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Supervisor: Prof. Dr. Paulo Alberto Nussenzveig

Thesis submitted to the Physics Institute of the
University of São Paulo in partial fulfillment of the
requirements for the degree of Doctor of Science.

Prof. Dr. Paulo Alberto Nussenzveig (IFUSP)
Prof. Dr. Gabriel Teixeira Landi (IFUSP)
Prof. Dr. Ben Hur Viana Borges (EESC USP)
Prof. Dr. Felippe Alexandre Silva Barbosa (UNICAMP)
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Abstract

The increasing development of novel quantum technologies encourages the research in
nonclassical states sources, being quantum correlated light one of the main resources
for several applications of quantum mechanics. Silicon based integrated systems present
huge potential for the further development of optical quantum communication, as they are
compatible with microelectronic devices and telecommunication band wavelengths. The
current capability of low loss waveguides production plus strong nonlinear coefficients
makes this platform ideal for the generation of nonclassical states. Integrated microcav-
ities can be tailored to act as low threshold optical parametric oscillators, where intense
signal and idler modes are easily excited. Due to the parametric character of the physical
process responsible for these oscillations, strong correlations are expected between the
generated modes. We use resonator assisted detection systems to reconstruct the covari-
ance matrices of the generated continuous variables states in order to retrieve the full
quantum description of the system. Up to our knowledge, this is the first full tomography
of states generated in an integrated third order optical parametric oscillator operating
above threshold.
Keywords: Quantum Optics, Silicon Photonics, Optical Parametric Oscillator, Squeezing.





Resumo

O crescente desenvolvimento de novas tecnologias quânticas encoraja a pesquisa em fontes
de luz não-clássica, uma vez que estados correlacionados da luz representam um dos prin-
cipais recursos para aplicações de mecânica quântica. Sistemas integrados baseados em
siĺıcio apresentam grande potencial para ampliação do desenvolvimento de comunicações
quânticas ópticas, já que são compat́ıveis com dispositivos microeletrônicos e com com-
primentos de onda na banda de telecomunicações. A atual capacidade de manufatura
de guias de onda com baixas perdas acrescida de altos coeficientes não-lineares fazem
com que essas plataformas sejam ideais para a geração de estados não-clássicos. Mi-
crocavidades integradas podem ser desenvolvidas em ordem de atuar como osciladores
paramétricos ópticos com baixo limiar de oscilação. Devido ao caráter paramétrico do
processo f́ısico responsável por tais oscilações, fortes correlações entre os modos gerados
são esperadas. Nós utilizamos sistemas de detecção assistidos por ressonadores para re-
construir as matrizes de covariância dos estados gerados descritos por variáveis cont́ınuas
a fim de recuperar a descrição quântica completa do sistema. Até onde sabemos, esta é
a primeira tomografia completa de estados gerados em um oscilador paramétrico óptico
integrado de terceira ordem operando acima do limiar.
Palavras-Chave: Óptica Quântica, Fotônica baseada em Siĺıcio, Oscilador Paramétrico
Óptico, Compressão de Rúıdo.
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Introduction

The interest in novel quantum technologies plays a central role in several research aspects,

ranging from fundamental aspects of quantum mechanics to the development of consumer

products. The main domains of the field comprises communication, computation, sim-

ulation and sensing, which are explored with the help of several different experimental

interfaces, such as trapped ions, atomic vapors, quantum dots, superconducting circuits,

solid state impurities and integrated photonics [1]. Among these platforms, the use of

photonic quantum states is of great prominence, since they represent the most suitable

medium to transfer information between different devices for future quantum networks

[2], as light weakly couples to the environment avoiding decoherence without the need of

operating at low temperatures or in vacuum.

Sources of nonclassical light are the backbone for optical quantum applications and

encompass two main branches: discrete variables states and continuous variables states.

The first one is mainly directed to generation of single photons, which, in general, has

a probabilistic character once their generation is usually based on spontaneous emission

processes. On the other hand, the generation of continuous variables states is utterly

deterministic. Although both kinds of states have been successfully employed in diverse

experiments [3], we will focus on the latter. Nonclassical properties of continuous variables

optical states, such as squeezing and entanglement [4–7], are of vast technological interest.

They have applications in precision metrology [8], in gravitational wave detection [9], and

are suitable to be used in scalable quantum communication, simulation and computation

[10] protocols, such as one-way quantum computing [11].

Platforms compatible with the currently on development telecommunication technolo-

gies are of vast interest. In particular, silicon photonics are proving to be a strong plat-

form to explore both generation and manipulation of quantum states of light [12]. Several

features contributes to the interest on such systems. They are compatible with CMOS

(complementary metal–oxide–semiconductor) fabrication process currently employed in

the microelectronics industry, enabling seamless integration of photonics and electron-

ics in the same chip. With the current maturity of manufacturing techniques, ultra-low

11



12 INTRODUCTION

loss waveguides are routinely fabricated. Currently, complex optical circuits can be con-

structed, including thousands of optical components and microelectronic controls occu-

pying centimeter- to millimeter-scale footprints, indicating the potential for scalability.

Despite the quality of the in bulk optical devices, it is worth to emphasize that squeezing

and continuous variables entanglement are strongly susceptible to optical losses, there-

fore long distance communications that preserve these properties are still a challenge. In

that sense nonclassical light may exercise a central role in future technologies as quantum

information carriers that interconnect different on-chip quantum systems in future inte-

grated quantum networks [2]. A recent review exploring the different aspects of several

materials that are used in quantum photonics can be found in [13]

The Laboratory of Coherent Manipulation of Atoms and Light (LMCAL) is specialized

in the generation of bright nonclassical light by means of optical parametric oscillation [14–

19], achieved by continuously pumping non-linear media in an optical resonator [20, 21]

above a certain optical power threshold. Low-threshold oscillation is attained by taking

advantage of silicon-based materials third-order nonlinearity, dispersion group velocity [22]

and the high confinement of light in integrated optical microcavities [23, 24]. Through

a collaboration with professors Michal Lipson and Alexander Gaeta from Columbia Uni-

versity we have access to high quality factors integrated optical parametric oscillators

(OPOs). In the present thesis we will characterize pairs of bright modes generated in

such devices by means of the reconstruction of their covariance matrix [25, 26]. Up to our

knowledge, this is the first tomography of bipartite states generated in an integrated OPO

operating above threshold. Our results reveal aspects of the dynamics of the two-mode

states and enlighten the bottlenecks hindering the deterministic generation of entangled

states.

This work is organized as follows. In the first chapter we will present the treatment

for continuous variables Gaussian states and will show how they can be employed in

quantum information protocols. Next, in chapter 2, we will explore the properties of

microresonators in silicon photonics, their classical characterization, parametric oscillation

condition and the dynamics of two-mode states. The optical setup is described in detail

in chapter 3 and the data analysis and results are shown in chapter 4.



Chapter 1

Introduction to Continuous
Variables Quantum Information

Information processing and sharing are some of the pillars of modern society and are

present in most of people’s daily lives. From air traffic control to remote surgery, from

massive amounts of economic transactions to everyday online trivia, computational power

dictates the majority of current technological activities and advances. Naturally, as more

sophisticated applications are developed, more computational power is required. A con-

sequence of this intricate relation between society and computing is the need of efficient

cybersecurity. Nowadays, in parallel to surprisingly more efficient usage of CPUs, infor-

mation processing has entered into quantum realm.

For decades now, the idea of information processing using degrees of freedom described

by the laws of quantum mechanics is under investigation [27]. Recently, a major milestone

was reached with the construction of quantum experiments capable of performing specific

tasks more efficiently than any existent classical computer [28–31], where the latter [31]

uses photonic technology. This is among one of the most shocking results of the field, which

ignites strong academic and industrial activity towards useful application of quantum

information technologies.

Among several different physical platforms to study quantum information, the use of

light is particularly appealing. Since light is vastly employed in the context of classical

communications, many advances in quantum optics take advantage of an already devel-

oped industry. Light usually interacts weakly with its environment, presenting smaller

losses than alternative quantum systems. Also, the intrinsic relativistic character of the

electromagnetic field makes it the fastest carrier of information available, as well as mak-

ing it difficult to use for information storage. Nevertheless, light can be used to transfer

information and interconnect different physical systems capable of storing its quantum

state [2].

13



14 CHAPTER 1. INTRODUCTION TO CV QUANTUM INFORMATION

It is intuitive to approach quantum computing by quantizing the fundamental infor-

mation unit. This gave birth to the qubit, which is generically associated to a two-level

quantum system. In optical systems, one can encode a qubit in the polarization degree

of freedom of single photons. That is, each quantized bit of information is represented by

a photon in a certain polarization. Such encoding is vastly employed in quantum optics

experiments and led to several important results in past decades [3]. Uncertainties in the

single photon generation as well as the susceptibility of photons to experimental losses

that completely destroy the information carrier, leads to the intrinsic probabilistic aspect

to these experiments and to post selection necessity.

Within the same quantum information context, continuous quantum variables are con-

tinuous. Such variables belong to an infinite Hilbert space, limited to finite degrees of

freedom of a finite set of physical systems. Although also subjected to decoherence in-

duced by optical losses, continuous variables states are not completely lost (up to certain

limits). Hence, one of the advantages in exploring the application of continuous variables

(CV) to quantum information is their deterministic character, excluding the necessity of

post selecting the data. However, the correlations between systems are naturally hindered

to achieve the same levels as in corresponding discrete variables systems. Losses introduce

errors on the experiment, leading to smaller figures of merit than those obtained by the

discrete counterpart. Some breakthroughs in the exploration of CV systems for quan-

tum information are the successful implementation of quantum teleportation [32] and the

theoretical proof of universal quantum computation [33]. In the present thesis, we will

explore the fluctuations in the amplitude and phase quadratures of the electromagnetic

field as the quantized carriers of information.

This chapter will be organized as follows. First, we will introduce the notation and

principal tools for the treatment of continuous variables systems. Posterior sections will

treat some of the applications of continuous variables to quantum information. Quantum

teleportation will be approached in section 1.2 followed by the entanglement swapping

protocol. In the last section we will briefly discuss quantum cryptography schemes.

1.1 Gaussian States

In this section we will describe how Gaussian states are related to the covariance matrix

and which kind of information about the physical system can be obtained from it. The

treatment presented here follows the textbooks [5, 7]. We start the description of CV

states with a finite set of observables that describe pairs of degrees of freedom within
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infinite Hilbert spaces. We then organize the variables in a vector containing all the

operators as

x̂ = [p̂1, q̂1, p̂2, q̂2, . . . , p̂n, q̂n]T . (1.1)

A set that completely specifies the state of a system is bounded by canonical commutation

relations that, in general can be written in their symplectic form as:

[
x̂, x̂T

]
= iΩ, (1.2)

with

Ω =
n⊕
j=1

Ω′
j, Ω′

j =

[
0 1
−1 0

]
, (1.3)

where
⊕

is the direct sum operator leading to a block diagonal matrix composed of all Ω′
j

entries. Identity matrices needed for dimensional accordance are implicit. The symplectic

group is defined by the set of transformations S that preserves the canonical commutation

relations, that is SΩST = Ω.

Of particular interest is a class of states known as Gaussian states. From the quasi-

probability distribution perspective, as in the Wigner representation of optical states [4],

Gaussian states are those that respect Gaussian statistics. While that seems to be limiting,

the restriction to Gaussian states accurately describes most of optical systems. Several

important states in quantum optics, including those relevant for the experimental results

of this work, are included in this classification, for example vacuum, thermal, coherent,

squeezed and squeezed-thermal states of the optical field [4, 7]. Furthermore, interactions

described by linear or bilinear Hamiltonians do not change the Gaussianity of states.

Hence, Gaussian states can be obtained by acting with these classes of interactions on a

vacuum state. It is worth to emphasize that all operations of the system under study,

described in chapter 2, are Gaussian. Although the deterministic generation of non-

Gaussian states are a relevant challenge for information processing, Gaussian states are

applicable on tasks as communication protocols and precise measurements [7, 34, 35].

Gaussian states are completely defined by their first and second order moments. Fur-

thermore, physical properties that are invariant under local unitary transformations, such

as purity and entanglement, are completely characterized by their second order moments,

represented by a 2n × 2n covariance matrix (V), where n is the number of modes being

described. Each entry of the covariance matrix is given by the usual relation

Vj,k =
〈
x̂jx̂k

〉
−
〈
x̂j
〉
⟨x̂k⟩ . (1.4)

For V to be a valid representation of a physical density matrix, the uncertainty relation
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V + iΩ ≥ 0, (1.5)

namely the Robertson-Schrödinger uncertainty relation, must be fulfilled. Alternatively,

by Williamson’s theorem [36], any n-mode Gaussian state can be represented in a diagonal

form undergoing a transformation

VD = SVST = Diag{ν1, ν1, ν2, ν2, . . . , νn, νn} (1.6)

where S and ST are symplectic operations. The uncertainty relation of equation (1.5)

holds in this representation since Ω is invariant under symplectic transformations. There-

fore, the eigenvalues of VD must respect the condition νj ≥ 1, j = {1, 2, . . . , n}. A prac-

tical way to determine the symplectic eigenvalues is by diagonalizing the matrix (VΩ)2

whose eigenvalues are given by (−ν2j ), j = {1, 2, . . . , n} [35].

Several physical properties can be retrieved from covariance matrices that properly

describes a Gaussian state. The purity of the state, that is, how close the system is to a

pure state is given by [37, 38]

p =
1√

Det(V)
=

1

Πn
j=0ν

2
j

. (1.7)

A Gaussian state is pure if and only if its covariance matrix has unitary determinant.

On the other hand, mixed states, statistical ensembles of pure states, are characterized

by p < 1 . For a completely mixed state the purity tends to pcm = 1/d, where d is the

dimension of the Hilbert space of the system. Hence, pcm = 0 in the continuous variables

limit.

Another important use of the covariance matrix is the determination of entanglement.

First discussed by founding fathers of quantum mechanics [39–41], quantum entanglement

is a characteristic of composite quantum systems that cannot be completely described by

only knowing its subsystems. That is, any local attempt to describe the global system

entails information loss. From the works of John S. Bell [42, 43], a series of inequalities

must be fulfilled to proof the local nature of a physical system. The violation of such

inequalities is a sufficient criterion for a quantum system to be entangled.

In the formalism of density operators [4, 27], the global state (ρG) laying in the Hilbert

space HG = H1 ⊗ H2 ⊗ . . . ⊗ HN is said to be separable if it can be written as a tensor

product of density operators of the subspaces, that is

ρG =
∑
i

pi
(
ρi1 ⊗ ρi2 ⊗ . . .⊗ ρiN

)
, (1.8)
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where mixed states are included with the sum over a statistical ensemble of pure states

(
∑

i pi = 1). Any state that cannot be written in the form of equation (1.8) is said to be

entangled. An equivalent separability condition can be formulated with the covariance

matrix of Gaussian states. A Gaussian state is separable if and only if there exists the

covariance matrices VA and VB for the respective subsystems A and B such that they

respect the inequality [44]

V ≥ VA ⊕VB. (1.9)

Although general for Gaussian states, this criterion is not very useful in practice. Re-

stricting the number of degrees of freedom of the system, more applicable criteria can be

used.

A practical approach is done by the analysis of the partial transposition of V with a

method known as positive partial transpose (PPT) criterion [45]. The partial transposi-

tion of a quantum state of (m+ n) modes with respect to the n partition is calculated as

Ṽ = TVT, (1.10)

with

T = 12m ⊕ Σn, Σn =
n⊕
j=1

σz, (1.11)

where σz is the Pauli-z matrix given by

σz =

[
1 0
0 −1

]
. (1.12)

For the special case of two-mode Gaussian states with dimension 2⊗2, the subsystems are

separable if and only if equation (1.5) holds for Ṽ [45]. Extensions of the PPT to special

cases of systems in higher dimensions can be derived, but they will not be approached in

this work.

Another entanglement criterion, known as the Duan-Giedke-Cirac-Zoller (DGCZ) in-

separability criterion [46], is given by

∆2p̂− + ∆2q̂+ ≥ 1, (1.13)

where ∆2x is the variance of x equivalent to equation (1.4) and

p̂± =
p̂A ± p̂B√

2
, (1.14)

q̂± =
q̂A ± q̂B√

2
, (1.15)

with [
p̂±, q̂∓

]
= 0. (1.16)
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Although restricted to robust entangled states [17], and hence less general than the PPT

criterion, this method will serve as a visually resource when discussing the experimental

results in chapter 4.

In this section we introduced the covariance matrix to verify simple properties of Gaus-

sian states. This mathematical object is specially interesting since it can be experimentally

reconstructed. Although the presented notation is sufficient to describe the system that

we will analyze in this thesis, we will often recur to a more usual operator formalism

without any extensive introduction to it. Of special importance are the displacement and

the single- and two-mode squeezing operators, which will be used in the next sections.

Thorough exposure of such theoretical framework can be found in traditional quantum

optics textbooks [4].

Entangled states are one of the building blocks for quantum information applications

and are of extremely interest in quantum optics experiments. As a motivation for the

generation of such states, we will present next two quantum information protocols and a

cryptography scheme using two-mode entangled Gaussian states.

1.2 Quantum Teleportation

Quantum entanglement is a core resource for quantum information protocols. Taking

advantage of nonclassical correlations one can perform certain communication tasks more

efficiently than an equivalent attempt with local states and classical communication. A

notorious example is the teleportation protocol, which allows the transferring of an un-

known quantum state between two distant parties that share an entangled state and a

classical communication channel [47].

The full protocol is described as follows:

1. An entangled state is distributed between a sender (Alice) and a receiver (Bob).

2. Alice performs a joint measurement in a maximally entangled basis between her

part of the shared state and the unknown state (|ψ⟩) she desires to teleport.

3. Alice communicates her result to Bob through a classical communication channel.

4. Bob performs a unitary operation in his part of the entangled state conditioned to

Alice’s measurement result.

In an idealized situation, where the shared state is maximally entangled and no noise

sources are present in the protocol steps, Bob perfectly retrieves the |ψ⟩ state, as illus-

trated in figure 1.1.
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Figure 1.1: Quantum teleportation scheme. A maximally entangled state is distributed
between Alice and Bob. Alice performs a joint measurement in the unknown state |ψ⟩
and her share of the EPR state. She then informs Bob of her results, DAψ

p− and DAψ
q+

,
through a classical communication channel. Bob makes a unitary operation conditioned
to Alice’s measurement in his state and retrieves the state |ψ⟩ in his quantum channel.
Straight lines: quantum channels. Double lines: classical communication channels. ÛBS:
beam splitter.

Following [48, 49], in a continuous variables idealized frame, we start the protocol con-

sidering a state ρ̂AB that maximally violates a two-mode separability criterion, commonly

known as the Einstein-Podolsky-Rosen (EPR) state. Indexes A and B where chosen here

to indicate Alice and Bob. The EPR state can be seen as a two-mode vacuum state with

arbitrarily large squeezing. Such state is fully characterized by null first moments and by

the covariance matrix

VAB = lim
r→∞

[
cosh (2r)12 sinh (2r)σz
sinh (2r)σz cosh (2r)12

]
, (1.17)

where r is the parameter that accounts for the amount of squeezing present in the system.

In the limit of r → ∞, we have null eigenvalues for the commuting quadratures p̂− =

(p̂A − p̂B)/
√

2 and q̂+ = (q̂A + q̂B)/
√

2. In Heisenberg’s picture, this condition can only

be respected if

p̂A = p̂B, (1.18)

q̂A = −q̂B. (1.19)

Notice that this relation depends on the choice of limit of r and other commuting quadra-

tures could be equivalently used in different approaches.

Alice proceeds the protocol by performing a joint measurement in her part of the

entangled subsystem together with the state she desires to teleport in the {p̂−, q̂+} basis.

