone bosons from the SSB process belong to

a SU(2)L doublet, generically denoted asH , with hypercharge 1/2. A mass term for the leptons
(and also for the quarks) can not be written in the Lagrangian since it violates the symmetry. In
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contrast, Yukawa terms with the Higgs doublet are allowed. Keeping that in mind, the leptonic
sector of the SM Lagrangian takes the form

LSM
Lepton = L̄iı /DLi + ēiRı /De

i
R −

[
yiēiRH

†Li + h.c.
]
, (2.5)

where we have taken the lepton Yukawa matrix to be diagonal.
The quark sector is displayed in a similar way. The left-handed particles are paired up into

SU(2)L doublets:

Qi =

(
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

)
. (2.6)

The right-handed quarks are indexed as follows

uiR = {uR, cR, tR}, (2.7)

diR = {dR, sR, bR}. (2.8)

The covariant derivatives acting on the left-handed and right-handed quarks are similar to the
ones in (2.3-2.4), but now we need to add the gluons since the they are charged under SU(3)C :

DµQ
i =

(
∂µ + ıgsT

AGA
µ + ıgW a

µ

σa

2
+ ıg′BµYQ

)
Qi, (2.9)

Dµu
i
R =

(
∂µ + ıgsT

AGA
µ + ıg′BµYu

)
uiR, (2.10)

Dµd
i
R =

(
∂µ + ıgsT

AGA
µ + ıg′BµYd

)
diR, (2.11)

where GA
µ represent the gluons, gs is gauge coupling for SU(3)C , and the TA are denoting

their generators, which can be represented by the Gell-Mann matrices. As before, the Y ’s stand
for hypercharge and they are the same among all generations. The quark sector of the SM
Lagrangian is given by

LSM
Quark = Q̄iı /DQi + ūiRı /Du

i
R + d̄iRı /Dd

i
R −

[
ydijQ̄

iHdjR + yuijQ̄
iH̃ujR + h.c.

]
, (2.12)

where H̃ = ıσ2H
∗ and it transforms under SU(2)L in the fundamental representation with

hypercharge −1/2.
We also need to add the kinetic term of the gauge bosons. In terms of the field strengths,

they are organized as follows

LSM
Gauge = −1

4
GA
µνG

Aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν . (2.13)
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The field strength can be generically written as

F a
µν = ∂µF

a
ν − ∂νF

a
µ + gfabcF b

µF
c
ν , (2.14)

with T a denoting the generators of the gauge group, F a
µ the gauge bosons, and fabc representing

the group structure constant. For the abelian U(1)Y , we have fabc = 0.
Finally, the only piece missing is the scalar sector of the Lagrangian:

LSM
Scalar =

(
DµH

)†(
DµH

)
− λ
(
H†H − 1

2
v2
)2
, (2.15)

where v stands for the vacuum expectation value (vev) of the electroweak symmetry breaking
(EWSB) process. The covariant derivative takes the same form as (2.3) except we must change
YL for 1/2. After the SSB, the Higgs doublet acquires a non-vanishing vev, ⟨H†H⟩ = v2/2,
and, in the unitary gauge, it takes the following form [20, 7]:

H =
1√
2

(
0

v + h

)
. (2.16)

Once we have plugged the vev contribution in the Higgs kinetic term we can read the masses
of the electroweak gauge bosons:

LSM
Scalar, mass =

v2

8

{
g2
(
W 1
µW

1µ +W 2
µW

2µ
)
+
(
g′Bµ − gW 3

µ

)2}
. (2.17)

First, it is useful to make the definitions:

W 1
µ =

1√
2

(
W+
µ +W−

µ

)
, (2.18)

W 2
µ =

ı√
2

(
W+
µ −W−

µ

)
, (2.19)

where W+
µ and W−

µ represent the charged gauge bosons under U(1)EM. Their mass term reads

LScalar, mass-charged =
g2v2

4
W+µW−

µ ≡ m2
WW

+µW−
µ . (2.20)

The remaining terms in (2.17) give rise to the neutral gauge bosons under U(1)EM. To read the
physical fields we need to diagonalize the mass matrix among the fields W 3

µ and Bµ in equation
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(2.17):

LScalar, mass-neutral =
v2

8

(
W 3
µ Bµ

)( g2 −gg′

−gg′ g′2

)(
W 3
µ

Bµ

)
, (2.21)

=
v2

8

(
W 3
µ Bµ

) 1√
g2 + g′2

(
g g′

−g′ g

)(
g2 + g′2 0

0 0

)
1√

g2 + g′2

(
g −g′

g′ g

)(
W 3
µ

Bµ

)
.

(2.22)

By making the following definitions

cos θ =
g√

g2 + g′2
, (2.23)

sin θ =
g′√

g2 + g′2
, (2.24)

where θ denotes the weak angle, the expression (2.22) gets

LScalar, mass-neutral =
v2

8

(
W 3
µ Bµ

)( cos θ sin θ

− sin θ cos θ

) g2

cos2 θ
0

0 0

(cos θ − sin θ

sin θ cos θ

)(
W 3
µ

Bµ

)
,

(2.25)

=
g2v2

8 cos2 θ
ZµZ

µ ≡ 1

2
m2
ZZµZ

µ, (2.26)

where the physical fields were defined through the rotation:

Zµ = cos θW 3
µ − sin θBµ, (2.27)

Aµ = sin θW 3
µ + cos θBµ, (2.28)

This means that we have a massive gauge boson Zµ and a massless Aµ. The latter represents the
photon.

Previously, we saw that due to the Higgs Mechanism the SM can allow three massive gauge
bosons and a massless one. The same mechanism is also responsible for generating the fermion
masses by means of the Yukawa interactions.

At this point, we have written all the terms in the SM Lagrangian and we can finally put
them all together:

LSM = LSM
Lepton + LSM

Quark + LSM
Gauge + LSM

Scalar. (2.29)

A lot of interesting consequences can be found in the Lagrangian above. We will not go into
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detail in all of them, but it is going to be useful for us later on to read out the Higgs interactions
and the triple gauge couplings (TGCs).

The TGCs in terms of the Lorentz structure of the physical fields can be written as [13]

LWWV = −ıgWWV

{
gV1

(
W+
µνW

−µV ν−W+
µ VνW

−µν
)
+κVW

+
µ W

−
ν V

µν+
λV
m2
W

W+
µνW

−νρV µ
ρ

}
,

(2.30)
with V = {Z, γ} being one of the neutral gauge bosons, gWWγ = e, gWWZ = g cos θ, and
W±
µν and Vµν refer exclusively to the kinematic part of the gauge field strengths. Note that the

last term in the Lagrangian above can not be generated by the SM Lagrangian since it has a
canonical mass dimension equal to six. We are only introducing this term here because, as we
will see later on, this interaction is generated by a dimension-six effective operator. The SM
predictions for the couplings above are

gZ1 = κZ = κγ = 1, (2.31)

λγ = λZ = 0 (2.32)

When one is working with effective field theories these couplings are modified in the presence
of new operators. The only coupling that remain the same is gγ1 = 1, which is enforced by the
electromagnetic gauge invariance. The Lagrangian in (2.30) tells us that the SM gives rise to
WWγ and WWZ interactions, indicating that this couplings can be probed by Vector Boson
Fusion (VBF) or by Vector Boson Production (VBP).

At tree-level, the Higgs couples with the massive fermions and with the massive gauge
bosons. These interactions can be summarized in the Lagrangian

LHiggs = gZZhZ
µZµh+ gWWhW

+
µ W

−µh+
∑
f=τ,b,t

{
gfhf̄LfR + h.c.

}
. (2.33)

In the SM, the Higgs couplings are proportional to the masses of the particles it couples with.
For instance, the parameters in (2.33) are

gZZh =
m2
Z

v
, (2.34)

gWWh =
2m2

W

v
, (2.35)

gf =
mf

v
. (2.36)

The Higgs can also interact with the massless gauge bosons through loop-effects. In particular,
the Hγγ, HZγ, and Hgg interactions [39], where g stands for gluons, will play an important
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role for the Higgs production and decays modes. The diagrams for these process are displayed
in Figures 2.1 and 2.2. The Feynman diagrams for h → Zγ decay are equal to the ones for the
h→ γγ decay.

h

γ

γ

f h

γ

γ

W± h

γ

γ

W±

Figure 2.1: Feynman diagrams for h→ γγ decay.

h

g

g

f

Figure 2.2: Feynman diagrams for h→ gg decay.
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CHAPTER 3

THE STANDARD MODEL EFFECTIVE
FIELD THEORY

The Standard Model Effective Field Theory (SMEFT) is a generalization of the SM. It shares
the same set of symmetries and particle content as the latter. Most important, it also assumes that
the Higgs-like boson is embedded in a SU(2)L doublet so the gauge symmetry SU(2)L×U(1)Y
is linearly realized. The only relaxed SM condition is concerning the number of interactions: the
SMEFT allows operators with dimension greater than four. This last assumption comes from
the belief that unknown particles are heavier than any SM particle and the current experiments
can not access them. As a consequence, their low-energy effects can be tracked down by local
interactions among the SM degrees of freedom suppressed by some characteristic new physics
scale [7].

As discussed in the first chapter, EFTs are a consistent framework to encode possible devi-
ations from the SM predictions, specially the ones accessible by the ATLAS and CMS exper-
iments. In the context of particle physics, the SMEFT has been the most used EFT. Moreover,
once we have set the bounds on the Wilson coefficients they can be translated to any model
through a Matching calculation instead of having to derive them for each model separately. In
particular, the assumptions made here are very plausible since we have not seen any direct or
indirect signals indicating new physics. Nonetheless, even if new particles are discovered the
SMEFT can still be useful to describe swaths of data below the characteristic energy of the new
physics sector.
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When working with the SMEFT, the Lagrangian is written as follows

LSMEFT = LSM + L(5) + L(6) + L(7) + ..., (3.1)

where the series is sorted in terms of canonical mass dimensions of the operators, which means
that each term of the expansion above has a set of nd interactions with the same dimension:

L(d) =

nd∑
i=1

f
(d)
i

Λd−4
O(d)
i for d > 4. (3.2)

We denoted the effective operators by O(d)
i and they are suppressed by a characteristic new

physics scale Λ. The first term in the expansion, L(5), only contains one interaction, which
gives a majorana mass for the neutrinos and it also violates lepton number [40]. Since the LHC
is blind to neutrino physics and its Wilson coefficient is highly constrained by data [41], the first
anomalous effects for the LHC physics emerge at dimension six, i.e. L(6).

One must pay attention to only take into account effective interactions whose combinations
do not vanish in the S-matrix for a given order in the Λ expansion. This situation typically
happens when operators are related by the equations of motion (EOM). In this case, the EOM
can also be employed to remove the redundant interactions as shown by [42]. The minimum set
with only non-redundant interactions is called basis. The common ones used in the literature
are the Warsaw [43], the HISZ [44, 45], and the SILH [46] basis.

To illustrate a few subtleties with the SMEFT, we will continue the discussion with the basis
presented in [9]. In there, a global fit was performed using data from electroweak precision,
TGC’s, and Higgs observables. Assuming the conservation of total baryon and lepton number,
C and P, and no tree-level sources flavor violation, they had 21 relevant independent operators
for their analysis. The basis contains the bosonic operators from HISZ basis [44, 45], keeping
the operators OB and OW in exchange for a few operators involving fermions. Here we are only
interested in a subset of operators that affects the TGC’s and Higgs physics. We emphasize that
our list of operators is not complete, but the discussion we are about to make is very general.
The operators affecting TGC’s are shown in Table 3.1 and the ones affecting the Higgs physics
are displayed in Table 3.2. The operators in Table 3.1 also affect the Higgs interactions with
the electroweak gauge bosons (HVV). Moreover, the operator OBW also affects TGC, but it
is highly constrained by the electroweak precision data and it can be neglected in the TGC
analysis [9]. Lastly, the operators in Table 3.2 are not the only ones affecting Higgs physics, the
operators we did not include are displayed in [9].

