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alcançar voos ainda mais altos. E, no entanto, tudo mudou. Porque, ao longo dessa jor-

nada, os desafios foram muito além do que simplesmente atingir objetivos acadêmicos e
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tunidade de conviver com pessoas tão sábias, dentro e fora do mundo acadêmico, e que

me inspiraram a seguir em frente; gratidão por também poder dar a minha contribuição

(ainda que singela) a esse oceano de conhecimento. Sou muito grata a todos vocês que
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para o estágio no LAM.

A todos os professores que contribuı́ram para a minha formação; em particular,
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Resumo

Quasares são núcleos ativos de galáxias alimentados pela acreção de matéria em um bu-

raco negro supermassivo encontrado em seus centros. Eles não apenas são os traçadores

de estruturas em larga escala mais brilhantes e com maiores valores de bias, como também

acredita-se que eles coevoluem com suas galáxias hospedeiras, tornando-os valiosos tanto

para a cosmologia quanto para estudos de evolução de galáxias. Seus espectros no UV-

óptico são caracterizados por um contı́nuo não-térmico e uma série de linhas de emissão

largas, que podem ser bem resolvidas com filtros de bandas estreitas. Nesta tese, nós

apresentamos um método para estimar redshifts fotométricos (“photo-zs”) precisos para

quasares detectados em levantamentos fotométricos de bandas estreitas. Nosso método

(apelidado de QPz) encontra, em primeira aproximação, o melhor ajuste para o fotoes-

pectro de quasares em termos dos chamados autoespectros – os modos mais relevantes

de variação de quasares de linhas largas e obtidos a partir de uma seleção de espectros

do SDSS. Em cada redshift, o fotoespectro é modelado como uma combinação linear de

quatro autoespectros “redshiftados” e combinados com uma lei de extinção do tipo lei

de potência. Neste trabalho, testamos os quasares confirmados espectroscopicamente que

foram detectados no catálogo primário do miniJPAS e nos primeiros dados divulgados

com o S-PLUS, assim como construı́mos e adotamos catálogos de fluxos simulados para

demonstrar o potencial que o J-PAS terá no futuro de fornecer photo-zs precisos para

quasares. Validamos nosso método comparando sua performance com uma nova versão

do código LePhare (ainda não disponı́vel publicamente), que constitui um método padrão

de ajuste de modelos espectrais empregado na literatura.

Palavras-chave: Quasares; redshifts fotométricos; levantamentos fotométricos de bandas

estreitas; estrutura em larga-escala
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Abstract

Quasars are active galactic nuclei powered by the accretion of matter onto a supermas-
sive black hole lying at their centers. They are not only the brightest and most highly
biased tracers of large-scale structure, but they are also believed to co-evolve with their
host galaxies, making them invaluable sources to both cosmology and galaxy evolution
studies. Their UV-optical spectra are characterized by a non-thermal continuum and a
series of broad emission lines, which can be well-resolved with narrow-band filters. In
this thesis, we present a method for estimating precise photometric redshifts (photo-zs)
for quasars detected with narrow-band photometric surveys. Our method (dubbed QPz)
finds a first-approximation best-fit model for the quasar photospectrum in terms of the so-
called eigenspectra — the most relevant modes of variation of broad-line quasars, com-
puted using as a basis a selection of SDSS spectra. At each redshift the photospectrum
is modelled as a linear combination of four redshifted eigenspectra combined with an ex-
tinction power law. In this work, we utilized spectroscopically confirmed quasars detected
with the miniJPAS primary catalog and the first data release of S-PLUS as test cases, and
we also constructed and employed mock catalogues to demonstrate the potential that the
future J-PAS will have to deliver precise photo-zs for quasars. We validate our method by
comparing its performance with a new version (not publicly available yet) of the LePhare
code, which is a standard template-fitting approach employed in the literature.

Keywords: Quasars; photometric redshifts; narrow-band filter surveys; large-scale struc-

ture





Contents

1 Introduction 1

2 Large-scale structure in the Universe 7

2.1 Galaxy counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Quasar target selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 SDSS-I/II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 SDSS-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 SDSS-IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Superset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.5 Final remarks on quasar selection . . . . . . . . . . . . . . . . . 22

2.3 Quasar clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Quasar clustering in eBOSS . . . . . . . . . . . . . . . . . . . . 26

2.4 Multi-tracer technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Simulating a quasar and ELG photometric survey . . . . . . . . . 31

3 “Twinkle, twinkle, quasi-star” 39

3.1 Black holes as central engines . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 A black hole in our backyard . . . . . . . . . . . . . . . . . . . . 42

3.1.2 First observation of gravitational waves . . . . . . . . . . . . . . 43

3.1.3 First image of a black hole . . . . . . . . . . . . . . . . . . . . . 44

3.1.4 Eddington luminosity . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.5 Black hole accretion . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.6 A remarkable relation . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.7 Black hole seeds . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 The unified model of AGNs . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Quasars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Searching for quasars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xvii



xviii Contents

3.3.1 Quasar luminosity function . . . . . . . . . . . . . . . . . . . . . 68

3.3.2 Classification using machine learning . . . . . . . . . . . . . . . 73

3.4 Final remarks on quasar classification . . . . . . . . . . . . . . . . . . . 86

4 Photometric redshift estimation 89

4.1 Redshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Photometric redshift methods . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 LePhare++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Quasar Photometric Redshifts (QPz) . . . . . . . . . . . . . . . . . . . . 99

4.4.1 Global eigenspectra . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.2 Number of eigenspectra . . . . . . . . . . . . . . . . . . . . . . 104

4.4.3 Luminosity-redshift dependency . . . . . . . . . . . . . . . . . . 106

4.4.4 Not only photospectra . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.5 Type-II quasars . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Photo-z quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.1 Normalized Median Absolute Deviation (NMAD) . . . . . . . . 109

4.5.2 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.3 Outlier fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.4 Odds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5.5 Redshift-magnitude priors . . . . . . . . . . . . . . . . . . . . . 111

4.5.6 Kolmogorov-Smirnov (K-S) statistics . . . . . . . . . . . . . . . 111

4.6 Final remarks on photo-z estimation . . . . . . . . . . . . . . . . . . . . 112

5 Mock catalogs 113

5.1 Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Synthetic fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Galactic extinction correction . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Training sets for classification . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Non-observations and non-detections . . . . . . . . . . . . . . . . . . . . 121

5.6 Final remarks on mock catalogs . . . . . . . . . . . . . . . . . . . . . . 122

6 The miniJPAS survey 125

6.1 miniJPAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1.1 Aperture choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1.2 Aperture corrections . . . . . . . . . . . . . . . . . . . . . . . . 132



Contents xix

6.2 Stellarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3.1 Effect of different filter configurations . . . . . . . . . . . . . . . 138

6.3.2 Priors from the luminosity function . . . . . . . . . . . . . . . . 140

6.3.3 Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3.4 Luminosity-redshift bin eigenspectra . . . . . . . . . . . . . . . 140

6.3.5 Completeness of the quasar sample . . . . . . . . . . . . . . . . 140

6.3.6 Validating the results with mocks . . . . . . . . . . . . . . . . . 141

6.4 Final remarks on miniJPAS quasars . . . . . . . . . . . . . . . . . . . . 143

7 S-PLUS 145

7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2 Final remarks on S-PLUS . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Conclusions and perspectives 151

Appendix A Tables 171



xx Contents



List of Figures

2.1 Scheme of interactions between the different components of the Universe. 8

2.2 Three-dimensional distribution of galaxies obtained with eBOSS. . . . . . 10

2.3 Theoretical power spectrum and correlation function. . . . . . . . . . . . 12

2.4 Evolution of quasar linear bias as a function of redshift for different surveys. 14

2.5 Correlation function as a function of the radial and transverse components

obtained by 2dFGRS Collaboration. . . . . . . . . . . . . . . . . . . . . 16

2.6 SDSS photometric system. . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Color-color distribution of stars and quasars selected from the SDSS Early

Data Release. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Quasar mean occupation functions. . . . . . . . . . . . . . . . . . . . . . 25

2.9 Correlation function for eBOSS quasars. . . . . . . . . . . . . . . . . . . 26

2.10 Posterior distribution for AP parameters, fσ8 and linear bias for eBOSS

quasars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11 Observable Universe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12 Polar projection of the footprint for a simulated survey of quasars and ELGs. 32

2.13 Radial selection functions of quasars and ELGs as a function of redshift. . 33

2.14 Projections in the x− y plane of seven redshift slices of the first box of a

simulated QSO-ELG photometric survey. . . . . . . . . . . . . . . . . . 34

2.15 Comparison of the estimated monopoles and quadrupoles for quasars and

ELGs on the redshift range 1.4 < z < 1.8. . . . . . . . . . . . . . . . . . 36

2.16 Comparison of the estimated monopoles and quadrupoles for quasars and

ELGs on the redshift range 1.8 < z < 2.2. . . . . . . . . . . . . . . . . . 37

2.17 Comparison of the estimated monopoles and quadrupoles for quasars and

ELGs on the redshift range 2.2 < z < 2.6. . . . . . . . . . . . . . . . . . 38

xxi



xxii List of Figures

3.1 Illustration with the different features of an active galactic nucleus (AGN)

and their corresponding scales. . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Orbits of stars around Sagittarius A∗. . . . . . . . . . . . . . . . . . . . . 43

3.3 Elliptical galaxy M87 depicting a jet and best-model image of M87∗ shadow. 45

3.4 Radiative and jet modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 M-σ relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 M-σ relation for elliptical and spiral galaxies. . . . . . . . . . . . . . . . 51

3.7 Redshift evolution of the black hole accretion rate compared with the star

formation rate distribution. . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Schematic diagram of the relationship between fuel supply, galaxy growth

and black hole growth. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Black hole masses for high redshift (z > 6) quasars. . . . . . . . . . . . . 54

3.10 Unified model of AGNs. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.11 Comparison of optical spectra of 7 AGNs and a normal galaxy. . . . . . . 57

3.12 SED fitting for type-I AGNs. . . . . . . . . . . . . . . . . . . . . . . . . 59

3.13 Example of a BPT diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.14 Example of a changing look quasar. . . . . . . . . . . . . . . . . . . . . 62

3.15 Example of a BAL quasar. . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.16 First quasar discovered by Pan-STARRS 1 using the technique of i-dropout. 66

3.17 Schechter luminosity function. . . . . . . . . . . . . . . . . . . . . . . . 69

3.18 Quasar luminosity function. . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.19 Quasar luminosity function at high redshifts. . . . . . . . . . . . . . . . . 73

3.20 Example of an artificial neural network architecture. . . . . . . . . . . . . 76

3.21 Star/quasar classification with ANNz2. . . . . . . . . . . . . . . . . . . . 78

3.22 Mean classification with ANNz2 for 9 stars and quasars. . . . . . . . . . 79

3.23 Mean classification over all MLMs with ANNz2. . . . . . . . . . . . . . 79

3.24 Probability density distribution for 9 quasars and stars classified with

ANNz2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.25 Classification of S-PLUS quasars with random forest. . . . . . . . . . . . 83

3.26 New representation of the miniJPAS photospectra of a quasar, galaxy and

star used as input for the CNN. . . . . . . . . . . . . . . . . . . . . . . . 84

3.27 Confusion matrices for miniJPAS using CNN. . . . . . . . . . . . . . . . 86

4.1 Optimal filter systems for photo-z estimation. . . . . . . . . . . . . . . . 93



List of Figures xxiii

4.2 Magnitude depth and redshift precision as a function of number of filters. 93

4.3 Color-redshift distribution for the templates used in LePhare. . . . . . . . 98

4.4 First four global quasar eigenspectra . . . . . . . . . . . . . . . . . . . . 102

4.5 Comparison of the performance for different numbers of eigenspectra. . . 105

4.6 Quasar eigenspectra in different redshift-luminosity bins. . . . . . . . . . 107

4.7 QPz redshift estimation for quasar spectra. . . . . . . . . . . . . . . . . . 108

4.8 QPz redshift estimation for type-II quasars. . . . . . . . . . . . . . . . . 109

5.1 Example of synthetic Jspectra for four quasars at different redshifts. . . . 117

5.2 S/N distribution in the mocks. . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Number of observed filters in miniJPAS as a function of the tile. . . . . . 122

5.4 Histograms with the number of filters with non-observations and non-

detections as a function of the r-band magnitude. . . . . . . . . . . . . . 123

6.1 J-PAS photometric system. . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Quasars detected with miniJPAS in the AEGIS fields. . . . . . . . . . . . 128

6.3 Magnitude-redshift distribution of quasars in miniJPAS. . . . . . . . . . . 129

6.4 Estimated depths in all filters for miniJPAS. . . . . . . . . . . . . . . . . 129

6.5 Some Jspectra for quasars. . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.6 Comparison of photometric performance with QPz for different apertures. 131

6.7 Aperture corrections applied to the miniJPAS data as a function of the tile. 133

6.8 Stellarity parameter for miniJPAS quasars as a function of the tile. . . . . 134

6.9 QPz model fit for quasars. . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.10 Comparison of the photo-z performance of QPz and LePhare. . . . . . . . 136

6.11 Comparison of the spectroscopic with the photometric redshift distribu-

tion for QPz and LePhare. . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.12 Examples of PDFs obtained with QPz. . . . . . . . . . . . . . . . . . . . 137

6.13 Cumulative distribution of photometric errors as a function of magnitude

and redshift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.14 Cumulative distribution of outlier fraction as a function of magnitude and

redshift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.15 Quasar completeness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.16 Photometric redshift performance with a mock quasar catalog. . . . . . . 142

7.1 S-PLUS photometric system. . . . . . . . . . . . . . . . . . . . . . . . . 145



xxiv List of Figures

7.2 Main quasar emission lines at different redshifts in the S-PLUS filter system.146

7.3 S-PLUS footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.4 Examples of S-PLUS photospectra for different sources. . . . . . . . . . 147

7.5 Magnitude-redshift distribution of quasars in S-PLUS. . . . . . . . . . . 148

7.6 Scatter plot obtained with QPz for S-PLUS quasars after quality cut. . . . 149

7.7 χ2 distributions for QPz and LePhare obtained for the S-PLUS quasars. . 149

7.8 Scatter plot for S-PLUS quasars. . . . . . . . . . . . . . . . . . . . . . . 150



List of Tables

2.1 Visual inspection classifications from the Superset catalog. . . . . . . . . 22

3.1 Purity and completeness for S-PLUS quasars classified with ANNz2. . . . 80

3.2 Purity and completeness for S-PLUS stars classified with ANNz2. . . . . 80

4.1 Summary of four multi-fiber facilities under construction. . . . . . . . . . 90

4.2 Eigenvalues of the global quasar eigenspectra. . . . . . . . . . . . . . . . 101

4.3 Photometric results with 4, 5, 10 and 50 eigenspectra. . . . . . . . . . . . 106

5.1 F-score values of the combined performances of different machine learn-

ing methods in the classification of (miniJPAS) sources from the test sam-

ple of the mocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1 miniJPAS pointings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Photometric results for miniJPAS quasars using different apertures. . . . . 131

A.1 Best-fit parameters for quasar mean occupation functions. . . . . . . . . . 171

A.2 Summary of the masses of high redshift quasars. . . . . . . . . . . . . . . 172

A.3 Main emission lines of quasars. . . . . . . . . . . . . . . . . . . . . . . . 173

A.4 Central wavelengths of J-PAS filters. . . . . . . . . . . . . . . . . . . . . 174

xxv



xxvi List of Tables



CHAPTER 1

INTRODUCTION

“Those of us engaged in scientific research generally do it because we can’t help
it - because nature is the biggest and most complicated jumbo holiday crossword
puzzle you have ever seen.”

Edward Hinds, New Scientist Sept. 1997

Modern cosmology has witnessed an enormous growth in data acquisition, ac-

companied by dazzling advancements in its ability to provide answers to fundamental

questions about the composition and evolution of the Universe. Yet, many challenges re-

main, notably those concerning the relations between galaxy formation and the evolution

of the Universe on large scales.

Galaxy surveys are the primary tools that help us shed light on some of these puz-

zles, allowing us to map the large-scale structure (LSS), to measure the matter power

spectrum, and to estimate how galaxies and other tracers are related to the underlying

dark matter density. The next generation of surveys will allow us to peer wide (i.e. map

large areas and volumes) and deep (detect faint, distant sources) into space with increasing

resolution, probing the sky through electromagnetic waves, gravitational waves, cosmic

rays, and neutrinos – just to mention a few. This will open the opportunity for synergies

between the various experiments, where the combination of different messengers and dif-

ferent tracers will improve our ability to understand more completely these astrophysical

phenomena.

Surveys of the large-scale structure can be divided into two main types, according

to the techniques used to map the sources: spectroscopy and photometry. The former

relies on a spectrograph to acquire the spectral energy distribution of sources, and usually

operates in the optical and near-infrared1 part of the electromagnetic spectrum. Spectro-

1Here we give two references of IR surveys: Spitzer (a space telescope dedicated to imaging and spec-
troscopy; Werner et al. 2004) and 2MASS (imaging; Skrutskie et al. 2006).



2

scopic surveys provide the 3D positions of galaxies and are able to identify key features

in their spectral energy distributions, estimating with high accuracy their spectral types

and redshifts. However, they are limited both by the need for a campaign of target ac-

quisition and by the combination of throughput and sensitivity of the spectrograph, which

usually require large exposure times. Therefore, this technique tends to demand a high

level of financial resources in order for the survey to acquire useful spectra for a large

number of sources. Photometric surveys, on the other hand, overcome these constraints

by employing band filters to count all the photons inside certain windows of the electro-

magnetic spectrum. This allows the detection of larger numbers of objects, as well as

fainter sources, but it also means that the light of the source is only observed through a

handful of filters (resulting in the so-called “photospectra”), compromising the efficacy to

distinguish between point-like sources and degrading the estimation of their redshifts.

These issues can be partly resolved by employing multi-band narrow filters (by

“narrow” here we mean filters with widths of ∼ 100 Å). Obviously, on one hand, using

a large number of narrow filters, at a fixed exposure time, decreases significantly the

photometric depth (Benı́tez et al. 2009) given the time constraints for running the survey.

However, on the other hand, it also brings an important gain in the power of breaking

color-redshift degeneracies, improving the accuracy with which the photometric redshifts

can be estimated, and also the ability to classify sources using photometric data alone.

Many projects have made use of a large number of narrow-bands, e.g. COMBO-17

(Wolf et al. 2003), COSMOS (Scoville et al. 2007a), ALHAMBRA (Moles et al. 2008),

SHARDS (Pérez-González et al. 2013), and PAU (Eriksen et al. 2019). In particular, the

J-PLUS (Cenarro et al. 2019) and S-PLUS (Mendes de Oliveira et al. 2019) surveys are

mapping large areas of the Northern and Southern hemispheres with 12 filters, including 7

narrow-bands centered on prominent stellar spectral features. Even more enthralling is the

photometric system of the Javalambre-Physics of the Accelerating Universe Astrophysical

Survey (J-PAS; Benitez et al. 2014), which consists of a unique set of 54 contiguous

narrow-band filters. The project is about to start and will deliver low-resolution spectra for

millions of galaxies and quasars over thousands of square degrees, achieving the highest

redshift precisions of any photometric survey so far.
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Active galactic nuclei (AGNs) – or, in a broader sense, quasars – are of high in-

terest to astronomy: they are not only the brightest and most highly biased tracers of

large-scale structure, but their astrophysical properties (energy powered by the accretion

of matter onto a supermassive black hole) make them a key ingredient in galaxy evolution

models. Quasars also work as lighthouses, serving as background light sources to map the

intervening neutral hydrogen gas through Gunn-Peterson effect (Gunn & Peterson 1965),

resulting in the so-called Lyman-α forest.

Quasar candidates typically appear as point-like sources in photometric imaging

and, thus, they can be easily confused with stars and even unresolved galaxies. This issue

on population mixtures was first identified in the context of the use of broad-band imaging

to pre-select spectroscopic targets for the Sloan Digital Sky Survey (Richards et al. 2009;

Leistedt et al. 2013; Leistedt & Peiris 2014). However, this pre-selection is unable to avoid

contamination by other sources in color-magnitude and color-color diagrams, leading to

sub-optimal source classification and lower target success rate, with the effect that fibers

end up allocated only to the brightest, most clearly distinguished quasars.

The J-PAS photometric system, on the contrary, will be able to resolve the broad

emission lines of type-I quasars (as well as most broad absorption line objects), and to de-

tect the narrow-lines of many type-IIs. Abramo et al. (2012) showed that J-PAS will have

the potential to observe nearly ∼ 240 quasars per square degree for a limiting magnitude

of g < 23, which means that a J-PAS survey of quasars could be the largest and most

complete of its kind, having a significant impact in terms of cosmological applications.

Prior to the arrival of the final scientific instrument (JPCam; Taylor et al. 2014;

Marı́n-Franch et al. 2017), the J-PAS telescope was equipped with a single CCD camera,

called JPAS-Pathfinder, with which it was possible to carry out the first observations and

test the performance of the optical system. This survey, dubbed miniJPAS (Bonoli et al.

2020), imaged nearly 1 deg2 in the Extended Groth Strip (AEGIS) fields using 60 filters,

and was ideal to forecast the photometric precision that we expect to obtain with J-PAS

once it becomes fully operational.

In this thesis we search for quasars in the miniJPAS and S-PLUS (DR1) data sets2,

2All magnitudes here are presented in the AB system. Throughout this work, we have adopted the
standard ΛCDM cosmology provided by Planck Collaboration et al. (2020a) with parameters (h0, Ωm, ΩΛ,
Ωk) = (0.674, 0.314, 0.686, 0.00).
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and characterize these photometric samples in terms of some techniques available to us,

such as machine learning algorithms for classification and identification of quasar candi-

dates, optimized codes for photometric redshift estimation, Bayesian approaches to help

break degeneracies between pairs of emission lines, and methods to analyse multi-tracer

catalogs. The availability of spectroscopic redshifts for galaxies and quasars in the mini-

JPAS and S-PLUS footprints makes those data sets ideal test cases to characterize the

performance of photometric redshift (photo-z) estimates for different magnitudes and red-

shift ranges.

Our ultimate goal is to combine the byproducts of those techniques to assemble

fully probabilistic catalogs, with probabilities for each object of being of a certain type

(e.g. star, galaxy or quasar)3, and estimate the photo-zs for those identified with a high

probability of being quasars. In particular, in this work we focused on the estimation

of photometric redshifts for quasars that had been previously classified by spectroscopic

surveys. The classification of point-like sources and consequent identification of quasar

candidates constitutes an ongoing project that has been currently treated in a joint-effort

with other members of the J-PAS and S-PLUS Collaborations, and hence is outside the

scope of this thesis.

For the quasar photo-z estimation, we followed Yip et al. (2004) and implemented

a technique that models the quasar fluxes through a linear combination of amplitudes of

the principal components of quasar spectra, including an extinction power law to allow

for the slope of the eigenspectra to adjust to and fit more reddened quasars. In the end,

our method finds a first-approximation best-fit model for the quasar photospectrum in

a 5-dimensional space, while providing full probability distribution functions for their

redshifts.

In order to validate the photo-z results obtained with our code (dubbed QPz;

Queiroz et al. 2021a, in prep.), we compared its performance with an improved ver-

sion of the standard template-fitting code LePhare (Ilbert et al. 2006; Arnouts et al. 1999).

Our analyses indicate that the precision achieved with QPz is very similar to that obtained

with LePhare; the performance of the former being, however, superior in terms of the

3In the case of stars, we consider main sequence, white dwarfs, carbon stars and cataclysmic variables
(CV). Note, however, that we are not distinguishing the different stellar types nor separating galaxies be-
tween red and blue.
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outlier fraction.

By using mock catalogs (Queiroz et al. 2021b, in prep.), we also forecast the

impact of the science that will result from large-area quasar catalogs produced on the

basis of J-PAS data. These mocks are produced by convolving SDSS DR16 spectra with

the J-PAS photometric system, and employing the same signal-to-noise ratio expected

for point-like sources detected on the AEGIS fields with miniJPAS (for that purpose we

employ the 3”-aperture magnitudes). Those mock quasar catalogs have been employed

in many other projects within the J-PAS collaboration, and in particular for simulating

lensed quasars. Finally, this same machinery has been used to produce mock catalogs for

galaxies and stars as well, which are an essential part for the training and test sets used

for quasar classification with machine learning.

In addition to the science that J-PAS will be able to conduct using the quasars

it identifies, the collaboration will join efforts with the WEAVE survey (Dalton 2016),

which is a multi-object spectrograph that will start observing in 2021. Part of the WEAVE

strategy is to follow-up high-redshift (z > 2.1) quasars in order to conduct a Lyman-α

forest and metal line absorption survey (Pieri et al. 2016). The targets for this WEAVE-

QSO survey will be provided mainly by J-PAS, which is the only instrument in the world

capable of identifying quasars in numbers and down to the depths needed by WEAVE to

do its science. For this reason, an additional question that we want to answer regards the

critical combinations of filters able to detect the main quasar features. In order to provide

quasar targets with nearly 100% completeness and purity for the WEAVE-QSO survey,

J-PAS will probably observe with only half of the narrow-bands during the first years of

observations. Therefore, determining how the photo-z precision degrades as a reduced

number of filters is observed was also very pressing, since it affects the survey strategy as

a whole.

Finally, our preliminary results (Abramo, Queiroz et al. 2021 in prep.) show

that the inclusion of photometric errors for quasars in multi-tracer catalogs produce some

interesting effects on the power spectrum on large scales, which could be detected with J-

PAS. The impact of the science that will result from quasar catalogs produced on the basis

of multi-band photometric data includes the measurement of baryon acoustic oscillations
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and redshift-space distortions, a better understanding of the environments where quasars

are found (e.g., by determining the halos they inhabit, or whether their bias is scale-

dependent), and information about both the density and luminosity evolution of quasars,

especially at high redshifts and at the faint end. All this potential points to an exciting

future with quasar research.

As a suggestion of reading: Chapters 2 and 3 contain a detailed introduction on

cosmology with quasars and quasar physics, respectively; while Chapters 4, 5 and 6 con-

tain the main contributions and results of this thesis.



CHAPTER 2

LARGE-SCALE STRUCTURE IN THE

UNIVERSE

The past decade has witnessed some astonishing advances in cosmology, under-

pinned by the quantity and precision of cosmic structure observations, and stimulated by

the possibility of having unique insights about the physics of the Universe. We are now

exploring the cosmic frontier, and 2019 Nobel prize to James Peebles “for contributions

to our understanding of the evolution of the Universe”1 has drawn even more notability to

the field.

The birth of modern cosmology dates back to around the 1920s-1930s when most

of its key elements were forged: the General Theory of Relativity of Albert Einstein;

the first results of Friedman-Lemaı̂tre-Robertson-Walker (FLRW) metric describing the

dynamics of a homogeneous and isotropic distribution of matter; and Edwin Hubble’s

findings on the first observational evidence of a correlation between distance and recession

velocity of galaxies – i.e., the expansion of the Universe.

Thenceforth, several observational discoveries were made, being worth mention-

ing:

• the detection of the cosmic microwave background (CMB) radiation (Penzias &

Wilson 1965; Smoot et al. 1992), i.e., the radiation emanating from the surface

of last scattering – the last physical interaction of photons with matter when the

Universe was about 3.8x105 years old;

• the overwhelming indirect evidence for the existence of an exotic type of “dark”

matter, that does not interact via the electromagnetic force, after numerous indica-

1Copywrite c©The Royal Swedish Academy of Sciences (https://www.nobelprize.org/)

https://www.nobelprize.org/
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tions that ordinary matter alone was not sufficient to account for the gravitational

effects detected, for instance, in the rotation curves of galaxies, in the velocity dis-

tributions of galaxies in clusters, in image distortions by gravitational lensing, and

in extended X-ray emission from clusters of galaxies; and

• the accelerated expansion of the Universe from the measurement of light curves of

distant Type-1A supernovae (Riess et al. 1998; Perlmutter et al. 1999).

These discoveries have contributed to consolidate and shape the current paradigm

of cosmology, the so-called ΛCDM model, that states that we live in an expanding Uni-

verse, homogeneous and isotropic at large scales, which today contains three major com-

ponents: a cosmological constant (Λ), that appears as a minimalistic modification to

Einstein’s equations and constitutes the simplest type of dark energy; cold dark matter

(CDM); and ordinary (baryonic) matter. Fig. 2.1 schematizes the various ways in which

the different components of the Universe interact with each other, as well as with other

components which were more dominant at earlier times. The gravitational sector is gov-

erned by the Einstein equations, and the remaining interactions between the particles are

described by the Standard Model of particles and fields in what concerns the Electroweak

and Nuclear forces. This complex ensemble of interacting particles and fields is then

described by Boltzmann equations.

Figure 2.1: Scheme of interactions between the different components of the Universe. Figure
extracted from Dodelson (2003).

Understanding the nature of dark matter and dark energy (which presently account
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for more than∼ 95% of the content of the Universe), the dynamics of structure formation

on large-scales, and the interplay between the dark sector and the accelerating expansion

of the Universe [in which the distances between the galaxies are described in terms of a

function of time – the scale factor a(t)] remain as major challenges in modern cosmology,

motivating numerous investigations in the last decades.

Most of these investigations were only possible thanks to the great advances in

some important complementary areas, such as astronomical instrumentation, highly sen-

sitive detectors, data reduction software, dynamic data storage, advances in numerical

simulation techniques, and high-speed processors.

The complexity of cosmological phenomena is also manifested on small and in-

termediate scales, where the Universe is far from homogeneous. Galaxy surveys have

revealed the existence of filaments and clusters of luminous matter, surrounded by enor-

mous voids, showing that the galaxies are clearly not randomly distributed: instead, their

positions are correlated in space. Hence, by combining the images of the distribution of

galaxies or clusters of galaxies with their spectroscopic observations it is possible to learn

how these systems formed and evolved in time, shedding light on the mechanisms that led

to the cosmic web of structures that we see today (illustrated in Fig. 2.2).

Within this framework, galaxy surveys actually have access to only a particular

window of the sky, composed of an angular mask of the observed area and a radial distri-

bution of the (biased) tracers of the underlying matter density field, ρ(r, t). By mapping

the distributions of these tracers it is possible to catalog their positions, and observations

may also provide us with properties such as spectral types, colors, stellar masses and

shapes. Finally, in order to have an appropriate statistical description of their spatial dis-

tributions, one can either use the correlation function, or its Fourier transform – the power

spectrum. Although these two-point functions contain most of the cosmological infor-

mation, it has recently become more popular to also explore higher-order correlations

such as the 3- and 4-point functions – see, e.g., Planck Collaboration et al. (2020a) in

the context of the CMB; Planck Collaboration et al. (2020b) for constraints on primordial

non-Gaussianity.