In practice, this is equivalent to mixing the states in a lossless 50 : 50 beam splitter (ÛBS

in figure 1.1) followed by projections |p⟩ ⟨p| in mode ”−” and |q⟩ ⟨q| in mode ”+”, as
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illustrated in figure 1.1. After the beam splitter the quadratures transforms as

p̂Aψ± =
p̂A ± p̂ψ√

2
(1.20)

q̂Aψ± =
q̂A ± q̂ψ√

2
. (1.21)

The projection on p̂Aψ− and q̂Aψ+ collapses Alice’s state in

p̂A = p̂ψ +
√

2DAψ
p− (1.22)

q̂A = −q̂ψ +
√

2DAψ
q+
, (1.23)

where DAψ
p− and DAψ

q+
are the respective results of the projections. The results contain

the information of how distant her state is from |ψ⟩. As a consequence of the EPR

correlations, they also carry the information of the distance between Bob’s system |ψ⟩.
From relations (1.18) and (1.19), Bob’s share of the EPR can be written as

p̂B = p̂ψ +
√

2DAψ
p− , (1.24)

q̂B = q̂ψ −
√

2DAψ
q+
, (1.25)

which presents the same second moments of the state |ψ⟩ apart from a displacement of the

field. Once Alice communicates her measurement results, Bob can compensate his state

with unitary evolutions (applying a displacement operation) in order to perfectly retrieve

the state |ψ⟩B in his system. It is important to emphasize that before receiving the DAψ
p−

and DAψ
q+

values Bob has a maximally mixed state in his channel. That is, without the

classical communication, Bob has no knowledge about the state in his channel.

In practice, the described protocol is impossible due to the infinite squeezing approxi-

mation. In a realistic scenario one can only have access to a limited amount of squeezing.

Nevertheless, for sufficiently high entanglement, nonlocal correlations are present in the

quantum channel and the teleportation protocol can still be performed. A quantum tele-

portation is characterized by the fidelity (F ) of the final state in Bob’s hand. That is,

how closely the teleported state is to the original one. Fidelity boundaries for successful

quantum teleportation are established depending on the state to be sent. For a coherent

state, for instance, this limit is known to be F = 1/2 and is related to the squeezing

parameter r by [32]

Fcoh =
1

1 + e−2r
. (1.26)

For the infinite squeezing limit r → ∞ and Fcoh → 1. The classical benchmark of

Fcoh = 1/2 is retrieved for r = 0. That is, for any amount of entanglement (r > 0) it

is possible to perform a quantum teleportation of a coherent state. Naturally, losses and



1.2. QUANTUM TELEPORTATION 21

measurement imperfections existent in real quantum optics experiments can hinder the

effectiveness of the protocol.

Experimental advances in the realization of quantum teleportation are of great impor-

tance for quantum communication and computing. The transportation of quantum states

inside quantum devices is essential to their functioning in the same way that classical

information needs to be transferred along wires. Even in the presence of losses, quan-

tum teleportation might represent a more efficient communication link between quantum

systems than directly sending them through quantum channels.

1.2.1 Entanglement Swapping

The quantum teleportation protocol can be extended to a number of different applications,

including further protocols of quantum technology. The transferring of quantum states

by means of quantum teleportation can be extended to the distribution of entanglement

between parties [50]. Consider that instead of sharing an entangled state, Bob and Alice

have locally access to (or means of preparing) an entangled bipartite system each. Let us

denote Alice’s state by ρ̂AA′ and Bob’s state ρ̂BB′ . They send a partition of their systems

(A′ and B′) to a third party, let us say Charlie, who performs a joint measurement in

a maximally entangled basis in the subsystems. Now Alice and Bob share an entangled

pair ρ̂AB conditioned to Charlie’s result. This procedure is illustrated in figure 1.2.

In the same spirit of last section, let us illustrate this process in the simplest way.

Consider that Alice and Bob individually have access to maximally entangled bipartite

states that respect the same conditions of equations (1.18) and (1.19) with the new indexes

p̂A = p̂A′ , q̂A = −q̂A′ , (1.27)

p̂B = p̂B′ , q̂B = −q̂B′ . (1.28)

Charlie proceeds the joint measuring in the same way as done before. He mixes the

systems A′ and B′ in a 50 : 50 beam splitter and perform projective measurements on the

resultant two-mode quadratures

p̂
′

− =
p̂A′ − p̂B′√

2
, (1.29)

q̂
′

+ =
q̂A′ + q̂B′√

2
, (1.30)

yielding the respective results D
′
p− and D

′
q+

. Similar to the teleportation protocol, this

values carry the information about the distance between the maximally mixed states in

Alice and Bob channels and a maximally entangled state. From equations (1.27)–(1.30)
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Figure 1.2: Entanglement swapping scheme. Alice and Bob send a partition of an en-
tangled state in their possession to Charlie. Charlie then performs a measurement in
this modes in a maximally entangled basis. Alice and Bob apply unitary evolutions to
their remaining subsystem conditioned to Charlie’s results and end up sharing a specified
entangled state.

one can write Bob’s and Alice’s states as

p̂A = p̂B +
√

2D
′

p− , (1.31)

q̂A = −q̂B −
√

2D
′

q+
, (1.32)

which, apart from the unknown displacements D
′
p− and D

′
q+

, are equivalent to the maxi-

mum entangled vacuum state of equations (1.18) and (1.19). In order take advantage of

the new shared state in other quantum information applications, Alice or Bob need to

be informed of Charlie’s measurements results, that can be broadcasted by him through

classical channels [51].

Entanglement swapping allows the distribution of nonlocal entanglement between dis-

tant particles without the need for them to directly interact. The presence of noise in

real quantum channels is in principle a limiting factor in such distributions, which can be

mitigated with the use of quantum repeaters [52]. They combine entanglement swapping

with strategies of entanglement distillation [53], which allows one to trade a number of

identical poorly entangled states for a smaller number of states with enhanced entangle-

ment. This can be used to distribute entangled systems over lossy channels, constituting

a main role in quantum networks [2].
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1.3 Quantum Cryptography

Security is of extreme importance in the current global communication network. The

merge of quantum and information sciences lead to the investigation of secure commu-

nication ruled by quantum mechanical laws and its limits. Typically, quantum cryptog-

raphy protocols are based on two parties, Alice and Bob, that establish a secret key by

exchanging quantum systems through an insecure channel. The quality of the protocol

is determined by testing the strongest attacks allowed by general perturbations in the

shared quantum systems by an eavesdropper, say Eve.

Several proposals of secure communication protocols rely on the distribution of qubits

[54, 55]. The generation of such states is of probabilistic in nature, once it usually relies on

spontaneous emission processes, and limits the data transmission rates. Despite further

decreasing the transmission rate, the security of discrete variables quantum cryptogra-

phy is not compromised in the presence of losses, as the information carrier is destroyed.

On the other hand, quantum key distributions with continuous variables presents higher

data flow, but their security is impaired by losses. In this section, we will briefly describe

the first quantum key distribution proposal, followed by a similar continuous variables ap-

proach. This allows us to compare their differences in a fundamental quantum mechanical

level.

The traditional BB84 protocol was developed by Bennett and Brassard in 1984 [56].

In their proposal, Alice sends qubits to Bob randomly distributed over four states of

the maximally overlapped basis {|0⟩ , |1⟩} and {|+⟩ , |−⟩}. Bob projectively measures the

received qubits in the same two basis that Alice used, again choosing them at random.

They then share their chosen basis publicly, gaining information of the correlation between

the prepared states and the measured basis. Hence, Alice and Bob simultaneously know

the state in which roughly 50% of the qubits were prepared, which is encoded in the

shared secret key as a sequence of binary numbers of 0 for the correct measurement of

states |0⟩ or |+⟩ and as 1 for the correct measurement of states |1⟩ or |−⟩. Note that

the public announcement of the measurement basis does not give any information of the

results that Bob obtained, neither inform which states Alice prepared. An example of

this process is schematically represented in table 1.1.

Let us now consider that Eve tries to gain information about the secret key by attacking

the quantum channel in which Alice sends the qubits to Bob. The obvious attempt is

to intercept a qubit and keep the measurement to herself. In this case, Bob would not

receive a qubit and simply informing this publicly would make Alice disregard this state
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Table 1.1: BB84 secret key generation. The operators P̂01 and P̂± are respectively related
to projective measurements performed on the {|0⟩ , |1⟩} and {|+⟩ , |−⟩} basis.

Alice |1⟩ |1⟩ |+⟩ |0⟩ |−⟩ . . . |+⟩ |−⟩ |0⟩ |+⟩ |1⟩ |−⟩
Bob P̂01 P̂± P̂± P̂± P̂01 . . . P̂± P̂01 P̂01 P̂01 P̂01 P̂±

Same Basis Yes No Yes No No . . . Yes No Yes No Yes Yes

Secret Key 1 - 0 - - . . . 0 - 0 - 1 1

in the final key. This reduces the data transmission rate, but does not prevent any final

secure key. Next, let us say that after Eve measures the intercepted system, she re-sends

to Bob a newly prepared state. In half the cases, Eve will be lucky enough to send a state

in the same basis as the prepared one. Even so, Alice and Bob will notice a drop from

50% to 25% in the correlated information once the public key is announced. This readily

inform the presence of Eve.

Alternatively, Eve could drop her interception rate to only a few qubits, trying to

mask her presence. However, this is detectable by publicly comparison of a fraction of

the secret key. If there are any discrepancies between Alice’s and Bob’s key they will

know that Eve tried to attack the cryptography scheme. Any time that Eve re-sends a

qubit, even in an insignificant rate, there is only a 50% chance of her sending the exact

state prepared by Alice, which will eventually cause a difference between the secret keys

determined by Alice and Bob [54].

An equivalent protocol for discrete quantum key distribution can be performed with

shared entangled states between Alice and Bob, achieving the same kind of protection

[57]. Security is established by randomly choosing the measurement basis. Any attempt

of attack in the quantum channel by measurements will inevitably disturb the system,

which can be verified in a posteriori comparison of a fraction of the secret key.

In the presented discussion, we omitted the possibility of errors in the shared key

caused by technical issues, which realistically have to be considered. One should also worry

about possible attacks to every experimental breach, which can lead to very elaborate

protocols. Furthermore, the random character of the state preparation and choose of

measurement basis can be questioned. Reference [54] presents a thorough review on

several aspects of discrete variables quantum cryptography.

A rather direct mapping of the cryptographic protocol into the continuous variables

domain can be thought of as an encryption of messages in orthogonal quadratures of a

coherent state. Alice modulates the phase and amplitude quadratures of a weak field in

the continuous variables domain and Bob randomly detects one of them. Uncertainty



1.3. QUANTUM CRYPTOGRAPHY 25

principle forbids an interceptor to read both quadratures at the same time, hindering the

re-emission of the same state to a probability superior to 50%. This can be effectively dis-

covered by comparing a part of Bob’s result with Alice’s encryption. However, Eve could

apply a different strategy, collecting only a fraction of the intense beam and trying to ob-

tain some information about the quadratures. Hence, optimal security is not guaranteed

only by the uncertainty principle of conjugate quadratures in this regime. That is, there

exists an optimal strategy that can be employed by Eve to acquire more information about

the secret key with a lower chance of detection than the discrete counterpart. Losses, as

photon absorption or scattering along the transmission line, and measurements performed

by Eve in a discrete variables systems have equivalent effects in the communication chan-

nel as they both destroy the information carrier, which is not true for continuous variables

states. It was then shown that two-mode squeezing is needed in two commuting quadra-

tures to reach the security levels of the discrete variables protocol [58]. This highlights

the importance of entanglement as a useful resource in secure quantum communications.

Let us then use the needed entangled state to illustrate the continuous variables quan-

tum key distribution. An interesting mapping of binary information in the violation of

the standard quantum limit of different quadratures is proposed in [59], which will be

followed next. Consider the amplitude p̂j and phase quadratures q̂j of two bright beams,

j = A,B. The intense field can be separated from the small fluctuations of each quadra-

ture by writing them in the linearized forms p̂j = ⟨p̂j⟩ + δp̂j and q̂j = ⟨q̂j⟩ + δq̂j. For

two-mode correlations it is convenient to express the state fluctuations in the sum and

subtraction basis, equations (1.14) and (1.15). Enhanced security is guaranteed when

squeezing is mutually present in two of the commuting quadratures, say

∆2δp̂− < 1, ∆2δq̂+ < 1, (1.33)

where normalization by the standard quantum limit is implicit. The conditions of equation

(1.33) clearly ensures entanglement by violation of DGCZ criterion, equations (1.13).

As we schematically represented in figure 1.3, Alice generates two-mode entangled

bright beams (ρ̂AB) and distributes one of them to Bob. They randomly measure their

amplitude (p̂) or phase (q̂) quadrature. To verify correlations it is important that the mea-

surements occur synchronously, hence the shared clock. Alice proceeds sending to Bob her

registered photocurrent. He checks if correlations are present by comparing the received

information with his measurement. He then shares with Alice if he obtained squeezing

or not. In the absence of losses and eavesdropping attempts, squeezing is obtained when

Bob and Alice measure the same quadrature. In this case, they encode 0 for amplitude
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Table 1.2: Continuous variables quantum key distribution.

Time t1 t2 t3 t4 t5 t6 . . . tn tn+1 tn+2 tn+3 tn+4

Alice p̂ p̂ q̂ p̂ q̂ q̂ . . . q̂ p̂ p̂ p̂ q̂
Bob p̂ q̂ p̂ p̂ p̂ q̂ . . . p̂ q̂ q̂ p̂ q̂

Correlation Yes No No Yes No Yes . . . No No No Yes Yes

Secret Key 0 - - 0 - 1 . . . - - - 0 1

coincidence and 1 for phase. If the measurements do not coincide, no correlations will be

stated by Bob and no key bit is registered. This procedure is exemplified in table 1.2.

Figure 1.3: Quantum key distribution scheme. Alice distributes to Bob a subsystem of a
prepared entangled state. They synchronously measure the p̂ or q̂ quadrature randomly.
Alice then shares her measured photocurrent (IA) with Bob via classical communication
and he proceeds to analyze the correlations between IA and the photocurrent measured
in his station IB. Bob then communicates if the photocurrents are correlated bellow
the standard quantum limit or not. If they luckily choose the same quadrature, a bit
attributed to amplitude (0) or phase (1) is shared. Repeating this process at several
times, a secret key is generated.

Attacks in the optical channel are revealed by the sensitivity of the correlations to

losses and the impossibility of simultaneous measurements of both quadratures. The

whistleblowers of eavesdropping are the occurrence of the no correlation event in more

then 50% of the measurements and distortions of correlations caused by losses induced

by Eve.

Apart from the need of the clock, this scheme seems identical to the one showed for

discrete variables. However, the transmission rate is progressively altered in the presence

of losses. This implies a limitation of the key distribution range, once losses tend to

increase with distance. In this lossy regime, Eve can try to mask herself among the losses

of the system, which can make more difficult to detect her presence. Nevertheless, large
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transmission rates may compensate for the risks or be sacrificed to enhance the quality

of the entangled pair with quantum repeaters, as discussed in section 1.2.1.

At last, it is important to emphasize that the presented schemes are far from being

the only possibilities to take advantage of quantum channels to distribute secure keys.

Practically, coherent states quantum key distribution schemes are vastly explored. The

advantages taken from strong correlations between fields are also not limited to the ones

pointed in the presented protocol. Reference [55] compiles a vast number of references on

quantum cryptography with a good review on different discrete and continuous variables

strategies, as well as several attack possibilities and practical implementations.

• •

In this chapter we presented some formal aspects of the treatment of Gaussian states,

giving special attention to the determination of their purity and correlations. It is impor-

tant to keep in mind that such analysis assumes the Gaussianity of the system, which is

not guaranteed by analyzing an arbitrary covariance matrix.

We then proceeded to illustrate how continuous variables systems can be applied

to quantum information protocols. Even though matter based quantum systems are

arguably more suitable to quantum processing and quantum memories it is hard to think

of a more suitable candidate to data transferring between them. Entanglement swapping

can be used in the context of quantum networks [2], where multicolor light act as a

quantum channel to exchange entanglement between different systems (quantum nodes)

responsible for different tasks, figure 1.4. The high sensitivity to losses of the quantum

correlations may preclude long distance data transferring without the need of quantum

repeaters. Nevertheless, intense light can be very efficient as carrier of information between

quantum nodes inside small integrated systems, where the short distances may result

in negligible perturbations in the state for high transparent media. Hence, continuous

variables quantum correlations may present as a key factor to future scalable quantum

technologies.

Figure 1.4: Representation of a quantum network, where different systems inside the
boxes (nodes) are interconnected by multicolor quantum channels.
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Sensible data is also assured to be protected by means of quantum cryptography,

briefly introduced in the contexts of discrete and continuous variables. In this scenario,

thousands of kilometers long secure lines were proven utilizing satellite to ground free

space entangled quantum channels [60] and hundreds of kilometers secure lines by means

of optical fibers communications assisted by silicon photonics devices [61].

Intense entangled light is an important ingredient for current and future quantum

technologies. Due to its deterministic nature for applications to quantum information

and high rate communication channels, reliable sources of nonclassical light are of vast

interest of ongoing research. In the next chapter we will present the system under study

in this work and how they can be used in the generation of CV quantum states.



Chapter 2

On-Chip Kerr Optical Parametric
Oscillators

With the development of novel photonic technologies, where several optical components

are printed in small footprints, there is a crescent interest for application of quantum

information in small scales. Full optical experiments are currently feasible in such inte-

grated devices. As discussed in chapter 1, a key ingredient for quantum applications is

the entanglement and its distribution through light, as such phenomenon is at the core of

communication protocols. Therefore, integrated sources of entangled states are of great

interest.

In the discrete variables domain, integrated sources of entangled photons have been

successfully demonstrated. The diverse platforms encompass optical components ranging

from straight waveguides to optical resonators and materials including lithium niobate

[62–64], silicon [65–67], nitrides [68–70] and semiconductor arsenides [71–73]. Combined

with other on-chip devices, discrete quantum information protocols were successfully em-

ployed in photonic platforms [74–77]. For robust reviews including on-chip sources and

applications one can recur to [12, 78, 79]

On the other hand, integrated sources of continuous variables entangled states remains

a challenge. Although CV quantum entanglement on-chip was already verified in [80, 81],

external sources of nonclassical light were necessary. Another approach consists in us-

ing non-degenerate optical parametric oscillators to directly produce entangled beams.

Nanophotonics enables the miniaturization of such devices, which sustains strongly con-

fined optical modes in a closed path waveguide structure. Microresonators with high

quality factors, several orders of magnitude above mirror-based ones, are routinely de-

signed with different shapes and materials.

Despite the variety of materials that can be employed in the construction of photonic

systems, silicon-based materials are of special interest. They benefit from a currently

29
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mature manufacturing industry to reach high quality, low loss waveguides in very compact

structures. Furthermore, they are naturally compatible with CMOS technology, which is

the basis of current microelectronic devices.

In this chapter we will explore integrated microcavities in the silicon photonics con-

text. In section 2.1 we will treat the coupling and loss mechanisms associated with the

propagation of light trough such structures. Next, we will explore the treatment of optical

parametric oscillations, approaching the oscillation conditions of the system section 2.2.1,

and the properties of the output light in section 2.2.2.

2.1 Silicon Nitride Micro-Ring Resonators

Silicon nitride (Si3N4) waveguides are presented as an optimal platform for integrated

nonclassical light sources [82]. Its high refraction index (n0 = 1.9960 at λ = 1560 nm)

facilitates the confinement of light [83], which is subjected to very low propagation losses

(< 0.5 dB cm−1). A third-order nonlinear factor of n2 = 2.5 × 10−19 m2W−1 [84] is

excellent for experiments involving nonlinear optics. The material also has a huge trans-

parency window, from visible to the upper limit of short-infrared (∼ 400 − 2500 nm),

which enables broadband exploration. Besides, small Raman and Brillouin scattering rid

us, to a certain degree, from undesired nonparametric effects, detrimental to squeezing

[85].

