• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.43.2005.tde-06032014-143135
Document
Author
Full name
Luiz Ozorio de Oliveira Filho
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2005
Supervisor
Committee
Yokoi, Carlos Seihiti Orii (President)
Costa, Francisco Alexandre da
Gonçalves, Lindberg Lima
Salinas, Silvio Roberto de Azevedo
Wreszinski, Walter Felipe
Title in Portuguese
Vidros de spin com interação de multispins em campos aleatórios
Keywords in Portuguese
Física da matéria condensada
Sistemas desordenados
Abstract in Portuguese
Estudamos o efeito do campo aleatório sobre um modelo de vidro de spin com interações de p spins de alcance infinito e distribuição de probabilidade gaussiana. O caso p = 2 corresponde ao modelo de Sherrington-Kirkpatrick na presença de um campo aleatório. O caso p 'SETA' 'INFINITO' corresponde ao REM (Random Energy Model) de Derrida na presença de um campo aleatório. Além da interação de p spins, consideramos a presença de interações uniformes ferro ou antiferromagnéticas de alcance infinito. Tanto no caso ferro quanto antiferromagnético, empregamos dois procedimentos para tratar o problema: o método de réplicas no ensemble canônico e o método da contagem de estados no ensemble microcanônico. No método de réplicas resolvemos o problema para qualquer valor de p tanto sem quebra da simetria de permutação entre réplicas, quanto com um passo de quebra de simetria de Parisi. Deste modo, recuperamos resultados conhecidos para alguns modelos já estudados na literatura. Em seguida, tomamos o limite p 'SETA' 'INFINITO' que fornece uma solução completa para o problema do REM na presença de um campo aleatório. No método da contagem de estados, aplicável apenas no limite p 'SETA' 'INFINITO', mostramos que podemos estender a solução de Derrida mesmo na presença de um campo aleatório. Isso nos permitiu fazer a contagem de estados evitando assim o problema da "catástrofe da entropia negativa" presenta na solução réplica simétrica. Além disso, mostramos que qualquer sistema que seja solúvel sem a interação aleatória de p spins continua solúvel na presença dessa interação no limite p 'SETA' 'INFINITO'. Portanto, concluímos que a interação aleatória de p spins é somente adicionar um carácter vidro de spin ao sistema. Obtivemos expressões gerais válidas para qualquer distribuição do campo aleatório, embora a análise numérica tenha sido restrita às distribuições duplo-delta e gaussiana. Estudamos a influência do campo aleatório sobre os diagramas de fases e, em particular, mostramos que podem surgir pontos tricríticos no caso de uma distribuição duplo-delta.
Title in English
Spin Glasses Multispins Interactions Random Fields
Keywords in English
Condensed matter physics
Disordered systems
Abstract in English
We studied the effect of a random field on spin-glass models with infinite-ranged p spin interactions with a Gaussian probability distribution. The case p = 2 corresponds to the Sherrington-Kirkpatrick model in the presence of a random field. The case p 'SETA' 'INFINITO' corresponds to the REM (Random Energy Model) introduced by Derrida in the presence of a random field. Besides the p-spin interactions we also included uniform infinite-ranged ferromagnetic and antiferromagnetic interactions. Both in the case of ferromagnetic and antiferromagnetic interactions we employed two different approaches: The replica method in the canonical ensemble and the method of counting of the states in the microcanonical ensemble. In the replica method we solved the problem for arbitrary p both in the case of replica symmetry and in the first step of Parisi's replica-symmetry breaking scheme. This allowed us to rederive results for some models already known in the Literature. Next we took the limit p 'SETA' 'INFINITO' which yielded a complete solution to the REM in a random field. In the method of counting of the states, which is effective only in the limit p 'SETA' 'INFINITO', we showed that we can extend the Derrida's solution even in the presence of a random field. This allowed us to do the counting of the states avoiding the so called negative-entropy catastrophe present in the replica-symmetric solution. We also showed that any solvable model without random p-spin interactions is also solvable in the presence of such interactions in the limit p 'SETA' 'INFINITO'. Therefore, we conclude that the p-spin random interactions only add a spin-glass character to the system. We have obtained general expressions valid for any random-field distributions, although we limited the numerical analysis to double-delta and Gaussian distributions. We studied the effects of the random field on the phase diagrams, and in particular, we showed the possibility of tricritical point in the case of double-delta distributions.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2014-03-12
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.