The anisotropies observed in the CMB spectrum, consisting of small temperature
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Figure 2.2: Three-dimensional distribution of galaxies depicted by different colors within the
observable Universe (outer sphere, showing fluctuations in the cosmic microwave background)
from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), an SDSS Collaboration.
The observer is located at the center of this map, and as we look out in distance, we look back in
time. Denser regions depict the clumpy, filamentary “cosmic web”. Galaxies at larger distances
are fainter and hence harder to detect. The two slices correspond to nearly opposite directions in
the sky; yet, the statistical fluctuations seem to be very similar on each strip. The inset for each
color-coded section of the map includes an image of a typical galaxy or quasar from that section,
and also the signal of the (BAO) pattern that the eBOSS team measures there. Credit: Anand
Raichoor (EPFL); Ashley Ross (Ohio State University); SDSS Collaboration (2020).

fluctuations of δT/T ∼ 10−5, suggest that the structures that we see today started from

small inhomogeneities. In order to study how the density fluctuations evolve in space and

in time, it is customary to define the relative density contrast (or overdensity) field:

δ(r, t) =
ρ(r, t)− ρ̄(t)

ρ̄(t)
(2.1)

where ρ̄(t) is the mean density at a given time t.

The density contrast is believed to be the outcome of some random process in the

early Universe, and it grows in amplitude due to gravitational interactions: it is positive

in overdense regions and negative in underdense regions. Its minimum possible value is

δ = −1, and, in principle, there is no upper limit on δ.

Alternatively, we can also express the density fluctuation field δ(r) within a large

comoving box of comoving volume V, in terms of the individual Fourier components

δm(k) of the density contrast:
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δ(r) =
1

(2π)3

∫
δm(k)e−ik·rd3k. (2.2)

The properties of the field δ(r) are determined by specific processes occurring

during the inflationary phase in the very early Universe and subsequent evolutionary pro-

cesses preceding recombination. If the phases of the different Fourier components are

uncorrelated, or almost uncorrelated, and if the amplitudes of the modes δk are nearly

Gaussian (which is a good approximation on large scales), then we say that δ(r) is a

Gaussian random field.

In terms of the density contrast, we can define the two-point correlation function:

〈δ(x)δ(x + r)〉 = ξ(r), (2.3)

and the Fourier counterpart of this two-point function, the matter power spectrum Pm(k)

(Peebles 1980; Peacock 1999):

〈δm(k, z)δ∗m(k′, z)〉 = (2π)3Pm(k, z)δD(k− k′) (2.4)

where δ∗m(k) = δm(−k), δD is the Dirac delta function, and 〈...〉 denotes an ensemble

average2.

The matter power spectrum is one of the main products of galaxy catalogs, en-

compassing a lot of information with regard to the formation of structures over a range

of scales. A key feature is the imprint of “wiggles” (see left panel of Fig. 2.3), which

correspond to the acoustic scale of baryon-photon decoupling during the recombination

epoch. These are the so-called baryon acoustic oscillations (BAOs). Such scale can be

measured as a slightly bigger probability of finding galaxies separated by this character-

istic distance, which can therefore serve as a statistical standard-ruler. Today, its value is

approximately 148 Mpc (illustrated on the right panel of Fig. 2.3).

In practice, in order to compute the correlation function what galaxy surveys really

2Note that, although the theory specifies an ensemble average, observationally we have access to only
one realization of the random process (i.e. we only have access to one Universe). Nevertheless, on large
scales the density field is well approximated by a Gaussian distribution, having the power spectrum as the
second moment (i.e. variance) of the distribution. Then, by the Ergodic hypothesis, the ensemble average
becomes equivalent to a spatial average over one realization of the random field.
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Figure 2.3: Left panel: theoretical power spectrum at z = 0 for the ΛCDM model generated with
the Code for Anisotropies in the Microwave Background (CAMB, Lewis et al. 2000). Right panel:
corresponding two-point correlation function computed with the COLOSSUS Cosmology toolkit
(Diemer 2018). The second peak corresponds to the BAO scale.

do is to estimate how much the galaxy sample deviates from a homogeneous distribution

when compared to a control (“random”) set of objects. A popular estimator was intro-

duced by Landy & Szalay 1993, and it is still very employed nowadays.

2.1 Galaxy counts

The current standard hierarchical structure formation scenario states that objects

in the Universe form through the gravitational collapse of small (primordial) fluctuations

in the density field (Press & Schechter 1974; White & Rees 1978). These collapsed

structures form clumps dominated by dark matter, and grow in mass via the accretion of

matter from their surroundings or through mergers with other halos.

Since dark matter only interacts gravitationally and, as the name suggests, it does

not emit light, it is not straightforward to probe the total matter distribution. In fact,

galaxy surveys only detect tracers of the underlying matter density field, such as galax-

ies, quasars, and clusters. This relationship was clarified by Bardeen et al. (1986), who

showed that the density peaks of a Gaussian field are related to the density fields of the

matter halos through a “halo bias”. This means that those gravitational collapsed struc-

tures are biased in relation to the matter distribution – i.e., their correlation functions and

power spectra are biased with respect to the matter power spectrum, in such a way that
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halo bias grows steeply with halo mass.

Although the connection between galaxy positions and the three-dimensional pow-

er spectrum for dark matter is not direct (since only luminous matter can be observed),

galaxies, in turn, also work as biased tracers of peaks of the underlying density field. In

other words, the dark matter density contrast is related to the tracer’s density field through

a bias b:

δg = b δDM (2.5)

where a value of b 6= 1 means that the luminous matter does not follow the same distri-

bution as the total matter. Note that we are assuming here the approximation of a linear,

scale-independent bias (which should be valid on large scales). Nevertheless, in principle

the bias is also a function of the redshift and luminosity: more luminous, and therefore

rarer, objects seem to be more highly biased.

The bias can, thus, be interpreted as a measure of the degree of clustering, since

tracers with higher values of bias are more likely to be found near the highest density

peaks in the mass distribution. Or, equivalently, we say that more massive galaxies are

more strongly clustered.

This seems to be the case for quasars. For instance, the two-point clustering of

confirmed quasars from the final sample of the Baryon Oscillation Spectroscopic Survey

(BOSS) has provided a precise measurement of bq = 3.54± 0.10 for the quasar bias over

the redshift range 2.2 ≤ z ≤ 2.8 (Eftekharzadeh et al. 2015). In Fig. 2.4 we show the

values of quasar linear bias as a function of redshift obtained by different cosmological

surveys.

At this stage, one may also find useful to define the galaxy density contrast in terms

of the galaxy counts as a function of position:

δg(r) =
Ng(r)− N̄g(r)

N̄g(r)
. (2.6)

By computing the galaxy correlation function:
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Figure 2.4: Evolution of quasar linear bias as a function of redshift for different surveys. Results
compiled from: Porciani et al. 2004, Croom et al. 2005, Myers et al. 2006, Porciani & Norberg
2006, Shen et al. 2007, da Ângela et al. 2008, Ross et al. 2009, Kirkpatrick 2012, Sherwin et al.
2012, White et al. 2012 Font-Ribera et al. 2014, Eftekharzadeh et al. 2015, and Laurent et al.
2017. The bias values were not recalibrated and may depict slightly different cosmologies. The
dashed lines show the linear halo bias evolution using the formalism of Tinker et al. 2010 and for
the following values of mass (from bottom to top): log h−1M� = 11.7, 12, 12.3, 12.6, and 13.

ξgg(r) = 〈δg(x)δg(x + r)〉 = b2
gξ(r) +

1

n̄g(r)
δD(r) (2.7)

we obtain the correlation function of matter ξ(r) in the first term, and the shot-noise in

the last term, which appears because we are describing counts of galaxies (i.e., a discrete

distribution) in terms of a point process sampling (which we assume to be Poissonian)

from a continuous density field.

The two-point correlation function is the most popular tool for large-scale cluster-

ing analysis. The quantity ξgg(r) can be described in terms of the probability of finding a

galaxy within a volume V lying at a distance r from an arbitrarily chosen galaxy:

dP = n̄g [1 + ξgg(r)] dV. (2.8)
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Note that a completely random distribution yields ξgg(r) = 0.

Equivalently, we can write the galaxy power spectrum as:

Pgg(k) = b2
gPm(k) +

1

n̄g
. (2.9)

In order to properly characterize the distribution of galaxies we need information

in 3D, which can be provided by galaxy redshift surveys. However, when galaxy distances

are measured in redshift space (which is the case for essentially all surveys nowadays),

their peculiar velocities distort the pattern of galaxy clustering by displacing the galaxy

positions along the line-of-sight. These are the redshift space distortions (RSDs), which

have two limits:

• on large scales, the peculiar velocities reflect the (linear) infall motions towards

overdensities, causing structures in real space to appear “squashed” along the di-

rection of the line-of-sight in redshift space. This is often called the Kaiser effect

(Kaiser 1987);

• on small scales, peculiar velocities reflect the (non-linear) virialized motions of

galaxies inside their host halos, causing those structures to appear “stretched” along

the line-of-sight in redshift space. This is often called the Fingers-of-God effect.

Figure 2.5 illustrates the effects of redshift space distortions in the correlation func-

tion for the 2dFGRS.

Consider, for instance, a pair of two galaxies separated by comoving distances

s1 and s2, and with an angular separation θ. This allows us to express the two-point

correlation function ξs(π, σ) in terms of the pair’s comoving radial (π = |s1 − s2|) and

transverse (σ = (s1 + s2)θ/2) separations. Now, since the effects of RSDs are limited

to the line-of-sight direction, we can integrate out the effects of peculiar velocities and

redshift errors by integrating ξs(σ, π) over π. This results in the projected correlation

function:

wp(σ) =

∫ πcut

0

ξs(σ, π)dπ (2.10)

where πcut is the scale at which the redshift space distortions can be neglected.
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Figure 2.5: Correlation function as a function of the radial (π) and transverse (σ) components
obtained by 2dFGRS Collaboration. Note the effects caused by the redshift space distortions: the
“finger-of-God” radial stretching at small separations, and the apparent flattening of structures at
large separations. Credit: Peacock et al. 2001.

These distortions have the advantage of carrying information about the dynamics

of the galaxies inside the large-scale density field, and they can also be used to measure the

growth of structures. Therefore, the effects can be employed as a test to distinguish, for

instance, between dark energy and modified gravity models (Joyce et al. 2016; Aparicio

Resco et al. 2020). The RSDs can be quantified in terms of the matter growth rate f,

defined as

f =
d ln(G)

d ln(a)
, (2.11)

where G is the growth function and a is the scale factor. The growth rate f is a measure-

ment of how fast galaxies are approaching each other or, in other words, it characterizes

the strength of the gravitational interactions that drive structure formation. In practice,

G is usually parametrized in terms of fσ8, where σ8 is the variance of the density field

smoothed on a scale of 8 h−1Mpc (or, in other words, the amplitude of perturbations). The

gravitational growth factor can also assume the following parametrization: f = [Ωm(z)]γ ,

with γ ≈ 0.55 for ΛCDM.

In the regime of linear theory, Kaiser 1987 showed that the redshift space power
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spectrum P s(k) can be related to the real space power spectrum P (k) through an effective

bias b→ b+fµ2, which in principle can be a general function of redshift, scale and angle:

P s(k, µ) = (b+ fµ2
k)

2Pm(k) (2.12)

where µk = k̂ · r̂ is the cosine of the angle between the Fourier mode and the line-of-sight.

Since in an isotropic Universe the density spectrum cannot contain a preferred

direction, the anisotropy in P s(k, µ) must be symmetric under rotations around the line-

of-sight, as well as with regards to inversions in µ, i.e. P s(k, µ) = P s(k,−µ), and thus

the distortions will depend only on even powers of µ.

In order to measure the extent of the deviation from isotropy, one can decompose

the power spectrum into multipole moments using the Legendre polynomials L`(µ):

P`(k) =
2`+ 1

2

∫ 1

−1

dµP s(k, µ)L`(µ). (2.13)

In the linear regime, the monopole (` = 0), quadrupole (` = 2) and hexadecapole (` = 4)

are sufficient to completely characterize P s
g (k) (Percival & White 2009):

Pg,`=0(k) =

(
1 +

2

3
β +

1

5
β2

)
Pg(k) (2.14)

Pg,`=2(k) =

(
4

3
β +

4

7
β2

)
Pg(k) (2.15)

Pg,`=4(k) =
8

35
β2Pg(k) (2.16)

where β ≡ f

b
is the redshift space distortion parameter. Note, however, that the estimates

of P`(k) rapidly become noisy for multipoles with ` > 2.

2.2 Quasar target selection

This thesis focuses on surveys of photometric quasars; more specifically, on quasar

candidates identified with narrow-band filter surveys, such as J-PAS, J-PLUS and S-
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PLUS. The main advantage of this type of survey is their capacity to identify a large

number of quasars up to redshift z ∼ 5, thus probing large cosmological volumes with

a higher efficiency compared with spectroscopic surveys, and improving significantly the

statistics.

However, selecting quasar targets is a more challenging task compared to selecting

galaxies. The main reason is that the broad-band photometric colors of quasars are very

similar to the colors of stars, with the result that a non-negligible fraction of these photo-

metric candidates are actually found to be stars. Hence, it is difficult to distinguish quasars

from stars, and to estimate their redshifts using only broad-band photometric information.

The clustering of quasars has been studied mostly in optical frequencies, using

both spectroscopic (e.g. Ross et al. 2009; Shen et al. 2007) and photometric (e.g. Myers

et al. 2006) catalogs drawn mainly from early SDSS data, and were used to constrain

numerous cosmological and astrophysical quantities of interest, such as the quasar bias,

primordial non-Gaussianities, and the quasar luminosity function (Richards et al. 2006b;

Myers et al. 2007; Serber et al. 2006; Slosar et al. 2008; Strand et al. 2008).

The Sloan Digital Sky Survey is one of the most successful astronomical surveys

to date, imaging the sky in five broad-bands ugriz (shown in Fig. 2.6) specially designed

for the survey (Fukugita et al. 1996). In this section we give a brief historical overview of

the strategies employed by SDSS in the task of targeting quasars3 for spectroscopy.

2.2.1 SDSS-I/II

The quasar target selection algorithm employed in SDSS-I/II (Richards et al. 2002)

basically explores all known regions of color space occupied by quasars, avoiding those

regions where the quasar density is much lower than the density of contaminants. It

primarily identifies quasars as outliers (i.e. sources lying more than 4σ) from the stellar

locus in color-color diagrams (i.e. ugri cubes: u− g, g − r, r − i, or griz cubes: g − r,

r− i, i−z) and by matching (within 2”) unresolved sources to the FIRST catalog of radio

sources (Becker et al. 1995) – independently of their colors. The contamination between

3Here we focus on the quasar target selection. As for the redshift measurement, SDSS employs auto-
mated pipelines based mainly on fitting templates derived from a principal component analysis (PCA), and
the identification of emission lines in the spectra. The SDSS pipeline redshifts are generally accurate in the
cases where the ZWARNING flag is 0.
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Figure 2.6: SDSS photometric system composed of five broad-bands ugriz.

quasars and stars in these color-color diagrams is illustrated in Fig. 2.7.

Figure 2.7: Color-color distribution of stars (black contours) and quasars (color-coded by redshift)
selected from the SDSS Early Data Release. Credit: Richards et al. (2002).

The algorithm is sensitive to quasars at z . 5.8, and all measurements are per-

formed using PSF magnitudes, with corrections for Galactic extinction following Schlegel

et al. 1998. The rejection criteria include objects flagged as having “fatal” or “nonfatal”

photometric errors (such as those with nearby bright and/or saturated sources, objects too

close to the edge, blended objects or having any interpolation issues), or lying in any of
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three color-defined exclusion regions dominated by white dwarfs, A stars, and M star plus

white dwarf pairs. In order to exclude very bright sources, which could contaminate the

spectra from adjacent fibers, a cut of iPSF > 15.0 is further applied. Still, the fibers were

only allocated to the brightest, most clearly distinguished quasars, implying limiting mag-

nitudes of iPSF < 19.1 and iPSF < 20.2 for the main quasar (UV-excess objects) sample

and the high-redshift quasar sample, respectively.

Inevitably, this strategy leads to an irregular redshift distribution. The overall com-

pleteness for the SDSS-I/II quasar samples is expected to be over 90%, with an overall

efficiency (i.e. fraction of quasar targets that end up being real quasars) above 65%.

2.2.2 SDSS-III

Unlike its predecessors, the SDSS-III survey (dubbed Baryon Oscillation Spec-

troscopic Survey, BOSS), was designed to map the large-scale structure using not only

galaxies but also the Lyman-α forest, employing quasars at 2.15 < z < 3.5. This is a

challenging task, because the quasar locus crosses that of main sequence stars at z ∼ 2.7.

In order to overcome this, BOSS quasar targeting (Ross et al. 2012) goes to fainter mag-

nitudes, g < 22.0 or r < 21.8, increasing significantly the surface density of candidates.

During the first year of BOSS, four different methods were developed to improve

quasar selection using photometric data:

• a “Kernel Density Estimation” (Richards et al. 2009), which measures the densities

of quasars and stars in color–color space from training sets and uses these to select

high probability targets;

• an artificial neural network (Yèche et al. 2010), which takes as input the SDSS

photometry and errors from a training set in order to run a classification scheme

(star versus quasar) and generate a photometric redshift estimate;

• a “Likelihood” approach (Kirkpatrick et al. 2011) which determines the likelihood

of each object being a quasar, given its photometry and models for the stellar and

quasar loci;
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• an “Extreme Deconvolution” (XDQSO) (Bovy et al. 2011) selection, which per-

forms a density estimation of stars and quasars by incorporating photometric uncer-

tainties. This “radical deconvolution” technique amounts to giving up on any hope

of understanding the systematics of the dataset, and marginalizing against any and

all sorts of systematics – known and unknown.

Finally, radio confirmed quasars from FIRST and previously known quasars with

z > 2.15 are also targeted. In the end, many objects are selected by more than one

of those algorithms. BOSS science goals require ∼ 20 quasars per square degree (at

z > 2.2). In order to meet other quasar science goals, such as clustering and luminosity

function measurements, a uniformly selected sample (called CORE) was defined, based

on the XDQSO routine. A BONUS sample with additional information from near-infrared

photometry from the UKIDSS Large Area Survey (Lawrence et al. 2007) is also available.

2.2.3 SDSS-IV

The SDSS-IV corresponds to the last generation of SDSS, and encapsulates the

Extended Baryon Oscillation Spectroscopic Survey (eBOSS). The main (CORE) eBOSS

quasar sample (Myers et al. 2015) targets quasars at z > 0.9 over the entire eBOSS foot-

print, involving a homogeneous selection with the likelihood-based routine XDQSOz,

additional mid-infrarred-optical color cuts (from WISE; Wright et al. 2010), and apply-

ing the same limiting magnitudes as BOSS (with the caveat of only considering targets

fainter than i > 17). eBOSS does not retarget known (previously well-classified) quasars,

though.

eBOSS also encompasses a specific program to select quasars based on variability

(Palanque-Delabrouille et al. 2016) and using time-domain data from the Palomar Tran-

sient Factory (PTF; Rau et al. 2009). This sample is targeted to supplement Ly-α quasars

in the CORE sample.

2.2.4 Superset

In addition to the quasar catalogs that accompany SDSS data releases, a superset

of observations (Superset hereafter) has been created since DR12 to select quasar spectra
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based on the targeting bits assigned for quasar programs. To ensure great completeness

and purity, a subsample of spectra was visually inspected (since, e.g., in the case of the

last data release, DR16Q, the sample is too large to be fully inspected), followed by

the confirmation or correction of their classification and redshifts by the QuasarNet tool

(Busca & Balland 2018).

The visual inspection and highly-specialized targeting algorithms guarantee a se-

cure identification of the sources, as well as the inclusion of all quasar targets (including

stars and galaxy spectra whose broad-band colors are consistent with those of quasars),

which makes this catalog ideal to identify spectroscopically confirmed quasars, providing

a census of the main contaminants to the quasar sample.

In this thesis we use the latest public release of the Superset (DR16Q-Superset)4,

which contains 1,440,615 quasar targets. Additional cuts can be applied to the entries

Z CONF (where values < 3 ensure large confidence rating for the visually inspected red-

shift) and CLASS PERSON (which corresponds to the object classification from visual

inspection and is shown in Table 2.1).

Table 2.1: Visual inspection classifications from the Superset catalog.

Value Object type Value Object type

0 not-inspected 1 star

3 quasar 4 galaxy

30 BAL-quasar 50 possible blazar

2.2.5 Final remarks on quasar selection

Because quasars are selected by their optical colors, regions of the sky in which the

SDSS photometry is poor are unlikely to have complete quasar targeting. Inhomogeneities

in the quasar target selection, particularly those related to extinction and depth of the

imaging data used for targeting, are the main sources of systematics in the evaluation

4Superset catalog available at:
https://data.sdss.org/sas/dr16/eboss/qso/DR16Q/DR16Q_Superset_v3.fits

https://data.sdss.org/sas/dr16/eboss/qso/DR16Q/DR16Q_Superset_v3.fits
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of the correlation function. As we will show later, J-PAS will be less affected by these

pre-selection effects.

2.3 Quasar clustering

Hopkins et al. (2008), Cattaneo et al. (2009), Kormendy & Ho (2013), Dubois et al.

(2013), Heckman & Best (2014), just to cite a few, have shown that the epoch of quasar

activity is related to the star formation activity in elliptical galaxies. That, combined with

the evidence that supermassive black holes are believed to inhabit the centers of massive

galaxies (Kormendy & Richstone 1995, Miyoshi et al. 1995, Ferrarese & Merritt 2000,

Gebhardt et al. 2000, Ghez et al. 2008, Genzel et al. 2010), suggests that black holes

and galaxy spheroids share a common evolutionary physical process. Moreover, since

galaxies reside in dark matter halos, a connection between black holes and their dark

matter halos is naturally expected. Observationally, quasars are very luminous objects

and are believed to inhabit the centers of very massive halos (with typical masses of

1012 − 1013 h−1 M�), which means that they have a great potential to probe structure

formation in the Universe.

With the advent of the 2dF Quasi-Stellar Object Redshift Survey (2QZ; Croom

et al. 2005) and the Sloan Digital Sky Survey (SDSS; York et al. 2000), the first high

precision measurements of the two-point correlation function with quasars were possi-

ble. However, measuring the small-scale quasar clustering in fiber-based spectroscopic

surveys is usually hindered by fiber collisions. For instance, the SDSS fibers cannot be

placed at less than ∼ 55′′ of each other on a single spectroscopic plate – this distance

corresponds to a comoving separation of 1 h−1 Mpc at a redshift of 1.5 (Richardson et al.

2012).

This problem can be partly overcome by measuring the angular clustering of pho-

tometrically selected quasars (Myers et al. 2006; Myers et al. 2007; Ivashchenko et al.

2011; Ho et al. 2015). In this regard, Abramo et al. (2012) pointed out that the J-PAS

survey could deliver nearly 240 type-I quasars per square degree up to a magnitude limit

of g ∼ 23, with a photometric redshift precision of ∼ 0.002(1 + z), which could clearly

have a large impact not only in the study of quasar clustering, but also in cosmology
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applications as a whole.

In order to provide a detailed description of the clustering of quasars we employ

Halo Occupation Distributions (HODs) to describe the types of dark matter halos that

host quasars. HODs (see, e.g. Seljak 2000; Peacock & Smith 2000; Berlind & Weinberg

2002; Zheng et al. 2007) constitute an empirical and intuitive approach to describe how

luminous tracers occupy the dark matter halos. The HOD description consists of: (i) a

one-halo term, relating the (small-scale) galaxy-dark matter statistics (via a probability

P (N |Mh) that a halo of a given mass Mh hosts N galaxies of a certain type); and (ii)

a two-halo term, which characterizes how halos of a given mass M cluster around each

other (giving, thus, insights about the large-scale clustering).

The conditional probability P (N |Mh) is usually assumed to be a Poisson distri-

bution with mean 〈N(Mh)〉, which can be modeled in various ways. In general, it is

decomposed into central, 〈Ncen(Mh)〉, and satellite, 〈Nsat(Mh)〉, contributions:

〈N(Mh)〉 = 〈Ncen(Mh)〉+ 〈Nsat(Mh)〉. (2.17)

For quasars, the halo occupations of central and satellite quasars are often assumed

to be independent, meaning that the occupation fraction of satellite quasars does not de-

pend on whether there is a central quasar in the halo. In the literature there are two

favored parametrizations for the quasar HOD (Richardson et al. 2012; Shen et al. 2013).

In the first parametrization, the mean occupation function of central quasars is given as a

softened step function with characteristic mass scale Mmin (corresponding to the scale at

which, on average, half of the halos host one quasar) and transition width σlog M:

〈Ncen(Mh)〉 =
1

2

[
1 + erf

(
log Mh − log Mmin

σlog M

)]
. (2.18)

This form is similar to the galaxy HOD (Zheng et al. 2005, 2007), and it is loosely mo-

tivated by cosmological hydrodynamical simulations of AGNs (Di Matteo et al. 2008;

Chatterjee et al. 2012).

The satellite component, in turn, is parametrized as a rolling-off power-law:

〈Nsat(Mh)〉 = exp

(
−Mcut

Mh

)(
Mh

M1

)α
(2.19)
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where Mcut is the mass scale below which the satellite mean occupation decays exponen-

tially, M1 is the approximate scale at which halos host, at least, one satellite, and α is a

power index.

The second parametrization admits six free parameters (as opposed to the five

parameters of the previous HOD), where the satellite component assumes the same form

as Eq. 2.19, but the central component assumes a log-normal form given by

〈Ncen(Mh)〉 = fcen exp

[
−(log Mh − log Mcen)2

2σ2
M

]
. (2.20)

Compared with the five-parameter model, this form reduces the number of central quasars

in massive halos.

In Fig. 2.8 we illustrate the mean (total) occupation functions for quasars selected

from the SDSS DR7 at an effective redshift of z̄ = 0.5. The best-fit parameters were

derived in Shen et al. (2013) and are shown in Table A.1.
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Figure 2.8: 5-parameter (on the left) and 6-parameter (on the right) mean occupation functions
for SDSS DR7 quasars at z̄ = 0.5. The black solid line corresponds to the total occupation
function, while the dashed blue line and dash-dotted red line correspond to the central and satellite
contributions, respectively.

It is worth mentioning that the HOD approach assumes a dependency on the halo

mass alone, not taking into account possible effects of assembly bias (i.e. the degree to

which the formation history and physical properties of a halo or its large-scale environ-

ment affects its bias). In this regard, an alternative approach is the method of sub-halo

abundance matching (SHAM; Conroy et al. 2006; Vale & Ostriker 2006; Hearin et al.
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2015).

2.3.1 Quasar clustering in eBOSS

Recently, SDSS released the largest 3-D map of the Universe ever created. Here

we present some of the results obtained by Hou et al. (2020) in their analysis of anisotropic

clustering of quasars from eBOSS (DR16). The quasar sample spans the redshift range

0.8 < z < 2.2 and has an effective redshift of zeff = 1.48.

Figure 2.9: Left: 2D correlation function ξ(s‖, s⊥) measured from the DR16 quasar sample. The
solid contour corresponds to the theory prediction. Right: The measured correlation function for
monopole (` = 0, blue), quadrupole (` = 2, red) and hexadecapole (` = 4, gray). The solid lines
show the best fitting full-shape model. Credit: Hou et al. (2020).

Figure 2.10 shows a corner plot with the posterior distribution of the Alcock-

Paczynski (AP) parameters (Alcock & Paczynski 1979), the growth rate fσ8, and the

linear bias b1 for the North Galactic Cap (NGC), South Galactic Cap (SGC), and the

combination of both. The AP parameters are also known as the geometric distortion pa-

rameters, decomposed into perpendicular and parallel distances to the line-of-sight, and

relating the BAO scale to the comoving sound horizon at the drag epoch (rdrag – which,

in turn, depends on the ratio of baryon to radiation density). Their results yield b1 ∼ 2.4

at zeff = 1.48.
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Figure 2.10: Posterior distribution for AP parameters, fσ8 and linear bias b1 for NGC (orange),
SGC (blue), and combined (pink). Credit: Hou et al. (2020).

2.4 Multi-tracer technique

A critical gap between observations and science applications is the optimal ex-

traction of information from the catalogs. In the early days, prior to the development of

CCD devices, mapping the large-scale structure was done by counting galaxies on pho-

tographic emulsions. This means that one was limited by the number of galaxies that

could be detected by these early telescopes and sub-optimal photon counting devices. In

this regime, we say that the counts of galaxies measured at the detector output are dom-

inated by Poisson “shot-noise”. Nowadays, telescopes have become much larger and the

detection techniques have improved, so that we are much less affected by low counts of

galaxies. Nevertheless, sampling increasing numbers of a single type of tracer can be

very costly and eventually we are constrained by the total number of galaxies that exist,

as well as the finite volume that can be probed in our past light cone (as illustrated in Fig.

2.11). As a result, the uncertainties in our measurements will have contributions com-

ing from both shot-noise (typically dominating at small scales) and “cosmic variance”
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(usually most relevant at large scales).

Figure 2.11: Observable Universe on a logarithmic representation. This illustration was created
using Photoshop with real images from NASA, and features the solar system at the very center,
surrounded by stars, nearby galaxies, the cosmic web, the CMB, and the Big Bang’s plasma on the
edge. Astrophysical objects were enlarged for a better visualization. Credit: Pablo Carlos Budassi
(2012).

Given this profile for the noise in galaxy clustering, we might naively infer that,

in order to improve our constraints, it would be sufficient to simply increase the surveyed

volume. However, up to any given redshift there is only a finite volume that we can

observe, and hence a finite volume inside which one can estimate the amplitudes and

phases of the (Gaussian) random modes of the density field.

So, at this point, we might ask ourselves: how to balance the shot-noise in light

of cosmic variance, in such a way that we are able to recover the maximal amount of

information from our catalogs? Or, in other words: how to estimate the power spectrum

in a way that minimizes its covariance?

For a single type of tracer, Feldman et al. 1994 (FKP) demonstrated that there is

an optimal weight which minimizes the variance of the amplitude of the power spectrum

averaged over some volume (bin) Vk in Fourier space. Assuming some fiducial models

for the matter power spectrum Pm = P (k; z), the average number of tracers in the catalog

n̄(r̂; z), and the bias of the tracer b(z), FKP showed that the uncertainty in the power

spectrum can be written as the Fisher information matrix for that Fourier bin:
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[
P (k, z)

σP

]2

=
Vk
2

∫
d3r

[
n̄(r̂, z)b2(z)P (k, z)

1 + n̄(r̂, z)b2(z)P (k, z)

]2

. (2.21)

This Fisher matrix was derived by Tegmark (1997), Tegmark et al. (1998), and

it follows from the covariance of galaxy counts. The terms inside the integral are most

easily expressed as:

Fα(k, z) =
1

2

(
Pα

1 + Pα

)2

, (2.22)

where index α refers to a given tracer species, and

Pα = n̄α(r̂)
[
bα + f(z)µ2

k + ∆bNG

]2
P (k, z) (2.23)

is the effective redshift-space power spectrum of that tracer in units of its shot-noise, and

we are considering that the bias is a general function of redshift, scale and angle, which

may also include a bias correction due to primordial non-Gaussianities (NGs). We can

also rewrite this result in a more compact way as Pα = B2
αP (k, z), where now Bα is an

effective bias. In this notation, cross-correlations are represented byPαβ = BαBβP (k, z).