As schematically shown in figure 2.1, our rectangular shaped waveguides are composed

by a silicon nitride core buried in a silicon oxide substrate (n0 = 1.4439 at λ = 1560 nm).

The substrate provides a protection layer for the core waveguides and enables the placing

of integrated microheaters above the microcavities, important for resonance tuning and

stabilization of our system 1. Furthermore, these materials have a good contrast between

their refractive index on a huge frequency range, making them ideal to guide light by total

internal reflection. Details of the waveguides fabrication can be found in [86].

Resonant cavities are built with closed paths of the rectangular cross section Si3N4 on

SiO2 waveguides. Such devices have the capability of trapping light for long periods of

time. Due to the tight confinement of light in the compact structures of the waveguides,

the intracavity intensities reach high levels enhancing light-matter interactions. This

composes a propitious scenario to reach parametric oscillation.

Although several geometries can be employed to this purpose, let us consider an add-

through micro-ring resonator, which consists of a ring-shaped cavity close to a single

1This topic will be covered in detail in section 3.2
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Figure 2.1: Three-dimensional scheme of a rectangular Si3N4 core buried inSiO2. The
silicon (Si) base is part of the fabrication process.

input-output coupling bus waveguide, as schematically shown in figure 2.2. A fraction of

Figure 2.2: Input-output schematic of the add-through micro-ring resonator. The input
field a1 is coupled into the cavity with the parameter −κ∗. After circulation, the field is
coupled back to the bus waveguide by the conjugate parameter κ. Parameters t and its
conjugate are respectively related to the uncoupled fields in the bus waveguide and the
resonator. Intrinsic losses are indicated by γ. The output field, b1, is a mixture of part of
the field coupled into the resonator and then coupled back to the bus waveguide and the
part that does not enter the microcavity.

the energy of the incident field a1 is evanescently coupled into the micro-ring by a factor

−κ∗ through frustrated total internal reflection [87]. The coupled field (b2) is subjected

to intrinsic losses (γ)2 and dephasing (θ) while trapped in the ring. A full circulation is

described as

a2 =
√

1 − γeiθb2, (2.1)

with the acquired phase given by

θ =
ωp
c0
n0L, (2.2)

2In general, this coefficient can also represent the canonical gain if we allow γ < 0 [88, 89].
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where n0 is the effective refraction index, ωp is the wavelength of the cavity pump field,

c0 is the speed of light in vacuum and L is the perimeter of the ring. Since the cavity

entry and exit are the same, the output field (b1) is also proportional to κ. Constants t

and t∗ are respectively related to the uncoupled part of the pump and the permanence of

the coupled field in the ring.

Let us consider an ideal situation without taking into account the losses in the coupling

region (dashed square) and considering only one direction for the propagating pump,

disregarding back reflections in the bus waveguide walls. The dynamics of the fields will

then be described by the coupling matrix [88, 89][
b1
b2

]
=

[
t κ

−κ∗ t∗

] [
a1
a2

]
, (2.3)

with the energy conservation constraint

|κ|2 + |t|2 = 1. (2.4)

Developing equations (2.1)–(2.4), we obtain the normalized fields

b1
a1

=
−
√

1 − γ + teiθ

−t∗
√

1 − γ + e−iθ
; (2.5)

b2
a1

=
−κ∗

1 − t∗eiθ
√

1 − γ
; (2.6)

a2
a1

=
−κ∗

√
1 − γ

−t∗
√

1 − γ + eiθ
. (2.7)

The transmission of the microcavity is then given by

T ≡
∣∣∣∣ b1a1
∣∣∣∣2 =

(1 − γ) + (1 − |κ|2) − 2
√

(1 − γ)(1 − |κ|2) cos θ

1 + (1 − γ)(1 − |κ|2) − 2
√

(1 − γ)(1 − |κ|2) cos θ
, (2.8)

where the phase θ is the cavity-pump detuning. In resonance θ = m2π, with m ∈ Z, the

transmission is reduced to

Tress =

 √
1 − γ −

√
1 − |κ|2

1 −
√

(1 − γ)(1 − |κ|2)

2

, (2.9)

from which we observe the dependence of T with the coupling strength and intrinsic losses.

Following the definitions in [90] we identify three different coupling regimes:

• Critically Coupled (|κ|2 = γ): when intrinsic losses are equal to the coupling

strength we have perfect impedance match of these factors. This translates as a

completely destructive interference at the output of the cavity.
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• Overcoupled (|κ|2 > γ): As the coupling strength increases the photons will stay

less time in the intracavity medium. Consequently, the probability of extracting the

photons from the cavity back to the bus waveguide is increased.

• Undercoupled (|κ|2 < γ): As is harder to couple the photons into the cavity, the

harder it is to extract them. Hence, they have a greater probability of being lost

through other interactions.

The transmission as a function of the cavity detuning is shown in figure 2.3 for each of

the discussed regimes. The dips are a result of the interference between the part of field

exiting the cavity and the uncoupled part of the field in the bus waveguide. In practice,

the coupling strength is controlled by the gap between the bus waveguide and the micro-

ring. As we explore the gap as a figure of merit for the coupling strength we can also

Figure 2.3: Microcavity output as a function of the detuning for a ring with losses fixed
at γ = 0.07. For the overcoupled resonator (red dashed line) we have |κ|2 = 0.3 and for
the undercoupled (green dash-dotted line), |κ|2 = 0.007.

characterize the losses with the help of transmission curves, which gives us information

about the quality factor of the microcavities.

The quality factor is the ratio of the energy stored in the resonator to the energy

dissipated per cycle by damping processes. In the add-through micro-ring resonator the

total losses are accounted in the loaded quality factor (QL). It is related to the intrinsic

quality factor (QI), that accounts only for the intrinsic losses of the system, and the

coupling quality factor (QC), accounting only for the coupling losses, by [88, 89]

1

QL

=
1

QI

+
1

QC

. (2.10)

The loaded quality factor can be determined by [88, 89]

QL =
ωm

∆ωm
BW

, (2.11)
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where ωm is the resonant mode frequency and ∆ωm
BW is the experimentally accessible cavity

bandwidth for the mode m. This equation directly relates with the total losses of the

cavity by

QL =
ωm

∆ωm
FSR

2π

|κ|2 + γ
, (2.12)

with ∆ωm
FSR defining the cavity free spectral range for the resonant mode m. At critical

coupling (QLC) we have |κ|2 = γ, which yield direct access to the intrinsic losses of

the system. We define the intrinsic quality factor (QI) disregarding the coupling factor,

|κ|2 = 0, resulting in the simple relation

QI = 2QLC . (2.13)

Therefore, QI is experimentally accessible through the measurement of QLC , giving us a

practical way to determine the intrinsic losses γ.

2.2 Optical Parametric Oscillators

Nonlinear interactions of light and matter causes the spontaneous excitation of photons

in different modes of the field. Such process depends on details of the system, such as fre-

quency and intensity of light and the structure of the pumped media. Since light weekly

interacts with transparent media without the presence of resonances with electronic tran-

sitions of the material, nonlinear effects can be enhanced introducing a feedback loop in

the light-matter interaction. This three element forms an optical parametric oscillator

(OPO). As an example, consider a χ(3) nonlinear media inside an optical cavity. As we

pump the system, photons will populate the sideband modes selected by the cavity bound-

ary conditions. If the parametric gain exceeds the total losses of the medium (threshold)

we will have the amplification of the generated fields. Such example is represented in

figure 2.4.

In general, the OPO is described by the master equation [4, 20]

d

dt
ρ̂ = − i

ℏ

[
Ĥfree + Ĥint + Ĥext, ρ̂

]
+
∑
j

Λ̂j(ρ̂). (2.14)

The first term in the right hand side describes the free field modes inside the cavity

Ĥfree =
ℏ
τ

∑
j

∆j â
†
j âj, (2.15)

where τ is the round-trip time of the light inside the cavity, ∆ is the cavity detuning and

j covers all the intracavity modes involved. The annihilation âj and creation â†j operators
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Figure 2.4: Representation of a χ(3) OPO. An optical pump of frequency ωp is coupled
into the triangular optical cavity through the input mirror (M1). The interaction of the
pump field with the nonlinear media excite signal (ωs) and idler (ωi) modes through a
degenerate four-wave mixing process. The intracavity power is amplified by the cavity
loop for all fields in a triple resonant condition. The three intense beams then exit the
cavity through the coupling mirror. The curved bottom mirror is represented as a parallel
to usual triangular cavities build in the laboratory.

respect the conventional commutation rule [âj, â
†
k] = δj,k. For the example of figure 2.4,

the j index indicates the pump, signal and idler modes. Next we have the interaction

between the fields. This term will depend on the characteristics of the nonlinear medium

and is responsible for energy exchanges between modes. The last term of the Hamiltonian

is the pumping of the cavity by external fields. Assuming there is a single strong pump

field ϵ, it is given by

Ĥext = iℏ
Γp
τ
ϵ
[
â†p − âp

]
(2.16)

with Γp corresponding to the total cavity losses for this mode. Additional input couplings

can be taken as vacuum fluctuations. At last we have superoperators representing the

losses of the system for each mode. They are modeled by the independent coupling of

each intracavity field with an harmonic oscillator reservoir. When the interaction between

the respective fields and reservoirs is given by a Jaynes-Cummings Hamiltonian

Hj
J-C = ℏ

∑
k

[
gkj âj b̂

k†
j + gk∗j â

†
j b̂
k
j

]
, (2.17)

where j = {p, s, i} and b̂kj is related to the reservoir mode k coupled to the cavity mode

âj through the constant gkj , the losses of each mode j assumes the form

Λ̂j(ρ̂) =
Γj
τ

[
2âj ρ̂â

†
j − â†j âj ρ̂− ρ̂â†j âj

]
. (2.18)

Depending on the complexity of the interaction term, solving equation (2.14) can be a

very difficult task. Nevertheless, for χ(2) [4, 20, 91] and χ(3) [21, 92] nonlinear media, under

proper considerations, one can translate this problem into a set of stochastic differential

equations known as Heisenberg-Langevin equations. Such approach is useful when only
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a small number of modes are excited. OPOs based on four-wave mixing may violate

this condition since secondary modes, beyond signal and idler, are easily excited with an

increase in the pump power [23, 93]. With an even further growth of the pump power,

frequency combs can be generated [83, 94, 95]. In such cases other formalisms are more

convenient, such as modified Lugiato-Lefever equations [96, 97] and numerical methods for

solving the nonlinear Schrödinger equation [98]. Since we are interested in the dynamics

of signal and idler fields, we will focus our attention in the first presented situation.

In the next section we will explore the conditions for sideband excitation on our chips.

The quantum dynamics of pump, signal and idler will be given in section 2.2.2

2.2.1 Four-Wave Mixing

Amorphous materials, atomic clouds and a variety of crystal structures are symmetric

when inverted with respect to an arbitrary axis. This lack of symmetry inversion precludes

the existence of second-order nonlinear effects and only third-order ones are relevant [99].

In the case of silicon chips, χ(3) effects are predominant3 and will be developed in the

context of parametric oscillation, where the four-wave mixing has a central role.

The Hamiltonian that describes the relevant effects is given by [92]

Ĥint = − ℏζ(3)
[

1

2

(
â†pâ

†
pâpâp + â†sâ

†
sâsâs + â†i â

†
i âiâi

)
+ 2

(
â†pâ

†
sâpâs + â†pâ

†
i âpâi + â†sâ

†
i âsâi

)
+
(
â†sâ

†
i âpâp + â†pâ

†
pâsâi

)]
.

(2.19)

The nonlinear index (n2) and the modes volume (V) are included in the coefficient

ζ(3) ≈ ω2n2c

n2
0V

. (2.20)

All coefficients are merged together in equation (2.19) as we took a common central

frequency for all modes (ω), which is reasonable if all the modes are spectrally close. The

nonlinear Kerr effect are considered to be linear with the intensity (I) as n = n0+In2 and

that the nonlinear indexes are equal for all involved fields. Furthermore, all the modes

involved are assumed to be spatially overlapped, which is true in very good approximation

for the fields involved in our problem, since their frequency difference is small.

The first term inside parenthesis in equation (2.19) is the self-phase modulation (SPM)

term, which represents a self induced Kerr effect. The cross-phase modulation (XPM) is

a phase shift induced between two fields. The phase modulation terms do not affect the

intensity of the fields, since they commute with the number operators. On the other

3Although not relevant to the present work, the interface between silicon nitride and silicon oxide is
not symmetric under inversion and second order effects can be explored in such photonic systems [100].
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hand, the four-wave mixing (FWM) term in the last parenthesis is responsible for energy

exchange. The creation of signal and idler photons are simultaneous to the annihilation of

two pump photons, that do not need to be degenerated in the general case. This process

is schematically represented in the energy diagram of figure 2.5. Other nonlinear effects,

Figure 2.5: Energy diagram for the four-wave mixing process. Two pump photons ωp1
and ωp2 are annihilated and signal ωs and idler ωi photons are created (or vice-versa).
Energy is conserved in the process, such that ωp1 +ωp2 = ωs +ωi. The degenerate case is
equivalent to the condition ωp1 = ωp2

such as third harmonic generation, can be neglected when the frequencies are spectrally

distant from signal and idle.

Before we tackle the full OPO dynamics, let us first analyze the propagation equations

of the interaction Hamiltonian by directly solving Heisenberg’s equation, which results in

dâp
dz

= iζ(3)
[(
â†pâp + 2â†sâs + 2â†i âi

)
âp + â†pâsâie

i∆βz
]
, (2.21)

dâs
dz

= iζ(3)
[(

2â†pâp + â†sâs + 2â†i âi

)
âs + âpâpâ

†
ie

−i∆βz
]
, (2.22)

dâi
dz

= iζ(3)
[(

2â†pâp + 2â†sâs + â†i âi

)
âi + âpâpâ

†
se

−i∆βz
]
. (2.23)

We introduced ∆β = 2βp − βs − βi to include the phase mismatch induced by the cavity

dispersion, a consequence of the material dispersion and the microresonator geometry.

The longitudinal propagation constants are defined as βj = n0jωj/c. Since the operators

âj are proportional to the mean fields αj, we retrieve the classical dynamics of the system

by disregarding the quantum fluctuations in the substitution âj → αj. Further considering

an undepleted pump approximation, where αp ≫ αs, αi, we can drop the second order

terms in signal and idler fields. The pump equation is then given by

dαp
dz

≈ iζ(3)|αp|2αp, (2.24)

and the solution is

αp(z) = αp(0)eiζ
(3)Ppz, (2.25)

where Pp = |αp(0)|2 is the intracavity power. It is important to notice that in the case of

microreonators this value is usually large due to the high confinement of light. Therefore,
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small input pump powers are expected. As we can observe, the SPM plays an important

role in the field propagation, which will suffer an extra phase shift while propagating

through the third order nonlinear media.

Under the same considerations, signal and idler fields will evolve according to

dαs
dz

≈ iζ(3)
[
2|αp|2αs + α2

p(0)ei(2ζ
(3)Pp−∆β)zα∗

i

]
, (2.26)

dαi
dz

≈ iζ(3)
[
2|αp|2αi + α2

p(0)ei(2ζ
(3)Pp−∆β)zα∗

s

]
. (2.27)

This linear system can be analytically solved as [101]

αs(z) = µ(z)αs(0) + ν(z)α∗
i (0), (2.28)

αi(z) = µ(z)αi(0) + ν(z)α∗
s(0), (2.29)

where

µ(z) =

[
cosh (gz) +

i(2ζ(3)Pp − ∆β)

2g
sinh (gz)ei(ζ

(3)Pp+
∆β
2 )zy

]
, (2.30)

ν(t) =
iζ(3)α2

p(0)

g
sinh (gz)ei(ζ

(3)Pp+
∆β
2

)z. (2.31)

Parametric gain by length unit is given by the g parameter and its explicit expression has

the form

g =

√
ζ(3)Pp∆β − ∆β2

4
. (2.32)

It is evident from this equation that we only have gain for ∆β > 0. Considering that this

criteria is respected,
(
2ζ(3)Pp − ∆β

)
will get closer to zero, which will at least partially

compensate for the detunings induced by SPM and XPM. We expand the propagation

constants around ωp with the simplified notation for the first and second order derivatives

β
(1)
j and β

(2)
j , with j = s, i, such as

βj = βj + β
(1)
j (ωj − ωp) +

1

2
β
(2)
j (ωj − ωp)

2 + · · · , (2.33)

Taking advantage of the energy conservation relation 2ωp = ωs+ωi, when high order terms

are omitted we reach ∆β ≈ −β(2)
p (ωs − ωi)

2. The second order derivative coefficient β
(2)
p

is known as group velocity dispersion (GVD) and its negativity gives a simple condition

to guarantee parametric gain. Equivalently, we need anomalous dispersion (β(2) < 0)

between the pump field and material nonlinear interaction in order to have efficient FWM.

Such parameter can be tailored by designing the geometry of the waveguides [102], which

plays an important role in the dispersion effects.

Figure 2.6 shows the parametric gain as a function of the wavelength for a typical value

of ζ(3) for silicon nitride materials. The central pump frequency, the β(2) and intracavity
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Table 2.1: Material resonances and Sellmeier constants.

Material λ1 (µm) B1 (µm) λ2 (µm) B2 (µm)

Si3N4 0.1353406 3.0249 1239.842 40314
SiO2 1.09877 0.0924317 – –

power (Pp) values are compatible with the experimentally available resonators. It is

evident from figure 2.6 that the spectral distance between signal and idler increases with

the intracavity power and decreases with β(2) absolute value.

Figure 2.6: Parametric gain, equation (2.32), per length unity of the four-wave mixing
process for several values of intracavity power (Pp) and group velocity dispersion (β(2))
around the pump wavelength of ωp = 1560 nm. The peak of the gain, is shifted away from
ωp with the increment of Pp or reduction of

∣∣β(2)
∣∣. FWM bandwidth grows for the same

conditions. We choose a nonlinear parameter compatible with silicon nitride (ζ(3) = 1)
[103].

Materials dispersion are modeled according to Sellmeier equations

n2 − 1 =
∑
j

λ2Bj

λ2 − λ2j
, (2.34)

where the Bj values, shown in table 2.1, are empirically obtained in [83] for Si3N4 and

in [104] for SiO2. Silicon nitride and silicon oxide dispersion curves as a function of the

wavelength are shown in figure 2.7 for a wide range of frequencies.

As an example, we calculated the group velocity dispersion for different silicon nitride

on silicon oxide resonators. We used the MIT Electromagnetic Equation Propagation

(Meep) open software [105], which solves Maxwell’s equations through a finite-difference

time-domain method for different waveguide geometries. Another important factor is the
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Figure 2.7: Behavior of the refraction index as a function of the wavelength for silicon
nitride (blue continuous line) and silicon oxide (red dashed line).

microcavity geometry, where we restrict ourselves to ring-shaped resonators as they are

simpler to define in the simulation routine. At last, we only explored the fundamental

spatial modes of light. We runned the routine for two different cross section geometries

available in our laboratory. In figure 2.8 (a) we show the results for the GVD of both

quasi-transverse fundamental modes of a micro-ring with 100 µm radius with waveguides

of 1300 nm width and 730 nm height. Although the dispersion is anomalous for the TE00

mode, no oscillations are expected for the TM00 mode when pumped with a 1560 nm

field. In figure 2.8 (b) we see changes in the GVD purely induced by changes in the cross

section dimensions.

Once parametric gain is guaranteed by the boundary conditions of the micro-resonator,

we can explore the system as a third order optical parametric oscillator. In the next section

we will treat the dynamics of the third order OPO and present some important results.