When writing the operators above we follow the same definition as [9]: we defined B̂µν ≡
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OB = (DµH)†B̂µν(DνH) OW = (DµH)†Ŵ µν(DνH) OWWW = Tr
[
Ŵ ν
µ Ŵ

ρ
ν Ŵ

µ
ρ

]
Table 3.1: Dimension-six effective operators from [9] affecting TGCs and Higgs physics.

OH,1 = (DµH)†HH†(DµH) OH,2 =
1
2
∂µ(H†H)∂µ(H

†H) OtG = (Q̄3σ
µν λa

2
u3)H̃G

a
µν

OGG = H†HGa
µνG

aµν OBB = H†B̂µνB̂µνH OWW = H†Ŵ µνŴ µνH

OeH,ii = (H†H)(L̄iHeR,i) i = 2, 3 OuH,33 = (H†H)(Q̄3H̃uR,3) OdH,33 = (H†H)(Q̄3HdR,3)

OBW = H†B̂µνŴµνH

Table 3.2: Dimension-six effective operators from [9] affecting Higgs physics.

ı(g′/2)Bµν , Ŵ µν = ı(g/2)σaW aµν , and when including a sub-index it refers to the fermionic
generation. We can construct our phenomenological SMEFT Lagrangian with the operators
above, dividing it into three pieces. The first one is the SM Lagrangian LSM , the second one is
made from the operators in Table 3.1:

LTGC
SMEFT =

fWWW

Λ2
OWWW +

fW
Λ2

OW +
fB
Λ2

OB, (3.3)

and the last one is made from operators in Table 3.2:

LH
SMEFT =

fµ
Λ2

mµ

v
OeH,22 +

fτ
Λ2

mτ

v
OeH,33 +

fb
Λ2

mb

v
OdH,33 +

ft
Λ2

mt

v
OuH,33 + h.c.

− αs
8π

fGG
Λ2

OGG +
fBB
Λ2

OBB +
fWW

Λ2
OWW +

fH,1
Λ2

OH,1 +
fH,2
Λ2

OH,2 +
fBW
Λ2

OBW

+
ftG
Λ2

OtG.

(3.4)

We can write our Lagrangian with these three terms as

LSMEFT = LSM + LTGC
SMEFT + LH

SMEFT. (3.5)

In Table 3.1, all three operators generate deviations from the SM predictions for the TGCs.
Also, no anomalous interaction among the neutral gauge bosons will emerge. This only hap-
pens when we take into account dimension-eight operators [47]. The couplings of the Lorentz
structures from (2.30) need to be updated to accommodate the anomalous contributions. In the
unitary gauge, the couplings of the Lorentz structures in terms of the Wilson coefficients now
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read [48]

gZ1 = 1 +
fW
Λ2

m2
Z

2
(3.6)

κγ = 1 +
(fW
Λ2

+
fB
Λ2

)m2
W

2
(3.7)

κZ = 1 +
(fW
Λ2

− fB
Λ2

tan2 θ
)m2

W

2
(3.8)

λγ = λZ =
fWWW

Λ2

3g2m2
W

2
(3.9)

It is interesting to observe that we have corrections for the SM predictions in the coefficients gZ1 ,
κγ , and κZ . Also, new interactions not present in the SM have appeared due to the introduction
of the operator OWWW . Those correspond to the couplings λγ and λZ . It is good to keep in
mind that the operators OB and OW modify the couplings of the Higgs with the electroweak
gauge bosons as well.

All operators in Table 3.2 affect the couplings of the Higgs with the fermions or the cou-
plings of the Higgs with the gauge bosons. In special, the operators OH,1 and OH,2 affect all the
SM Higgs couplings. The effective operator OtH modifies the Higgs production through gluon
fusion. Lastly, all the operators from the second line in the table affect the Higgs-gauge bosons
interactions, while the ones in the third line affect the Higgs-fermions interactions.

When one is working with the SMEFT, it is convenient to make a few modifications in the
Lagrangian to implement the model into Monte-Carlo event generators, e.g. normalized kinetic
terms, normalized masses, no kinetic mixing among the physical degrees of freedom, etc. These
changes can be performed since we have the freedom to make field redefinitions and they are
clear once we have put the theory in the unitary gauge.

As an example, let us carry out the necessary Lagrangian modifications to perform calcula-
tions up to O(Λ−2) in the unitary gauge. Starting with the operator OBB, after we have plugged
the vev, the kinetic term normalization of the gauge boson Bµ goes to

− 1

4
BµνB

µν +
fBB
Λ2

OBB = −1

4

{
1 +

g′2

2

fBBv
2

Λ2

}
BµνB

µν + ... , (3.10)

the dots represent all the terms from OBB that do not affect the gauge boson kinetic term. To
ensure its canonical normalization, we need to rescale the field by

Bµ →
(
1− g′2

4

fBBv
2

Λ2

)
Bµ. (3.11)

In principle, this would affect all the neutral gauge boson interactions, but sinceBµ only appears
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in the covariant derivatives we can rescale its gauge coupling g′ in a way to leave the covariant
derivative unchanged:

g′ →
(
1 +

g′2

4

fBBv
2

Λ2

)
g′. (3.12)

The same process has to be done with the operators OWW and OGG. This means that the impact
of these operators are completely absorbed in the definition of the fields and gauge couplings.
As a result, they have no effect on the pure gauge sector, only on the Higgs-gauge bosons
interactions.

The operator OBW introduces a mixing among the fields W 3
µ and Bµ that requires some

attention. Now, the neutral gauge bosons kinetic terms are given by

− 1

4
BµνB

µν − 1

4
W 3
µνW

3µν +
fBW
Λ2

OBW =

− 1

4
BµνB

µν − 1

4
W 3
µνW

3µν − gg′

8

fBW
Λ2

v2BµνW
3µν + ... .

(3.13)

The diagonal and canonical kinetic term can achieved through the rotation [49]

(
Bµ

W 3
µ

)
→

 1 −f
2

−f
2

1

(Bµ

W 3
µ

)
, (3.14)

where we defined f ≡ 1
4
gg′ fBW

Λ2 v
2. As consequence, the mass matrix (2.22) for the neutral

gauge bosons is modified:

(
g′Bµ − gWµ

)2
→
(
W 3
µ Bµ

) 1 −f
2

−f
2

1

 1√
g2 + g′2

(
g g′

−g′ g

)
×

(
g2 + g′2 0

0 0

)
×

1√
g2 + g′2

(
g −g′

g′ g

) 1 −f
2

−f
2

1

(W 3µ

Bµ

)
.

(3.15)

The matrix can be diagonalized by the rotation [50]:

(
W 3
µ

Bµ

)
=

1√
g2 + g′2

(
g g′

−g′ g

) 1 −f
2

g′2 − g2

g2 + g′2

f

2

g′2 − g2

g2 + g′2
1


(
Zµ

Aµ

)
, (3.16)



46 The Standard Model Effective Field Theory

The rightmost matrix is a rotation up to order O(Λ−2). Moreover, we can also write it as(
W 3
µ

Bµ

)
=

(
cos θ sin θ

− sin θ cos θ

)(
Zµ

Aµ

)
. (3.17)

where the angle θ is shifted:

tan θ =
g′

g
+

1

2

(
1− g′2

g2

)
f. (3.18)

Once we have implemented this rotation in the Lagrangian, the Z boson mass is corrected due
to the presence of the anomalous coupling:

1

2
m2
ZZµZ

µ =
v2

8

(
g′2 + g2 +

1

8
g2g′2

fBW
Λ2

v2
)
ZµZ

µ. (3.19)

And it also has an impact in the covariant derivative [50]:

Dµ = ∂µ+ ıQg sin θAµ

[
1− 1

2
cot θf

]
+ i

g

cos θ
Zµ(

σ3
2
−Q sin2 θ)

[
1+

1

2
tan θf

]
+ ..., (3.20)

the Q = σ3/2 + Y is the electric charge and the angle θ is defined in the equation (3.18). The
dots denote the gluon and the W± terms, which are unaffected by the operator OBW . As shown
in the equation above, the presence of the anomalous operator introduces net modifications in
the γ and Z couplings. In the first, it just leads to a universal rescaling of the electric charge,
while in the latter it depends on the field’s charge.

It is also important to see how the Higgs-fermionic operators affect the SM Yukawa cou-
plings. As an example, let us take the one that affects the bottom quark Yukawa coupling, the
operator OdH,33. The important terms in the SMEFT Lagrangian are

−
√
2mb

v
Q̄3Hd3R +

fb
Λ2

mb

v
OdH,33 + h.c. =

−mb

(
1− v2

2
√
2

fb
Λ2

)
b̄b− mb

v

(
1− 3v2

2
√
2

fb
Λ2

)
b̄bh+ ...,

(3.21)

where h denotes the physical Higgs boson and the dots refer to terms which do not affect the
SM interactions. Not only the Yukawa interaction with the Higgs boson is affected but the mass
term also is. Usually it is preferable to have canonical mass terms, so we shift the mass of the
particle and leave all the anomalous effect in the Yukawa vertex. This can be done by

mb →
(
1 +

v2

2
√
2

fB
Λ2

)
mb. (3.22)
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After the redefinition, the Lagrangian takes a simpler form

−mbb̄b−
mb

v

(
1− v2√

2

fb
Λ2

)
b̄bh+ ... . (3.23)

Note that this change is equivalent to leaving the anomalous effect in the fermionic propagator
and, when we are computing amplitudes which contain the propagator of the particle, we just
expand it up to O(Λ−2). The redefinition in (3.22) is usually preferable because Monte-Carlo
event generators can not expand the Wilson coefficients in the propagator. The only program
that knows how to do it is the SMEFTsim [50], but it is only available for the Warsaw basis.

As was pointed out before, the effective operators OH,1 and OH,2 affect the Higgs kinetic
terms:

1

2
∂µh∂

µh+
fH,1
Λ2

OH,1 +
fH,2
Λ2

OH,2 =
1

2

[
1 + v2

(1
2

fH,1
Λ2

+
fH,2
Λ2

)]
∂µh∂

µh+ ... , (3.24)

a simple rescaling fixes the normalization:

h→
[
1− v2

2

(fH,2
Λ2

+
1

2

fH,1
Λ2

)]
h. (3.25)

This shift introduces an overall rescaling of all the SM Higgs interactions. Moreover, the oper-
ator OH,1 also introduces anomalous corrections to the Z boson mass as a consequence of the
term

OH,1 =
g2v4

16 cos2 θ
ZµZ

µ + ... . (3.26)

Here one can proceed in the same way we did for the Yukawas couplings: we renormalize the
mass to leave the anomalous effect in all SM Z interactions.

These are basically all the field and coupling redefinitions we must pay attention to when
working with this subset of effective operators. As it was shown in [9], some of these modi-
fications can lead to a change of sign of the SM couplings and, as a consequence, degenerate
regions in the parameter space are allowed. This happens, for example, to the Yukawa coupling
of the tau lepton and bottom quark.

To finish, we state here the Higgs interactions with the SM gauge-boson pairs in the unitary
gauge considering the effective operators from Tables 3.1 and 3.2 [51]:

LHVV = gHgghG
a
µνG

aµν + gHγγhAµνA
µν + g

(1)
HZγAµνZ

µ∂νh+ g
(2)
HZγhAµνZ

µν

+ g
(1)
HZZZµνZ

µ∂νh+ g
(2)
HZZhZµνZ

µν + g
(3)
HZZhZµZ

µ

+ g
(1)
HWW (W+

µνW
−µ∂νh+ h.c.) + g

(2)
HWWhW

+
µνW

−µν + g
(3)
HWWhW

+
µ W

−µ,

(3.27)
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where Vµν = ∂µVν − ∂νVµ, with V = A,Z,W, and G. The couplings from the Lagrangian
above can be expressed in terms of the Wilson coefficients as follows

gHgg = −αs
8π

fGGv

Λ2
,

gHγγ = −
(g2vs2

2Λ2

)fBB + fWW − fBW
2

,

g
(1)
HZγ =

( g2v
2Λ2

)s(fW − fB)

2c
,

g
(2)
HZγ =

( g2v
2Λ2

)s[2s2fBB − 2c2fWW + (c2 − s2)fBW ]

2c
,

g
(1)
HZZ =

( g2v
2Λ2

)c2fW + s2fB
2c2

,

g
(2)
HZZ = −

( g2v
2Λ2

)s4fBB + c4fWW + c2s2fBW
2c2

,

g
(3)
HZZ =

(g2v
4c2

)[
1 +

v2

4Λ2

(
3fH,1 − 2fH,2 −

2g2g′2

g2 + g′2
fBW

)]
,

g
(1)
HWW =

( g2v
2Λ2

)fW
2
,

g
(2)
HWW = −

( g2v
2Λ2

)
fWW ,

g
(3)
HWW = −

(g2v
2

)[
1− v2

4Λ2
(fH,1 + 2fH,2)

]
,

(3.28)

where we defined s = sin θ and c = cos θ for simplicity, and θ is the same angle from (3.18).
As we pointed out before, the operators OW and OB also affect the Higgs couplings with the
electroweak gauge bosons.