The result in Eq. 2.22 is telling us that there is an upper limit to the information

that can be extracted from a single tracer on a finite volume. All is not lost, though.

Instead of using all galaxies as a single tracer, one can gain additional information by

mapping various tracers of the underlying density field at the same time. The gain from

multi-tracer analyses then comes from probing the same volume more than once, each

time with a different galaxy bias, reducing this way the cosmic variance for quantities

that are related to the galaxy bias.

Percival, Verde & Peacock (PVP, Percival et al. 2004) proposed the first multi-

tracer approach, by providing optimal weights for a minimum variance estimator of the

matter power spectrum when combining several different biased tracers. However, their

estimator did not provide a minimum-variance estimation of the redshift-space power

spectra of the tracers.

Abramo et al. (2016) proposed another multi-tracer optimal estimator (MTPK

hereafter), based on the Fisher matrix for multiple tracer species (Abramo et al. 2012;
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Abramo & Leonard 2013):

F [logPα, logPβ] =
1

4

[
PαPβ(1− P)

(1 + P)2
+ δαβ

PαP
1 + P

]
(2.24)

where P =
∑
Pα is the total effective clustering strength.

The MTPK method is a generalization of the standard weighting scheme of FKP

and, when compared to PVP, it has the advantage of being optimal both in terms of the

estimation of the combined power spectrum (cross-covariances were not fully developed

in PVP) and of the redshift space auto-power spectrum of each individual species. In fact,

by combining the power spectrum estimators of individual tracers, the results provided by

MTPK are identical to those obtained with the PVP method.

The idea behind the multi-tracer technique is that cosmic variance is only inherited

through the spectrum. Thus, by comparing the clustering of different tracers of large-scale

structure, which can be different types of galaxies (with different types of luminosities),

quasars, or even dark matter halos themselves – it is in principle possible to measure

with arbitrary accuracy (i.e., without being constrained by cosmic variance) the physical

parameters that determine the different clustering strengths Pα (Eq. 2.23). This means

that, for instance, by taking the ratio of two tracers, the Gaussian fluctuations in P (k, z)

are cancelled out and, thus, cosmic variance is beaten:

P1

P2

=
n1(b1 + fµ2

k)
2

n2(b2 + fµ2
k)

2
. (2.25)

The cancellation of cosmic variance can help us improve the constraints on some

important cosmological parameters, such as the redshift-space distortion parameter β and

the non-Gaussianity parameters fNL and gNL. Note, however, that other complications

arise, coming from the covariance of the biases, non-linearities and modelling, assembly

bias, and cross-covariances. This means that there is still a lot of room for improvements.

The current and next generation of multi-tracer surveys will be far superior to

previous single-tracer surveys of large-scale structure. In particular, the J-PAS survey

will cover an immense volume (∼ 8500 deg2 up to z ∼ 5), providing superb datasets and

census for different types of tracers (i.e., the volume sample variance will remain very

small). Nevertheless, the expected density for quasars will peak around 10−4 h3Mpc−3,
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and since the amplitude of the power spectrum on 100 h−1Mpc scales is around 103 (see

Fig. 2.3), this implies that Poisson shot-noise will be an important nuisance. On the other

hand, the quasar catalog will partly overlap with the J-PAS luminous red galaxy (LRG)

and emission line galaxy (ELG) surveys, allowing us to employ different tracers of LSS

to significantly improve the cosmological constraints whenever these species overlap.

In the next section we show some preliminary results obtained for an application

of the MTPK method using a sample of ELGs and quasars.

2.4.1 Simulating a quasar and ELG photometric survey

When analysing photometric catalogues in redshift bins, the theoretical power

spectrum predictions require precise estimates of the redshift distributions, which are

in general compromised by large uncertainties in the photometric redshifts. For most

surveys, this issue is even more critical for photometric quasars, since their redshift es-

timates are significantly more uncertain than for other types of galaxies, and include a

significant fraction of catastrophic failures. As we will see in Chapter 6, this will not

be case for quasars detected with the J-PAS photometric system, which will deliver very

precise photo-zs for these objects.

So, we want to investigate how the redshift error distribution obtained on the ba-

sis of the J-PAS observations would affect our ability to extract information from the

combined power spectrum of multiple tracers – in the presence of quasars. Here we show

some preliminary results (Abramo, Queiroz et al. in prep. 2021) using the multi-tracer op-

timal estimator derived in Abramo et al. (2016) to analyse a set of 200 log-normal mocks

containing only two types of tracers: emission line galaxies (ELGs) and quasars (QSOs),

spanning the redshift range 1.4 < z < 2.6 divided into three slices: 1.4 < z < 1.8 ,

1.8 < z < 2.2, and 2.2 < z < 2.6. The motivation for this simulation is that the quasars

would be detected by J-PAS, while the ELGs would be observed by surveys such as DESI

(DESI Collaboration et al. 2016) or Euclid (Laureijs et al. 2011, Amendola et al. 2018).

The log-normal simulations produce a grid of positions for the tracers inside a box,

and model the distribution of tracers as a log-normal random field:
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1 + δLN(r) = ebδG(r)−b2σ2
G(r)/2 (2.26)

where σ2
G is the variance of the Gaussian field inside a cell of the volume. For a detailed

description on the generation of log-normal maps, see Coles & Jones (1991).

The simulation was implemented in the following way.

First, we imposed a mask corresponding to the range 126◦ < RA < 160◦, and

17◦ < dec < 46◦, with circular holes which simulate exclusion zones caused by objects

such as bright stars. These holes were inserted randomly in the mask, but with a gradient

towards the lower range of RAs, in order to emulate the increased number of bright stars

as we point closer to the halo of the Milky Way. The final area, shown in Fig. 2.12,

spans approximately 3000 deg2 – which is roughly what we expect to have in 3-4 years

of operation of J-PAS (i.e., by 2024 or 2025).

Figure 2.12: Polar projection of the simulated survey footprint (blue region). Here, RA is indi-
cated as the polar angle in the polar plot, and dec (in radians) is denoted by the concentric rings.

Second, we employed radial selection functions that emulate the distributions of

QSOs and ELGs in that redshift range. This QSO radial selection function was drawn

from the QSO luminosity function (LF; Palanque-Delabrouille et al. 2016), with a com-

pleteness of 80% (meaning that we took the numbers of objects from the LF and multi-

plied them by 0.8). In the case of ELGs, we took their numbers from the average redshift

distribution expected by the DESI and Euclid surveys. Those radial selection functions
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are shown in Fig. 2.13.

Figure 2.13: Radial selection functions, dN/dz, of quasars (red solid line) and ELGs (blue solid
line) as a function of redshift. The dashed lines correspond to the normalized counts in our random
maps.

We used the mask and the radial selection functions to produce a random catalog

comprised of 109 points, which then determine how the objects are distributed inside

our 3D volume. These randoms were rotated in such a way that the z-axis corresponds

roughly to redshift, and then inserted in the 3D rectangular volumes corresponding to the

three redshift slices defined above, and gridded into cells of side 10h−1Mpc. These boxes

have dimensions of {nx, ny, nz} = {190, 172, 67}, {213, 193, 62} and {232, 210, 58} for

the first, second, and third redshift slices, respectively. The filling factor of these boxes

(the ratios of the cells with any number of objects divided by the total number of cells

of the boxes) is approximately ∼ 50-60%. In Fig. 2.14 we show seven plots in x − y

corresponding to the slices nz = 5, 15, . . . , 65 – all for the first box. One can see how the

cone defined by the redshift range defines a volume that appears first as the corners of the

lower Cartesian z slices, and then as a cap for the top Cartesian z slices. One can also see

how the mask defines not only a range in RA and dec, but also how the exclusion zones

increase as we reach the lower limit in RA (which appears as the upper part of the plots).

The actual simulations with large-scale structure were implemented in the follow-

ing way. First, on each of the boxes defined above we created a log-normal mock of halos
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Figure 2.14: Projections in the x− y plane of the mask and selection function of the first redshift
slice, for seven slices of nz = 5, 15, . . . , 65. The volume defined by the cone appears first as
the corners of the lower Cartesian-z slice (upper left panel), and then as a cap for the top z slice
(bottom right panel). Note that the holes, corresponding to the random exclusion zones, have a
gradient towards lower values of RA (upper parts of y-axis).

with masses in the range log10(M/h−1M�) = 11.5− 14.5. The underlying spatial matter

distribution of these log-normal mocks follow a matter power spectrum using a ΛCDM

cosmology with the same parameters as defined by Planck (Planck Collaboration et al.

2020a), with halo mass functions and halo biases determined by the fit of Tinker et al.

(2010).

The redshift-space distortions were implemented using the Kaiser (linear) model

(see Eq. 2.12). We should also remark that these log-normal mocks fill the entire boxes –

the mask and selection functions for QSOs and ELGs were imposed at another stage.

Once the halo log-normal mocks in redshift space were completed, we “painted”

the galaxies using a halo occupation distribution (Berlind & Weinberg 2002) integrated

inside the six halo mass bins defined above. This means that, for each halo of a given

mass, there is a certain probability of having a QSO or an ELG – and we use a Poisson

statistics to randomly place those objects in the places of the halos according to their

HODs. We have adjusted the HODs in such a way to obtain number densities similar

to the radial selection functions above, as well as biases of bQSO = 2.3 , 3.0 , 3.5 and

bELG = 1.3 , 1.4 , 1.6 for the three redshift slices, respectively.

Finally, the nominal number of QSOs and ELGs in each box was restricted by the
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angular mask and redshift dependence of those objects, resulting in 3D maps that reflect

the spatial distribution of the underlying density field, at the same time that it preserves

the footprint and radial selection functions of the putative survey.

However, the original simulated maps of QSOs and ELGs assume that the redshifts

are perfect, when this is not always true for a photometric survey – even for a narrow-band

survey such as J-PAS. In a photometric survey we have, among other issues, photometric

redshifts which introduce errors which may be small or large (the so-called “outliers”).

Hence, in order to simulate a photometric survey we take the original maps of QSOs and

ELGs and “shuffle” the redshifts of those objects according to the realistic distributions

(PDFs) of those photometric redshifts. For the quasars, we made a forecast for J-PAS

using mock quasar catalogs and derived realistic errors with a model fit for quasar photo-

spectra based on eigenspectra (see §4.4, 5, and 6 for more details). In the case of ELGs,

we assume a Gaussian PDF with σz = 0.003. The final results are maps corresponding to

catalogs obtained using photometric redshifts for those objects.

Finally, we compute the spectra of QSOs and ELGs of the original (“spectro-

scopic”) maps, as well as those of the shuffled (“photometric”) maps. In Fig. 2.15 we

show the monopoles (upper panels) and quadrupoles (lower panels) of the QSO auto-

spectrum (red), ELG auto-spectrum (blue), and QSO-ELG cross-spectrum (cyan), for the

original (left panels) and for the shuffled maps (right panels), for the first redshift slice

(1.4 < z < 1.8).

Quasars are more highly biased tracers of the matter density field than ELGs, and

hence their spectra typically have more power. Note, however, that the clustering strength

for the monopole lowers on small scales (large k) after the inclusion of photometric er-

rors (right upper panel of Fig. 2.15). The signal-to-noise ratio for the QSO-ELG cross-

spectrum has more power than the spectrum for ELGs alone, but also degrades on the

small scales after the inclusion of photometric redshifts.

On the other hand, estimates for the quadrupole tend to be noisier and, thus, have

naturally less power than the monopole (left bottom panel of Fig. 2.15). In this case, the

inclusion of photometric errors significantly degrades the signal of the quadrupole – as

we can see on the right bottom panel.
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Figure 2.15: Upper panels: Comparison of the estimated monopoles for quasars (red dots) and
ELGs (dark blue dots) for the original (left panel) and shuffle (right panel) maps on the first
redshift slice (1.4 < z < 1.8). The cyan dots represent the cross-spectrum of quasars and ELGs.
The symbols and error bars correspond, respectively, to the mean and variance of 200 realizations.
Bottom panels: Same for the quadrupoles.

This trend is sustained in the second and third redshift slices, Fig. 2.16 and Fig.

2.17.

Note that this suppression effect was already expected from the case of simply

having Gaussian photo-z errors (which is exactly the case for ELGs – dark blue dots in

Fig. 2.15) and it can be explained as follows. The photo-z error distribution acts as a radial

window function, in which the power spectrum P (k) is damped by a Gaussian term of

the order exp

[
−

σ2
zk

2
‖

2H2(z)

]
. This means that in the presence of photo-z errors the window

function suppresses modes along the line-of-sight with wavelengths λ‖ < σz/H (e.g.

Lima & Hu 2007; Chaves-Montero et al. 2018); equivalently, no significant suppression

effects appear at large scales (i.e. small k). A similar effect is expected for neutrinos, for

which the clustering power is suppressed on scales smaller than the free-streaming scale.

This is an ongoing analysis, but it already provides a foretaste of the potential that

we will have to measure large-scale structure with QSOs at high redshifts, with photo-
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metric redshifts that preserve, to a large extent, the clustering signal. The monopoles of

the power spectrum are largely preserved, and there is still some signal in the quadrupole

(even though it is largely washed out by the photometric redshifts). This means that we

will be able to measure not only the BAO scale using these high-redshift maps, but also

redshift-space distortions.

An overview of the quasar phenomenon is presented in the next chapter.

Figure 2.16: Monopoles (upper panels) and quadrupoles (lower panels) of the QSO auto-spectrum
(red), ELG auto-spectrum (dark blue), and QSO-ELG cross-spectrum (cyan), for the original (left
panels) and shuffled maps (right panels), for the second redshift slice (1.8 < z < 2.2). The
symbols and error bars correspond, respectively, to the mean and variance of 200 realizations.
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Figure 2.17: Monopoles (upper panels) and quadrupoles (lower panels) of the QSO auto-spectrum
(red), ELG auto-spectrum (dark blue), and QSO-ELG cross-spectrum (cyan), for the original (left
panels) and shuffled maps (right panels), for the third redshift slice (2.2 < z < 2.6). The symbols
and error bars correspond, respectively, to the mean and variance of 200 realizations.



CHAPTER 3

“TWINKLE, TWINKLE, QUASI-STAR”

“Normal” galaxies come in different shapes and sizes; overall, the light that they

emit can be attributed to the sum of the emission of individual stars in hydrodynamical

equilibrium that compose them, with small contributions from gas and dust. However,

there is a peculiar group of galaxies which are extremely luminous, presenting energy

distributions that span the whole electromagnetic spectrum and intense emission lines in

the optical. This energy release cannot be explained by thermal processes and seems to

originate from a small central and compact region inside the galaxy. The flux emanating

from the core suffers from variability on short timescales, and its brightness outshines its

host. So, what is happening in these galaxies to produce such energetic outputs?

The central activity in these galaxies is ascribed to the presence of a supermassive

accreting black hole (Ferrarese & Merritt 2000; Gebhardt et al. 2000; Kormendy & Ho

2013), and as the name suggests they form the class of active galactic nuclei (AGNs). As

the material from the galaxy’s dense central region falls in toward the black hole, angular

momentum will cause it to spiral in and settle into a flattened rotating disk. This disk,

called accretion disk, heats up due to the gravitational and frictional forces at work, and

glows. A corona of hot material forms above the accretion disc and can inverse-Compton

scatter photons up to X-ray energies. A torus of gas and dust surrounding the accretion

disk completes the picture (see Fig. 3.1). Moreover, in about 1% of the AGNs, the black

hole and accretion disk produce narrow beams (“jets”) of energetic particles and eject

them outward in opposite directions away from the disk.

Radio galaxies, Seyferts, quasars, LINERs, blazars: they are all active galaxies

viewed by different angles. It is beyond the scope of this thesis to give a thorough anal-

ysis about black holes and each member of the AGN family. Our intention is to have a
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better understanding about the main characteristics of the AGN phenomenon (in particu-

lar, focusing on quasars) and discuss their importance for galaxy evolution. For this, we

divided this chapter in three parts. The first half is dedicated to present a brief overview

of the central black hole responsible for the powering of the AGN activity. Then, in the

second part, we present the main properties of AGNs and quasars. Finally, the third part

is focused on the identification of quasars.

Figure 3.1: Illustration with the different features of an active galactic nucleus (AGN) and their
corresponding scales. The extreme luminosity is powered by accretion onto a supermassive black,
and it may present a jet. A pc is a parsec, equivalent to 3.26 light-years or 1016 m. Credit: A.C.
Fabian, University of Cambridge.

3.1 Black holes as central engines

Quoting Luis Ho: “our confidence that supermassive black holes must power

AGNs largely rests on the implausibility of alternative explanations”. In order to bet-

ter understand this argument, let’s first take a look at some observational evidences on

AGNs being powered by SMBHs1.
1The arguments presented here are based on the discussion by Schneider (2006).
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1. Some radio galaxies present radio structures that extend to distances larger than 0.7

Mpc. This clearly imposes a minimum lifetime of τ & 107 yr (see Eq. 3.6), if we

assume that the radio emission expands outwards at the speed of light.

2. Luminous quasars may reach luminosities of Lbol ∼ 1047 erg s−1, imposing an

energy release of Etot ∼ 1061 erg during their minimum age.

3. The X-ray radiation emitted by some quasars is observed to vary in timescales of

order of minutes, which means that, for the major part of the emitting region to be

in causal contact, the spatial extent of the source (diameter) must be very small – of

order of light-minutes (∼ 1015 cm).

A “classical” method of producing energy is the nuclear fusion (e.g. taking place

in stars). However, its efficiency (ηmax . 0.7%) is too low to be considered as the pri-

mary energy source in AGNs. Here is the reason2: in order to generate an energy of E =

3 x 1061 erg through the burning of hydrogen, a total mass of M = E/ηc2 ∼ 2 x 109 M�

would be necessary, implying that all of the matter that was not converted into fuel (i.e.

(1− η)m ' m) must be present in the core of the AGN. However, the Schwarzschild ra-

dius for this mass is rS = 2GM/c2 ∼ 6 x 1014 cm, i.e. same order as the estimated extent

of the central source. Therefore, the assumption of energy production by thermonuclear

processes seems inappropriate, because such a compact core could not emit any sort of

radiation that it (eventually) produced.

In that case, “what darkness lurks in the hearts of galaxies?” (Djorgovski et al.

2008). The only alternative mechanism known for yielding large enough values of effi-

ciency to produce such energetic outputs is mass accretion onto a compact object (e.g.

Salpeter 1964; Zel’dovich 1964; Lynden-Bell 1969; Rees 1984), which refers to stellar

remnants such as white dwarfs, neutron stars and black holes. Based on the previous

arguments of compactness and mass, our best guess is that the central engine must be a

black hole – and a very massive one.

Black holes (BHs) of all sizes are very common in the Universe: there are numer-

ous known stellar-sized BHs (with masses∼ 3−30 M�) in our Galactic neighborhood, as
2Another way of seeing this is that in order to produce this amount of energy the star would have to

convert all of its hydrogen into helium in less than 107 yr (which corresponds to the black hole duty cycle).
This implies that all of the stars would have masses > 10 M�.



42 3.1. Black holes as central engines

well as in several nearby galaxies. Since the discovery of the Seyfert galaxies in the 1940s

and the first quasars in the 1960s, there has been increasing evidence for the existence of

supermassive black holes (SMBHs, with masses of order 106 − 1010 M�) at the center

of many – if not all, massive galaxies (M87: Harms et al. 1994; Kormendy & Richstone

1995; NGC4258: Miyoshi et al. 1995; NGC3115: Kormendy et al. 1996; Emsellem et al.

1999; SgrA∗: Genzel et al. 1996, Ghez et al. 1998, Ghez et al. 2000, Genzel et al. 2010;

M31: Statler et al. 1999, Bacon et al. 2001; Kormendy & Ho 2013 – just to cite a few).

These observational evidences emerged from optical/infrared imaging and spectroscopy

on the Hubble Space Telescope (HST) and large ground-based telescopes, as well as from

very long baseline radio interferometry (VLBI).

The list of BHs is now long enough, and accretion onto SMBHs is well accepted as

the energy source powering AGNs. From the theory of accretion onto black holes, assum-

ing the infall of matter onto a non-rotating (Schwarzschild) black hole, potential energy

can be converted into kinetic energy with a maximum efficiency of η =
GMBH

rc2
=
rS
2r

. 6%,

for r > rS . For rotating black holes, this efficiency can be as high as 42%.

3.1.1 A black hole in our backyard

Sagittarius A∗, located at the center of the Milky Way, is the closest supermas-

sive black hole to us. At a distance of about 8 kpc from Earth and with a mass of about

4x106 M�, Sgr A∗ gained more notoriety in 2020 with half of the Physics Nobel Prize

being awarded to Andrea Ghez and Reinhard Genzel due to their discoveries of this invis-

ible and compact radio source through the analysis of the orbits of stars near the Galactic

center (see Fig. 3.2), as well as measurements of the size and motion of the central source

(Genzel et al. 1996; Ghez et al. 1998; Ghez et al. 2000; Genzel et al. 2010; Ghez et al.

2008; Gillessen et al. 2009a; Gillessen et al. 2009b).

Sgr A∗ is very bright in the radio and is highly obscured by interstellar dust. Al-

though being dormant today, it must have experienced multiple gas-accretion episodes in

the past to grow to its current mass. This picture is supported by a series of findings, such

as the young stellar disk around Sgr A∗ – a remnant of a dense accretion disk (Levin &

Beloborodov 2003), the Fermi bubbles (Su et al. 2010), and the bright emission of Hα
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Figure 3.2: Left panel: Orbits of stars within the Milky Way’s central tenth of a light-year loop
around the known location of Sagittarius A∗ (yellow star symbol). The fuzzy blobs are diffraction-
limited star images in an infrared adaptive-optics frame taken by a 10-m Keck telescope in 2004.
The frame is 1” (0.13 light-year) square. The annual average positions for these stars are plotted
as colored dots (which have increasing color saturation with time). Also plotted are the best-fitting
orbit solutions. Credit: UCLA Galactic Center Group/Keck Observatory. Right panel: Narrow-
field image of the Galactic center, taken at an infrared wavelength of 3.8 µm, resolving stars
around the position of the central black hole. The frame is 10” tall, with a resolution of 82 mas.
Credit: Alan MacRobert.

lines in the Magellanic Stream (Bland-Hawthorn et al. 2013).

3.1.2 First observation of gravitational waves

Another striking accomplishment was the detection of gravitational waves from

the coalescence of two black holes (GW150914) by the twin detectors of the Laser In-

terferometer Gravitational-Wave Observatory (LIGO; Abbott et al. 2016). This transient

gravitational wave signal detected by the LIGO and VIRGO Collaborations is hailed as

a milestone, because it demonstrated the existence of binary stellar-mass black hole sys-

tems, demonstrating that such mergers could occur within the current age of the universe,

and, more importantly, it corroborated the general relativity predictions of space-time

distortions in the context of large-scale cosmic events.

In 2017, gravitational waves originated by a kilonova event (i.e. merger of two

neutron stars) were detected (GW170817) and were accompanied by a short gamma-ray

burst, which was monitored across the entire electromagnetic spectrum (e.g. Abbott et al.

2017a; Abbott et al. 2017b; Coulter et al. 2017; Dı́az et al. 2017; Goldstein et al. 2017).
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This marked the beginning of multi-messenger astronomy, and the Physics Nobel Prize

of that year was awarded to Rainer Weiss, Barry C. Barish and Kip S. Thorne for their

contributions to the observation of gravitational waves.

Since then, several events that released gravitational waves have been observed.

Recently, in an updated catalog of gravitational wave transients, Abbott et al. (2020) have

shown that the black hole merger rate appears to have peaked around eight billion years

ago, following a period in which stars were forming – some of which were later turned

into black holes, at a particularly high rate.

3.1.3 First image of a black hole

An ultimate proof for the existence of a supermassive black in the center of a

galaxy came in 2019 with the historic image of the shadow of the black hole in the center

of the elliptical galaxy Messier 87 (M87, shown in Fig. 3.3) captured by an international

network of eight ground-based radio telescopes called the Event Horizon Telescope (EHT;

Event Horizon Collaboration et al. 2019a, 2019b, 2019c, 2019d, 2019e, 2019f).

Since a black hole is an object whose gravity is so strong that not even light can

escape, it is impossible to capture direct images from it. Nevertheless, the hot accretion

disk encircling the black hole shines bright, and against this bright disk, the black hole

seems to cast a shadow. This dark shadow is attributed to gravitational light bending and

photon capture at the region of non-return (a.k.a. event horizon). The EHT observed the

central radio source (dubbed M87∗) at a wavelength of 1.3 mm, and resolved an asym-

metric bright emission ring with a diameter of 42 ± 3 µas. The asymmetric ring (which

appears as a brightness excess at the bottom of right panel of Fig. 3.3) is produced by

a combination of strong gravitational lensing and relativistic beaming of the emission

from plasma rotating (in the clockwise direction, as seen by the observer) close to the

speed of light around the black hole. By comparing their images to general-relativistic

magnetohydrodynamic (GRMHD) simulations of black holes, a mass of 6.5x109 M� was

retrieved.

Overall, the image obtained by the EHT collaboration is consistent with expecta-

tions for the shadow of a Kerr black hole as predicted by general relativity, and has opened
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up a new window of observations for the study of supermassive black holes.

Figure 3.3: Left panel: Elliptical galaxy M87 depicting a jet. This Hubble image is a composite
of individual observations in visible and infrared light. Credits: NASA and the Hubble Heritage
Team (STScI/AURA). Right panel: Best-model image of M87∗ shadow. The asymmetric ring
indicates that the bottom part of the emission region is moving towards the observer. Credit: EHT
Collaboration.

3.1.4 Eddington luminosity

An important source of radiation in astrophysics results from release of binding

gravitational energy due to the accretion onto massive objects. This process depends on

the geometry of the system and can proceed via different paths.

The Eddington luminosity (LEdd, named after the astronomer Sir Arthur Edding-

ton) determines the maximum luminosity that a compact (spherical) object in hydrostatic

equilibrium can produce. It determines, thus, the condition for accretion to occur: if the

luminosity is higher than this limit, then the radiation pressure becomes larger than the

gravitational force, and the object can no longer remain bound. Suppose, for example,

that we have a central point source with mass M, total luminosity L, monochromatic

luminosity Lν , and a fully ionized gas blob at a distance r from the source. Then, the

radiation force acting upon a gas particle is given by

frad =
NeσT

4πr2c

∫ ∞
0

dνLν =
NeσT

4πr2c
L (3.1)

where Ne is the electron density, c the speed of light, and σT the Thomson scattering
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cross-section (or, equivalently, the effective area of an electron when it is illuminated by

radiation). The gravitational force per particle can be written as

fg =
GMµmpNe

r2
(3.2)

where G is the gravitational constant, mp the proton mass, and µ the mean molecular

weight (i.e., mean number of protons and neutrons per electron). Then, the limiting re-

quirement for accretion can be estimated assuming an equilibrium between the gravita-

tional force on the gas and the radiation pressure force:

LEdd =
4πGMmpc

σT

≈ 1.3x1038

(
M

M�

)
erg s−1 (3.3)

assuming pure hydrogen gas and an isotropic emission of radiation. Note that the Edding-

ton limit does not depend on the distance from the compact object. Moreover, it defines

the maximum luminosity allowed for objects being powered by a steady-state accretion

flow, over a long period of time. Of course, the luminosity can exceed LEdd for a short

period (e.g., immediately after an outburst). Finally, for our assumption of a fully ionized

plasma, the dominant source of opacity is Compton scattering. More realistic situations

may involve partly neutral gas, though, leading to higher opacity and, consequently, a

smaller effective LEdd.

Expressing Eq. 3.3 in units of the luminosity of the Sun, we obtain

LEdd ' 3x104

(
M

M�

)
L�. (3.4)

Typical quasars (M ∼ 108 M�) have Eddington luminosities of order of 1046 erg s−1 '

3x1012L�.

3.1.5 Black hole accretion

If the conversion of infalling mass into energy takes place with an efficiency η,

the accretion rate can be defined as Ṁ = L/ηc2 ≡ (L/LEdd)ṀEdd. Setting the accretion

luminosity equal to the Eddington limit gives us the maximum rate at which a black hole

can accrete gas:
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ṀEdd =
LEdd

ηc2
≈ 2M8

( η

0.1

)−1

M�yr−1 (3.5)

where M8 is the central mass in units of 108 M� and the maximum mass-to-luminosity

conversion efficiency is of order η ∼ 0.1. Note that the black hole growth rate is Ṁ(1−η).

We can also estimate a characteristic time in which the mass of the SMBH will

increase significantly:

tevol =
M

Ṁ
' η

(
L

LEdd

)−1

5x108 yr. (3.6)

It is worth mentioning that, when considering accretion via a disk, the simplest

possible case is a spherically symmetric accretion; this means that, in order to be accreted,

the gas blob must fall into a “sphere of influence” called the Bondi radius (Bondi 1952),

defined as the distance at which the escape velocity equals the sound speed cs:

rA =
2GM

c2
s

(3.7)

where cs =
√
γkBT/µmp , γ is the adiabatic index of the gas, kB is the Boltzmann con-

stant, and T is the temperature of the gas.

Following Netzer (2013), we can express a spherical accretion rate of hot gas, with

constant temperature and no radiation pressure force, as

ṀBondi = 4πλcsρr
2
A (3.8)

where λ is a correction factor of order 0.1 that depends on γ.

Obviously, the Bondi accretion model is very simple, because it assumes spher-

ical symmetry (while realistic accretion flows have angular momentum), and a constant

accretion rate (while in the presence of wind, the accretion rate decreases from the Bondi

radius towards the black hole). Still, the assumption for the formation of accretion disks

is that the viscosity in the disk is sufficient to provide the necessary mechanism to transfer

outward the angular momentum of the gas and allow it to spiral into the center. On the

way, the gas loses a considerable fraction of its gravitational energy, which can be effi-

ciently (η ∼ 4 − 42%) converted into electromagnetic radiation (that peaks in the UV).
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It can also be converted to kinetic energy, in which case the gas is blown away from the

disk, or the gas can be heated to high temperatures, causing much of the energy to be

advected into the BH. In addition, accretion disks are probably endowed with a magnetic

field.

The accretion rate determines the accretion mode of the black hole. There are

basically three different regimes: (i) when the accretion rate is lower than 0.01ṀEdd, the

black hole accretes gas by hot accretion flow, resulting in a geometrically thick disk (Yuan

& Narayan 2014); (ii) when it is in the range 0.01ṀEdd . Ṁ . ṀEdd, the black hole

accretes gas by cold accretion flow, yielding the standard thin disk (Shakura & Sunyaev

1973); (iii) when it is higher than the Eddington rate, the black hole accretes gas by slim

disk (Abramowicz et al. 1988). Each one of these disks can be optically thin or thick,

depending on the column density or the level of ionization of the gas. Regarding the

accretion mode, it can be of two types (shown in Fig. 3.4; see Heckman & Best 2014 for

more details), which imply in quite different spectra. In the radiative mode, also known

as the accretion mode, the SMBH is surrounded by a geometrically-thin, optically-thick

accretion disk through which a cold inflow occurs. As the name suggests, AGNs in this

regime are radiatively efficient. The accretion disk is encircled by a hot corona, which

Compton-upscatters photons from the disk into the X-ray regime. The ionizing radiation

from the disk (and the corona) heats and photo-ionizes dense gas clouds located further

away from the SMBH, producing UV, optical and near-IR permitted emission-lines, which

have successfully explained many luminous AGNs. An obscuring structure (i.e. region

of dusty molecular gas in a toroidal shape) involving the SMBH and accretion on larger

scales completes this picture. Depending on the line-of-sight, we observe a type-I or II

AGN, which might have a jet or not.