2.2.2 Third-Order Optical Parametric Oscillator

The four-wave mixing dynamics presented in last section allowed the derivation of the

conditions for parametric oscillation. Now, we will take a further step and develop the full

OPO dynamics given by the master equation (2.14). Following the treatment in [21, 92],

a set of Heisenberg-Langevin equations are derived from equations (2.15) – (2.19), given
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(a) (b)

Figure 2.8: Group velocity dispersion as a function of the wavelength for micro-rings with
100 µm radii and rectangular cross sections of (a) 1300 nm width by 730 nm height and
(b) 1700 nm width by 730 nm height. Both figures show the results for quasi-transverse
TE00 (solid blue lines) and TM00 (dash-dotted red lines) modes. The dashed black lines
intersections are relative to the GVD at 1560 nm. Note that the TM00 mode does not
have anomalous dispersion for the 1300 × 730 waveguide, figure (a).

by

d

dt
âp = − (Γp + i∆p)âp + iζ(3)

[(
â†pâp + 2â†sâs + 2â†i âi

)
âp + 2â†pâsâi

]
+
√

2κpâ
in
p +

√
2γpâ

loss
p ,

(2.35)

d

dt
âs = − (Γs + i∆s)âs + iζ(3)

[(
2â†pâp + â†sâs + 2â†i âi

)
âs + âpâpâ

†
i

]
+
√

2κsâ
in
s +

√
2γsâ

loss
s ,

(2.36)

d

dt
âi = − (Γi + i∆i)âi + iζ(3)

[(
2â†pâp + 2â†sâs + â†i âi

)
âi + âpâpâ

†
s

]
+
√

2κiâ
in
i +

√
2γiâ

loss
i .

(2.37)

The above set of equations describes the dynamics for each mode, coupled through phase

modulations and energy exchanges. The field detunings with respect to the cavity modes

(ω̃j) are given by ∆j = ω̃j−ωj. Although energy conservation is respected, 2ωp = ωs+ωi,

the phase mismatched system entails 2∆p ̸= ∆s+∆i. As in section 2.1, the coefficients κj

are related to the coupling between the bus waveguide and the micro-ring and γj accounts

for other sources of loss such as scattering and absorption. The total losses are simply

given by Γj = κj + γj. The respective operators âini and âlossj correspond to the incoming

and the loss modes. Except for the mean field for the incoming pump, all the other income
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and loss operators have zero expectation values
〈
âinp
〉

=
√
P in
p ℏωp,〈

âinj
〉

= 0, j = {s, i},〈
âlossj

〉
= 0, j = {p, s, i}.

(2.38)

As described in the beginning of the section 2.2, all reservoirs are independent for each

mode, and the same is assumed for the coupling between waveguides. Therefore, all

income and loss operators are uncorrelated
〈
â†inj (t)âink (t′)

〉
= δj,kδ(t− t′),〈

â†lossj (t)âlossk (t′)
〉

= δj,kδ(t− t′), j, k = {p, s, i}.
(2.39)

In order to solve this equations, the next step is to linearize our problem in a classical

part added to its small quantum fluctuations

âj = αj + δâj, j = {p, s, i}. (2.40)

This procedure allows us to separate the problem in independent classical and quantum

analysis. From a classical point of view, there is no advantage in this part of the process,

since it is equivalent to taking the expectation values of the operators in equations (2.35)

– (2.37). On the other hand, simplifications can be done in the quantum fluctuations.

Since the fluctuations are small, we can drop second and third order terms.

For the mean fields, it is interesting to study the steady state solutions. Substituting

2.40 in (2.35) – (2.37), taking into account the relations given in (2.38) and dropping the

null expectation values quantum fluctuations, we have, for the steady states

− (Γp + i∆p)αp + iζ(3)
[(∣∣αp∣∣2 + 2|αs|

2 + 2|αi|
2
)
αp + 2α∗

pαsαi

]
+
√

2κpα
in
p = 0, (2.41)

− (Γs + i∆s)αs + iζ(3)
[(∣∣2αp∣∣2 + |αs|

2 + 2|αi|
2
)
αs + 2α2

pα
∗
i

]
= 0, (2.42)

− (Γi + i∆i)αi + iζ(3)
[(∣∣2αp∣∣2 + 2|αs|

2 + |αi|
2
)
αi + 2α2

pα
∗
s

]
= 0. (2.43)

A few properties can be retrieved from this set of equations with the aid of numerical

methods. Phase modulations and thermo-optical effect shift the mode frequencies taking

them out of resonance, leading to unstable solutions. Although not explicitly considered in

this treatment, the temperature dependency can be easily included in the ∆j parameters

[92]. The resonance instabilities can be compensated by pumping the system with some

detuning, either by tuning the pump frequency or by tuning the cavity resonant modes.

Another interesting aspect of the dynamics of the system is that the output of a

microcavity cannot always be described as a Lorentzian shaped curve around its resonance.
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A strong bistability effect, as explored in [106] in the context of micro-ring resonators,

is expected due to the same resonance shifts responsible for the instabilities. This effect

is also retrieved from equations (2.41) – (2.43) [107]. The bistable character of the chip

operating above threshold will be shown in section 3.2.2.

At last, the optical power threshold can be derived by finding simultaneous stable

solutions for pump, signal and idler fields in equations (2.41)–(2.43) using perturbation

methods, as was done in references [92, 107], resulting in

Pth = 1.54
π

2

κp + γp
2κp

n2
0V

n2λQ
2
L

. (2.44)

One can see that the threshold is directly related with the coupling (κp) and intrinsic losses

(γp) of the system, which are also included in the loaded quality factor (QL), equation

(2.12). The spacial volume (V) is related with the geometry of the system. Refractive

index and nonlinear index depends on the material. At last, the numerical factor of 1.54

is related to the phase modulations and is acquired from the numerical calculations.

For the quantum fluctuations we substitute the linear equation (2.40) into equations

(2.35) – (2.37). We drop the terms superior to first order ones and separate the classical

part of the dynamics, equivalent to equations (2.41) – (2.43). In the same spirit of the

canonical variables vector of equation (1.1), we define the vector of quantum fluctuations

as

δx̂ =
[
δâpe

−iθp , δâ†pe
iθp , δâse

−iθs , δâ†se
iθs , δâie

−iθi , δâ†ie
iθi
]T
, (2.45)

where θj is the phase of the mean field αj = |αj|eiθj . The evolution of the fluctuations

are then given by [21]

d

dτ
δx̂ = −M · δx̂ +

Tin

Γ
· δx̂in +

Tloss

Γ
· δx̂loss, (2.46)

with τ ≡ tΓ being the normalized time. In order to simplify the notation we took

the normalized quantities |α|p →
√
ζ(3)/Γ|α|p; ∆p → Γ∆p; |α|s = |α|i →

√
ζ(3)/Γ|α|;

∆s = ∆i → Γ∆, where we considered equal amplitude and detunings for signal and idler.

Further approximations are made considering the coupling and intrinsic losses to be

equal for all modes (Γ = Γp = Γs = Γi), which follows from the same reasoning of last

section, where we considered all modes to be spatially overlapped. Hence, the coupling

and losses are given by the matrices

Tin = Diag
{√

2κe−ϕ,
√

2κeϕ,
√

2κ,
√

2κ,
√

2κ,
√

2κ
}

(2.47)

Tloss = Diag
{√

2γe−ϕ,
√

2γeϕ,
√

2γ,
√

2γ,
√

2γ,
√

2γ
}
, (2.48)
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where the phase ϕp is accumulated from the input field phase (θin), that is ϕp = θin −
θp. Vectors δx̂in and δx̂loss have the same form as equation (2.45) respecting the same

commuting relations as in (2.39). The elements of matrix M are functions of the mean

field values and the detunings.

Equation (2.46) can give us correlations for all the three fields involved in the para-

metric oscillation. However, at this point of the project we are interested in the two-mode

correlations between signal and idler. We then treat the pump field as a classical beam

(δâp → 0) and simplify to four equations the set described by (2.46). Furthermore, the

observables that we are interested are the amplitude (p̂j) and phase (q̂j) operators, which

respect the canonical commutation relation of equation (1.2). As a function of âj and â†j,

they are given by

p̂j =
âj + â†j√

2
, (2.49)

q̂j = −i
âj − â†j√

2
, j = {s, i}, (2.50)

The dynamical equations (2.46) decouple in the sum and subtraction basis, equations

(1.14) and (1.15), where the fluctuation vector

δx̂± =
[
δp̂+, δq̂+, δp̂−, δq̂−

]T
(2.51)

will evolve following the dynamical equation

d

dτ
δx̂± = −M± · δx̂± +

Tin
±

Γ
· δx̂in

± +
Tloss

±

Γ
· δx̂loss

± . (2.52)

The coupling and loss matrices are given by (Tin
±,T

loss
± ) and vectors (x̂in

±, x̂
loss
± ) follow

directly from the basis changes of equations (2.49) and (2.50). Matrix M± is explicitly

given by [107]

M± =


−6|α|2 −2 0 0

0 6|α|2 + 4|α|2p − 2∆ 0 0

0 0 0 −2
0 0 0 −4|α| − 4|α|p + 2∆

 . (2.53)

From the M± matrix we can see that the subspaces are decoupled. One should note that

the ± subscript is solely labeling a basis and not two different equation sets.

The parametric nature of FWM, conserving energy and momentum, leads to the pro-

duction of highly correlated signal and idler modes. In order to characterize such corre-

lations, we analyze the spectral noise density [108]

Sj(Ω)δ(Ω + Ω′) = ⟨x̂(Ω)x̂(Ω′)⟩ , (2.54)
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where x̂(Ω) is an arbitrary quadrature and Ω is the sideband frequency in which the

measurement is carried out. From the dynamics described above, entanglement between

signal and idler is predicted [21]. Such result is an extension of the two-mode amplitude

squeezing (Sp−(Ω)) in the difference subspace, and is in accordance with previous analyti-

cal models [107]. In terms of experimentally accessible parameters, the noise compression

is given by [97, 109, 110]

Sp−(Ω) = 1 − ηd (1 −QL/QI)

1 + Ω2τ 2c
, (2.55)

where ηd is the detection efficiency and τc is the intracavity photon lifetime. The loaded

(QL) and intrinsic (QI) quality factors were discussed in section 2.1 and are respectively

given by equations (2.12) and (2.13).

Phase modulations are responsible for distortions on the noise ellipse [21, 101], which

is the Fresnel diagram representation of the uncertainty associated with quadrature ob-

servables. Stronger correlations are expected in rotated quadratures:[
δq̂θ±
δp̂θ±

]
=

[
cos θ± sin θ±
− sin θ± cos θ±

] [
δq̂±
δp̂±,

]
(2.56)

where the angles θ± diagonalize the spectral density matrix. A representation of this

effect is given in figure 2.9.

Figure 2.9: Noise ellipse (faded red) compared to the standard quantum limit (dashed
circle). The best achieved squeezing in amplitude difference is not aligned with the quadra-
ture. Instead, optimal squeezing is seen in the rotated frame. Rθ is the rotation operation
by an angle θ, equivalent to the squared matrix in equation (2.56).

• •

In this chapter we presented the silicon nitride on silicon oxide micro-ring resonators.

We explored the coupling of light in and out the cavity along with its losses mechanisms,

experimentally accessible through the quality factor. Although only a brief description of

the micro-ring resonator is needed for our purpose, a plethora of on-chip passive applica-

tions can be performed. For instance, such devices are a reliable source of entangled pho-
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tons [70, 111, 112]. They also can accommodate several linear optics components that can

be used in the implementation of on-chip quantum information protocols [75, 77, 113, 114].

As seen in section 2.2, integrated optical parametric oscillators can be explored for

the generation of bright sideband frequencies. The large third order non-linear coeffi-

cient of silicon nitride, together with the high confinement of light in the microcavity

enables parametric oscillation with sub-milliwatt threshold [24]. The dependence of the

parametric gain with the geometry of the waveguides enables the tailoring of the excited

frequencies [83, 94, 95]. Further exploration in dispersion engineering can be done by

studding other orders of β in the expansion (2.33) and by coupling other spatial modes

into the resonators [111, 115].

In particular, we are interested on the deterministic generation of nonclassical light.

In this context, on-chip optical squeezing was successfully measured for bright beams

[110, 116] as well as broadband squeezed vacuum [117]. Quantum aspects of microcombs

[94, 95] were recently explored in the deterministic regime and two-mode squeezing was

observed in a range of 40 modes [118]. Single-mode squeezed states were generated with

dual pump technique, where photons of two different colors excite a near degenerate mode

with wavelength equivalent to the mean of the pumps wavelength [119, 120]. Broadband

quadrature squeezing via SPM was reported in [121].

As we can see from the different results exposed above, photonic devices present them-

selves as a versatile platform for future quantum technologies. However, there are still

open questions regarding several properties of integrated optical systems, such as the in-

fluence of the generation of adjacent sidebands in the signal and idler correlations, the

presence of nonclassical correlations between asymmetrical sidebands and the limits in

the observation of expected nonclassical properties, such as entanglement, imposed by

experimental conditions. We will explore aspects of this last questioning through careful

experimentation. In the next chapter we will present the methods and techniques em-

ployed to study the modes excited in on-chip OPOs operating above oscillation threshold.



Chapter 3

Experimental Setup

Our experimental system is specifically designed to produce and characterize fields in on-

chip optical parametric oscillators. A concise schematic of the setup is presented in figure

3.1, in which a 1560 nm diode laser is amplified (EDFA - erbium-doped fiber amplifier) and

passes through a filter cavity. At this point, the high noise state at the erbium output

is reduced to a low noise level. Comparisons between these situations will be given in

section 4.1. The filtered pump is then coupled to the bus waveguide of the micro-ring

cavity with a tapered fiber. The inverse tapered shape of the bus waveguide extremity

allows highly efficient coupling [122], 75% for our system. The output of the integrated

OPO is collected by a lens into free space and partially monitored on an optical spectrum

analyzer. We separate the generated sidebands with a diffraction grating and send them

to analysis cavities for resonator assisted detection [25, 26, 123].

Figure 3.1: Schematic of the experimental setup. A 1560.6 nm laser source is filtered after
amplification in order to generate a near coherent optical pump. The pump is coupled into
the bus waveguide with a tapered fiber. Above threshold, intense signal and idler modes
are excited. We collimate the cavity output into free space and monitor a small part of
the fields with an optical spectrum analyzer. The fields are separated with a diffraction
grating and sent to individual analysis cavities for resonator assisted detection.

47
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In the present section we will explore all the relevant details of the system. As seen from

figure 3.1, there are three main parts in our experimental setup: the pump preparation,

the integrated OPO and the detection system. Details of the optical pump will be given

in section 3.1. In section 3.2 we will present the characterization of our microcavities

and details of signal and idler generation and stabilization. At last, in section 3.3, the

resonator assisted detection scheme will be presented.

3.1 Optical Pump Preparation

Our optical source is a commercial RIO ORIONTM diode laser with emission wavelength

of 1560.6 nm, which is located in the short infrared spectrum and is compatible with

telecommunication frequencies. The laser delivers approximately 20 mW of power and

has low amplitude noise. However, due to an excessive phase noise of more than 20

dBm above shot noise for the relevant powers, we need to introduce a filter cavity in the

system in order to improve the coherence of the state, trying to bring it closer to the

noise level of an effective coherent state. The introduction of several optical components

in the optical path, needed for both alignments and protection of the laser, drastically

reduces the accessible optical power to pump our microcavity. This is compensated with

the introduction of the EDFA, model Keopsys CEFA-C-PB-HP-SM-33-NL1-OM1-B130-

FA-FA, with controllable output power from 200 mW to 2.00 W. The amplifier further

increases the fluctuations of the field, also mitigated by the filter cavity.

The filter cavity was built by Pablo Jaime Palacios Avila during his master’s program

[124] in a bow-tie geometry with two high reflective curved mirrors and two partially

transparent (T ∼ 0.5%) input and output mirrors. The total optical path of the cavity is

approximately 4.9 m, which gives us an inferred free spectral range of ∆FSR = 61.2 MHz.

Following this scale, we measured a bandwidth of δω = 237.1 kHz and obtained a finesse

of F = 258.1.

We lock the cavity in resonance using the Hänsch-Couillaud method [125], in which

we take advantage of the birefringence of the input mirror to monitor undesired insta-

bilities through the interference between the transmitted and reflected polarizations. We

generate an error signal (ϵ(t)), see figure 3.2, with the electronic subtraction of signals

coming from a balanced detection scheme. This system alone presents strong fluctuations

corresponding to up to 20% of intensity variations, probably due to frequency instabilities

of the light source. We employed a combination of current modulations in the laser and

the introduction of an acousto-optic modulator (AOM) after the filter cavity, which will
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Figure 3.2: Error signal generated by the Hänsch-Couillaud method used to lock the
cavity in resonance. The transmission of the cavity indicates the sweeping around the
resonant peak. The magnitudes of the error signal and the cavity monitor are not related
and an offset was included to facilitate the visualization.

be described next. The full optical pump preparation setup is schematized in figure 3.3.

First attempts consisted in thorough tuning of the PI system (proportional and inte-

gration electronic signals used to lock the cavity) fed to the cavity PZT combined with

the broadening of the cavity bandwidth. We introduced a quarter waveplate solely to

enhance the intracavity losses leading to the new respective bandwidth and finesse values

of ∆BW = 278.5 kHz and F = 220.0. This strategies were partially fruitful as the fluc-

tuations were dropped to half their initial values. However, the pump intensity was still

too noisy for the following parts of the system, as they would lead to instabilities on the

OPO oscillation condition. This strategy was limited in effectiveness due to the 24 kHz

cutoff frequency of the PZT. The remaining fluctuations reached up to hundreds of kHz,

impossible to be compensated by the piezoelectric device.

The fast fluctuations were mitigated with a modulation in the laser. We used the

Hänsch-Couillaud error signal of the locked system together with an electronic gain and a

phase control to feedback the current modulation input of the RIO laser and compensate

for the oscillations. This effectively reduced the majority of the oscillations, with only

eventual instability spikes remaining. Since they were still disturbing the stabilization of

the OPO a further technique was employed. We monitor a fraction of the output field

of the filter cavity by setting an acousto-optic modulator (AOM) fed with this signal,

again with gain and phase control, in a feedforward scheme. Finally, we ended up with

a near coherent pump with small intensity fluctuations corresponding to up to 1% of the

total power. A very convenient feature of the chosen setup is the possibility of tuning the

gain and phase parameters in real time. Figure 3.4 shows the effect of each subsequent
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Figure 3.3: Near coherent optical pump generation scheme. A 1560 nm diode laser source
is amplified by an EDFA and sent to a bow-tie configuration filter cavity. A quarter wave-
plate was introduced inside the cavity in order to increasse the optical losses. The cavity is
locked to the laser frequency with the Hänsch-Couillaud method using a PI system with
the constants KP and KI respective to the proportional and the integrator actuators.
Current modulations are fed back to the laser in order to mitigate undesired fluctuations.
Further cleaning in the cavity output is done with an acousto-optic modulator (AOM).
The gain G and phase control ϕ necessary for the optimization of the feedback and feed-
forward systems are represented along the electrical paths.

stabilization step in the output intensity.