CHAPTER 4

THE HIGGS EFFECTIVE FIELD THEORY

In the previous section we saw one possible EFT used to describe the electroweak and
strong interactions. The goal of this section is to present another one based on the idea of Chiral
Lagrangians [52]. The latter has been extensively used in QCD at low energies, where it was
able to describe the interactions among mesons and baryons [52, 17]. At this energy range, QCD
leaves the perturbative regime and an EFT approach is required. When these ideas are applied
for the electroweak interactions, the EFT is called Higgs effective field theory (HEFT) [7].

Differently from the SMEFT, the HEFT does not consider the Higgs boson as part of a
SU(2)L doublet, instead it is just a singlet under the SM gauge symmetry. To describe this EFT,
we must review a few concepts about group theory, specially about the Callan, Coleman, Wess
and Zumino (CCWZ) construction [53, 54]. In the following, the discussion is based on [55],
but other good reviews about the matter are found in [52, 56].

4.1 Non-linear realizations

To start, consider a Lie Group G that acts on the manifold M

x→ gx, x ∈M, g ∈ G. (4.1)

Also, a subgroup H of G contains only transformations that leave the origin of M invariant:

h0 = 0, h ∈ H. (4.2)
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The physical picture is a SSB ofG toH with 0 playing the role of the vacuum of the theory. Our
goal here is to characterize all possible non-linear realizations of the group G on the manifold
M . In other words, we need to classify all the theories consistent with the SSB pattern.

Below we state two theorems that will allow us to accomplish our goal. For their proof, we
refer the reader to [53, 55].

Theorem I: When one performs a field redefinition the content of the theory changes, but
provided the transformation has a Jacobian that equals to one at the origin, the outcome of the
S-matrix will remain the same.

Theorem II: If H is the subgroup of G leaving the origin invariant, then it is always possi-
ble to choose coordinates on M such that:

hy = D(h)y ∀h ∈ H, (4.3)

where D(h) is a linear representation of H .

For Theorem I we can have some intuition. The field redefinitions are equivalent to a change
of coordinates on the manifold M . The theorem is telling us that the results of our computa-
tions must be independent of the type of coordinates we are using. Hence, the observables are
unaffected by field redefinitions. All field redefinitions satisfying the Theorem I condition are
called allowed ones.

The generators of G are denoted by (Ai, Vi), where Ai and Vi represent the generators of the
coset G/H and of the subgroup H , respectively. Any element of G can be decomposed as [55]

g0 = eξAeuV , (4.4)

where we defined ξA = ξlAl and uV = uiVi for simplicity. To find a non-linear realization, the
trick is to promote the parameters ξ’s to coordinates of the manifold M and interpret them as
the Goldstone bosons of the SSB. In order to fulfill the set of coordinates, we can introduce a
vector ψ that transforms linearly under the subgroup H

ψ → D(h)ψ. (4.5)



4.1 Non-linear realizations 51

Moreover, for every element g ∈ G we can write the relation

geξA = eβAeuV eξA,

= eξ
gAeu

gV ,
(4.6)

with ξgl = ξgl (ξ) and ugl = ugl (ξ). It is always possible to find such equality since the multiplica-
tion of two group elements also belongs to the group [57].

The transformations in (4.6) and in (4.5) for ξi and ψ, respectively,

ξ → ξg(ξ), (4.7)

ψ → D(eu
g
i Vi)ψ. (4.8)

provide a non-linear realization of the groupG, which is called the standard one. This realization
is said to be non-linear because the generators of G do not commute.

So far we only found a specific parametrization of the elements of M . First, we promote the
parameters ξ associated with the generators of the coset space G/H to coordinates in the mani-
fold. Then, we filled out the set by adding a vector ψ that transforms linearly under the unbroken
group H . Lastly, we noticed that the way the coordinates transform characterize a non-linear
realization of the symmetry. We remember the reader that any other possible parametrization
can be put in the one we choose by an allowed field redefinition. Also, it is possible to find ψ
transforming linearly under H due to Theorem II.

When we restrict the transformation g to the subgroup H , the Goldstone bosons transform
linearly. For h ∈ H , the relation (4.6) becomes

heξA = heξAh−1h = eξ
gAeu

gV . (4.9)

As a result, the coordinates transform as

eξA → heξAh−1, (4.10)

ψ → D(h)ψ. (4.11)

As an example, let us apply this formalism to our simple model from Sec. 1.5. There we
considered a complex scalar field ϕ respecting an abelian global symmetry U(1). The symmetry
was spontaneously broken due to the presence of a non-vanishing vev ⟨ϕϕ∗⟩ = v2/2. Here, we
denote G = U(1) and the broken generator by Y . After the SSB we have no symmetry left.
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Applying the expression (4.6) to this case, we have

eıξgY = geıξY (4.12)

= eıθY eıξY , (4.13)

and we can recover the transformation for the Goldstone boson from Sec. 1.5

ξ → ξ + θ. (4.14)

In this case we just have a shift because we are dealing with an abelian group.
Next, let us use the SM gauge group as an example. We know that the SSB pattern is

SU(2)L×U(1)Y → U(1)EM . The generator of the unbroken group is denoted by Q = Y +T 3,
where Y is the hypercharge and T 3 is the third generator of SU(2)L. The generators of the
coset space SU(2)L × U(1)Y /U(1)EM are denoted by T i, which can be expressed in terms of
the Pauli matrices by T i = σi/2. The SU(2)L generators satisfy the following algebra [55]

[T i, T j] = iϵijkT k. (4.15)

Using what we learned in equation (4.6), the Goldstone bosons ξi transform under g ∈
SU(2)L × U(1)Y following the relation below

geıξ
iT i

= eıβiT
i

eıαQeıξ
iT i

,

= eıξ
i
gT

i

eıαgQ.
(4.16)

Note that this transformation rule is highly non-linear and to obtain a closed form for it is
far from simple. Nevertheless, when we restrict the transformation to the unbroken subgroup
U(1)EM it gets simpler

eıαQeıξ
iT i

= eıαQeıξ
iT i

e−ıαQeıαQ, (4.17)

= eıξ
i
gT

i

eıαQ. (4.18)

In turn, the ξi’s transform as follows

eıξ
i
gT

i

= eıαQeıξ
iT i

e−ıαQ. (4.19)
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For infinitesimal transformations, the equation above leads to

ξi → ξi + αϵik3ξk +O(α2, ξ2). (4.20)

The rule above is similar to the one that we saw in the abelian case, except that now it also
depends on the group constant structure since we are dealing with non-abelian theories.

At this point we have accomplished our goal. Just as a recap, our initial intention was to
find all possible theories consistent with the SSB pattern. In the end, we only found one in
(4.8), which we called the standard one. But, any other possible non-linear realization can be
put in the latter by an allowed field redefinition. In other words, the problem of characterizing
all non-linear realizations has been solved.

Now we must move on and construct a Lagrangian for the theory. One can use the transfor-
mations in (4.8) and define covariant derivatives for the field as it was done by [58]. Even if we
are working with global symmetries the covariant derivatives will be local since the transforma-
tions in (4.8) depend on the field ξ. Another strategy used by [55] is to create functions of the
Goldstone bosons fields that transform linearly under the symmetry. To do so, consider a linear
representation D(g) of G containing in its decomposition the representation D(h). We define
the field Φ by

Φ = D(eξA)ψ. (4.21)

Under (4.8), this combination goes to

Φ′ = D(eξ
gA)D(eu

gV )ψ,

= D(geξAe−u
gV )D(eu

gV )ψ,

= D(g)D(eξA)D(e−u
gV )D(eu

gV )ψ,

= D(g)D(eξA)ψ,

= D(g)Φ,

(4.22)

where in the second line we used the rule in (4.6). Next, we can apply this strategy to the
electroweak interactions.

As before, the generators are the ones in (4.15). First, consider a singlet h under U(1)EM ,
which plays the role of the Higgs boson. This field is embedded into a doublet representation D
with hypercharge Y = 1/2:

ϕ =

(
0

h

)
. (4.23)



54 The Higgs Effective Field Theory

A generic doublet ψ transforms under the representation D as follows

ψ → D(g)ψ = eıα⃗·
σ⃗
2 eıαY Y ψ, (4.24)

where α and αY are the local parameters of the SU(2)L and U(1)Y groups, respectively. Re-
stricting the transformation to the unbroken group U(1)EM , one can recognize that ϕ is indeed
a singlet under the unbroken group.

Now we need to define the field Φ. Following the prescription from (4.22), we end up with

Φ = D(eıξ⃗·Y⃗ )ϕ = eıξ⃗·
σ⃗
2 ϕ, (4.25)

with Y⃗ denoting the generators of SU(2)L × U(1)Y /U(1)EM. From the definition above it also
follows that Φ transforms as a doublet with hypercharge Y = 1/2:

Φ → D(eıξ⃗
g ·Y⃗ )eıαQϕ,

= D(g)eıξ⃗·
σ⃗
2 e−ıαQϕ,

= eıα⃗·
σ⃗
2 eıαY Y eıξ⃗·

σ⃗
2 ϕ,

= eıα⃗·
σ⃗
2 eıαY

1
2Φ,

(4.26)

where in the second and third line we used that ϕ is a singlet under U(1)EM .
For us it is more convenient to work with a bi-doublet instead of a doublet. To this purpose,

we define

Φ̃ = ıσ2Φ
∗ = eıξ⃗·

σ⃗
2

(
h

0

)
. (4.27)

Using σ2
a = 1 and σ2σ∗

aσ2 = −σa, one can show that Φ̃ transforms as a doublet with hypercharge
Y = −1/2. With the fields in Φ and Φ̃ we can write the bi-doublet as

M = (Φ̃Φ) = heıξ⃗·
σ⃗
2 , (4.28)

which under a SU(2)L × U(1)Y transformation goes to

M → gLMg†R, (4.29)
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where the matrices gL and gR are given by

gL = eıα⃗·
σ⃗
2 , (4.30)

gR = eıαY
σ3
2 . (4.31)

To leave the Goldstone bosons with the proper dimension we construct the matrix U

U = e
ı
ξ⃗ · σ⃗
f , (4.32)

where f is a dimensional parameter introduced to fix ξ’s dimensions and the factors of 2 were
absorbed in the definition of the fields. Using this notation, the transformation in (4.29) can be
written as

h→ h, (4.33)

U → gLUg
†
R. (4.34)

From the equations above, one can see that h is a singlet of the SM gauge group, while the Gold-
stone bosons transform non-linearly among themselves. But, the matrix U transforms linearly
as shown in (4.34). This is the major difference of the HEFT from the SM and the SMEFT.
Here, we do not consider the observed Higgs boson in a doublet mixing with the Goldstone
bosons of the SSB in the EFT construction.