The second category is the radio (kinetic, or even jet) mode, associated with low

accretion rates (i.e. radiatively inefficient) and moderate radio luminosities. The geomet-

rically thin disk is absent or truncated in the inner regions, being replaced by a geometri-

cally thick structure, with the formation of a hot accretion flow. These are the so-called

advection-dominated or radiatively inefficient accretion flows (ADAFs/RIAFs; Narayan

& Yi 1994; Ho 2008), which can launch the characteristic two-sided jets. The ADAF
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solution was invoked to explain the observed features in low-luminosity AGNs, which

contain very massive BHs that are not increasing significantly in mass. This is the case of

Sgr A∗ in our Galactic center.

Figure 3.4: Illustration with the two types of accretion modes: radiative (left panel) and jet
(right panel). Radiative-mode AGNs have a geometrically-thin, optically-thick accretion disk, sur-
rounded by an obscuring structure of dusty molecular gas. Jet-mode AGNs have a geometrically-
thick advection-dominated accretion flow, with the possibility of a transition to an outer (truncated)
thin disk. Credit: Heckman & Best (2014).

Lastly, when the accretion rate exceeds the Eddington limit, the accreting gas be-

comes optically too thick to radiate all the dissipated energy. As a result, radiation is then

trapped and advected inward. This model looks similar to ADAFs in the sense that “ad-

vection” plays an important role and the radiative efficiency is very low, but in the case

of high accretion rates AGNs have a so-called slim disk. This model has been applied to

narrow-line Seyfert galaxies and ultra-luminous X-ray sources.

In general, the activity in AGNs can be triggered by gas-rich mergers, recycled

material from internal galactic processes and accretion of gas from intergalactic material

(Harrison 2017).

3.1.6 A remarkable relation

The growing realization that all massive galaxies must host a central supermas-

sive black hole was followed by a number of remarkable observations showing that black
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hole masses3 are actually tightly correlated with some host-galaxy properties, despite a

difference of several orders of magnitude in physical size scales (Kormendy & Ho 2013).

The galaxy formation and the accretion onto the SMBH are closely related by two rela-

tions: the correlation between BH mass and the luminosity of the “bulge” part of the host

galaxy; and the M − σ relation, which represents a relationship between the cumulative

past star-formation and black hole accretion histories of individual galaxies. These scal-

ing relations are illustrated in Fig. 3.5 for dynamical black hole detections obtained for

37 galaxies observed with the Hubble Space Telescope (Kormendy & Gebhardt 2001).

Despite the large scatter in the M• −MB,bulge on the left panel, the correlation is robust

and yields a BH mass of M• ∝ L1.08
B,bulge. SinceM/L ∝ L0.2, this implies that the BH mass

is proportional to the bulge mass: M• ∝ M0.90
bulge. In contrast, the scatter in the M• − σe

correlation is small and implies M• ∝ σ3.65
e .

Figure 3.5: Correlation of the SMBH mass with the absolute magnitude of the bulge component
of the host galaxy (left panel) and the luminosity-weighted mean velocity dispersion inside the
effective radius of the bulge (right panel) for 37 galaxies observed with the Hubble Space Tele-
scope. In both panels, filled circles indicate M• measurements based on stellar dynamics, squares
are based on ionized gas dynamics, and triangles are based on maser disk dynamics. All three
techniques are consistent with the same correlations. Credit: Kormendy & Gebhardt (2001).

The M• − σ relation yields a tighter correlation, and can be parametrized as

3In general relativity, a black hole has only three properties: mass, angular momentum and electric
charge. In astrophysical contexts, electric charge is generally unimportant, since it oscillates around zero,
and measuring angular momentum of real black holes is extremely difficult – with only a few results ob-
tained so far. Hence, the observed correlations involve only the mass of the SMBH.
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M•
108 M�

∝
(

σ

200 kms−1

)α
. (3.9)

In fact, this relation does not depend on the morphology of the host galaxy (whether it is

elliptical or spiral) – as shown in Fig. 3.6. It depends on the bulge type, though.

Figure 3.6: M• − σ correlation for a sample of elliptical (red points) and spiral (green points)
galaxies. The solid line indicates a best-fit of M• ∝ σ4.38. Data taken from Kormendy & Ho
(2013). Credit: Zubovas & King (2019).

Of course, the best-fit measurements from Fig. 3.5 were obtained for a specific

sample of galaxies; nevertheless, many subsequent observations have shown that these

correlations are fundamental, suggesting that the histories of BH growth and star forma-

tion in the Universe are similar. In fact, the redshift evolution of the black hole accretion

rate tracks the cosmic evolution of star formation rate (SFR), and both distributions seem

to peak in the redshift range 1 . z . 2, possibly due to a maximum merging rate between

rich gas galaxies at this epoch. This is shown in Fig. 3.7.

These evidences indicate that the BH mass is determined in part by the amount of

available fuel (i.e., cold gas supply), which, in turn, is connected with the total mass of the

bulge (so that galaxies with large bulges have more massive black holes). Also, the AGN

and the host galaxy share mutual mechanisms of self-regulation via feedback processes.

The schematic diagram in Fig. 3.8 illustrates the self-regulatory feedback processes from

black hole accretion and galaxy growth. Both processes are known to inject energy and
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Figure 3.7: Redshift evolution of the black hole accretion rate (black line with gray band) scaled
up by a factor of 5000 compared with the star formation rate distribution (orange dots). Credit:
Kormendy & Ho (2013).

momentum (via radiation, winds and jets) that can reduce the availability of usable fuel

through ionising, heating, shocking or expelling material.

Figure 3.8: Schematic diagram of the relationship between fuel supply, galaxy growth and black
hole growth. Both AGN and star formation are fueled by cold gas originating from a shared gas
reservoir inside the galaxy halo. Not only the amount of gas, but also its ability to cool, are
determinant in the availability of usable fuel for feeding black hole growth and star formation. In
the case of providing the fuel for black hole accretion the material has the additional challenge
of losing sufficient angular momentum to reach the inner sub-parsec region of the galaxy. Credit:
Harrison (2017).
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Detecting high-redshift quasars will give us insights not only about their clustering

properties and black hole accretion rates, but also about the formation of their hosts across

cosmic time. Therefore, studying the properties of the host galaxy, such as stellar mass,

star formation rate and dust content, as well as measuring the number-density and rate of

occurrence of AGNs, is very important for understanding the coevolution between galaxy

growth and black hole growth.

As a final remark, observational results have shown that regarding the morphology

AGN hosts are early-type or early-spirals, and are located in the transition region between

the blue-cloud of star-forming galaxies and the red sequence of passive galaxies, forming

the so-called “green valley” (Kauffmann et al. 2003; Salim 2014). Hence, the AGN activ-

ity is believed to be a short-lived, recurrent process in galaxies. In fact, Mallmann et al.

(2018) suggest that the most luminous AGNs have been triggered by a recent supply of

gas that has also triggered recent star formation in the central region, thus rejuvenating

the stellar content of the nuclear region of the AGN hosts. Also, the negative feedback

produced by the AGN has been proposed as a mechanism for fostering the transition from

the blue cloud to the red sequence.

3.1.7 Black hole seeds

So far, we have presented an overview about why the basic energy production

in AGNs must be related to a central supermassive black hole, and have shown some

evidences to the existence of SMBHs in the center of massive galaxies and to the existing

coevolution between black hole accretion and the host galaxy growth. One last fact worth

mentioning regards the formation of these SMBHs.

Quasars are observed up to z ∼ 7 4, i.e., at epochs when the Universe was only

∼ 700 Myr old, and seem to contain SMBHs with masses of the order of 109 M� (see

Fig. 3.9 and Table A.2). This constitutes a significant challenge to the standard model of

black hole growth: how is it possible to assemble these high masses at such early epochs?

And what were the masses of the initial black hole seeds that allowed them to grow so

rapidly to become the observed high-z SMBHs?

4To date, the most distant quasar was detected at z = 7.54 (Bañados et al. 2018).
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Figure 3.9: Comparison of black hole mass and dynamical mass estimates of z ≥ 6 quasar host
galaxies (green filled stars) and the bulge masses of local galaxies (black diamonds). The solid
line and grey area show the local black hole to bulge mass relation as derived by Kormendy & Ho
(2013). Credit: Venemans (2017).

Assembling such large black hole masses, this early in the history of the Universe,

requires the convergence of several optimal conditions for the environment of the initial

black hole seeds, including a vast gas reservoir and feedback mechanisms that do not

interrupt the gas supply to the active nucleus. Currently, two distinct models are favoured:

light and heavy seeds.

Light seeds are hypothesized as the remnants of massive Population III (Pop III)

stars and, thus, to initialize with low masses (of order 100 M�). These seeds could, then,

grow up to 105 M� via accretion and mergers. Although easier to be formed, they may

struggle in growing up to supermassive scales (& 106 M�) at z ∼ 6, because they are

expected to accrete with a lower Eddington limit and fragment more easily, moving their

initial masses downward (e.g. Stacy et al. 2016; Pacucci et al. 2017).

Heavy seeds, on the other hand, would originate from the direct collapse of pri-

mordial gas clouds (Begelman et al. 2006). In this scenario, there is no growing phase

from a low-mass black hole prior to the collapse: a supermassive primordial star (SMS)

forms during catastrophic baryon collapse in atomically-cooling halos at z ∼ 15 − 20,

originating seeds with ∼ 104 M�. These SMSs must grow either (i) in the presence of

Lyman-Werner UV sources that dissociate molecular hydrogen (hence, inhibiting star for-
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mation); or (ii) in highly supersonic baryon streaming motions that delay the collapse of

the halo – even in the presence of molecular hydrogen. Furthermore, the halo must also

avoid significant metal pollution, in order to avoid fragmentation, and photoevaporation

from ionizing radiation. Another possibility suggested by Valiante et al. (2017) is to have

a Pop III star ionizing (or heating) the gas in the surroundings of the SMS, which allows

a direct collapse into a 105 M� seed.

Although rarer, these direct collapsing black holes (DCBHs) may be more success-

ful than their lighter counterparts in explaining the origin of the masses of high redshift

SMBHs. Moreover, they could emit gravitational waves during their tidal disrupt events,

which could be detected today in the NIR. This means that they could be probed by the

upcoming Laser Interferometer Space Antenna (LISA; Amaro-Seoane et al. 2017) and

James Webb Space Telescope (JWST; Gardner et al. 2006), as well as by the next gener-

ation of extremely large telescopes (ELTs).

3.2 The unified model of AGNs

The first discoveries on the field of AGNs date back to 1943, when Carl Seyfert

published a pioneering paper describing observations of nearby galaxies having bright nu-

clei that were sources of unusually broad emission lines. However, the unusual features

of these spectra remained neglected for a long time. The development of radio astronomy

acted as a catalyst to the understanding of AGNs, with the 3C radio survey playing an im-

portant role in the discovery of new radio sources and their optical counterpart positions.

In photographic images, some of these objects were nearly point-like or quasi-stellar in

appearance, being, thus, classified as quasi-stellar radio sources (which were, later, ab-

breviated as “quasars”). Nevertheless, a major breakthrough would only come in 1963

with the measurement of a redshift of 0.158 for the quasar 3C273 by Maarten Schmidt.

From then on, these objects were studied in greater details following the growing interest

in their spectra and redshifts.

The realization that the extreme non-thermal (i.e., non-stellar) luminosity emanat-

ing from these sources was coming from a compact region at the center of the galaxy

originated the nomenclature active galactic nuclei. As we have seen in §3.1, these AGNs
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are powered by a supermassive black hole with M• ∼ 106 − 1010 M�. However, the

study of the spectra of Seyfert galaxies (i.e., nearby elliptical galaxies with bright nu-

clei), identified two distinct groups: Seyfert 1 galaxies, which show strong, very broad

(2x103−104 kms−1) permitted and semi-forbidden emission lines; and Seyfert 2 galaxies,

whose broadest lines do not exceed ∼ 1200 kms−1. Such differences are now interpreted

as arising from different viewing angles to the centers of these sources, and from a large

amount of obscuration along the line-of-sight (Netzer 2013).

As they were discovered, the various AGNs received different nomenclatures, ac-

cording to their appearances and emitted radiation. In this regard, the old unification

scheme (Antonucci 1993; Urry & Padovani 1995) was a courageous attempt to construct

a general picture connecting the various subgroups. The unified model describes the clas-

sification and main properties of this family of objects, which can be determined by (i) the

black hole’s mass, (ii) the rate of accretion onto the black hole, (iii) whether or not it has

a powerful jet, and (iv) the angle at which we view the center of the galaxy. In Fig. 3.10

we show the main components of an AGN and the different nomenclatures depending on

the inclination of the central source.

Figure 3.10: Unified model of AGNs. According to this scheme, an AGN is composed by a central
accreting supermassive black hole, surrounded by an obscuring structure in a toroidal shape and
possibly a jet. Depending on the orientation with respect to the line-of-sight, the object receives a
different nomenclature. Credit: Beckmann & Shrader (2012).
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One of the defining characteristics of AGNs is a broad spectral energy distribution

(SED) that can be distinguished in several wavelength bands. It is customary to describe

the SED in terms of the monochromatic luminosity per unit frequency ([Lν ] = erg s−1

Hz−1) or per unit wavelength ([Lλ] = erg s−1 Å−1), or yet in terms of their equivalent

monochromatic fluxes (Fν or Fλ) which receive an additional unit of cm−2. In Fig. 3.11

we show a comparison of the SED of a normal galaxy (left panel, bottom row) to the

SEDs of 7 different types of AGNs in the optical.

Figure 3.11: Comparison of the optical spectra of 7 AGNs and a normal galaxy (early-type spiral,
NGC3368). BL Lacertae objects (left panel, top row) have featureless spectra, making their red-
shifts difficult to measure unless the surrounding galaxy can be detected. Seyfert 2 galaxies show
much narrower lines than Seyfert 1s. Quasars, represented here by a composite produced from
many individual objects (left panel, second row), have a family resemblance to Seyfert 1 nuclei,
and in most cases, the bumps of Fe II emission are even more prominent in quasars. LINERs (left
panel, third row) represent a lower-luminosity version of the processes seen in more traditional
active nuclei and their galactic component is more evident. The BLRG and NLRG are broad and
narrow-line radio galaxies, respectively. Although very similar to Seyfert galaxies, their spectra
contain more profile structures. Credit: Bill Keel (2002).

In the following we describe some characteristics of AGNs according to their spec-

tral signatures.

The nucleus of the galaxy is usually deeply embedded in dust. When heated by

the primary AGN radiation source, these dust grains emit in near infrared (NIR) and
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mid-infrared (MIR). Although AGN obscuration is more commonly associated with early

stages of evolution, it can happen at any stage during the lifetime of the AGN (especially

in systems that are actively interacting or merging). The standard unified model of AGNs

distinguishes two phases in the material accumulated in the central region: (i) one portion

is constituted by ionized gas at high speeds (ejected in the outflows); and (ii) the other by

molecules at lower speeds, that can feed up the nucleus.

The deep gravitational potential of the SMBH leads to an accretion disk that radi-

ates most strongly across the UV/optical spectrum, peaking in the near UV. This radiation

originates a characteristic broad UV/optical feature known as the “big blue bump”. Fur-

thermore, the intense magnetic fields expected to be present in the disk could provide a

mechanism for jet collimation.

The central engine and accretion disk are surrounded by an extended, dusty, molec-

ular toroidal region, involving the broad line region (BLR). The torus can be found at

∼ 1− 20 pc and dominates the spectral energy distribution out to 20 µm. It may be com-

posed by a smooth dusty distribution, high-density clumps (Nenkova et al. 2008a, 2008b),

or even a two-phase medium combining both components. Such clumpiness suggests that

the separation between type-I and type-II objects could be explained as the transition of

an obscuring cloud along the line-of-sight (e.g., Audibert et al. 2017).

At viewing angles closer to the accretion disk, the obscuring torus hinders emission

lines. In this case, there are strong radio emissions (sometimes, with prominent radio

lobes that extend up to hundreds of kpc or even Mpc from the nucleus): these are the

radio galaxies.

Broad emission lines from atoms in excited states originate close to the torus in

clouds orbiting above the disk at high velocity, and are due to the Doppler effect. The

emission lines can be of two types: permitted lines (i.e., those having high probability

of occurring) and forbidden lines (or “improbable” lines that appear only in low density

environments). These hot, high velocity, dense gas clouds near the black hole form the

BLR. When the BLR is visible, a regular (type-I) quasar or Seyfert 1 galaxy is observed.

On the left panel of Fig. 3.12 we show an example of SED fitting of luminous, type-I

quasars, considering a standard torus model and two additional components: one contain-
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ing pure graphite grains (hot dust) and the other a dusty NLR (warm dust) – Schweitzer

et al. 2008 (for more details, see Netzer 2015). The right panel illustrates the large spectral

differences between a type-I quasar and a radio galaxy.

Figure 3.12: Left panel: Observed (gray) and star-forming contribution from the host subtracted
(dot-dashed line) SEDs of two type-I AGNs. The diagrams show the three components used in the
fit: hot pure graphite dust, a clumpy torus model with ISM-type dust, and dust emission from the
NLR. The thick black curve is the sum of the three. Right panel: Composite type-I quasar (red)
and radio galaxy (blue) SEDs at z ∼ 1.2. Credit: Netzer (2015).

Another important component is the narrow-line region (NLR), which is further

from the torus and is composed by cool, low-velocity, low-density gas clouds. When the

broad-line region is hidden by the torus, but the NLR is still visible, the corresponding

class is a type-II quasar or a Seyfert 2 galaxy.

The observation of broad lines in the polarized flux of the Seyfert 2 galaxies (e.g.,

NGC1068) gives evidence to support the unified model. It indicates that this type of

galaxy must have a BLR that can only be observed with polarized light, corroborating

to the presence of some obscuring structure along the line-of-sight that hides the inner

central region.

In some cases, there are two-sided jets of relativistic particles5 emanating perpen-

dicular to the plane of accretion. The X-ray emission is attributed to synchrotron radiation

or inverse Compton scattering of high-energy density photons off relativistic electrons

from the jet. When the jet points directly to the observer, we have a blazar, which can

be of two types: flat-spectrum radio quasar (FSRQ), with prominent emission lines in the

optical spectrum; or BL Lac Object, with weak emission lines or featureless continuum

in the optical spectrum. Blazars are the only objects emitting in TeV.
5Due to the effect of relativistic beaming, sometimes only a single jet is visible.
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Cold quasars (CQs; Kirkpatrick et al. 2020) constitute a rare subpopulation ob-

served to host unobscured, X-ray luminous AGNs at the same time that it retains a cold

gas supply fueling high star formation rates. This indicates the co-existence of an AGN

with a starburst phase.

Another type of AGN are low-ionization nuclear emission line region galaxies

(LINERs; Heckman 1980), which are characterized by the relative strength of emission

lines from species of low ionization state, and whose Hα luminosity is more similar to

that of a typical giant HII region than to Seyfert galaxies and quasars.

BPT emission line activity diagnostic diagrams (named after Baldwin, Phillips and

Terlevich 1981) are useful for separating LINERs from normal star-forming galaxies (i.e.,

HII regions) and type-II AGNs on the basis of their [OIII] λ5007/Hβ, [NII] λ6583/Hα,

and [SII] λ6716, 6731/Hα flux ratios. These diagrams use strong optical lines of close

proximity in the ratios (limiting, hence, reddening and spectrophotometric effect) to dis-

tinguish between different classes of ionization. Type-I classification is more problematic

because of the broad Hα and Hβ lines. The advent of SDSS and 2dF enabled us to fill

these diagrams with details not seen before, providing a better understanding of the distri-

bution and extent of emission-line galaxies. Figure 3.13 shows one such example that has

been used to separate star-forming galaxies from AGNs, as well as to distinguish between

low-ionization (LINERs) and high-ionization (type-II) AGNs.

AGNs have been found to be variable over the entire electromagnetic spectrum.

Indeed, variability was one of the first recognized properties of quasars, where significant

variations (& 0.1 mag) in the optical brightness of quasars occur on time scales as short as

days, and blazars are characterized by extreme variability at all wavelengths. At a funda-

mental level, the physical origin of variations is not known yet; although it is believed that

accretion-disk instabilities are involved on variations in short timescales, whereas varia-

tions on longer timescales are dominated by the fueling of gas into the nuclear regions

plus regulation through feedback processes.

Changing-look quasars (CLQs; Green et al. 2017) are a newly-discovered class of

AGNs that undergo rapid (< 10 yr) transitions between type 1 and type 1.9/2, with change

in their continuum emission. They represent a challenge to the historical classifications
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Figure 3.13: Example of a BPT diagram that uses four strong optical emission lines, Hα, Hβ,
[OIII]λ5007, and [NII]λ6583, to distinguish SDSS galaxies from Seyfer 2 galaxies and LINERs.
The dotted curve shows the demarcation between starburst galaxies and AGNs defined by Kewley
et al. (2001). The dashed curve shows the demarcation proposed by Kauffmann et al. (2003). The
AGNs and star-forming galaxies are well separated, whereas the division between the two AGN
groups is less clear. Credit: Kauffmann et al. (2003).

in the unified model, because a transformation between classes in time scales of dozens

of years cannot be explained by obscuration. In Fig. 3.14 (Gezari et al. 2017) we show

an example of a dramatic change in the spectrum of transient iPTF 16bco (a quasar

at z = 0.237), that had its UV flux increased by a factor of 10, and transformed from

a LINER galaxy (SDSS/2004) to a luminous type-I quasar (Keck2+DEIMOS/2016) in a

dozen years.

The AGN spectral characteristics give us valuable information about the physical

conditions in these extreme environments. Several well-established correlations in type-I

AGNs appear under the name “eigenvector 1” because they were first found by a principal

component analysis (PCA) of a large group of low-redshift AGNs (Netzer 2013). Such an

analysis is powerful to isolate common properties – in this case, spectroscopic properties,

that are related to each other and are not easy to find by other methods. Some of these

correlations are (i) the anti-correlation between [OIII] and optical FeII line strength, and

(ii) the anti-correlation between FWHM of broad Hβ line and the ratio of optical FeII

line and broad Hβ equivalent widths. In particular, the Baldwin effect (1977) is the anti-
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Figure 3.14: Spectral variation of quasar iPTF 16bco. The archival SDSS legacy spectrum was
obtained on 2004 June 16, and the follow-up spectrum was obtained by Keck 2+DEIMOS on 2016
June 4. This quasar is located at z = 0.237 and was discovered “turning on” by the intermediate
Palomar Transient Factory (iPTF). The transient iPTF 16bco shows two remarkable changes: its
UV flux increased by a factor of 10, and it transformed from a LINER galaxy to a luminous type-I
quasar. Credit: Gezari et al. (2017).

correlation between the equivalent width of some spectral lines (e.g. CIV, Lyα, etc.), and

the continuum luminosity at 1350 Å. The observational consequence of this effect is a

decrease in the ratio of brightness of the emission line to the brightness of the nearby

continuum with increasing luminosity of the continuum.

Recently, two classification schemes were proposed as an alternative to the old

unified model. The first, proposed by Padovani (2017), is based on the presence (“jetted”)

or absence (“non-jetted”) of a relativistic jet – in opposition to the old nomenclatures

“radio quiet” and “radio loud” sources. The second, proposed by Heckman & Best (see

§3.1.5 for more details) separates the AGNs into two major groups: radiative mode and

jet mode, depending on their nuclear activity.

3.2.1 Quasars

Since this thesis will focus on photometrically selected quasars, we dedicate the

last paragraphs of this section to describe some additional properties of these sources.

Quasars are the most luminous sources in the Universe; their luminosities can

exceed that of “normal” galaxies by a factor of ∼ 103. In the optical range, the quasar
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spectrum exhibits a characteristic non-thermal continuum often represented by a power-

law shaped spectrum of the form Lν ∝ ν−α accompanied by a set of strong emission

lines, signatures of high ionization. The main quasar emission lines in the UV/optical are

Lyα, SiIV, CIV, CIII, MgII, Hβ, OIII and Hα (a more complete list is shown in Table

A.3).

In addition to the emission lines, their spectrum may also contain absorption fea-

tures, which may be caused by the absorbing material in the host galaxy itself, or may

arise during the journey of the light from the quasar to us, due to the intervening gas in

the intergalactic medium (IGM) and the interstellar medium (ISM) of the Milky Way.

Neutral hydrogen intersected by the line-of-sight to the quasar will produce numerous

narrow absorption lines at λobs . (1 + zem)x1215 Å. The set of these absorption lines is

denoted as the Lyman-α forest. In 1965, Gunn & Peterson found that this spectral region

of reduced flux can put upper limits on the amount of intergalactic neutral hydrogen.

Figure 3.15: Example of a BAL quasar at zspec = 2.736. The black solid line corresponds to the
spectrum measured by SDSS DR16 and the gray solid line in the bottom to its associated uncer-
tainty. The colored dots (squares) represent the photometric fluxes measured within an aperture
of 3” by the narrow (broad)-band filters of the J-PAS system. The gray solid region at the bottom
corresponds to the error bars of the photometric fluxes. The green dashed lines indicate the main
emission lines. This quasar corresponds to the source 2406-11219 in the mini-JPAS catalog
and has a magnitude of r = 20.481.

Another class of absorption are the broad absorption lines, known as BALs, which

can be found in about 10− 20% of type-I AGNs (Shankar et al. 2008) and originate from

material in the AGN itself. In general, the redshift of the BAL is slightly lower than



64 3.3. Searching for quasars

that of the emission lines; this means that the absorbing gas must be moving towards us

and, for this reason, they are associated with sources in which material is flowing out at

high velocities. These troughs are associated in most cases with strong resonance lines of

CIVλ1549, SiIVλ1397, NVλ1240, OVIλ1035 and Lyα, and sometimes to MgIIλ2798 or

FeII lines. In Fig. 3.15 we show an example of a BAL quasar detected at zspec = 2.736

by SDSS DR16. This quasar was also detected by the miniJPAS survey (for more details,

see Chapter 6), and hence the figure depicts not only its spectrum (black solid line), but

also the photometric fluxes (colored dots and squares) detected in the J-PAS filters. This

quasar shows three broad absorption lines associated with Lyα, SiIV and CIV (from left

to right).

Since most absorption lines in quasar spectra (except perhaps for BALs) are not

physically related to the AGN phenomenon, they can provide us with an opportunity to

probe the matter along the line-of-sight to the quasar.

3.3 Searching for quasars

There are many techniques for detecting quasars6, each one probing different

wavelength regimes of the electromagnetic spectrum. In this section we give an overview

on the more traditional methods to discover quasars.

From their optical spectra featuring broad emission and absorption lines on top

of an underlying non-thermal continuum, it is relatively easy to distinguish quasars from

stars and galaxies. However, spectroscopy is not so efficient in discovering type-II quasars

because of their relatively weak emission lines and narrow-lines that resemble those from

galaxies with strong star formation activity. Besides, spectroscopic surveys usually rely

on a photometric pipelines to select quasar candidates for follow-up spectroscopy, and the

fibers end up allocated only to the brightest objects.

Next, still taking into account the differences in the SEDs, a simple and efficient

way of discovering quasars uses broad-band multicolor photometry. Several color combi-

nations, such as u−g and g−r from SDSS, andW1−W2 andW2−W3 from WISE, have

been employed for separating quasars from stars in the sky (Richards et al. 2002; Nikutta

6From now on, we shall use indistinctly “quasars” to refer to type-I AGNs – unless specified.
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et al. 2014; Peters et al. 2015). Color-color selections are useful for discovering low-

redshift sources but fails to detect many high-redshift objects because the spectrum gets

effectively red resembling the colors of nearby stars, although even low-redshift quasars

can be confused with the local population of hot white dwarfs. In addition, some quasars

are intrinsically red, or reddened by dust, which results in colors that are not very different

from those of stars (see Fig. 2.7 and §2.2 for more details on the quasar target selection

performed by SDSS). In fact, combining optical with infrared information is a powerful

way of improving multi-object classifications and finding quasars. Moreover, selecting

quasars as sources with zero proper motions in GAIA (Gaia Collaboration et al. 2018)

can help us break some of these degeneracies (e.g., Heintz et al. 2018).

Mid-infrared techniques combined with X-ray data are also relevant to find highly

obscured (Compton thick) quasars (Baloković et al. 2014; Del Moro et al. 2016), which

have their SEDs dominated by warm dust emission as a result of the heating of the torus

by the central engine.

Due to the blue continuum, techniques such as the u-band dropout are efficient

to detect quasars at z & 2. The u-band dropout is based on a strong spectral break at

λ = 1215 Å, due to the ionization of hydrogen, seen in the bluest filters. Moreover, most

of the quasars in the range 5.5 < z < 6 have been found by looking for sources with a

large break between the optical i and z-bands (e.g. Fan et al. 2006), the so-called i-band

dropouts. In Fig. 3.16 we show an example of the first high-redshift quasar detected by

the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS; Kaiser

et al. 2002) using the i-band dropout.

In order to find quasars beyond z ∼ 6.5 wide-field surveys with coverage beyond

∼ 1 µm (i.e., NIR) are needed. The optical spectra of these z > 6.5 quasars is actually

useful to map the intergalactic medium and put constraints, e.g., on the fraction of neutral

hydrogen (Bolton et al. 2011) or on the metal enrichment (Simcoe et al. 2012) along the

line-of-sight to the quasar.

Quasars have significant variability in the u-band, and the fraction of quasars with

large two-epoch variability is much higher than that of stars. Targeting by variability can

select both low-redshift quasars with UV excess and mid-redshift (2 < z < 3.5) quasars
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Figure 3.16: First quasar (PSO J215.1512-16.0417) discovered by Pan-STARRS 1 using
the technique of i-dropout. Note that this quasar was detected in z and y bands (middle and bottom
panels) but not in the bluer filter shown here (i, top panel). It has an estimated redshift of 5.73.
Adapted from: Morganson et al. (2012).

where quasar selection by optical colors is inefficient (Schmidt et al. 2010).

Almost all AGNs are also strong X-ray emitters, providing an efficient route for

locating optically faint quasars at high redshifts (Barger et al. 2003; Castander et al. 2003)

and discovering many type-IIs – since the amount of obscuration at higher energies (> 15

keV) is much smaller. However, this method is not so efficient in discovering high redshift

quasars, because of the sharp drop of X-ray luminosity of such sources.