From this procedure we were able to produce a near coherent field, drastically reducing

the quadrature noise. Details of the pump noise in different operation conditions of the

system will be given in section 4.1, where we use the resonator assisted detection scheme

to fully characterize its fluctuations.
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Figure 3.4: Evolution of the output pump fluctuations with the actuation of the different
stabilization systems. At first, the PZT alone, feeded by the PI system, is unable to
mitigate the strong fluctuations. Then, a good improvement is seen from the addition of
modulations into the laser current. With the aid of an acousto-optic modulator we end
up with a cleaner signal. Note that the action of the AOM induces fluctuation above
the mean field. The curves were obtained from the AC coupling of a photocurrent in an
oscilloscope.
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3.2 Integrated Micro-Ring Cavity

At the core of our experiment are the micro-ring resonators, as they are the source of

nonclassical light that we are interested in. As described in section 2.1 they are constituted

of a bus waveguide close to a circular loop. The coupling of the optical field into the bus

waveguide is done with the aid of a tapered fiber. The extremities of the bus waveguide

have a similar conical shape (see figure 3.5) which enables high efficient coupling between

them [126]. We fixate the tapered fiber in a manual micrometric control with three axis

(Newport MAX355D) with which we align the pump field into the bus waveguide. As

the tip of the fiber remains suspended at the end of alignment system, it is susceptible to

jiggling due to air mass displacements. We disposed acrylic barriers around the system

to reduce such effects. Further degrees of freedom in the alignment are present in the

chip positioning. It remains freely supported above a copper base with angular and

displacement controls, which allows us to compensate eventual displacements of the chip.

The tuning of the microcavity into resonance is done via thermo-optical effect controled

by a platinum micro-heater above the micro-ring, as schematized in figure 3.5. The

variation in the refractive index due to this thermal control [127] changes the length of

the optical path inside the microresonator, which is equivalent to the tuning of optical

cavities by mechanical means. The localized thermal effect has a fast response allowing

sub-millisecond operation [128, 129]. Platinum is chosen as the heater material due to

its tolerance to high temperatures. In our systems, resistances of the order of hundreds

of ohms are observed. This allows us to reach detunings of around 200 GHz applying

voltages below the damage threshold of the heater. Electrical probes are used to supply

the electrical current. When positioned they help holding the chip still, preventing it from

accidental slips during the experiment operation.

Figure 3.5: Micro-ring resonator scheme highlighting the integrated micro-heater (red)
above the cavity. The conical shapes of the bus waveguide are also represented in the
figure.
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Additional temperature stabilization is done with a peltier under the copper basis. The

temperature control is actively locked near room temperature with a PI system with a 10

mK precision range. This minimizes thermal drifts and aids in the resonance stabilization.

Due to the pump frequency used in our system and the small size of our OPO, we use

an infrared camera, model FLIR A6260sc, coupled to a microscope to aid in the system

alignment and monitoring. This allows us to visualize scattered light in the microcavity.

The output light of the chip is collimated into free space by a low loss (< 1 dBm) aspheric

lens (Thorlabs C430TME-C) with a large numerical aperture (0.15). The lens is also fixed

in manual micrometric control with three axis, identical to the one used for the tapered

fiber. Aligning this lens is crucial, because the subsequent parts of the system, including

the analysis cavities, are sensitive to any changes in the optical path or collimation.

In figure 3.6 (a) we present a photograph of the coupling apparatus, in which we can

identify the several components described above. Pictures of a microcavity without any

coupled light and in a resonant condition were taken with the aid of the infrared camera

and are shown in the respective images 3.6 (b) and (c). Note that the shape of our micro-

resonators are not circular rings, but a structure with two radii that go adiabatically

towards each other. In practice, this shape have effects in the system coupling, losses and

dispersion.

The output field of this system was used in different experimental tasks. First, we

characterized the microcavities by measuring their quality factors, which will be explored

in the next subsection. Then, in section 3.2.2, we will describe the locking system used

to stabilize the generation of signal and idler fields.

3.2.1 Microcavities Characterization

The quantum correlations expected from the micro-ring cavities are closely related to the

intrinsic and loaded quality factors of the system, as seen in equation (2.55). The higher

the ratio between those two factors, the higher the magnitude of amplitude squeezing will

be. In order to avoid undesired optical losses, detrimental to quantum correlations, it is

also desirable to reduce the interaction time between the generated signal and idler fields

and the resonator. Hence, highly overcoupled systems, see section 2.1, are ideal to our

purposes.

Currently, we have access to several chips built for the study of correlations, but we

will focus on the one used for the final results exposed in this work. The chips are printed

with several equal resonators with different gaps between them and the bus waveguides,

as illustrated in figure 3.7. In this way, we can explore different coupling regimes in order
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Figure 3.6: (a) Photograph of the chip setup, where we highlighted the tapered fiber,
the heater probes and the aspheric lens. Looking closely to the chip one can see the
printed waveguides as the heaters scatter the top light. (b) Microscopic photograph of
two microcavities. In the picture we notice the real shape of the micro-rings that is not
exactly circular and the bus waveguides passing close to them. As the gaps sizes are of only
hundreds of nanometers we cannot distinguish the separation between the waveguides in
the coupling region. The square shape highlights the probes contacts and the microcavity
details are printed inside the circle. (c) Micro-ring tuned into resonant condition. With
the aid of the infrared camera we can clearly see the scattered light off the resonator.
Scatterings at the input and output of the bus waveguide help us to couple the pump into
the chip.

to characterize and select the microcavity that better suits our purposes.

Figure 3.7: Schematic that partially represents the chip we will work with. The 10 identi-
cal microresonators have different gaps between them and their respective bus waveguide.
The inset numbers accounts for the respective gap in nanometer units, which are printed
in the real microcavities for identification. The full chip has a total of 20 microcavities
with gaps ranging from 250 nm to 725 nm.

Due to the small dimensions of the optical path in the microcavities, FSRs of dozens, or

even hundreds of GHz are routinely obtained. In our case, we worked with 80 GHz cavities,

with two different radii that adiabatically goes towards each other with a hyperbolic

tangent function. This corresponds to a microcavity with approximate 1.88 mm of length.

In principle, a full cavity FSR could be scanned with the heater tuning. However, the

nonlinear behavior of the thermal effect for large detunings [128] forbids us to use the FSR

as a frequency scale to measure the bandwidth of the resonators, which is the standard



3.2. INTEGRATED MICRO-RING CAVITY 55

method used for the macroscopic optical cavities in our system. Hence, we need a different

measurement method to obtain a reference scale.

Fortunately, the pump laser frequency can be tuned by internal thermoelectric cooling,

which is accessible by using the manufacturer available software. We can vary the emission

wavelength by 65 pm at a cost of optical power and an increase in the quadrature noise.

Using a Bristol 671 wavelength monitor we observed the behavior of the tuning, shown

in figure 3.8.

Figure 3.8: RIO laser wavelength calibration as a function of the accessible internal
resistance parameter. The dashed line indicates the optimal operation frequency of 1560.6
nm set as default by the manufacturer.

Using the wavelength variation, we can monitor displacements of the resonance peak

and use it as a frequency scale. This gives us access to a direct measurement of the

micro-ring bandwidth and hence the quality factor by equation (2.11). In order to avoid

distortions of the resonant peak due to thermal effects, we pumped the microcavities with

low power. In this regime, we see an approximate Lorentzian shape as we sweep the heater

around a resonant condition. We determine the bandwith by computationally fitting the

Lorentzian curve to the data.

Additionally, we measured the extinction ratio of every cavity, given by

Text = 1 − Tmin

Tmax

, (3.1)

where Tmin is the transmission dip exactly when in resonance and Tmax the direct bus

waveguide transmission without any coupling to the resonator. The coupling regime

changes with the gaps, as the coupling strength varies. The variation of the extinction

ratio with the gaps is due to interferometric effects between the output light of the micro-

cavity and field in the bus waveguide, as discussed in section 2.1. We identify the critical
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coupling region as the extinction ratio gets closer to unity. From the respective quality

factor we can then infer the intrinsic quality factor of the systems through equation (2.13).

Figures 3.9 (a) and (b) show the respective quality factors (a) and extinction ratios

(b) for the quasi-transverse TE00 and TM00 modes of the ring. We estimate intrinsic

(a) (b)

Figure 3.9: Quality factor (a) and extinction ratio (b) for all the microcavities present in
the chip for both quasi-transverse fundamental modes.

quality factors of QTE
I ∼ 16 million and QTM

I ∼ 12 million. In order to preserve the

correlations of the generated fields, we chose to work with the cavity with higher coupling,

corresponding to the one with the smaller gap of 250 nm. We worked with the TE

mode as it has a lower oscillation threshold, avoiding the need of extra amplification.

Furthermore, it presents a high loaded (QTE
L ∼ 2 million) to intrinsic quality factor ratio,

which contributes to the two-mode amplitude correlations as shown in equation (2.55).

The characterization of microcavity chosen from now quality factors, losses and expected

squeezing are summarized in table 3.1. It is worth to note that the finesse of the optical

cavity is of same order of magnitude of typical mirror-based OPOs [14, 19, 130].

3.2.2 Stable Optical Parametric Oscillations

One of the major difficulties encountered during the project was the stability in the

generation of signal and idler fields. Working above the threshold, the system is stable

enough to passively maintain the resonant condition for several minutes. Since we are

working with very high quality factor microresonators additional sideband modes are

easily exited in this pumping regime. Moreover, small variations on the pump intensity

entails changes in the oscillation frequencies, where there is a tendency of signal and idler

to hop between different modes. Although the hops are small, the alignment and mode
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Table 3.1: Parameters of the microcavity used in the generation of signal and idler.

Parameter Magnitude

Gap 250 nm
Free Spectral Range 80 GHz

Loaded Quality Factor 2 × 109

Intrinsic Quality Factor 16 × 109

Intrinsic Losses 0.006
Coupling Losses 0.041

Finesse 132
Expected Squeezing −9.00 dB

matching of optical cavities are harshly harmed with the consequent change of the optical

paths. This experimental instabilities are mitigated by using an active locking system

by modulating the micro-heaters. Stable oscillations with the frequencies shown in figure

3.10 were then achieved. This also contributed to the assemble of the analysis cavities, as

the system remained stable even when subjected to mechanical disturbances during the

positioning and alignment of several optical components.

Figure 3.10: Optical spectrum of the stabilized oscillations achieved with the active locking
system. The data were acquired with a Yokogawa AQ6370D spectrum analyzer.

When driving a Kerr system with high optical power, thermal effects and phase mod-

ulations will distort the symmetric Lorentzian shape of the resonant peak, as discussed in

section 2.2.2. This effect can be seen in figure 3.11 (a). The bistable character of the peak

[106] hinders the generation of an error signal at maximum resonance. However, when

operating above threshold and by separating the generated fields from the pump, we can

observe the drop of intensity on the optical pump with the detuning of the resonator.

Monitoring the pump field after the separation of the fields by the optical grating we

observe a nearly symmetric shape of the depletion of the field, see figure 3.11 (b), where
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the stability point can be explored to lock the cavity in resonance.

(a) (b)

Figure 3.11: Bistability effect in the OPO transmission above oscillation threshold. In
figure (a) all the output fields are overlapped, while in figure (b) the pump is being
monitored after separation of the fields. The depletion in the signal is equivalent to the
energy distributed to the other modes and the red dot indicates the stabilization point.

We used a Stanford Research System SR830 DSP lock-in amplifier to modulate the

micro-heater current with a frequency of 15 kHz and stabilize the system through a

dither and lock scheme. Optimum parameters of the proportional and integrator signals

are subject to daily changes in the experimental conditions. For instance, the angular

alignment between the chip and the taper fiber alters the shape of the dip and the small

step at the side of it. To further avoid thermal drifts, the chip stays in a copper basis

with controlled temperature. This is done with a peltier and a PI system. We keep the

chip close to room temperature with a precision in the range of 10 mK. The stabilization

system is shown in figure 3.12.

Figure 3.12: OPO stability system. We modulate the micro-heater at 15 kHz. The
separated pump photocurrent is sent to a lock-in system, added to the 15 kHz modulation,
to keep the resonant condition stable.
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As a result, we managed to stabilize the oscillations for several minutes, even for

pump powers very close to oscillation threshold (Pth =∼ 13 mW). Resonant condition is

maintained even with a certain degree of mechanical perturbations in the environment or

in the optical table. This was crucial for the assembling of the resonator assisted detection

schemes, as thorough alignment of the optical systems is needed.

3.3 Quadrature Measurements

The experimentally accessible observable that we retrieve from photodetection is a time-

dependent current, namely photocurrent, proportional to the intensity of the field. It is

related to the positive and negative frequency parts of the electric field as Î = Ê−(t)Ê+(t)

[131]. The electric field is related to the creation and annihilation operators by

Ê+(t) ∝ â(t) =

∫
e−iωtâωdω; Ê−(t) ∝ â†(t) =

∫
eiωtâ†ωdω. (3.2)

Apart from a dimensionality constant, we define the intensity operator as a function of

the linearized operators of equation (2.40) as

Î(t) ≡ â†(t)â(t) = |α(t)|2 + |α(t)|
[
e−iφδâ(t) + eiφδâ†(t)

]
, (3.3)

where we dropped the second order terms of the fluctuations. The phase φ is related to

the mean field as α = |α|eiφ. As we can see, the intensity operator has a mean value

added to fluctuations that are related to the quadrature operators of equations (2.49) and

(2.50). As the photodetector is only sensitive to amplitude fluctuations, we recognize the

amplitude quadrature as p̂(t) =
[
e−iφδâ(t) + eiφδâ†(t)

]
, which is in the same phase space

direction of the carrier. Without loss of generality we can take this phase as ϕ = 0 for the

amplitude quadrature. Moreover, note that the quadrature fluctuations are amplified by

the carrier mean field. In practice, this amplification is what allows us to experimentally

access the quadrature noise that would be otherwise buried under the electronic noise of

the detection systems.

The quantum quadratures that describe the continuous variables of an optical state

are then related to the fluctuations inherent to optical fields. As fluctuations act as

modulations of a mean field, they can be seen as energy distributions to other modes

of the field, analogously to the modulation of classical fields [3]. Physically, they are

translated as a small probability of creating photons in sideband modes. For bright

fields, the mean field intensity is proportional to a high photon flux, typically of the order

of 1016, while the sideband photon flux is of the order of units [4]. For modes spectrally
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distant from the carrier the fluctuations approach their minimum value, which is known

as the shot noise limit of the field.

The observation of quantum fluctuations in the optical carrier is hindered by technical

difficulties. On the other hand, signatures of nonclassical correlations can be seen in

frequencies in a sideband region. In our case, limited by the bandwidth of our OPO.

Further limitations are imposed by the detection system, where we can only relay in

measurements in frequencies within its bandwidth. For resonator assisted detection, this

value is proportional to the analysis cavity bandwidth . Figure 3.13 illustrate the intensity

spectrum of an optical field, its sidebands and the described detection region, limited by

the analysis cavity (∆AC
BW) and the OPO (∆OPO

BW ) bandwidths.

Figure 3.13: Intensity spectrum of an optical field. The sidebands are highlighted in red
and green and photon overpopulation area in blue. The detection region, in green, has
indications of the limits imposed by the OPO and the analysis cavity.

In the frequency domain, the intensity fluctuations are described by the Fourier trans-

form

δÎΩ =

∫
δÎ(t)eiΩtdt = e−iφ

∫
eiΩtδâ(t)dt+ eiφ

∫
eiΩtδâ†(t)dt, (3.4)

where the integration limits are determined by the detection bandwidth. As the temporal

creation and annihilation operators are related to quantum fluctuations, they encompass

all the spectrum with exception of the carrier frequency ω0. Explicitly they are given by

(see equations (3.2) and (3.3)) [25, 26]

δâ(t) =

∫ ′∞

0

e−i(ω−ω0)tδâωdω; δâ†(t) =

∫ ′0

−∞
e−i(ω−ω0)tδâ†ωdω, (3.5)

where the prime notation in the integral limit excludes ω0. Inserting these equations in

(3.4), we determine the non-Hermitian operator

ÎΩ = e−iφâΩ + eiφâ†−Ω, (3.6)

where the ±Ω indexes indicate the sideband frequency around ω0 and â†Ω = â−Ω. We

dropped the indication of the fluctuations by δ for the sake of a cleaner notation. This

equation stresses the two-mode character of the photodetection spectral analysis.
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The sidebands are accessed in the laboratory through the measurement of (Hermitian)

observable operators. We introduce the two observable operators

Îcos = cosφp̂s + sinφq̂s, (3.7)

Îsin = cosφq̂a − sinφp̂a, (3.8)

where the φ phase is now the relative phase between an arbitrary quadrature and the

amplitude one. In principle, this phase is null due to the insensibility of the photodetector

to phase fluctuations. We will address the method of resonator assisted detection in

section 3.3.2, where we will show how to vary φ and measure the fluctuations of arbitrary

quadratures.

We introduce the quadrature operators in the symmetric (s) and antisymmetric (a)

basis as

p̂s,a =
p̂Ω ± p̂−Ω√

2
, (3.9)

q̂s,a =
q̂Ω ± q̂−Ω√

2
. (3.10)

We can now write the intensity operator in terms of the commuting observables Îcos and

Îsin as

ÎΩ = Îcos + iÎsin. (3.11)

Hence, the simultaneous measurement of Îcos and Îsin allows us to reconstruct the intensity

operator. This is possible through a double demodulation scheme, in which we divide the

measured temporal photocurrent and mix each of the signals with in quadrature electronic

references, as schematized in figure 3.14.

Figure 3.14: Mixture of the photocurrent with two electronic references of frequency Ω in
quadradure.

The Wiener-Kintchine theorem states that the spectral density, equation (2.54), of a

stationary variable is the Fourier transform of its temporal correlation [108]. Assuming a

stationary photocurrent, its spectral density is given by S(Ω) =
〈
ÎΩÎ−Ω

〉
which is related

with equations (3.7) and (3.8) by

S(Ω) =
1

2

〈
Î2cos

〉
+

1

2

〈
Î2sin

〉
. (3.12)
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Since the mean field of the measured sidebands is zero, the expected values are equivalent

to the variance of the demodulated photocurrents. Hence, we have an experimental

approach to retrieve the information about the noise quadratures. From equations (3.7)

and (3.8), in the absence of any methods to access arbitrary quadratures, we note that

the spectral density gives us information about p̂s and q̂a. Since we do not have any

means to observe phase fluctuations in this scenario, we reach the conclusion that these

quadratures carry the same information. Furthermore, we cannot attribute any physical

meaning to the measured fluctuations unless we compare them to a reference noise.

From equation (2.54), we can also check the stationarity of a given photocurrent by

〈
ÎΩÎΩ

〉
= 0 →


〈
Î2cos

〉
−
〈
Î2sin

〉
= 0,〈

ÎcosÎsin

〉
= 0.

(3.13)

This is an important indicator of the reliability of the detection system which will be

explored in our results.

We need to further develop the analysis to include more than one optical field. In this

case, besides the validity of equations (3.12) and (3.13) for the individual signal (s) and

idler (i) beams we reach the cross correlations of the spectral photocurrents by [25, 26]

Re
{〈

Î
(s)
Ω Î

(i)
−Ω

〉}
=

1

2

〈
Î(s)cosÎ

(i)
cos

〉
+

1

2

〈
Î
(s)
sin Î

(i)
sin

〉
, (3.14)

Im
{〈

Î
(s)
Ω Î

(i)
−Ω

〉}
=

1

2

〈
Î
(s)
sin Î

(i)
cos

〉
− 1

2

〈
Î(s)cosÎ

(i)
sin

〉
. (3.15)

Stationarity then implies

〈
Î
(s)
Ω Î

(i)
Ω

〉
= 0 →


〈
Î
(s)
cosÎ

(i)
cos

〉
=
〈
Î
(s)
sin Î

(i)
sin

〉
,〈

Î
(s)
sin Î

(i)
cos

〉
= −

〈
Î
(s)
cosÎ

(i)
sin

〉
.