Using the matrix U we can construct the leading order HEFT Lagrangian. Before moving
forward, we need to define its covariant derivative [7, 8]:

DµU(x) ≡ ∂µU + ıg
ga
2
W a
µU − ı

g′

2
Bµσ3, (4.35)

whereW a
µ andBµ are the gauge bosons for the SU(2)L and U(1)Y , respectively, with the gauge

couplings g and g′.
The particle content is the same one as the SM, with a slight difference. Now we also con-

sider the right-handed particles in a doublet structure, but they still are chargeless under SU(2)L:

Qi
R =

(
uR

dR

)
,

(
cR

sR

)
,

(
tR

bR

)
, (4.36)

LiR =

(
0

eR

)
,

(
0

µR

)
,

(
0

τR

)
, (4.37)
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To account for the different charge of each component under U(1)Y , they generically transform
as

ψR → e
ıαT

(
Y+
σ3
2

)
ψR. (4.38)

For the electron the value Y has to be −1/2, for example. Their covariant derivative changes to

DµψR =
(
∂µ + ıgsT

AGA
µ + ıg′Bµ

(σ3

2
+ Yψ

))
ψR, (4.39)

where the SU(3)C only exists for the quarks, for the leptons it must be dropped. A table with
the hypercharge of each particle can be found in Table 4.1.

ψ SU(2)L Y
QL 2 1/6
QR 1 1/6
LL 2 −1/2
LR 1 −1/2

Table 4.1: Hypercharge values and representations under the SM gauge symmetry for the lep-
tons, and quarks.

Before we write down the Lagrangian we must summarize the criteria we will employ to
classify the leading order (LO) and next-leading order (NLO) operators. To this purpose, in Sec.
4.2 we discuss the Power Counting applied to the HEFT.

4.2 Power Counting for HEFT

In Sec. 1.3, we illustrated the importance of the Power Counting in our simple toy model. We
showed that it makes the EFT able to make predictions in a consistent way. A precise definition
of Power Counting is given in [7], which we state below.

A Power Counting must have two features:

1. Describe how the Lagrangian terms scales in a consistent manner with the dimensionful
quantities in the theory; and

2. give a prescription to order the interactions in the Lagrangian in a way that we are able to
estimate its relative physical impact on a measurement, so the precision of the calculations
can be well defined.

In the SMEFT, the Power Counting is in canonical mass dimension. An operator built with
total mass dimension d should be multiplied by a factor Λ4−d, where Λ represents the new
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physics scale. The Lagrangian is organized in terms of a Λ expansion. The leading terms cor-
respond to the ones with Λ0 which gives the SM Lagrangian, the next-leading terms contain
operators with dimension d = 5, 6, and so on.

In contrast, the HEFT has a scalar sector constructed out of Chiral Perturbation theory (χPT)
and, at the same time, it has fermions and the tranverse components of the gauge bosons, whose
interactions can be organized in terms of canonical dimensions. The presence of these two
distinct interactions makes the HEFT Power Counting complex. To understand it, first we review
in Sec. 4.2.1 the Power Counting for Chiral Lagrangians, and in Sec. 4.2.2 we summarize the
criteria chosen by [7] to define the NLO operators.

4.2.1 Power Counting for χPT

Previously, we used χPT to write down an EFT for the electroweak interactions. We realized
that the Goldstone bosons ξi transform in a non-linear way, and we found to be more useful to
work with functions of the fields ξi that transform linearly under the symmetry. In particular,
we constructed the matrix U

U = e
ı
ξ⃗ · σ⃗
f , (4.40)

which transforms as
U → gLUg

†
R, (4.41)

with gL and gR defined in equations (4.30) and (4.31), respectively.
Let us assume for a second that the scalar sector is all there is for the electroweak inter-

actions, and we are working at energies well below the Higgs boson mass. Moreover, let us
consider that the symmetry SU(2)L × U(1)Y is global instead of local. To describe the physics
in this situation, we can write a leading order Lagrangian of the form

L2 =
f 2

4
Tr
{
∂µU

†∂µU
}
, (4.42)

where the factor f 2/4 was chosen to leave the Goldstone bosons with canonical kinetic terms.
Since the matrix U is dimensionless, we can organize the effective interactions as an expan-

sion in derivatives:
L = L2 + L4 + L6 + ..., (4.43)

where Ld has operators with d derivatives.
As discussed in [7], the derivative expansion is a way to systematically renormalize the

theory. When we are ordering the interactions in terms of the number of derivatives, we are using
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Weinberg’s power counting approach [59]. The latter leads to the following way of organizing
the interactions: each order of the EFT must contain at least all the operators that are required
as counterterms for the one-loop renormalization of the previous order.

For example, all the operators required as countertems to absorb the one-loop divergences
from L2 contain four-derivatives, therefore are in L4. To show this result, we can count the
number of powers of momentum for an amplitude as follows. An amplitude with L loops and
containing Nd vertices with d derivatives scale with D powers of momentum, given by [59]

D = 2L+ 2 +
∑
d

(d− 2)Nd. (4.44)

If we apply this formula for diagrams containing one loop, L = 1, and with interactions carrying
only two derivatives, d = 2, we get D = 4. Which means that all the interactions required as
counterterms are in L4. For the case of two loops with only interactions with d = 2 or at one loop
with one interaction with d = 4, we obtain D = 6. This shows that theories constructed with
χPT are renormalizable at fixed order in the momentum expansion [7, 59]. This is different from
what we saw in Sec. 1.3, where a theory following a power counting based on mass dimension
like the SMEFT is renormalizable at fixed order in the 1/Λ expansion.

4.2.2 HEFT Basis

As discussed by [7, 13], the HEFT can be understood as a fusion of two theories. The first
one is constructed out of χPT corresponding to the Higgs bosons and the Goldstone bosons
of the EWSB. Meanwhile, the other is associated with the transverse components of the gauge
bosons and to the fermions, which can be seen as a linear realization of the symmetry group.
This makes the task of finding a precise HEFT counting very complex.

To see these contradictions, let us summarize the observation made by [7]. Consider the
operator PWWW = 4πϵabc

Λ2 W aν
µ W bρ

ν W
cµ
ρ . On one hand, according to Weinberg’s counting rule,

this effective operator has a chiral dimension equals to six. Thus, it should be an operator at
next-next-leading order. On the other hand, since it only contains transverse gauge fields, it
should not follow a chiral counting but a SMEFT counting instead, which would make it a
next-leading-order term. The different counting rules give contradictory estimates in this case
because they are built from different assumptions.

Here, to the define the NLO operators we follow the same approach from [7]. They argue
that instead of basing the theory on a sophisticated counting rule, which is not valid in full
generality, the selection can be made based on the following strategy. A NLO operator should
satisfy at least one of the criteria below:
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1. It is necessary for reabsorbing 1-loop divergences originating from L0.

2. It presents the same suppression as the operators in the first class and receives finite 1-loop
contributions.

3. It is classified as a NLO operator in at least one of the counting principles.

The class of operators satisfying the condition 1 are the ones required to absorb the diver-
gences emerging from the chiral interactions since they can not be absorbed by operators from
L0. One operator satisfying the condition number 2 is ψ̄LσµνUψRXµν , with Xµν denoting a
generic field strength tensor, which correspond to a dipole interaction. The last assumption al-
lows us to include operators important in at least one scenario, preserving the generality of the
HEFT. For instance, this is the case for the operator PWWW .

In [13], after applying the EOMs to remove redundant interactions, neglecting right-handed
neutrinos, and allowing CP violating interactions, the basis contains 148 operators. The ones
we will use in our analysis are presented in the next section, assuming that CP is conserved
and also neglecting the inclusion of flavour changing interactions. Contrasting with the Warsaw
basis, which has 59 operators assuming baryon number conservation, it is clear that the HEFT
allow more interactions since it has less symmetry restrictions than the SMEFT.

4.3 The HEFT Lagrangian

Finally, the leading order HEFT Lagrangian is given by [7, 13]

Lo =− 1

4
Gλ
µνG

λµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν+

+
1

2
∂µh∂

µh− v2

4
Tr
[
DµUD

µU
]
FC(h)− V (h)+

+ ıQ̄L /DQL + ıL̄L /DLl + ıQ̄R /DQR + ıLR /DLR+

− v√
2

(
Q̄LUYQ(h)QR + h.c.

)
− v√

2

(
L̄LUYL(h)LR + h.c.

)
.

(4.45)

In the first line we have the gauge bosons field strengths. Moving to the second line, we have
the Higgs and Goldstone bosons kinetic terms and the Higgs potential. The Goldstone bosons
kinetic term is also responsible for the W± and Z masses. The function FC(h) is expanded in
terms of the ratio h/v, defined as

FC(h) = 1 + 2aC
h

v
+ bC

h2

v2
+ ... , (4.46)
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with the dots accounting for higher powers of h/v. The third and fourth line contains the
fermions’ kinetic and Yukawa terms, respectively, where we suppressed the family indices.
Also, the Yukawas’ interactions YQ(L)(h) take a similar form of the function FC :

YQ(h) = diag
(
Y

(0)
U + Y

(1)
U

h

v
+ ..., Y

(0)
D + Y

(1)
D

h

v
+ ...

)
, (4.47)

YL(h) = diag
(
0, Y

(0)
l + Y

(1)
l

h

v
+ ...

)
, (4.48)

where we assumed the Yukawa interactions to be diagonal.
In the following we define the NLO operators. First, it is convenient to define the chiral

vector and scalar fields

Vµ = (DµU)U
†, (4.49)

T = Uσ3U
†, (4.50)

transforming in the adjoint representation of SU(2)L,

Vµ → gLVµg
†
L, (4.51)

T → gLTg
†
L. (4.52)

Also, in order to see which interactions are turned on by the effective operators it is useful
to keep in mind that, in the unitary gauge, the chiral scalar and vector fields are given by

T = σ3 (4.53)

Vµ = ıgW+
µ t

+ + ıgW−t− + ı
gg′

e
Zµ
σ3
2
, (4.54)

where we used the same definitions of the physical fields in equations (2.19) and (2.28). More-
over, we defined the matrices t+ and t− in terms of the SU(2)L generators by

t+ =
1√
2
(T 1 + ıT 2), (4.55)

t− =
1√
2
(T 1 − ıT 2). (4.56)

In the unitary gauge, the Goldstone bosons become the longitudinal components of the W± and
Z gauge bosons, leaving the matrix U equals to the identity.

In our analysis, only operators affecting TGCs and the Higgs couplings are taken into ac-
count. Here we will only list the ones we need in our study. For a list of all the operators in the
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basis we refer the reader to [13]. The operators affecting TGCs are listed in Table 4.2, while the
ones affecting the Higgs coupling are listed in Table 4.3.

From the Table 4.2, the operators P2, P3, and PWWW lead to the same triple gauge boson
interactions as the operators OB, OW , and OWWW in the SMEFT basis. Due to this relation,
these SMEFT operators are said to be their linear siblings. In contrast, the operator P13 leads to
an interaction that can not be reproduced by any dimensional-six operator in our SMEFT basis.
As in the SMEFT, the HEFT has no source of anomalous interaction among the neutral gauge
bosons at this order. As a convention, the Wilson coefficients affecting TGCs will be denoted
by c and the ones affecting the Higgs interactions will be denoted by a.

The Wilson coefficients for the operators in Table 4.2 for F = 1 are denoted by

{c2, c2, c13, cWWW}. (4.57)

In terms of the Lorentz structures from (2.30), they modify the following couplings

gZ1 = 1 +
g

4π cos2 θ
c3, (4.58)

κz = 1 +
g

4π

(
c3 + 2c13 − 2 tan θc2

)
, (4.59)

κγ = 1 +
g

4π

(
c3 + 2c13 + 2

c2
tan θ

)
, (4.60)

λZ = λγ =
6πgv2

Λ2
cWWW . (4.61)

Note that we have the same corrections to the SM predictions as we had in the SMEFT, plus one
more source of deviation in the couplings κZ and κγ due to the presence of the operator P13.

The last set of operators important to us affect the Higgs couplings with the fermions and
with the gauge bosons. First, we need to point out that the coefficient aC from equation (4.46)
takes the following form

aC = 1 +∆aC . (4.62)

When ∆aC = 0 the electroweak gauge bosons couplings with the Higgs are the same as in
the SM. Basically, ∆aC is accounting for deviations from the SM predictions, and here it is
considered to be in the same order as the NLO operators. Also, in our analysis we have enough
information to account for deviations in the Yukawa couplings of the bottom, tau, muon, and
top fermions. Moreover, we included the NLO bosonic operators shown in Table 4.3.