Finally, about 10% of all AGNs are core-dominated radio-loud sources; therefore,

correlating the radio and optical positions provides an additional way to identify quasars

(White et al. 2000). Since stars are extremely weak radio sources, this means that an

optical point-source that is also a strong radio source is likely to be a radio-loud quasar.

All discovery methods have their own band-dependent biases and, in particular,

flux-limited samples typically miss fainter sources in the band in question. Hence, under-

standing the selection biases, and combining surveys of different wavelength bands in a
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proper statistical manner, are essential for revealing the underlying population properties.

Searching for quasars in photometric surveys is facilitated when images are avail-

able in a different number of filters covering the whole spectral energy distribution in

the optical. In particular, the narrow-band surveys J-PLUS and S-PLUS have filters cen-

tered on key stellar spectral features, delivering low-resolution spectra for several types

of sources. The J-PAS unique photometric system consisting of 54 contiguous narrow-

band filters will have an even more outstanding performance for finding quasars, being

able to resolve the broad emission-lines of type-Is and detecting the narrow-lines of many

type-IIs.

In this new era of massive data acquisition, we need effective statistical meth-

ods to classify the sources detected by these photometric surveys. This can be done

with template-fitting methods (e.g. star/quasar separation in ALHAMBRA and J-PLUS:

Queiroz, M.Sc. dissertation, University of São Paulo, 2015) or machine learning algo-

rithms (Costa-Duarte et al. 2019; Baqui et al. 2020; Nakazono et al. 2020 – submitted;

Villa-Nova, Abramo, Queiroz et al. in prep).

Recently, machine learning approaches have been more widely used in astronomy,

being preferred when great statistical precision is needed. However, at the same time, it

requires large and representative training sets, otherwise any uncertainties or incomplete-

ness of the training set will be reflected on the resulting trained model.

In §3.3.2 we show some results using machine learning algorithms to identify

quasars in S-PLUS and miniJPAS. The S-PLUS DR1 contains more than three million

sources covering ∼ 336 deg2 of the Stripe 82 area and have spectroscopic classifications

for more than 100,000 objects. This means that the number of sources with trustworthy

classifications is more than enough to be separated into training and test samples. How-

ever, this is not the case of the miniJPAS catalog, in which spectroscopic classifications

are only available for a few hundreds of sources. To solve this problem, we constructed

mock catalogs with fluxes simulated in the J-PAS filters, considering realistic error dis-

tributions, and employed these mocks for the training (see Chapter 5 for more details).

In order to ensure that both the frequency and redshift-magnitude (or, equivalently, type-

magnitude in the case of stars) distributions were properly represented in the mocks, we
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derived the number densities expected by luminosity functions.

In the next section we present the luminosity function for quasars. We will discuss

the luminosity functions employed for stars and galaxies later on (see §5.2).

3.3.1 Quasar luminosity function

The luminosity function (LF) is a key quantity in any study of galaxy evolution: it

describes the distribution of a given class of sources (e.g., galaxies) with different intrinsic

luminosities L (or magnitudes M ). Since the main source of data coming from the distant

past is provided by the light emitted (or scattered) by ordinary matter, the LF also supplies

the primary information about the baryonic content of the Universe (Alcaniz & Lima

2004).

The task of determining the luminosity function depends on the measurement of

the flux of the galaxy, and consequently, a precise measure of its distance. It also depends

on a representative sample of galaxies, which means that a large volume must be surveyed.

An additional effect comes from Malmquist bias, which leads to a preferential detection

of intrinsic bright galaxies, visible at larger distances, in flux-limited surveys.

In general, the LF is defined by the differential expression dΦ(L) = φ(L)dL,

where dΦ(L) is the number of galaxies per unit volume with luminosity in the interval

[L,L+ dL]. To a good approximation, the distribution of galaxies can be represented by

the Schechter luminosity function (1976):

Φ(L)dL = φ∗

(
L

L∗

)α
exp

(
− L

L∗

)
d

(
L

L∗

)
(3.10)

where φ∗ is the number density of galaxies (or “break” density), L∗ is a characteristic

luminosity, and α is the slope of the luminosity function for small L, typically assuming

values in the range −1.5 < α < −1. A schematic plot of the Schechter luminosity

function is shown in Fig. 3.17.

This relation was inspired by the Press-Schechter theory, which predicts the num-

ber density of virialized halos above a certain mass. Similarly to the high-mass function

behaviour, very luminous galaxies are rarer, implying that Φ(L) decreases exponentially

for L > L∗. Note that Eq. 3.10 cannot be deduced from first principles, and as such, the



3.3. Searching for quasars 69

Figure 3.17: Schematic Schechter luminosity function, showing the slope α at low luminosities,
the characteristic luminosity L∗, and the exponential cut-off for bright galaxies. Credit: Schneider
(2006).

free parameters must be determined from astronomical observations, which means that

these parameters are also sensitive to the kind of galaxy being sampled. Finally, feedback

mechanisms, such as supernova explosions and AGN outflows, play an important role in

modifying the luminosity function, leading to a constant density-core profile at low lu-

minosities and suppressing the number of galaxies at high luminosities (Silk & Mamon

2012).

Actually, a magnitude7 representation of the luminosity function may be preferable

because Φ(M) is more directly related to observations. Since M and L are related by

M −M∗ = −2.5 log (L/L∗), in terms of the magnitude the distribution of galaxies reads

Φ(M)dM = 0.4 ln 10 φ∗10−0.4(M−M∗)(α+1) exp
[
−10−0.4(M−M∗)

]
dM (3.11)

where M∗ is a cut-off magnitude.

The galaxy luminosity function may have different parameters for different pop-

ulations and environments, i.e., it is not a universal function. Therefore, although the

7The absolute magnitude (M ) can be measured as M = m− 5 log10(DL/1 Mpc)− 25, where m is the
apparent magnitude, and DL is the luminosity distance (in units of Mpc) – which depends on the cosmology.
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Schechter function seems an adequate representation for the total distribution of galax-

ies, deviations from it are expected. In particular, the quasar luminosity function (QLF)

is usually parametrized by a double power-law (Boyle et al. 2000; Croom et al. 2004;

Richards et al. 2006a):

Φ(L, z) =
φ∗(L)

(L/L∗)α + (L/L∗)β
(3.12)

per unit luminosity, where α and β are respectively the power-law indices for bright and

faint quasars, or

Φ(M, z) =
φ∗(M)

100.4(α+1)[M−M∗(z)] + 100.4(β+1)[M−M∗(z)]
(3.13)

per unit magnitude. Note that the QLF was found to evolve with redshift, and this evolu-

tion is encoded in the redshift dependence of the break luminosity, φ∗, and also potentially

in the evolution of the power-law slopes. There are two possible scenarios for this evo-

lution: (i) a Pure Luminosity Evolution (PLE), in which φ∗(M) remains constant with

redshift but M∗ declines from high redshifts (z ∼ 2) towards low redshifts; or (ii) a Pure

Density Evolution (PDE), in which the break density decreases with increasing redshift

(z & 2).

The physical origin of the characteristic double power-law shape of the QLF (at

least, up to z ∼ 6), in contrast to the Schechter-like form of the underlying dark-matter

halo mass function, is to reproduce two distinct quasar populations: the brightest ones,

hosted in the rarest most massive dark-matter halos; and the average-magnitude to faintest

ones, hosted in less massive halos.

The quasar luminosity function is one of the most important observational signa-

tures of quasar populations. It describes the spatial density (number per Mpc3) of quasars

per magnitude as a function of redshift. Hence, studying the change in the luminosity and

number density of quasars across cosmic time is fundamental to understand, for example,

the origin and nature of massive black holes, the formation and evolution of galaxies,

the environments where quasars can be found (which can place important constraints on

structure formation at early epochs), as well the contribution of quasars to reionization at

z & 6 (Fan et al. 2006). For instance, several optical and radio studies have suggested that
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the periods over which the black hole is active can be short and repeat during the lifespan

of the host galaxy, indicating that the SMBH is regularly re-ignited after a period of low

activity (Woltjer 1959; Marconi et al. 2004; Best et al. 2005; Saikia & Jamrozy 2009;

Morganti 2017).

Large quasar surveys have allowed us to study the properties of the quasar pop-

ulation with unprecedented statistical precision. Several efforts have been performed to

measure the QLF, such as the use of photometrically identified quasars (Richards et al.

2005; Hopkins et al. 2007; Croom et al. 2009; Ross et al. 2013), as well as quasars de-

tected in the mid-infrared (Brown et al. 2006; Siana et al. 2008; Assef et al. 2011), and

X-rays (Cowie et al. 2003; Hasinger et al. 2005; Aird et al. 2010; Fiore et al. 2012).

In this thesis, we adopt the pure luminosity evolution function from Palanque-

Delabrouille et al. (2016), which assumes that the luminosity of all quasars scales up

according to some function of redshift, and it allows the bright-end and faint-end slopes

to be different on either side of a pivot redshift set as zpivot = 2.2.

Figure 3.18 shows the differential quasar counts Φq(m, z) as a function of appar-

ent magnitude (in the r-band) and redshift for the PLE luminosity function (QLF-PLE

hereafter) over an area of 10,000 deg2. Considering a perfect selection of objects, we find

that a large-area (& 1/5 of the sky) flux-limited (r < 23.5) survey could yield more than

three million quasars up to z = 6.

Starting from Φq(m, z), we can define the total number of quasars with magnitude

mi over an area of solid angle ∆Ω at any redshift as

N̄q =

∫ ∞
0

dz
dV

dz

∫ mi+∆mi

mi

dm W (m, z)Φq(m, z) (3.14)

where V is the comoving volume, W (m, z) is an arbitrary selection function which, in

principle, depends both on magnitude and redshift, and i denotes the index of the magni-

tude bin. In this representation, the probability of finding a quasar with magnitude mi at

redshift zj is given by

P q
ij =

1

N̄q

∫ zj+∆z

zj

dz
dN̄q(mi, zj)

dz
. (3.15)

At the high redshift range, the overall shape of the quasar luminosity function
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Figure 3.18: Cumulative distributions of the number density of quasars per deg2 as a function of
the r-band magnitude (reversed to show dim quasars on the left and bright quasars on the right).
The different colored lines show the expected number of quasars at different redshift ranges, and
the solid black line corresponds to the cumulative number of quasars up to z = 6. Here we adopted
the PLE from Palanque-Delabrouille et al. (2016).

evolves only modestly up to z ∼ 6 (Matsuoka et al. 2018), whereas the break density

evolves strongly with redshift (Jiang et al. 2016).

When modeled as an exponential decay in redshift, Fan et al. (2019) have shown

that the density of luminous quasars drops by a factor of ∼ 3 per unit redshift in the

range z = 3 − 5; this decline accelerates to a factor of ∼ 6 per unit redshift in the range

z = 5 − 7. Translating these results to an e-folding timescale, it implies in a quasar

density evolution of about 400 million years at z ∼ 4, and as short as 80 million years at

z ∼ 7. Assuming a radiative accretion efficiency of η ∼ 0.1, the latter is comparable to

the Eddington timescales of 45 million years for the SMBH growth, what suggests that

the quasar density growth is mainly driven by the maximum rate of accretion onto the

central BH. The quasar luminosity function at high redshifts is shown on the left panel of

Fig. 3.19.

Furthermore, by extrapolating the density evolution towards higher redshifts (z >

6), Fan et al. (2019) have predicted that there will be only ∼ 1 luminous (MAB < −26)

quasar at z ∼ 9 in the observable Universe. This result establishes z ∈ [9, 10] as the

probable epoch for the appearance of the very first luminous quasars. The right panel of
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Figure 3.19: Left panel: Density evolution of luminous quasars. Extrapolating the measurements
at z = 5−7, the expectation is of only∼ 1 luminous quasar powered by a billion-mass black hole
in the entire observable Universe at z & 9 (Wang et al. 2019). Right panel: Forecast of quasar
discoveries in wide-field imaging surveys in the next decade. Dropout selection will discover
quasars down to mAB ∼ 23 − 25 (solid lines), establishing a large sample of quasars at z > 7
(Vera C. Rubin Observatory/LSST: Ivezic et al. 2008), with a few dozen objects at z > 8 (Euclid:
Laureijs et al. 2011; Nancy Grace Roman Space Telescope/WFIRST: Spergel et al. 2015). Credit:
Fan et al. (2019).

Fig. 3.19 shows a forecast for the number of quasars that will be discovered in wide-field

imaging surveys in the next decade, demonstrating that the high-redshift (z > 7) Universe

is within reach of the capabilities of the next generation of surveys. Therefore, detecting

large statistical samples of luminous quasars at z = 7 − 9 should be a priority for the

high-redshift quasar community.

3.3.2 Classification using machine learning

Here we present some results on the classification of point-like sources detected in

narrow-band surveys using machine learning.

Star/quasar separation in S-PLUS

In our initial approach, we considered a 2-class (i.e., star/quasar) separation. In

the literature, there are different methods to perform the star-quasar separation, such as

SDSS XDQSO (Bovy et al. 2011; see also §2.2.2), a probabilistic target selection tech-

nique that models the distributions of stars and quasars in flux space down to the flux

limit by applying the extreme-deconvolution method to estimate the underlying density;

and ELDAR (Chaves-Montero et al. 2017), a method to identify AGNs in medium- and
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narrow-band filter surveys through the identification of emission lines. In our analysis,

we tackled this problem by employing a series of machine learning methods to compute

the posterior probability of each object belonging to a certain class.

Since this was done prior to the first data release from S-PLUS, we employed mock

catalogs in our analysis. We will explain more thoroughly how we generated these mocks

in Chapter 5, but for now it suffices to say that the fluxes were simulated by convolving

the stellar and quasar spectra with the S-PLUS transmission curves, and the correspond-

ing uncertainties were derived from the theoretical limiting magnitudes obtained for an

aperture of 3” at a level of signal-to-noise ratio S/N=5. Then, we assumed Gaussian

errors (which is not always true, but is a good approximation at first order) and added

Gaussian fluctuations to those fluxes by setting the variance equal to the uncertainty in

each filter. In order to have training sets as complete and representative as possible (and

guarantee, thus, that the algorithm would be able to recognize most of the spectral pat-

terns for each class), we simulated samples of stars and quasars and with both high and

low signal-to-noise ratio fluxes (i.e., bright and faint sources up to r ∼ 21.5).

For the quasars, fainter fluxes were obtained as follows. First, we binned the

magnitude-redshift distribution from our sample in the same way as the quasar lumi-

nosity function (QLF-PLE). Next, we selected NQ
ij objects to compose the bright sub-

sample, where NQ
ij is the number of quasars in the i-th magnitude bin and j-th redshift

bin predicted by the QLF-PLE. Then, we completed the bins of fainter magnitude with

the remaining objects by fixing their redshifts and randomly degrading their magnitudes

within a given magnitude bin. By doing this, we were able to shift the original magnitude

distribution from SDSS (which is only complete down to r ∼ 20.2) to fainter values in

order to resemble the limiting magnitudes expected for S-PLUS (r ∼ 21.5 − 22). Note

that we can only simulate fainter objects by adding noise to the original fluxes; the oppo-

site (i.e. remove noise to simulate brighter objects) is not possible – at least, not in this

simplified approach.

In the case of the stars, we simply degraded their magnitudes in a randomized

way, so that they were shifted to the same magnitude range adopted for the quasars (i.e.,

18 < r < 22).
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Our data set was composed of ∼ 96 000 quasar spectra with r-band magnitudes in

the range [18, 23.5] and redshifts 0.5 ≤ z ≤ 4.0 selected from the SDSS DR16, and about

21 000 stellar spectra with r > 16, mainly A to M main sequence types plus white dwarfs

selected from the SDSS Spectra of Everything. The Spectra of Everything is a subsample

of stellar objects covering an area of approximately 240 deg2 used as a substitute for a

series of merged program plates (chunks merger48 and merger73). This data set

included a random sampling of all point sources with clean photometry, and the vast

majority of the targets (later confirmed to be stars) were chosen from the densest core of

the stellar locus in color-color space having reddening-corrected i-band PSF magnitudes

brighter than 19.1.

The data set was separated into three different samples: training and validation

sets, used to train and optimize the various machine learning methods; and an evaluation

set, i.e., the sample to be tested. In the end, the quasars were separated as: ∼ 80 000

objects for the training, 10,500 for the validation and 1 725 for the evaluation. And, for

the stars we had: ∼ 15 000 objects for the training and an equal number of about 2 600

objects for both the validation and evaluation sets. We ensured that these sets did not

contain repeated objects.

From models of stellar population synthesis, e.g., Besançon Model (Robin et al.

2003) and TRILEGAL (Girardi et al. 2005), we expect to observe approximately 10-40

times more stars than quasars per square degree (depending on the area in the sky), which

means that the count of stars in our sample is not realistic. Hence, while performing the

classification, we had to take into account this problem of class dominance and balance

the data set, otherwise the accuracy of the classification obtained would be biased by the

dominant class – always being numerically high.

Furthermore, luminosity priors are important to avoid non-realistic solutions (Sal-

vato et al. 2009), and they should be chosen depending on the type of objects that we want

to target. Therefore, we applied the following criteria:

• for the bright end, we rejected all objects i for which all the filters α satisfied
σfα,i
fα,i

. 0.04, i.e. S/N& 25;

• for the faint end, we rejected all objects i for which at least 5 filters α satisfied
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σfα,i
fα,i

& 0.2, i.e. S/N. 5.

The classification was performed using the publicly available code ANNz2 (Sadeh

et al. 2016), which utilizes multiple machine learning methods, such as artificial neural

networks and boosted decision/regression trees. In Fig. 3.20 we show an example of an

artificial neural network (ANN) architecture, made up of several layers, each consisting of

a number of interconnected nodes. In order to recognize and identify the main features in

the evaluation set, the ANN usually employs an adaptive learning process, in which every

connection carries a weight, until one obtains acceptably low (i.e., below some threshold)

error rates.

Figure 3.20: Example of an artificial neural network architecture. In the figure, m1 is the value of
the first parameter in the input layer (e.g. the magnitude in the first filter). The node ui in a given
layer is connected to all nodes in the adjacent layers, and every connection carries a weight wij .
Adapted from: Collister & Lahav (2004a).

In particular, in our analysis we employed the randomized classification mode

of ANNz2, which applies an ensemble of random machine learning methods during the

training. We have trained many (typically, order of 100 or more) different machine learn-

ing methods (MLMs), based on the same datasets (i.e., training and validation sets). After

the MLMs have finished training, they are able to assign values (scores Sni ) between 0 and

1 to each object (i = 1 . . . Nobj) of the evaluation set, yielding n = 1 . . . NMLM predictions

for the classification of each object.

Notice that even though the values 0 and 1 are associated with the confidence that

an object is either a quasar or a star, the threshold of the score which separates the two
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classes is not identical for all MLMs: some are closer to S ∼ 0.5, but some may be closer

to S ∼ 0.4 or S ∼ 0.6. Another important aspect to take into account is that not all

trained MLMs are successful: based on the validation sets, we can perform tests (such as

the Kolmogorov-Smirnov test, also known as K-S) to reject those MLMs that have failed.

After discarding unsuccessful MLMs (NMLM → N ′MLM) and rescaling the scores

(Sni → S ′ ni ), we produced histograms of the scores of all MLMs for each individual ob-

ject. The histograms are then identified (in the limit of N ′MLM →∞) with the likelihood

that the object i is of a certain type. The mean of the PDF for the type of an object can be

estimated as:

S̄i =
1

N ′MLM

N ′MLM∑
n=1

S ′
n
i . (3.16)

The mean score, applied to a validation set consisting of 10 500 quasars and 2 600

stars, is shown in Fig. 3.23.

Besides the mean, we can also estimate the variance of an object’s PDF as:

σ2
i =

1

N ′MLM

N ′MLM∑
n=1

(S ′
n
i − S̄i)2. (3.17)

The variance (or, if preferred, some other measure of the dispersion, such as the

absolute mean deviation) is a useful measure of the uncertainty associated with the pre-

diction, and can be used to separate good from bad classifications.

In Fig. 3.21 we show how the variance of the PDFs can be used to help in the

classification of the quasars (blue dots) and stars (in red) of our evaluation sample. We

have split the two types of objects in the left and right panels for visualization purposes –

in reality, they would obviously appear mixed in the same plot. The vertical axes corre-

spond to the mean renormalized scores S̄i of each object, while the horizontal axes (which

is reversed in the case of stars) corresponds to the variance (σ2
i ) of the PDFs.

For instance, if we make an arbitrary quality cut (represented by the black dashed

lines in the plot), it means that the stars inside the red dashed region ended up wrongly

classified as quasars, corresponding to the contaminants of the population of quasars,

while the quasars inside the blue dashed region are the ones that ended up wrongly clas-

sified as stars.
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Figure 3.21: Star (left panel) and quasar (right panel) classification with ANNz2. The x-axis
(reversed in the case of stars) corresponds to the variance of the PDF; the y-axis corresponds to
the mean renormalized scores of each object, from 0 to 1. In this convention, a classification equal
to “0” corresponds to a quasar, while a classification equal to “1” corresponds to a star. The black
dashed lines represent an arbitrary quality cut: the stars inside the red dashed region correspond
to the contaminants of the population of quasars; the same argument applies for the quasars inside
the blue dashed region.

In Fig. 3.22 we show the histograms for the mean classification (over all of the

randomized machine learning methods) for 9 randomly selected quasars and stars. In Fig.

3.23 we show the histograms for the mean classification for all the quasars and stars.

The method seems to have a high performance level, because only a few stars

ended up classified as quasars (i.e., the contamination sample is small). By taking into

account a more realistic relative frequency between the star and quasar samples (a factor

of 40 in our case), we can make an assessment about the performance of the classification

by computing the purity pk and the completeness Ck for an object of kind k (quasar or

star):

pk =
Nk

Qk + Sk
(3.18)

where Nk is the number of real objects of kind k that were classified as kind k, while Qk
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Figure 3.22: Mean classification over all the MLMs for 9 randomly selected stars (red dashed
lines) and quasars (blue dot-dashed lines).

Figure 3.23: Mean classification over all the MLMs for all the stars (red dashed line) and quasars
(blue dot-dashed line).

and Sk are, respectively, the number of real quasars and real stars that ended up classified

as kind k;



80 3.3. Searching for quasars

Ck =
Nk

Tk
(3.19)

where Tk is the total number of objects of kind k in our evaluation sample (i.e., 1 725

quasars and 40 x 2 600 stars).

We can also compute the purity and the completeness as a function of some quality

factors. In this case, we have chosen three quality cuts as a function of the variance: high

(σ2
i < 0.01), medium (σ2

i < 0.05) and low (σ2
i < 0.1).

In tables 3.1 and 3.2 we show the results for the classification of the quasars and

stars, respectively. In the end, we want both the quasar completeness and the purity of

stars to be as high as possible, to guarantee a complete (and with a low level of contami-

nation) catalog of quasars. As we can see from the tables, we obtain a high level of purity

for the stars (99.9%) – independently of the quality cut. As for the quasar completeness,

we obtain 94.2% for smaller values of variance, and up to 98.1% for less strict quality

cuts.

S̄i =
1

N ′MLM

N ′MLM∑
n=1

S ′
n
i . (3.20)

Table 3.1: Purity and completeness for S-PLUS quasars as a function of the quality cut.

Quality cut Purity Completeness

high 80.3% 94.2%

medium 57.1% 97.1%

low 50.5% 98.1%

Table 3.2: Purity and completeness for S-PLUS stars as a function of the quality cut.

Quality cut Purity Completeness

high 99.99% 93.4%

medium 99.98% 97.6%

low 99.97% 98.3%

Regarding a star/quasar separation, even in the case of a high quality cut we would

still have a 20% level of contamination from stars (expected to be uniformly distributed
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when averaged over large distances) in the quasar sample, as shown in Table 3.1. This

would affect any clustering measurements of quasars by inducing, e.g., correlations on

large scales, even though we expect the angular distribution of quasars to be uncorrelated

at different redshifts (Pullen & Hirata 2013; Ho et al. 2015). These stars would eventu-

ally end up as outliers in the photometric redshift estimation with LePhare and QPz (see

Chapter 4).

In Fig. 3.24 we show some of the PDFs obtained for the classification. In general,

the PDFs are well behaved. However, note that the quasar in the middle panel of the

bottom row and the star in the right panel of the top row ended up wrongly classified.

Figure 3.24: Probability density distribution for the classification of 9 quasars (left panel) and 9
stars (right panel) from our S-PLUS evaluation sample. A classification equal to “0” corresponds
to a quasar and equal to “1” corresponds to a star.

Note that galaxies can also be misclassified as point-like sources. In particular,

Costa-Duarte et al. 2019 have performed a star/galaxy classification for the S-PLUS DR1

using a Random Forest (Breiman 2001) algorithm. They have shown that the inclusion of

morphological parameters – specially the full width at half maximum (FWHM) improves

the overall accuracy of the classification from 88.1% to 95% for a limited-magnitude

sample (r < 21).

A star/galaxy classification using machine learning was also performed for the

miniJPAS catalog. Baqui et al. (2020) selected two data sets by cross-matching the

miniJPAS dataset with SDSS and Hyper Suprime-Cam Subaru Strategic Program (HSC-

SSP, Aihara et al. 2019) data, whose classification is trustworthy within the intervals

15 ≤ r ≤ 20 and 18.5 ≤ r ≤ 23.5, respectively. Then, they trained and tested 6 differ-
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ent algorithms on the two cross-matched catalogs: K-Nearest Neighbors, Decision Trees,

Random Forest, Artificial Neural Networks, Extremely Randomized Trees (ERT) and En-

semble Classifier – a hybrid algorithm that combines ANN and RF. The best performances

were obtained with RF and ERT. They have shown that for the full magnitude range of

15 ≤ r ≤ 23.5 the area under the curve (AUC) of the receiver operating characteristic

(ROC) curve – a parametric plot of the true positive rate (or completeness) and false pos-

itive rate, is 0.957 with RF using only photometric information, while AUC= 0.986 with

ERT when using photometric and morphological information (being FWHM the most

important feature).

Note, however, that a more thorough assessment of the contaminating objects in

the quasar sample can only be obtained with a three-class separation (i.e., with the inclu-

sion of galaxies).

In another exploratory analysis, we performed a 3-class separation of the spectro-

scopically confirmed sources from S-PLUS DR1 without any near-infrared data by em-

ploying a Random Forest algorithm. Again, the training sets contain synthetic fluxes with

the same level of noise as in the S-PLUS observation, constructed from SDSS DR12 spec-

tra for main sequence stars and white dwarfs, quasars in the redshift range 0.0 < z < 4.0,

as well as red and blue galaxies. The performance of this method was tested in a sample

of about 40k point-like sources detected in the Stripe 82 region. By applying probability

cuts on a magnitude-limited sample (r < 20.5), we reached a completeness of 76% and a

purity of ∼ 94% for the quasars8 (of which 1.6% are stars, and 4.2% are galaxies). The

purity of the sample with different magnitude cuts is shown in Fig. 3.25 — in particular,

note that for r < 18 no stars were classified as quasars. Extrapolating these results to the

Main Survey (MS) area, we forecast a total number of approximately 703 000 quasars in

S-PLUS brighter than r = 20.5, with ∼ 94% purity.

Nakazono et al. 2020 (submitted) have provided a catalog of stars, galaxies and

quasars based on the S-PLUS DR1. The classification was performed with two different

supervised learning algorithms: Support Vector Machine (Cortes & Vapnik 1995) and

8Here we are showing two different analyses for both star/quasar and star/quasar/galaxy separation in S-
PLUS just to illustrate some applications of machine learning for the classification problem. Note, however,
that these results cannot be directly related to the completeness and purity values shown in Table 3.1, since
the data sets are not exactly the same. A more thorough comparison between these results is beyond the
scope of this thesis.
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Figure 3.25: Number of S-PLUS quasars detected in the Stripe-82 region that are classified as
stars (upper panel), galaxies (middle panel) and quasars (bottom) in different magnitude bins.
Credit: C. Queiroz (Mendes de Oliveira et al. 2019).

Random Forest, in addition to the morphological information – encompassed in the pa-

rameters FWHM, major (A) and minor (B) semi-axes, and Kron radius (KrRadDet). In

terms of the quasar classification, they achieved a completeness of 85.31% and a purity

of 85.61% for the random forest. They have also shown that, when available, including

the information from the W1 and W2 magnitudes from WISE improves considerably the

completeness and purity of the quasar sample (95.96% and 96.33%, respectively).

Star, galaxy, quasar separation in miniJPAS

The results presented here were obtained in collaboration with a student from

our group, Natália Villa Nova (Villa-Nova, M.Sc. dissertation, University of São Paulo,
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2020).

In Villa Nova et al. 2021 (in prep.) we classify the miniJPAS sources using four

supervised machine learning models: (i) CNN mag&err, (ii) CNN 1D Flux, (iii) RF and

(iv) LGBM. These models differ from each other in the training strategy and/or input data.

The first one is a convolutional neural network that receives as input the set of observed

magnitudes modified to take into account the corresponding uncertainties (as illustrated

in Fig. 3.26). The second one is also a convolutional neural network but that has as input

the set of observed fluxes. The third one is a random forest using as input the magnitudes.

Finally, the fourth is an implementation of gradient boosting decision trees, LightGBM9,

for which the input data is the set of fluxes.

Figure 3.26: New representation of the miniJPAS photospectra for a quasar (left), galaxy (middle)
and star (right) used as input for the CNN. The x-axis corresponds to the central wavelengths of
the miniJPAS filters, and the y-axis corresponds to the magnitudes in the r-band.

The area imaged by the miniJPAS survey contains a wealth of multi-wavelength

observations, especially spectroscopic data from SDSS and DEEP3 (Cooper et al. 2011a;

Cooper et al. 2012a). However, the number of sources with trustworthy spectroscopic

classifications is insufficient to be used for the training. The solution found by our group

was to build mock catalogs for quasars, stars and galaxies following representative num-

ber densities in magnitude, redshift and/or stellar type (see Chapter 5 for more details).

9https://lightgbm.readthedocs.io/en/latest/

https://lightgbm.readthedocs.io/en/latest/
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Furthermore, since we had real data observed in the J-PAS filter system, we could model

more realistic errors directly from the miniJPAS catalog. We trained and tested the four

machine learning methods with the mocks, and we also tested them with miniJPAS real

observations (obtained by cross-matching the miniJPAS data set with SDSS DR16 Super-

set). For the classification, we are not considering the cross-matched sample with DEEP3

yet because, since this survey was designed to reach limiting magnitudes of R ∼ 24.1,

the miniJPAS cross-matched objects are typically noisier and their spectral DEEP3 clas-

sifications are less reliable.

The classification of the miniJPAS data is not only important for developing auto-

mated tools that will be later applied for the J-PAS data (once it is fully operational), but

also to provide primary quasar targets to be observed by the WEAVE-QSO survey during

its science verification program. Therefore, to attend the scientific goals of WEAVE-QSO,

which focus on mapping the Lyα forest of high-redshift quasars, the objects were initially

divided into four different classes: stars, galaxies, quasars 1 (at z < 2.1) and quasars 2 (at

z ≥ 2.1). We also considered four magnitude bins: r < 18, 18 ≤ r < 20, 20 ≤ r < 22

and 22 ≤ r ≤ 23.5.