(3.16)

The four-mode covariance matrix can then be organized as follows. Consider the

symmetric (x̂s) and antisymmetric (x̂a) vectors containing the canonical operators in the

symmetric and antisymmetric basis, equations (3.9) and (3.10), as

x̂j =
[
p̂
(s)
j , q̂

(s)
j , p̂

(i)
j , q̂

(i)
j

]T
, j = {s, a}. (3.17)

The covariance matrix will then assume the form [25, 26]

V =

[
Vs C(s,a)

CT
(s,a) Va

]
, (3.18)

where the first block matrix in the main diagonal is related purely to the symmetric corre-

lations and the second one to the antisymmetric correlations. The antidiagonal matrices
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are related to cross correlations between the symmetric and antisymmetric operators. The

symmetric matrix is explicitly given by

Vs =
1

2

〈
xs · xT

s +
(
xs · xT

s

)T〉
=



∆2p̂
(s)
s

〈
p̂
(s)
s q̂

(s)
s

〉 〈
p̂
(s)
s p̂

(i)
s

〉 〈
p̂
(s)
s q̂

(i)
s

〉
〈
q̂
(s)
s p̂

(s)
s

〉
∆2q̂

(s)
s

〈
q̂
(s)
s p̂

(i)
s

〉 〈
q̂
(s)
s q̂

(i)
s

〉
〈
p̂
(i)
s p̂

(s)
s

〉 〈
p̂
(i)
s q̂

(s)
s

〉
∆2p̂

(i)
s

〈
p̂
(i)
s q̂

(i)
s

〉
〈
q̂
(i)
s p̂

(s)
s

〉 〈
q̂
(i)
s q̂

(s)
s

〉 〈
q̂
(i)
s p̂

(i)
s

〉
∆2q̂

(i)
s



=


α(s) γ(s) µ ξ
γ(s) β(s) ζ ν
µ ζ α(i) γ(i)

ξ ν γ(i) β(i)

 ,
(3.19)

where the Greek letters notation was introduced to simplify the expressions and to group

the covariances that carry the same information. Similarly, the antisymmetric matrix is

written as

Va =
1

2

〈
xa · xT

a +
(
xa · xT

a

)T〉
=



∆2p̂
(s)
a

〈
p̂
(s)
a q̂

(s)
a

〉 〈
p̂
(s)
a p̂

(i)
a

〉 〈
p̂
(s)
a q̂

(i)
a

〉
〈
q̂
(s)
a p̂

(s)
a

〉
∆2q̂

(s)
a

〈
q̂
(s)
a p̂

(i)
a

〉 〈
q̂
(s)
a q̂

(i)
a

〉
〈
p̂
(i)
a p̂

(s)
a

〉 〈
p̂
(i)
a q̂

(s)
a

〉
∆2p̂

(i)
a

〈
p̂
(i)
a q̂

(i)
a

〉
〈
q̂
(i)
a p̂

(s)
a

〉 〈
q̂
(i)
a q̂

(s)
a

〉 〈
q̂
(i)
a p̂

(i)
a

〉
∆2q̂

(i)
a



=


β(s) −γ(s) ν −ζ
−γ(s) α(s) −ξ µ
ν −ξ β(i) −γ(i)
−ζ µ −γ(i) α(i)

 .
(3.20)

At last, the cross correlations matrix is given by

C(s,a) =
〈
xs · xT

a

〉
=



〈
p̂
(s)
s p̂

(s)
a

〉 〈
p̂
(s)
s q̂

(s)
a

〉 〈
p̂
(s)
s p̂

(i)
a

〉 〈
p̂
(s)
s q̂

(i)
a

〉
〈
q̂
(s)
s p̂

(s)
a

〉 〈
q̂
(s)
s q̂

(s)
a

〉 〈
q̂
(s)
s p̂

(i)
a

〉 〈
q̂
(s)
s q̂

(i)
a

〉
〈
p̂
(i)
s p̂

(s)
a

〉 〈
p̂
(i)
s q̂

(s)
a

〉 〈
p̂
(i)
s p̂

(i)
a

〉 〈
p̂
(i)
s q̂

(i)
a

〉
〈
q̂
(i)
s p̂

(s)
a

〉 〈
q̂
(i)
s q̂

(s)
a

〉 〈
q̂
(i)
s p̂

(i)
a

〉 〈
q̂
(i)
s q̂

(i)
a

〉



=


δ(s) 0 κ −η
0 δ(s) −τ −λ
−λ η δ(i) 0
−τ κ 0 δ(i)

 .
(3.21)

The equivalence between the several terms in the covariance matrix holds when the sta-

tionarity condition of equations (3.13) and (3.16) is satisfied.

We described the accessible information of the intensity operator and how they are

related with the quadratures of the optical field. In the next sections we will give details of
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our technical apparatus and which kind of information is obtained by them. We will start

with the description of photodetectors and the balanced detection technique in section

3.3.1. Next, in section 3.3.2, we will describe the resonator assisted detection, how it is

related to the covariance matrix coefficients of equations (3.19)–(3.21) and how the full

measurement setup operates.

3.3.1 Photodetection and Balanced Detection

As discussed in the last section, a photocurrent is generated as the response of a detector

to an optical field. In our system, the photocurrent is converted into a voltage signal by

a transimpedance amplifier [3] with a correspondence of 1 mA → 1 V. As the measured

signal is proportional to the intensity operator, it can be separated into two parts: a DC

signal related to the mean field and a high frequency (HF) voltage containing the fluc-

tuations. Each one of the signals is independently accessible in our system. Therefore,

the DC and HF photocurrents have independent gains gDC and gHF that are considered

to contain the electronic characteristics of the photodetector and to include all the pro-

portionality constants needed to link the intensity operator of equation (3.3) and the

measured voltage. That is

V (t) = VDC(t) + VHF(t) = gDC|α(t)|2 + gHF|α(t)|x̂(t), (3.22)

where x̂(t) the accessible field quadrature.

In order to correctly retrieve the quadrature information, several technicalities related

to the photodetection need to be addressed. At first, the conversion of light into current

is not unitary, it is subjected to probabilistic processes. This effect is quantified by the

fraction of incoming photons and the electron number in the correspondent signal. In

terms of experimentally accessible variables the so called quantum efficiency (η) is given

by

η =
ihc

Peλ
, (3.23)

where i and P are the respective measured current and optical power, λ is the field

wavelength and h, c and e are respectively the Planck constant, the speed of light and

the electron charge. We then determined the quantum efficiency of the four PIN diode

detectors model ETX300T from EPITAX used in our experiment with the fits shown in

figure 3.15.

The four detectors used in our system are mounted in individual balanced detection

schemes for signal and idler fields. This technique allows the mutual measurement of the

fluctuations of the field and its correspondent shot noise value. The detectors where paired
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(a) (b)

(c) (d)

Figure 3.15: Determination of the quantum efficiency for the detectors used in our sys-
tem. The detection scheme correspond to two balanced detections, where the quantum
efficiencies are shown in figures (a) and (b) for the signal detectors and in figures (c) and
(d) for the idler detectors. Error bars are in accordance to the power meter’s (Thorlabs
S122C) manufacturer information.

by similarity in the DC and HF response. We compared the DC signals and the variance

of the HF photocurrents for different combinations between the detectors (together with

necessary electronic amplifiers) and chose the ones closest to unitary equivalence. That

is, we chose pairs of detectors with the gains as matched as possible. Figure 3.16 show

examples of the DC and HF response of the selected pairs. The data acquisition was done

with a National Instruments analog-digital converter model BNC-2110 and the presented

results were computationally treated. One should note that the results may vary as the

detection parameters, as the analysis frequency, are changed. Hence, the analysis of the

relative gains is repeated for any different measurements carried out with this system.

The balanced detection scheme consists in the 50 : 50 splitting of a light field followed
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(a) (b)

(c) (d)

Figure 3.16: Comparison of the DC signal (a,b) and of the variance of HF signal (c,d) of the
selected photodectors pairs for signal (a,c) and idler (b,d) fields. The measurements were
carried with a Ω = 20 MHz analysis frequency and the electronic noise was compensated
in the data analysis.

by detections in each of the field arms. By the subtraction of the HF photocurrent

we cancel eventual excess of noise present in the photocurrent. Hence, the variance

of the subtracted signals will be equivalent to the noise of a coherent state with the

same intensity as the detected field. This is equivalent to the shot noise [3], needed to

determine a scale for the measured noise. The sum of the photocurrents is equivalent to the

reconstruction of a single photocurrent of an optical field impinging on a photodetector.

As real photodetectors present background electronic noise (e) [132] and the gains are

not perfectly matched between the detectors, we address these error sources in our data

analysis.

The electronic noise can be easily compensated for by subtracting it from the respective

signals. Figure 3.17 shows the background fluctuations of our detectors. Overall electronic
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Figure 3.17: Electronic noise from the combined pairs of detectors and amplifiers. The
low electronic noise in the region below 10 MHz is due to an electronic filter added
to mitigate contaminations from the carrier field. The detection systems remain fairly
equivalent between 10 and 25 MHz, region where we will carry our measurements. The
data were acquired from an electronic spectrum analyzer model KEYSIGHT N9010B.

gains are matched with the the information from the linear adjusts in figure 3.16, where

we multiply one of the signals and its electronic noise, say 1, by a relative gain given by

grel =

√
g
(2)
HF/g

(1)
HF

g
(2)
DC/g

(1)
DC

, (3.24)

where the DC part also compensates for unbalances in the beam splitter. After gain

compensation, the expression for the corrected normalized noise attained by a balanced

detection with detectors labeled by 1 and 2 is given by

∆2x̂ =
∆2
(
V

(1)
HF + V

(2)
HF

)
− ∆2e(1) − ∆2e(2)

∆2
(
V

(1)
HF − V

(2)
HF

)
− ∆2e(1) − ∆2e(2)

, (3.25)

with ∆2x̂ representing the quadrature fluctuations. It is straightforward to carry out the

presented analysis in order to include the correlations of different fields. The noise present

in the sum and subtraction subspaces is given by

∆2x̂± =
1

2

(
∆2V

(s+)
HF − ∆2e(s)

∆2V
(s−)
HF − ∆2e(s)

+
∆2V

(i+)
HF − ∆2e(i)

∆2V
(i−)
HF − ∆2e(i)

)

±

〈
V

(s+)
HF V

(i+)
HF

〉
√(

∆2V
(s−)
HF − ∆2e(s)

)(
∆2V

(i−)
HF − ∆2e(i)

) , (3.26)

where

V
(s±,i±)
HF = V

(s1,i1)
HF ± V

(s2,i2)
HF , (3.27)
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and

e(s,i) = e(s1,i1) + e(s2,i2). (3.28)

For stationary processes, equation (3.13), one should note that the HF signal is equivalent

to choosing any of the signals of the double demodulation scheme, since they carry the

same information about the quadrature noise. Any unbalances between electronic gains

are analogously compensated by the procedure described in equation (3.24)

The measured quadratures are yet subject to losses coming from the diverse experi-

mental devices. The quantum efficiency is a significant source of such effect. In general,

the presence of losses (µ) are modeled as a beam splitter operation before a measurement

with 100% of quantum efficiency. The beam splitter will mixture the field fluctuations

with vacuum as

∆2x̂meas = µ
(
∆2x̂real − 1

)
+ 1, (3.29)

where x̂meas is the measured result of an arbitrary quadrature and x̂real is the value of the

quadrature corrected by the losses of the system. Note that the vacuum mixture is the

phenomenon that is responsible for taking a nonclassical state into a coherent one in a

lossy medium.

We described the method to measure an optical quadrature with the appropriate

corrections without worrying about which quadrature is being measured. As already

emphasized, quadratures beyond amplitude are not accessible without interferometric

processes, which will be treated in the next section.

3.3.2 Resonator Assisted Detection

Resonators are versatile devices in quantum optics experiments. Good reviews of their

properties can be found in references [3, 133]. In this work, they play a central role in all

of the experimental steps, acting as a filter in the pump preparation and as a feedback

system in the generation of signal and idler in the integrated optical parametric oscillator.

In our detection scheme they allow us to access several quadratures of the optical fields,

which is crucial in the reconstruction of the covariance matrices. We combine the cavity

output with a balanced detection scheme to obtain the shot noise value simultaneously to

the measurement process, as illustrated in figure 3.18. Furthermore, each photocurrent

undergoes the doubled demodulation described in figure 3.14 before acquisition. In order

to keep the image clean, we chose to only show the acquisition of the HF part of the

signals. The DC part as well as cavity transmission monitors are send to extra channels

of the analog to digital converters. Hence, a total of 14 signals are registered in each of our
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Figure 3.18: Detection setup scheme. After passing through the resonators, signal and
idler undergoes a balanced detection. The double demodulated photocurrents, see figure
3.14, are individually acquired by analog to digital converters and computationally ana-
lyzed.

measurements. In the following analysis the Î
(s,i)
sin and Î

(s,i)
cos photocurrents are respectively

given by

Î
(s,i)
sin = Î

(s1,i1)
sin + Î

(s2,i2)
sin , (3.30)

Î(s,i)cos = Î(s1,i1)cos + Î(s2,i2)cos . (3.31)

The interference of coupled light into an optical cavity and the reflected part of the

field by the input mirror act as self-homodyning procedure between the carrier and the

sidebands. The optical resonator transforms the spectral creation and annihilation oper-

ators as [123]

âΩ → r(∆)âΩ +
√

1 − r2(∆)v̂Ω, (3.32)

where the vacuum term (v̂Ω) is introduced by the transmission coefficient. Carrying this

transformation through equations (3.6)–(3.12) we obtain the effects of this interferometric

process. The spectral density as a function of the detuning of the optical cavity (∆) and

the demodulation frequency (Ω) is then given by [123]

S(∆,Ω) = cαα + cββ + cγγ + cδδ + ∆2v̂, (3.33)

where vacuum term couples into the cavity by the transmission mirror and is taken as

∆2v̂ = 1 − cα − cβ. The functions

cα =
∣∣g+∣∣2, cβ =

∣∣g−∣∣2, cγ = 2Re{g∗+g−}, cδ = 2Im{g∗+g−} (3.34)

are dependent on the cavity detuning (∆) and the analysis frequency (Ω). These functions

depend on the parameters of the individual cavities, which are completely modeled by the
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Table 3.2: Experimentally determined parameters of the analysis cavities.

Parameter Signal Cavity Idler Cavity

Free Spectral Range 1.03 GHz 1.03 GHz
Bandwidth 3.56 MHz 4.74 MHz

Finesse 290 218
Dip 25.8% 13.4%

Mean Visibility 97.5% 95.7%

mirrors reflectance (R(∆,Ω)) as

g+(∆,Ω) =
(R(∆,Ω) +R(∆,−Ω))

2
, (3.35)

g−(∆,Ω) =
i (R(∆,Ω) −R∗(∆,−Ω))

2
, (3.36)

where the reflectance of the cavities as a function of their detunings are given by

R(∆,Ω) =
r∗(∆)

|r(∆)|
r

(
∆ +

Ω

∆AC
BW

)
. (3.37)

The reflection coefficients, and as a consequence the g± functions, are experimentally

determined by the measurement of the depletion magnitude of the reflected field, named

dip (d = |r(0)|2), and the analysis cavity bandwidth (∆AC
BW). For high finesse cavities, the

reflection coefficient is given by

r(∆) = −
√
d− 2i∆

1 − 2i∆
. (3.38)

The relevant parameters of our analysis cavities are compiled in table 3.2. We included

the average visibility, which is the ratio of the energy in the main resonant peak to the total

energy coupled into the resonator. It is worth to notice that these values change with the

alignment of the system, which can slightly vary along the total time needed to conclude

a series of mesurements. Hence, the characterization of the cavities are made before and

after we run the experiment in order to estimate the total losses more accurately.

Given the cavities parameters we can analyze the behavior of the multiplicative func-

tions of the coefficients in equation (3.33). The parameters are better accessible, or even

completely hidden, from the data as these functions vary in magnitude along the cavity

detuning. Figures 3.19 (a) and (b) show all the functions according to the experimental

parameters of the respective signal and idler cavities.

An example is given in figure 3.20, where it is shown the spectral density, equation

(3.33), of a hypothetical state with amplitude and phase normalized noises respectively

given by ∆2p̂ = 1 and ∆2q̂ = 2. The taken cavity parameters are equivalent to the
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(a) (b)

Figure 3.19: Dependency of signal (a) and idler (b) power spectrum cj, j = {α, β, γ, δ}
on the respective analysis cavity detuning. The parameters used to determine the curves
are listed in table 3.2.

signal cavity. Note that as we sweep the cavity, the exchange of the quadrature along

the amplitude axis can be interpreted as rotations of the noise ellipse, see figure caption.

Hence, this technique is often referred as ellipse rotation [123].

Next, we need to look at the correlations between the signal and idler photocurrents.

Similarly to the analysis above, we obtain the correlations of the reflected fields by carrying

the transformation (3.32) to equations (3.14) and (3.15). The real and imaginary parts

of
〈
Î
(s)
Ω Î

(i)
−Ω

〉
are explicitly given by

Re
{〈

Î
(s)
Ω (∆)Î

(i)
−Ω(∆)

〉}
= cµµ+ cνν + cκκ+ cλλ+ cξξ + cζζ + cηη + cττ, (3.39)

Im
{〈

Î
(s)
Ω (∆)Î

(i)
−Ω(∆)

〉}
= −cηµ− cτν + cξκ+ cζλ− cκξ − cλζ + +cµη + cντ, (3.40)

with

g
∗(s)
+ g

(i)
+ = cµ + icη, g

∗(s)
− g

(i)
+ = cζ + icλ, g

∗(s)
− g

(i)
− = cν + icτ , g

∗(s)
+ g

(i)
− = cξ + icκ.

(3.41)

The functions are plotted in figure 3.21 (solid blue lines). As we can see, by inspect-

ing the real and imaginary parts of equations (3.39) and (3.40), we can determine the

µ, ν, κ, λ, ξ, ζ, η and τ coefficients, related to the covariance matrix by the equations (3.18)–

(3.21).
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Figure 3.20: Spectral density of a thermal field with excess of phase noise. This power
spectrum is equivalent to the case where α = 1, β = 2, γ = δ = 0. The marked points
in the graphic stand to the following: 1) far from resonance the cavity does not interfere
in the noise ellipse and only amplitude fluctuations are measured. 2) At resonance with
the demodulated sideband (in this example 20 MHz) we have a full phase shift between
amplitude and phase noise while leaving the carrier field undisturbed. The small depletion
in comparison to the peak 3 is due to vacuum fluctuations disturbances. 3) This second
π/2 phase-shift is due to the effect of the cavity on the carrier, where now the vacuum only
attenuates its the mean field and does not disturb significantly the measured quadrature.
4) At resonance with the carrier, the noise ellipse suffers a π phase-shift and the amplitude
noise is again accessible. The dashed line is the shot noise level and s.n.u. stands for shot
noise units. We used the parameters of the signal cavity to model the resonator of this
example.

This analysis assumed the synchronous sweeping of the optical cavities. In order

to obtain some redundancy (useful to reduce experimental errors) we can look at the

correlations between different quadratures by holding one cavity far out of resonance (or

exactly in resonance with the carrier) and sweep the other one. By doing this procedure

to the two possible combinations,
〈
Î
(s)
Ω (∆)Î

(i)
−Ω(0)

〉
and

〈
Î
(s)
Ω (0)Î

(i)
−Ω(∆)

〉
, we obtain the

other curves present in figure 3.21. Note that some of the coefficients are hidden due to

a null multiplicative function, which simplifies the functions (3.39) and (3.40).

In practice, we perform the three experiments described above in sequence. This

gives us access to the spectral densities, equation (3.33), and the correlations of equations

(3.39) and (3.40) with the functions plotted in figures 3.19 and 3.21. We then retrieve the

covariance matrix coefficients from this data set, as will be described in the next chapter.

• •

Along this chapter we explored all the steps of the experimental setup used to achieve

the results from this work. We first described the steps needed to generate a stabilized



3.3. QUADRATURE MEASUREMENTS 73

Figure 3.21: Behavior of the detuning dependent functions of equations (3.39) and (3.40)
in three different experimental conditions: synchronous ellipse rotations of signal and idler
(solid blue); signal ellipse rotation while the idler is kept fixed at amplitude fluctuations
(dash-dotted green); idler ellipse rotation while the signal is kept fixed at amplitude
fluctuations (dashed red).

near coherent optical pump, essential in the generation of optical nonclassical states.