The functions F are parametrized as follows

Fi(h) = 1 + 2ãi
h

v
. (4.63)
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If ci represents the Wilson coefficients of the operator Pi, it appears multiplying all terms in F .
For convenience, we define

ciãi → ai, (4.64)

which means that the parameters fitted in our Higgs analysis are denoted by

{a4, a5, aB, aW , aG, a17}. (4.65)

From Table 4.3, the operators P4, P5, PB, PW , and PG give the same HVV interactions as
the SMEFT operators OB, OW , OBB, OWW , and OGG, respectively. The same discussion we
did for the linear siblings in the previous section is valid here. P17 is the only HEFT operator
with no linear sibling. The latter leads to interactions of the Higgs with the neutral electroweak
gauge bosons.

In the unitary gauge, the couplings of the Lorentz structures from (3.27) in terms of the
Wilson coefficients of the HEFT basis are given by [13]

gHgg = − 1

2v
aG,

gHγγ = − 1

2v
(s2aW + c2aB),

g
(1)
HZγ = −gs

4c

(
a5 + 2

c

s
a4 + 2a17

)
,

g
(2)
HZγ =

sc

v
(aB − aW ),

g
(1)
HZZ =

g

4πv

(
2
s

c
a4 − a5 − a17

)
,

g
(2)
HZZ = − 1

2v
(s2aB + c2aW ),

g
(3)
HZZ = m2

Z(
√
2GF )

1/2(1 + ∆aC),

g
(1)
HWW = − 1

4πv
a5,

g
(2)
HWW =

1

v
aW ,

g
(3)
HWW = 2m2

W (
√
2GF )

1/2(1 + ∆aC),

(4.66)

where GF is the Fermi constant, and we defined sin θ = s and cos θ = c.
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P2(h) =
ı

4π
Bµν Tr

(
T [Vµ, Vν ]

)
F2 P3(h) =

ı

4π
Tr
(
W µν [Vµ, Vν ]

)
F3

P13(h) =
ı

4π
Tr
(
TWµν

)
Tr
(
T [Vµ, Vν ]

)
F13 PWWW (h) =

4πϵabc
Λ2

W aν
µ W bρ

ν W
cµ
ρ FWWW

Table 4.2: HEFT operators affecting TGC

P4(h) =
ı

4π
Bµν Tr(TV

µ)∂νF4 P5(h) =
ı

4π
Tr(WµνV

µ)∂νF5

PB(h) = −1

4
BµνB

µνFB PW (h) = −1

4
W a
µνW

aµνFW

PG(h) = −1

4
Ga
µνG

aµνFG P17(h) =
ı

4π
Tr(TWµν) Tr(TV

µ)∂νF17

Table 4.3: NLO Bosonic HEFT operators

4.4 HEFT vs SMEFT

At this point, we showed two possible EFTs used to describe the LHC data. The SMEFT,
sometimes referred to as the linear parametrization, makes the same low-energies assumptions
as of the SM, except it allows higher dimension operators. Also referred to as the non-linear
parameterization, the HEFT assumes a non-linear realization of the SM gauge symmetry, where
we constructed its Lagrangian using the CCWZ formalism. In these section we discuss how we
can ascertain which scenario is realized at low-energies.

As we have mentioned in the previous sections, since in the non-linear parametrization we
do not consider the Higgs boson as part of a SU(2)L doublet, the building blocks to construct
Lagrangian invariants are different in both cases. In the HEFT, we do not have a symmetry
restriction ensuring relations among the Goldstone bosons and the Higgs boson. As a conse-
quence, interactions that were correlated in the SMEFT Lagrangian due to this relation become
uncorrelated in the HEFT.

As an example, in the linear parametrization, the operator OB leads to TGC and HVV
interactions in the unitary gauge:

OB =
ıeg2

8
AµνW

−µW+ν(v + h)2 − ıe2g

8 cos θW
ZµνW

−µW+ν(v + h)2

− eg

4 cos θW
AµνZ

µ∂νh(v + h) +
e2

4 cos2 θW
ZµνZ

µ∂νh(v + h).

(4.67)

The expansion above shows which interactions are correlated. For instance, the interactions
γ −W −W and γ − Z − h are related because they share the same Wilson coefficient.

Meanwhile, in the non-linear parametrization, the same set of anomalous interactions are
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given by the operators P2 and P4:

4πg′P2(h) = 2ıeg2AµνW
−µW+µF2(h)− 2

ıe2g

cos θW
ZµνW

−µW+νF2(h), (4.68)

4πg′P4(h) = − eg

cos θW
AµνZ

µ∂νF4(h) +
e2

cos2 θW
ZµνZ

µ∂νF4(h). (4.69)

If we write Fi = (1 + ãih/v)
2 we do not have the same correlation as before unless a4 = 2c2.

In particular, the γ −W −W interaction is not related to the γ − Z − h one since they have
different Wilson coefficients. The same discussion applies to the linear operator OW and the
non-linear ones P3 and P5.

Following [14, 13, 8] we can construct four specific combinations of the variables c2, c3, a4
and a5 which are useful to study the decorrelations present in the TGC and Higgs datasets:

ΣB ≡ 1

πgtθ
(2c2 + a4), ΣW ≡ 1

2πg
(2c3 − a5),

∆B ≡ 1

πgtθ
(2c2 − a4), ∆W ≡ 1

2πg
(2c3 + a5).

(4.70)

For simplicity we denoted tθ = tan θ. In the SMEFT, two of these combinations are zero due
to the gauge invariance and the Higgs doublet nature:

∆B = ∆W = 0. (4.71)

While the remaining two are directly proportional to the Wilson coefficients of the operators
OB and OW :

ΣB = v2
fB
Λ2
,

ΣW = v2
fW
Λ2

,

(4.72)

with fB and fW being their Wilson coefficients, respectively. In contrast, the HEFT operators
can lead to independent modifications to these four variables. Hence, their study is a way to
investigate how the gauge symmetry is realized at low energies.

Just to summarize, let us recap what we saw in this chapter. First, we reviewed how to
use the non-linear representations of a SSB pattern to construct an EFT with minimum IR
assumptions. Later, we applied this approach to the electroweak interactions and we built up the
HEFT Lagrangian. Lastly, we saw how to search for signals that can distinguish whether the
gauge symmetry is linearly realized or not. In the next part, we will use the HEFT framework
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to analyze the LHC Run 2 data concerning the TGCs and Higgs interactions.
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Part II

Analysis Framework





CHAPTER 5

HEFT CONSTRAINTS

5.1 TGC data sets

As we saw in previous sections, the TGCs amid the electroweak gauge bosons are sensible
to new physics effects. In Chapter 2 we saw their SM predictions and in Chapters 3 and 4
these couplings receive corrections due to the presence of effective operators. The SMEFT
framework has three dimensional-six operators from the basis presented in [9] responsible for
these modifications: OB, OW , and OWWW . While the HEFT has four: P2, P3, PWWW , and P13.
Here, we will use the HEFT framework, so the operators used in our analysis are the ones from
Table 4.2.

In our study we used the electroweak diboson data from the LHC Run 2. More specifically,
we looked for shifts from the SM prediction in the diboson production of WZ, WW , and Wγ

pairs as well as the vector boson fusion in the production of Z’s (Zjj). The data sets used in
our analysis are displayed in Table 5.1. In total, we had 73 data points, that is, counting the bins
from all distributions we had 73 observables. As an example, in Figure (5.1) we display the
M(WZ) distribution from CMS WZ used to constrain the Wilson coefficients in our analysis.

To contrast the theory with data we need the theoretical predictions. They were simulated
using MADGRAPH5_AMC@NLO [67] with the UFO files for our effective Lagrangian gen-
erated with FEYNRULES [68, 69]. For the parton shower and hadronization we employed
PYTHIA8 [70], and for the detector effects we employed DELPHES [71]. We applied the same
selection cuts discussed in the respective articles using C or Python with the module LHCOre-
ader [72]. The strategy to perform the simulation is the following. First, we need to reproduce
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Name Channel Distribution # bins Data set Int. Lum.

ATLAS WW WW → e±µ± + /ET (0j) mT 17 (15) ATLAS 13 TeV 36 fb−1 [60]

ATLAS WW+ jets WW → e±µ± + /ET (1j) dσ
dm

l+l−
10 ATLAS 13 TeV 139 fb−1 [61]

ATLAS WZ WZ → l+l−l(′)± mWZ
T 6 ATLAS 13 TeV 36.1 fb−1 [62]

ATLAS Zjj Zjj → l+l−jj dσ
dϕ

12 ATLAS 13 TeV 139 fb−1 [63]

CMS Wγ Wγ → lνγ d2σ
dpT dϕ

12 CMS 13 TeV 137.1 fb−1 [64]

CMS WZ WZ → l+l−l± M(WZ) 7 CMS 13 TeV 137.2 fb−1 [65]

CMS WW 0j WW → l+l− + 0/1j M(l+l–) 11 CMS 13 TeV 35.9 fb−1 [66]

Table 5.1: Data sets used for the TGC analysis

the SM signal. For that we simulate the same process as the experimental Collaborations taking
into account the same selections cuts. Once we have managed to reproduce the distribution for
the SM signal we can move on and simulate the effects of the anomalous contributions. We
must point out that, while the Collaborations typically perform the simulations at Next-Leading
Order (NLO) in QCD, we only perform the simulation at Leading Order (LO). For each bin
of the distribution, we compute the ratio among the SM signal provided by the Collaborations
and ours. We use this ratio to correct our SM prediction and also the simulation of the effective
operators bin-wise. We do not simulate the background processes, we use the same predictions
as of the Collaborations. In Table 5.2 we display the how we generated the processes and the
selection cuts applied in each analysis. When we needed to run Delphes to simulate the detector
effects, we use the default CMS or ATLAS card provided by the program.

Excluding the data set CMS WW 0j, all the remaining ones followed a Gaussian distri-
bution [73]. Whenever available, we used the information about the correlation matrix and
uncertainties for the bins. When they were not, we obtained this information by fine-tuning
the covariance matrix up to the point that our confidence regions for some Wilson coefficients
matched the ones provided by the Collaborations. The data set CMS WW 0j followed a Pois-
son distribution where the systematical uncertainties were accounted through pulls [74]. The
latter was also unavailable and we used the same procedure we applied to obtain the covariance
matrices.

For the Gaussian distributed datasets, the χ2 takes the following form

χ2 =
∑
i,j

(N i
data −N i

theory)V
−1
ij (N j

data −N j
theory), (5.1)

with N i
data and N i

theory denoting the observed number of events and the theory prediction for the
bin i, respectively, and Vij represents the covariance matrix among the bins. Meanwhile, for the
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Figure 5.1: Distribution of the invariant mass of the WZ system for the WZ pair production
from CMS WZ. The yellow region represents the SM signal for WZ pair production, while the
remaining regions represent background processes. A few values of the SM prediction together
with the effect of the Wilson coefficients from the SMEFT basis are also displayed for compar-
ison.

Poisson distributed datasets, the expression for the χ2 is

χ2 = 2
∑
i

{
Ñ i

theory − Ñ i
data + Ñ i

data log
( Ñ i

data

Ñ i
theory

)}
+ ξ20 + ξ21 + ξ22 , (5.2)

with,

Ñ i
theory = N i

signal

(
1− ξ0aσ

i
sys

)
+N i

backg

(
1− ξ2cσ

i
sys

)
,

Ñ i
data = N i

theory

(
1− ξ1b

)
,

(5.3)

where N i
signal, N

i
backg, and N i

data denote the signal, the background, and the observed number of
events in the bin i, the ξ’s represent the pulls, and the remaining quantities a, b, c, and σisys are
obtained by fine-tuning the uncertainties as we described in the previous paragraph.