So far, the best performance was obtained for the CNN mag&err. In terms of

the quasar classification with the mock test set, we obtained 96.7% (92.5%) and 99.0%

(99.2%) for the completeness (purity) of the quasars 1 and 2, respectively. For the cross-

matched sample, the performance decreases: we obtained 81.3% (82.4%) and 80.8%

(72.4%) for the completeness (purity) of the quasars 1 and 2, respectively. This indicates

that the error pattern observed in the real data was not properly modelled in the mocks.

In particular, a correct assessment of correlations between contiguous filters and/or fil-

ters from the same tray for non-detections and non-observations, and the way that this is

informed to the training sets could help us improve the classification with the real sources.

In Fig. 3.27 we show the confusion matrices for the four “classes” obtained with

the test sample of the mocks (top panels) and miniJPAS observations cross-matched with

Superset (bottom panels). On the left, we show the absolute numbers for each predicted

label as a function of the true label; on the right, we show the fractions after normalizing

by the total number of real objects of a given class (i.e., normalization by the sum of the
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rows).

Currently, we are also combining these algorithms with other machine learning

methods. So far, the results seem very promising because the combined algorithms always

seem to outperform the individual performances in all magnitude ranges (see §5.4 for

more details).

Figure 3.27: Confusion matrices obtained with the test set of the mocks (top panels) and the cross-
matched miniJPAS data (bottom panels) and using CNN mag&err. Left panel: Absolute numbers
of objects of a given predicted class as a function of the true label. Right: Normalized fractions
for each class (Villa-Nova et al. in prep).

3.4 Final remarks on quasar classification

So far, we have talked about SMBHs and some evidences for their presence at

the center of galaxies, and have shown how the galaxy “feels” their presence through

the scaling relations. We presented the unified model of AGNs and described the main

properties of the members of this family, focusing on the search for quasars and how

we expect their number densities to evolve with redshift – as expected by the luminosity
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function.

Nevertheless, the focus of this thesis is not the study of the physics of black holes:

we are rather interested on their observations in the optical when they are in their ac-

tive phase. AGNs are one the most powerful astrophysical events, and yet not so well-

understood. How can quasars help us better constrain cosmological parameters and give

us one more piece on the puzzle about the expansion of the Universe? How can the light

of quasars indirectly tells us about the composition of the IGM? In order to answer these

questions we must first succeed in correctly identifying them in multi-band photometric

surveys (not an easy task, one must say).

Now, suppose that after applying a classification scheme we have identified a sam-

ple of quasar candidates with high confidence levels in a photometric survey: how can we

properly estimate their distances, or in other words, their photometric redshifts? That is

what we try to answer in the next chapter.
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CHAPTER 4

PHOTOMETRIC REDSHIFT

ESTIMATION

Measuring distances is extremely useful in astrophysics and cosmology: either to

study the expansion history and growth of structures in the Universe, or to understand the

physical mechanisms responsible for the formation and evolution of a given astronomical

object.

For example, the distances to the nearest stars can be measured by parallax, which

is the apparent shift in the stellar position due to Earth’s orbit around the Sun. Parallaxes

are useful to measure distances up to perhaps a few thousand light years. Beyond that,

they are so small that they cannot be measured with present-day instruments. Another

method is based on variable stars, such as Cepheids and RR Lyrae, which pulsate at a rate

that depends solely on their absolute magnitudes. Since the period-luminosity relationship

is well-known for these stars, once the pulsation period is obtained, the absolute magni-

tude is automatically determined, and hence by measuring the apparent magnitude one

obtains its luminosity distance (which, by its turn, depends on the cosmology). Cepheids

are considered standard candles and they can be used to measure distances to nearby

galaxies.

Nevertheless, one of the easiest ways of measuring distances for galaxies (specially

for those located at large distances) is based on the determination of their redshifts, spec-

ified by their spectra. Due to their quantum mechanical properties, atoms and molecules

have characteristic spectral signatures at rest-frame frequency, which are assumed to be

the same whether they are located at Earth or in outer space. This means that any emis-

sion and/or absorption features in the spectrum will inform us about the composition and

motion of the source. Therefore, by looking at the shift of known spectral lines due to the
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cosmic expansion, one can compute the so-called spectroscopic redshifts.

The Sloan Digital Sky Survey (SDSS) is doubtlessly the largest sky survey to-date.

In twenty years of operation, it has obtained more than four million spectra (as of DR14),

comprising galactic and extragalactic sources. Among other successful spectroscopic sur-

veys, there are: 2dF (Colless et al. 2001), zCOSMOS (Lilly et al. 2007), 6dF (Jones et al.

2009), DEEP2/DEEP3 (Cooper et al. 2011b, Cooper et al. 2012b, Newman et al. 2013),

WiggleZ (Parkinson et al. 2012), VIPERS (Garilli et al. 2014), MUSE (Urrutia et al.

2019) – just to cite a few. Upcoming and future multi-fiber surveys, such as Euclid (Lau-

reijs et al. 2011, Amendola et al. 2013), PFS (Takada et al. 2014), Nancy Grace Roman

Space Telescope (Spergel et al. 2015), DESI (DESI Collaboration et al. 2016, Levi et al.

2019), WEAVE (Dalton 2016, Pieri et al. 2016), and 4MOST (Richard et al. 2019), will

expand the cosmic volumes probed with galaxy redshifts by several orders of magnitude.

We summarize some of the upcoming ground-based multi-fiber facilities in Table 4.1.

Table 4.1: Summary of four spectroscopic survey facilities under construction. Mid-resolution is
typically a few thousand; high-resolution is typically around 20K, but for a more limited bandpass.
Adapted from: Levi et al. (2019).

Name Telescope Fibers FOV (deg2) Bandpass (nm) Resolution

PFS Subaru 8-m 2400 1.5 380–1260 mid

DESI Mayall 4-m 5000 8 360–980 mid

WEAVE WHT 4-m 960 3 370–960 mid&high

4MOST VISTA 4-m 2436 5 370–950 mid&high

In particular, the WEAVE survey is a multi-object spectrograph designed for the

4.2-m William Herschel Telescope (WHT) in the Canary Islands that will start observing

by mid-2021. Part of the WEAVE strategy is to follow-up high-redshift (z > 2.1) quasars

in order to conduct a Ly-α forest survey (WEAVE-QSO, Pieri et al. 2016). Dense spec-

troscopic samples of large-scale structure tracers are required to measure, e.g., the BAO

feature accurately, but they can be observationally expensive. Mapping the Lyα forest is

one way in which we can overcome this difficulty, using the fact that a single spectrum

contains the signature of several intervening structures – but for that, we must be able to

identify z > 2.1 quasars that can serve as background light sources to illuminate those
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structures. The targets for the WEAVE-QSO survey will be provided by J-PAS, which is

the only instrument in the world capable of identifying quasars in large enough numbers

and down to the depths needed by WEAVE to do its science. This means that the task of

identifying quasar targets from J-PAS photometry, as well as estimating their redshifts, is

more pressing than ever.

One of the main drawbacks of spectroscopic surveys is the long integration times

needed to resolve galaxy spectra sufficiently well to yield a good redshift estimate. An-

other limitation is the number of fibers that can be deployed in any single exposure and

area, which is presently reaching ∼ 103 fibers per deg2. Because of these factors, the

number of targets selected for spectroscopic follow-up is usually much smaller than the

total imaged sample, which significantly limits the survey depth and number densities that

can be achieved.

In view of these difficulties, an alternative way of computing distances arises via

photometric redshifts, which are estimated solely from the magnitudes and/or colors de-

tected in a small number of wide frequency bands. Using photometry allows us to measure

redshifts for larger samples of sources, in a much more efficient and faster way. In addi-

tion, imaging detectors can cover greater areas of the sky than multi-object spectrographs.

For the same exposure times, photo-zs can be recovered for much fainter galaxies than

spectroscopic redshifts, and so photometric surveys have also the ability to cover signifi-

cantly larger volumes, making them potentially more suitable for constraining cosmolog-

ical observables on ultra-large scales. Nevertheless, the accuracy of photometric redshifts

is strongly dependent on (i) the number and the width of filters (e.g. broad, intermediate

or narrow-band), as well as (ii) the redshift range and type of galaxies of interest (passive,

star-forming or active). Since they provide low-resolution spectral information, photomet-

ric redshifts usually have much larger uncertainties than their spectroscopic counterparts.

For fields where extensive photometric data sets are available, the photometric red-

shift technique has been employed with reliable results. For instance, COMBO-17 (Wolf

et al. 2004), CFHTLS (Ilbert et al. 2006), COSMOS (Scoville et al. 2007b), UKIDSS

Ultra-Deep Survey (Williams et al. 2009), ALHAMBRA (Molino et al. 2014), Dark En-

ergy Survey (DES; Hoyle et al. 2018), Javalambre Photometric Local Universe Survey
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(J-PLUS; Molino et al. 2019b), Southern Photometric Local Universe Survey (S-PLUS;

Molino et al. 2019a, Lima et al. 2021 submitted), Physics of the Accelerating Universe

Survey (PAUS; Eriksen et al. 2020). Yet, not all deep and wide fields have photometric

redshifts of comparable accuracy, and above all, very few have tuned photometric red-

shifts for quasars.

Most of the current imaging surveys operate with photometric systems composed

of a few (4-5) optical/NIR broad-band filters (i.e. widths ∼ 1000 Å), which makes them

more prone to color-redshift degeneracies (affecting, e.g., the ability to unambiguously

determine the redshift for a galaxy, even if observed at relatively high S/N). Alternatively,

in order to increase the spectral information, one could use more, narrower filters (with

widths down to 100-200 Å) but obviously at the expense of compromising significantly

the photometric depth (at fixed exposure time). Nevertheless, “photometric depth is not

equivalent to photometric redshift depth”, as shown by Benı́tez et al. (2009). In particular,

they have demonstrated that for a larger number of non-overlapping filters (shown in Fig.

4.1) the effective photometric redshift depth actually decreases much more slowly with

filter width than expected from the reduction in signal-to-noise. In addition, by decreasing

the width of the passbands, it is possible to increase the redshift precision. These results

are shown in Fig. 4.2. In fact, the photometric systems of surveys such as ALHAMBRA,

J-PLUS, S-PLUS, and J-PAS were born from this recipe, and are a proof of this concept,

allowing us to actually identify individual emission lines from galaxies and quasars (and,

thus, not only recreate their continuum – as done by broad passbands).

Although the Universe can be mapped in a wide range of scales and frequencies,

high-quality observations still come up against the detection limits of the instruments.

Clearly, the selection of the area is a very important part of the strategy of any survey,

and must combine, in different degrees, two complementary techniques (spectroscopy

and photometry) to select their targets. There is always a trade-off between the area and

the depth of the survey, which have consequences on how the sources – in particular,

the fainter ones – are detected. Besides, each photometric band has its own biases due

to selection effects and, therefore, the use of different imaging bands provides different

perspectives for the detection of sources.
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Figure 4.1: Example of four types of optimal filter sets, each with 11 filters. The filter transmis-
sions are represented without taking into account the CCD or the telescope+optics transmission.
The height of the filters were slightly increased with wavelength and alternate colors in successive
filters were used to help visualization. Credit: Benı́tez et al. (2009).

Figure 4.2: Left panel: Effective magnitude depths for different types of filter sets as a function
of filter number for optical/NIR observations. They correspond to the magnitude at which the
accumulated number of objects with Bayesian odds ≥ 0.99 is 80% of the total number of objects.
The blue dotted line shows how the completeness magnitude would change with number of filters
if it mimicked the behavior of the photometric limiting magnitude. Right panel: Redshift precision
δz = (z − zbest)/(1 + z) for galaxies with odds ≥ 0.99 as a function of the number of filters for
four types of filter systems. Credit: Benı́tez et al. (2009).

In this chapter we propose a method (dubbed QPz) to accurately estimate photo-

metric redshifts for quasars. This method is inspired on a standard chi-square minimiza-

tion: given a photospectra, it fits a model defined by a linear combination of quasar eigen-
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spectra derived from a principal component analysis (PCA) and finds the full probability

distribution function (PDF) for the redshifts. In order to validate the results obtained with

our method, we compare its performance with a standard template-fitting code publicly

available – LePhare.

4.1 Redshifts

Hubble’s law states that nearby galaxies in the local Universe move away from

each other at a rate cz = H0r. As the physical separation of two fundamental observers

is a(t)dr, Hubble’s law can be rewritten as

H(t) =
ȧ(t)

a(t)
. (4.1)

At small cosmological distances one can define the redshift z in terms of the recession

velocity as:

λobs

λintrinsic

= 1 + z ≈ 1 +
v

c
. (4.2)

A more general expression for redshift comes when considering the photon’s null

geodesic. For a radial geodesic, the metric yields:

r =

∫
dt

a(t)
. (4.3)

Since the comoving distance is constant for this case, the integral above leads to:

dtintrinsic

dtobs

=
a(tintrinsic)

a(tobs)
(4.4)

which means that there is a time-dilation for photons emitted from distant galaxies, which

is proportional to the expansion of the Universe. This effect also appears on the observed

wavelength, resulting in a more general expression for the redshift:

1 + z ≡ λobs
λintrinsic

=
1

a(t)
(4.5)

where a(t = t0) = 1.
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4.2 Photometric redshift methods

There are two classes of methods to compute photo-zs: template fitting (Loh &

Spillar 1986) and empirical (originally proposed by Connolly et al. 1995). The first one

uses a set of standard SED templates, either based on theoretical models (synthetic tem-

plates) or real data (empirical templates), which are supposed to represent all the possible

spectral types observed (accounting for, e.g., different star-formation histories, chemical

abundances, mixtures of dust and stars, luminosities) but should not be too large to avoid

degeneracies. This class is, thus, very sensitive to template choice. The template-fitting

methods map the templates in redshift space, using small dz steps. Then, through a chi-

square minimization, they compare the theoretical fluxes from the redshifted templates

with the observed fluxes until finding the best correspondence – both in type and redshift.

Another issue in this class of methods is that they are strongly affected by systematic er-

rors in the observables, such as differences in zero-point calibrations, especially if they

are wavelength dependent. Some examples of algorithms that implement this method are:

LePhare (Arnouts et al. 1999, Ilbert et al. 2006), BPZ (Benı́tez 2000), HyperZ (Bolzonella

et al. 2000), ZEBRA(Feldmann et al. 2006), and EAZY (Brammer et al. 2008).

The other class relies on a “true” sample of sources for which it is known not

only their magnitudes or colors, but also their true spectroscopic redshifts. This sample,

dubbed training set, is employed to feed the training procedure and determine a functional

relationship between colors and redshifts, which will then be applied to the photometric

sources from the sample of interest (the so-called test set) to estimate their photometric

redshifts. Therefore, to ensure that the empirical relation will be able to reproduce most

of the spectral variations found in the test set, the training set should ideally contain a

large variety of spectral properties, different ranges of luminosity, and realistic frequen-

cies for each spectral type in each redshift bin. In addition, a new empirical relation must

be derived for each photometric system configuration. In this class are included polyno-

mial fits, nearest neighbors, Gaussian processes, neural networks, random forest, boosted

decision trees, self-organizing maps, etc. Some examples of algorithms found in the liter-

ature are: ANNz (Collister & Lahav 2004b), ANNz2 (Sadeh et al. 2016), Weights (Lima
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et al. 2008), ArborZ (Gerdes et al. 2010), Multilayer Perceptron Artificial Neural Network

(Vanzella et al. 2004), and SOMz (Carrasco Kind & Brunner 2014).

Empirical methods usually outperform template methods when a representative

training set is available (e.g. Abdalla et al. 2011). However, template fitting methods can

extrapolate better at redshift bins or luminosity ranges where there is a lack of training

objects. Hence, in the future, hybrid methods that combine the main characteristics of

each technique may be preferable to ensure more precise photo-zs.

There are also some methods tuned specifically to identify and estimate redshifts

for quasars. We discuss two of them in the following.

The first aims to identify emission lines for quasars in medium- and narrow-band

filter surveys. The Emission Line Detector of Astrophysical Radiators (ELDAR; Chaves-

Montero et al. 2017) adopts a two-step procedure to search for quasars in the ALHAM-

BRA fields. First, it employs a template fitting method (LePhare) to pre-select quasar

candidates and obtain a redshift probability distribution (PDZ) for them. The second step

is a spectro-photometric confirmation step, in which it detects the main quasar emission

lines and refines the photo-z estimation. This allows the rejection of galaxies and stars

that were wrongly assigned to quasar templates and also to discriminate between multiple

solutions in the PDZ. For a magnitude limited sample of F814W = 23, they estimate a

completeness of 67%, a redshift precision of 0.86% and an outlier fraction of 5.8%.

The second implements a random forest algorithm to classify quasar optical spec-

tra and estimate their redshifts. The Spectroscopic QUasar Extractor and redshift (z) Es-

timator (SQUEzE; Pérez-Ràfols et al. 2019) mimics the process of human inspection to

identify all significant emission lines. To each peak, a different redshift is assigned (ztry)

and then passed to a random forest classifier, which will assess the quality of this trial.

This allows one to recover redshifts from the SDSS DR12 with a purity and completeness

of 99.59% and 98.81%, respectively, for a high redshift subsample (ztry > 2.1). In a sec-

ond paper, Pérez-Ràfols & Pieri assess the performance of SQUEzE when low-resolution

spectra (pixels of 100 Å of width) are considered – hence, a forecast for JPAS-like data.

In this case, they show that the purity remains unchanged for the high-z sample, while the

completeness decreases only ∼ 1% when compared to the original sample. This means
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that SQUEzE performs satisfactory not only on spectra from, e.g., DESI and WEAVE,

but also on J-PAS photospectra.

In the following sections, we describe the configuration of the photo-z methods

employed in this thesis.

4.3 LePhare++

LePhare performs SED template fitting through a simple chi-square minimization.

Additional extinction laws can also be applied to the templates. The publicly available

version of this code is written in FORTRAN language which only allows for a maximal

size to be allocated to the arrays. In practice, this means that we cannot estimate photo-

zs for a photometric system containing more than 45 passbands and considering redshift

steps as small as ∆z ∼ 0.003 (i.e., of order of the precision that we expect to obtain with

J-PAS). For this reason, in our analyses we employed a new version, LePhare++ (O. Ilbert

and S. Arnouts), which is written in C++ and is not publicly available yet.

To build the quasar library, we started from two lists previously compiled for the

COSMOS field (Salvato et al. 2009) and the ALHAMBRA fields (Chaves-Montero et al.

2017). These libraries served only as an initial guess and were successively refined to

properly fit our data sets (composed of spectroscopically confirmed quasars detected with

miniJPAS and S-PLUS DR1), in such a way that we guaranteed an increase in the redshift

precision (σnmad) and a decrease in the outlier fraction (η) – see §4.5 for more details on

how these quantities were computed. First, all normal galaxy templates and SEDs that did

not fit any quasar from our sample were rejected. Then, we adopted a redshift precision

of ∆z = 0.003 (since values smaller than this generated a segmentation fault). We also

applied a luminosity prior of MB < −20 to avoid unrealistic solutions at low z – and

this modification was invaluable to improve the performance of the photo-z estimation.

A correct modelling of dust attenuation (AV ) is also required; in the case of quasars, we

expect it to be dependent on both redshift and orientation with respect to the observer.

We tested different extinction laws, and the starburst model from Calzetti et al. (2000)

provided the best performance (we also tested combinations of more than one extinction

law, but these also generated a segmentation fault). The intrinsic galactic absorption was
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computed with values E(B − V ) = 0, 0.025, 0.05.

Finally, we used the diagnostic broad-band color-redshift plots from Richards et al.

(2001) to obtain our final library. In Fig. 4.3 we show a comparison between the broad-

band colors (g− r and r− i) of the templates shifted up to redshift z = 5 (colored lines),

and the distribution of quasars that were spectroscopically confirmed by SDSS DR16

Superset (gray dots). In this figure, we also show the locus occupied by the miniJPAS

quasars (red dots).

Figure 4.3: Color-redshift distribution for the final sample of 7 templates used in LePhare++. We
compare these distributions with that of spectroscopically confirmed quasars from SDSS DR16
Superset (gray dots) and miniJPAS quasars (red dots).

Throughout the procedure of building the quasar library, we were aware that SED

templates can often be combined in an arbitrary manner that may not be physically real-

istic in terms of the properties that would be inferred for the source. For this reason, we

tested different template orders and tried to include twice the same template in the list,

but without any improvements. The final configuration that we obtained (shown in Fig.

4.3) seems to be the one that best describes our data sets1.

There are still some internal issues that should be resolved with LePhare++ (espe-

cially for S-PLUS), but the overall performance is already very satisfactory for miniJPAS

– as we show in Chapter 6.

1The same library was applied for both miniJPAS and S-PLUS data.
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4.4 Quasar Photometric Redshifts (QPz)

In the UV-optical wavelengths, most quasar spectra are characterized by a non-

thermal continuum, a blue bump and a series of (mostly) broad emission lines. We know,

however, that their spectra are far from being uniform: the spectral slope, as well as the

emission lines, can differ a lot among quasars, and even within a single spectrum, the

widths of the emission lines can actually be remarkably different. If, on one hand, these

differences provide invaluable insights about the physical environments in the vicinity of

quasars, on the other hand, they present significant challenges to the modelling of broad

and narrow-line regions.

A useful tool to quantitatively understand the variation in quasar spectra and de-

termine the minimum number of dimensions required to describe the multidimensional

distribution of variables (which, in this context, are represented by the observed flux den-

sities in the wavelength bins of the spectrum) is the principal component analysis (PCA;

Chatfield & Collins 1980). The PCA employs an orthogonal transformation to model

the fluxes of real astrophysical objects to find a set of linearly uncorrelated vectors – the

so-called principal components. These principal components (hereafter eigenspectra) are

hierarchically organized in such a way that the first component accounts for the largest

possible variance, and they form the most meaningful basis that represents the essential

physical properties of the data sample.

For example, Boroson & Green (1992) applied this technique to study the proper-

ties of various emission lines in the rest-frame optical spectra of quasars. Francis et al.

(1992) were the first to apply PCA to the spectral pixels themselves, where they found that

the mean spectrum plus the first two principal components are able to describe the major-

ity of the variations seen in the UV-optical spectra of quasars. Yip et al. (2004) applied

a variant of the PCA technique, the Karhunen-Loève (KL) transform, to find the spectral

classification for a sample of 16 707 quasar spectra from the SDSS early DR1 (Abazajian

et al. 2003, Schneider et al. 2003). They found that the spectral classification of quasars

depends both on redshift and luminosity, since it was not possible to derive a single com-

pact set (with . 10 modes) of eigenspectra capable of describing most variations of the
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entire catalog. In 2005, Suzuki et al. introduced the idea of using PCA to study the con-

tinuum of low-redshift (z ∼ 0.14 − 1.04) quasars and construct a model to predict the

intrinsic continuum of Lyα absorbed regions in the spectra of high-redshift quasars. This

approach was extensively used in other works to predict the blue-side quasar continuum

from the red-side spectrum (e.g. Pâris et al. 2011, Lee et al. 2012, Lee et al. 2013, Davies

et al. 2018).

In this work, we applied the quasar eigenspectra derived by Yip et al. (2004)

(Yip04 henceforth) to develop a method of photometric redshift estimation for quasars

detected in multi-band surveys. This idea of fitting spectra with a linear combination of

redshifted template “eigenspectra” in combination with a low-order polynomial (to ac-

count for Galactic extinction) is not new. Bolton et al. (2012) applied this approach to

construct an automated pipeline to classify and estimate redshifts for stars, galaxies and

quasars detected in the SDSS DR9 (Ahn et al. 2012). However, as far as we know, this is

the first time that it is applied to fit quasar photospectra.

One stringent assumption of the PCA technique is the linearity. This means that the

data set is re-expressed as a linear combination of its basis vectors, and this is the same

underlying assumption in the photo-z estimation. Obviously we are applying a linear

approach to a non-linear problem; still, our results are very robust and reveal a significant

lower fraction of catastrophic errors (i.e., outliers) when compared to those obtained with

a standard template-fitting method (LePhare).

In the following we describe how this method was implemented.

4.4.1 Global eigenspectra

The redshifts of the quasar sample used to derive the eigenspectra range from 0.08

to 5.41, the i-band absolute magnitude from -30 to -22, and the rest-frame wavelengths

from 900 Å to 8000 Å. All magnitudes were corrected for Galactic extinction using dust

maps from Schlegel et al. (1998). The signal-to-noise ratios of the spectra generally meet

the requirement of (S/N)2 = 15 per spectroscopic pixel (Stoughton et al. 2002). Finally,

at least one prominent line in each spectrum from the DR1 quasar catalog has full width

at half maximum FWHM ≥ 1000 kms−1, such that type II quasars and BL Lacs are not
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included in the quasar catalog.

Different rest-frame wavelength coverage, removal of skylines, and bad pixels on

the CCD chips can lead to incomplete spectra. In order to correct for the missing pixels,

Yip04 initially repaired the missing data with a polynomial interpolation, constructed a set

of eigenspectra from the gap-repaired spectra, and then corrected the gaps in the original

quasar spectra with a combination of these eigenspectra. This procedure was iterated until

convergence (∼ 10 steps).

Yip04 found that in order to account for approximately 99% of the total sample

variance, about 50-60 modes were required. In their work, they derived 100 modes. In

Table 4.2 we show the partial sum of weights (i.e., cumulative weights) in different orders

of the global2 eigenspectra. Note that here these weights are equivalent to the eigenvalues

of the correlation matrix.

Table 4.2: Partial sum of weights of the global quasar eigenspectra. The information of w100 is
not available. Adapted from: Yip et al. (2004).

Number of modes Weights (wn) Partial sum

1 0.5609 0.5609

2 0.1193 0.6802

3 0.0758 0.7560

4 0.0614 0.8174

5 0.0469 0.8643

10 0.0139 0.9194

20 0.0032 0.9689

50 0.0009 0.9957

100 – 0.9992

This means that the first eigenspectrum accounts for about 56% of the total sample

variance, while the first 10 modes account for about 92%. In Fig. 4.4 we show the first

four modes at rest-frame and the main quasar emission lines on the top panel.

One of the most interesting characteristics of employing eigenspectra instead of

2We will denote by global eigenspectra those modes constructed from the whole sample as a way of
distinguishing from the sets of eigenspectra constructed in specific redshift and luminosity bins.
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Figure 4.4: First four global quasar eigenspectra at rest-frame. The lowest-order component
(eigen 1) is the most important one: it represents the mean quasar spectrum and, therefore, it
carries all the main type-I emission lines. The fluxes were normalized by the first mode.

templates is that each mode can be associated to a different physical property of the

quasars. For example, the first four quasar eigenspectra reveal the following features:

• 1st mode: it represents a mean quasar spectrum. It has approximately a power-law

shape with prominent broad emission lines;

• 2nd mode: it represents the change in the spectral slope, to account for the host-

galaxy contribution;

• 3rd mode: it carries the information from the UV-optical continuum slope. It is very

similar to the host contribution;

• 4th mode: it shows the correlations between broad emission lines, Lyα, CIV, SiIV+

OIV], CIII], MgII, [OIII]λ5008, and also the Balmer emission lines, Hα, Hβ, Hγ,

Hδ and Hε.
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By construction, higher-order components account for small modulations on the

continuum slope and can also show broad absorption lines. This means that the signatures

of BAL quasars (which are not dominant in the sample) will show up preferentially at

higher-orders in the global eigenspectra.

Quasars with prominent narrow-lines usually have low luminosities, in which case

the contamination from the host galaxy can obscure the true physical nature of these lines.

Note, however, that since we can detect significant features from the host, this could be

used as an application to remove its contribution.

Given a photospectrum of a source q, characterized by a set of observed fluxes and

corresponding uncertainties {fq,µ;σq,µ}, our quasar photometric redshift estimator, QPz,

utilizes a chi-square minimization

χ2
q(z) =

∑
µ

[fq,µ −Fµ(z)]2

(σ2
q,µ + σ2

Lyα)
(4.6)

to find the best-fit model F(z) at each redshift from a linear combination of redshifted

eigenspectra, ξnµ(z), convolved with the corresponding photometric band, µ, and com-

bined with an extinction power law:

Fµ(z) =
∑
n

cnξ
n
µ(z)

(
λµ
λeff

)−α
(4.7)

where n is the mode number, cn are the eigencoefficients allowed to vary in the range

±3wn, λµ is the filter effective wavelength, λeff = 5000 Å is a scale wavelength that

marks the modulation of the slope between the blue and red sides, and α is the power-law

index allowed to vary in the range [−1.5, 1.5]. In Eq. 4.6, σLyα is an additional variance

of 2.5% of the flux for the filters located on the blue side of the Lyα line.

In order to shift the eigenspectra, we first extend the blue and red sides by assuming

a constant flux (of course, this is just a first-order approximation). Then the redshift is

allowed to vary up to 5.13 in steps of ∆z = 0.001. This choice of zmax was made to

match the limiting redshift in which the redshift-luminosity eigenspectra are defined; it is

arbitrary, though, and can be adapted accordingly to the properties of the sample that we

want to test. Note, however, that at z & 5.2 the Lyα line is in the transition between the
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red and NIR part of the spectrum, which means that they are not any significant emission

lines left to be identified with this method.

For each source q, the method determines the set of parameters {cn, α} that min-

imize the chi-square function in Eq. 4.6 at each redshift. In the end, it provides the full

redshift probability distribution:

Pq(z) ∼ exp

[
−
χ2
q(z)−min(χ2

q)

2

]
. (4.8)

The value of redshift that globally maximizes Pq corresponds to the photometric redshift

and will be denoted by zphot. Although most metrics utilize these single point-estimates

to assess the quality of the photometric estimation, it is important to bear in mind that

the full PDF actually incorporates the complete information about the uncertainty in the

photo-z, being preferable in any cosmological analysis.

Also, although in the beginning we assume that the photospectrum corresponds

to a quasar, by construction this method will find a best-fit for the photospectrum of any

source – even if it lacks any physical meaning.

For the implementation of QPz, we use a suitable tool for minimization prob-

lems: the Python module scipy.optimize.least squares3 with the trust region

reflective (trf) algorithm, a robust approach that quickly moves to another region in the

parameter space whenever a negative curvature is encountered (i.e., whenever the local

minimum is far from the solution).

4.4.2 Number of eigenspectra

As can be expected, increasing the number of eigenspectra used for modeling a

photospectrum increases not only the completeness (understood as the ability to correctly

fit more spectral features) but mainly the impurity of the resulting fit because it increases

the possibility of finding spurious results. This is equivalent to what happens when we

increase too much the number of templates in a template-fitting code.