Based on the characterization of the available microcavities, we chose the system that

better suits our needs. This is a critical step since the frequency of the generated sig-

nal and idler can vary depending on the cavity and the coupled optical mode. Hence,

different mode matchings and optical alignments are needed in order to carry out the res-

onator assisted measurements for different microcavities. Furthermore, the stabilization

of the OPO oscillations is necessary to assemble the detection system and to perform the

measurements.

We described all the necessary ingredients to determine all the covariance matrix

coefficients with a resonator assisted detection technique. The full measurement system
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consists of individual resonators for the signal and idler fields followed by a balanced

detection scheme. Each photocurrent is double-demodulated before the registering of the

signals. This allows us to determine the spectral densities, equation (3.33), of each field,

their correlations, equations (3.39) and (3.40), and their shot noise reference. In the next

chapter we will present the analysis performed over the acquired data and the resulting

information retrieved from it.

The losses of the system can be properly compensated for following equation 3.29.

In addition to the quantum efficiency of the detection system and the optical cavities

imperfect visibilities, the described setup has significant losses in the optical path of signal

and idler. We infer an 11% loss in the chip output due to reflections on the waveguide

interface with air. The optical grating imposes a further 13% depletion of the fields. The

other optical devices in the detection scheme path sum up to additional 9% of losses in

each beam. Detection efficiency is discussed in section 3.3.1.

This setup can be expanded to include other modes in the analysis, such as the pump or

secondary (or even further) oscillations coming from the OPO. Our low threshold system

enables the generation of several excited modes, and even optical combs [83, 94, 95],

within the current available optical powers. The investigation of such additional modes

is one of the objectives for future expansions of the assembled experiment.



Chapter 4

Data Analysis and Results

In the previous chapters we developed all the necessary tools to generate signal and

idler fields by pumping an integrated OPO with a nearly coherent field above threshold.

Furthermore, we described all the detection system that allows us to determine all the co-

variance matrix coefficients, equations (3.18)–(3.21). Given the acquired signals described

in section 3.3, we will show the methods used to analyze the data sets and the results

retrieved from them. Sanity check tests performed by comparing the results obtained

with our acquisition system and equivalent measurements carried out with a commercial

electronic spectrum analyzer will be explored.

This chapter is organized as follows. First we will present the characterizations of the

optical pump field that were realized along the evolution of the experimental setup. Then,

in section 4.2, we will show the results obtained for squeezing measurements between

signal and idler fields as well as the four-mode state reconstruction. From the obtained

covariance matrices we will check the physicality and the purity of the generated states

followed by the verification of entanglement by the PPT criterion. We then investigate the

behavior of the generated states with the increasing of the optical pump power. We take

advantage of the developed analysis algorithm to reconstruct all the different covariance

matrices. The characteristics of the reconstructed quantum states are compared in section

4.3. Finally, we explore the consequences of phase modulation dynamics in our states.

4.1 Optical Pump Characterization

The optical pump is characterized by measuring the noise quadratures by the ellipse

rotation technique described in section 3.3.2. Currently, we share the idler cavity with

the pump, where we select the desired field with a flip mounted mirror. Since we have

an appreciable difference between their wavelenghts, the cavity parameters are different.

Furthermore, since we are not worried with degradation of correlations due to undesired

75
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Table 4.1: Experimentally determined parameters of the pump analysis cavity.

Parameter Pump Cavity

Free Spectral Range 1.03 GHz
Bandwidth 3.67 MHz

Finesse 281
Dip 17.1%

Mean Visibility 72.5%

losses we accepted to work with a significantly lower visibility for the pump. The relevant

pump cavity parameters are compiled in table 4.1.

Before determining the spectral density of the pump field we performed the calibration

of the detectors’ gain, properly compensated according to equation (3.24), and carried

out a shot noise calibration. Instead of directly determining the shot noise for each

individual measurement, we determined a calibration curve for the shot noise with a

series of measurements with varying intensities, shown in figure 4.1. We then determine

the shot noise level by monitoring the DC signal of our measurement. This procedure

reduces experimental errors and helps us to determine the saturation level of the detectors,

as one can see for the higher intensity measurements. Note that the electronic noise of

the detection system is shown in the graphic for V = 0.

(a) (b)

Figure 4.1: Pump field shot noise calibration. (a) Shot noise for the sine demodulation.
(b) Shot noise for the cosine demodulation. The electronic noise is present as a data point
in both graphics.

The power spectrum of the optical source, the amplified RIO laser output, is given

in figure 4.2 (a), where the fitted curve is given by equation (3.33). Following equation

(3.25), we corrected the electronic noise from the result, which is normalized by the shot
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noise. Due to the high noise levels we had to work with a big attenuation in order to avoid

the saturation of the detectors when measuring the phase fluctuations. By comparing the

obtained phase noise with the saturation levels determined by the shot noise calibration

we guarantee the validity of the measurement. We then correct the spectra according to

equation (3.29) to match the threshold intensity (Pth ∼ 13 mW).

(a) (b)

Figure 4.2: Amplified laser source noise (a) and filtered light noise (b) as a function of the
analysis cavity detuning. The faded blue noise are regarding experimental data corrected
by the optical losses and the black solid lines the noise ellipse fitting of equation 3.33. Red
lines in 0 dB are the shot noise reference. The filter cavity drastically reduces the overall
noise. Furthermore, it introduced p̂–q̂ correlations on the state. Note that the scales are
not matched to favor a better visualization of the filtered noise.

An equivalent measurement for the filtered field was carried after coupling the pump

to the bus waveguide. The micro-cavity was tuned to remain out of resonance. This

allowed us to investigate the noise levels that will be coupled into the integrated OPO.

The effects of the filter cavity become clear in figure 4.2 (b), where we repeated the

measurement process. Although the pump beam is not coherent, the noise levels were

drastically reduced while the filter cavity output remained stable (see figure 3.4). The

acousto-optic modulator also contributes to the remaining excess of noise. A parallel

between the source of this noise and a classical modulation picture is in the distribution

of energy from the modulated field to its sidebands. A good theoretical model for the

effect of the AOM on the optical field noise can be found in [134].

The information achieved from figure 4.2 (b) gives us a good perspective on the power

of our pump preparation system. The characterization of the pump field under different

conditions gives us a realistic quantification of the noise levels that we are propagating to

the signal and idler field through the optical pump. In the next section we will explore

the levels of correlation that we can measure by operating the integrated OPO above

threshold.
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4.2 Signal and Idler State Reconstruction

As described in the last chapter, our experimental system allows us to reconstruct the full

covariance matrix of signal and idler fields. Before we jump into the final measurements,

we will present some important aspects of the system and tests carried out to guarantee

proper functioning of the setup. We first show intensity measurements obtained without

the interference of the analysis cavities, where we compare the results from our demod-

ulation system with a commercial spectrum analyzer. The squeezing degradation with

induced optical losses will enunciate the expected behavior of the nonclassical states. In

section 4.2.2 we reconstruct the quadrature noise in the sum and subtraction subspaces

by carrying the measurements while the cavities synchronously sweep around the carrier

resonance. The reconstruction of the state covariance matrix is shown in section 4.2.3,

followed by the exploration of the purity of the state and the application of entanglement

criteria, section 4.2.4.

4.2.1 Amplitude Difference Squeezing and Squeezing Degrada-
tion

The first goal of our experiment was to measure optical squeezing in the amplitude dif-

ference sub-space, reproducing previous results obtained for silicon nitride micro-cavities

[110, 116]. For these measurements we compared two different methods. For the first one

we used an electronic spectrum analyzer (ESA) to explore amplitude correlations between

signal and idler. Although more limited than our full system, this step was important to

cross check our results and evaluate the reliability of the equipments at our disposal. We

then compared this results with equivalent measurements done with the double demodu-

lation scheme. The proper functioning of the system is guaranteed if similar results are

achieved for both methods. Furthermore, the comparison of results allows us to evaluate

problems in the data analysis.

The electronic spectrum analyzer enables us to verify the spectral band of the observed

correlations, as it can be operated with spectral sweeping. Figure 4.3 shows our raw results

directly comparing the amplitude difference noise of signal and idler with the shot noise.

Note that, since we have a single input to the ESA, we have to determine the shot noise in

different temporal measurements. We used electronic power splitters to perform sum and

subtraction operations on the photocurrents, giving us access to the amplitude difference

noise and the shot noise. Our measurement covers the region where the detectors remain

well balanced, as discussed in section 3.3.1. The squeezing remains approximately at the
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same magnitude along the observed spectrum. The crucial parameters to measure such

correlations are the pump power, which will be explored in section 4.3, and the optical

losses. In principle we could try to measure squeezing up to 200 MHz, limited by the

OPO bandwidth, however we have electronic limitations which restrict our measurement

window to approximately 35 MHz.

Figure 4.3: Optical squeezing at a pump power near oscillation threshold for analysis
frequencies ranging from 10 MHz to 30 MHz. The dashed line indicates the shot noise
level.

Next, we checked the behavior of the obtained squeezing with optical losses by adding

neutral density filters in the optical path right after the chip output. The choice of

attenuating the fields while spatially overlapped guarantees that signal and idler are being

subjected to the same losses. On the other hand, this jeopardizes the locking system

introducing instabilities to the experiment.

The degradation of squeezing with losses, shown in figure 4.4, is expected to be in

accordance to equation 3.29. In order to see a clear decreasing in the squeezed level

we took several measurements at each attenuation level. This is an important result to

certificate that the measured nonclassical effects are not a product of possible electronics

malfunctioning or analysis errors.

As a sanity test of the acquisition system, we performed equivalent measurements

with the procedure described in section 3.3.1. We used the doubled demodulation scheme

to measure the amplitude difference with both electronic oscillators. The shot noises

were calibrated for each demodulation of each field, and are given in figure 4.5. Three

measurements were performed for each one of the attenuations to mitigate the effects of

the system instabilities. The presented results are a mean of such measurements and the

different demodulations. The squeezing degradation is shown in figure 4.6 (a). Since we

have access to the individual photocurrents in this configuration, we are able to observe
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Figure 4.4: Optical squeezing as a function of the attenuation of signal and idler fields.
As expected, the squeezing degrades as the optical losses increase. The fit gives a slope of
(1.90±0.02) ·10−2 and an intercept of (7.75±0.09) ·10−1, leading to a noise of 0.96±0.02
for complete attenuation. As expected, this result is compatible to the shot noise. The
data was obtained with an electronic spectrum analyzer fixed at the analysis frequency
of 20 MHz. Error bars are calculated by the standard deviation of the data set. We used
a resolution bandwidth of 200 kHz and a video bandwidth of 20 Hz.

the degradation of the anti-squeezing on the orthogonal quadrature as well, shown in

figure 4.6 (b). Another interesting manner to observe the losses effects is by varying the

attenuation of the optical beam while the measurement is being carried out. The result

of such procedure can be seen in figure 4.7, where we have a clear increasing of the mean

value of the amplitude difference noise together with the increasing of the dispersion of

the data points. The measurements were carried with the analysis frequency of 20 MHz.

The tests presented in this section assure the nonclassical nature of the effects mea-

sured. All the shown results are respective to the raw data, without any loss correction

for the squeezing amount. The best squeezing directly measured was of 2.30 ± 0.03 dB.

Taking into account the optical losses and the quantum efficiency of our photodetectors,

equation (3.29), we infer a total of 4.0 ± 0.7 dB of squeezing at the chip output.
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(a) (b)

(c) (d)

Figure 4.5: Shot noise calibration for the sine (a) and cosine (b) demodulation of the
signal field and for the sine (c) and cosine (d) demodulation of the idler field.
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(a) (b)

Figure 4.6: Optical squeezing (a) and anti-squeezing (b) degradation as a function of
the attenuation. For complete attenuation, the respective tendency curves tend toward
(8.4 ± 0.3) · 10−1 and −1 ± 2. Error bars are calculated by the standard deviation of the
data set.

(a) (b)

Figure 4.7: Optical squeezing (a) and anti-squeezing (b) degradation as a function of the
real time attenuation, performed in a 700 ms time window. The measurements carried
out during the experiment present dispersion levels equivalent to the ones at the low
attenuation part of the graphics.
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4.2.2 Sum and Subtraction Subspaces

As seen in the previous section the difference of signal and idler amplitude quadratures

present strong correlations, beating the shot noise level. We extend this measurements to

other quadratures of the fields by taking measurements while sweeping the optical cavities,

as discussed in section 3.3.2. Signal and idler quadrature noise as a function of the idler

cavity detuning are shown in figure 4.8. The choice of one of the cavities as reference

for the sweeping is necessary in order to compare the different signals. The curves were

fitted according to the Non-Linear Least-Square Minimization and Curve-Fitting (lmfit)

package for Python [135]. Our algorithm performs a least-square method to determine

the optimum curve adjust and the standard deviations from the model and the data. The

advantage of using the lmfit package for this task is that it allows us to fix values and

impose bounds between the fitting parameters. Moreover, it is fairly simple to apply the

algorithm in parallel, including bounded parameters, to different data sets. Note that

the central depletion in the experimental data when the cavities are at resonance is not

considered in the fits. This behavior is due to interference between the part of the carrier

that was coupled into the cavity, suffering a π phase-shift, and the part that was reflected.

Partial treatment of this effect can be found in [136].

(a) (b)

Figure 4.8: Spectral density, equation (3.12), of the signal (a) and idler (b) fields. Both
states are highly noisy in both amplitude and phase quadratures. The straight line is
the fitting of equation (3.33) to the respective faded data set. The dip in the data at
resonance is due to a interferometric effect between the reflected and the coupled part of
the carrier into the cavity.

We then computed the sum and subtraction subspaces of the measured data, given

by equation (3.26) and shown in the respective figures 4.9 (a) and (b). The squeezing in

amplitude difference is observed in the regions far from resonance in figure 4.9 (b). Note
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(a) (b)

Figure 4.9: Quadrature noise of the sum (a) and subtraction (b) subspaces as a function
of the idler cavity detuning. Optical anti-squeezing and squeezing (blue dots) can be
observed on the corners of the respective figures (a) and (b). The high levels of phase
noise are seen in the peaks of the subtraction subspace and the dips in the sum subspace.
In ideal conditions, the dips in figure (a) are expected to reach below shot noise levels.
Horizontal dashed lines indicates the shot noise level.

that at exact resonance, despite a significant drop in the amplitude difference noise, we do

not have a signature of optical squeezing. This point must be taken with skepticism since

it is related to a vary fast quadrature noise exchange as the cavity passes through this

point. Moreover, any asynchrony between the cavities results in a strong mixture between

different quadratures. Hence, by checking the extremities of the data set, we affirm

that the highly thermal fields shown in figure 4.8 are strongly correlated in amplitude.

Furthermore, by looking at the same region in figure 4.9 (a) anti-squeezing is observed,

as expected. While sweeping the cavity, phase noise is accessible and no clear phase

correlations in the sum subspace are seen. Note that the noise levels in the sum and

subtraction subspaces are of the same order. Near resonance, the expected increase in the

amplitude sum noise, of the same order of the extremities of the graphic, is not observed.

This is due to the fast rotation of the noise ellipses combined with the dip in the spectral

densities (see figure 4.8). Moreover, the noise level is far above shot noise, which hinders

any expectation of violating entanglement criteria as in equation (1.13).

The presented correlations and the excess of noise will be explored in further sections,

where we will use the information of the density spectrums and the correlations obtained

from our measurements to reconstruct the covariance matrix of the generated optical

state. The high levels of phase noise indicates that any entanglement is hindered from

our state as will be thoroughly explored in section 4.2.4.
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Table 4.2: Experimentally determined parameters of the analysis cavities.

Parameter Related Correlations Mean Value Standard Deviation

α(s) ∆2p̂
(s)
s = ∆2q̂

(s)
a 10.44 0.03

β(s) ∆2q̂
(s)
s = ∆2p̂

(s)
a 12.51 0.09

γ(s)
〈
p̂
(s)
s q̂

(s)
s

〉
= −

〈
p̂
(s)
a q̂

(s)
a

〉
−1.36 0.05

δ(s)
〈
p̂
(s)
s p̂

(s)
a

〉
=
〈
q̂
(s)
s q̂

(s)
a

〉
−0.1 0.3

α(i) ∆2p̂
(i)
s = ∆2q̂

(i)
a 11.04 0.04

β(i) ∆2q̂
(i)
s = ∆2p̂

(i)
a 12.0 0.1

γ(i)
〈
p̂
(i)
s q̂

(i)
s

〉
= −

〈
p̂
(i)
a q̂

(i)
a

〉
−0.87 0.06

δ(i)
〈
p̂
(i)
s p̂

(i)
a

〉
=
〈
q̂
(i)
s q̂

(i)
a

〉
−0.7 0.3

4.2.3 Covariance Matrix Reconstruction

In order to retrieve all the properties of the quantum state determined by the four side-

bands involved in our measurements we need to further investigate the correlations be-

tween signal and idler. From the spectral densities of signal and idler fields eight param-

eters are readily determined from the fitted curves given by equation (3.33). We used the

lmfit Python package to determine the optimal parameters and their errors. For the same

data set used in last section, these parameters are listed in table 4.2. As described in sec-

tion 3.3.2, three measurements are taken in sequence to reconstruct the covariance matrix.

A synchronous measurement of both cavities sweeping around the resonance is followed

by asynchronous measurements in which one of the cavities stays far out of resonance and

vice versa. Hence, we have two degenerate measurements for each power spectrum. In

order to reduce uncertainties we simultaneous fit the data sets with bounded parameters,

that is, all the coefficients must remain the same along the measurement.

Note that the high error of the δ(j), j = {s, i} parameters are expected from the

theoretical approach to the cavity assisted detection exposed in section 3.3.2. As can be

seen from figures 3.19, such parameter has small multiplicative factors coming from the

properties of the assembled optical cavities. Hence, we have a poor estimation of such

factor and the high standard deviations can, at some cases, introduce undesired effects

in our reconstructed covariance matrices. As a consequence, nonphysical states can be

reconstructed if this parameter is considered. Figure 4.10 shows the difference in the

fitting curves for a model taking this factor into account and a model imposing δ(j) = 0.

As we can see, the adjusts considering this parameter are almost imperceptible. This is
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expected once energy unbalances between the sidebands are not significant for the states

under study [25]. Nevertheless we carried out the analysis considering both scenarios in

order to closely look at the influence of these parameters. Note that the value of δ(j) is

irrelevant to the parameters from equations (3.39) and (3.40) and we do not need to take

the above considerations in the following analysis.

(a) (b)

Figure 4.10: Spectral density, equation (3.12), of the signal (a) and idler (b) fields. Blue
and red lines are equivalent to δ(j) = 0, j = {s, i}. Black dashed lines are respective to
δ(s) = 0.1 ± 0.3 (a) and δ(i) = −0.7 ± 0.3 (b).

The other parameters of the covariance matrix are determined by fitting equations

(3.39) and (3.40) into the data set corresponding to equations (3.14) and (3.15). The

three different data sets for the real and imaginary parts of
〈
Î
(s)
Ω Î

(i)
−Ω

〉
share the same

coefficients, hence we can attribute bounds to the fitting routine forcing the equality of

the parameters while simultaneously fitting both curves to the 6 data sets. In order to

correctly preserve the measured subspace correlations, we set the extra bound given by

∆2p̂− =
1

2
α(s) +

1

2
α(i) − µ, (4.1)

where the amplitude squeezing (∆2p̂−) is retrieved from the subtraction subspace, as

presented in figure 4.9 (b). In order to reduce uncertainties we calculate the squeezing

value as the mean of the three sequential measurements. The resulting curve fits and the

obtained parameters are respectively shown in figure 4.11 and in table 4.3.