In general, the number of events takes the the following form

N i = N i
SM +

∑
j

cjN
i
Int,j +

∑
l⩾m

clcmN
i
BSM,lm, (5.4)

with N i denoting the number of events for the bin i, and with c denoting the Wilson coeffi-
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Dataset Process in MadGraph Selection cuts

ATLAS WW
p p > e+ ve mu- vm∼ Nb-tagged jets = 0, p

l1,2
T = 45, 30

p p > e- ve∼ mu+ vm mT
ll > 50.0

ATLAS WW+ jets
p p > e+ ve mu- vm∼ j Njets > 0, plT > 27, |ηl| < 2.5

p p > e- ve∼ mu+ vm j pjT > 30, |yj | < 4.5, mll > 85

ATLAS WZ
p p > l+ l- l nu |ηl| < 2.5, plZT > 15, plWT > 20

l+ = e+ mu+, l- = e- mu-, nu = ve vm ve∼ vm∼ |mZ
ll −mZ | < 10

ATLAS Zjj

p p > z > e+ e- j j QCD=0
One pair OSSF (Opposite Sign Same Flavor)

plT > 27, |ηl| < 2.5, 81 < mll < 101

p p > z > mu+ mu- j j QCD=0
mT

ll > 20, Njets > 2, pTj > 25,

|yj | < 4.4, ∆R(j, l) > 0.4

CMS Wγ

p p > l nu a plT > 80, |ηL| < 2.5, pγT > 80

p p > l nu a j |ηγ | < 2.5, ∆R(l, γ) > 0.7, MET> 40

l = e+ e- mu+ mu-, nu = ve vm ve∼ vm∼ Veto on events with 70 < mlγ < 100

CMS WZ

p p > l+ l- nu l OSSF, MET > 30, ∆R(j, l) > 0.4

p p > l+ l- nu l j
plT > 25, |mll

Z −mZ | < 15,

Nb-tagged jets = 0, ml1l2l3 > 100

CMS WW 0j
p p > e+ ve∼ mu- vm MET> 20, pl1T > 25, pl2T > 20,

p p > e- ve mu+ vm∼ |ηl| < 2.5, mll > 20, mT
ll > 30

Table 5.2: Table with the generated processes and the typical selection cuts. More details about
the selection can be found in the respective papers together with the definition of the kinematical
variables.

cients. The first term on the right-hand side denotes the leading-order HEFT prediction, which
is the same as the SM one, the second term denotes the interference among the the SM and the
anomalous contributions, while the last the denotes the purely anomalous contribution. When
the fit is perform up to linear order in the Wilson coefficients the last term must be dropped.

Taking into account all the distributions, we have a χ2 function depending on four Wilson
coefficients,

χ2
TGC(c2, c3, cWWW , c13). (5.5)

Also, we neglected anomalous interaction among the gauge bosons and fermions for simplicity.

5.2 Higgs data sets

To obtain the constraints for the bosonic operators in Table 4.3 and also for the Higgs-
fermionic interactions we need datasets that can probe the Higgs couplings. In this work we use
two types of them. The first one is the total Signal Strength (SS), which is the observed rate
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Figure 5.2: Definition of STXS Stage1.2 bins for the ggF production mode.

normalized by the SM prediction:

µfi =
σi · Brf

(σi · Brf )SM
, (5.6)

where σi is the Higgs production cross-section in the channel i, while BRf is the Branching
Ratio for the Higgs decay mode f . For a list of the Higgs production and decay modes we
refer the reader to [75]. Due to the narrow-width approximation [76], the total cross-section is
parametrized in terms of the production cross-section times the branching ratio.

The second one, the Simplified Template Cross Sections (STXS), is the set of Higgs kine-
matic distributions. This template was created to measured different regions of the phase-space
minimizing the theory dependence while at the same time maximizing the sensitive of the mea-
surements. For a detail discussion of this framework see [75]. The exclusive regions of the
phase space are called bins. The bins for the Higgs production by gluon fusion are defined in
Figure (5.2), by Vector Boson Fusion (VBF) are in Figure (5.3), by associated production (VH)
in Figure (5.4), and production with top-quarks (ttH) in Figure (5.5).

Either way, if we are dealing with the SS or with the STXS, we need parametrize the mea-
surements in terms of the variable µfi as defined in equation (5.6). The SM prediction for them
is equal to 1, while the effective operators introduce modifications to the cross-section,

σi = σiSM + σiInt + σiBSM, (5.7)

and to Higgs decay widths,
Γf = ΓfSM + ΓfInt + ΓfBSM, (5.8)
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Figure 5.3: Definition of STXS Stage1.2 bins for the VBF production mode.

Figure 5.4: Definition of STXS Stage1.2 bins for the VH production mode.
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Figure 5.5: Definition of STXS Stage1.2 bins for the ttH production mode.

where the subscripts Int and BSM denotes interference with the SM and purely BSM contribu-
tion, respectively. As a result, the variable µfi goes to

µfi = 1+
∑
j

(
Aij+D

f
j +Fj

)
cj+

∑
j,k

(
AijD

f
k+A

i
jFk+D

f
j Fk+B

i
jk+E

f
jk+Gjk

)
cjck+O(c3),

(5.9)
with ∑

j

Aijcj ≡
σiint

σiSM
,

∑
j≥k

Bi
jkcjck ≡

σiBSM

σiSM
, (5.10)

∑
j

Df
j cj ≡

Γfint

ΓfSM

,
∑
j≥k

Ef
jkcjck ≡

ΓfBSM

ΓfSM

, (5.11)

∑
j

Fjcj ≡ − Γint

ΓSM
,

∑
j≥k

Gjkcjck ≡ −ΓBSM

ΓSM
. (5.12)

The Γ’s without upper indices denotes the total decay width and the c’s denote the Wilson
coefficients. When the fit is carried only taking into account the linear contribution of the Wilson
coefficients the last term in (5.9) is dropped.

In Table 5.3 we summarize the data we take into account, specifying its STXS or SS format.
As pointed out in [8], the correlations among CMS STXS data for the different final states is not
publicly available. These are expected to be important for the γγ and llll. For that reason, here
we do not include all the CMS STXS data available, the ones we decided to keep are shown in
Table 5.3.

We evaluated the theorical predictions for the Higgs production by gluon fusion in the chan-
nels tagged as STXS in Table 5.3 using MADGRAPH_AMC@NLO [84] with the SMEFT@NLO
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Name Channel Distribution # bins Data set Int. Lum.

ATLAS-053 H → γγ, ZZ, bb̄(V H) STXS 43 ATLAS at 13 TeV 139 fb−1 [77]

CMS-010 H → τ+τ−(ggH, V BF ) STXS 11 CMS at 13 TeV 137 fb−1 [78]

CMS-017 H →W+W−(V H) STXS 4 CMS at 13 TeV 137 fb−1 [79]

ATLAS-027 H → τ+τ−,W+W−, bb̄(V BF, ttH + tH) SS 7 ATLAS at 13 TeV 36.1-139 fb−1 [80]

ATLAS-µµ H → µ+µ− SS 1 ATLAS at 13 TeV 139 fb−1 [81]

ATLAS-Zγ H → γZ SS 1 ATLAS at 13 TeV 139 fb−1 [82]

CMS-019 H → γZ SS 1 CMS at 13 TeV 139 fb−1 [83]

Table 5.3: Data used for the Higgs analysis

UFO files [85]. The STXS Stage1.2 classification was performed with RIVET [86]. In order to
merge the bins from the STXS data we developed a Python module called PySTXS that is about
to be released.

Our analysis is made with a χ2 function that depends on 11 Wilson coefficients

χ2
Higgs(∆ac, a4, a5, a17, aB, aW , aG, Y

(1)
t , Y

(1)
b , Y (1)

τ , Y (1)
µ ). (5.13)

Let us notice that we could have included more operators defined in [13], specially the ones
that lead to anomalous interaction among the gauge bosons and fermions, but these are highly
constrain by the electroweak precision observables [8] and are neglected in our study.

5.3 Results

As we shown in the Chapter 4, the non-linear parametrization of the gauge bosons allows
for independent statistical analysis of the datasets affecting TGC and the ones affecting the
Higgs interactions since the couplings impacting these two sectors are not connected. First, we
summarize the TGC constraints, and then we move to the Higgs constraints. A more complete
analysis regarding the Higgs datasets can be found in [8], but here we will summarize some
important results from there.

5.3.1 Triple gauge coupling constraints

The statistical analysis was made taking into account only the linear contribution of the
Wilson coefficients as well as up to quadratic contributions. As we mentioned earlier, we ne-
glected possible anomalous interactions of the gauge bosons with fermions, and we focus on
the constraints for the operators P2, P3, P13, and PWWW . The one dimensional projections of
∆χ2

TGC for the Wilson coefficients are shown in Figure 5.6 while the two dimensional confi-
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dence regions are shown in Figure 5.7. The 95% Confidence Level (C.L.) allowed range for the
Wilson coefficients are displayed in Table 5.4. The results are shown together with the confi-
dence interval when we only consider one Wilson coefficient in the fit while setting the others
to zero.

Figure 5.6: One dimension marginalized projections of ∆χ2 for the Wilson coefficients cWWW ,
c2, c3, and c13, as indicated in the panels after marginalizing over the remaining fit parameters.
The results are shown for the analysis including only the linear contribution of the Wilson
coefficients (red curves) as well as up to quadratic contributions (black curves).

Coefficients
95% C.L. range

Linear Quadratic
Individual Marginalized Individual Marginalized

c2 [-0.89, 0.52] [-1.18, 1.28] [-0.21, 0.23] [-0.21, 0.23]
c3 [-0.11, 0.08] [-0.13, 0.15] [-0.08, 0.16] [-0.08, 0.15]
c13 [-0.38, 0.16] [-0.64, 0.38] [-0.13, 0.15] [-0.16, 0.16]

cWWW/Λ
2 [-0.020, 0.014] [-0.019, 0.015] [-0.0044, 0.0041] [-0.0043, 0.0040]

Table 5.4: Individual and marginalized 95% CL allowed range for the Wilson coefficients.



78 HEFT constraints

Figure 5.7: Two dimension marginalized projections of ∆χ2 for the Wilson coefficients cWWW ,
c2, c3, and c13, as indicated in the panels after marginalizing over the remaining fit parameters.
The results are shown for the analysis including only the linear contribution of the Wilson
coefficients (solid curves) as well as up to quadratic contributions (dashed curves).

Looking at the confidence regions in Figure 5.7, we notice that the correlations present in the
linear case are broken in the quadratic analysis. Moreover, the bounds in the latter are stronger
by a factor of 4-5.

In the linear fit, we can see that c2, c3, and c13 are strongly correlated due to their corrections
to the ZWW and γWW vertices in equation (4.61). This is also an important information to
take into account in the fit procedure as it is shown in the Table 5.4. When we contrast the
individual fit with the marginalized one, we realized the importance of the correlation among
the Wilson coefficients to determinate the bounds in the linear analysis. Only the coefficient
cWWW suffers a small change from the individual to the marginalized results since it is not very
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correlated with the remaining fit parameters. When we move to the quadratic case, the changes
are not very significant because all the correlations are practically broken.

In Tables 5.5 and 5.6, we display the 95% C.L. range for the Wilson coefficients where we
only included two parameters in the fit. When the confidence interval was obtained for one, the
other was marginalized. As predicted, in the analysis considering also the quadratic contribu-
tions of the Wilson coefficients all the confidence intervals are basically the same, as shown
in Table 5.6. Meanwhile, in Table 5.5 we see that the operators c2 and c13 play a significant
role in each others confidence interval, but they still differ by a factor of ∼ 1.3 from the actual
confidence interval shown in the last column. Also from Table 5.5, the coefficient c3 only has a
confidence interval close to the one in the last column when we take into account both param-
eters c2 and c13. This discussion is important to highlight that when performing the analysis, if
the correlations among the fit parameters are not considered, the obtained bounds may be more
stringent than they actually are.

Coefficients Parameter considered in the fit (95% C.L. range)
c2 c3 c13 cWWW /Λ2 All

c2 [-0.89, 0.52] [-0.92, 0.51] [-0.93, 0.97] [-0.90, 0.52] [-1.18, 1.28]
c3 [-0.11, 0.08] [-0.11, 0.08] [-0.10, 0.11] [-0.11, 0.09] [-0.13, 0.15]
c13 [-0.48, 0.24] [-0.41, 0.18] [-0.38, 0.16] [-0.38, 0.17] [-0.64, 0.38]

cWWW /Λ2 [-0.020, 0.013] [-0.020, 0.014] [-0.019, 0.015] [-0.020, 0.014] [-0.019, 0.015]

Table 5.5: 95% C.L. allowed range for the Wilson coefficients after marginalizing with respect to
only one parameter. The results are shown only for the analysis including the linear contribution
of the Wilson coefficients. The individual fit results are shown in the diagonal entries (gray
entries) as well as the results taking into account all the parameters in the last column (gray
entries) for comparison.