In order to determine the most suitable number of eigenspectra, we tested four

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
least_squares.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
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different sets: with 4, 5, 10 and 50 modes. We have not considered less than 4 modes

to ensure that the effect of correlation between Balmer emission lines is included in the

resulting model; on the other hand, 50 was the maximum number of eigenspectra that

we had access to. We tested these different sets with 124 spectroscopically confirmed

quasars detected by the miniJPAS and compared their performances with regard to the

redshift error (in terms of σnmad) and the fraction of outliers (see §4.5 for more details on

how we computed these metrics). The performances are illustrated in Fig. 4.5, and the

quality of the photo-z estimation is shown in Table 4.3.
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Figure 4.5: Comparison of the performance for different numbers of eigenspectra: estimated
photometric redshift as a function of the spectroscopic redshift for spectroscopically confirmed
quasars from miniJPAS. The blue dots correspond to quasars from Superset (101) and the orange
dots to quasars from DEEP3 (23). The diagonal line indicates zphot = zspec. The vertical gray
dashed lines at zspec = 2 and zspec = 3.5 illustrate the redshift range where we expect to obtain
the most precise photo-zs since there are several quasar emission lines entering the filters.

From Table 4.3 we can see that running QPz with a set of 4 eigenspectra provides

the best performance (σnmad = 0.0057, η = 17.7%). Also, as already expected, we

found a tendency towards an increase in the outlier fraction in all redshift ranges as the



106 4.4. Quasar Photometric Redshifts (QPz)

number of modes increased. Although we are showing here the results for a small sample

of quasars, which is more subjected to statistical fluctuations, we verified that this same

tendency remained even with larger samples of quasars and, hence, all our results are

shown in terms of a linear combination of the first 4 eigenspectra.

Table 4.3: σnmad, bias and outlier fraction obtained with QPz using different numbers of modes
and for a sample of 124 quasars from miniJPAS.

Number of modes σnmad δz Outlier fraction (η)

4 0.0057 -0.021 17.74%

5 0.0070 -0.01 17.74%

10 0.0067 -0.023 24.19%

50 0.0240 -0.409 45.97%

4.4.3 Luminosity-redshift dependency

Yip04 also investigated a possible redshift evolution and luminosity effects in the

quasar spectra. For this, they divided their sample into five redshift bins: z1 = [0.08, 0.53],

z2 = [0.53, 1.16], z3 = [1.16, 2.06], z4 = [2.06, 3.33], and z5 = [3.33, 5.13], and

four luminosity (absolute magnitude in the i-band, Mi) bins: A = (−30,−28), B =

(−28,−26), C = (−26,−24), and D = (−24,−22).

They noted that the first modes constructed in all these subsamples were always

very similar to each other (with more than 99% of commonality), which demonstrated

that a single mean spectrum can be constructed across the whole redshift coverage. This

is not a trivial finding because there is always the possibility of having an evolving quasar

population at different cosmic epochs. However, as higher orders were considered, the

commonality leveled off and the eigenspectra subspaces became more disjoint. For 20

modes or higher, the resulting eigenspectra contained mainly noise. This means that

eigenspectra of same order but derived from quasars of different redshift and luminosity

bins describe different spectral features. Or, in other words, eigenspectra derived from

quasars of a particular redshift and luminosity bin in general are not able to predict quasar

spectra of other redshifts and luminosities.
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Taking into account this redshift-luminosity dependency, we also implemented a

second version of QPz in which, instead of using the global eigenspectra, we used the first

four eigenspectra derived in (Mi,z)-bins.

The binned eigenspectra were identified to represent the same physical interpreta-

tions as in the set of global modes, except maybe for the third one, which is now specifi-

cally related to the anti-correlation between FeII (UV) and optical continuum around Hβ.

In Fig. 4.6 we show the first four eigenspectra in the 12 different redshift-luminosity bins.
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Figure 4.6: Quasar eigenspectra in the 12 redshift-luminosity bins (different panels). The 1st,
2nd, 3rd and 4th modes correspond, respectively, to the black, dark blue, light blue and red lines.
In each bin, the eigenspectra span different wavelength coverages and have different weights. The
fluxes were normalized by the first mode.
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4.4.4 Not only photospectra

Although designed to model the photospectra for quasars detected in multi-band

surveys and estimate their redshifts, QPz is flexible enough to model high-resolution spec-

tra as well. To test this, we considered the spectra of the same SDSS quasars detected by

miniJPAS (there are 101) and mimicked their spectral pixels as very narrow bands (of

a few Å-width). Now, convolving the global eigenspectra with these new “filters”, we

obtained a new set of eigenspectra, and then employed these to model the SDSS spectra.

Not surprisingly, we were able to recover their redshifts with an extremely high precision

(σnmad = 0.00067), without any outliers. These results are shown in Fig. 4.7.
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Figure 4.7: QPz redshift estimation for 101 quasar spectra from SDSS DR16. The diagonal line
indicates where the estimated redshift ẑ is equal to the spectroscopic redshift.

4.4.5 Type-II quasars

Since, in principle, Yip04 did not include quasars with exclusively narrow emis-

sion lines in the sample utilized to derive the eigenspectra, we also tested if QPz would

be able to recover the photo-zs of type-II quasars. We did not find any spectroscopically

confirmed type-II quasar in the miniJPAS area, so for this exercise we employed synthetic

fluxes generated from SDSS spectra. In Fig. 4.8 we show two examples of simulated
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type-II quasars at redshifts zspec = 2.400 (left panel) and zspec = 3.324 (right panel). QPz

is able to recover the redshifts for both objects with high accuracy: zspec = 2.402 and

zspec = 3.336, respectively.

Figure 4.8: QPz redshift estimation for type-II quasars at different redshifts. The gray line cor-
responds to the SDSS spectrum and the colored dots correspond to the synthetic fluxes in the
miniJPAS passbands. The redshift values estimated with QPz are z = 2.402 (left panel) and
z = 3.336 (right panel).

This demonstrates the flexibility of QPz, and also the power of the J-PAS photo-

metric system of detecting narrow emission lines.

4.5 Photo-z quality

In this section, we present the metrics adopted assess the quality of the photo-z

estimates.

4.5.1 Normalized Median Absolute Deviation (NMAD)

In the standard deviation, the distances from the mean are squared; this means that

large deviations are more heavily weighted, being more affected by catastrophic results

(i.e., outliers). The normalized median absolute deviation (NMAD), on the other hand,

is a more robust estimator and more resilient to the influence of outliers. It is defined as

(e.g., Matute et al. 2012):
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σnmad = 1.48 x median
∣∣∣ ∆z

1 + zspec

∣∣∣ (4.9)

where ∆z = zphot − zspec.

Note that the standard deviation alone, given by δz = ∆z/(1 + zspec), already

constitutes a way of estimating the accuracy of the measure. However, σnmad takes into

account the fluctuations around the diagonal line where zphot = zspec and, therefore, is

less sensitive to catastrophic errors. In the limiting case of a null fraction of outliers, one

would expect σnmad = δz.

We also considered the scatter σN , which corresponds to the half of the width of

the ∆z distribution where N% (N = 50, 75) of the data is enclosed.

4.5.2 Bias

The bias bz gives information about systematic errors in the photo-z estimates, and

it is defined as:

bz = 〈zphot − zspec〉. (4.10)

Note that bz is expected to be positive when the method overestimates the photo-z,

and negative when the photo-z is underestimated. Ideally, a method with a high perfor-

mance should provide bz ∼ 0 for the most part of the redshift coverage of the data sample.

Therefore, the bias value is more enlightening when evaluated as a function of the redshift

bin.

4.5.3 Outlier fraction

The outlier fraction η is related to catastrophic errors (led by spurious solutions)

and, in general, is defined in terms of some factor of σnmad. In our analysis, we define it

as the fraction of objects that satisfies the condition |∆z/(1 + zspec)| > 0.05.
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4.5.4 Odds

One further quality parameter is the odds, which in general can be defined as

the redshift probability integrated within an interval ∆z around the maximum likelihood

value:

odds =

∫ zpeak+∆z

zpeak−∆z
P(z)dz∫ zmax

zmin
P(z)dz

(4.11)

where zpeak is the redshift corresponding to the maximum likelihood peak, zmin and zmax

define the redshift range considered in the photo-z estimation, and ∆z depends on the

survey. Narrow distributions result in values close to 1 since most of their integrated

probabilities will be contained within ∆z. On the other hand, broad or multi-peaked

distributions will result in values close to 0 since, in this case, the integrated fraction will

be very small. Hence, the higher the odds, the more precise the photo-z estimation and

the smaller the redshift dispersion δz.

4.5.5 Redshift-magnitude priors

Using the magnitude-redshift distribution of the spectroscopic sample as a prior in-

formation is believed to be extremely powerful to remove spurious peaks from the PDF(z)

and, thus, increase the odds.

In our analysis, we defined our priors in terms of the quasar luminosity function,

QLF-PLE (see Eq. 3.15). Therefore, for a quasar q in the magnitude-redshift bin (mi,zj),

the final redshift probability is denoted by

Pq(z) = P q
ij Pq, ij(z). (4.12)

4.5.6 Kolmogorov-Smirnov (K-S) statistics

The K-S statistics is a non-parametric test that provides the maximum value of the

absolute difference between two cumulative redshift distribution functions. This test is

also fairly robust to outliers.

The null hypothesis is that the testing groups were sampled from populations with
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identical distributions (in our case, we will be referring to the spectroscopic and photo-

metric redshift distributions). Therefore, the test searches for any violation of the null

hypothesis, being powerful to detect changes in the shape of the redshift distributions.

Note, however, that it does not provide any information about confidence intervals.

4.6 Final remarks on photo-z estimation

We employ QPz on the photo-z estimation of quasars detected with miniJPAS

(Chapter 6) and S-PLUS (Chapter 7), and compare its performance with LePhare++ (or

simply LePhare henceforth) in terms of σnmad, bias and outlier fraction.

In the next chapter we describe how we generated the mock catalogs.



CHAPTER 5

MOCK CATALOGS

Constructing mock catalogs is an optimally approach to exploit data from upcom-

ing surveys or surveys that are not fully operational yet. With synthetic galaxy cata-

logs one can estimate the uncertainties in deriving galaxy properties, study selection ef-

fects, quantify the impact of different sources of errors, and make forecasts regarding the

most appropriate scientific strategies for a particular survey. In particular, they have been

extremely useful for training machine learning algorithms to classify point-like sources

from miniJPAS, since the number of sources with spectroscopic identification is not large

enough.

In this chapter, we will focus on the discuss of generating mock catalogs for mini-

JPAS. Note, however, that the procedure described here can be easily employed for any

other multi-band survey, such as S-PLUS.

The synthetic fluxes for quasars, stars, and galaxies are constructed from SDSS

spectra, and in order to have realistic mocks there are several requirements.

First, we select spectra from the SDSS DR16 Superset (§2.2.4), a catalog contain-

ing a set of sources targeted as quasars for eBOSS with great completeness and purity

due to visual inspection procedures to correct the automated classifications and redshifts

from the pipeline. This ensures a secure identification of quasar spectra, as well as the

inclusion of the main contaminants to the quasar sample.

Second, we consider only good-quality spectra and useful quality information in

the median signal-to-noise ratio per resolution element by setting the flags zWARNING=

0 and snMedian> 0.

Third, we draw realistic redshift-luminosity frequencies for each type (sub-type) of

source and angular distributions on the sky (in the case of stars). For the quasars, we draw
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those frequencies from the QLF-PLE. For the galaxies, instead of using a phenomeno-

logical luminosity function, we mapped the redshift-magnitude distributions of DEEP3

galaxies detected in the AEGIS fields. For the stars, we considered the Besançon Model

of stellar population synthesis of the Galaxy (Robin et al. 2003), which provides the stellar

counts in the same angular position of the AEGIS fields as a function of some reference

broad-band magnitude (in our case, r-band). We did not make any further assumptions

on the sub-types of extragalactic sources, and in the case of stars we considered the main

sequence, white dwarfs and carbon stars. Drawing samples with realistic frequencies is

an important step because due to selection effects the SDSS catalog is shallower than the

miniJPAS observations (which reach i ∼ 23.5); this means that we need a sample that

includes less luminous objects than SDSS does. A fair sample of faint sources can be

constructed from our initial sample of bright SDSS spectra by making random shifts in

the original magnitudes up to r = 23.5 (at fixed redshift, for quasars and galaxies, or fixed

sub-type, in the case of stars). Therefore, from a single source we generate several fainter

sources, and this procedure also help us increase the size of our sample of spectra.

Finally, we make an assessment of the error distribution in a subsample of point-

like sources (i.e., CLASS STAR> 0.5) detected within an aperture of 3” with miniJPAS

and try to reproduce the same signal-to-noise ratios in each band.

Of course, this is just a first approximation to a much more complex problem since,

e.g., (i) we are not taking into account the sub-types of quasars and galaxies; (ii) by sim-

ply shifting bright quasar spectra to the faint end we are not properly modeling physical

effects such as the Baldwin effect; (iii) we do note simulate fluxes considering a specific

aperture and, still, the uncertainties are selected from the observations within an aperture

of 3”; and (iv) we are not directly modeling systematic effects that might affect real ob-

servations. If the uncertainties of the observations were not initially properly estimated

(e.g., if they were underestimated), this will also propagate to the mocks. Nevertheless,

with the current version of the mocks we are already obtaining satisfactory results (as

shown in §3.3.2).

In the following we describe in more details how we generated these mock cata-

logs.
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5.1 Photometry

In photometry, the observations are performed with a grid of detectors called

Charge-Coupled Devices (CCDs). A CCD is a light sensitive silicon chip electrically

divided into a large number of independent picture elements (the so-called pixels). These

detectors work through a physical process similar to the photoelectric effect: instead of

measuring the energy deposited (such as calorimeters do), they measure how much light

falls on each pixel by counting the number of photons accumulated on their surface. Then,

the incident photons are converted into a charge that can be measured and recorded in a

digital format (image), consisting of a matrix of numbers, one per pixel, each number

being related to the amount of light that falls on that pixel, but that also includes other

effects such as read out noise (i.e. noise per pixel due to the read out process), bias frame

(electrical offset or background) and dark signal (associated with the thermal excitation

of electrons when there is no light falling in the CCD). Since the random variations in the

number of photons that strike the CCD follow a Poisson distribution, the statistical noise

of this measure is proportional to the root square of the number counts. In addition, note

that the CCD is an integrating device, which means that the number counts also depend

on the amount of time during which the detector was exposed.

Although a CCD detects individual photons, not even the best CCD is able to

detect every single photon that falls on it. The fraction of photons falling on a CCD

that are actually detected is called the quantum efficiency (QE), which depends on the

wavelength. In general, one expects low QE in the blue side because the electronic layers

tend to absorb more blue than red light.

A measurement made with this type of detector basically returns the number C of

photons collected by the primary mirror of the telescope (of effective area A), captured

by the detector during an exposure time ∆τ :

C = A∆τ

∫ ∞
0

T (λ)fobs(λ,∆tobs)
λ

hc
dλ (5.1)

where T (λ) is the total transmission function of the photometric system (i.e., fraction

of photons that are effectively detected, taking into account the atmospheric and filter
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transmission functions, as well as the detector and telescope efficiencies).

5.2 Synthetic fluxes

It is common to classify the light coming from astrophysical sources in terms of

the magnitude, a logarithmic scale of the flux relative to a known source (normally, a

standard star). One of the most used systems is the AB magnitude system, calibrated in

absolute units (or spectral flux densities). For a flux per unit frequency, the magnitude is

given by

mAB = −2.5 log10 fν − 48.6. (5.2)

To convert the spectral flux density from fν to fλ, it is useful to use

fν =
λ2

c
fλ. (5.3)

When dealing with photometric bands, we assume that the value of λ above corresponds

to the effective wavelength of the bandpass, defined as

λeff =

∫
T (λ)λ dλ

c
∫
T (λ)/λ dλ

. (5.4)

The synthetic fluxes in the mocks are obtained by the convolution of the SDSS

spectra, Sq(λ), with the filter transmission functions:

f sq,µ =

∫
Tµ(λ)Sq(λ)dλ∫
Tµ(λ)dλ

(5.5)

where f sq,µ is a flux density per unit wavelength (and the index s indicates that this is a

synthetic flux). In general, the spectrum is not calibrated, which means that the observed

magnitude (i.e., photometric magnitude) in a reference broad-band – let’s say r-band –

does not correspond to the the magnitude value obtained by convolving the spectrum with

that same band (i.e., synthetic magnitude). So, Sq(λ) is actually the spectrum “scaled” by

the reference band.

Since the eBOSS wavelength coverage (360-1000 nm) is not sufficient to fully
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cover the bluest and reddest J-PAS filters, prior to the convolution we perform a template

fitting to the spectra, extending their coverage. For quasars, we adopt a Vanden Berk

composite spectrum (Vanden Berk et al. 2001), whereas for galaxies and stars we employ

standard templates from LePhare.

Equivalently, the noise in each filter is obtained by adding the uncertainty from

the SDSS spectrum in each spectral bin in quadrature (σSDSS,µ). But in order to mimic

the signal-to-noise of the miniJPAS observations, we also adopt the following procedure:

first, we compile a catalog of point-like sources (of size ∼ 4000) and sort the observed

magnitudes by filter. Then we search in this catalog for a magnitude value that resembles

the synthetic magnitude ms
q,µ, and save the corresponding observed uncertainty (σobs,µ).

Finally, we compare these two values of noise: since the noise coming from the observa-

tions are typically greater than the one coming from the spectrum, the final uncertainty in

the synthetic flux is given by σsµ = σobs,µ. Nevertheless, since we cannot remove noise

from the spectrum, whenever σSDSS,µ > σobs,µ, we set σsµ = σSDSS,µ.

Lastly, we introduce Gaussian fluctuations to the synthetic fluxes by selecting a

random number from a Gaussian distribution with variance equal to σsµ.

In Fig. 5.1 we show four examples of synthetic photospectra generated for quasars

at different redshifts.

Figure 5.1: Synthetic Jspectra for four quasars at different redshifts. The gray solid line corre-
sponds to the SDSS spectrum, the colored dots are the synthetic fluxes and the gray dashed line
illustrates the best-fit using the Vanden Berk composite spectrum.
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In Fig. 5.2 we show the signal-to-noise ratio distributions in the r-band for the

quasars, galaxies and stars in the mocks, and how it is comparable to the original S/N in

the miniJPAS catalog of point-like sources.

Figure 5.2: S/N distributions in the r-band for quasars (left, upper panel), galaxies (right, upper
panel) and stars (left, bottom panel) in the mocks. We also compare them to the S/N distribution
in the miniJPAS catalog of point-like sources (right, bottom panel).

5.3 Galactic extinction correction

Since the 10th data release, SDSS has adopted a policy of not correcting the spectra

for Galactic extinction, because Milky Way stars have extinctions that differ from that

given in Galactic dust maps. Nevertheless, they state that the extinction has a relative

small effect over most of the survey area, since the median E(B− V) over the survey is

around 0.04 mag1.

The extinction can be understood as the sum of two physical processes: (i) ab-

sorption, efficient for particles (i.e. ISM dust grains) with physical sizes a > λ, where

1https://www.sdss.org/dr16/spectro/caveats/

https://www.sdss.org/dr16/spectro/caveats/
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λ is the wavelength of the incident radiation; and (ii) scattering, efficient when a ∼ λ.

The density of ISM dust grains decreases with the size; this means that the extinction is,

in general, more significant for small wavelengths (i.e., the blue part of the spectrum).

This effect of higher absorption by smaller wavelengths results in the “reddening” of the

spectrum.

Extinction can have two different origins: atmospheric or from the interstellar

medium. As the local atmospheric transmission effects were already taken into account in

the J-PAS filter transmission functions, here we only correct for the interstellar reddening.

The most common (and simple) measure of reddening is in terms of an excess of

color E(B−V). So, the mean Galactic attenuation (or reddening curve) can be represented

as

AV = RV E(B− V) (5.6)

where RV is the ratio of extinction to reddening in the optical, which varies for different

regions of the Universe. For instance, it can assume the following values: RV = 3.1 for

the Milky Way, RV = 4.05 for the Calzetti law, and RV = 2.72 for the Prévot law.

We use the NASA/IPAC Infrared Science Archive2 (IRSA, Schlegel et al. 1998)

service to estimate the Galactic dust reddening E(B− V) at the position (RA, dec) of

each spectrum. Then, assuming that most of the reddening in the spectrum is due to the

Milky Way, we set RV = 3.1 and the resulting dereddened spectrum is given by

Sdered
q (λ) = 100.4RVE(B−V)Sq(λ). (5.7)

5.4 Training sets for classification

The classification of sources from miniJPAS has been performed with different

machine learning algorithms (e.g., neural network, random forest, convolutional neural

network, light gradient boost machine and SQUEzE) in a joint-effort between members

from J-PAS and the WEAVE-QSO collaborations. Each method is trained individually

2https://irsa.ipac.caltech.edu/applications/DUST/

https://irsa.ipac.caltech.edu/applications/DUST/
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using balanced samples containing 100 000 objects of each type and frequencies propor-

tional to what we expect in 1 deg2. Then, the classifiers are combined using a linear

support vector classification (LSVC) and a random forest algorithm, and trained once

again on a validation sample containing 10 000 objects of each type. Finally, the com-

bined model is tested on a sample containing 10 000 objects of each type, as well as on

the miniJPAS catalog (i.e., real observations).

A perfect classifier would find all the quasars, and only the quasars. However, in

practice, this is not possible and some quasars are missed (due to, e.g., the lack of enough

emission lines or low signal-to-noise ratio) and some contaminants are also included in

the final quasar catalogs. Of course, confidence parameters can be tuned to recover more

quasars (at the expense of including more contaminants) or to reject more contaminants

(but rejecting true quasars as well). This means that, in the end, the performance of

the classifiers depends on a delicate balance between having high purity (p) and high

completeness (C). This balanced performance can be described in terms of the F-score

F1 = 2
p C
p+ C

(5.8)

where in an ideal world a perfect classification would imply in F1 = 1.0, i.e. 100% purity

and 100% completeness.

Our preliminary results on the test samples of the mocks (Pérez-Ràfols et al. in

prep) indicate that the combined algorithms outperform any individual classifier in all

magnitude ranges and achieve F-score values very close to 1 (see Table 5.1). Also, all

classifiers perform better for high-redshift (z ≥ 2.1) quasars than low-z quasars – which

is not surprising given that low-z quasars lack strong spectral features and have a more

significant spectral contribution from the host galaxy, what makes it more difficult to

correctly detect them.

As the algorithms were trained on mock data, when we apply the trained models on

real miniJPAS observations the performance is not as accurate3. We are still investigating

3Clearly, simulated fluxes are always simpler than real observations, but so far these mock catalogs are
the only information available to us in order to perform the classifications of miniJPAS sources. With the
WEAVE-QSO spectroscopic follow-ups, we will be able to improve the simulated fluxes, in particular at
the faint end (which, currently, has been simulated by degrading the magnitudes of brighter objects). In the
future, our idea is to train the algorithms with actual J-PAS data once we have those observations.
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Table 5.1: F-score values of the combined performances (linear support vector classifier and
random forest) of different machine learning methods in the classification of (miniJPAS) sources
from the test sample of the mocks.

Combined algorithm r ≤ 18 18 < r ≤ 20 20 < r ≤ 22.5 22.5 < r ≤ 23.6

LSVC 1.0 0.947 0.957 0.951

RF 1.0 0.983 0.997 0.996

the sources of this issue, but one possibility is that our mocks have failed to properly

model some of the features present in the real data. One of these features, the frequency

of non-observations, is briefly discussed on the next section.

5.5 Non-observations and non-detections

In astronomy, we refer to a non-observation (NO) whenever a certain filter or group

of filters could not be observed in a specific night (due to, e.g., the sky conditions), and to

a non-detection (ND) whenever the source is fainter than the limiting sensibility of the de-

tector. In practical terms, the magnitudes and corresponding errors are treated separately

following these criteria: m = −99.0 and σm = 0.0 for non-observations, and m = 99.0

and σm = m
S/N
lim for non-detections (where mS/N

lim is a threshold magnitude at some S/N

level that depends on the filter and the observation conditions). Note, however, that in the

miniJPAS catalog non-detections and non-observations were treated indistinctly, and the

magnitude values set to 99.0 in both cases.

Because of the nature of the filter wheel available for the JPAS-Pathfinder cam-

era, the miniJPAS observations were performed in groups of six filters and carried out

with different sky conditions. Moreover, the reddest filters were observed last, when the

AEGIS fields reached the lowest elevations. This implies in a resulting catalog containing

several sources with observations (i.e., mµ 6= 99.0) in less than 60 filters. This is shown

in Fig. 5.3 for the four pointings in the AEGIS fields.

In our approach of selecting separately the uncertainties in each filter directly from

the catalog of point-like sources, when we sort the magnitudes in each filter we are

actually ignoring possible correlations between passbands with non-detections or non-



122 5.6. Final remarks on mock catalogs

Figure 5.3: Histogram with the number of observed filters in miniJPAS as a function of the tile.

observations. Therefore, we need to have a better assessment of the NOs and NDs in

the miniJPAS catalog so that the mocks can mimic in a more realistic way these effects.

Moreover, since the traditional machine learning algorithms do not take into account the

noise of the observations, this distinction should also be properly addressed in each code,

in order to improve the classifications with real data.

Our first efforts to mimic the NO and ND pattern from the miniJPAS catalog in the

training set of mocks are shown in Fig. 5.4.

5.6 Final remarks on mock catalogs

Until J-PAS is fully operational, our catalogs of synthetic fluxes are our best (and

only) available option to train machine learning classifiers. These mock catalogs are under

constant fine tuning, so that they can incorporate more and more features that we expect

to find in the real observations.
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Figure 5.4: Histograms with the number (sum) of filters with non-observations (upper row) and
non-detections (bottom row) as a function of the r-band magnitude. Here we compare the NO/ND
patterns found in the miniJPAS catalog of point-like sources (left, upper and bottom panels) with
the patterns mimicked in the training sets of quasars, galaxies and stars. For fainter sources (r >
20.5) we expect an increasing number of filters without observations or detections. The colors
indicate the number of objects.
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CHAPTER 6

THE MINIJPAS SURVEY

The Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-

PAS; Benitez et al. 2014) will start to scan the northern sky by July 2021 with a unique

set of 56 filters and the JPCam instrument (Taylor et al. 2014, Marı́n-Franch et al. 2017)

onboard the 2.5-m telescope (JST/T250) at the Javalambre Astrophysical Observatory

(Cenarro et al. 2014) in Teruel, Spain.

The J-PAS filter system contains 54 narrow band (NB) filters ranging from 3780

Å to 9100 Å plus two medium-band filters at 3497 Å (named uJAVA) and 9316 Å (named

J1007) in the blue and red parts of the optical wavelength range. The 54 NB filters present

a full width at half maximum (FWHM) of 145 Å and are equally spaced every ∼ 100 Å,

whereas the FWHM of the uJAVA band is 495 Å and J1007 is a high-pass filter. These are

complemented with 3 SDSS-like broad-bands (uJPAS, g and r). This photometric system

is illustrated in Fig. 6.1.

This set of filters is a powerful tool that combines the power of both spectroscopy

(with a reliable estimation of physical properties of galaxies) and photometry (with the

measure of light in a spatially resolved manner, avoiding the need of pre-selection of

targets).

Besides, this filter system was optimized to (i) obtain accurate photo-z measure-

ments and carry out cosmological experiments (such as constrain BAOs, dark energy and

modified gravity cosmologies, and probe the large-scale structure) using different tracers

at different epochs. For instance, we expect to detect 1.3x107 LRGs up to z < 1 with

σz = 0.003(1 + z), and 108 ELGs up to z < 1.3 with σz = 0.0025(1 + z) (Benitez

et al. 2014); (ii) to deliver a low-resolution (R ∼ 60) photo-spectrum or J- spectrum that

allows us to identify and characterize the galaxy populations up to z ∼ 1, as well as detect
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Figure 6.1: J-PAS unique photometric system consisting of 54 narrow-band filters, 2 intermediate-
band filters, and 3 broad-band filters. Effects from the CCD quantum efficiency, the entire optical
system of the telescope and sky absorption are included.

a large number of clusters and groups (∼ 105; Zandivarez et al. 2014); and (iii) measure

emission lines in galaxies and broad emission line features of quasars and supernovae

(e.g., we expect to find∼ 104 SNe with no need of spectroscopic follow-ups; Xavier et al.

2014). In particular, the J-PAS filters are sufficiently narrow to marginally resolve the

characteristic emission lines that will not only allow the identification of∼ 2x106 quasars

but also a precise redshift determination [σz = 0.0015(1 + z); Abramo et al. 2012].

When compared to broad-band filters, the flux of photons collected by the narrow-

bands is smaller, which implies in a smaller signal-to-noise ratio and, consequently, higher

exposure times are needed. The basic J-PAS strategy requires a total minimum exposure

time per filter of 480 s, being 4x120 s for the NB plus u (and 960 s for the reddest filters),

and 4 x 4 x 30 s for the BBs.

The JPCam is a 1.2 Gpixel camera composed of 14 CCDs and has an effective

field-of-view of 4.2 deg2. This main instrument has completed the assembly, integration

and verification phases and is currently being installed and commissioned. Before the ar-

rival of JPCam, the JST/T250 telescope was equipped with a first light instrument, single
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CCD camera, called JPAS-Pathfinder, specifically built to test the optical performance of

the system and carry out the first scientific operations.

The Pathfinder Camera conducted the imaging in 60 filters (59 J-PAS filters plus

i-band) with 4 pointings covering an effective area of 0.895 deg2 on the Extended Growth

Strip region (also known as AEGIS fields) in the North Galactic hemisphere. This sur-

vey is dubbed miniJPAS and the data is publicly available1. In this catalog, there are

calibrated fluxes for 64 293 sources. When we apply some quality cuts, FLAGS= 0 and

MASK FLAGS= 0, we end up with 46 440 sources.

6.1 miniJPAS

In Table 6.1 we show the sky positions of the 4 pointings of the miniJPAS sur-

vey. This area was targeted due to (i) its location, which can be observed at latitudes

> 30◦ from the OAJ from February to July; and (ii) the availability of a wealth of multi-

wavelength data, including SDSS and HSC-SSP (Aihara et al. 2019).

Table 6.1: Central coordinates of the four miniJPAS pointings. Credit: Bonoli et al. (2020).

Tile RA J2000 (deg) dec J2000 (deg)

miniJPAS-AEGIS1 214.2825 52.5143

miniJPAS-AEGIS2 214.8285 52.8487

miniJPAS-AEGIS3 215.3879 53.1832

miniJPAS-AEGIS4 213.7417 52.1770

The availability of spectroscopic redshifts for galaxies and quasars in the mini-

JPAS footprint makes this dataset an ideal test case to characterize the performance of

photometric redshift estimates for different magnitudes and redshift ranges. In particu-

lar, we report 101 quasars from SDSS Data Release 16 Superset and 23 quasars from the

DEEP3 Galaxy Redshift Survey in the AEGIS fields. The cross-matches were performed

within 1” and some rigid conditions were applied: (i) we only considered sources from

miniJPAS with FLAGS= 0 and MASK FLAGS= 0; (ii) we only considered cross-matches

with spectroscopically confirmed sources; (iii) we imposed cuts of zWARNING= 0 for

1http://archive.cefca.es/catalogues/minijpas-pdr201912

http://archive.cefca.es/catalogues/minijpas-pdr201912
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SDSS quasars, and zQUALITY= 3 for secure redshifts with DEEP3; and (iv) many of the

sources classified as AGNs by DEEP3 at low redshifts seem to be misclassified, and since

the quality of the spectra does not allow reliable visual inspection, we make an additional

cut of z > 1.5 for DEEP3 quasars.