The validity of the standard deviations generated by the fitting algorithm was checked

with another function embedded in the lmfit package, which calculates the confidence

intervals of the obtained results. We calculated the confidence intervals equivalent to

multiples of the standard deviation and verified that they indeed follow the usual Gaussian

distribution of the data points along the fitted curve.
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Figure 4.11: Curve fitting of the equations (3.39) and (3.40) into the respective data
sets corresponding to equations (3.14) and (3.15) while synchronously sweeping both
cavities and by sweeping one of the cavities while the other stays out of resonance. The
demodulation frequency was set to 20 MHz. Signal and idler labels are indicating the
reflected power of the cavities and real and imaginary are respectively indicating equations
(3.39) and (3.40).

The results shown in tables 4.2 and 4.3 were achieved after guaranteeing the best

achievable stationarity between the photocurrents, respecting equations (3.13) and (3.16).

Otherwise, the overlapped demodulation channels would lead to a mixture of equations

(3.14) and (3.15) in their output, shown to be significant for the high levels of noise

present in our measurements. Stationarity can be checked by operating the photocurrents

according to equations (3.13) and (3.16). We noticed a discrepancy on the experimental

electronic phase and the theoretical one in preliminary tests of the system. As the double

demodulation assumes a phase of 90 degrees between the sine and cosine channels, the first

attempt of proper orthogonal demodulation was performed by configuring the function

generator to this condition. Checking the photocurrents we noticed that stationarity was

not being properly respected. We avoided this effect by fine tuning the delay between the

sine and cosine signals coming from the function generator. The effects of this procedure

on the stationarity conditions are shown in figure 4.12. The role of stationarity was well

discussed in references [25, 136].

We presented the method to obtain all the coefficients and standard deviations of the

four-mode covariance matrix in the symmetric and antisymmetric basis. Next we will

explore the state properties that can be retrieved from the obtained results.
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Table 4.3: Experimentally determined parameters of the analysis cavities.

Parameter Related Correlations Mean Value Standard Deviation

µ
〈
p̂
(s)
s p̂

(i)
s

〉
=
〈
q̂
(s)
a q̂

(i)
a

〉
10.1 0.2

ν
〈
q̂
(s)
s q̂

(i)
s

〉
=
〈
p̂
(s)
a p̂

(i)
a

〉
0.57 0.09

κ
〈
p̂
(s)
s p̂

(i)
a

〉
=
〈
q̂
(s)
s q̂

(i)
a

〉
−0.50 0.06

λ −
〈
p̂
(a)
s p̂

(i)
s

〉
= −

〈
q̂
(a)
a q̂

(i)
s

〉
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〈
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s q̂

(i)
s

〉
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(i)
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ζ
〈
q̂
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(i)
s

〉
=
〈
p̂
(s)
a q̂

(i)
a

〉
−0.74 0.06

η −
〈
p̂
(s)
s q̂

(i)
a

〉
=
〈
q̂
(s)
a p̂

(i)
s

〉
−0.66 0.02

τ −
〈
q̂
(s)
s p̂

(i)
a

〉
=
〈
p̂
(s)
a q̂

(i)
s

〉
−2.62 0.09

(a) (b)

Figure 4.12: Stationarity conditions for 90 degrees delay (a) and for 86 degrees delay (b)
between the sine and cosine demodulation signals as configured in the function generator.
In figure (b) we note a significant improvement in the stationarity condition of equation
(3.16). The mean values are implicit in the labels.
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4.2.4 Physicality, Purity and Entanglement

In possession of the covariance matrix, the first thing that we evaluated is the validity

of our state. As discussed in section 1.1, a covariance matrix that corresponds to valid

physical density matrix must respect the uncertainty relation of equation 1.5. This is easily

verified by computing the symplectic eigenvalues of the reconstructed matrix. Carrying

the example presented in last section we have, for equation 1.6,

VD = Diag{1.78, 1.78, 3.37, 3.37, 14.69, 14.69, 17.93, 17.93}. (4.2)

Hence, we have a bona fide physical state.

The purity of the measured state can also be easily determined directly from the

covariance matrix or from the determined symplectic νj, j = {1, 2, 3, 4} eigenvalues. Note

that we grouped the degenerate values in our notation. As expected from the analysis of

section 4.2.2 the measured state is highly mixed. According to equation (1.7), the purity

of the example measurement is of p = 4.01 × 10−7.

With the covariance matrix in hand we can easily look at the PPT criteria, described

in section 1.1, for the different bipartitions of the state. In order to have a more intu-

itive description we first transform the state to the ±Ω sideband basis by applying the

transformation given by

B±Ω =
1√
2



1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1


. (4.3)

We compiled the minimum symplectic eigenvalue resulting from the partial transposi-

tion of all partitions of the system in table 4.4. Some of the symmetric transpositions

are omitted in order to maintain a concise table. As expected, there is no evidence of

entanglement between the substates.

The optical states that we are retrieving from the integrated OPO are highly mixed

and unentangled. Nevertheless, strong intensity correlations are still observable. This

results were reproducible for several iterations of the exemplified measurement. Next, we

will evaluate the behavior of the system for different oscillation conditions.
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Table 4.4: Evaluation of the PPT criteria for the different modes of the system, where
s± stands for the upper and lower signal sidebands and i± the upper and lower idler
sidebands. In the notation, modes on one side of the × symbol are transposed while the
modes on the other side of the × symbol remain unchanged.

Transposition Minimum Symplectic Eigenvalue

[s+ × s−, i+, i−] 1.98

[s− × s+, i+, i−] 1.98

[i+ × s+, s−, i−] 2.17

[i− × s+, s−, i+] 2.17

[s+, s− × i+, i−] 2.28

[s+, i+ × s−, i−] 2.47

[s+, i− × s−, i+] 2.51

4.3 Noise Dependence on Pump Power

Once we have the methodology of data analysis defined, we can apply it to several different

measurements. Since the system is stable when operating above threshold, we repeated

the procedure described in last sections for different pump powers. The measurements

were made in sequence in a period of 40 minutes to avoid experimental discrepancies due

to misalignments or changes in the environmental conditions. We reconstructed a total

of 23 covariance matrices, from which we explored the evolution of some properties with

a growing pump power.

First, we observe the behavior of the individual spectral densities. Amplitude and

phase fluctuations of signal and idler beams are shown in the respective figures 4.13 (a)

and (b). The growth of quadrature noise increases tens of shot noise units. Hence,

any unbalances between the beams caused by the dynamics of the system will lead to

degradation of correlations. Figure 4.14 (a) shows the degradation of optical squeezing

with the enhancing pump power. This is in contrast with similar observations in χ(2)

OPOs, where the amplitude correlations are robust against variations in the pump power

[15]. As for the dynamics of the χ(3) OPO developed in section 2.2.2, this robustness

should also be present. Note that δp̂− does not change in the dynamical equation (2.52).

However, the unbalances of signal and idler beams are not accounted for in the exposed

model. As no significant correlations are seen in the sum subspace, the increasing of phase

fluctuations of signal and idler indicates the growth of phase sum fluctuations as well. This

effect can be seen in figure 4.14 (b). Due to the high phase noise, the saturation of the

detectors can be seen for the measurements with sideband powers superior to 1 mW in

the same figure. All the measurements were corrected for the optical losses coming from
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(a) (b)

Figure 4.13: Amplitude (a) and phase (b) noise for signal and idler fields as a function of
the respective fields optical powers. The linear fits are included for a clear observation of
the growth tendency.

different optical devices (diffraction grating, beam splitters, mirrors, lenses, waveplates),

cavity visibilities and quantum efficiencies.

(a) (b)

Figure 4.14: Amplitude difference (a) and phase sum (b) noise as a function of the mean
value of signal and idler optical powers. The linear fits are included for a clear observation
of the growth tendency.

As done in last section, we can verify the physicality and the purity of our states

by calculating the symplectic eigenvalues of the reconstructed covariance matrices. We

compiled the minimum symplectic eigenvalue figure 4.15 (a), from which we can observe

that all the considered states in the previous analysis are physical. Moreover, the fast

increasing in the mixedness of the states with the increasing pump power can be observed

in figure 4.15 (b). Following the PPT test carried out in section 4.2.4, we verify the mini-
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(a)
(b)

Figure 4.15: Properties obtained from the symplectic eigenvalues of the covariance matri-
ces. (a) Physicality of the states indicated by the greater than one minimum symplectic
eigenvalues. (b) Purity of the states in logarithmic scale.

mum symplectic eigenvalues for the different transpositions of all reconstructed covariance

matrices. The results are compiled in figure 4.16, where no evidence of entanglement is

present.

Taking advantage of the shared analysis cavity we carried out similar measurements

as the above for the pump field. The measurements were done maintaining the cavity

in resonant condition operating below threshold. The lock system described in section

3.2.2 does not hold in this regime, since we do not have the depletion of the pump due to

sideband modes excitation. Alternatively we maintained the resonant condition passively

while performing the measurements. The resulting pump behavior is shown in figure 4.17.

In order to accurately retrieve the behavior of the increasing pump we took degenerate

measurements for each chosen intensity level, hence the clusters of points at the different

intensities.

The approximately linear behavior of the fast increasing of pump phase noise with

intensity is in agreement with previous evidence of photon scattering caused by phonons

in χ(2) cystals [137]. Furthermore, investigations of the influence of thermal noise in light

propagating in waveguides are compatible to a thermorefractive origin [138]. The phase

noise in microresonators was also evidenced in [139], where the phase noise is independent

of the pump power, diverging from our results. While we do not have a conclusive physical

source of the excess of noise measured, we do expect it to be of thermal nature. Therefore,

the mitigation of the excessive phase noise may be achieved by cooling the system. This

indicates a path for future works in our experiment, where temperature control may



4.4. PHASE MODULATION EFFECTS 93

Figure 4.16: PPT test for different transpositions for the reconstructed covariance ma-
trices. The dashed line indicating the value 1 represents the condition of physicality
described in section 1.1. None of the substates are entangled since no minimum symplec-
tic eigenvalue is below 1.

contribute for the generation of entangled states in the above threshold integrated OPO.

4.4 Phase Modulation Effects

As discussed in section 2.2.2, the dynamics of χ(3) systems entails in self-phase and

cross-phase modulations that distort the noise ellipse. This effect is noticeable through

amplitude–phase correlations in each optical mode. We explore this property by reducing

the four-mode covariance matrix into a two-mode representation, given by the spectral

matrix [25]. In this semiclassical approach, we relate the field quadratures with complex

Fourier photocurrent components, which effectively carries the same information of the

reconstructed covariance matrices.

As described in [25], we define the two-mode spectral matrix as

S =

〈
x
(j)
Ω ·

(
x
(j)
−Ω

)T〉
, (4.4)

where

x
(s,i)
Ω =

[
P̂(s)

Ω , Q̂(s)
Ω , P̂(i)

Ω , Q̂(i)
Ω

]T
. (4.5)

The newly defined non-Hermitian operators are related to the symmetric and antisym-
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Figure 4.17: Amplitude and phase noise of the pump field quadratures as a function of
the pump power. These measurements were taken for under threshold resonant condition.
Linear fits are included for visual guidance.

metric quadratures as

P̂(j)
Ω =

1√
2

(p̂s + iq̂a) , (4.6)

Q̂(j)
Ω =

1√
2

(q̂s − ip̂a) , j = {s, i}. (4.7)

Although they do not represent proper observable quadratures of the field, they recon-

struct observable spectral densities when applied to equation (2.54). Explicitly developing

equation (4.4) in terms of the covariance matrix parameters, the spectral matrix is written

as

S =


α(s) γ(s) µ ξ
γ(s) β(s) ζ ν
µ ζ α(i) γ(i)

ξ ν γ(i) β(i)

+ i


0 δ(s) η κ

−δ(s) 0 λ τ
−η −λ 0 δ(i)

−κ −τ −δ(i) 0

 . (4.8)

The imaginary part of the matrix is related to correlations between the symmetric and

antisymmetric operators, equivalent to correlations between individual sidebands of signal

and idler. On the other hand, the real part gives us a description of signal and idler

and their correlations equivalent to the one obtained from tomographies performed with

homodyne detection schemes. In this picture we are ignoring the correlations between the

symmetric or antisymmetric part of the field. Although not complete, this representation

is sufficient to explore the dynamical effects on the sum and subtraction subspaces, as

described by equation (2.52). One should note that in the absence of s/a correlations

the spectral matrix is a valid covariance matrix and completely maps the four-mode state

into a half-dimensional description.

Taking the real part of S, we can easily identify significant p̂(j)/q̂(j), correlations as

the γ(j) terms. We diagonalized the main diagonal 2 × 2 blocks to get into the rotated



4.4. PHASE MODULATION EFFECTS 95

frame. From the diagonalization processes we determine the rotation 2×2 matrices (R(j)
θ )

for each mode. We then rotate the spectral matrix into this new frame by applying the

transformation

Sθ = RθSR−1
θ , (4.9)

where

Rθ =

[
R(s)
θ 0

0 R(i)
θ

]
. (4.10)

The rotations are represented in the usual way as

R(j)
θ =

[
cos θj sin θj
− sin θj cos θj

]
. (4.11)

The rotation angles of the signal and idler noise ellipses are compiled in figure 4.18, where

it is evident that all our states are significantly affected by dynamical phase modulations.

This effect mixes amplitude and phase quadratures and is one of the responsible effects

for the amplitude degradation shown in figure 4.14 (a).

Figure 4.18: Rotation angles that independently aligns the axis of signal and idler noise
ellipses, as illustrated in figure 2.9. All the measurements present appreciable angles,
indicating the influence of phase modulations in the dynamics of the system.

The comparison of amplitude and phase noise between the original and the rotated

frames are shown in the respective figures 4.19 and 4.20, where clear tendencies are seen

for all points as the amplitude noises are reduced in contrast with an increasing phase

noise. We also compared the amplitude difference and phase sum correlations between

the original and the rotated frames in the respective figures 4.21 (a) and (b). As we

can see, although phase sum (classical) correlation is retrieved, we have completely lost

amplitude compression. This is explained by the influence of the excessive phase noise in

this new “amplitude” quadrature. If the excessive noise is mitigated we expect stronger

subtraction correlations in the rotated frame.
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(a) (b)

Figure 4.19: Comparison of the amplitude noise between the original and the rotated
frame for signal (a) and idler (b). The guiding lines are respective to the original frame
(solid) and the rotated one (dashed).

(a) (b)

Figure 4.20: Comparison of the phase noise between the original and the rotated frame
for signal (a) and idler (b). The guiding lines are respective to the original frame (solid)
and the rotated one (dashed).



4.4. PHASE MODULATION EFFECTS 97

(a) (b)

Figure 4.21: Comparison of the amplitude subtraction and phase sum noises between the
original and rotated frames. The amplitude squeezing is completely lost in the new frame.
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• •

Several analysis were performed in the acquired data from the experimental system

described in chapter 3. First, we checked the drastic reduction of the pump amplitude

and phase fluctuations due to the filter cavity. The low noise pump field is very important

to not introduce undesirable noise in the signal and idler fields. On the other hand, some

excess of noise was still present due to the methods needed to control strong intensity

fluctuations present in the filter cavity output.

The generated signal and idler fields by the OPO operating above threshold presented

strong two-mode amplitude nonclassical correlations of up to 2.30 ± 0.03. We compared

the amplitude squeezing using two different measurement methods in order to create

confidence in our analysis. Very high fluctuations in the phase sum subspace was also

observed. Furthermore, the expected degradation of squeezing and anti-squeezing with the

introduction of optical losses was verified, which indicates that the measured nonclassical

effect was not coming from possible electronic or computational artifacts.

When corrected for optical losses, we infer up to 4.9 ± 0.7 dB of on-chip amplitude

squeezing. This value is bellow the expected 9.0 dB for the utilized microresonator, which

is attributed to the pump excess of noise and the high phase noise that contaminates

the amplitude quadrature owing to modulations induced by the third order nonlinear

interactions. The high phase noise in the sum subspace, of 11.21 ± 0.01 dB (13.2 ± 0.5

on-chip) for the same measurement of maximum squeezing, precluded any observation of

entanglement.

We reconstructed the full four-mode covariance matrix of the state by simultaneously

fitting equations (3.39) and (3.40) to six data sets acquired from a sequence of three mea-

surements. Our analysis method allowed us to verify the validity of the errors generated

by the computational routine applied. From the symplectic eigenvalues of the covariance

matrix we guaranteed that the reconstructed state is physical and we quantified its highly

mixed character. Moreover, the PPT criterion for quantum entanglement was applied in

several bipartitions of the state. As expected from the excessive mixedness of the system,

no evidence of entanglement was found.

We took advantage of the stability control of the experimental system to study how

the covariance matrix change with increasing pump power. Enhancement of the ampli-

tude and phase noise was observed for signal and idler. In this noisy regime, unbalances

between the fields easily lead to the degradation of optical squeezing. In addition, phase

modulation effects present in the χ(3) dynamics mix the optical quadratures introducing
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phase fluctuations in the amplitude quadrature. Another effect that may play an impor-

tant role in the lack of robustness of amplitude squeezing is the distribution of energy to

additional sideband modes due to the intracavity increasing power. The exploration of

the quadrature noise and possible correlations between the additional fields are a subject

of future research planned to be carried in the LMCAL.

We observed a fast growth of phase noise in the pump field as we increased the pump

power while operating the OPO below threshold. The approximately linear tendency of

the increasing phase fluctuations is in accordance to previous studies using second order

nonlinear crystals [137]. Furthermore, thermorefractive effects were already evidenced in

silicon nitride waveguides [138] and microresonators [139]. Hence, we do not discard the

possibility of photon scattering by phonons to be responsible for this undesired excess of

noise. As for the χ(2) OPO, the cooling of the system may be a solution to mitigate this

effect finally enabling the generation of bright two-mode entangled states from integrated

χ(3) OPOs operating above threshold.



Conclusion

We reconstructed the covariance matrices of four-mode continuous variables states gener-

ated in an on-chip χ(3) optical parametric oscillator operating above threshold. Up to our

knowledge, this is the first full tomography of states generated in this condition. We re-

ported the direct measurement of 2.30±0.03 dB of amplitude difference squeezing, which

reproduces previous results obtained for silicon nitride OPOs [110, 116]. Correcting to

losses, we infer a total of 4.9 ± 0.7 dB of squeezing on-chip. This is the first integrated

source of nonclassical light available in the LMCAL.

Nevertheless, observing entanglement remains a challenge, as enlightened by current

results. The four-mode state is highly mixed with large excess of noise in the phase sum

quadrature. Moreover, for stronger pump powers, the noise present in fields’ quadra-

tures increases and amplitude correlations are degraded as the dynamics of the system

unbalances signal and idler. This lack of robustness of the χ(3) amplitude correlations

to variations of the pump intensity are in contrast to the χ(2) scenario [15]. We expect

that the origin of the excess of noise is of thermal nature [137–139]. Hence, cooling the

chip may enable the measurement of entanglement in future work. Our results shine light

on one of the bottlenecks hindering the deterministic generation of entangled states in

silicon photonics OPOs. Investigations on the behavior of the pump noise as a function of

temperature are currently being carried as the beginning of the next project of integrated

OPOs in our laboratory.

Reducing the complexity of the covariance matrix, only considering the symmetrical

basis, we identified cross correlations between different quadratures of the field. This effect

is expected due to self- and cross-phase modulations present in χ(3) nonlinear interactions

[101]. With the mitigation of the excess of noise in the state we expect to observe better

correlations on rotated frames, including entanglement, as theoretically predicted in [21].

Tripartite entanglement between signal, idler and pump is also predicted in [21]. Fur-

thermore, secondary (or even further modes) modes are excited by enhancing the pump

power, which also may present strong correlations [107]. Our system can be further ex-

panded to include analysis cavities for the pump and the additional modes. Therefore,

100
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the built experimental setup has potential to be employed in several future investigations

to be carried in the LMCAL.
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