Coefficients Parameter considered in the fit (95% C.L. range)
c2 c3 c13 cWWW /Λ2 All

c2 [-0.21, 0.23] [-0.21, 0.23] [-0.21, 0.23] [-0.21, 0.23] [-0.21, 0.23]
c3 [-0.08, 0.16] [-0.08, 0.16] [-0.08, 0.15] [-0.08, 0.16] [-0.08, 0.15]
c13 [-0.14, 0.15] [-0.16, 0.16] [-0.13, 0.15] [-0.13, 0.15] [-0.16, 0.16]

cWWW /Λ2 [-0.0043, 0.0040] [-0.0044, 0.0040] [-0.0043, 0.0040] [-0.0044, 0.0041] [-0.0043, 0.0040]

Table 5.6: 95% C.L. allowed range for the Wilson coefficients after marginalizing with respect
to only one parameter. The results are shown only for the analysis including up to the quadratic
contribution of the Wilson coefficients. The individual fit results are shown in the diagonal
entries (gray entries) as well as the results taking into account all the parameters in the last
column (gray entries) for comparison.

As we mentioned before, the operator P13 is the only one that has no linear sibling. The
impact of its respective Wilson coefficient is shown in Figures 5.8 and in Table 5.7, where we
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compare the confidence regions and intervals in the case we take into account its contributions
to the one we do not.

Figure 5.8: Two dimension marginalized projections for the Wilson coefficients c2, c3, and
cWWW , as indicated in the panels after marginalizing over the remaining fit parameters, in-
cluding (gray curves) and not (red curves) the coefficient c13. The results are shown for the
analysis including only the linear contribution of the Wilson coefficients (solid lines) as well as
up to quadratic contributions (dashed lines).

Coefficients
95% C.L. range

Linear Quadratic
Without c13 With c13 Without c13 With c13

c2 [-0.92, 0.51] [-1.18, 1.28] [-0.21, 0.23] [-0.21, 0.23]
c3 [-0.11, 0.09] [-0.13, 0.15] [-0.08, 0.16] [-0.08, 0.15]

cWWW/Λ
2 [-0.020, 0.015] [-0.019, 0.015] [-0.0044, 0.0040] [-0.0043, 0.0040]

Table 5.7: Allowed 95% C.L. range for the Wilson coefficients c2, c3, and cWWW after marginal-
izing over the remaining fit parameters. The results are shown including and not the coefficient
c13 on the fit.

As shown in Figures in 5.8 and in Table 5.7, in the linear case the c13 has a significant impact
in the operators c2 and c3, while it is obsolete for the coefficient cWWW . In contrast, in the
analysis considering also the quadratic contributions of the Wilson coefficients, the confidence
regions and intervals are basically the same since all the correlations are broken.
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Also, we followed the same procedure as [11] and we obtained the Fisher information for the
coefficients in our analysis. The Fisher information is basically a way to compare the sensitivity
brought in by different datasets in a given EFT coefficient. For a specific dataset, the Fisher
matrix takes the following form

Iij(c⃗) = −E
[∂2 ln f(µ⃗|⃗c)

∂ci∂cj

]
, (5.14)

where E stands for expectation value and ln f(µ⃗|⃗c) is the logarithm of the likelihood among the
observables µi and the assumed true values of the Wilson coefficients c⃗. For the case where the
data is Gaussian distributed with a correlation matrix V and the analysis is performed only at
the linear order in the Wilson coefficients,

µi = µSM
i +

∑
j

αji c
j +O(c2), (5.15)

the Fisher matrix becomes
I = HTV −1H, (5.16)

withHim ≡ αmi . The Fisher information compares the diagonal entries among different datasets.
Our results are shown in Figure 5.9. In each column we have the diagonal values of the Fisher
matrix. We choose to normalize the lines to 100, so we can identify which dataset has the dom-
inant constraints on a given Wilson coefficient. For the dataset CMS WW 0j the computation
of the Fisher matrix was done numerically since in this specific case we have a Poisson distri-
bution.

A few interesting observations can be made from the Figure 5.9. First, in the linear and
in the quadratic case, the WW pair production datasets are the most important ones to set
bounds on the coefficients c2 and c13. This is also one way to explain their high correlation,
because their bounds practically comes from the same datasets. However, for the coefficient c3,
the most important ones are the WZ pair productions, and for the coefficient cWWW are the
vector boson fusion for Z’s and the Wγ pair production. In the quadratic case, the dataset CMS
Wγ becomes the most important one to set the bounds on the coefficient cWWW . This dataset
in particular uses kinematic distributions designated to avoid the cancellation among the SM
and anomalous amplitude. The name of the technique is called Interference Ressurection [87],
which we applied in our analysis. The impact of the vector boson fusion dataset, ATLAS Zjj,
decreases by a factor of ∼ 9 in the quadratic analysis for the coefficient cWWW .
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Figure 5.9: Normalized Fisher Value for the Wilson coefficients that affect TGV. Results for the
analysis where we included only the linear (above) and up to the quadratic (below) contribution
of the Wilson coefficients. The entries are normalized in such a way that the sum of the diagonal
elements of the Fisher matrix for a specific Wilson coefficient is 100.

Lastly, when we performed the fit at linear order, the ∆χ2 takes the form

∆χ2 =
N∑
i=1

(fi − fi,0)V
−1
ij (fj − fj,0), (5.17)
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with V −1 being the covariance matrix among the Wilson coefficients fi with the best-fit values
denoted by fi,0

Vij = σiσjρij. (5.18)

The σi denotes the uncertainties and ρ the correlation matrix. For the Wilson coefficients affect-
ing the TGC we present an approximate covariance matrix, because we neglected the dataset
CMS WW 0j since it follows a Poisson distribution. The correlation matrix, the best-fit values,
and the uncertainties are shown in Table 5.8.

c2 c3 c13 cWWW

b.f. -0.10 -0.0023 -0.081 -0.0022
σ 0.64 0.070 0.26 0.0090

ρ

c2 1.000 0.626 -0.811 0.121
c3 0.626 1.000 -0.679 -0.079
c13 -0.811 -0.679 1.000 -0.157

cWWW/Λ
2 0.121 -0.079 -0.157 1.000

Table 5.8: Approximate best-fit values, uncertainties, and correlation matrix for the analysis
including only the linear contribution of the Wilson coefficients c2, c3, c13, and cWWW .

The results shown in this section are also available in [8]. A few slight differences appeared
in the confidence intervals for the analysis taking into account only the linear contribution of the
Wilson coefficients. We assign these differences to fluctuations in the Monte-Carlo simulations
in the interference among the SM and the anomalous contribution. In summary, our conclusion
agrees with the one in [8]: no tension with the SM is found in the gauge bosons self-interactions.

5.3.2 Higgs constraints

The Higgs analysis was performed taking into account only the linear contribution of the
Wilson coefficients. When the fit is performed only at linear order in the Wilson coefficients and
all datasets follow a Gaussian distribution, we can obtained the confidence regions and intervals
using analytical formulas. Meanwhile, in [8] the analysis was carried out also considering the
quadratic contributions. We emphasize that in the latter more datasets were considered as well
as some correlations among the CMS datasets. Here, these correlations have been neglected
and we show our results for a smaller class of datasets. Nevertheless, our conclusions are the
same, but we will mention the results from [8] as well. Following the same reasoning we used in
the TGC results, we neglected effective operators leading to anomalous interactions among the
gauge bosons and fermions, and we focus our study on the 11 effective operators from (5.13).

The one dimensional projections of the ∆χ2
Higgs are shown in Figures 5.10 and 5.11, while

the 95% C.L. allowed range is displayed in Table 5.9.
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Figure 5.10: One dimension marginalized projections of ∆χ2 for the Wilson coefficients a4, a5,
a17, aB, aW , aG, and ∆aC , as indicated in the panels after marginalizing over the remaining fit
parameters. The results are shown for the analysis including only the linear contribution of the
Wilson coefficients.

First, we noticed that the results are compatible with the SM at 95% C.L.. Also, when com-
paring the marginalized with the individual intervals, we see a drastic change in the coefficients
a4, a5, a17, aB, aW , and ∆aC , because the correlations among them were neglected in the indi-
vidual fit. As we saw in the TGC case, this emphasizes the importance of taking into account
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Figure 5.11: One dimension marginalized projections for the Yukawa couplings Y (1)
t , Y (1)

b ,
Y

(1)
τ , and Y (1)

µ , as indicated in the panels after marginalizing over the remaining fit parameters.
The results are shown for the analysis including only the linear contribution of the Wilson
coefficients.

Coefficients 95 % C.L.
Individual Marginalized

a4 [-0.002, 0.12] [-0.41, 0.92]
a5 [-0.003, 0.26] [-0.52, 0.80]
a17 [-0.02, 0.13] [-0.40, 0.39]
aB [-0.00035, 0.00062] [-0.014, 0.029]
aW [-0.001, 0.002] [-0.089, 0.047]
∆aC [-0.07, 0.04] [-0.25, 0.12]
aG [-0.0003, 0.0005] [-0.0010, 0.0017]

Y
(1)
t /Y

(0)
t − 1 [-0.08, 0.04] [-0.28, 0.23]

Y
(1)
b /Y

(0)
b − 1 [-0.04, 0.12] [-0.60, 0.27]

Y
(1)
τ /Y

(0)
τ − 1 [-0.25, 0.07] [-0.42, 0.09]

Y
(1)
µ /Y

(0)
µ − 1 [-0.59, 0.48] [-0.67, 0.59]

Table 5.9: 95 % Confidence Level for the parameters in the fit. The analysis was made including
only the linear contribution of the Wilson coefficients.

the full correlations in the global fit. In special, the operator P17 is the only one with no linear
sibling. This operator plays an important role in our analysis because it is correlated with the
bosonic operators as shown in Figure 5.12.



86 HEFT constraints

Figure 5.12: Two dimension marginalized projections for the Wilson coefficients a17, a4, a5,
aB, and aW , as indicated in the panels after marginalizing over the remaining fit parameters.
The results are shown for the analysis including only the linear contribution of the Wilson
coefficients.

Here we must summarize some important results from [8] when the analysis is performed
also taking into account the quadratic contributions of the Wilson coefficients. In [8], we took
into account more datasets. The ones that are present in [8], but absent in Table 5.3 are dis-
played in Table 5.10. A few of the effective interactions can lead to a change of sign of the
SM couplings. As a consequence, degenerated regions in the parameter space are possible as
we show in Figure 5.13. This happens, for example, with the Yukawas Y (1)

f and to the coupling
∆aC . In [8], we concluded that using the LHC Run 2 data, the dominant source of degeneracy
remaining are those related to the Yukawas couplings Y (1)

f for f = b, τ and µ. Also, we showed
that the degeneracy for ∆aC is mainly broken by the data concerning the Higgs tH production
mode, which receives contribution from HV V and Htt̄ vertices while only the first changes the
sign for ∆aC ∼ 2. The Higgs-top Yukawa vertex does not change sign because it also enters in
the Higgs production by gluon fusion and the degeneracy can be eliminated by the STXS data.
Lastly, another source of degeneracy is related to a sign change in the SM effective coupling
Hγγ induced by loop effects. A linear combination of the operators PW and PB corrects the
Hγγ coupling,

− 1

4
Gγγ
SM +

1

2v
(aBc

2 + aW s
2), (5.19)
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where Gγγ
SM ≃ 3.3× 10−2 is the one-loop SM contribution and s and c denotes the sine and co-

sine of the weak angle. When we performed the analysis taking in to account also the quadratic
contributions of the Wilson coefficients, quasi-degenerate solutions were found as shown in
Figure (5.14).

Name Channel Distribution # bins Data set Int. Lum.

CMS-GGPMAX H → γγ STXS 17 CMS at 13 TeV 137 fb−1 [88]

CMS-005 H → ZZ, bb̄, τ+τ−,W+W−(ggH, V BF, ttH) SS 16 CMS at 13 TeV 137 fb−1 [83]

Table 5.10: Data used for the Higgs analysis in [8], but absent in Table 5.3.