Fig. 6.2 shows the AEGIS fields with the quasars identified from SDSS DR16

(black circles) and DEEP3 (blue circles). The dots are colored in spectroscopic redshift.

In Fig. 6.3 we show the redshift and r-band magnitude distributions of the quasar sample:

in blue, quasars from SDSS, and in red, from DEEP3. Note how the DEEP3 quasars span

fainter magnitudes, complementing the SDSS cross-matches.
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Figure 6.2: Footprint of the miniJPAS survey (gray area). The dots indicate the positions of
spectroscopically confirmed quasars (blue circles for SDSS quasars and red circles for DEEP3
quasars), colored by spectroscopic redshift.

The resulting depths in each filter are shown in Fig. 6.4. The minimum target

depths are reached in all the filters, with most actually reaching fainter magnitudes. The

differences in depth from band to band depend both on the net effect of sky brightness

when the observations were acquired and on the final number of combined images (Bonoli

et al. 2020).

We provide a foretaste of J-PAS science with quasars in Fig. 6.5, where we present

three examples of Jspectra for miniJPAS quasars at different redshfits. In particular, note
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Figure 6.3: Magnitude-redshift distribution of quasars in miniJPAS. Quasars from SDSS DR16
Superset are shown in blue, and quasars from DEEP3 in red. The r-band magnitude corresponds
to an aperture of 3”.

Figure 6.4: Estimated depths (5σ at 3”) computed from the noise in each tile, for the narrow-
bands (dots) and broad-bands (squares). Each color represents a different tile. Black unfilled
symbols indicate the approximate targeted minimum depth defined in Benitez et al. (2014). Here
λ indicates the filter effective wavelength.

how well the narrow-bands are able to detect not only broad emission lines, but also the

broad-absorption lines of the BAL quasar in the middle panel.



130 6.1. miniJPAS

4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40 2406-853

r= 18.121

zspec = 0.676

zphot = 0.675

Lyα

H∆
Hγ

Hβ

OIII

4000 5000 6000 7000 8000 9000 10000
0
1
2
3
4
5
6
7 2406-11219

r= 20.488

zspec = 2.727

zphot = 2.785

OVI

Lyα

NV

SiIV +OIV
CIV

CIII

f λ
(1

0
−

17
er

g
cm

−
2
s−

1
Å
−

1
)

4000 5000 6000 7000 8000 9000 10000
λ(Å)

0
2
4
6
8

10
12 2243-15610

r= 21.236
zspec = 3.442
zphot = 3.456

OVI

Lyα

CIV

CIII

Figure 6.5: Jspectra for three miniJPAS quasars at different redshifts. Gray solid lines represent
the SDSS spectrum, and light gray solid lines at the bottom are the corresponding uncertainties.
The dots are a comparison between miniJPAS fluxes within 3”, represented in black, and synthetic
fluxes (generated following the procedure described in §5.2), in colors. Narrow, intermediate and
broad-bands are represented by dots, diamonds and squares, respectively. The error bars are 1.5
times larger to facilitate the visualization. The main emission lines were identified. In the middle
panel, we show a BAL quasar.

6.1.1 Aperture choice

There are several apertures available in the miniJPAS catalog. In order to choose

the most appropriate one for the analyses with quasars, we tested the performance with
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QPz using some of them. AUTO MAG apertures are not recommended for point-like

sources, and PSF CORR magnitudes seem to have some issues of the broad-band cali-

brations. In Fig. 6.6 we compare the photo-z estimates for quasars using three different

apertures: PETRO, APER3 and APER6.

Figure 6.6: Comparison of photometric performance with QPz for different apertures: Petrosian
(left panel), aperture within 3” (middle panel) and aperture within 6” (right panel). The diagonal
line indicates zphot = zspec. The vertical dashed lines at zspec = 2 and zspec = 3.5 indicate the
range where we expect higher precision due to the presence of several emission lines.

We show the quality of the photo-z estimates considering different apertures in

Table 6.2. As the magnitude within 3” provides the smallest redshift error (σnmad =

0.0102) and also the smallest outlier fraction (η = 26.3%), we chose that aperture in our

analyses for quasars. In principle, we could think about using even smaller apertures (i.e.

within 2” or 1”) but in that case larger corrections would be applicable due to background

noise.

Table 6.2: σnmad, redshift bias and outlier fraction obtained with QPz using different apertures
and for a sample of 124 quasars from miniJPAS.

Aperture σnmad δz η

PETRO 0.0109 0.105 30%

APER3 0.0102 -0.034 26.3%

APER6 0.0147 -0.044 35%
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6.1.2 Aperture corrections

Applying aperture corrections is essential when one wants to employ template-

fitting methods because the chi-square minimization is sensitive to the calibration of the

fluxes.

We need to correct the observed fluxes by two different types of offsets (as shown

in Fig. 6.7). The first one comes from the fact that the process of data calibration of the

full catalog was not optimal for both extended and point-like sources. The corrections for

APER6, which are both tile and filter-dependent, are available in the catalog. However, as

we have seen previously, the most appropriate aperture for quasar analyses seems to be

the one within 3”. Hence, we apply the following relation

∆mµ,APER3 = 〈mµ,APER6 + ∆mµ,APER3 −mµ,APER3〉 (6.1)

to obtain the corrections to the APER3 magnitude in each filter µ. Here, ∆m indicates

the correction for the corresponding aperture, and 〈 〉 denotes an average over the tile. A

zero-point (calibration) correction of 0.04 mag also has to be applied to the uncertainties

in all filters.

The second type of offset comes from fine-tuning the fluxes by comparing the

miniJPAS stellar observations with synthetic fluxes computed from real spectra for the

same stars. We use stars and not quasars because the SDSS spectra were not obtained in

the same epoch as the miniJPAS observations, and since quasars are known to suffer from

variability, this could imply in larger offsets that are not necessarily related to problems

in the miniJPAS calibration. Stars, on the other hand, are less subject to these effects.

This correction is also dependent on tile and filter, but we verified that this is actually a

second-order effect.

Lastly, we also apply a Galactic extinction correction to the data using a similar

procedure as described in §5.3.
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Figure 6.7: Aperture corrections applied to the miniJPAS data as a function of the tile. Colored
dots represent the corrections directly related to the aperture radius (and to the fact that we are not
considering total magnitudes), while blue dots represent a second-order correction due to offsets
in the observed stellar fluxes when compared to synthetic fluxes. Narrow, intermediate and broad-
bands are represented by dots, diamonds and squares, respectively.

6.2 Stellarity

We assume that quasars are point-like sources, but caution must be taken because

this is not always the case, especially for low-z quasars, where the contribution from the

host galaxy is very significant.

In Fig. 6.8 we show the stellarity parameter2 (CLASS STAR) for miniJPAS quasars

as a function of the redshift and the magnitude in the r-band in each tile. A value of Pstar

closer to 1 indicates higher probability of the source being point-like.

We note that there are a few quasars with relatively high S/N that are actually

extended sources (Pstar . 0.2).

2Even though it might not be as precise as adopting a surface-brighness or the magnitude-radius cri-
terium.
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Figure 6.8: Stellarity parameter for miniJPAS quasars as a function of the redshift in each tile.
The dots are colored by the r-band magnitude, and the dot sizes are related to the signal-to-noise
in the r-band.

6.3 Results

QPz provides a first-approximation fit to the quasar photospectra. In Fig. 6.9 we

show the resulting models for three quasars at different redshifts detected in miniJPAS.

In Fig. 6.10 we compare the performances obtained with QPz and LePhare. Con-

sidering the whole redshift range:

• for QPz we obtained: (σnmad, δz, η) = (0.0069,−0.0020, 17.7%); and

• for LePhare: (σnmad, δz, η) = (0.0061,−0.0003, 22.6%).

Since the continuum does not contribute to the redshift estimation and all signif-

icant information comes from emission lines, by employing a photometric system that

covers the optical range in small steps of wavelength (∼ 100 Å), we are already in the

limit of obtaining small values of σnmad. In this case it is, thus, the outlier fraction that

gives us invaluable information about the performance of each method. As we can see,

LePhare slightly outperforms QPz in most redshift bins, but it provides a larger fraction
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Figure 6.9: QPz model fit (gray solid line) for three miniJPAS quasars at different redshifts. The
black dots indicate the miniJPAS observations within 3” and the red dots correspond to the model
flux in each band at the maximum likelihood value of redshift (i.e., zphot).

of catastrophic errors. In particular, we note that most of LePhare outliers have medium

to large values of S/N.

In Fig. 6.11 we also compare the spectroscopic with the photometric redshift dis-

tribution for both QPz and LePhare. From this figure it is easy to see the superiority in

the performance of QPz over LePhare, also demonstrated by a two-sample K-S test. For

QPz, it results in a K-S statistic of 0.08, with p-value of 81.7%, whereas for LePhare these

results are 0.15 and 10.9%, respectively. Since the p-value is significantly larger for QPz,

we can say that this photo-z method is able to better recover the spectroscopic redshift

distribution for quasars when compared to LePhare.

In Fig. 6.12 we show some example of zPDFs obtained with QPz. For most of the

quasars, the zPDFs are characterized by a single, very narrow peak. The zPDFs obtained

with LePhare are very similar to those and are not shown here.

In Fig. 6.13 we show the cumulative distribution of the photometric errors obtained

with QPz (blue lines) and LePhare (orange lines) as a function of r-band magnitude and



136 6.3. Results

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

z p
h
ot

QPz

LePhare

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
zspec

10-4

10-3

10-2

10-1

σ
n
m

ad
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Figure 6.11: Comparison of the spectroscopic (black lines) with the photometric (solid his-
tograms) redshift distribution for QPz (left) and LePhare (right).
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Figure 6.12: Examples of three PDFs obtained with QPz. The orange solid line indicates the
spectroscopic redshift, and the blue dashed line indicates the photometric redshift. On the right
panel we show the peaks in more details.

redshift. We also compare the results by considering the total sample, as well as only frac-

tions of 75% and 50%. For the total sample, LePhare outperforms QPz in all magnitude

bins, but it performs much better at low redshifts (z . 1).

In Fig. 6.14 we show the cumulative distribution of the outlier fraction obtained

with QPz (blue lines) and LePhare (orange lines) as a function of r-band magnitude and

redshift. In this case, QPz always outperforms LePhare (or have similar results at r <

19.5).
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Figure 6.13: Cumulative distribution of the photometric errors as a function of magnitude (upper
panel) and redshift (bottom panel) for QPz (blue lines) and LePhare (orange lines). We also show
the performances for different fractions of the sample: total (solid line), 75% (dashed line) and
50% (dot-dashed line).

6.3.1 Effect of different filter configurations

At a given redshift range, what are the critical combinations of filters to detect the

main quasar features? In order to provide quasar targets with nearly 100% completeness
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Figure 6.14: Cumulative distribution of the outlier fraction as a function of magnitude (upper
panel) and redshift (bottom panel).

and purity for the WEAVE-QSO survey, J-PAS will probably observe with only half of

the narrow-bands (at least in the first years of observations). In terms of the quasar identi-

fication, our first estimates with the mock catalogs show that the completeness will not be

affected very much by going from 42 to 28 narrow-bands (which corresponds to using 3
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and 2 trays of filters, respectively). We are also checking whether the r or i-band is more

significant to detect quasars.

6.3.2 Priors from the luminosity function

Including priors from the QLF-PLE does not seem to improve the photo-zs.

6.3.3 Variability

Note that each SDSS spectrum is observed at a given epoch, while the miniJPAS

sources were observed in different epochs, sometimes with weeks apart. This means

that the variability may be playing a non-negligible effect on our data sets since we are

employing eigenspectra derived for an early data release of the SDSS.

6.3.4 Luminosity-redshift bin eigenspectra

Although eigenspectra derived from quasars of a particular redshift and luminosity

range in general do not predict quasar spectra of other ranges, the performances obtained

with the luminosity-redshift bin eigenspectra were not as accurate as the ones obtained

with the set of global eigenspectra. Also, the available (Mi, z)-bin eigenspectra do not

span all the luminosity ranges occupied by the miniJPAS quasars, which means that some-

times it is not possible to obtain a fit.

6.3.5 Completeness of the quasar sample

Here we investigate the completeness of the quasar sample detected with miniJ-

PAS. In Fig. 6.15 we show the density of quasars (per square degree) as a function of the

redshift in three different magnitude bins: r < 20, 20 < r < 22 and r > 22. We com-

pare the densities estimated with the quasar luminosity function QLF-PLE (solid lines),

with the 124 spectroscopically confirmed quasars detected by miniJPAS (dashed lines)

and with all quasars from SDSS DR16 Superset selected within the AEGIS fields but that

were not necessarily detected by miniJPAS (dot-dashed lines). The number densities ob-

tained with miniJPAS and the Superset in the AEGIS region are always smaller than the
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ones predicted by the luminosity function. Moreover, miniJPAS typically misses some

quasars at r < 22 but the DEEP3 observations complement the densities at the faint end.

Figure 6.15: Quasar completeness as a function of redshift for different magnitude bins: r <
20 (blue), 20 < r < 22 (gray) and r > 22 (red). We compare the density of quasars (per
square degree) estimated with the luminosity function (solid lines), for the miniJPAS quasars
(dashed lines) and for quasars from DR16 Superset that were detected in the AEGIS fields but not
necessarily by miniJPAS (dot-dashed lines).

6.3.6 Validating the results with mocks

Since our sample of quasars with spectroscopic classification is small, we generate

a mock quasar catalog over an area of 150 deg2 to validate our results in a more statis-

tically significant sample. In Fig. 6.16 we compare the results obtained with QPz (left

panel) and LePhare (right panel). Considering the whole redshift range:

• for QPz we obtained: (σnmad, δz, η) = (0.0049,−0.003, 5.1%); and

• for LePhare: (σnmad, δz, η) = (0.0047,−0.030, 21.3%).

Similarly to what we had already seen with miniJPAS, QPz outperforms LePhare

in all redshift and magnitude bins in terms of the outlier fraction, whereas LePhare pro-

vides slightly more precise photo-zs.
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Figure 6.16: Photometric redshift performance for a mock quasar catalog. We compare the per-
formance with QPz (left) and LePhare (right). A quality cut of χ2 < 25 is applied in both cases,
which removes most of the catastrophic errors at low redshifts obtained with LePhare.

One interesting feature that appears in Fig. 6.16 is the presence of diagonal lines

of the type zphot = z∗ + αzspec (more clearly distinguishable for QPz). These features

can be better appreciated here because there is a larger number of quasars in the mocks.

This effect is a peculiarity of the quasar photo-zs and it has already been described in the

literature (see, e.g., Abramo et al. 2012). Whenever two (or more) pairs of broad emis-

sion lines are separated by the same relative interval in wavelength, there is an enhanced

potential for a degeneracy between the data and the template (or equivalently, eigenspec-

trum), and additional peaks appear in the zPDF. As the true redshift of the quasar change,

the ratios between these lines remain invariant, which means that the ratios between the

true and the false redshifts, (1 + ztrue)/(1 + zfalse), also remain constant, giving rise to

these diagonal lines. The degeneracy is broken when additional emission lines come into

the filter system, which explains why some redshifts are more susceptible to this problem.

We also note catastrophic lines of constant zphot – which appear more often for

LePhare. In particular, LePhare is also not able to estimate the photo-zs for many sources,

setting zphot = 99 (which were removed from the plot after applying the χ2 cut).
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6.4 Final remarks on miniJPAS quasars

We have developed QPz, a method that combines eigenspectra derived from a

PCA to fit the photospectra and estimate photometric redshifts for type-I quasars. QPz

provides precise photometric redshifts for quasars observed with miniJPAS and, when

compared to a standard template fitting method (LePhare), it seems to outperform in terms

of the reduced outlier fraction. The implementation of QPz can be adapted to almost any

photometric system (e.g., S-PLUS – as we demonstrate in the next chapter), and can also

be employed to estimate redshifts for type-II quasars and high-resolution spectra.



144 6.4. Final remarks on miniJPAS quasars



CHAPTER 7

S-PLUS

The Southern-Photometric Local Universe Survey (S-PLUS) is imaging approx-

imately 9,300 deg2 of the Southern Sky employing an optimized system (Cenarro et al.

2019) consisting of 5 broad-band (BB) SDSS-like filters supplemented by 7 narrow-band

(NB) filters, covering the main stellar features from 3700 to 9000 Å, as shown in Fig. 7.1.

Figure 7.1: S-PLUS filter system with 5 broad-band SDSS-like filters (dashed lines) plus 7
narrow-band filters (solid lines). The y-axis shows the total efficiency taking into account the
average filter transmission curves, the atmospheric transmission, the CCD efficiency, and the pri-
mary mirror reflectivity curves.

The NB filters cover prominent features in nearby galaxies (i.e. [OII], Ca H+K,

Hδ, Hα, and the Mgb and Ca triplets), and reach about one magnitude deeper than SDSS,

offering strong constraints on star formation histories as well as photometric redshifts for

galaxies. They are, therefore, highly suitable for searching for low-metallicity and carbon-

enhanced stars, the blue horizontal branch and variable stars, and for mapping the Galactic
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plane. In Fig. 7.2 we show the main quasar emission lines at different redshifts in the S-

PLUS photometric system. Note that for each redshift there is a different combination of

filters which is more efficient to detect specific emission lines.

Figure 7.2: Main quasar emission lines at different redshifts in the S-PLUS filter system. Here
we represent the central wavelengths of the 5 broad-band filters (gray solid vertical lines) and 7
narrow-band filters (colored solid vertical lines). The colored filled regions represent the wave-
length coverage of the narrow bands (not in scale).

S-PLUS is carried out using a 2 deg2 field-of-view camera mounted on a fully

robotic 0.8-m diameter telescope (T80-South) on Cerro Tololo, in Chile, where it is al-

ready operational, taking science data. In particular, we already have a first data re-

lease1 (DR1; Mendes de Oliveira et al. 2019) with more than 3M sources detected in

170 calibrated fields in the Stripe 82 region (0 < RA < 60◦; 300◦ < RA < 360◦

and −1.4◦ < dec < 1.4◦), covering ∼ 336 deg2 close to the Celestial Equator. The S-

PLUS footprint is shown in Fig. 7.3. In our analyses, we considered the observations in

the Stripe 82 region obtained by a preliminary version of the latest internal data release

(iDR3) catalog – which contains improved reduction and calibration (in comparison to

DR1).

In Fig. 7.4 we show some examples of photospectra detected with S-PLUS.

1http://datalab.noao.edu/splus

http://datalab.noao.edu/splus
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Figure 7.3: Diagram in equatorial coordinates depicting the S-PLUS footprint in red, as well as
some of the main optical and near-infrared surveys in the Southern Hemisphere. The dashed-black
line represents the ecliptic. The background image is the extinction map of Schlegel et al. (1998).
Credit: Mendes de Oliveira et al. (2019).

Figure 7.4: Examples of SDSS spectra (black solid lines) and their corresponding fluxes observed
with the S-PLUS 12-filter system. The broad-bands are illustrated with colored squares, while the
narrow-bands are depicted with colored circles. We also show with triangles the fluxes observed
with WISE. Credit: C. Queiroz (Nakazono et al. 2020 submitted).
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7.1 Results

After cross-matching the Stripe 82 region from the S-PLUS iDR3 with SDSS

DR16 Superset, we obtain about 6 000 quasars, with r < 22, ZWARNING = 0 and

PhotoFlag = 0 (an output from SExtractor that allows us to select only the objects

with reliable photometry from the S-PLUS images). The magnitude-redshift distribution

of this quasar sample is shown in Fig. 7.5.
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Figure 7.5: Magnitude-redshift distribution of quasars in S-PLUS. The r-band magnitude corre-
sponds to an aperture of 3”.

Our results with S-PLUS are still very preliminary: the photo-zs are not as accu-

rate as the ones obtained with miniJPAS, and the fraction of catastrophic errors is large

(62.8% and 53.5% for QPz and LePhare, respectively). In the case of S-PLUS, LePhare

also outperforms QPz in terms of σnmad: 0.11 and 0.25, respectively. This is an ongoing

analysis and we are still investigating the origin of these effects, but one possible explana-

tion might be related to the number of eigenspectra and templates that we are employing,

which might be too large for less degrees of freedom (when compared to miniJPAS).

The photo-z results obtained with QPz and LePhare are shown in Fig. 7.6, and the χ2
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distributions are shown in Fig. 7.7.

Figure 7.6: Photo-z performance of QPz (left panel) and LePhare (right panel) for S-PLUS
quasars after applying a cut in χ2 of 7 and 40, respectively. The solid diagonal lines indicates
the relation zphot = zspec and the dashed lines correspond to ±0.05∆z/(1 + zspec). On the
bottom panel we show σnmad for different redshfit bins.

Figure 7.7: χ2 distributions for QPz (solid blue curve) and LePhare (orange line) obtained for the
S-PLUS quasars. We consider quality cuts in χ2 of 7 and 40, respectively, for QPz and LePhare,
which correspond to the thresholds where the fraction of objects is below 1%.

Considering magnitude-limited samples r < 20.5, r < 19.0 and r < 18.0 we

obtain, respectively, σnmad = (0.066, 0.055, 0.022) with QPz. For LePhare, we obtain

σnmad = (0.141, 0.572, 0.493).
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If we apply a rigid cut in odds (> 0.9), we are able to recover a precision of

σnmad = 0.007 with QPz and an outlier fraction of η = 19.1% but at the expense of

reducing drastically the completeness (our final sample has only ∼ 500 quasars). We

show the photo-z scatter plot and σnmad as a function of the redshift after this cut in odds

in Fig. 7.8.

Figure 7.8: Photometric redshift (left) and σnmad (right) as a function of the spectroscopic redshift
for S-PLUS quasars after a quality cut in odds (> 0.9). We obtain a value of σnmad as good as
0.004 in the range 2 < z < 2.5.

It is interesting to quantify the benefit of including 7 additional narrow-bands to

the classical u, g, r, i, z broad-band system. With QPz, when only broad-bands are

considered, we obtain σnmad = (0.987, 1.110, 0.563, 0.532) for all redshift ranges, 0 <

z < 2, 2 < z < 3.5 and z > 3.5, respectively, and a large sample of outliers (η > 90%).

With LePhare, many quasars cannot be fitted, and we are still investigating the origin of

this issue.

7.2 Final remarks on S-PLUS

We are still testing the best configuration of eigenspectra and templates in order

to estimate photo-zs for S-PLUS quasars. We also want to assess to improvement in the

photo-z estimation of including 7 narrow-bands to a system containing only 5 broad-band

filters. We also have to test the most suitable aperture for quasars (which, similarly to

miniJPAS, we suspect it to be 3”-magnitudes) and check the photometric calibration by

comparing it with synthetic fluxes derived for S-PLUS stars.
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CONCLUSIONS AND PERSPECTIVES

Quasars are the most luminous members of the class of AGNs. This implies that

they can be detected at large distances and consequently they can act both as sources of

background light to investigate the intervening matter through the Lyα forest, or directly

as probes of the high redshift Universe. The present and next generation of surveys will

allow us to peer deep into space with higher resolution, probing greater volumes, achiev-

ing higher completeness and improving the photometric accuracy, pointing to an exciting

future with quasar research.

In particular, the J-PAS filter system containing 56 narrow-bands will allow us

to identify and provide precise photometric redshifts for millions of quasars. For this

reason, the availability of spectroscopically confirmed sources from SDSS and DEEP3 in

the AEGIS field made the miniJPAS sample an ideal case to forecast (and foretaste) the

photometric precision that we expect to find with J-PAS once it becomes fully operational.

The main contributions of this thesis are: (i) generation of catalogs of synthetic

fluxes for quasars, galaxies and stars with realistic distributions of signal-to-noise ratio

in all bands, as well as the same patterns of non-observations and non-detections found

in the catalog of real data; (ii) development of a code (dubbed QPz) to estimate photo-

zs for quasars detected in photometric surveys; and (iii) inclusion of photometric errors

derived for quasars from this code in mock catalogs to study large-scale structure. In the

following, we briefly describe each of these contributions.

Mock catalogs are essential to exploit data sets from surveys that are not opera-

tional yet, and they have been particularly useful within the J-PAS collaboration to clas-

sify miniJPAS sources using machine learning. In fact, since the number of sources with

spectroscopic classification is not sufficient to properly train the algorithms, these mocks
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are the only data sets available for the training. When we compare the performance of

different classifiers on simulated and real data, we note that test sets with synthetic fluxes

tend to perform better, but the current results are already very satisfactory. Additionally to

the classification task, these mocks have also been used in the search for lensed quasars.

The main output of this classification process will be a list of quasar candidates

for spectroscopic follow-up with the WEAVE-QSO survey. So, given a quasar candidate

detected with a multi-band system, QPz finds a first-approximation best-fit model and

estimate its photo-z. At each redshift the photospectrum is modelled as a linear combina-

tion of four redshifted eigenspectra — the most relevant modes of variation of broad-line

quasars, combined with an extinction power law, providing, thus, the full redshift proba-

bility distribution function.

We employed this method to analyse two data sets: the miniJPAS catalog and

the S-PLUS DR1. Due to the differences in the photometric systems, miniJPAS is able to

identify more quasar features and, therefore, provide more accurate photo-zs. When com-

pared to the standard template fitting code LePhare, this method is successful in providing

precise photometric redshifts with a reduced fraction of catastrophic errors.

Finally, in our preliminary results with a mock catalog containing quasars and

ELGs, we found that even after the inclusion of redshift errors for quasars the clustering

strength for the monopole is still strong, and that the signal-to-noise ratio for the quasar-

ELG cross-spectrum has more power than the spectra of ELGs alone. This is just a fore-

taste of the multi-tracer analyses that we will be able to do with J-PAS in the future, and

the potential that J-PAS will have for studying BAOs and primordial non-Gaussianities.

Most of the results shown here are still preliminary, and there is a lot of room for

improvements. In particular, (i) we need to assess which features found in the real cat-

alog of miniJPAS observations are not being properly introduced in the mocks; (ii) we

would like to perform a new PCA on the updated eBOSS sample to derive an updated

version of quasar eigenspectra – and maybe extend this analysis to galaxies; (iii) adapt

our method to fit for line widths as well, so that we can estimate physical properties for

quasars from the eigenspectra (e.g., the black hole mass); and (iv) have a better assess-

ment of the photo-z precision that we can extract from S-PLUS observations to understand
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its potential for the quasar science.

These tools and methods for quasar identification and photo-z estimation will help

us construct complete and precise photometric catalogs for quasars, which will open new

doors for exploring the cosmic frontier.
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Pérez-Ràfols I., Pieri M. M., 2019, arXiv e-prints, p. arXiv:1911.04891
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R., Sodré L., Irwin J., 2014, A&A, 561, A71

Zel’dovich Y. B., 1964, Soviet Physics Doklady, 9, 195

Zheng Z., et al., 2005, ApJ, 633, 791

Zheng Z., Coil A. L., Zehavi I., 2007, ApJ, 667, 760

Zubovas K., King A. R., 2019, General Relativity and Gravitation, 51, 65
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APPENDIX A

TABLES

Table A.1: Best-fit parameters for the five and six-parameter models of quasar HOD at z̄ = 0.5.
Adapted from Table 4 from Shen et al. (2013).

5-parameter model 6-parameter model

log Mmin 19.46+0.61
−0.64 log Mcen 13.57+4.92

−1.41

σlog M 2.73+0.20
−0.21 σM 0.91+0.82

−0.62

log fcen −3.13+2.10
−0.46

log M0 12.74+0.86
−1.05 log M0 12.53+0.88

−1.02

log M1 16.24+0.81
−0.51 log M1 16.13+0.73

−0.40

α 1.19+0.37
−0.33 α 1.21+0.29

−0.33
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Table A.2: Summary of the masses of high redshift quasars. Adapted from: Nunes & Pacucci
(2020).

Name M• (M�) z
J1342 + 0928 (7.8+3.3

−1.9)x108 7.54
J1007 + 2115 (1.5± 0.2)x109 7.515
J1243 + 0100 (3.3± 0.2)x108 7.07
J1120 + 0641 (2.0+1.5

−0.7)x109 7.085
J0038− 1527 (1.33± 0.25)x109 7.021
J2348− 3054 (2.1± 0.5)x109 6.90
J0109− 3047 (1.5± 0.4)x109 6.80
J0305− 3150 (9.5+0.8

−0.7)x108 6.61
P036 + 03 (1.9+1.1

−0.8)x109 6.54
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Table A.3: Main emission lines of quasars. All wavelengths are given in Å at restframe. Here
are only shown the spectral lines with non-zero weights for quasars observed with SDSS. Adapted
from the table of spectral lines used in SDSS.

Wavelength Line
1033.03 Lyβ
1033.82 OVI
1215.24 Lyα
1240.81 NV
1399.80 SiIV+OIV
1549.48 CIV

1908.734 CIII]
2326.00 CII

2799.117 MgII
3727.092 OII
4102.89 H∆
4341.68 Hγ
4862.68 Hβ

4960.295 OIII
5008.24 OIII
6564.61 Hα
6585.27 NII
6718.29 SII
6732.67 SII

[http://classic.sdss.org/dr6/algorithms/linestable.html]

http://classic.sdss.org/dr6/algorithms/linestable.html
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Table A.4: Summary of J-PAS filters. All wavelengths are given in Å.

Filter λc ∆λ Filter λc ∆λ Filter λc ∆λ

uJAVA 3497 509 J0550 5498 149 J0740 7414 148

uJPAS 3623 736 J0560 5596 150 J0750 7502 142

J0378 3782 157 J0570 5701 150 J0760 7602 144

J0390 3904 150 J0580 5803 148 J0770 7719 146

J0400 3996 148 J0590 5917 152 iSDSS 7725 1250

J0410 4110 144 J0600 6010 150 J0780 7811 145

J0420 4203 147 J0610 6107 150 J0790 7907 142

J0430 4303 148 J0620 6206 148 J0800 8009 140

J0440 4403 152 rSDSS 6250 1250 J0810 8124 144

J0450 4503 150 J0630 6309 150 J0820 8226 143

J0460 4603 148 J0640 6408 150 J0830 8329 148

J0470 4701 148 J0650 6506 146 J0840 8429 148

gSDSS 4750 1250 J0660 6607 151 J0850 8523 146

J0480 4799 142 J0670 6710 146 J0860 8620 148

J0490 4902 154 J0680 6812 152 J0870 8716 146

J0500 5002 152 J0690 6912 148 J0880 8810 146

J0510 5097 148 J0700 7007 148 J0890 8912 150

J0520 5202 150 J0710 7119 148 J0900 9000 154

J0530 5296 150 J0720 7207 146 J0910 9107 152

J0540 5389 152 J0730 7307 150 J1007 9316 635
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