We also show the Fisher information in Figure 5.15. Among the datasets, the ATLAS-053
plays an important role in constraining most part of our parameters. This was expected since it is
the one that contains most complete information about the correlation of different Higgs produc-
tion modes. Moreover, we noticed that the datasets measuring the h → Zγ decay, ATLAS-Zγ
and CMS-019, are important for the coefficients a4, a5, and a17 since they modify the HZγ
coupling as shown in (4.66). For the Higgs-muon Yukawa coupling, the dominant dataset is
ATLAS-µµ since it measures h→ µµ decay. The same situation occurs with the coupling Y (1)

τ ,
most of the constraint comes from the CMS-010 dataset since it measures the h→ ττ decay.

The correlation matrix, the uncertainties, and best-fit values for the coefficients in our anal-
ysis are gathered in Table 5.11.

a4 a5 a17 aB aW aG ∆aC
Y

(1)
t

Y
(0)
t

− 1
Y

(1)
b

Y
(0)
b

− 1
Y (1)
τ

Y
(0)
τ

− 1
Y (1)
µ

Y
(0)
µ

− 1

b.f. 0.25 0.14 -0.0079 0.0071 -0.0215 0.0003 -0.07 -0.03 -0.16 -0.17 -0.04
σ 0.34 0.34 0.20 0.0109 0.0347 0.0007 0.09 0.13 0.22 0.13 0.32

ρ

a4 1.000 -0.409 0.573 0.987 -0.991 0.004 -0.472 0.007 -0.348 -0.393 0.208
a5 -0.409 1.000 -0.917 -0.394 0.403 -0.041 0.033 -0.195 -0.080 0.199 -0.042
a17 0.573 -0.917 1.000 0.601 -0.601 0.104 -0.326 0.141 -0.186 -0.360 0.140
aB 0.987 -0.394 0.601 1.000 -0.999 0.026 -0.568 -0.019 -0.443 -0.454 0.239
aW -0.991 0.403 -0.601 -0.999 1.000 -0.022 0.539 0.005 0.409 0.430 -0.228
aG 0.004 -0.041 0.104 0.026 -0.022 1.000 -0.021 0.713 -0.068 -0.038 -0.009
∆aC -0.472 0.033 -0.326 -0.568 0.539 -0.021 1.000 0.340 0.872 0.638 -0.322

Y
(1)
t

Y
(0)
t

− 1 0.007 -0.195 0.141 -0.019 0.005 0.713 0.340 1.000 0.496 0.290 -0.099
Y

(1)
b

Y
(0)
b

− 1 -0.348 -0.080 -0.186 -0.443 0.409 -0.068 0.872 0.496 1.000 0.690 -0.306
Y (1)
τ

Y
(0)
τ

− 1 -0.393 0.199 -0.360 -0.454 0.430 -0.038 0.638 0.290 0.690 1.000 -0.253
Y (1)
µ

Y
(0)
µ

− 1 0.208 -0.042 0.140 0.239 -0.228 -0.009 -0.322 -0.099 -0.306 -0.253 1.000

Table 5.11: Best-fit values, uncertainties, and correlation matrix for the analysis including only
the linear contribution of the Wilson coefficients.

Since we have the covariance matrix for the Wilson coefficients, we can translate our results
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Figure 5.13: ∆χ2 as a function of the Wilson coefficients a4, a5, a17, aB, aW , aG, Y (1)
t , Y (1)

b ,
Y

(1)
τ , Y (1)

µ , and ∆ac as indicated in the panels after marginalizing over the remaining fit pa-
rameters. The red (black) line stands for the analysis considering the linear (and quadratic)
contributions of the Wilson coefficients. Results extracted from [8].
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Figure 5.14: 1σ and 95% CL (2dof) allowed regions from the Higgs analysis for the combi-
nations c2aB + s2aW and s2aB − c2aW . The results are shown for the analysis including only
the linear contributions of the Wilson coefficients (lighter regions) as well as up to quadratic
contributions (darker regions). Results extracted from [8].

Figure 5.15: Normalized Fisher Value for the Wilson coefficients that affect the Higgs couplings.
Results for the analysis where we included only the linear anomalous contribution. The entries
are normalized in such a way that the sum of the diagonal elements of the Fisher matrix for a
specific Wilson coefficient is 100.

to observables. In particular, we can obtain the covariance matrix for observables of the type

σl = σSM
l +

∑
i

σA,il ci +O(c2), (5.20)
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with c being the Wilson coefficients. The analytical expression for the covariance matrix among
the σi’s is

cov(σl, σm) =
N∑

i,j=1

σA,il V ijσA,jm , (5.21)

with V being the covariance matrix among the Wilson coefficients.
We use the expression above to obtain the correlation matrix among the Higgs branching

ratios, Figure 5.16, and also for the cross-section for the different Higgs production modes
normalized the total production cross-section, Figure 5.17.

Figure 5.16: Correlation Matrix for the Higgs Branching Rations. Results for the analysis where
we included only the linear anomalous contribution.

The one-dimensional marginalized projections of ∆χ2 for the Higgs Branching Ratios (BRs)
are shown in Figure 5.18. Looking to the two-dimensional projections in Figure 5.19, we see
that the BR(H → ZZ∗) and BR(H → WW ∗) are highly correlated, since we have the same
Wilson coefficients affecting the same verticesHZZ andHWW as we show in equation (4.66).
In special, the coefficient ∆aC plays an important role because it affects the couplings g(3)HZZ and
g
(3)
HWW in the same form. Also, we see that the SM prediction for the BR(H → Zγ) is more than
1σ away from our best-fit value. This happens because the SS measured we used as an input in
our fit is almost 1σ away from the SM prediction. Lastly, the BR(H → γγ) and BR(H → ZZ∗)
are correlated since the coefficients aB and aW affect both vertices Hγγ and HZZ. In partic-
ular, the Higgs decaying to photons data is very important to constrain the coefficients aB and
aW . As a result, both parameters are almost total anti-correlated, i.e their correlation is -0.999.
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Figure 5.17: Correlation Matrix for the Higgs Production Cross-Sections normalized by the total
production cross-section. Results for the analysis where we included only the linear anomalous
contribution.

The one- and two- dimensional projections of the ∆χ2 for the Higgs production modes
are shown in Figure 5.20. The same effects that have appeared in the BR confidence regions are
present here. The cross-sections σ(HW ) and σ(HZ) are correlated since we have the same Wil-
son coefficients affecting the vertices HWW and HZZ, e.g. ∆aC . The cross-sections σ(ggF ),
Higgs production by gluon fusion, and σ(ttH), Higgs production with top quarks, are correlated
since the top-quark Yukawa Y (1)

t enters in both processes.
Finally, we translated the bounds to two observables: the SS for the Higgs decaying to

muons (µ(H → µµ)) and for the SS of the Higgs decaying to two gauge bosons (µ(H → Zγ)).
The one- and two- dimensional projections are displayed in Figure 5.21. Note that our best-fit
value for the SS of H → Zγ is close to the ATLAS SS data, which shows that, although the
branching ratio for H → Zγ is away from the SM prediction, our SS result is compatible with
the data.

Lastly, we noticed that our conclusions agree with the ones in [8]. Our results show no
tension with the SM within 2σ. As we discussed in [8] and we briefly mentioned before, the
Higgs kinematic distributions are important to remove some degenerate solutions when the fit
is performed taking into account also the quadratic contributions of the Wilson coefficients.
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Figure 5.18: One-dimensional marginalized projection of the ∆χ2 for the Higgs branching ra-
tions (BRs).

5.4 Discussion and conclusion

In this dissertation we present the analyses of the LHC data on gauge boson pair production
and vector boson fusion as well as Higgs observables using the HEFT. Our results show no ten-
sion with the SM predictions. For the TGC couplings observables we had 4 effective operators,
while for the Higgs observables we had 11. Also, for the latter we used the Higgs kinematic
distributions in the form of STXS together with the SS data. In summary, the χ2 values for the
TGC and Higgs observables evaluated at the SM prediction give

χ2
TGC, SM = 64.8, 73 observables,

χ2
Higgs, SM = 69.7, 68 observables.

(5.22)
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Figure 5.19: Two dimension marginalized projections for the Higgs Branching Rations
BR(H → ZZ∗), BR(H → WW∗), and BR(H → Zγ), as indicated in the panels after
marginalizing over the remaining fit parameters.

Meanwhile, evaluating at our best-fit values, we obtain

χ2
min, TGC Linear [Quadratic] = 64.1[64.2], 73 observables & 4 coefficients,

χ2
min, Higgs Linear = 62.0, 68 observables & 11 coefficients.

(5.23)

As we said previously, in the HEFT we are allowed to make the analysis of the TGC and
Higgs data separately since we do not account a Higgs bosons doublet in the construction of
the EFT. This is not possible in the SMEFT for instance. In Chapter 4.4, we defined 4 variables
that are useful to study the correlations present in the TGC and Higgs data. In Figure 5.22,
we present their one-dimension projections for the ∆χ2, and in Figure 5.23 we present the
respective confidence regions. This analysis was performed only taking into account the linear
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contribution of the Wilson coefficients.
In particular, the ∆’s value should be zero in the linear realization of the SM gauge sym-

metry, and the Σ’s should be proportional to the Wilson coefficients fB and fW from the HISZ
basis [9]. In summary, using data gathered from the LHC Run 2 concerning TGC observables
and Higgs observables in the form of STXS and SS, we learn that, at the present, it is not
possible to distinguish between the two possible scenarios for the Higgs nature.
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Figure 5.20: One- and two- dimensional marginalized projections of the ∆χ2 for the Higgs
production cross sections as indicated on the panels.
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Figure 5.21: One dimension projection and two dimensional confidence regions for the SS of
H → µµ and H → Zγ.
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Figure 5.22: One dimension projection for the variables ΣB, ΣW , ∆B, and ∆W after marginal-
izing with respect to the fit parameters. The results are shown for the analysis including only
the linear contribution for the Wilson coefficients.
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Figure 5.23: Two dimension confidence region for the variables ∆B and ∆W after marginalizing
with respect to the fit parameters. The results are shown for the analysis including only the linear
contribution for the Wilson coefficients.



CONCLUSIONS

As we discussed at the beginning of the dissertation, one of the ways to encode possible
deviations presented in the data gathered from the LHC Collaborations is using EFTs. In this
work, we mentioned two parametrizations, the SMEFT, and the HEFT. Both of them can accom-
modate possible indirect signals of new physics, but they differ on how the SM gauge symmetry
is realized at low-energies on the scalar sector. The first one assumes a linear realization of the
symmetry, ensuring symmetry relations among the observed Higgs boson and the Goldstone
bosons from the EWSB. Meanwhile, the latter considers a non-linear realization, and such re-
lations are absent. Investigating how the symmetry is realized at low-energies has the potential
to rule out some extensions of the SM. For instance, if the symmetry is non-linearly realized it
may be an indication that the new physics is strongly coupled [89].

This dissertation was divided in two parts. The first one was responsible for introducing the
basic concepts regarding EFTs, followed by a discussion of the SM, SMEFT, and HEFT. In the
second part, we provided an analysis of the TGCs and Higgs observables in terms of the HEFT.

Our analysis had 15 parameters, 4 of them affecting TGCs and 11 affecting Higgs physics.
For the TGCs we used all available data from the LHC Run 2 concerning diboson production of
WZ, WW , and Wγ pairs as well as the vector boson fusion in the production of Z’s. For the
Higgs observables we used the most recent Higgs kinematic distributions in the form of STXS
as well as total SS. The TGC analysis was carried out at linear order and also up to the quadratic
order in the Wilson coefficients, while for the Higgs analysis the fit was performed only at linear
order.

Our analysis shows no tension with the SM within 2σ. Moreover, we pointed out that, with
the current data, is not possible to distinguish among the two possible realizations of the SM
gauge symmetry in the scalar sector. Nevertheless, our work contains the most up-to-date analy-
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sis of the LHC data in terms of the HEFT and we were also able to improve the existent bounds
in the literature, as we summarized in [8].
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